
--Bµrroughs

,J3··6SOO
·1 nformation Processing Systems

:· CHARACTERISTICS MANUAL

Burroughs
86500

INFORMATION PROCESSING SYSTEMS

Printed in U. S. America

CHARACTERISTICS MANUAL

Burroughs Corporation
Detroit, Michigan 48232

6-69 1032315

COPYRIGHT© 1967,1968,1969 BURROUGHS CORPORATION

AA 950739 AA 32496

The information contained herein is subject to change
without notice. Revisions may be issued to advise of

such changes and/or additions.

Correspondence regarding this document should be forwarded using the Remarks Form at
the back of the manual, or may be !l'ldressed directly to Systems Documentation, Sales
Technical Services, Burroughs Corporation, 6071 Second Avenue, Detroit, Michigan 48232.

TABLE OF CONTENTS

SECTION TITLE

INTRODUCTION

1 SYSTEM DESCRIPTION
General .. .
System Organization

Processor .. .
Main Memory .. .
Second Level Memory
Input/Output Multiplexor
Data Communications Processor
Real Time Adapter

2 MAIN MEMORY .. .

General .. ·
Memory Organization
Memory Protection .. .
Memory Packaging .. .
Second Level Memory

3 PROCESSOR .. .
General .. .
Processor States .. .

Control State .. .
Normal State .. .

Interrupt System .. .
Internal (Processor Dependent) Interrupts

Syllable Dependent Processor Interrupts
Syllable Independent Processor Interrupts

External Interrupts
Memory Protection ,
Information Representation

Operands .. .
Single Precision
Double Precision

Descriptors .. .
Data Descriptors ;
String Descriptor
Segment Descriptor

Mark Stack Control Word
Program Control Word/Return Control Word
Indirect Reference Word

Instruction Format .. .
Registers .. .

Information Registers
Address Registers .. .

Stack Mechanism .. .
Stack Adjustment
Cactus Stack

iii

PAGE

ix

1-1
1-1
1-1
1-1
1-4
1-4
1-4
1-4
1-5

2-1
2-1
2-1
2-2
2-2
2-2

3-1
3-1
3-1
3-1
3-1
3-1
3-2
3-2
3-2
3-2
3-2
3-2
3-3
3-3
3-4
3-4
3-4
3-5
3-6
3-6
3-7
3-8
3-8
3-9
3-9
3-9
3-9
3-10
3-10

TABLE OF CONTENTS (cont.)

SECTION TITLE

3 (cont) Operators (Instructions)
Invalid Instruction Detection
Mark Stack Operator
Insert Mark Stack Operator
Name Call Operator
Value Call Operator
Evaluate Descriptor
Enter Operator
Exit Operator .. .
Return Operator ·
Branch Operators
Step and Branch Operator
Arithmetic Operators
Logical Operators
Relational Operators
Index and Load Operators
Stack Operators
Store Operators
Transfer Operators .. .
Literal Call Operators
Bit Operators .. .
String Operators .. .

String Transfer Operator
Scan While Operators
Compare Operators
Translate Operator
Pack Operators
Unpack Operators
Input Convert Operators
Edit Operators
Move Micro-Operators
Skip Micro Operators
Insert Micro Operators
Scale Operators .. .
Occurs Index Operator
Special Flip-Flop Operators

Software Operators

4 INPUT/OUTPUT MULTIPLEXOR AND PERIPHERAL CONTROLS
General
Operation
Descriptor Formats

Unit Number Word
Area Descriptor .. .
1/0 Control Word
Result Descriptor

iv

PAGE

3-10
3-10
3-11
3-11
3-11
3-11
3-11
3-11
3-11
3-11
3-12
3-12
3-12
3-13
3-13
3-13
3-13
3-14
3-14
3-14
3-14
3-14
3-14
3-14
3-15
3-15
3-15
3-15
3-15
3-15
3-15
3-16
3-16
3-16
3-16
3-16
3-16

4-1
4-1
4-1
4-2
4-2
4-2
4-2
4-3

TABLE OF CONTENTS {cont.)

SECTION TITLE PAGE

4 (cont) Peripheral Controls . 4-3
Magnetic Tape Control . 4-3

Magnetic Tape Exchanges . 4-3
Card Reader Control . 4-4
Card Punch Control . 4-4
Line Printer Control . 4-4
Paper Tape Reader Control . 4-4
Paper Tape Punch Control . 4-4
Disk File Control . 4-4

Disk File Exchange . 4-4
Console Monitor Control . 4-4

5 DATA COMMUNICATIONS PROCESSOR . 5-1
General . 5-1
Operation . 5-2
Program Requirements . 5-4

Scan Function . 5-4
Service Program . 5-4
Polling Program . 5-4

6 PERIPHERAL COMPONENTS . 6-1
General . 6-1
Desk Console . 6-1
Disk Files . 6-1
Magnetic Tape . 6-2
Card Readers . 6-3
Line Printers . 6-4
Card Punch . 6-4
Paper Tape Reader . 6-5
Paper Tape Punch . 6-6

7 SOFTWARE . 7-1
General . 7-1
Master Control Program (MCP) Features . 7-1

Computer Functions . 7-1
Automatic System Assignment and Coordination 7-1
Multiprocessing . 7-2

Elements of the Master Control Program . 7-2
Entry to Control State . 7-3
Executive Routine . 7-3

Input/Output Operations . 7-3
Initiation of an Input/Output Operation 7-3
Completion of an Input/Output Operation 7-3

Handling Interrupt Conditions . 7-4
Control of Program Segments . 7-4
Other Master Control Program Routines . 7-4
Maintenance of an Operation Log . 7-4
Summary . 7-4

v

TABLE OF CONTENTS (cont.)

SECTION TITLE PAGE

7 (cont) The Schedule Routine . 7-5
Program Backlog Table . 7-5
Program-Finish Conditions . 7-5
Changing the Schedule . 7-5

Problem-Oriented Languages . 7-5
COBOL . 7-5
ALGOL.. 7-6
FORTRAN . 7-6
Compiling a Source Program . 7-6

Application Programs . 7-7
Scientific Systems . 7-7

Advanced Mathematical Programing System 7-7
Statistical Programing . 7-7
Simulation Techniques . 7-7

DYNAMO.. 7-7
SIMULA . 7-7

Industrial Management Systems . 7-7
Inventory Management . 7-8

Burroughs Inventory Control System (BICS) 7-8
ACT!ON System . 7-8

Production Management . 7-8
Project Oriented Management Information System (PROMIS) . . 7-8
Production Accounting System . 7-9

Financial Systems . 7-9
Advanced Information Management System . 7-9

APPENDIX A OPERA TORS, ALPHABETICAL LIST . A-1

APPENDIXB OPERATORS, NUMERICAL LIST............................... B-1

vi

FIGURE

1-1
1-2
1-3
2-1
2-2
3-1
3-2
3-3
3-4
3-5
3-6
3-7
3-8
3-9
3-10
3-11
3-12
3-13
3-14
4-1
4-2
4-3
5-1
5-2
6-1
6-2
6-3
6-4
6-5
6-6
6-7
6-8
6-9
7-1
7-2

TABLE

5-1
6-1
6-2

LIST OF ILLUSTRATIONS

TITLE

B 6500 Representative Configuration
Possible Magnetic Tape Subsystem
Possible Disk File Subsystem
Memory Organization .. .
Information Transmission :
Basic Word Structure .. .
Single Precision Operand
Double Precision Operand
Data Descriptor .. .
String Descriptor
Byte/Word Index Field
Segment Descriptor
Mark Stack Control Word
Program Control Word/Return Control Word
(Stuffed) Indirect Reference Word
(Normal) Indirect Reference Word
Example Allocation of Main Memory
Cactus Stack Structure
Operand Formats
Input/Output Subsystem
1/0 Descriptor Formats
Result Descriptor Format
Organization of Data Communications Processor Remote Lines
Typical Data Communications Message Flow
Disk File Electronics Unit with one Disk File Module Attached
Data Memory Bank .. .
Free-Standing Magnetic Tape Unit
Clustered Tape Unit
Card Reader
Line Printer
Card Punch .. .
Paper Tape Reader .. .
Paper Tape Punch
Organization of B 6500 MCP
Compilation of a Source Program

LIST OF TABLES

PAGE

1-2
1-5
1-5
2-1
2-2
3-3
3-3
3-4
3-5
3-5
3-6
3-7
3-7
3-7
3-7
3-8
3-9
3-10
3-12
4-1
4-2
4-3
5-1
5-2
6-1
6-2
6-3
6-3
6-4
6-4
6-5
6-5
6-6
7-2
7-6

TITLE PAGE

B 6500 Remote Terminal Characteristics . 5-3
Disk File Storage . 6-2
Magnetic Tape Unit Characteristics . 6-3

vii

The Burroughs B 6500 Information Processing
System is a medium-to-large scale system incor­
porating monolithic integrated circuitry, with a
memory size of up to 3,145,728 bytes (524,288
words) of high-speed memory, with 1.2 micro­
second or 600 nanosecond cycle times; dual
input/output (1/0) multiplexor capability allowing
up to 20 simultaneous operations; data communi­
cations software for remote computing and file
manipulation; and, the ability to handle up to 256
peripheral units, including up to 36 billion bytes of
disk storage.

A unique hardware design, developed from years of
successful experience with the B 5500, has
resulted in the parallel design of the B 6500 hard­
ware and supporting software. Where traditionally
hardware was designed prior to software develop­
ment, parallel design assures that the hardware
contains all necessary logic for efficient software
packages, which in turn optimizes hardware
capabilities. The B 6500 design affords a general
"re-entrant" technique which permits multiple
users to share a common object program. In addi­
tion, the system further expands the use of
hardware stack organization used in the B 5500.

To solve dynamic storage allocation problems, the
B 6500 system employs and expands upon the
Burroughs descriptor method of segmentation, first
used on the B 5500, in lieu of some form of
fixed-sized "paging" technique. For example, the

ix

INTRODUCTION

Segment Dictionary, a separate table for each
program in the B 5500, has been placed in the
base of the program stack on the B 6500. This
part of the stack is used for multiple executions of
the same program, thus eliminating many of the
bookkeeping functions required to implement
Master Control Program (MCP) re-entrancy.

Designed to bring the user simplified programming,
operational ease, and complete freedom of system
expansion, the B 6500 offers a choice of three
problem-oriented languages: COBOL for business
applications and ALGOL and FORTRAN for
solution of mathematical problems. Operator
intervention is minimized through use of the MCP,
which provides for complete system management.

The complete flexibility of programing and control
of the processing pattern provides the B 6500 with
smooth growth potential. Starting with a minimum
configuration, the user may expand his system in
small increments to accommodate a growing
work-load. With each addition, the MCP
automatically adjusts to attain increased system
production and efficiency, expanding system
multiprograming capabilities.

This manual contains a description of the B 6500
characteristics and is intended to provide back­
ground technical information for those directly
associated with data processing.

SECTION 1
SYSTEM DESCRIPTION

GENERAL

This section describes the main components of the
B 6500 System. System design is based on
program-independent modularity, the ability to
process programs on available equipment without
reprograming or recompiling, while, at the same
time, making efficient use of that equipment.
Machine language of the B 6500 is designed
specifically to accept the common compiler
languages of ALGOL, COBOL, and FORTRAN.
The system automatically handles memory assign­
ments, input/output assignments, program
segmentation, and subroutine linkage, thus
eliminating arduous programing tasks and reducing
the likelihood of error. Programs are debugged and
maintained at the source language level.

The Master Control Program (MCP) provides for
over-all system coordination and control, reducing
operator intervention to a minimum. By control­
ling the sequence of processing, initiating all
input/output operations, and providing automatic
handling procedures to meet virtually all processing
conditions, the MCP continually obtains maximum
use of system components. This centralized control
permits changes in scheduling, system configura­
tion, and program size to be readily
accommodated.

SYSTEM ORGANIZATION

Generally, computer systems are organized around
a central system which controls memory accesses,
establishes I/O priority, etc. In the B 6500 this
central control function has been disbursed
throughout the entire system (see figure 1-1), per­
mitting component removal without destruction of
the system's ability to perform. The MCP recog­
nizes a component omission and adjusts its task
accordingly. Such "graceful degradation" allows
operation to continue while corrections are made.
Conversely, the B 6500 can be expanded on-site to
accommodate mounting work-loads without the
need for reprograming or recompiling. The MCP
notes the larger hardware configuration and takes
immediate advantage of the new environment, re­
allocating memory, processor, I/O, and peripheral
resources to the object program.

1-1

Processor

The B 6500 can accommodate either one or two
processors, both of which can access any portion
of total memory. The B 6500 operates at a clock
frequency of either 2.5 megacycles (model
B 6503) or 5.0 megacycles (models B 6504 and
B 6506). Following are some of the processor
features:

a. Program code cannot be modified while in
residence.

b. A hardware stack mechanism provides for
efficient handling of temporary storage and
subroutine requirements.

c. Control bits added to each word provide for
efficient MCP or hardware action, depending
upon the control bit configuration.

d. Memory protection (preventing one program
from affecting another) is provided for by a
combination of hardware and software
features. Hardware features include auto­
matic detection of a program attempt to
index beyond an assigned data area and the
use of control bits, which prevent a user
program from changing program segments,
data descriptors, segment descriptors,
memory links, MCP tables, etc. The software
sets the control bits of those words which
are not available to the object program.

e. The B 6500 processor is designed to imple­
ment higher-level languages and to function
under MCP control.

f. Major registers and control flip-flops in each
of the processors contribute to system multi­
processing capabilities.

An aggressive hardware method of detecting and
servicing system interrupts contributes to the
ability of the B 6500 to process a mix of inde­
pendent programs in an efficient manner. Under
the constant, automatic management of the MCP,
multiprocessing is the normal mode of operation.
With one processor in the configuration, multipro­
graming (interleaved programing) is the method
employed. Dual-processor B 6500 Systems com­
bine both multiprograming and parallel processing.
(The ability to multiprogram, parallel process, or
both has been defined as multiprocessing.)

MEMORY
MODULE

1

16,384 TO 524,288 WORDS
(98,304 TO 3, 145,728 BYTES)

MEMORY
MODULE

2 -
' I

UPTO
32

MODULES

MEMORY
MODULE

32

DATA
.--------t COMMUNICATIONS

PROCJ:SSO_R

DATA
.--------1 COMMUNICATIONS

PROCESSOR

DATA
COMMUNICATIONS

PROCESSOR
DATA

r------1 COMMUNICATIONS
PROCESSOR

INPUT/
DATA
SWITCHING

OUTPUT CHANNELS
MULTIPLEXOR 4-10

PROCESSOR
1

PROCESSOR
2

INPUT/
DATA
SWITCHING

OUTPUT CHANNELS
MULTIPLEXOR 4-10

DATA

UPTO
16

ADAPTER
CLUSTER
NO. 16

1-16
LINES

- ADAPTER--r
CLUSTERS ..--A~DA""P""T"'"ER::---1-----r-:::D-:-A:;-TA:---

l 1-16 ADAPTER
CLUSTERS PER

DCP

CLUSTER COMMUNICATIONS
NO. 2 NETWORK

DAPTER DATA
CLUSTER COMMUNICATIONS

NO. 1 NETWORK

ADAPTER 1_16 DATA
CLUSTER LIN s COMMUNICATIONS

L--N~O:..,_!l_...r--~ NETWORK

COMMUNICATIONS 1------------1
PROCESSOR

DATA
COMMUNICATIONS

PROCESSOR

COMMUNICATIONS
PROCESSOR

DATA
COMMUNICATIONS

PROCESSOR

1-16 ADAPTER
CLUSTERS PER

DCP

ADAPTER
CLUSTER
NO. 16

DATA
COMMUNICATIONS
NETWORK

Figure 1-1. B 6500 Representative Configuration

1-2

CD CARD CARD

PC
READER PUNCH PRINTER PRINTER

PC PC PC PC

CDT CARD CARD
PAPER

READER PUNCH
PRINTER PRINTER TAPE

READER

1-3

PAPER
TAPE
PUNCH
PC

PAPER
TAPE
PUNCH

1 - 16 TAPE UNITS

MAGNETIC TAPE EXCHANGE

DISK DISK DISK
PC PC PC

DISK FILE EXCHANGE

1 - 20 ELECTRONICS
UNITS

UP TO 5 MORE
PERIPHERAL CONTROLS

TAPE
CLUSTER

UP TO 4 MORE
PERIPHERAL CONTROLS

Main Memory

Main memory is expandable from one to eight
modules on a B 6503 processor system, and from
one to 32 modules on B 6504 or B 6506 proces­
sor systems. Each memory module contains 16,384
(52-bit) words, permitting a current maximum of
524,288 words of memory. Provision is made for
future expansion beyond one million words of
storage.

Each memory word consists of 48 information
bits, three control bits, and a parity bit. The three
control bits are used to identify descriptors,
provide memory protection, describe the type of
data, and provide other control functions. A 20-bit
binary addressing scheme provides for addressing
all 524,288 words of memory. Main memory cycle
time is 600 nanoseconds for B 6506 processor
systems, and 1.2 microseconds for B 6503 and
B 6504 processor systems.

Each memory cabinet includes a memory test
facility used for fault detection and isolation of
the three memory modules contained within the
cabinet. When the unit test facility is being used to
check out one of the modules, the others can
continue in use by the system.

The 8-bit Extended Binary Coded Decimal Inter­
change Code (EBCDIC) is the primary internal
code of the B 6500, with the system also able to
accept information recorded in 4-bit and 6-bit
formats. Because many data communications
devices transmit in American Standard Code for
Information Interchange (ASCII), provision is
made for direct processing of ASCII code as well.

Second Level Memory

Second level memory for the B 6500 consists of
Burroughs head-per-track disk file subsystems.
Program and data segments stored on disk are
automatically transferred to main memory as
required, by action of the MCP. Through the use of
an optional disk file exchange and controls, up to
four transfer operations to or from each disk file
subsystem can occur simultaneously. Multiple disk
file subsystems totaling up to 36 billion bytes of
storage can be attached to a B 6500 System.

Input/Output Multiplexor

The Input/Output Multiplexor and associated
peripheral control modules are used to control the
transfer of data between memory and all peripheral
equipment, independent of the processor. The

1-4

multiplexor receives instructions from the proces­
sor and, together with its ·associated peripheral
controls, executes these instructions. One or two
multiplexors may be attached to a B 6500. Each
multiplexor is capable of processing up to ten
simultaneous 1/0 operations from up to 20
peripheral controls, handling a combined
maximum of 256 peripheral devices.

