
Reprinted from
AFIPS

Conference Proceedings
Volume 32, 1968

Burroughs' B6500/B7500 stack mechanism

by E. A. HAUCK and 8. A. DENT
Burroughs Corporation
Pasadena, California

INTRODUCTION

Burroughs' 86500/87500 system structure and
philosophy are an extension of the concepts employed
in the development of the 85500 system. The unique
features, common to both hardware systems, are
that they have been designed to operate under the
control of an executive program (MCP) and are to
be programmed in only higher level languages (e.g.,
ALGOL, COBOL, and FORTRAN). Through a
close integration of the software and hardware dis­
ciplines, a machine organization has been developed
which permits the compilation of efficient machine
code and which is addressed to the solution of prob­
lems associated with multiprogramming, multiprocess­
ing and time sharing.

Some of the important features provided by the
86500/B7500 system are dynamic storage allocation,
re-entrant programming, recursive procedure facili­
ties, a tree structured stack organization, memory pro­
tection and an efficient interrupt system. A compre­
hensive stack mechanism is the basic ingredient of the
86500/87500 system for providing these features.

86500/87500 processor

The command structure of the 86500/87500 Pro­
cessor is Polish string, which allows for the separa­
tion of program code and data addresses. The basic
machine instruction is called an operator syllable.
This operator syllable is variable in length, from a
minimum of 8 bits to a maximum of 96 bits. In the
interest of code compactness, more frequently used
operator syllables are encoded in the 8 bit form.

The Processor is provided with a hardware imple­
mented stack in which to manipulate data and store
dynamic program history. Also, data may be located
in arrays outside the stack and may be brought to the
stack temporarily for processing. Program parameters,
local variables, references to program procedures and
data arrays are normally stored within the stack.

The data word of the 86500/87500 Processor is
51 bits long. Data are transferred between memory

245

and within the Processor in 51 bit words. The first 3
bits of the word are used as tag bits, which serve to
identify the various word types as illustrated in Fig. 1.
The remaining 48 bits are data. Tag bits, in addition
to identifying word type, provide the 86500/B7500
Processor with two unique features: (J) data may be
referenced as . an operand, with the processor worrying
about whether the operand consists of one or two
wor~s, and (2) system integrity and memory pro­
tection are extended to the level of the basic machine
data words. If a job attempts to execute data as pro­
~ram code, or to modify program code, the system is
interrupted.

DATA WORDS

I 000 I I EXPONENT! MANTISSA I ~~C"ECISION

I I I
I 010 I I EXPONENT I MANT1SSAtMSI I ~~~D~fl~

I
010 MANTISSA(LSI g~~~~D~~~~IS~o"RD

.....---39 BITS-·-- _j

DESCRIPTOR WORDS

I IOI Ip I c I I IR ID I LENGTH ADDRESS I Pt11 DESCRIPTOR

I I I
1 IOI Ip 1 c 1 1 LENGTH 1 ADDRESS 1 mrAM DESCRIPTOR

L20 BITS____.J.._20 BITS__J

SPECIAL CONTROL WORDS

I 011 IE I STACK NO !DISPLACEMENT!LL!

_J I I
r 111 l 1 PROGRAM SYLLABLE INDEX I

OF I MARK STACK CONTROL
WORD (MSCWJ

I
ADDRESS COLPLE] PROGRAM CONTROL

WORD (PCWI RETURN
CONTROL WORD (RCWl

TI I I I
I 001 IEI STACI< NO !DISPLACEMENT! jA001£SS COUPLE! INOIRECT REFERENCE
'----t'::.J....:.~'-""-.i::.;_;;;.:::;=:::.:.:.1.... -1.:l:==~~

1
. WORD (IRW/IRWSJ

l-10 BITS_J..__16 BITS_j 14 BITS--!

5BITS~

Figure I - 86500/87 500 word formats

246 Spring Joint Computer Conference, 1968

The stack

The stack consists of an area of memory assigned to
a job. This stack area serves to provide storage for
basic program and data references associated with
the job. In addition, it provides a facility for the tem­
porary storage of data and job history. When the
job is activated, four high speed registers (A, X, B
and Y) are linked to the job's stack area (Fig. 2). This
linkage is established by the stack pointer register
(S), which contains the memory address of the last
word placed in the stack memory area. The four top­
of-stack registers (A, X, B and Y) function to extend
the job's stack into a quick access environment for
data manipulation.

