
•

S P R I N T"
THE PROFESSIONAL WORD PROCESSOR

ADVANCED USER ' S GUIDE

INTERNATIONAL

SPRINT®
The Professional Word Processor

Borland's No-Nonsense License Statement!
This software is protected by both United States copyright law and international treaty
provisions. Therefore, you must treat this software just like a book, with the following single
exception. Borland International authorizes you to make archival copies of the software for
the sole purpose of backing-up our software and protecting your investment from loss.

By saying, "just like a book," Borland means, for example, that this software may be used
by any number of people and may be freely moved from one computer location to another,
so long as there is no possibility of it being used at one location while it's being used at
another. Just like a book that can't be read by two different people in two different places
at the same time, neither can the software be used by two different people in two different
places at the same time. (Unless, of course, Borland's copyright has been violated).

LIMITED WARRANTY
With respect to the physical diskette and physical documentation enclosed herein, Borland
International, Inc. ("Borland") warrants the same to be free of defects in materials and
workmanship for a period of 60 days from the date of purchase. In the event of notification
within the warranty period of defects in material or workmanship, Borland will replace the
defective diskette or documentation. If you need to return a product, call the Borland
Customer Service Department to obtain a return authorization number. The remedy for
breach of this warranty shall be limited to replacement and shall not encompass any other
damages, including but not limited to loss of profit, and special, incidental, consequential, or
other similar claims.

Borland International, Inc. specifically disclaims all other warranties, expressed or implied,
including but hot limited to implied warranties of merchantability and fitness for a particular
purpose with respect to defects in the diskette and documentation, and the program license
granted herein in particular, and without limiting operation of the program license with
respect to any particular application, use, or purpose. In no event shall Borland be liable for
any loss of profit or any other commercial damage, including but not limited to special,
incidental, consequential or other damages.

GOVERNING LAW
This statement shall be construed, interpreted, and governed by the laws of the state of
California. .

First Edition
Printed in U.S.A.
98765432

SPRINT®

The Professional Word Processor

Advanced User's Guide

Copyright @1988
All rights reserved

Borland International
4585 Scotts Valley Drive

P.O. Box 660001
Scotts Valley, CA 95066-0001

All Borland products are trademarks or registered trademarks of
Borland International, Inc. Other brand and product names are trademarks or registered

trademarks of their respective holders. Copyright ©1988 Borland International.

Printed in the U.S.A.

1098765432

This manual was produced with
Sprint:" The Professional Word Processor

Table of Contents

Inuoduction 1
Typographic Conventions ... 2
Hardware and Software Requirements 2
Borland's No-Nonsense License Statement 2
How to Contact Borland .. 3

Part 1 Advanced Formatting

Chapter 1 Advanced Tutorial 7
Before You Start .. 8
What You'll Create ... 8

The Final Result .. 9
Lesson 1: Opening Files and Windows 12

Window Commands. .. 12
The File Manager. .. 13

Starting Sprint and Opening an Existing File 13
Opening a Window and a New File. 15

Lesson 2: Copying Text between Windows. .. 17
Block Select Commands and Windows 17

Copying Text from One Window to Another 17
Lesson 3: Search and Replace Operations 20

Searching and Replacing Text 21
Lesson 4: Adding Section Headings .. 22

Choosing Heading Commands .. 25
Assigning a Menu Command to a Key 25

Lesson 5: The Description List 26
Creating a Description List Format 28

Lesson 6: Figures and Tables .. 29
Inserting a Figure ... 30
Creating a Table. .. 31

Lesson 7: Precise Ruler Settings 32
Creating Precise Ruler Settings .. 34
Formatting a Table .. 35

Lesson 8: Previewing the Text .. 37
Previewing Your File Onscreen .. 38

Lesson 9: Adding Headers and Footers .. 39
Inserting a Header. .. 41
Inserting a Footer ".................. 42

Lesson 10: Footnotes .. 44
Creating a Footnote .. 46

Lesson 11: Cross-References 47
Defining a Tag '.............................. 48
Referencing a Tag ... 49

Lesson 12: Correcting Spelling 0 0 0 0 0 0 0 0 0 • • •• 50
Checking Your File's Spelling 0 0 •• 0 0 0 0 0 ••• 0 0 • 0 0 • • • • • • •• 52