Each multiplexor provides three separate and
independent units:

a. Data switching channels which provide the
necessary linkage between the peripheral
device (excluding data. communications) and

' main memory,
b. Data communications processors which

permit interfacing of remote devices to the
B 6500.

c. A real time adapter which permits inter­
facing of real time devices such as wind
tunnels and rocket stands.

The number of available data switching channels
determines the number of simultaneous 1/0 opera­
tions that can be performed, that is, the channels
float, being assigned to peripherals upon demand
for service and released back to the multiplexor for
reassignment upon receipt of an 1/0 complete.

Two types of peripheral controls are available,
large and small. The large controls are used with
high-speed devices such as magnetic tape, disk files,
and display consoles; the small controls are used
with slower peripherals such as printers, card read­
ers, and card punches. Large controls utilize a two
character buffer and small controls a one character
buffer. Each multiplexor can accommodate up to
ten large and ten small controls.

The maximum configuration using two multi­
plexors (20 controllers per multiplexor) can be
further expanded through the use of disk file and
magnetic tape exchanges. Figure 1-2 illustrates a
possible magnetic tape subsystem. Figure 1-3 illus­
trates a possible disk file subsystem.

Data Communications Processor

Up to four Data Communications Processors (DCP)
can be connected to an 1/0 multiplexor. From one
to sixteen adapter clusters can be attached to each
DCP, and from one to 16 remote lines can be
attached to each adapter cluster, providing control
for up to 256 remote lines. Since a single B 6500
may have up to eight DCPs, a maximum of 2,048
remote lines can be serviced by a single system.

Real Time Adapter

An optional real time adapter may be attached to
an 1/0 multiplexor. Real time devices require

custom engineering for interface with the real time
adapter and the software.

1/0
MULTI-

1/0
MULTI­

PLEXOR

1/0
MULTI­

PLEXOR

1--1
PLEXOR

APPROP.
TAPE
P.C.

I OR2
TAPE

CLUSTERS

MODEL
B 6373 -
DISK FILE P.C.

P.C.

I T05
DISK
MODULES

I ELECTRONICS UNIT

I
1/0 MODEL

B 6373 -MULTI- t-- DISK FILE P.C.
PLEXOR

P.C.

APPROP.
TAPE
P.C.

LARGE PERIPHERAL CONTROLS

P.C. P.C.

4 X 16 TAPE EXCHANGE

APPROP.
TAPE
P.C.

APPROP.
TAPE
P.C.

APPROP.
TAPE
P.C.

LARGE PERIPHERAL CONTROLS

•.c.

P.C.

APPROP. APPROP.
TAPE TAPE
P.C. P.C.

APPROP.
TAPE
P.C.

APPROP.
TAPE
P.C.

APPROP.
TAPE
P.C.

APPROP.
TAPE
P.C.

Figure 1-2. Possible Magnetic Tape Subsystem

MODEL MODEL
B 6373 B 6373
DISK FILE DISK FILE
P.C. P.C.

J I
2X IOEXCH.

llll
I TO 10

ELECTRONICS UNITS

I T05

DISK MODULES PER
ELECTRONICS UNIT

- -
P.C. P.C.

PERIPHERAL CONTROLS
LARGE

MODEL - B 6373
MODEL MODEL
B 6373 B 6373 P.C. DISK FILE DISK FILE DISK FILE

P.C. P.C. P.C.

I I I
[N1 x N2 EXCHANGE

l l l l l l l l l
I TO 20 ELECTRONICS UNIT

I T05
DISK MODULES
PER
ELECTRONICS UNIT

- -
P.C. P.C.

PERIPHERAL CONTROLS
LARGE

- -
P.C. P.C.

Figure 1-3. Possible Disk File Subsystem

1-5

MODEL MODEL
B 6373 8 6373

DISK FILE DISK FILE
P.C. P.C.

IJ
l

r'-1
~

:i: z
~ ::J I---

I--- o~ z"' NU
I---oz

x t-- ~g
z I--- u

L- ~

MODEL - B 6373
P.C. DISK FILE

P.C.

~
::J
c z 0

..,::i; ::J
8~ffi~
- 0 a.. LU

GENERAL

Main memory cycle time for the B 6500 can be
either 600 nanoseconds or 1.2 microseconds. All
processor models can accommodate from one to
32 memory modules, with the exception of the
B 6503 which can accommodate a maximum of
eight modules. Each module consists of 16,384
words, with each word having 48 information bits,
three control bits, and a parity bit.

MEMORY ORGANIZATION

Main memory in the B 6500 is organized so that
any memory module can send information to, or
receive information from both processors and both
1/0 multiplexors over any one of four information
busses (see figure 2-1).

MEMORY
MODULE

1

1/0
MULTI- ..£~
PLEXOR '+'

1

PROCESSOR ..£:1~
1 'I

PROCESSOR ..£:1~
2 'I

l/U
MULTI- .L:h
PLEXOR

.._,

2

SECTION 2
MAIN MEMORY

As a word transfers along a buss, it is "inspected"
by the circuitry in each module to determine
whether it should go to that particular module.
This arrangement eliminates the need for a central ·
control to establish a linkage directing the word to
the proper module.

Information is transmitted along the buss in paral­
lel, as illustrated in figure 2-2.

Each module examines six bits of each address to
determine if they apply to that particular module.
If so, the module sets the linkage to receive the
word. Two-hundred nanoseconds after the memory
cycle is initiated, the module grants access. In
another 200 nanoseconds, the word is available
from memory, and 200 nanoseconds later the word
is available in the processor or 1/0 multiplexor

MEMORY MEMORY
MODULE ------ MODULE

2 n

_/"~ ~) '17

.Lb. -$

I" .LD 'V

..Lb. ...l
'-.J

Figure 2-1. Memory Organization

2-1

20 BIT ADDRESS
6 BITS FOR 0-63 MODULES

14 BITS FOR MEMORY ADDRESSES 0-16,383

INFORMATION BUSS 6 CONTROL BITS

(READ, WRITE, BUSY, ETC.)

52 INFORMATION BITS

Figure 2-2. Information Transmission

register. Operation of each memory module is
independent of the operation of any other memory
module. Memory cycles can occur simultaneously
within any four modules. Virtually all of memory
can be overlayed, and all code is re-entrant.

MEMORY PROTECTION

Memory protection, which prevents one program
from affecting another, is provided for by a
combination of hardware and software devices.
One of the hardware features is automatic
detection of an attempt by a program to index
beyond its assigned data area. Another is the
inclusion of a memory protect bit in each word to
prevent user programs from writing into words of
memory which have the protect bit set. (The pro­
tect bit is set by the software.) Any attempt to
perform such a write operation is inhibited and
generates an interrupt. Thus a user program cannot
change program segments, data descriptors, or any
program words or MCP tables during execution.

Using the memory Read With Lock operation, the
information read from memory is interchanged
with the word in the top of the stack. All data and
address transfers are parity checked.

2-2

MEMORY PACKAGING

Up to three memory modules of 16,384 words
each, the memory power supply, and the memory
exchange equipment associated with each module
are housed in a single cabinet. All of the memory
modules in the cabinet can be interlaced, with odd
addresses serviced by one module and even
addresses serviced by another. This feature can be
enabled or disabled by field engineering. Each
system includes a test facility which can exercise
any of the memory modules. When the test facility
is being used with one of the memory modules, the
other modules can be used by the system, provided
the module being tested is not interlaced. If it is,
the option must be disabled before testing can take
place.

SECOND LEVEL MEMORY

Burroughs unique head-per-track disk file sub­
system provides the user with virtually unlimited
expansion capability. The 20 to 60 millisecond
average access time of the various disk file models
permits extremely large programs and data
segments to be stored on the disk and brought into
main memory by the MCP only when required.
Additional information on the disk file subsystem
is provided in Section 6 of this manual.

GENERAL

All B 6500 processors are parallel machines and
operate at a clock frequency of either 2.5 or 5.0
megacycles. Processors with different clock rates
cannot· be intermixed on the same system. The
processor operates in the binary mode, but has
extensive string manipulation capabilities that
allow it to handle 4-bit, 6-bit, and 8-bit characters.

Extensive interrupt facilities are provided to allow
the intervention of the Master Control Program for
resource allocation and object program error
detection. Each processor can handle its own inter­
rupts without disturbing the other. The processors
may also share the processing of external interrupts
generated by input/output operations occurring on
either multiplexor. The command structure in
conjunction with a stack provides for the imple­
mentation of string notation and the automatic
linking of subroutines.

The MCP for the B 6500 makes use of two types
of hardware clocks: the real time clock and the
interval timer. The real time clock has a 2.4
microsecond resolution and counts up to 24 hours.
It is used by the MCP logging routine to provide
extremely accurate timing information and also
can be read by application programs. This clock is
associated with the multiplexor and runs continu­
ously, even when the processors are halted. The
interval timer is a clock (one associated with each
processor), the purpose of which is to provide a
predetermined timed interrupt for "time-slicing,"
loop hang-up, etc. This interval can range from 512
microseconds to one second, in 512 microsecond
intervals.

PROCESSOR STATES

The processor can operate in either of two states:
control state under the MCP or normal state for
user programs and certain MCP functions. In a
dual-processor system each processor handles its
own internal interrupts. Either processor may
handle external interrupts. Both processors may be
in control state at the same time.

3-1

SECTION 3
PROCESSOR

Control State

Entry into control state occurs when the processor
is started as a result of certain interrupt conditions,
procedure entry or exit, or disable interrupt
operations. In control state, the processor can
execute privileged instructions not available in
normal state and external interrupts are inhibited.
Exit from control into normal state occurs when­
ever the MCP initiates a normal state procedure,
exits back to a normal state procedure or executes
an Enable External Interrupts operator. After an
interrupt the user program return may or may not
be to the program in process when the interrupt
occurred.

Normal Statu

Normal state excludes use of privileged instructions
required by the MCP, permits hardware detection
of invalid operators, and enforces memory protect
and security facilities. Exit from normal state
occurs as a result of an interrupt condition or by a
call to a control state procedure; e.g., to initiate
I/O. Many MCP functions can be run in normal
state.

INTERRUPT SYSTEM

For internal interrupts,' each processor in a B 6500
System is provided with a private, internal inter­
rupt network. Internal interrupts associated with a
processor are fed directly into this network and are
stacked local to that processor. External interrupts,
on the other hand, may be serviced by either
processor.

A processor responds to an interrupt by entering a
subroutine. The interrupt causes the processor to
take the following action:

a. Mark the stack.
b. Insert an Indirect Reference Word into the

stack, which links to a reserved location of
the program stack where a link to the MCP
interrupt routine has been stored.

c. Push all pertinent registers into the stack.
d. Insert into the stack an integer value defin­

ing the interrupt.

e. Insert a second parameter into the stack,
giving address information about interrupt.

f. Enable an Enter operator.

The subroutine mechanism then causes an entry to
an MCP routine to process the specific interrupt.
The MCP reactivates the interrupted object pro­
gram bi returning through the normal subroutine
mechanism.

Internal (Processor Dependent) Interrupts

SYLLABLE DEPENDENT PROCESSOR
INTERRUPTS.

The interrupts listed below are set only by the
action of syllables or operators.

a. Presence bit.
b. Invalid index.
c. Exponent underflow.
d. Exponent overflow.
e. Integer overflow.
f. Divide by zero.
g. Invalid operand.
h. Bottom of stack.
i. Sequence error.
j. Segmented array.
k. Memory protect.
1. Programed operator.

Within a processor, no more than one syllable
dependent interrupt is set at any one time.

SYLLABLE INDEPENDENT PROCESSOR
INTERRUPTS.

Following is a list of syllable-independent
interrupts:

a. Memory parity.
b. Stack overflow.
c. Invalid address.
d. Interval timer.
e. Instruction timeout.
f. Scan buss parity.
g. Stack underflow.
h. Invalid program word.

External Interrupts

External interrupts are fed into the processor inter­
rupt system. If the interrupt network is disabled on
one processor, the external interrupt signal is

routed to the second processor, since both proces­
sors in a dual-processor system are able to respond
and process external interrupts independently and
simultaneously. The ability of either processor to
handle interrupts is made possible through the use
of a distributed interrupt network and the ability
of the system to have both processors in control
state at the same time. The activities of two
processors in control state are coordinated (inter­
locked) through the use of the Read With Lock
mechanism. Each processor is capable of processing
its own interrupts without disturbing the other
processor. If both processors are handling inter­
rupts, additional interrupts are stacked for future
processing.

A unique literal value is assigned to each external
interrupt condition. This literal value is transmitted
to the processor and placed into the stack as a
processor acknowledges an external interrupt and
enters the interrupt sequence.

MEMORY PROTECTION

Bit 48 of each word in main memory is a memory
protect bit. This bit is ON in all program words,
indirect reference words, data descriptors, program
descriptors, main memory storage links, and
processor generated control words. With the
exception of Stack adjustment and the Over-write
operation, an attempt by a processor to write into
a location containing a word that has the memory
protect bit set ON will cause a memory protect
interrupt to be set in the processor interrupt
register.

3-2

INFORMATION REPRESENTATION

Each processor word contains 48 information bits,
three control bits, and one parity bit (figure 3-1).

Bit positions 50 through 48 are control bits which
are used to identify descriptors, provide memory
protection, describe the type of data, and perform
other control functions. These control bits are
inaccessible to normal state (user) programs.

It is impossible to store into a word which has a
value of 1 in bit position 48 except by use of the
Overwrite Store operator. The various combina­
tions of bits 50, 49, and 48 and their functions are
as follows:

a. 000 - single precision operand.
b. 010 - double precision operand.
c. 110 - software control word.
d. 001 - indirect reference word.

5 5 4 4 4
1 0 9 8 7

~' L CONTROL FIELD

p ARITY BIT

0

./ v
DATA FIELD

Figure 3-1. Basic Word Structure

e. 011 - storage links, code, segment
descriptors, mark stack control words
(partial or complete), return control words.

f. 101 - data descriptors and string descrip­
tors.

g. 111 - program control words.
h. 100 - step index word.

Operands

SINGLE PRECISION.

The structure of a single precision operand (data
word) is illustrated in figure 3-2:

a. Bits 50-48, a control field of 000.
b. Bit 47, unused.
c. Bit 46, designates whether the integer and/or

mantissa is positive (bit 46 = 0) or negative
(bit 46 = 1).

d. Bit 45, designates whether the exponent is
positive (bit 45 = 0) or negative (bit 45 = 1),
if the exponent is other than zero.

5444444 33
0987654 98

f EXPONENT SIGN
MANTISSA/INTEGER SIGN

e. Bits 44-39, contain the exponent.
f. Bits 38-0, contain the mantissa.

The exponent is a binary number and, with its
associated sign, is an octal scale factor for the
mantissa. The exponent is used for automatic
scaling of the mantissa when performing
arithmetic, comparison, and integer operations.
The range of the exponent is± 63. The magnitude
of the operand is obtained by multiplying the
integer value of the mantissa by eight raised to the
signed power of the exponent.

V = (±M x 8±E)

Where V is the value of the number, ±M is the
signed value of the mantissa, and ±E is the signed
value of the exponent. The range of numbers that
can be expressed is:

[(8+13 _ 1) x 8+63 1~ [1x8-51 1and0

0

MANTISSA

Figure 3-2. Single Precision Operand

3.3

DOUBLE PRECISION.

A double precision operand (figure 3-3) is com­
prised of two 48 bit words. The first word of the
operand is identical to the single precision operand
except for a control field of 010 which indicates to
the processor that this is only one-half of a pair of
words. Bits 38-0 of the first word represents the
most significant portion of the mantissa and bits
38-0 of the second word the least significant
portion of the mantissa. The exponent for a double
precision operand is expressed by using bits 47-39
of word two as the most significant portion and
bits 44-39 of word one as the least significant
portion.

The range of numbers that can be expressed is as
follows:

All arithmetic operators in the processor automat­
ically perform properly for operands which
identify themselves as double precision.

Descriptors

Descriptors are words used to locate data and
program areas in memory, and to describe these
areas for control purposes. Descriptors are the only
words containing absolute addresses which can be
used by a normal state program; however, the
normal state program cannot alter them.

5 4 4 4 4 4 4
0 9 8 7 6 5 4

3 3
9 8

DATA DESCRIPTORS.

Data descriptors are used for referring to data
areas, including input/output buffer areas. The
data descriptor defines an area of memory starting
at the base address contained in the descriptor. the
size of the memory area in number of words is
contained in the length field of the descriptor.
Data is normally referred to by a Value Call
syllable or Evaluate Name syllable. Data
descriptors may directly reference any memory
word address from 0 through 524,288.

The structure of the data descriptor is illustrated in
figure 3-4 and contains the following:

a. Bits 50-48, a control field of 101.

b. Bit 47, a presence bit, indicates the presence
or absence of data. A 0-bit causes a presence
bit interrupt whenever the descriptor is
accessed by a program to obtain non-present
data. A 1-bit indicates that the data
requested by a program is in memory.

c. Bit 46, a copy bit. A 0-bit indicates that this
is the original descriptor for the particular
data area. A 1-bit indicates that this descrip­
tor is a copy of the original descriptor.

d. Bit 45, an index bit. A 0-bit indicates an
indexing operation will be performed when
the descriptor is addressed to obtain data. A
I-bit indicates that indexing has already
taken place and the index value is stored in
bit positions 39 through 20 (Length/Index).