IN/OUTPUT l ·---------TOP OF STACK REGISTER 1
MlliOFDA~ . . I
TO STACI<-·-! ' I

L _ _,,_

STACI< AREA
ASSIGNED
TO PROGRAM T-

STACIC AREA
CURRENTLY
IN USE

STACK
MEMORY

AREA

'
'
~

~J

i 0 AC:lLIMITI REGiSTERI

!IO
L_ ___ _J

Figure 2-Top of stack and stack bounds registers

Data are brought into the.stack through the top-of­
stack registers. The stack's operating characteristic
is such that the l~st operand placed into the stack is the
first to be extracted. The top-of-stack registers be­
come saturated after having been filled with two oper­
ands. Loading a third operand into the top-of-stack
registers causes an operand to be pushed from the
top-of-stack registers into the stack memory area.
The stack pointer register (S) is incremented by one as
each additional word is placed into the stack memory
area; and is, of course, decremented by one as a word
is withdrawn from the stack memory area and placed
in the top-of-stack registers. As a result, the S register
continually points to the last word placed into the
job's stack memory area.

A job's stack memory area is bound, for memory
protection, by two registers, the Base of Stack (BOS)

register, and the Stack Limit (SL) register. The con­
tents <'f the BOS register defines the base of the stack
area, and the SL register defines the upper limit of the
stack area. The job is interrupted if the S register is
set to the value contained in either SL or BOS.

The contents of the top-of-stack registers are main­
tained automatically by the processor hardware in
accordance with the environmental demands of the
current operator syllable. If the current operator
syllable demands that data be brought into the stack,
then the top-of-stack registers are adjusted to accom­
modate the incoming data, and the surplus contents
of the top-of-stack registers, if any, are pushed into
the job's stack memory area. Words are brought out
of the job's stack memory area and pushed into the
top-of-stack register for operator syllables which
require the presence of data in the top-of-stack regis­
ters, but do not explicitly move data into the stack.

Top-of-stack registers operate in an operand ori­
ented fashion as opposed to being word oriented. Call­
ing a double precision operand into the top-of-stack
registers implies the loading of two memory words into
the top-of-stack registers. The first word is always
loaded into the A register where its tag bits are
checked. If the word has a double precision tag, a
second word is loaded into X. The A and X registers
are then concatenated to form a double precision
operand image. The 8 and Y registers conca~nate
when a double precision operand is moved to the B
register. The double precision operand splits back to
single words as it is pushed from the B and Y registers
into the stack memory area. The reverse process is
repeated when the double precision operand is eventu­
ally popped up from the stack memory area back
into the top-of-stack registers.

Data addressing

Three mechanisms exist within the B6500/B7500
Processor for addressing data or program code: (I)
Data Descriptor (DD)/Segment Descriptor (SD),
(2) Indirect Reference Word (IRW), and (3) Stuffed
Indirect Reference Word (IRWS). The Data Descrip­
tor (DD) and Segment Descriptor (SD) are B5500
carryovers and provide the basic mechanism for
addressing data or program segments which are lo­
cated outside of the job's stack area. The basic
addressing component of the descriptor is an absolute
machine address. The Indirect Reference Word (IRW)
and the Stuffed Indirect Reference Word (IRWS) are
B6500/B7500 mechanisms for addressing data located
within the job's stack memory area. The addressing
component of both the IRW and IRWS is a relative
address. The IRW is used to address within the im-

mediate environment of the job's stack, and addresses
relative to a displav register (described later in Non­
local Addressing). The IRWS is used to address be­
yond the immediate environment of the current pro­
cedure, and addresses relative to the base of the job's
stack. Addressing across stacks is accomplished
with an I RWS.