Lesson 13: Logging Error Messages . 0 0 • 0 0 0 ••••• 0 0 0 0 •• 0 • 0 0 0 0 •• 0 0 0 • •• 52
Logging Errors to a File 0 0 0 0 0 0 ••• 0 • 0 0 0 0 • 0 0 • 0 0 0 0 • 0 0 • 0 0 0 ••• 0 • • •• 53

Lesson 14: Paginating and Adjusting Page Layout 0 0 0 0 • 0 0 0 0 0 0 0 0 • 0 0 •• 0 55
Lesson 15: Conditionally Hyphenating Text .. 0 0 0 0 • 0 0 0 0 0 0 0 0 0 0 0 • 0 0 • • •• 57

Hyphenating Your File . 0 0 0 0 ••• 0 •• 0 0 0 •• 0 •• 0 ••• 0 00 • 0 • 0 • • • • • • • •• 59
Lesson 16: Modifying Formats 0 0 •• 0 0 0 0 0 • 0 0 0 0 • 0 •• 0 0 • 0 0 0 0 0 0 0 0 0 • 0 • • •• 60

Modifying Formats in Your File 0 •• 0 •••• 0 0 0 0 0 0 • 0 • 0 • 0 0 0 0 0 •• 0 • • •• 61
Lesson 17: Printing a Final Document 0 ••• 0 ••• 000 •••••• 0 ••••• 0 65

Chapter 2 Advanced Formatting: Tips, Tricks, and Techniques 67
Ruler Lines, Precise Settings, and Document-Wide Margins 0 0 0 0 0 0 0 •• o. 70
The Ruler and Precise Settings 0 •••• 0 • 0 0 0 •• 0 0 0 • 0 0 0 •• 0 0 0 •• 0 • • •• 71

To Print Text in a Different Font ... 0 ••• 0 0 0 0 0 0 ••• 0 0 0 0 0 0 0 0 0 0 0 0 •••• 0 73
To Change the Size of Printed Text 0 •••••••••••• 0 •• 0 •••••• 0 •• 0 ••• 0 73
To Set Precise Indents. o ••••••••••• 0 •• 0 0 0.0 ••••• 0 0 0 0 • 0 o. 0 0 0 • o ••• 73
To Set Precise Tab Stops 0 • 0 ••••••• 0 0 ••• 0 0 0 0 • 0 • 0 0 0 ••• 0 0 • • • •• 74

Document-Wide Layout .. 74
Paper Size 0 •• 0 •••••• 0 •• 0 ••• 0 • 0 0 • 0 0 • 0 0 0 0 0 ••• 0 0 0 0 • • •• 76
Margins. 0 .' ••••••• 0 •••••••••••• ~ •••••• 0 • 0 •• 0 ••• 0 • 0 0 0 •••• 0 • • • •• 77
Document-Wide Parameters (Using the Style Command) 0 ••• 0 0 • 0 • •• 77

Headings o. 0 ••••••••• 0 •••• 0 •••••• 0 ••••••••• 0 0 0 0 • 0 • 0 0 • 0 0 • 0 ••• 0 •• 78
Numbered Headings . 0 •••••••••••••• 0 0 0 ••••••••• 0 • 0 •• 0 0 0 • 0 •• 0 0 78

Tiered (Multilevel) Headings 0 • 0 0 • 0 0 0 0 ... 0 0 0 0 0 •• 0 • 0 81
Unnumbered Headings 0 •••••••• 0 0 •••••••• 0 • o. 82

Nesting Formats 0 •••• 0 • 0 • 0 0 0 0 0 ••• 0 0 • 0 0 0 •• 0 • 0 •• 83
Figures and Tables . 0 ••• 0 ••• 0 ••••• 0 • 0 •• 0 0 0 • 0 0 0 0 • 0 • 0 0 0 0 0 • 0 0 0 0 0 •• 0 0 85

Graphics Commands 0 0 0 0 0 0 0 • 0 • 0 ••••• 0 • 0 • 0 85
Reserving Space for Figures and Tables 0 • 0 • 0 ••••••••• 0 ••• 0 86

Columns .. 0 0 •••••••••••••••••••••••••••••• 0 ••• 0.00 ••••• 0 •••••• 0 86
Footnotes, Endnotes, and Notes 0 •••••••••••••• 0'0 87

Footnotes 0 0 0 ••• 0 •••• 0 •••• 0 •••• 0 •••••• 0 •••• 0 • 0 0 0 • 0 0 0 • 0 • 0 0 • 0 0 • 0 87
Endnotes 0 0 •••••••• 0 ••••• 0 • 0 • 0 • 0 ••• 0 0 •• 0 0 0 0 0 0 0 •••• 0 88
Notes 0.0 •• 0.00.0.00 ••••••• 88