0

FIRST
WORD

0 1 0 u
(LSP)

MOST SIGNIFICANT PORTION OF MANTISSA EXPONENT

SECOND
WORD

5 4 4 4
0 9 8 7

0 1 0

u.
t E1<PONENT SIGN

(MSP)
EXPONENT

3 3
9 8

INTEGER/MANTISSA SIGN

0

LEAST SIGNIFICANT PORTION OF MANTISSA

Figure 3-3. Double Precision Operand

3-4

544444444443
098765432109

1 0 1 p c I S R 00 D LENGTH/INDEX

2 1
0 9 0

MEMORY ADDRESS/DISK ADDRESS

Figure 3-4. Data Descriptor

e. Bit 44, a segmented bit. A 0-bit indicates
that the data is not segmented. A 1-bit
indicates that the data area is segmented
(segment size is 256 words).

f. Bit 43, a read-only bit. A 0-bit indicates that
the data may be referenced for reading or
writing. A 1-bit indicates a read-only
condition.

g. Bits 42-41, must equal zero for data
descriptors.

h. Bit 40, a double precision bit. A 0-bit
indicates single precision, a 1-bit indicates
double precision.

i. Bits 39-20, contain either the length of the
memory area (bit 45 = 0) or an index value
(bit 45 = 1). If bit 45 equals 0, it mdicates
that the descriptor has not been indexed.
This field can be used to perform size check­
ing before the indexing operation. If bit 45
equals 1, it indicates that the descriptor has
been indexed. For a double precision
operation, the index is multiplied by two
prior to index size checking. It is the result
of this multiplication that is stored in the
index field.

j. Bits 19-0, contain either a main memory or
disk address. If the presence bit (bit 47)
equals 1, this field contains the memory

544444444 43
0 9 8 7 6 5 4 3 2 0 9

1 0 1 p C I S R sz LENGTH/INDEX

address of data. If the presence bit equals 0
and the copy bit (bit 46) equals 0, this field
will contain the disk address of non-present
data. If the presence bit equals 0 and the
copy bit equals 1, this field will contain the
absolute memory address of the original de­
scriptor.

STRING DESCRIPTOR.

The string descriptor (figure 3-5) is used to refer to
data areas organized as 4-, 6-, or 8-bit characters.
The descriptor defines an area of memory starting
at the base address contained in the descriptor. The
size of tlie memory area is defined by the length
field. The string descriptor contains the following
information:

'

a. Bits 50-48, a control field of 101.
b. Bit 47, a presence bit. A 0-bit indicates that

a presence bit interrupt will occur if the
descriptor is addressed to obtain non-present
data. A 1-bit indicates no interrupt will
occur because the data requested is present
in main memory.

c. Bit 46, a copy bit. A 0-bit indicates that this
is the original descriptor for the particular
data area. A 1-bit indicates that this
descriptor is a copy of the original
descriptor.

2 1
0 9 0

MEMORY ADDRESS/DISK ADDRESS

Figure 3-5. String Descriptor

3-5

d. Bit 45, an index bit. A 0-bit indicates an
indexing operation will be performed when
the descriptor is addressed to obtain data. A
1-bit indicates that indexing has already
taken place and the index value is stored in
bit positions 39 through 20 (L~ngth/Index).

e. Bit 44, a segment bit. A 0-bit indicates that
the data area is not segmented; a one-bit
indicates that the data area is segmented
(segment is 256 words).

f. Bit 43, a read-only bit. A 0-bit indicates that
the data may be referenced for reading and
writing. A 1-bit indicates that the data can
be read only.

g. Bits 42-40. 100 indicates an 8-bit character;
011 indicates a 6-bit character; 010 indicates
a 4-bit character.

h. Bits 39-20, contain either the length of the
memory area (bit 45 = 0) or an index value
(bit 45 = 1). When bit 45 equals 0, this field
will contain the length of the area, in 4-, 6-,
or 8-bit characters. The descriptor will not
have been indexed. This field is used to
perform size checking prior to indexing
operations. When indexing is required, it is
performed as follows. Prior to indexing, .the
index is divided by 6 for 8-bit data, by 8 for
6-bit data, and by 12 for 4-bit data. The
result of this division is stored in the word
index field (see figure 3-6). The remainder of
this division is stored in the byte index field.

3 33
9 65

WORD INDEX

Figure 3-6. Byte/Word Index Field

When bit 45 equals 1, bits 39-20 contain a
byte/word index in the format illustrated in
figure 3-6. The descriptor will have been
indexed.

i. Bits 19-0, contain either a main memory or
disk address. If the presence bit (bit 47)
equals 1, the field will contain a memory
address of data. If both the presence bit and
the copy bit (bit 46) equal 0, the field will
contain the disk address of non-present data.
When the presence bit equals 0 and the copy

2

3-6

bit equals 1, the field will contain the
absolute memory address of the original
descriptor.

SEGMENT DESCRIPTOR.

The segment descriptor (figure 3-7) is used to
locate a program segment and contains the follow­
ing information:

a. Bits 50-48, a control field of 011.
b. Bit 47, a presence bit. A 0-bit causes a

presence bit interrupt if the descriptor is
addressed to obtain a non-present segment~
A 1-bit does not generate an interrupt,
indicating that the segment requested is
present in main memory.

c. Bit 46, a copy bit. A 0-bit indicates that this
is the original segment descriptor. A 1-bit
indicates that this is a .copy of the original
segment descriptor.

d. Bits 45-40, unused.
e. Bits 39-20, specify the length of the program

segment in words.
f. Bits 19-0, contain either the main memory

address or the disk file address. If the pres­
ent bit (bit 47) equals 1, the field will
contain the main memory address of the
program segment. If both the presence bit
and the copy bit (bit 46) equal 0, the field
will contain the disk address of the non­
present program segment. If the presence bit
equals 0 and the copy bit equals 1, the field
will contain the absolute memory address of
the original program segment descriptor.

Mark Stack Control Word

The Mark Stack Control Word (MSCW), along with
the Program Control Word/Return Control Word,
provides a linking mechanism for tracing the his­
tory of previous control register settings through
the stack. The MSCW is placed in the stack as a
result of executing a Mark Stack operator. The
MSCW is organized as illustrated in figure 3-8 and
provides the following data:

a. Bits 50-48, a control field of 011.
b. Bit 47, a different stack bit. A 0-bit indicates

that the MSCW refers to the current stack. A
1-bit indicates that the MSCW refers to a
different stack.

c. Bit 46, an environment bit. A 0-bit indicates
that an inactive MSCW was generated direct­
ly by the Mark Stack operator and that the
corresponding procedure entry has not been

544444 43 2
098765 09 0 9 0

0 1 1 p c u LENGTH MEMORY ADDRESS/DISK ADDRESS

Figure 3-7. Segment Descriptor

544444
098765

D

3 3
6 5

2 1
0 9 8

1 1
43

I
0

0 1 1 S E STACK NUMBER DISPLACEMENT v LL 1 DF

Figure 3-8. Mark Stack Control Word

performed. A 1-bit denotes an active MSCW
generated upon entry into a procedure, at
which time the environment fields (stack
number, displacement, and value fields) are
stored into the Mark Stack Control Word.

d. Bits 45-36, a stack number field which
contains the number of the stack in use.

e. Bits 35-20, a displacement field, which,
when added to the stack base address,
locates a Mark Stack Control Word.

f. Bit 19, a value bit. A 0-bit indicates that the
MSCW was generated during an operation
that will be restarted from the beginning. A
1-bit indicates that the operator must
continue after the Exit or Return which
refers to this MSCW (e.g. an accidental entry
on a Value Call).

g. Bits 18-14, denotes the level of the proce­
dure being entered.

h. Bits 13-0, denotes the stack history. This

5444444
0987654

0
x 10 TTFT

/1 1
s v F IL 1 STACK
F F F :T: NO.

1
F F F_lfl

3 ;j 3 3
6 5 3 2

PSR PIR

field is used to indicate where in the stack
the preceding MSCW is located (i.e. the
previous "F" register setting).

Program Control Word/Return
Control Word

The Program Control Word (PCW)/Return Control
Word (RCW) and the Mark Stack Control Word are
used for entry into a procedure. The organization
of the PCW/RCW is illustrated in figure 3-9 and
contains the following:

a. Bits 50-48, a control field of either 111 to
denote a PCW or 011 to denote an RCW.

b. Bits 45-36, stack number for a
PCW/RCW: Bit 47, for external sign. Bit 46,
for overflow. Bit 45, for True/False Flip­
Flop. Bit 44, for Float Flip-Flop.

c. Bits 35-33, define the program syllable
within the word located by PIR.

2 1 1
0 9 8

N LL

1
4 3 0

SDI

Figure 3-9. Program Control Word/Return Control Word

544444
098765

0 0 l u E STACK NUMBER

3 3
65

DISPLACEMENT

2 1
09

UNUSED

Figure 3-10. (Stuffed) Indirect Reference Word

3-7

l 1
32

INDEX FIELD

0

d. Bits 32-20, used as an index to the Base
Program Regisier.

e. Bit 19, denotes the presence of either a
normal state program (bit = 0) or a control
state program (bit = 1).

f. Bits 18-14, denote either the level of the
procedure being entered when the word is
used as a PCW or the level of the old proce-

544444
098765

l+l+H UNUSED

is variable in length. The first subfield,
designated LL, is used to select one of 32
display registers. The second subfield con­
tains an index value which is added to the
contents of the selected display register to
form an absolute address. The length of the
subfields are defined by the current program
level as follows:

1 1
4 3

I ADDRESS COUPLE

0

Fig1,1re 3-11. (Normal) Indirect Reference Word

dure when an RCW is generated at the time
of procedure. entry.

g. Bits 13-0, a segment descriptor index. Bits
12 through 0 specify the value to be added
to the address located by either display
register 0 or 1. When bit 13 equals 0, display
register 0 is selected; when bit 13 equals 1,
display register 1 is selected.

Indirect Reference Word

The Indirect Reference Word (IRW) provides
addressing information for the execution of a·
subsequent operator; e.g., Evaluate Descriptor,
Value Call, Store, etc. The IRW is placed in the
stack by a Name Call operator. The IRW has two
forms: Stuffed (figure 3-10) and Normal (figure
3-11).

a. Bits 50-48, a control field of 001.
b. Bit 47, unused.
c. Bit 46, an environment bit. A I-bit indicates

a Stuffed IRW. A 0-bit indicates a Normal
IRW.

d. Bits 45-36, stack number. When bit 46
equals 1, specifies the stack number to be
used by the subsequent operator.

e. Bits 45-14, when.bit 46 equals 0, unused.
f. Bits 35-20, displacement field. When bit 46

equals 1, this value added to the stack base
address locates a Mark Stack Control Word.

g. Bits 12-0, index field. When bit 46 equals 1,
the index value is added to the contents of
the display register specified by the Mark

· Stack Control Word.
h. Bits 13-0, when bit 46 equals 0, it is sub- .

divided into two functional fields. Each field

3·8

Program
Level

0-1
2-3
4-7
8-15
16-31

Length of LL
Field (Bits)

1
2
3
4
5

NOTE

Length of Index
Field (Bits)

13
12
11
10
9

The bit order of the LL field is inverted.

INSTRUCTION FORMAT

Each B 6500 instruction (operator) is from one to
12 syllables in length; each syllable contains 8 bits.
Syllables are executed sequentially from left to
right. When the program word has been exhausted,
the next sequential program word is fetched from
memory. There are three types of syllables:

a. Operators - one to 12 syllables.
b. Value Calls - two syllables.
c. Name Calls - two syllables.

The two high-order bits determine whether a
syllable is an Operator, a Value Call, or Name Call,
as follows:

Identifi- Syllable Function
cation Type

lX Operator. Performs the specified
operation

00 Value Brings an operand into
Call the stack

01 Name Places the name into
Call the stack

(X =makes no difference what the value is)

REGISTERS

Information Registers

The information registers (A, B, C, X, Y, and P) are
51-bit registers which communicate both with
memory and each other. A, B, X, and Y are the
active top of the stack registers; P holds the current
program word. C is a scratch pad register for the
processor.

Address Registers

There are forty-eight 20-bit registers provided in
two integrated chip (l.C.) memories. These two
I.C. memories are associated with an address adder
so that a word in one l.C. memory may be
incremented by a word in the other l.C. memory
and the result used to address main memory.

STACK MECHANISM

The stack is an area of memory assigned to a
program which serves to provide basic program and
data references associated with the program, as
well as a facility for the temporary storage of data
and dynamic program history. When a program is
activated, high-speed registers A, B, X, and Y are
linked to the program's stack memory area. This
linkage is established by the S register which con­
tains an address which points to the last word
stored in the stack memory area. The top of the
stack registers function to extend the program's
stack memory into a quick access environment for
data manipulation.

MASTER
CONTROL
PROGRAM STACK
SEGMENT JOBl

STACK PROGRAM
.JOB 3 SEGMENT

JOB l

INPUT/OUTPUT INPUT/OUTPUT
AREA AREA
JOBI JOB3

MASTER PROGRAM
CONTROL SEGMENT
PROGRAM JOB2
SEGMENT

Data is brought into the stack through the top of
the stack registers. The content of the S register is
increased by 1 as each word is pushed from the top
of the stack registers into the stack memory area
and is decreased by 1 as a word is withdrawn from
the stack memory area and placed in the top of the
stack registers. As a result, the S register contin­
ually points to the last word placed in the
program's stack memory area.

The allocation of memory in figure 3-12 shows
three areas set aside as stacks for multiprograming
(interleaved processing) of three different jobs.
Since the stack is used as a flexible work area, its
absolute location is unimportant. The stack in use
at any given moment is associated with the A, B,
X, and Y registers, with the memory address at the
top of the stack recorded in the S register. When
the processor switches from one job to another,
any information held in the A, B, X and Y registers
is automatically stored in the memory stack prior
to transfer of control. The current setting of the S
register is always preserved for re-entry to the job.
The Master Control Program controls the proc­
essing sequence of various jobs and allocates stack
memory space according ·to the number and the
size of programs in memory at any one time.
Switching from job to job, and therefore from
stack to stack, is controlled by the Master Control
Program.

The stack memory area assigned to a program is set
by the stack base address and the stack limit reg­
ister. Both stack overflow and underflow cause a
program interrupt.

PROGRAM
SEGMENT

JOBl STACK
JOB2

INPUT/OUTPUT
AREA
JOB2 MASTER

CONTROL
PROGRAM

PROGRAM SEGMENT
SEGMENT

JOB3

PROGRAM
PROGRAM SEGMENT
SEGMENT JOB3

JOB2

figure 3-12. Example Allocation Of Main Memory

3-9

Stack Adjustment

The contents of the top of the stack registers are
maintained automatically by the processor hard­
ware, in accordance with the environmental
demands of the current operator. When the current
operator brings data into the stack, the top of the
stack registers are adjusted to accommodate the
incoming data, and, where necessary, the registers
themselves are pushed into the stack memory area.
The S register is brought from the stack memory
area to the top of the stack registers as required.

Cactus Stack

An additional feature of the stack mechanism is
the cactus stack structure, which provides for
parallel computation algorithms, as required for
many simulation languages. Since the MCP controls
parallel processes, it is possible to place the
segment dictionary descriptors in the common
trunk of a "tree" of stacks for those jobs which are
identical. For example, if five FORTRAN com­
pilations are being carried out at one time, the
stacks for those compilations would be organized
as shown in figure 3-13.

All programs are entered and exited through the
segment descriptors common in the base stack; all
references to those descriptors are relative.
Entrance to, or removal of any given program
segment from memory, therefore, is achiev~d by
changing the presence bit in that segment descrip­
tor. No stack search of any kind is required. This is
automatically reflected in all five copies of the

DATA DATA

Zw Zw
~~~ ~~N 
I- ::2:""' I- ::2:""' 
""o ""o 2 v 2v 

...... 

..... 

example in figure 3-13. Re-entrance is provided 
automatically for all programs, not compilers 
alone, since compilers are themselves object 
programs. 

OPERATORS (INSTRUCTIONS) 

Operators may be 1 to 12 syllables in length; each 
syllable is 8 bits in length. The first syllable of each 
operator determines the number of additional 
syllables associated with that operator. Upon 
completion of each operator, the program counter 
points beyond all of the syllables comprising the 
operator. 

Following is a discussion of the types of available 
operators, including a list of specific operators in 
each category. A detailed description of individual 
operators will be provided in a subsequent refer­
ence publication. 

Invalid Instruction Detection 

Detection of an invalid instruction terminates the 
operator and a programed operator interrupt is set 
in the processor interrupt register. Invalid instruc­
tions are detected by the following methods: 

a. Testing for unassigned operator codes. 
b. Testing for any value other than 011 in bit 

positions 50 through 48 of a program word 
(an attempt to execute something which is 
not code). 

DATA DATA DATA 

Zw Zw Zw 
~ ~ "' <( ::::! ~~ L() ""Q... "<t 
I- ::2:""' I- ::2:""' I- ::2:""' 
""o ""0 ""0 2v 2v 2v 

, 

v> 
I- "" --zO w I-
::2:~ 
0"" 
~~ w --Cl 

Figure 3-13. Cactus Stack Structure 

3-10 



c. Testing for an invalid operand function. 

Mark Stack Operator 

This operator inserts a mark into the stack for 
subsequent use by an Enter operator. The mark 
placed in the stack is in the form of a Mark Stack 
Control Word. The Mark Stack operator is nor­
mally used when an entry to a procedure is 
anticipated. The normal sequence of events to 
enter a procedure is as follows: 

a. Mark the stack (with a Mark Stack Control 
Word). 

b. Insert an indirect reference to a Program 
Control Word. 

c. Insert some parameters if any are to be 
passed to the procedure. 

d. Execute an Enter operator which will in turn 
cause entry into the program segment by the 
Program Control Word. A Return Control 
Word is stored in the stack. 

Insert Mark Stack Operator 

This operator mserts a Mark Stack Control Word 
below the two top of the stack items. 

Name Call Operator 

The Name Call operator (two syllables) builds an 
Indirect Reference Word and places it into the 
stack. Stack adjustment takes place so that the A 
register is empty. The six low-order bits of the first 
syllable of this operator are concatenated with the 
eight bits of the following syllable to form a 14-bit 
address couple. The address couple is placed, right­
justified, into the A register, with the remainder of 
the A register set to ZERO. The control field of 
the A register is set to 001 and the register is 
marked as being full. 

Value Call Operator 

This operator (two syllables) loads into the top of 
the stack the operand referenced by the address 
couple contained in the operator syllable. If the 
referenced operand is at the end of a chain of 
Indirect Reference Words or descriptors (data or 
program), multiple memory accesses are made until 
the operand is located. The operand is then placed 
into the top of the stack registers (A, B, X or Y). 
The operand may be either single or double pre­
cision, causing either one or two words to be 
loaded into the stack. Presence bit action, in the 
form of a presence bit interrupt, is enabled when-

3-11 

ever a non-present descriptor is accessed. In 
addition, subroutine entry is enabled if a Program 
Control Word is accessed without using the stand­
ard mechanism for subroutine entry, i.e., 
accidental entry. The standard mechanism consists 
of marking the stack, passing parameters, and then 
calling on the Program Control Word. 

Evaluate Descriptor 

The Evaluate Descriptor loads the top of the stack 
with a data descriptor which points to the refer­
enced operand. This operand may be referenced 
either through a chain of Indirect Reference Words 
or descriptors. In either case, multiple memory 
accesses may be made until the operand is located. 
The top of the stack is then replaced with either 
the descriptor or the indirect Reference Word 
which points to the operand. A descriptor is left in 
the stack when the operand is referenced by a 
descriptor; an Indirect Reference Word is left in 
the stack when the operand is referenced by an 
Indirect Reference Word. The Evaluate Descriptor 
operator would be executed only after the top of 
the stack has been loaded with either a descriptor 
or Indirect Reference Word. An invalid operand 
interrupt is set if the top of the stack word is not a 
descriptor or Indirect Reference Word when an 
Evaluate Descriptor operator is to be executed. 

Enter Operator 

The Enter operator causes an entry to a procedure 
to occur. The sequence of events to enter a 
procedure are: 

a. Mark the stack. 
b. Insert an indirect reference to a Program 

Control Word. 
c. Insert parameters if any are to be passed to 

the procedure. 
d. Execute an Enter operator. 

The Enter operator causes entry into the program 
segment located by the Program Control Word. A 
Return Control Word is stored in the stack. 

Exit Operator 

This operator causes a return from a called 
procedure to a calling procedure when a called 
procedure is not required to return a result. 

Return Operator 

This operator causes a return from a called 
procedure to a calling procedure when the called 



procedure is required to return a result. The 
Return operator will leave either an operand or a 
descriptor in the stack depending upon whether 
the procedure was called by a Value Call operator 
or an Evaluate Descriptor operator. A single or 
double precision operand is left in the top of the 
stack if the procedure was entered by a Value Call 
operator. A descriptor (data or program) is left in 
the top of the stack if procedure entry was 
accomplished by an Evaluate Descriptor operator. 

Branch Operators 

Branch instructions function to break the normal 
sequence of serial instruction fetches. Branching 
may be either relative to the base address of the 
current program segment or to an absolute 
memory address. Branch operators may be 
executed on a conditional or unconditional basis. 
Conditional branch operators test the low-order bit 
of the second word in the stack to determine 
whether or not to branch. Unconditional Branch 
operators always cause a branch. The Branch 
operator repetoire consists of: 

a. Branch Unconditional. 
b. Branch on True. 
c. Branch on False. 

4444 33 

d. Dynamic Branch Unconditional. 
e. Dynamic Branch True. 
f. Dynamic Branch False. 
g. No Operation. 
h. Conditional Halt. 
i. Invalid Operator. 

Step And Branch Operator 

The Step and Branch operator causes the addition 
of the increment field to the current value field of 
the Step Index Word addressed by the top of stack 
word. Then test the current value field for greater 
than the final value field. If greater, then execute 
the next two syllables from the program string. 
Otherwise, branch three program syllables and 
continue in sequence. Replace the Step Index 
Word in the stack or memory. 

Arithmetic Operators 

The Arithmetic operators require two operands in 
the top of the stack registers. These operands are 
combined by the arithmetic process specified with 
the result placed in the top of the stack. The 
operands may be either single precision, double 
precision, or intermixed. The specified arithmetic 

1

7654 98 0 

~--0_1_~~0+_1°_s~1~~1-E_x_p _ __._l ______________ M ______________ ........ I~~~~~~\~~~ 
4 3 3 

0 

1

7 9 8 

~ 11 
HIGH ORDER I I O O O EXPONENT M SECOND WORD OF 

_......_._~ __ E_X_T_EN_S_IO_N __ _.__ ______________________________________ ___, DOUBLE PRECISION 

~ 111 I ALPHANUMERIC 
~ ....... o ..... _o._o+-------'-----2----'-----3-----'----4----'----5----''---6----JL...---7-----l.---8----' (6-BIT c HARACTERS) 

~ 1101 2 3 4 5 6 I ALPHANUMERIC 
.... ~ .... O ..... ._O._+---------'-------'--------'-------'-----'--------' (8-BIT CHARACTERS) 