The descriptor

In general, the descriptor functions to describe and
locate data or program code associated with .a given
job. The Data Descriptor (OD) is used to fetch data
to the stack or store data from the stack into an array
which resides outside the job's stack area. The format
of Data and Segment Descriptors are illustrated in
Fig. I. The ADDRESS field of both descriptors is
20 bits in length and contains the absolute address of
an array in either main system memory or in the back­
up disk store. The Presence bit (P) indicates whether
the referenced data are present in main system mem­
ory or in the back-up disk store, and is set equal to
ONE when the referenced data are present in main
system memory.

A Presence Bit Interrupt is incurred when the job
makes reference to data via a descriptor which has a P
bit equal to ZERO. The Presence Bit Interrupt stimu­
lates the operating system (called the Master Control
Program, or MCP) to move the data from disk to main
memory. The data location on disk is contained in the
ADDRESS field of the DD when the P bit is equal to
ZERO. After transferring the data array into the
main memory, the operating system (MCP) marks the
descriptor present by setting the P bit equal to ONE,
and places the current memory address into the AD­
DRESS field of the descriptor. The interrupted job
is then reactivated.

A Data Descriptor may describe either an entire
array of data words, or a particular element within an
array of data words. If the descriptor describes an
entire array, the Indexed bit (I-bit) in the descriptor
is ZERO, indicating that the descriptor has not yet
been indexed. The LENGTH field of the descriptor
defines the length of the data array.

A particular element of an array may be described
by indexing an array descriptor. Memory protection
is insured during indexing operations by performing a
comparison between the LENGTH field of the de­
scriptor and the index being applied to it. An Invalid
Index Interrupt is incurred if the index value exceeds
the length of the memory area defined by the de­
scriptor.

If the value being used to index the descriptor is
valid, the LENGTH field of the descriptor is replaced
by the index value. At this time the I-bit in the de-

Burroughs' B6500/B7500 Stack Mechanism 247

scriptor is set to ONE to indicate that indexin~ has
taken place. The ADDRESS and LENGTH fields
are added together to generate an absolute machine
address whenever a present, indexed Data Descriptor
is used to fetch or store data.

The Double Precision bit (D) is used to identify the
referenced data as being either single or double
precision and, as a result, is also associated with the
indexing operation. The D bit being equal to ONE
signifies double precision and implies that the index
value be multiplied by two before indexing.

The Read-Only bit (R) specifies that the memory
area described by the Data Descriptor is a read-only
area. An interrupt is incurred uoon referencimz an
area through a descriptor with the intention to write
ifthe R bit is equal to ONE.

The Copy bit (C) identifies a descriptor as being a
copy of a master descriptor and is related to the pres­
ent bit action. The intent of the copy action is to keep
multiple copies of an absent descriptor linked back to
one master descriptor. Copy action is incurred when
a job attempts to pass by name an absent Data De­
scriptor. When this occurs, the hardware manufac­
tures a copy of the master descriptor, forces the C bit
equal to ONE and inserts into the ADDRESS field
the address of the master descriptor. Thus, multiple
copies of absent descriptors are all linked back to the
master descriptor.

Non-local addressing

The most important single aspect of the B6500/
B7500 stack is its facility for storing the dynamic
history of a program under execution. Two lists of
program information are saved in the B6500/B7500
stack, the stack history list and the addressing environ­
ment list. The stack history list is dynamic in nature,
varying as the job is driven through different program
paths with changing sets of data. Both lists are gen­
erated and maintained by the B6500/B7500 hardware
system.

The stack history list is formed from a list of Mark
Stack Control Words (MSCW) which are linked to­
gether by their OF fields (Fig. 3). A MSCW is inserted
into the stack as a procedure is entered, and is ex­
tracted as that procedure is exited. Therefore, the
stack history list grows and contracts in accordance
with the procedural depth of the program. Mark Stack
Control Words serve to identify the portion of the
stack related to each procedure. When the procedure
is entered, its parameters and local variables are en­
tered in the stack following the MSCW. When ex­
ecuting the procedure, its parameters and local vari­
ables are referenced by addressing relative to the loca­
tion of the related MSCW.