Indexing .. 0 •••••••••••••• 0 • 0 •• 0 • 0 ••••• 0 ••• 0 0 0 •• 0 0 • 0 0 • 0 0 • 0 0 • • • •• 88
File Linking o. 0 ••••••••••••••••••••••••••••• 0 •••••• 0 • 0 ••••• 0 ••• 0 90
Centering Text 0 ••••••••••••••••• 0 0 ••• 0 ••••• 0 0 0 0 0 0 • 0 • • • •• 94

To Center a Line of Text ... 0 • 0 •••• 0 •••••••••• 0 0 0 •• 0 0 • 0 0 0 0 0 0 0 • 0 •• 94

ii

To Center a Region of Text. .. 94
To Vertically Center Text 94

Page Breaks .. 95
Spacing .. 98

Spacing between Lines .. 98
Spacing between Paragraphs. .. 99
Inserting Vertical Blank Space. .. 100
Spacing between Words 100

Gaps between Words 100
Putting Extra Space between Words. .. 101

Wide Spaces (Springs) 101
Specifying a Distance 102

Kerning (Spacing between Characters) 103
Printing Special Characters 103

Repeating Text on a Line 105
Nonprinting Comments. .. 105
Cross-References .. 106

Tags and References .. 107
Example 1: Chapter References 107
Example 2: Page and Figure References 111

Variables .. 115
Defining Your Own Variables: String Assignments 121
Defining Your Own Numeric Variables. .. 123
Changing the Value of Variables 123
A Few Comforting Words 124

Other Formats ... 125
Selecting Other Formats .. 129
Other Format Commands 130

Entering Other Format Commands 130

Chapter 3 Modifying and Creating Formats 133
STANDARD.FMT: The Formatter's Style Handbook 134
Modifying a Format ... 135

Modify a Single Format 136
Practical Example: Modifying the Description Format 138

Document-Wide Format Changes 142
Copying the Definition from STANDARD.FMT 142
Using Style/Other Format 143

Format Changes to All Sprint Files 144
Style Sheets ... 145
Creating Your Own Formats 147

Custom Formats for Part of a Document: The Text Command 148
Defining a Unique Format 150

iii

Chapter 4 Custom Document Design 153
Overall Document Style .. 154
Custom Formats ... 155

Defining a Custom Format with @Define 157
Example: A Section Heading .. 157
Example: Program Listing 158
Example: An Index ... 159

Where You Should Keep Your Definitions 160
Changing a Format with @Modify .. 161

Example-Modifying @Numbered 161
Command Macros. .. 162

Naming Command Macros .. 163
Equate Macros .. 163
Substitution Macros .. 164
Macros with Arguments 165

Example .. 165
Example .. 166

Multiple-Argument Macros 168
The Index and the Table of Contents 169

The Index ... 169
The Table of Contents. .. 170

Translating Characters .. 170
Designing Your Own Document .. 171

Part 2 Pro&rammi~&Editor Macros

Chapter 5 Sprint Editor Macros 175
A Note on Typography ... 177
What Is an .SPM File? .. 177
Using the Macros Menu .. 178

Loading a Small .SPM File .. 178
Executing the Macro -. 179
Clearing Out This Session's Macros 180

Creating Your Own Small .sPM Files. .. 181
Redefining the Control and Function Keys .. 181
Exploring the Menus in an .SPM File .. 185
Adding an "Index" Menu 187

Learning to Program Macros. .. 192
Macro Conventions. .. 192
Making Macros That Move the Cursor and Manipulate Text 193

Constructing Macros That Make Decisions. .. 196
Using "If" Statements ... 197
Using ''While'' Statements ' 198

Building a Macro Step-by-Step 198
A Challenge: Build Your Own Interface 210

iv

The Macro Programming Language 210
Structure of the Language 210
The Main Loop .. 212
Operator Precedence. .. 213
Terms of the Macro Language 214

DOS Devices .. 214
Mark ... 214
Point ... 214
printf % Commands .. 214
Push and Pop .. 215
Region .. 215
Stack ... 215
Strings .. 216

Classifying Macro Names 216

Chapter 6 Macro Encyclopedia 219
The Nonalphabetical Constructs 220
Alphabetical Listing of Macros and Variables 224