~~~o~l_oL'o~l--~1~.-2 _ _a..__3 _ _a..__4_-L-_5_-L-_6_L-_7 _ _a..__0 _ _,__9--11--1_o_L-1_1 _ _a..__12___,l;:,':~i~";;'...~~:~ 
Figure 3-14. Operand Formats

3-12

process adapts automatically to the data environ­
ment, with single precision process invoked if both
operands are of the single precision type and a
double precision process invoked if either operand
is of the double precision type.

The formats for an operand are illustrated in figure
3-14.

Each double prec1s1on operand occupies two
words. The second word of the operand is an
extension of the mantissa of the first word of an
operand; i.e., the mantissa of the first word of an
operand may be an integer but the mantissa of the
second word is always a fraction. When in the
stack, the first operand occupies the top two words
of the stack, and the second operand occupies the
third and fourth words of the stack. Therefore,
double precision arithmetic processes operate on
four words in the stack as opposed to two for
single precision processes. Double precision arith­
metic leaves a two-word result in the top of the
stack.

Add, Subtract, and Multiply operations with two
integer operands yield an integer result if no over­
flow occurs. If one or both operands is non-integer,
or if the result generates an overflow, the result is
non-integer.

During the execution of SP(DP) arithmetic opera­
tors, the exponents of the operands are carried to
7(16) bits. At the completion of the execution of
an arithmetic operator, the exponent is reduced to
6(15) bits. If the exponent of the result requires
more than 6(15) bits, the appropriate interrupt bit
(exponent overflow or underflow) is set in the
Processor Interrupt Register.

The following arithmetic operators are provided in
the B 6500.

a. Add.
b. Subtract.
c. Multiply.
d. Divide.
e. Integer Divide.
f. Remainder Divide.
g. Integerize, Truncated.
h. Integerize, Rounded.
i. Integerize, Rounded, J?ouble Precision.
j. Set to Single Precision, Truncated.
k. Set to Single Precision, Rounded.
1. Set to Double Precision.
Ill. Set Double to Two Singles.

n. Set Two Singles to Double.
o. Extended Multiply.

Logical Operators

Logical operators use the two top items in the
stack except for logical negate which uses only the
top stack item. The result of the logical operation
leaves the result in the top of the stack. The
Logical operators consist of:

3-13

a. Logical AND.
b. Logical OR.
c. Logical Equivalence.
d. Logical Negate.

Relational Operators

The Relational operators perform algebraic or
logical comparisons on the top two values in the
stack. The operands are removed from the stack
and the result of the comparison is placed in the
top of the stack. The result is a single precision
operand with the least significant bit set to ONE if
the relation is TRUE, or all information bits set to
zero if the relation is FALSE. The Relational
operators are:

a. Greater Than.
b. Greater Than or Equal.
c. Equal.
d. Less Than or Equal.
e. Less Than.
f. Not Equal.
g. Logical Equal.

Index and Load Operators

The Index and Load operators cause the system to
generate the address of an indexed item, or gen­
erate an address and load the specified item into
the top of the stack. They consist oft.he following:

a. Index.
b. Index and Load Name.
c. Index and Load Value.
d. Load.
e. Load Transparent.

Stack Operators

The function of the Stack operators is to manipu­
late items in the stack. These operators can
exchange, rotate, duplicate, or delete items at the
top of the stack. They include:

a. Exchange.
b. Rotate Stack Down.
c. Rotate Stack Up.
d. Duplicate Top of Stack.
e. Delete Top of Stack.
f. Push Down Stack Registers.

Store Operators

The Store operators cause information in the stack
to be stored into the specified address in memory.
The address is generated from information in the
stack. A special Store operator allows the MCP to
bypass the hardware memory protection checks.
The Store operators consist of:

a. Store Destructive.
b. Store Non-Destructive
c. Overwrite Destructive.
d. Overwrite Non-Destructive.

Transfer Operators

The Transfer operators cause the system to transfer
any field of bits from one word in the stack to any
field of another word in the stack. These operators
include:

a. Field Transfer.
b. Dynamic Field Transfer. ·
c. Field Isolate.
d. Dynamic Field Isolate.
e. Field I_nsert.
f. Dynamic Field Insert.
g. String Isolate.

Literal Call Operators

The Literal Call operators place the designated
value into the top of the stack. The value can be
any value within the range of the system up to a
full 48-bit word. The Literal operators are:

a. Lit Call Zero.
b. Lit Call One.
c. Lit Call 8 Bits.
d. Lit Call 16 Bits.
e. Lit Call 48 Bits.

Bit Operators

The Bit operators are concerned with a specified
bit in the top of the stack. A bit may be set or

3·14

reset, or a word in the top of the stack can be
examined to find either the first bit ON or the
number of bits that are ON. The Bit operators are:

a. Bit Set.
b. Dynamic Bit Set.
c. Bit Reset.
d. Dynamic Bit Reset.
e. Change Sign Bit.
f. Count Binary Ones.
g. Leading One Test.

String Operators

The String operators are used to transfer, scan,
compare, and translate strings of data. In addition,
a set of micro-operators provides a means of for­
matting data for output.

STRING TRANSFER OPERATOR.

String Transfer operators give the system the abil­
ity to transfer characters or words from one
location in memory to another location in
memory. The source and destination pointers are
set from String Descriptors ip the stack. The String
Transfer operators include:

a. Transfer Words.
b. Transfer Words, Update.
c. Transfer Unconditional, Destructive.
d. Transfer Unconditional, Update.
e. Transfer Words Overwrite Destructive.
f. Transfer Words Overwrite, Update.

SCAN WIBLE OPERATORS.

The Scan While operators cause a scan of a string
of characters, which continues until the specified
scan is satisfied. The top words of the stack specify
the field length, the delimiter character, and the
source pointer. The TRUE/FALSE flip-flop will
indicate the result of the scan operation. The
following comprise the Scan While operator
repetoire:

a. Scan While Greater.
b. Scan While Greater, Update.
c. Scan While Greater or Equal.
d. ·Scan While Greater or Equal, Update.
e. Scan While Equal.
f. Scan While Equal, Update.
g. Scan While Less or Equal.

h. Scan While Less or Equal, Update.
i. Scan While Less.
j. Scan While Less, Update.
k. Scan While Not Equal.
1. Scan While Not Equal, Update.
m. Scan While True.
n. Scan While True, Update.
o. Scan While False.
p. Scan While False, Update.

COMPARE OPERATORS.

The Compare operators perform the specified
compare of two strings of data. The top three
items in the stack specify the number of characters
to compare and the locations of the two data areas.
The TRUE/FALSE flip-flop will indicate the result
of the compare. The Compare operators are:

a. Compare Characters Greater.
b. Compare Characters Greater, Update.
c. Compare Characters Greater or Equal.
d. Compare Characters Greater or Equal,

Update.
e. Compare Characters Equal.
f. Compare Characters Equal, Update.
g. Compare Characters Less or Equal.
h. Compare Characters Less or Equal, Update.
i. Compare Characters Less.
j. Compare Characters Less, Update.
k. Compare Characters Not Equal.
1. Compare Characters Not Equal, Update.

TRANSLATE OPERATOR.

The Translate operator causes data to be moved
and translated from a source string to a destination
area. The top four items in the stack specify the
number of characters translated and the locations
of the translation table, source string, and destina­
tion areas.

PACK OPERATORS.

The Pack operators cause BCL or EBCDIC numeric
characters to be packed, in the top of the stack, as
4-bit numeric information. The top two items in
the stack contain the number of digits to pack and
the location of the source data. The pack operators
include:

a. Pack, Destructive.
b. Pack, Update.

3-15

UNPACK OPERATORS.

The Unpack operators cause packed numeric
information (4-bit digits) to be moved to a
destination area as Burroughs Common Language
(BCL) or EBCDIC numeric characters. The top
three items in the stack contain the number to
unpack, the packed data word, and the location of
the destination area. The Unpack operators
include:

a. Unpack Absolute.
b. Unpack Absolute, Update.
c. Unpack Signed.
d. Unpack Signed, Update.

INPUT CONVERT OPERATORS

The Input Convert operators cause the specified
number of characters in a source string to be
converted into a single or double precision integer.
The two top of the stack items specify the number
of characters to convert and the location of the
source string. The Input Convert operators are:

a. Input Convert.
b. Input Convert, Update.

EDIT OPERATORS.

The Edit operators cause data to be transferred
from a source string to a destination area under
control of a string of Edit micro-operators. The
Edit micro-operators may be in the program string
or in a separate table. The top of the stack contains
the locations of the source string, destination area,
and edit table, as required. The Enter operator set
consists of:

a. Table Enter Edit.
b. Table Enter Edit, Update.
c. Execute Single Micro, Single Pointer Update.
d. Execute Single Micro.
e. Execute Single Micro, Update.

MOVE MICRO-OPERATORS.

The Move Micro-operators cause data to be trans­
ferred as a result of one of the Edit operators
discussed above. These Move operators are:

a. Move Characters.
b. Move Numeric Unconditional

SKIP MICRO-OPERATORS.

The Skip Micro-operators are used to alter the
location pointers of a source or destination area,
either forward or reverse, by a specified number of
characters. The Skip operators consist of:

a. Skip Forward Source Characters.
b. Skip Reverse Source Characters.
c. Skip Forward Destination Characters.
d. Skip Reverse Destination Characters.

INSERT MICRO-OPERATORS.

The Insert Micro-operators cause the specified
character to be inserted into the destination string
as many times as required. These operators are:

a. Insert Unconditional.
b. Insert Conditional.
c. Insert Display Sign.
d. Insert Overpunch.
e. End Insert.
f. End Float.
g. Move With Insert.
h. Move With Float.
i. End Edit.

SCALE OPERATORS.

Higher-level languages, such as COBOL, require
integer arithmetic. The Scale operators provide the
means of aligning decimal points prior to perform­
ing the arithmetic operations. In addition, the
Scale Right operators provide the capability for
converting from binary to decimal. The Scale
operators are:

a. Scale Left.
b. Dynamic Scale Left.
c. Scale Right Save.
d. Dynamic Scale Right Save.
e. Scale Right Truncate.
f. Dynamic Scale Right Truncate.
g. Scale Right Round.
h. Dynamic Scale Right Round.
i. Scale Right Final.
j. Dynamic Scale Right Final.

OCCURS INDEX OPERA TOR.

The Occurs Index operator uses the two top words
in the stack to create an index into a table. The

3-16

index is checked to ensure that it is valid for the
table size.

SPECIAL FLIP-FLOP OPERATORS.

The function of these operators is to generate a
value in the top of the stack as a result of the
specific flip-flop setting, or to change the setting of
the flip-flop. These special flip-flop operators are:

a. Set External Sign.
b. Read TRUE/FALSE Flip-Flop.
c. Read and Clear Overflow Flip-Flop.
d. Reset Float.

Software Operators

Additional operators have been included to per­
form specific functions required by the MCP. This
set includes:

a. Masked Search for Equal.
b. Linked List Lookup.
c. Set Tag Field.
d. Read Tag Field.
e. Set Interval Timer.
f. Read With Lock.
g. Move To Stack.
h. Stuff Environment.
i. Read Processor Identification.
j. Enable External Interrupt.
k. Idle Until Interrupt.
1. Interrupt Other Processors.
m. Read Processor Register.
n. Set Processor Register.
o. Scan In.

1) Read Time of Day Clock.
2) Read General Control Adapter.
3) Read Result Descriptor.
4) Read Interrupt Mask.
5) Read Interrupt Register.
6) Read Interrupt Literal.
7) Interrogate Peripheral Status.
8) Interrogate Peripheral Unit Type.
9) Interrogate 1/0 Path.

p. Scan Out.
1) Set Time of Day Clock.
2) Set General Control Adapter.
3) Set Interrupt Mask.
4) Initiate 1/0.

q. Make Program Control Word.

SECTION 4
INPUT/OUTPUT MULTIPLEXOR AND

PERIPHERAL CONTROLS
GENERAL

The internal processing speed of the B 6500 is
complemented by equally powerful input/output
(1/0) hardware to achieve a well-balanced comput­
ing system. Transfer of all data between memory
and all peripheral devices is controlled by the 1/0
multiplexor, independent of the processor. One or
two of these multiplexors may be attached to a
B 6500, each one capable of processing up to ten
1/0 operations simultaneously, from any of 256
peripheral devices.

OPERATION

A peripheral control (P.C.) buss extends from the
multiplexor to the various peripheral devices.
Attached along this buss are from one to 20
peripheral controls (figure 4-1). Information in
one- or two-byte groups can be sent along the buss
to or from any peripheral control every 1.2
microseconds.

INPUT/OUTPUT
MULTIPLEXOR

DATA
SWITCH
CHNLS.

Either processor can initiate an 1/0 operation on
either multiplexor, in a two processor/two
multiplexor configuration, by executing an Initiate
1/0 command. This command transfers a Unit
Number Word and an Area Descriptor to the
multiplexor via the scan buss. The multiplexor
then fetches the 1/0 Control Word located at the
Area Base Address of the Area Descriptor and
initiates the peripheral operation. Upon its
completion, the 1/0 Finish Interrupt is set. The
Result Descriptor is returned when either processor
executes a Read Result Descriptor command.

Following is an example of what occurs upon
initiation of a card read command. Each peripheral
control contains a buffer - a one-character buffer
for some devices and a two-character buffer for
other devices. Once the physical read operation has
been initiated and the peripheral control buffer
filled, the peripheral control signals the multi­
plexor that it is ready for service. For an 800 card
per minute card reader, this occurs approximately

MODEL
B 6J 10

P.C.

APPROP.
TAPE
P.C.

MODEL
B 6240

P.C.

APPROP.
TAPE
P.C.

M/T
CLUSTER

lTOlOl/0
UNITS OR SUB-
SYSTEMS REQ.
SMALL
PERIPH. CONTLS.

1TO10

* PERIPH. CONTLS.

1TO10

1 TO 10 1/0 UNITS OR
SUBSYSTEMS REQ. LARGE
PERIPH. CONTLS.

*Total per side is 10 with a
moximum of 5 large! per side

MODEL MODEL
B 6340 B 6210

P.C. P.C.

APPROP. MODEL
TAPE B 6373
P.C.

P.C.

Figure 4-1. Input/Output Subsystem

4-1

once every millisecond. The multiplexor recognizes
the request for service from the peripheral control
and selects the proper data switching channel to
receive the information. The data switching
channel then properly positions the characters
within a word. A character transmission is com­
pleted in 1.2 microseconds. When the final
character of the word has been transmitted, the
multiplexor places the entire word on the memory
buss from which it is picked up by the proper
module. This sequence is repeated for each I/O
device requesting service. The number of devices
which can be simultaneously serviced in this
manner is limited only by the number of data
switching channels within the multiplexor, which
can range from four to ten per multiplexor.