248 Spring Joint Computer Conference, 1968

STACK
HISTORY

LIST

Figure 3 - Stack history and addressing environment list

Each MSCW is linked back to the prior MSCW
through the contents of its DF field to identify the
pomt in the stack where the prior procedure began.
When a procedure is exited, its related portion of
the stack is discarded. This action is achieved by
setting the stack pointer register (S) to point to the
memory cell preceding the most recent MSCW (Fig.
4). This top-most MSCW, pointed to by another
register (F), is in effect deleted from the stack history
list by causing F to point back at the prior MSCW,
thereby placing it at the head of the stack history
list.

STACM
HISla'fY

LIST

Figure 4-Stack cut-baclt operation on procedure nit

This concept is implemented in the Burroughs'
85500 system, and it provides a convenient means to
handle subroutine entry and exit. Out this mechanism
alone also gives rise to one of the most serious limita­
tions of the ALGOL implementation on the 85500.
In the B5 500 stack, local variables are addressed rela­
tive to the first Mark Stack Control Word (which
corresponds to the outer-most block), or relative to
the most recent Mark Stack Control Word (which
corresponds to the current procedure). All intervening
Mark Stack Control Words, however, are invisible to
the current procedure. This means that the variables
declared global to the current procedure, but local to
some other procedure, cannot be addressed at all!
This inability to reference variables declared non-local
to the current procedure but local to some other pro­
cedure is termed the non-local addressing problem.

The manner in which these variables are addressed
in the B6500/B7500 stack can best be understood by.
analyzing the structure of an ALGOL program. The
addressing environment of an ALGOL procedure is
established when the program is structured by the
programmer, and is referred to as the lexicographical
ordering of the procedural blocks (Fig. 6A). At com­
pile time, this lexicographical ordering is used to form
address couples. An address couple consists of two
items: I) the lexicographical level(//) of the variable.
and 2) an index value (S) used to locate the specific
variable within a given lexicographical level. The lexi­
cographical ordering of the program remains static as
the program is executed, thereby allowing variables to
be referenced via address couples as the program is
executed.

STACM ADOll(SS
lll[M()RY CHVtRON111£NT

- ARCA ~ LIST

c:::::::I:s :::J--~• 1TOS~!QR01. t=----=---=~ ~
- - PllOC[OUll(.,.

~~--- ---·-+
PllOC[OUll[.,. •

~-=4=
1'910ClOURf 'D'

~~-

=~r·
OUT(ll PtlOG. 11.0Cll

~·~---±
Figure , _Display registers indicatinlJ cunem addressing environ­

ment

BEG IN ------------L11lco0rophica1 L1v11 "2"

REAL VI; LL•2, 8•2
REAL V2; LL•2, 8•3
PROCEDURE A; LL•Z, 8•4

BEGIN-- ------- L11lcoorophicol Lovol "3"

R!:ALV3; LL•3,8•2
PROCEDURE B; LL•3, 8•3

B·
IEND:

[

BEGIN------ L11ico0rophicol L1v11 •4•
V3-3;
Vl-V3;

END;

PROCEDURE C ;

C;
IEND;

· BEGIN---------L11lco0rophlcol Lev11 •3•

REAL V4; LL•3, 8• 2
PROCEDURE D; LL •3, 8• 3

D;
END;

rBEGIN------L1xlcoorophicol Loni "4"

l
REAL V!5 · LL •4, 8• 2
V4-4;'
V!5- !5;
A;
V2-V4;

END;

Figure 6a-ALGOL program with lexicographical structur-=
indicated

- - - - - - - - L11icooraplllcol LAwl "2"

Figure 6b-Addressing environment tree of ALGOL program in
Figure 6a

The 86500/87500 contains a network of Display
Registers (DO through D3 I) which are caused to
point at the appropriate MSCW (Fig. 5). The local
variables of all procedures global to the current pro­
cedure are addressed in the 86500/87500 relative
to the Display Registers.

The address couple is converted into an absolute
memory address when the variable is referenced. The
lexicographical level portion of the address couple
functions to select the Display Register which con­
tains an absolute memory address pointing at the
MSCW related to the procedural block (environment)
where the referenced variable- is located. The inde"

Burroughs' 86500/87500 Stack Mechanism 249

value of the address couple is then added to the con­
tents of the Display Register to generate an absolute
memory address to locate the variable.