Part 3 Appendixes

Appendix A Commands Defined in STANDARD.FMT 353

Appendix B Built-In Format Commands 361

Appendix C Style Sheet Commands 371

Appendix D Format Parameters 395
List of Parameters 427

Appendix E Key Codes 437
Three Types of Key Codes .. 437
Modifier Keys ... 438
Key Code Functions .. 438
Key Code Table .. 439

Appendix F Build Your Own Printer and Screen Drivers 447
The SP-SETUP Program .. 448

The Library File .. 449
Library Records .. 450
Yes/No Fields ... 451
Numeric Fields .. 451
Dependent Files. .. 452
String Fields 452
Character Fields .. 453
Printf Strings .. 453
Hardware Control Strings 456

v

Screen Descriptions .. 457
Port Descriptions. .. 461
Using an External Terminal 462
Printer Definitions. .. 464

Printer Requirements ... 464
Printer .SPL Records .. 465
Printer Record Fields That Concern the Formatter 466
Device Control ' 468
Printer Horizontal Movement Control 470
Vertical Movement Control .. 471
Fontl Attribute Controls. .. 472
Special Flags .. 473
Special Notes on Daisy Wheel Printers 474
Font Defaults/Overrides 475
Font Descriptions .. 475
Attribute Descriptions .. 478
Proportional Spacing Tables 478
Translation Tables .. 479
Making Your Own Printer Type 479

Share Your Configurations! 481

Appendix G ASCII Character Set 483

Index 486

vi

List of Figures

Figure 1.1: The Window Menu 12
Figure 1.2: The Search-Replace Menu 20
Figure 1.3: The Headings Menu 23
Figure 1.4: The Lists Menu ... 27
Figure 1.5: The Precise Settings Menu 33
Figure 1.6: The Header Menu 40
Figure 1.7: The References Menu 45
Figure 1.8: The Spelling Menu 51
Figure 1.9: The Hyphenation Menu 58
Figure 1.10: Your New Work Order File, Page 1 63
Figure 1.11: Your New Work Order File, Page 2 64
Figure 2.1: Default Page Layout 75
Figure 2.2: Tagging Chapters 108
Figure 2.3: Referencing Page and Figures 112
Figure 3.1: The Original Resume 140

vii

List of Tables

Table D.6: Format Parameters (Complete List) 429
Table E.1: Key Code Table .. 440

viii

N T R o D u c T o N

This book is designed for people who are familiar with Sprint or are
sophisticated computer users. This book is for you if you're interested in
taking full advantage of Sprint's considerable advanced formatting
capabilities, or if you want to customize the program. Although you
needn't be a programmer to read this book, you should be ready and
willing to delve into more complex techniques.

The Advanced User's Guide contains a hefty section on advanced formatting.
We give you hands-on experience with cross-referencing, variables, the
STANDARD.FMT file, precise layout and design, modifying and creating
your own formatting commands, and more. This book also contains
information about programming the Sprint editor. We tell you how to use
the built-in macro language to reconfigure the menu system or even write
your own. There is also information about programming Sprint to work
with "non-standard" hardware, such as unusual printers or terminals.

Sprint is really far more than a word processor, or even a desktop
publishing tool. It is also a complete, high-level programming language.
Using this language, you can make Sprint behave any way you want it to.
The Sprint Advanced User's Guide contains a complete tutorial for the macro
programming language, so if you've been waiting for the right opportunity
to increase your computer skills, now's your chance.

To become familiar with the program, you'll probably first want to work
through the User's Guide for basic how-to information about the Sprint
editor and formatter. The Reference Guide contains alphabetically listed
information about all aspects of the editor and formatter.

This manual consists of the ~ollowing sections:

Part 1, 1/ Advanced Formatting," contains an advanced tutorial and
subsequent chapters on advanced formatting techniques. The chapters
build in complexity, with later chapters explaining the nitty-gritty of
modifying.FMT files and creating your own formatting commands.

Part 2, "Programming Editor Macros," contains a complete tutorial and
alphabetically organized reference to the Sprint macro language. If you're a

Introduction

power user looking to build a new UI, or even if you're just curious about
how you can make Sprint behave in different ways, this section is for you.

Part 3, "Appendixes," contains appendixes on more technical information,
such as built-in format commands, parameters, key codes, internal file
format, the configuration library, hardware control strings, and so on.