DESCRIPTOR FORMATS

The formats of the Unit Number Word, Area
Descriptor, and I/O Control Word, respectively, are
illustrated in figure 4-2.

Unit Number Word

When M of the unit number word equals 0, all
active multiplexors respond to the descriptor.
When M equals 1, the multiplexor specified by the
Z field responds to the command. (The 4-bit Z
field designates a specific multiplexor.) When Z
equals 0001 and M is 1, multiplexor A is selected.
When Z equals 0010 and M is 1, multiplexor B is
selected. Only the low-ordered bit that is on selects
a multiplexor.

Area Descriptor

The area base address specifies the base address of
the memory area. Buffer length indicates the size
of the area defined.

1/0 Control Word

The I/O Control Word is divided into a standard
control field and a unit control field. Bits 35 - 0,
the unit control field, are unique for each periph­
eral control. Bits 47 - 36, the standard control
field, are defined as follows:

2 2 l l
21 76 98 54

.--~~~~~~~~~~~~~~~~~~~-~~~~~·

I 000 I UNIT NO· I ~~~iTION I

444444443333

UNUSED

UNIT NUMBER WORD

2 l
0 9

BUFFER LENGTH

AREA DESCRIPTOR

1/0 CONTROL WORD

Figure 4-2. 1/0 Descriptor Formats

4-2

AREA BASE ADDRESS

l 0

z

H
0

Bit Assignment

47 Reserved
46 Reserved
45 Attention
44 Memory Read/Write
43 Memory Inhibit
42 Translate
41 Frame Length
40 Memory Protect
39 Backward Transfer
38 Test

37-36 Tag Field Transfer
37-36 Store Program Tag
37-36 Store Single Precision Tag
37-36 Store Double Precision Tag

Result Descriptor

Bit= 0 Bit= 1

No
Read
No
No

6-bit
No
No
No

37 = 1
37 = 0
37 =O
37 = 1

Yes
Write
Yes
Yes
8-bit
Yes
Yes
Yes

36=0
36 = 1
36= 0
36 = 1

The format of the Result Descriptor is shown in
figure 4-3.

Bits 47 - 28 indicate the final memory address at
which the 1/0 operation terminated. Bits 16 - 0,
the error field, is subdivided into a standard error
field and a unit error field. The unit error field bit
assignments, bits 16 - 7, are unique for each
peripheral control. The standard error field "bit
assignments, bits 6 - 0, are as follows:

Bit

6
5
4
3
2
1
0

Assignment

Memory Parity Error
Memory Address Error
Descriptor Error
Not Ready
Busy
Software Attention
Software Attention/

Hardware Exception

PERIPHERAL CONTROLS

Up to 20 peripheral controls can be used with an
1/0 multiplexor. The peripheral controls are
housed in one or two B 6500 peripheral control

4
7

MEMORY ADDRESS

2 2 2 2
8 7 5 4

CHAR-
ACT ER
icOUNT

cabinets. Each cabinet can accommodate 10
controls, five of which can be large controls and
five small controls. The following peripheral
controls are available:

a. Magnetic Tape.
b. Card Reader.
c. Card Punch.
d. Line Printer.
e. Paper Tape Reader.
f. Paper Tape Punch.
g. Disk File.
h. Console Monitor and Keyboard.

Magnetic Tape Control

A magnetic tape subsystem can include from one
to four tape controls and from one to 16 magnetic
tape units. Within a single tape system, all tape
units must be used at the same speed and all
controls must be of the same type. The available
controls are:

a. B 6381-1 - used with B 9381-2, -3, -4 36
KB cluster units.

b. B 6381-2 - used with B 9382-2, -3, -4 72
KB cluster units.

c. B 6381-3 - used with B 9380-2, -3, -4
cluster units.

d. B 6391-3 - used with B 9391 72 KC free­
standing tape unit.

e. B 6391-4 - used with B 9394-1 96 KC free­
standing tape unit.

f. B 6393-1 - used with B 9392 72 KB free­
standing tape unit.

g. B 6393-2 - used with B 9393 144 KB free­
standing tape unit.

h. B 6393-3 - used with B 9394-2 96 KB free­
standing tape unit.

MAGNETIC TAPE EXCHANGES.

A magnetic tape exchange is required when either
more than one control or more than six magnetic

7 6 0

UNIT NUMBER ERROR FIELD ·.

Figure 4-3. Result Descriptor Format

4-3

tape units are used. The available tape exchanges
are:

a. B 6480 - 2 x 8 exchange used with
B 9380-2, -3, -4.

b. B 6481 - 2 x 8 exchange used with
B 9381-2, -3, -4, B 9382-2, -3, -4.

c. B 6490 - 2 x 10 exchange used with
B 9391, B 9392, B 9394-1, -2.

d. B 6491 - 2 x 8 exchange used with B 9393.
e. B 6492 - 4 x 16 exchange used with

B 9391, B 9392, B 9394-2.

Card Reader Control

The B 6110 Card Reader Control can be used with
either the B 9111 or B 9112 Card Readers. The
card reader reads BCL, binary, EBCDIC, ICT, or
BULL card codes. These card codes are converted
to BCL or EBCDIC internal code by translators in
the multiplexor or card reader control. On a binary
read, no code translation is effected.

Card Punch Control

The B 6210 Card Punch Control is used with the
B 9213 Card Punch, which can punch either BCL,
binary, EBCDIC, ICT, or BULL card codes. BCL
internal code can be punched out as BCL, ICT, or
BULL card code through the use of optional
translators in the card punch control. The card
punch control includes an EBCDIC internal to
EBCDIC card code translator as a standard feature.
If EBCDIC internal is required to be punched as
BCL card code, or as one of the others, the trans­
lation is done between internal codes in the
multiplexor. When punching binary, the contents
of each column are divided into two 6-bit char­
acters. The upper six bits are punched from the
first 6-bit character received, and the lower six bits
from the next 6-bit character.

Line Printer Control

The B 6240 Line Printer Control is used with the
B 9245-2 and B 9245-3, or the B 9242-1 and
B 9243-1 when using B 9943 Printer Memory. The
B 6242 Line Printer Control is used with the
B 9242-1 and B 9243-1 Line Printers without
printer memory. EBCDIC 8-bit internal code or
BCL 6-bit internal code is transmitted as BCL code
by translators in the multiplexor. Print drums with
either EBCDIC or BCL graphics can be used.

4-4

Paper Tape Reader Control

The B 6120 Paper Tape Reader Control is used
with the B 9120 Paper Tape Reader, which accom­
modates either BCL or binary tape. BCL tape is
converted to BCL internal code or EBCDIC by
translators in the multiplexor. No conversion
occurs when reading binary tape.

Paper Tape Punch Control

The B 6220 Paper Tape Punch Control is used with
the B 9220 Paper Tape Punch, which accommo­
dates either BCL or binary tape. BCL internal code
or EBCDIC is transmitted to the punch control as
BCL internal code by the translators in the multi­
plexor. BCL internal code is then converted to
BCL paper tape code by a translator in the punch
control.

Disk File Control

The B 6373 Disk File Control is used with several
different models of Burroughs head-per-track disk
file subsystem. The various models available are
discussed in Section 6, Peripheral Components.

DISK FILE EXCHANGE.

From one to four disk file controls can be used to
form a multiple control subsystem, more than one
of which can be attached to the B 6500. Disk
subsystems may be attached to a maximum of 18
of the 20 large peripheral controls. One large
control must be reserved for a magnetic tape unit
and one for the console display, as required by the
MCP. A B 6471 Basic Disk File Exchange N1 x N2

(up to 4 x 20 with appropriate adapters) is re­
quired if it is desirable to attach more than one
electronics unit to a peripheral control. For
example, with a 2 x 10 exchange, ten electronics
units can be attached to the system through the
use of only two peripheral controls. Each elec­
tronics unit can handle up to five modules of four
disks each.

Console Display Control

The B 6340 Console Display Control permits
B 9342-1 Console Display and up to 7 more
B 9342-1 Console Displays or B 9342-2 optional
Printer/Keyboards to be connected to a B 6500
System.

SECTIONS

DATA COMMUNICATIONS
PROCESSOR

GENERAL

Because the B 6500 is designed for continuous
multiprocessing, the system readily accommodates
applications and procedures requiring data
communications. Realtime operations, remote
computing, remote inquiry, and on-line programing
become additions to the multiprocessing job mix
of the B 6500. The data communications processor
is the heart of the data communications network.

The B 6350 Data Communications Processor
(DCP) is a small special purpose computer which
contains sufficient registers, logic, and translation
ability to perform all basic functions associated
with sending and receiving data. Up to four DCP's
can be connected to an 1/0 Multiplexor, with each
DCP capable of accommodating from one to 256
communications lines (figure 5-1). On a two Multi­
plexor system, this provides a B 6500 with the
ability to service 2048 data communications lines.

Each Communications line requires an adapter
which provides the logic to interface with a Data
Set or to connect directly to a communications
line. The following types of adapters are provided:

a. B 6650-1 with the following characteristics:
) Direct or modem connect.

2) Asynchronous.
3) Up to 600 BPS.

1-16 1-16 1-16
ADAPTER ADAPTER ADAPTER
CLUSTERS CLUSTERS CLUSTERS

I T I
DATA DATA DATA DATA

~

COMMUN- COMMUN- COMMUN- COMMUN-
I CATIONS !CATIONS I CATIONS I CATIONS
PROCESSOR PROCESSOR PROCESSOR PROCESSOR

j_ 1 j_
1/0 MULTIPLEXOR

4) Two wire or 100 series type modem using
RS 232 defined interface.

5) Serial by bit transmission.
6) Half-duplex mode.

b. B 6650-2 with the following characteristics:
1) Direct or modem connect.
2) Asynchronous.
3) Up to 1800 BPS.
4) Two wire or 202 series type modem using

RS 232 defined interface.
5) Serial by bit transmission.
6) Half-duplex mode.

c. B 6650-3 with the following characteristics:
1) Modem connect.
2) Synchronous.
3) Up to 2400 BPS.
4) 201 series type modem using RS 232

defined interface.

ADAPTER
CLUSTER
NO. I

)

l TO 16
LINES

-.

DATA
COMMUNICATIONS
NETWORK

ADDITIONAL ADAPTER
CLUSTERS 2 THROUGH 15

)

ADAPTER
CLUSTER
NO. 16

l TO 16
LINES

Figure 5-1. Organization of Data Communications Processor Remote Lines

5-1

5) Serial by bit transmission.
6) Half-duplex mode.

d. B 6650-4 with the same characteristics as the
-3 except the speed is up to 4800 BPS.

e. B 6650-5 with the same characteristics as the
-3 except the speed is up to 9600 BPS.

f. B 6650-6 Touch-Tone* Telephone Input.
g. B 6650-7 Audio Response.
h. B 6650-8 Automatic Dial Out.

*Registered Trade Mark of AT & T Co.

These adapters provide the facilities for attaching
the various remote terminals listed in Table 5-1 to
a B 6500.

OPERATION

When a data communications command is initiated
by the processor, the 1/0 descriptor is sent to the
multiplexor which directs it to the proper data
communications processor (figure 5-2).

DCP

MULTIPLEXOR

ADAPTER

CLUSTER

ADAPTER

CLUSTER

The DCP contains a set of arithmetic registers, 8
words of scratchpad memory and may or may not
contain 1024 52-bit words of local DCP memory.
Based on the descriptor received, the DCP reads
the control codes and the data associated with that
message from the main memory one word at a
time. It then attaches its character buffer, through
the proper Adapter Cluster, and sends the char­
acter it has fetched out to the proper line adapter.
This procedure is continued until the
End-of-Message code has been received.

On incoming messages, the line adapter signals the
data communications processor through the
Adapter Cluster, and the above procedure is' re­
versed. The DCP generates an input request
interrupt and the MCP data handler routine directs
the incoming characters to a location in memory
set aside for that particular line adapter.

A maximum of 256 lines can be tied to a single
DCP. The DCP can readily handle a situation in
which all lines have 10 character per second
Teletypes. (Data would be received at the rate of

USER
PROGRAM
FOR
ADAPTER
#]6

MESSAGE
AREA

REMOTE
DEVICE

Figure 5-2. Typical Data Communications Message Flow

5-2

TABLE 5-1

B 6500 Remote Terminal Characteristics

Terminal Leased Switched Direct Asynchronous Synchronous
Modem Speed Range

Connect Type

TWX Service x x 103,81 lB Up to 150 BPS.

Western Electric Model 33 x x x x 103 Up to 110 BPS.

Western Electric Model 35 1 x x x x 103,816A Up to 110 BPS.

Western Electric Model 3 7 x x x x 103 Up to 165 BPS.

Touch Tone/ Audio Response x x Parallel 403 Up to 10 CPS.

B 9351 Series Input and Display x x x x x 103,202, Up to 2400 BPS.
or 201

B 9352 Series Input and Display x x x x x 103,202, Up to 2400 BPS. or 201

Model 28/83B3 (or equivalent x x x Up to 110 BPS. Western Union Service)2

TC 500 Terminal x x x x 202 Up to 1200 BPS.

B 300/B 500 Systems x x x x 201 Up to 2400 BPS.

B 2500/B 3500 Systems x x x x 201 Up to 2400 BPS.

B 5500 Systems x x x x 201 Up to 2400 BPS.

Honeywell 120 System x x 201 Up to 2400 BPS.

IBM 1030 x x x 202 Up to 14.8 CPS.

Automotive Calling Unit x 801

1. Also 8Al Selective Calling Service or Western Electric equivalent.
2. Speed for 83B3 service is 74.6 bps.

one character per 400 microseconds.) The variety
of conditions under which data communications
can be used makes it difficult to determine the
peak load under typical conditions. Each DCP
operates independently of all others; up to eight
DCPs, four to a multiplexor, can be attached to a
B 6500.

Each Adapter Cluster has two input/output
connectors, each of which can connect to a data
communications processor, thereby permitting the
Adapter Cluster to be handled by two DCPs. See
figure 1-1 for a typical configuration. This type of
configuration provides a backup facility in the case
of failure of one DCP.

Because the DCP can be programed and can
execute code stored in main memory or local DCP
memory, it can perform many of the functions
previously wired into the line adapter. The DCP
can handle the line discipline for a given data set
and perform the various control code and line
delimiter functions for the specific device program­
matically. For example, a remote location may
have two different types of computers, each
requiring the same model data set, but each with a
different set of control codes. With the DCP, both
computers can be serviced over the same line with
the same line adapter.

5.4

PROGRAM REQUIREMENTS

Scan Function

The Scan Function, which scans all lines for
activity, can be stored in the Data Communications
Processor or stored in main memory.

Service Program

When the Scan Function finds a line which requires
attention, either a program stored in the DCP or a
program stored in main memory is used to service
that line. Typically, this requires a character to be
stored in, or read from main memory. The main
memory address is stored in DCP Scratch Pad
memory. The character being serviced is checked
to determine if any special action is required; i.e.,
delimiter detection or parity check.

Polling Program

Some terminal types such as the B 9352 series
input and display, may require a Polling Program
which is either a program stored in instruction
memory or a program stored in main memory. If a
program stored in instruction memory is used, the
general registers can be used for temporary storage,
thus allowing the same program to service many
channels. Polling by this means does not require
main memory cycles.

(
I

SECTION 6
PERIPHERAL COMPONENTS

GENERAL

Peripheral components are units that provide input
and output facilities. For the B 6500 System they
operate independent of the processor, but always
under control of the MCP through the multiplexor
and associated peripheral control. Up to a maxi­
mum of 256 1/0 devices may be attached to a 2
multiplexor system, where each magnetic tape unit
or station on a tape quad and each electronics unit
in a disk file subsystem is considered a device.
These 256 devices are totally independent of the
up to l 024 remote lines which can also be on-line
through the Data Communications Processors. This
section provides a general discussion of the periph­
eral components that may be used with B 6500
Systems.

DESK CONSOLE

The desk console is the operation center of the
B 6 5 0 0 System providing the switches and
indicator lights for operator control. Included in
the console control center is the console display
terminal, the communications link between the
system and operator, by means of which instruc­
tions and certain information is displayed to the
operator. Up to 960 characters (40 data lines of 24
characters each) can be displayed at one time.
Through this unit the operator may signal a reply
or request information from the MCP concerning
programs in process or operating conditions. If
provision for hard copy of display information is
desired , an optional printer/keyboard can be
added. As an alternative to using the slow type­
writer, hard copy can also be obtained on the line
printer.

Because of the comprehensiveness of the console
display terminal operation, and because the speed
of printer/keyboard is not adequate to keep up
with the system operation , hard copy can also be
obtained through a line printer as required.

,DISK FILES

The B 6500 Disk File Subsystem (figure 6-1) is an
extremely high-speed , modular, random informa­
tion storage system. A basic system .consists of one

6-1

electronics unit and from one to five storage
modules, each storage module having a capacity of

Figure 6-1. Disk File Electronics Unit with
one Disk File Module attached

18 or 20 million bytes to provide a maximum of
100 million bytes of storage on a single electronics
unit. Other models are available (Data Memory
Banks, figure 6-2) to allow B 6500 disk file storage
up to 36 billion bytes.

Disk modules are available with average access
times ranging from 20 to 60 milliseconds. Each
storage module contains four disks, each with two
recording surfaces, divided into a number of
circular tracks. Each track has an individual, fixed
read/write head , operated by electronic switching.
Each track is divided into segments of 180 bytes. A
sequential 7-digit decimal address scheme provides
ease in record addressing, file organization, and file
maintenance. Each disk in the module is provided

..... .,....-.. ·-

l

ELECTRONICS UNIT
STORAGE MODULES

Figure 6-2. Data Memory Bank

with an individual lockout switch to prevent
writing; however, a locked out disk may still be
read. Automatic checking is provided to assure
valid data recording.

Table 6-1 provides a list of the various disk files
available with the B 6500 System.

MAGNETIC TAPE

The B 6500 affords considerable flexibility in the
area of magnetic tape handling devices, with the
number of units available on a given system limiteq
only by the number of exchanges and peripheral
controls employed. The user may choose either
7-channel BCL tape or 9-channel EBCDIC tape,
which may be intermixed, provided this is not
attempted on the same subsystem. The user also
may select any of four packing densities up to
1600 bits per inch (BPI) and transfer rates from
9,000 to 144,000 characters per second.

A choice of physical construction is also furnished .
The user may choose a free-standing device (figure
6-3) which houses one magnetic tape unit per
cabinet or the cluster device (figure 604) which
provides up to four tape-handling devices per
cabinet.