It should be recognized that the address couples
assigned to the variables in a program are not unique.
This is true because of the ALGOL scope of definition
rules, which imply that two variables may have iden­
tical address couples only if there is no procedure
within which both of the variables can be addressed.
So this addressing scheme works because, whereas
two variables may have the same address couples,
there is never any doubt as to which variable is being
referenced within any particular procedure.

What this does imply, however, is that there is a
unique place (a MSCW) to which each Display Regis­
ter must point during the execution of any particu­
lar procedure, and that the settings of the Display
Registers might have to be changed, upon procedure
entry or exit, to point to the correct MSCW. This
list of MSCWs to which the Display Registers must
point is called the addressing environment of the
procedure.

The addressing environment of the program is
maintained by the hardware. It is formed by linking
the MSCW's together in accordance with the lexico­
graphical.structure of the program. This linkage infor­
mation is contained with the Stack Number (Stack
No.) and Displacement (DISP) fields of the MSCW,
and is inserted into the MSCW whenever a procedure
is entered. The contents of the DISP field indicate
the environment in which the entered procedure was
declared. Thus the addressing environment list is
formed by linking each procedure entry Mark Stack
Control Word back to the MSCW appearing immedi­
ately below the declaration for that procedure. This
forms a tree structured list which indicates the legiti­
mate addressing environment of each procedure under
dynamic conditions (Figs. 5 and 68). This list is
searched by the hardware to update the Display
Registers' contents whenever a procedure entry or
exit occurs.

The entry and exit mechanism of the Processor
hardware automatically maintains both stack lists to
reflect the current status of the program. Therefore,
the system is able to respond to, and return from,
interrupts conveniently. Interrupt response is handled
as a procedure entry. Upon recognition of an interrupt
condition, the hardware causes the stack to be
marked, inserts into the stack an indirect reference
word (address couple) pointing to the interrupt han­
dlins procedure, inserts a literal constant to identify
the interrupt condition, and then causes an entry into
the operating system interrupt-handling procedure.
The Display Registers will track with the entry into
the interrupt-handling procedure to make all legitimate

250 Spring Joint Computer Conference, 1968

variables visible. Also upon return, the Display
Registers track back to the environment of the former
procedure, making all of its variables visible again.

Multiple stacks and re-entrant code

The 86500/87500 stack mechanism provides a
facility to handle several active stacks. These stacks
are organized into a single tree structure. The trunk
of this tree structure is a stack which contains certain
operating system global variables, and contains all of
the Segment Descriptors describing the various pro­
cedures within the operating system.

Let us make a distinction between a program, which
is a set of executable instructions, and a job, which
is single execution of a program for a particular set of
data. As the operating system is requested to run a
job, a level- I branch of the basic stack is created.
This level- I branch is a stack which contains only the
Segment Descriptors describing the executable code
for the named program. Emerging from this level- I
branch is a level-2 branch, a stack to contain the vari­
ables and data for this job. Thus, starting from the
job's stack and tracing downward through the tree­
structure, one would find first the stack containing the
variables and data for the job (at level 2), the program
code to be executed (at level I), and finally the operat­
ing system's stack at the trunk (level 0).

A subsequent request to run another execution of
an already-running program would require that only a
level-2 branch be established. This level-2 stack
branch would sprout from the level- I stack that de­
scribes the already running program. Thus two jobs
which are different executions of the same program
will have a common node, at level I, which describes
the executable code. It is in this way that program
code, which is not modifiable, is re-entrant and shared.
It comes about simply from the proper tree-structured
organization of the various stacks within the machine.
Thus all programs within the system are re-entrant,
including all user programs as well as the compilers
and the operating system itself.

The 86500/87500 stack mechanism also provides
the facility for a single job to split itself into two inde­
pendent jobs. It is anticipated that the most common
use of this facility will occur when there is a point in
a job where two relatively large independent processes
must be performed. This kind of splitting could be
used to make full use of a multiprocessor configura­
tion, or simply to reduce elapsed time by multipro­
gramming the independent processes.