Typographic Conventions

All typefaces used in this manual were produced by Sprint, and output on
a PostScript typesetter. Their uses are as follows:

Monospace type

Italic

Keycap

This typeface represents text as it appears on the screen
as well as text you type from your keyboard.

Italic type is used for emphasis, to introduce a new term,
and to represent parameters, variables, and non­
primitive editor macros.

This special typeface indicates a key on your keyboard.
It is often used when describing a particular key you
should type, for example, "Press Esc to cancel a menu."

Hardware and Software Requirements

Sprint runs on the IBM PC family of computers, including the XT and AT,
along with true IBM compatibles. A two- or three-button mouse is optional.

Sprint requires:

• DOS 2.0 or higher
• At least 384K of RAM

Sprint is not copy-protected, so you can easily transfer it to a hard disk or
RAM disk. However, you should read. Borland's No-Nonsense License
Agreement at the front of this manual for an explanation of your
responsibilities with respect to copying Sprint, and then sign and mail it to
us.

Borland's No-Nonsense License Statement

This software is protected by both United States Copyright Law and
International Treaty provisions. Therefore, you must treat this software just

2 Sprint Advanced User's Guide

like a book with the following single exception: Borland International
authorizes you to make archival copies of Sprint for the sole purpose of
backing up your software and protecting your investment from loss.

By saying, "just like a book," Borland means, for example, that this
software may be used by any number of people and may be freely moved
from one computer location to another so long as there is no possibility of
its being used at one location while it's being used at another. Just like a
book that can't be read by two different people in two different places at
the same time, neither can the software be used by two different people in
two different places at the same time. (Unless, of course, Borland's
copyright has been violated.)

How to Contact Borland

The best way to contact Borland is to log on to Borland's Forum on
CompuServe: Type GO BOR from the main CompuServe menu and select
"Enter Business Products Forum" from the Borland main menu. Leave
your questions or comments there for the support staff to process.

If you prefer, write a letter detailing your comments and send it to:

Technical Support Department
Borland International

P.O. Box 660001,4585 Scotts Valley Dr.
Scotts Valley, CA
95066-0001, USA

You can also telephone our Technical Support department. Please have the
following information handy before you call:

• Sprint version number and user interface name
• computer make and model number
• operating system and version number

Introduction 3

4 Sprint Advanced User's Guide

p A R T

1

Advanced Formatting

5

6 Sprint Advanced User's Guide

c H A p T E R

1

Advanced Tutorial

The Advanced Tutorial goes beyond the simple text-editing techniques you
learned in the Quick Start Tutorial (in the User's Guide) to introduce Sprint's
more advanced editing and formatting commands. In Quick Start, you
learned how to start Sprint; choose a command; create, open, and close
files; enter, correct, change, and move text; and other basic functions. In this
chapter, we'll build on the concepts and commands introduced in Quick
Start, so we assume you've worked through those nine lessons.

The features covered in the Advanced Tutorial give you the desktop
publishing power to create professional business proposals and reports and
organize large, integrated documents like this manual.

When you complete this tutorial, you'll know how to

• use windows to edit multiple files
• create numbered and unnumbered headings

• define your own menu shortcuts
• title and reserve space for figures and tables

• format tables using precise ruler settings
• add headers and footers to the top and bottom of printed pages

• insert footnotes and cross-references
• check for correct spelling and conditionally hyphenate words

• modify Sprint formats (like lists or tables)

• display a formatted file onscreen to check pagination and error messages

• correct error and warning messages and override default page breaks

• print a file using several different print options

Chapter 7, Advanced Tutorial 7

We assume you're using Sprint's advanced user interface; if not, you'll load
it in Lesson 1. If you're using one of the alternative user interfaces, see the
Alternative User Interfaces booklet for information.

Before You Start

Floppy disk systems:

If you're using a system with two floppy disks (no hard disk), make sure
that your Data Disk-the disk created by SP-SETUP, which must be in
Drive B whenever you use Sprint-contains the files PROPOSAL.SPR and
CABINET.SPR. If you don't have these files on your Data Disk, you need to
run the SP-SETUP program described in the "Before You Begin" chapter of
the User's Guide.

Hard disk systems:

If you'll be working on a hard disk, make sure the files PROPOSAL.SPR
and CABINET.SPR are in the Sprint directory or the directory of files you'll
be working with. You'll need both files for this tutorial. If these files don't
appear in the Sprint directory list, run the SP-SETVP program described in
Chapter 1 of the User's Guide again.