The magnetic tape units are capable of reading and
spacing in either a forward or reverse direction.

Table 6-2 documents the packing densities and
transfer rates available with either type of tape
unit .

TABLE 6-1

Electronics Unit
Model

B 9371-7

B 9371-8

B 9371-9

B 9371-10

Storage Unit
Model

B 9372-11

B 9375-10

B 9376-10

B 9375-12

B 9376-12

B 9375-13

B 9376-13

Disk File Storage

Disk File Module Description

l 0.87 million bytes, 20 milliseconds average access
time, five modules per electronics unit

Data Memory Bank - l 00 million bytes, 23 milli­
seconds average access time

Additional 20 million byte increments

Data Memory Bank - 100 million bytes, 40 milli­
seconds average access time.

Additional 20 million byte increments.

Data Memory Bank - 100 million bytes, 60 milli­
seconds average access time

Additional 20 million byte increments

*Data Memory Banks include electronics units; however, optional
additional units may be ordered using stated model numbers.

6-2

Figure 6-4. Clustered Tape Unit

CARD READERS

Figure 6-3. Free-Standing Magnetic Tape Unit Card readers (figure 6-5) available for use with a
B 6500 System can read 51-, 60-, 66-, or

Model

Clustered

B 9380-2, -3, -4

B 9381-2, -3, -4

B 9382-2, -3 , -4

Free-Standing

B 9391

B 9392

B 9393

B 9394-1

B 9394-2

TABLE 6-2

Magnetic Tape Unit Characteristics

Channels Speed (JPS) Density (BPI)

7 45 800/556/200

9 45 800/200 *
9 45 1600

7 90 800/556/200

9 90 800/200 *
9 90 1600

7 120 800/556/200

9 120 800/200 *

* These Tape Units require their peripheral controls to
have an optional adapter to permit 200 BPI operation.

6-3

Transfer rate

36/25/9 KC

36 KB

72KB

72/50/18 KC

72/18 KB

144 KB

96/66/24 KC

96/24 KB

80-column punched cards at speeds of either 800
(B 9111) or 1400 (B 9112) cards per minute. The
card readers use an immediate access clutch to
provide optimum operation. Card columns are read
serially by photo-electric sensing, with the read
circuitry automatically monitored between card
cycles. Invalid character detection is provided
during card reading. Cards may be added or
removed while the reader is operating. Both the
input hopper and the output stacker have a
capacity of 2400 cards. Optional features include
the ability to read 40-column Treasury Checks and
round holes in Postal Money Orders. Cards with
any corner cut, those that have been verified
(notched on the right) , and cards of varying
thickness are acceptable; the latter, however, must
be consistent during any one run. The number of
card readers on a given system is limited only by
the number of available peripheral controls.

Figure 6-5. Card Reader

LINE PRINTERS

Three line printers (figure 6-6) are available for use
with B 6500 Systems. The B 9242-1 contains the
full BCL character (64) set, prints at a speed of
860 lines per minute, and provides 120 print
positions. The B 9243-1 prints at a speed of 1100
lines per minute, provides 120 print positions, and
has a 44 character set. The B 9245-2 and B 9245-3

print at a speed of 315 lines per minute. The -2
printer contains 120 print positions, whereas the -3
printer contains 132 positions. Each has vertical
skipping and end-of-page formatting Gontrolled by
a punched paper tape. The normal paper slew rate
is 25 inches per second, with an optional high­
speed slew of 75 inches per second for skips of
more than 1.17 inches. With the high-speed slew
option selected, use of the B 9949 Power Forms
Stacker option is recommended.

Figure 6-6. Line Printer

CARD PUNCH

The B 9213 Card Punch (figure 6-7) , used with the
B 6500 System, punches at a maximum rate of 300
cards per minute. While waiting for a Punch
command, cards can remain in the punch station
indefinitely without being damaged. Pre-punched
cards may be used, but previously punched
columns cannot be repunched. Punching is verified
by an echo check using solid state circuitry. An
immediate access clutch provides demand feeding.
Cards may be loaded or unloaded while the unit is
in operation. The card hopper capacity is 1000
cards; the three card stackers (primary, auxiliary,
error) have a capacity of 1200 cards each. Stacker
selection is accomplished programmatically.

Figure 6-7. Card Punch

PAPER TAPE READER

The B 9120 Paper Tape Reader (figure 6-8), used
with the B 6500 System, is capable of reading
punched paper tape at a maximum rate of 1000
characters per second and metalized Mylar or
fanfold tape at a maximum rate of 500 characters
per second. Baudot and BCL to EBCDIC code
translation is automatic; all other codes are read

6-5

Figure 6-8. Paper Tape Reader

directly into memory and must be translated
programmatically. The reader can accommodate 5-,
6-, 7-, or 8 channel tape as selected by the console
operator.

Tape widths of 11 /16, 7 /8, or 1 inch are inter­
changeable. The number of paper tape readers is
controlled by the number of peripheral controls
available.

Figure 6-9. Paper Tape Punch

6-6

PAPER TAPE PUNCH

Depending on the peripheral controls available, one
or more paper tape punches may be used as output
devices for the B 6500 System. The B 9220 Paper
Tape Punch (figure 6-9) is capable of punching
standard paper tape format in either BCL or
Baudot code. The punch will accommodate 5-, 6-,
7- or 8 channel tape at a maximum rate of 100
characters per second, punching ten characters per
inch. Standard tape widths of 11/16, 7/8, and 1
inch may be punched. Either oiled paper tape, dry
paper tape, metalized Mylar tape or laminated
Mylar tape may be used.

GENERAL

The B 6500 offers a wide range of software sys­
tems. Overseeing system operation is the Master
Control Program (MCP) which consists of a special
set of routines to provide control over scheduling,
dynamic storage allocation of memory, handling of
all input/output operations, standard error han­
dling procedures, multiprograming and parallel
processing, and the handling of all system inter­
rupts. At the user level, three problem-oriented
languages are available: COBOL for the solution of
business oriented applications and ALGOL and
FORTRAN which are employed primarily in the
solution of scientific problems. In addition, the
systems afford a variety of application programs
covering the areas of: scientific systems, industrial
management systems, financial management
.systems, and advanced information management
systems.

Successful use of a higher-level language (ESPOL)
for the implementation of the B 5500 MCP has led
Burroughs Corporation to the development of
more powerful language for implementation of the
B 6500 MCP. With it, it is possible to describe the
functions of the MCP in a natural, rigorous
manner. It is possible to talk about queues, parallel
processing, and interlocks as though they were
simple variables.

The B 6500 MCP is organized in an hierarchical
fashion (see figure 7-1). First is the central, or hard
core, section, which acts to merge the system
hardware and software. The design criteria for this
section are similar to those used by hardware logic
designers. The hard core is a small hardware rou­
tine used to minimize hardware requirements of
other portions of the software, such as required for
memory addressing, physical input/output opera­
tions, and system security. Conversely, it fields the
hardware signals generated by interrupts and causes
the appropriate routines of the next section to be
executed.

The second area is the resident MCP which remains
in primary memory to handle the major task of the
MCP: resource allocation relative to primary
memory, secondary memory, 1/0 devices, proces-

7·1

SECTION 7
SOFTWARE

sors, and time. The third area of the MCP includes
routines which reside in the system's disk memory,
to be brought into primary memory as required.
Functions performed by these routines include
library maintenance, file control, job scheduling,
control cards, printer backup, and card reader
backup. These utility routines are part of the
generalized library system for the B 6500.

Burroughs provides the user with a complete set of
utility routines. However, since no one standard
algorithm is suitable for all customers, this portion
of the MCP is highly modular and precisely de­
scribed relative to interlace requirements. This
permits a customer to change the algorithms in this
section without fear of affecting unknown areas of
the first two levels of the MCP. For example, it is
possible to implement a different control card
format simply by changing the control card pro­
gram module.

MASTER CONTROL PROGRAM (MCP)
FEATURES

The features of the MCP encompass three general
areas: computer functions, automatic system
assignment and coordination, and multiprocessing.

Computer Functions

The MCP controls all computer functions except
those involving physical handling of such items as
tape, cards, paper, etc. It provides supervisory
control instructions to the operator so that he may
make major decisions in directing the processing,
with all other control handled automatically by the
MCP. The operator is always able to communicate
with the system when the need arises. The MCP
can analyze error conditions and provide a stand­
ard course of action where a specific course of
action is not provided in the object program.

Automatic System Assignment and
Coordination

Certain operations which are the responsibility of
the programmer with other computer systems are
performed automatically with the B 6500. For
example, the MCP is able to assign memory areas

UTILITY SECTION

RESIDENT MCP

Figure 7-1. Organization of B 6500 MCP

of program segments, input/output areas and the
program stack. Input and output files are identified
automatically and assigned to physical units.
Standard tape-handling procedures provide for
labeling, end-of-reel, and end-of-file conditions.

Multiprocessing

The MCP determines the optimum sequence and
combination for the processing of a batch of jobs,
adjusting its schedule when new or higher priority
jobs are introduced, and dynamically allocating
memory to gain maximum efficiency in processing
a reordered job sequence. The MCP also controls
the execution of program segments and initiates all
input/output operations. Because of its ability to
oversee all programs in process, it helps to maxi­
mize efficiency of input/ output device operation.

ELEMENTS OF THE MASTER CONTROL
PROGRAM

Following are some of the special-purpose routines
included in the MCP that anticipate and provide

7-2

for various operating circumstances:

a. An executive routine which coordinates the
operation of the MCP by determining the
type of control function required and
transferring control to the proper routine,
and supervises input/output operations and
execution of all program segments in
memory. When an interrupt occurs, this
routine determines the cause and either
notifies the operator or takes action to
rectify the situation or to continue
processing.

b. A scheduling routine which evaluates the
priority and equipment requirements of a
batch of programs, scheduling and re­
scheduling to maintain efficient and
continuous processing.

c. An environment control routine that dy­
namically allocates memory and assigns
input/output devices according to the needs
of the object programs.

d. An exception condition routine which pro­
vides standard error-handling procedures.

Entry to Control State

The processor transfers to the control state in
response to an interrupt, which may result from
operator communication with the system, develop­
ments in the program being executed (e.g.,
initiation of an 1/0 operation), hardware mal­
function, etc. For example, an interrupt is
generated whenever an 1/0 operation is terminated
in order to notify the MCP that a data switching
channel is free. The MCP then initiates a new
operation, to achieve maximum system utilization.
When an interrupt condition occurs, control is
transferred to the MCP upon completion of the
current program syllable. The contents of the
arithmetic and control registers are then stored in
the program stack; the executive routine
determines the cause of the interrupt; and, control
is transferred to the appropriate MCP routine.
When the interrupt condition has been serviced,
control is returned to an object program, with the
registers restored from the appropriate program
stack.

In the following paragraphs the elements of the
MCP are examined in greater detail, along with the
function and interrelation of each routine.

Executive Routine

An MCP initialization routine is loaded into the
system when the LOAD switch on the console is
depressed. This in turn loads the required portions
of the MCP executive routine into memory. The
initialization routine is then released from
memory. As the coordinating member of the MCP,
the executive routine has six basic functions:

a. To initiate all input/output operations.
b. To analyze all interrupt conditions and

provide an appropriate course of action.
c. To maintain control over all programs.
d. To control the use of other routines in the

MCP.
e. To maintain an operation log.
f. To maintain an internal physical system

description.

INPUT/OUTPUT OPERATIONS

In order to initiate and coordinate all 1/0
operations, the executive routine maintains several
tables in memory. Information about all the
input/output descriptors for all programs in
memory is recorded in these tables. Access through
these tables enables the executive routine to

7-3

reference a particular 1/0 descriptor when an 1/0
operation is to be executed. Thus the executive
routine can evaluate the status of any descriptor at
any time. The executive routine, then, has
constantly updated information on the location
and status of all I/O descriptors.

INITIATION OF AN INPUT/OUTPUT OPERA­
TION. MCP action on an 1/0 descriptor causes the
operation to be executed. When an 1/0 operation is
being executed, the descriptor is set to indicate
that the buffer area referenced is not available to
the object program. When an object program has
processed all the data in an input area or filled an
output area with information, it requests an 1/0
operation of the MCP by executing a read or write
statement. The executive routine can then initiate
the operation specified by executing the 1/0
descriptor when an input/output path to the
specific device becomes available. Processing is
interrupted only long enough for the executive
routine to initiate the specified operation, after
which the data switching channel proceeds inde­
pendently of the processor. Control is then
returned to a program segment of one of the pro­
grams in the mix.

Since simultaneous input/output operations can be
executed on the B 6500, it is possible that several
descriptors may be in the tables maintained by the
MCP. Therefore, the executive routine must
continually update the 1/0 tables whenever 1/0
operations are initiated or completed.

Programs with a preponderance of 1/0 operations
frequently use multiple read or write areas so that
there is always storage for data being read in or for
results waiting to be written out. Thus processing is
not delayed while necessary data is loaded or while
results are cleared from the output area. Multiple
read and write areas are normally used in a regular
sequence, and the 1/0 descriptors that reference
these areas are linked so that each 1/0 descriptor is
executed in sequence.

COMPLETION OF AN INPUT/OUTPUT OPERA­
TION. When the specified operation has been
executed, the multiplexor generates an 1/0 finish
interrupt. The MCP obtains the result descriptor
from the multiplexor. This descriptor indicates
whether or not the operation was completed suc­
cessfully and provides information regarding the
type of operation performed, unit designation,
end-of-file or end-of-reel condition, and presence
of parity or other errors. There are two possible
courses of action:

a. With the successful completion of the opera­
tion, the I/O descriptor just processed is
restored to indicate that the buffer is
available. If another descriptor is ready for
processing, the executive routine initiates
the specified operation before transferring
control to a program. Control is returned to
a program segment of one of the programs in
the mix (refer to the Schedule Routine).

b. Unsuccessful completion of the operation
results in the executive routine examining
the result descriptor to determine the cause
of failure and taking corrective action. For
example, if a parity error occurred on a tape
read, the tape would be automatically re­
read several times. Persistent failure would
result either in discontinuation of the
program to which that tape is attached or
bypassing the information if such action is
specified in the object program.

When an output operation is unsuccessful,
the MCP retains the output information,
thus allowing for additional attempts at
transmission.

An end-of-reel condition indicated by the ex­
ternal-result descriptor causes the executive routine
to locate the next input file or output tape and to
provide the required tape-handling procedures. In
the case of an end-of-file condition, the executive
routine refers to the object program for specific
instructions.

HANDLING INTERRUPT CONDITIONS.

When any interrupt condition occurs, control is
transferred automatically to the executive routine,
which ascertains the cause of interrupt and initiates
appropriate program action. During compilation,
certain operators which cause interrupts may be
generated into the object program to provide for
necessary MCP operations. Their use in connection
with I/O operations has just been described. Inter­
rupts may also indicate a need for additional
program segments or memory space or the com­
pletion of a program.

Other interrupts are associated with standard pro­
gram checks that determine such arithmetic
conditions as exponent overflow and underflow,
integer overflow, or divide by zero. The object
program may specify the action to be taken when
these interrupts occur, otherwise the MCP will
follow a standard procedure.

7-4

Interrupt conditions may be classified as either
processor-dependent or processor-independent.
The type of interrupt determines the order of
executive routine response. In addition, there are
hardware failure interrupts, such as memory parity
errors, which cause the console operator to be
notified of an equipment failure.

CONTROL OF PROGRAM SEGMENTS.

When processing of a program segment is inter­
rupted, the B 6500 automatically stores the
address of the next syllable to be executed. Thus
after the interrupt condition has been satisfied,
control can be transferred to the proper point in
the program. If control is transferred to a non­
present program segment, a presence bit interrupt
is generated, requiring the MCP to read that
program segment into core memory.

OTHER MASTER CONTROL PROGRAM
ROUTINES.
The executive routine loads and transfers control
to the schedule, environment control, and error
routines when the need arises. If, for example, the
console operator requests a revision of job
priorities, the executive routine responds by load­
ing the schedule routine. When error conditions
arise, the executive routine determines the type of
error and selects and loads the appropriate routine
to handle the situation.

MAINTENANCE OF AN OPERATION LOG.

A record is maintained of processing time for each
program, including the time the job was started,
elapsed rurtning time, and the actual processor
time. Thus at any time during processing, the
console operator may query the MCP to obtain the
elapsed running time for a job. When the total
processing time is known, the operator can then
determine the amount of time needed to complete
the job. Such information is valuable if a new job is
to be introduced into the system or if priority
changes require a re-ordering of the current proces­
sing sequence. The MCP records the log for each
job on disk.

SUMMARY.

The executive routine coordinates the functions of
the Master Control Program, responds to all
interrupt conditions, maintains control over
program segments and other MCP routines,
maintains a constant system description and
operations log, and provides for system operator
communication.

The Schedule Routine

This routine relieves the programmer and operator
of scheduling and ensures an effective
multiprocessing environment. The operator loads
program parameter cards as inputs to the schedule
routine and the executive routine loads the
schedule routine to memory. The schedule routine:

a. Determines the sequence of jobs to be run,
and in a multiprocessing environment,
determines the best program mix. Priority
ratings, system requirements of each object
program, and the present system
configuration are considered.

b. Reschedules job sequence whenever a higher
priority job is introduced. (Adjusting a job
sequence during a production run is called
dynamic rescheduling.)

c. Relays information about the jobs scheduled
to the environment control routine.

Program Backlog Table

To perform the above functions, the schedule
routine develops a program backlog table of all
programs in the mix. The elements of this table are
formulated from priority ratings provided by the
operator and the program parameters produced by
the compiler.

When all parts of the program backlog table have
been developed, it contains, in order of priority,
job identification, input/output requirements,
memory requirements, file descriptions, processing
status (running or finished), time started, time
completed, and input/output time. This table,
maintained in memory throughout processing by
the executive routine, is used by the environment
control routine for memory allocation and
input/output unit assignments.

Program-Finish Conditions

When a job is completed, the environment control
routine scans the control tables and adjusts all
entires pertaining to that job. The next program to
be run is located in the program backlog table. The
environment control routine makes unit and
memory assignments as described, advises the
operator of file requirements, loads and initializes
the program stack and the base location tables,
loads the first segment, and transfers control to
this segment.

7-5

Changing the Schedule

If a new job with a higher priority rating is intro­
duced into the system, the schedule routine alters
the program backlog table.