This kind of program splitting becomes almost
literally "reproduction by budding" in the 86500/
87 500 system. A split of this type is handled by es tab·
listing a new limb of the tree structured stack, with

the two independent jobs sharing that part of the
stack which was created before the budding was
requested. The process is recursively defined, and
can happen repeatedly at any level. An implementa­
tion restriction limits the total number of separate
stacks to I 024.

This tree-structured organization for handling
multiple stacks is referred to as the Saguaro Stack
System.

Linkage of stack branches is achieved through a sin­
gle array of data descriptors, the stack vector array
(Fig. 7). A data descriptor is entered into the array
for every stack branch as it is set up by the operating
system. This data descriptor, the stack descriptor,
serves to describe the length of the memory area
assigned to a stack branch, and its location in either
main memory or on disk.

JOB
STACK
NO.n

JOB
STACK
NO. 3

JOB
STACK
NO. 2

SEGMENT
DESCRIPTORS

STACK VECTOR
DESCRIPTOR

JOB
STACK
NO.I

MSCW

MSCW

Figure 7 - Multiple linked stacks

DISPLAY
REGISTERS

A stack number is assigned to each stack branch
to indicate the position of its stack descriptor within
the stack vector array. The stack number is used as an
index value to locate the related stack descriptor
from the stack vector array for subsequent reference.

The stack vector array's size and location in
memory is described by the stack vector descriptor.
This descriptor is located in a reserved position of
the stack's trunk (Fig. 7). All references to stack
branches are made through the stack vector descriptor
which is indexed by the value of the stack number

to select the stack descriptor for the referenced
stack.

A Presence Bit Interrupt is incurred upon making•
reference to•a stack which is not present in memory.
This Presence Bit Interrupt facility provides the
means to permit stack overlays and recalls under
dynamic conditions. Idle or inactive stacks may be
moved from main memory to disk as the need arises,
and when subsequently referenced will cause a
Presence Bit Interrupt which triggers the operat­
ing system to recall the non-present stack from disk.

Referencing a variable within the current address­
ing environment of an active procedure is accom­
plished through the use of the address couples con­
tained in the IRW and the address couple field of the
Program Control Word (PCW) as shown in Fig. I.
Both references are made relative to the Display
Registers specified by the address couple. The ad­
dress couple and Display Registers are usable only
for addressing variables within the scope of the cur­
rent addressing environment. Reference to variables
beyond the scope of the current environment is ac­
complished by a stuffed IRWS. This causes the ad­
dressing to be accomplished by addressing relative
to the base of the stack (BOS) in which the variable
is located.

The I RWS contains information specifying the
stack number (Stack No.), the location (DISP)
of the related MSCW, and the displacement (8) of
the parameter relative to the MSCW. The absolute
memory location of the sought parameter is formed by

Burroughs' B6500/B7500 Stack Mechanism 251

adding the contents of DISP and 8 to the base address
of the referenced stack. The base address of the stack
is determined by accessing the stack descriptor as
described previously. The information contents of
the stuffed I RWS with the exception of 8, is dynamic
in nature and must therefore be accumulated as the
program is executed. The contents of the stack num­
ber (Stack No.) and DISP fields are entered into the
IRWS by a special hardware operator which is in­
voked by the software whenever the program attempts
to pass a parameter by name.

ACKNOWLEDGMENTS

Recognition for the stack concepts and operating
philosophy of Burroughs' B6500/B7500 system must
be extended to many system designers engaged in
both the B5500 and B6500/B7500 programs. Among
the contributors, special mention should be made
for B. A. Creech, Burroughs Corporation, and R. S.
Barton, W. M. McKeeman, consultants.

REFERENCES

I Burroughs' B5500 information processing system reference
manual
Burroughs Corporation 1964

2 A narrative description of the Burroughs' B5500 disk file
master control program
Burroughs Corporation 1965

3 B RANDALL L J RUSSELL
ALGOL 60 implementation
Academic Press 111 5th Avenue New York 1964

Form 1035441 Printed In U.S. America