When you used the SP-SETUP program to install Sprint, it automatically
added a path to Sprint in your AUTOEXEC.BAT file (see "Before You
Begin" in the User's Guide for details). This allows you to load Sprint from
anywhere on your system (by typing SP), not just from the directory where
you store your Sprint files.

If any of these instructions don't make sense, refer to the "DOS Primer"
appendix in the User's Guide.

What You'll Create

In this tutorial, you'll combine part of the kitchen proposal you completed
in Quick Start (the file PROPOSAL.SPR) with an existing work order for a
set of cabinets (the file CABINET.SPR). You'll create a new work order for
custom cabinets, which you'll modify to suit the requirements of the job.
You'll also search for and replace text, add numbered section headings and
new list formats, add headers and footers, insert cross-references and a
footnote, and use precise ruler settings to format a columnar table.

8 Sprint Advanced User's Guide

This type of real-world scenario begins to show off some of Sprint's speed
and flexibility; you'll see how easy it is to make a better-looking document
in a hypothetical "produce-a-spec-yesterday" situation.

Each lesson contains a brief explanation of the commands you'll use, a
step-by-step practice session, and then a table summarizing any commands
that weren't covered in the Quick Start Tutorial.

Note: If you find you're having trouble at any time while you're in Sprint,
press F1, and Sprint will display help information about whatever you're
doing.

Note to two-floppy system users: If the help files you need to use context­
sensitive help are not on your Program Disk, Sprint will prompt you to
remove the Program. Disk from Drive A and insert the disk that contains
the files.

If any of the concepts or commands you see here are unclear, or if you want
more information about a particular subject, be sure to refer to the Reference
Guide. The "Editing: Tips, Tricks, and Techniques" and "Basic Formatting"
chapters of the User's Guide also cover Sprint functions in greater detail.

The Final Result

The following two pages show you the printed result of this tutorial.

Note: We used a PostScript typesetter to produce the work order. Your
printed copy may look somewhat different, depending on the kind of
printer you're using.

Chapter 7, Advanced Tutorial 9

Smith Job (Cabinets)

1 TASK
- Remove the existing cabinets and frames.

- Construct new 3/4" face frames.

May 2,1988

- Build replacement cabinets, using standard 3/4" birch and 1/4" birch veneer
facing.

- Apply stain number 531 and satin finish.

- Install the new cabinets.

2 TIME ESTIMATE
A job this size typically requires three to four working days. If we start on Monday,
June 30, we should be able to complete the job by Thursday, July 3. Our contractors
will arrive at approximately 9:00 a.m. each day and will work until 4:00 p.m.

3 CABINET STYLE

Face frames

Doors

Remodeling, Inc.

10

Simple, edges chamfered, built to suit kitchen plan signed off
by owner

1/2" plywood, exterior covered with 1/4" birch veneer, edges
routed with Bit #32

Figure 1: Smith Kitchen Plan

Work Order 2

Sprint Advanced User's Guide

Smith Job (Cabinets)

4 MATERIALS

May 2,1988

Table 1: Required Materials for Smith Job

Material

3/4" face frames
1 / 4" veneer exterior
Drawer slides
Drawer pulls
Hinges

1. Johnny's Hardware has the best price.

Type

solid birch
birch
502-436
1" oak shaker knobs
Brassware 237

5 FINISHING INSTRUCTIONS

1. Sand all face frames with 1 00 sandpaper.
2. Sand all exterior surfaces with 150 sandpaper.

Quantity

25 each
2 sheets
10 pairl
10 each
12 each

3. Sand both face frames and exterior surfaces with 220 sandpaper.
4. With a damp cloth, dampen all exterior surfaces.
5. Wait until the surfaces have dried, and then sand them with 400 sandpaper.
6. Remove all dust from all surfaces.
7. Apply stain number 531 on all surfaces. Let dry overnight.
8. Apply satin finish on all surfaces. Let dry 4 hours.
9. Buff with soft cloth.

6 SUPPLIERS
Each of the following companies can provide some or all of the materials listed in
Table 1.

Johnny's Hardware, 546 EI Camino Norte

Builder's Delight, 116 Calico Alley

Handle Haven, 1219 Main Street

The Lumberyard, 26 South Elm

Remodeling, Inc.