PROBLEM-ORIENTED LANGUAGES

Three problem-oriented programing languages are
available with a Burroughs B 6500 Sys­
tem: COBOL for the solution of business oriented
problems, ALGOL and FORTRAN for the solution
of scientific problems as well as those in other
areas of application.

Problem-oriented languages allow the programmer
to state a problem in a manner directly adapted to
the given situation, business problems in business-
1 i ke statements, scientific problems in
algebraic-type equations. Because such languages
are largely machine independent, program
modification and program exchange between users
of different systems are accomplished with relative
ease. The B 6500 leads itself to compiler imple­
mentation. For example, the hardware Edit
command, within a single instruction, includes all
of the editing functions required for COBOL
without being limited ·to them.

COBOL

COBOL for the B 6500 is the CODASYL 68,
(COBOL-68) language. B 6500 COBOL is an
extended version which provides the user with the
complete facilities of the B 6500 hardware/
software system without resorting to machine or
assembly language. In particular, automatic
program segmentation, automatic peripheral assign­
ment, dynamic multiprocessing, the inclusion of
debugging language statements allow a high degree
of sophistication in program design. B 6500
COBOL continues this sophistication through the
coding and debugging stages of application
development.

A program written in COBOL, the source program,
is accepted as input to the B 6500 COBOL
Compiler. The Compiler first verifies that the
COBOL rules have been followed and then
generates an object program in executable machine
language. Due to the speed of compilation, no
object deck is required; instead, the object program
is placed on disk. It may also be dumped on
magnetic tape for back-up storage. Should program
changes become necessary, the source deck is
corrected and a new compilation run made; thus

the source deck always reflects the object program
being executed. Compilation speed on the B 6500
is 5000 card images per minute.

ALGOL

Burroughs Extended ALGOL is based on the
definitive "Revised Report on the Algorithmic
Language ALGOL 60" (Communications of the
ACM, Vol. 6,No. l,January, 1963).ltpermitsthe
programmer to exercise close control over data
transmission and manipulation to any desired
degree.

ALGOL compilation speed on the B 6500 is
10,000 cards per minute.

FORTRAN

B 6500 FORTRAN is compatible with IBM 7094
FORTRAN IV version 13. A great deal of program­
ing flexibility is permitted the user due to the
increased difficulty in enforcing restrictions on
level 13 Fortran. Fortran programs written for the

SOURCE
LANGUAGE
PROGRAM

PUNCHED
CARDS

AND/OR

DISK
FILE

OR

B 5500 can be compiled on the B 6500.
Compilation speed of Fortran programs is com­
parable to that of ALGOL.

Compiling a Source Program

A program written in a compiler language is con­
verted from this source language into the internal
machine language by the applicable compiler. The
object program is compiled under any one of the
following options:

a. Object program compiled with immediate
execution (compile and go under control of
the MCP).

b. Object program compiled to the Disk File
Library for future execution.

c. Object program compiled for a syntax check
only (no execution of the object program).

d. Various source language input and output
options can be specified during the compila­
tion as directed by the programmer.

SOURCE
LANGUAGE,

ERROR
INFO., ETC.

DISK
FILE

Figure 7-2. Compilation of a Source Program

7-6

The compiled program consists of:

a. A program parameter record containing
program memory requirements, peripheral
equipment requirements, and information
about the segment dictionary.

b. File information blocks containing
information related to each file.

c. The main program with one or more
program segments.

Figure 7-2 illustrates the transformation from the
source to object program.

APPLICATION PROGRAMS

The Burroughs B 6500 offers a wide range of
applications programs for business, finance, and
science. Major application areas include:

a. Scientific Systems.
b. Industrial Management Systems.
c. Financial Management Systems.
d. Advanced Information Management

Systems.

Scientific Systems

Scientific Systems for the B 6500 include an
Advanced Mathematical Programing System, a
Statistical Programing System, and Simulation
Techniques.

ADVANCED MATHEMATICAL PROGRAMING
SYSTEM.

This system utilizes the latest techniques to
provide:

a. Unlimited variables.
b. Unique control language.
c. Matrix generator.
d. Sophisticated report writer.
e. "Crash" algorithm.
f. Decomposition algorithm.
g. Full and mixed integer capability.
h. Non-linear algorithm.
i. Extensive parametric capability.
j. Extensive sensitivity capability.

STATISTICAL PROGRAMING.

The B 6500 is provided with an Advanced Business
Statistics System which encompasses such areas as
time series analysis, regression and correlation
analysis, factor analysis, and variance analysis.

SIMULATION TECHNIQUES.

For those engaged in designing simulation experi­
ments, the B 6500 provides two powerful
languages, DYNAMO and SIMULA.

DYNAMO. DYNAM01 is an easy-to-use, special­
purpose compiler that translates mathematical
models from simple algebraic relationships into
tabulated and plotted results. The models may
represent any "servo-mechanism" system, whether
social, biological, or mechanical.

DYNAMO accepts equations and checks them for
consistency, proper equation formulation, and
keypunch accuracy. If the equations check, object
code is produced. Output from DYNAMO is in the
form of graphic plots.

SIMULA. SIMULA (Simulation Language) pro­
vides a method of precisely describing "discrete
event systems." Designed by the Norwegian
Computing Center in Oslo, SIMULA is currently
being used for analysis of nerve networks, com­
munications systems, traffic flow, production
systems, etc.

SIMULA is an extension of ALGOL 60 and con­
tains ALGOL 60 as a subset. The extension
includes new basic concepts, new statements which
operate upon these concepts, and a set of library
procedures. In addition, certain ALGOL state­
ments have been extended to operate upon the
new concepts.

SIMULA also contains extensive list processing
facilities.

Industrial Management Systems

The Industrial Management Systems provide appli­
cation programs for:

a. Inventory Management.
b. Production Management.

1 DYNAMO was developed by the Massachusetts Institute of Technology.

7-7

INVENTORY MANAGEMENT.

Inventory Management was one of the first areas of
the business process to be brought under examina­
tion. The 'objective was to develop a valid
technique for handling inventory problems and to
provide for its implementation. To meet require­
ments for a scientific inventory management
system, Burroughs offers B 6500 users BICS and
ACT!ON.

BURROUGHS INVENTORY CONTROL SYSTEM
(BICS). BICS is a set of computer programs repre­
senting the latest techniques in the application of
computer technology to the existing body of
inventory management theory. The BICS objective
is to produce a man-computer team which will
significantly increase management control over
general business inventories. To an organization
not currently employing a scientific inventory
management system, BICS, written entirely in
COBOL, represents a development value estimated
conservatively at $100,000. This system is pro­
vided at no additional cost to B 6500 users as p~rt
of Burroughs continuing program of management
assistance.

ACT!ON SYSTEM. Burroughs B 6500 ACT!ON
System is a generalized manufacturing inventory
accounting and control system which integrates
manufacturing planning, computer programs.
Burroughs computers, .and a system of machine
language "transacting" documents to effect
improved business management.

With the ACT!ON System, significant manufactur­
ing transactions care transmitted to a set of data
processing records maintained in computer files.
These files are subject to continual review by
highly refined computer programs, which,
following the exception principle, immediately
signal variance from management standards. Every
reasonable precaution has been incorporated to
minimize material shortage. The system tells what
materials are needed and when they are to be
ordered. When material orders are delayed,
reminders are issued. When conditions alter the
schedule, reschedule messages maintain material
balance. When material receipt is late, ACT!ON
messages are issued. A final warning is provided to
minimize the possibility of out-of-stock conditions.

With ACT!ON, production is not bound by
out-of-date status schedules. Major rescheduling
efforts may be handled with ease; production
planning elements are rescheduled independently;
production and material requirement schedules are

7-8

maintained in balance with the· servo-mechanism
value of the system. Today, manufacturing
personnel employ a new set of tools which result
in:

a. Minimum shortages.
b. Surplus elimination.
c. Schedule Maintenance.
d. Cost reduction.
e. Increased profits.

PRODUCTION MANAGEMENT.

Studies show that new users of data processing
systems usually implement only financial and
administrative applications. With experience,
however, users find that big savings can be realized
by computerizing plant and distribution
operations. The prime objective of any production
organization is to complete and deliver a product
on schedule without increased inventory, extensive
overtime, or excessive machine idle time.

To assist the users of B 6500 Systems, Burroughs
offers several management tools. Among these are
PROMIS (Project Oriented Management Informa­
tion System), and Production Accounting System.

PROJECT ORIENTED MANAGEMENT
INFORMATION SYSTEM (PROMIS). While PERT
techniques are management tools for the planning
and control of projects, PROMIS is designed to
provide the communications vehicle through which
planning is accomplished and a project
instrumented for control. PROMIS is designed to
overcome difficulties encountered with existing
network systems. With use of fast random access
storage and list processing techniques, information
can be maintained through the use of data
communications and remote stations, eliminating
the time lag inherent in batch processing systems.

PROMIS is built on the data base concept and
allows simultaneous maintenance of many
networks, using different calendars, date options,
and computation features. The latter include
"percent complete" and "time now" options.
Three types of slack are maintained.

Time estimates may be given in hours, days, shifts,
weeks, or months and may be intermixed
throughout a network. Time estimates may also be
expressed as work-content and rates of work (i.e.,
300 man-hours at 16 man-hours per day), Holidays
and work patterns are automatically considered.

Directed dates and schedule dates are allowed to
impose external constraints on activities or events.

Reporting is accomplished through a report
generator which allows specification of sort keys,
editing, and suppression of fields. The reports may
be sorted and edited by levels, fragments, or special
report flags, as well as by standard flags. Such
extensive editing capabilities allow the use of
exception reporting, with remote inquiry provided
for immediate response.

A new element has been developed known as a
"prerequisite" which allows constraints to be
defined which contain no resources and have no
duration such as equipment deliveries, budget
approvals, etc. Prerequisites are specified as
constraints for "events."

Comments may be added to any element of the
system. Comments consist of alpha-numeric
information describing commitments, methods of
work, resources or any explanation of events,
activities, networks, or prerequisites. Any number
of comments may be associated with any element
of the system.

PRODUCTION ACCOUNTING SYSTEM. The
Production Accounting System maintains job or
lot control from the work floor using remote input
for real-time update. Also included is a product
configuration control, allowing several types of
explosion and implosion inquiries. Documents are

7-9

created for maintaining material and tool control
as well as the job or lot control. Analysis programs
are provided for machine and work center
efficiency reporting. The system allows for remote
inquiry and updating, product routing and
standards, and provides the capability for efficient
reporting by job or lot.

Financial Systems

A full line of financial systems are available with
the B 6500. Among these are High-Volume Paper
Processing Systems for MICR and OCR documents.
Also available is an Integrated Banking System
which cross-indexes all files that apply to an
application, and then cross-references these files
with files of all other applications on the system.
The result is a complete customer profile.

Advanced Information Management System

The Advanced Information Management System is
a data-base system providing a total systems
approach to management problems, through the
use of Burroughs head-per-track disk file for rapid
response to inquiries and data communication
facilities to permit information exchange between
home office and field locations.

The above discussion of application programs
represents but a cross-section of those provided for
the B 6500.

APPENDIX A OPERATORS,ALPHAB.ETICAL LIST

HEXADECIMAL
NAME MNEMONIC CODE

ADD ADD P80
BIT RESET BRST P9E
BIT SET BSET P96
BRANCH FALSE BRFL PAO
BRANCH TRUE BRTR PAI

BRANCH UNCONDITIONAL BRUN PA2
CHANGE SIGN BIT CHSN P8E
COMPARE CHARACTERS EQUAL, DESTRUCTIVE CEQD PF4
COMPARE CHARACTERS EQUAL, UPDATE CEQU PFC
COMPARE CHARACTERS GREATER OR EQUAL, DESTRUCTIVE CGED PFI

COMPARE CHARACTERS GREATER OR EQUAL, UPDATE CGEU PF9
COMPARE CHARACTERS GREATER, DESTRUCTIVE CGTD PF2
COMPARE CHARACTERS GREATER, UPDATE CGTU PFA
COMPARE CHARACTERS LESS OR EQUAL, DESTRUCTIVE CLEO PF3
COMPARE CHARACTERS LESS OR EQUAL, UPDATE CLEU .PFB

COMPARE CHARACTERS LESS, DESTRUCTIVE CLSD PFO
COMPARE CHARACTERS LESS, UPDATE CLSU PF8
COMPARE CHARACTERS NOT EQUAL, DESTRUCTIVE CNED PF5
COMPARE CHARACTERS NOT EQUAL, UPDATE CNEU PFD
CONDITIONAL HALT HALT UDF

COUNT BINARY ONES CBON VBB
DELETE TOP OF STACK DLET PBS
DISABLE EXTERNAL INTERRUPTS DEXI V47
DIVIDE DIVD P83
DUPLICATE TOP OF STACK DUPL PB7

DYNAMIC BIT RESET DBRS P9F
DYNAMIC BIT SET OBST P97
DYNAMIC BRANCH FALSE DBFL PA8
DYNAMIC BRANCH TRUE DBTR PA9
DYNAMIC BRANCH UNCONDITIONAL DBUN PAA

DYNAMIC FIELD INSERT DINS P9D
DYNAMIC FIELD ISOLATE DISO P9B
DYNAMIC FIELD TRANSFER DFTR P99
DYNAMIC SCALE LEFT DSLF PCI
DYNAMIC SCALE RIGHT FINAL DSRF PC7

DYNAMIC SCALE RIGHT ROUND DSRR PC9
DYNAMIC SCALE RIGHT SA VE DSRS PCS
DYNAMIC SCALE RIGHT TRUNCATE DSRT PC3
ENABLE EXTERNAL INTERRUPTS EEXI V46
END EDIT ENDE EDE

END FLOAT ENDF EDS
ENTER ENTR PAB
EQUAL EQUL P8C
ESCAPE TO 16-BIT INSTRUCTION VARI P9S
EVALUATE DESCRIPTOR EVAL PAC

A-1

APPENDIX A (cont.)
HEXADECIMAL

NAME MNEMONIC CODE --------
EXCHANGE EXCH PB6
EXECUTE SINGLE MICRO, SINGLE POINTER UPDATE EXPU POD
EXECUTE SINGLE MICRO, DESTRUCTIVE EXSD PD2
EXECUTE SINGLE MICRO, UPDATE EXSU PDA
EXIT EXIT PA3

EXTENDED MULTIPLY MULX P8F
FIELD INSERT INSR P9C
FIELD ISOLATE ISOL P9A
FIELD TRANSFER FLTR P9B
GREATER THAN GRTR P8A

GREATER THAN OR EQUAL GREQ P89
IDLE UNTIL INTERRUPT IDLE V44
INDEX INDX PA6
INDEX AND LOAD NAME NXLN PAS
INDEX AND LOAD VALUE NXLV PAD

INPUT CONVERT, DESTRUCTIVE ICVD PCA
INPUT CONVERT, UPDATE ICVU PCB -INSERT CONDITIONAL INSC EDD
INSERT DISPLAY SIGN INSG ED9
INSERT MARK STACK IMKS PCF

INSERT OVERPUNCH INOP ED8
INSERT UNCONDITIONAL INSU EDC
INTEGER DIVIDE IDIV P84
INTEGERIZE, ROUNDED NTGR P87
INTEGERIZE, ROUNDED, DOUBLE PRECISION NTGD V87

INTEGERIZE, TRUNCATED NTIA P86 -INTERRUPT OTHER PROCESSORS HEYU V4F
INVALID OPERATOR NVLD UFF
LEADING ONE TEST LOG2 V8B
LESS THAN LESS P88

LESS THAN OR EQUAL LSEQ P8B
LINKED LIST LOOKUP LLLU VBD
LIT CALL ONE ONE PBl
LIT CALL ZERO ZERO PBO
LIT CALL 16 BITS LT16 PB3

LIT CALL 48 BITS LT48 PBE
LIT CALL 8 BITS LT8 PB2
LOAD LOAD PBD
LOAD TRANSPARENT LODT VBC
LOGICAL AND LAND P90

LOGICAL EQUAL SAME P94
LOGICAL EQUIV ALEN CE LEQV P93
LOGICAL NEGATE LNOT P92
LOGICAL OR LOR P91
MAKE PROGRAM CONTROL WORD MPCW PBF

A-2

APPENDIX A (cont.)

HEXADECIMAL
NAME MNEMONIC CODE ----- -------- ---------
MARK STACK MKST PAE
MASKED SEARCH FOR EQUAL SRCH VBE
MOVE CHARACTERS MCHR ED7
MOVE NUMERIC UNCONDITIONAL MVNU ED6
MOVE TO STACK MYST VAF

MOVE WITH FLOAT MFLT EDI
MOVE WITH INSERT MINS EDO
MULTIPLY MULT P82
NAME CALL NAMC P40=> 7F
NO OPERATION NOOP UFE

NOT EQUAL NEQL P8D
OCCURS INDEX OCRX V85
OVERWRITE DESTRUCTIVE OVRD PBA
OVERWRITE NON-DESTRUCTIVE OVRN PBB
PACK DESTRUCTIVE PACD PDl

PACK UPDATE PACU PD9 - PUSH DOWN STACK REGISTERS PUSH PB4
READ AND CLEAR OVERFLOW FLIP-FLOP ROFF PD7
READ PROCESSOR IDENTIFICATION WHOI V4E
READ PROCESSOR REGISTER RPRR VB8

READ TAG FIELD RTAG VBS
READ TRUE/FALSE FLIP-FLOP RTFF PDE
READ WITH LOCK RDLK VBA
REMAINDER DIVIDE RDIV P85
RESET FLOAT RSIF ED4 - RETURN RETN PA7
ROTA TE STACK DOWN RSDN VB7
ROTA TE STACK UP RSUP VB6
SCALE LEFT SCLF PCO
SCALE RIGHT FINAL SCRF PC6

SCALE RIGHT ROUND SCRR PCB
SCALE RIGHT SA VE SCRS PC4
SCALE RIGHT TRUNCATE SCRT PC2
SCAN IN SCNI V4A
SCAN OUT SCNO V4B C

SCAN WHILE EQUAL, DESTRUCTIVE SEQD VF4
SCAN WHILE EQUAL, UPDATE SEQU VFC
SCAN WHILE FALSE, DESTRUCTIVE SWFD VD4
SCAN WHILE FALSE, UPDATE SWFU VDC
SCAN WHILE GREATER OR EQUAL, DESTRUCTIVE SGED VFl

SCAN WHILE GREATER OR EQUAL, UPDATE SGEU VF9
SCAN WHILE GREATER, DESTRUCTIVE SGTD VF2
SCAN WHILE GREATER, UPDATE SGTU VFA
SCAN WHILE LESS OR EQUAL, DESTRUCTIVE SLED VF3
SCAN WHILE LESS OR EQUAL, UPDATE SLEU VFB

A-3

APPENDIX A (cont.)

HEXADECIMAL
NAME MNEMONIC CODE

SCAN WHILE LESS, DESTRUCTIVE SLSD VFO
SCAN WHILE LESS, UPDATE SLSU VF8
SCAN WHILE NOT EQUAL, DESTRUCTIVE SNED VFS
SCAN WHILE NOT EQUAL, UPDATE SNEU VFD
SCAN WHILE TRUE, DESTRUCTIVE SWTD VOS

SCAN WHILE TRUE, UPDATE SWTU VDD
SET DOUBLE TO TWO SINGLES SPLT V43
SET EXTERNAL SIGN SXSN PD6
SET INTERVAL TIMER SINT V45 C
SET PROCESSOR REGISTER SPRR VB9

SET TAG FIELD STAG VB4
SET TO DOUBLE PRECISION XTND PCB
SET TO SINGLE PRECISION, ROUNDED SNGL PCD
SET TO SINGLE PRECISION, TRUNCATED SNGT PCC
SET TWO SINGLES TO DOUBLE JOIN V42

SKIP FORWARD DESTINATION CHARACTERS SFDC EDA
SKIP FORWARD SOURCE CHARACTERS SFSC ED2
SKIP REVERSE DESTINATION CHARACTERS SRDC EDB
SKIP REVERSE SOURCE CHARACTERS SRSC ED3
STEP AND BRANCH STBR PA4

STORE DESTRUCTIVE STOD PB8
STORE NON-DESTRUCTIVE STON PB9
STRING ISOLATE SISO PDS
STUFF ENVIRONMENT STFF PAP
SUBTRACT SUBT P81

TABLE ENTER EDIT, DESTRUCTIVE TEED PDQ
TABLE ENTER EDIT, UPDATE TEEU PD8
TRANSFER UNCONDITIONAL, DESTRUCTIVE TUND PE6
TRANSFER UNCONDITIONAL, UPDATE TUNU PEE
TRANSFER WHILE EQUAL, DESTRUCTIVE TEQD PE4

TRANSFER WHILE EQUAL, UPDATE TEQU PEC
TRANSFER WHILE FALSE, DESTRUCTIVE TWFD VD2
TRANSFER WHILE FALSE, UPDATE TWFU VOA
TRANSFER WHILE GREATER OR EQUAL, DESTRUCTIVE TGED PEI
TRANSFER WHILE GREATER OR EQUAL, UPDATE TGEU PE9

TRANSFER WHILE GREATER, DESTRUCTIVE TGTD PE2
TRANSFER WHILE GREATER, UPDATE TGTU PEA
TRANSFER WHILE LESS OR EQUAL, DESTRUCTIVE TLED PE3
TRANSFER WHILE LESS OR EQUAL, UPDATE TLEU PEB
TRANSFER WHILE LESS, DESTRUCTIVE TLSD PEO

TRANSFER WHILE LESS, UPDATE TLSU PE8
TRANSFER WHILE NOT EQUAL, DESTRUCTIVE TNED PES
TRANSFER WHILE NOT EQUAL, UPDATE TNEU PED
TRANSFER WHILE TRUE, DESTRUCTIVE TWTD VD3
TRANSFER WHILE TRUE, UPDATE TWTU VDB

A-4

APPENDIX A (cont.)

NAME

TRANSFER WORDS OVERWRITE DESTRUCTIVE
TRANSFER WORDS OVERWRITE UPDATE
TRANSFER WORDS, DESTRUCTIVE
TRANSFER WORDS, UPDATE
TRANSLATE

UNPACK ABSOLUTE, DESTRUCTIVE
UNPACK ABSOLUTE, UPDATE
UNPACK SIGNED, DESTRUCTIVE
UNPACK SIGNED, UPDATE
VALUE CALL

NOTES:

MNEMONIC

TWOD
TWOU
TWSD
TWSU
TRNS

UABD
UABU
USND
USNU
VALC

HEXADECIMAL
CODE

PD4
PDC
PD3
PDB
VD7

VDl
VD9
VDO
VD8
POQ=>3F

The hexadecimal value of the code is preceded by a P, V, U, or E. All codes preceded by a P (primary)
are one syllable long. All codes preceded by a V (variant) are two syllables long, the first syllable being
hexadecimal 95 (Escape to 16 Bit Instruction). All codes preceded by a U (unconditional) can be used
as one syllable codes, or as two syllable codes when preceded by hexadecimal 95. All codes preceded by
an E (edit) are Edit micro-operators.

Name Call and Value Call are an exception to the above and are always two syllables.

If the hexadecimal code is followed by a C, the operator is only valid in control state. In the case of
Scan Out, only some functions are restricted to control state.

A-5

APPENDIX B OPERATORS,NUMERICAL LIST

HEXADECIMAL
CODE NAME MNEMONIC

UDF CONDITIONAL HALT HALT
UFE NO OPERATION NOOP
UFF INVALID OPERATOR NVLD
P00=>3F VALUE CALL VALC
P40=>7F NAME CALL NAMC

P80 ADD ADD
P81 SUBTRACT SUBT
P82 MULTIPLY MULT
P83 DIVIDE DIVD
P84 INTEGER DIVIDE IDIV

P85 REMAINDER DIVIDE RDIV
P86 INTEGERIZE, TRUNCATED NTIA
P87 INTEGERIZE, ROUNDED NTGR
P88 LESS THAN LESS
P89 GREATER THAN OR EQUAL GREQ

P8A GREATER THAN GRTR
P8B LESS THAN OR EQUAL LSEQ
P8C EQUAL EQUL
P8D NOT EQUAL NEQL
P8E CHANGE SIGN BIT CHSN

P8F EXTENDED MULTIPLY MULX
P90 LOGICAL AND LAND
P91 LOGICAL OR LOR
P92 LOGICAL NEGATE LNOT
P93 LOGICAL EQUIV ALEN CE LEQV

P94 LOGICAL EQUAL SAME
P95 ESCAPE TO 16-BIT INSTRUCTION VARI
P96 BIT SET BSET
P97 DYNAMIC BIT SET DBST
P98 FIELD TRANSFER FLTR

P99 DYNAMIC FIELD TRANSFER DFTR
P9A FIELD ISOLATE ISOL
P9B DYNAMIC FIELD ISOLATE DISO
P9C FIELD INSERT INSR
P9D DYNAMIC FIELD INSERT DINS

P9E BIT RESET BRST
P9F DYNAMIC BIT RESET DBRS
PAO BRANCH FALSE BRFL
PAI BRANCH TRUE BRTR
PA2 BRANCH UNCONDITIONAL BRUN

PA3 EXIT EXIT
PA4 STEP AND BRANCH STBR
PAS INDEX AND LOAD NAME NXLN
PA6 INDEX INDX
PA7 RETURN RETN

B-1

APPENDIX B (cont.)

HEXADECIMAL
CODE NAME MNEMONIC

PA8 DYNAMIC BRANCH FALSE DBFL
PA9 DYNAMIC BRANCH TRUE DBTR
PAA DYNAMIC BRANCH UNCONDITIONAL DBUN
PAB ENTER ENTR
PAC EVALUATE DESCRIPTOR EVAL

PAD INDEX AND LOAD VALUE NXLV
PAE MARK STACK MKST
PAF STUFF ENVIRONMENT STFF
PBO LIT CALL ZERO ZERO
PBl LIT CALL ONE ONE

PB2 LIT CALL 8 BITS LT8
PB3 LIT CALL 16 BITS LT16
PB4 PUSH DOWN STACK REGISTERS PUSH
PBS DELETE TOP OF STACK DLET
PB6 EXCHANGE EXCH

PB7 DUPLICATE TOP OF STACK DUPL
PB8 STORE DESTRUCTIVE STOD
PB9 STORE NON-DESTRUCTIVE STON
PBA OVERWRITE DESTRUCTIVE OVRD
PBB OVERWRITE NON-DESTRUCTIVE OVRN

PBD LOAD LOAD
PBE LIT CALL 48 BITS LT48
PBF MAKE PROGRAM CONTROL WORD MPCW
PCO SCALE LEFT SCLF
PCl DYNAMIC SCALE LEFT DSLF

PC2 SCALE RIGHT TRUNCATE SCRT
PC3 DYNAMIC SCALE RIGHT TRUNCATE DSRT
PC4 SCALE RIGHT SAVE SCRS
PCS DYNAMIC SCALE RIGHT SA VE DSRS
PC6 SCALE RIGHT FINAL SCRF

PC7 DYNAMIC SCALE RIGHT FINAL DSRF
PCB SCALE RIGHT ROUND SCRR
PC9 DYNAMIC SCALE RIGHT ROUND DSRR
PCA INPUT CONVERT, DESTRUCTIVE ICVD
PCB INPUT CONVERT, UPDATE ICVU

PCC SET TO SINGLE PRECISION, TRUNCATED SNGT
PCD SET TO SINGLE PRECISION, ROUNDED SNGL
PCE SET TO DOUBLE PRECISION XTND
PCF INSERT MARK STACK IMKS
PDO TABLE ENTER EDIT, DESTRUCTIVE TEED

PDl PACK DESTRUCTIVE PACD
PD2 EXECUTE SINGLE MICRO, DESTRUCTIVE EXSD
PD3 TRANSFER WORDS, DESTRUCTIVE TWSD ·
PD4 TRANSFER WORDS OVERWRITE DESTRUCTIVE TWOD
PDS STRING ISOLATE SISO

B-2

APPENDIX B (cont.)

HEXADECIMAL
CODE NAME MNEMONIC

PD6 SET EXTERNAL SIGN SXSN
PD7 READ AND CLEAR OVERFLOW FLIP-FLOP ROFF
PD8 TABLE ENTER EDIT, UPDATE TEEU
PD9 PACK UPDATE PACU
PDA EXECUTE SINGLE MICRO, UPDATE EXSU

PDB TRANSFER WORDS, UPDATE TWSU
PDC TRANSFER WORDS OVERWRITE UPDATE TWOU
PDD EXECUTE SINGLE MICRO, SINGLE POINTER UPDATE EXPU
PDE READ TRUE/FALSE FLIP-FLOP RTFF
PEO TRANSFER WHILE LESS, DESTRUCTIVE TLSD

PEI TRANSFER WHILE GREATER OR EQUAL, DESTRUCTIVE TGED
PE2 TRANSFER WHILE GREATER, DESTRUCTIVE TGTD
PE3 TRANSFER WHILE LESS OR EQUAL, DESTRUCTIVE TLED
PE4 TRANSFER WHILE EQUAL, DESTRUCTIVE TEQD
PES TRANSFER WHILE NOT EQUAL, DESTRUCTIVE TNED

PE6 TRANSFER UNCONDITIONAL, DESTRUCTIVE TUND
PE8 TRANSFER WHILE LESS, UPDATE TLSU
PE9 TRANSFER WHILE GREATER OR EQUAL, UPDATE TGEU
PEA TRANSFER WHILE GREATER, UPDATE TGTU
PEB TRANSFER WHILE LESS OR EQUAL, UPDATE TLEU

PEC TRANSFER WHILE EQUAL, UPDATE TEQU
PED TRANSFER WHILE NOT EQUAL, UPDATE TNEU
PEE TRANSFER UNCONDITIONAL, UPDATE TUNU
PFO COMPARE CHARACTERS LESS, DESTRUCTIVE CLSD
PFl COMPARE CHARACTERS GREATER OR EQUAL, DESTRUCTIVE CGED

PF2 COMPARE CHARACTERS GREATER, DESTRUCTIVE CGTD
PF3 COMPARE CHARACTERS LESS OR EQUAL, DESTRUCTIVE CLED
PF4 COMPARE CHARACTERS EQUAL, DESTRUCTIVE CEQD
PFS COMPARE CHARACTERS NOT EQUAL, DESTRUCTIVE CNED
PF8 COMPARE CHARACTERS LESS, UPDATE CLSU

PF9 COMPARE CHARACTERS GREATER OR EQUAL, UPDATE CGEU
PFA COMPARE CHARACTERS GREATER, UPDATE CGTU
PFB COMPARE CHARACTERS LESS OR EQUAL, UPDATE CLEU
PFC COMPARE CHARACTERS EQUAL, UPDATE CEQU
PFD COMPARE CHARACTERS NOT EQUAL, UPDATE CNEU

V42 SET TWO SINGLES TO DOUBLE JOIN
V43 SET DOUBLE TO TWO SINGLES SPLT
V44 IDLE UNTIL INTERRUPT IDLE
V45 SET INTERVAL TIMER SINT
V46 ENABLE EXTERNAL INTERRUPTS EEXI

V47 DISABLE EXTERNAL INTERRUPTS DEXI
V4A SCAN IN SCNI
V4B SCAN OUT SCNO
V4E READ PROCESSOR IDENTIFICATION WHOI
V4F INTERRUPT OTHER PROCESSORS HEYU

B-3

APPENDIX B (cont.)

HEXADECIMAL
CODE NAME MNEMONIC

V85 OCCURS INDEX OCRX
V87 INTEGERIZE, ROUNDED, DOUBLE PRECISION NTGD
V88 LEADING ONE TEST LOG2
VAF MOVE TO STACK MYST
VB4 SET TAG FIELD STAG

VBS READ TAG FIELD RTAG
VB6 ROTATE STACK UP RSVP
VB7 ROTATE STACK DOWN RSDN
VB8 READ PROCESSOR REGISTER RPRR
VB9 SET PROCESSOR REGISTER SPRR

VBA READ WITH LOCK RDLK
VBB COUNT BINARY ONES CBON
VBC LOAD TRANSPARENT LODT
VBD LINKED LIST LOOKUP LLLU
VBE MASKED SEARCH FOR EQUAL SRCH

VDO UNPACK SIGNED, DESTRUCTIVE USND
VDI UNPACK ABSOLUTE, DESTRUCTIVE UABD
VD2 TRANSFER WHILE FALSE, DESTRUCTIVE TWFD
VD3 TRANSf':ER WHILE TRUE, DESTRUCTIVE TWTD
VD4 SCAN WHILE FALSE, DESTRUCTIVE SWFD

VDS SCAN WHILE TRUE, DESTRUCTIVE SWTD
VD7 TRANSLATE TRNS
VD8 UNPACK SIGNED, UPDATE USNU
VD9 UNPACK ABSOLUTE, UPDATE UABU
VDA TRANSFER WHILE FALSE, UPDATE TWFU

VDB TRANSFER WHILE TRUE, UPDATE TWTU
VDC SCAN WHILE FALSE, UPDATE SWFU
VDD SCAN WHILE TRUE, UPDATE SWTU
VFO SCAN WHILE LESS, DESTRUCTIVE SLSD
VFI SCAN WHILE GREATER OR EQUAL, DESTRUCTIVE SGED

VF2 SCAN WHILE GREATER, DESTRUCTIVE SGTD
VF3 SCAN WHILE LESS OR EQUAL, DESTRUCTIVE SLED
VF4 SCAN WHILE EQUAL, DESTRUCTIVE SEQD
VFS SCAN WHILE NOT EQUAL, DESTRUCTIVE SNED
VF8 SCAN WHILE LESS, UPDATE SLSU

VF9 SCAN WHILE GREATER OR EQUAL, UPDATE SGEU
VFA SCAN WHILE GREATER, UPDATE SGTU
VFB SCAN WHILE LESS OR EQUAL, UPDATE SLEU
VFC SCAN WHILE EQUAL, UPDATE SEQU
VFD SCAN WHILE NOT EQUAL, UPDATE SNEU

EDO MOVE WITH INSERT MINS
EDI MOVE WITH FLOAT MFLT
ED2 SKIP FORWARD SOURCE CHARACTERS SFSC
ED3 SKIP REVERSE SOURCE CHARACTERS SRSC
ED4 RESET FLOAT RSTF

B-4

APPENDIX B (cont.)

HEXADECIMAL
CODE

EDS
ED6
ED7
ED8
ED9

EDA
EDB
EDC
EDD
EDE

NAME

END FLOAT
MOVE NUMERIC UNCONDITIONAL
MOVE CHARACTERS
INSERT OVERPUNCH
INSERT DISPLAY SIGN

SKIP FORWARD DESTINATION CHARACTERS
SKIP REVERSE DESTINATION CHARACTERS
INSERT UNCONDITIONAL
INSERT CONDITIONAL
END EDIT

B-5

MNEMONIC

ENDF
MVNU
MCHR
!NOP
INSG

SFDC
SRDC
INSU
INSC
ENDE

BURROUGHS CORPORATION
DATA PROCESSING PUBLICATIONS

REMARKS FORM

~1 TITLE:------·------

<Ll
c: ·-

t.
C> I
c: I
O I

CHECK TYPE OF SUGGESTION:

0ADDITION 0DELETION 0REVISION

FORM: _____ ~
DATE:

0ERROR

~ ~ GENERAL COMMENTS AND/OR SUGGESTIONS FOR IMPROVEMENT OF PUBLICATION:
::::>
0

r--------------------------------
FROM: NAME

TITLE
COMPANY----------­
ADDRESS

DATE _____ _

STAPLE
' I
I
' ' • • ' '
i
' I
' ' I
I
I

' ' ' ' ' " " ~
~
~
~

FOLD DOWN SECOND FOLD DOWN ~
' --~

attn: Sales Technical Services
Systems Documentation

ft
ft

" n
" " n
n
n
r
" n

" n
n

" " " " BUSINESS REPLY MAIL ~
First Class Permit No. 817, Detroit, Mich. 48232

Burroughs Corporation
6071 Second Avenue
Detroit, Michigan 48232

' 7 I .

• • ' • ' • ' ' I
' I
' ' ' ' ' ' ' ---~

FOLD UP FIRST FOLD UP ' ' ' ' ' • I

' ' ' I
~
I
• I

• I

• • • • • ~

• I
~

	000
	001
	002
	003
	004
	005
	006
	007
	008
	009
	1-01
	1-02
	1-03
	1-04
	1-05
	2-01
	2-02
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	4-01
	4-02
	4-03
	4-04
	5-01
	5-02
	5-03
	5-04
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	A-01
	A-02
	A-03
	A-04
	A-05
	B-01
	B-02
	B-03
	B-04
	B-05
	replyA
	replyB
	xBack