Chapter 7, Advanced Tutorial

Work Order

987-6543

986-1234

978-1122

987-3456

2

11

Lesson 1: Opening Files and Windows

Window Commands

If you want to work with two files at one time, as you will in this lesson, the
easiest way to do it is to open up a window. This lets you view the two files
at once, on a single screen. When you need to work with multiple files,
Sprint allows you to open as many as 24 files in up to six windows. You'll
find the commands you need to handle multiple windows on the Window
menu (Figure 1.1); to reach it, press either F10 Wor Alt-W.

have some text that is marked as bold. then select the text a
choose Italic. your printed text will be bold italic.<
<
You can also use this method of selecting text and choosing
styles from the Typestyle menu to return text to plain text.
Simply choose Normal from the Typestyle menu after you've
selected the text.<
<

Sprint
File Alt-F
Edit Alt-E

Insert Alt-I
Typestyle Alt-T
Style Alt-S
Layout Alt-L

If you've used a number of different typestyles. or if you'rel-------I
looking at a file created by someone else. it may not be Print Alt-P
inmediately obvious what typestyle some text indo 'Wi,0 ifl""
you have a monochrome monitor (which has a 1 iij DI~ Utilities Alt-U
.84'1:II*AA'I*«4101IlMIi. Close Sn-F4 Customize Alt-C
styles from tne TypestyTe menu to return tex Shut All Sh-F9
Simply choose Normal from the Typestyle menul-------IQuit Alt-Q
selected the text.< Zoom Sh-F5 1--------1
< Resize Sh-F2
If you've used a number of different typestyl-------I
looking at a file created by someone else. i Next Sh-F6
inmediately obvious what typestyle some text Previous if
you have a monochrome moni tor (whi ch has a 1 L.------...;Jys
it can change the appearance of text on your screen).<
<
To see what typestyle your text is in. move the cursor to the
.'*"'I:'I*."@I*"'I",,IIM":.*r.." ... j" IIiiIiI::r.,'m.a-.... -.r:rM:'I:1 • .::.--gal.lnM)

Figure 1.1: The Window Menu

Opening a window not only lets you view multiple files at once; you can
also view different parts of the same file, which is useful when you're
working on a large document.

Sprint has set of useful shortcut keys for Window menu commands; also, as
you'll see in Table 1.1, several of these shortcuts have no menu equivalent.

12 Sprint Advanced User's Guide

Table 1.1: Window Shortcuts

Keystroke

Shift-F2

Shift-F3
Shift-F4
Shift-F5

Shift-F6
Shift-F7
Shift-FB

Shift-F9

Menu Command

Window /Resize

Window / Open
Window / Close
Window /Zoom

Window /Next

Window / Shut All

The File Manager

Function

Adjusts the size of the active window with the
plus (+) and minus (-) keys.
Opens a window onscreen.
Closes a window.
Instantly expands the active window to fill the
screen (pressing Shift-F5 again returns the
windows as they were before the zoom).
Moves the cursor between open windows.
Scrolls everything in the window up one line.
Scrolls everything in the window down one
line.
Closes all windows.

When you choose File/File Manager, Sprint displays a menu of convenient
file-handling commands. With these commands, you can copy, rename,
move, or erase files. You can use DOS wildcards as part of the file
name-just as you would on the DOS command line-to list multiple files.
(Refer to Appendix A of the User's Guide if you need information about
DOS wildcards.) The File Manager menu also displays· your current
directory path and offers a Change Directory command, which allows you
to change the current directory, and a List Directory command, which lists
the files in your current directory according to your specifications.

Practice

In this lesson, you'll start Sprint and load the advanced user interface (if
you haven't loaded it already). Then, you'll use the Sprint File Manager to
make sure a file (the work order CABINET.SPR) is in your current direc­
tory; if the file isn't there, you'll use the File Manager again to copy it from
the directory and path where SP-SETUP copied it to your current directory.
After opening CABINET.SPR, you'll split the screen into two windows and
create a new file (SMITH.SPR) in the second window.

Starting Sprint and Opening an Existing File

1. Start Sprint by typing SP on the DOS command line. (Two-floppy
system users: put the Sprint Program Disk in Drive A and your Data
Disk in Drive B, then type SP to start Sprint.)

Chapter 7, Advanced Tutorial 13

2. Now, choose Customize/User Interface/Load to load the advanced user
interface (SP ADV) that you need to work through this tutorial:

Press: FtO CUL to choose Customize/User Interface/Load
Press: the arrow keys to choose SP ADV
Press: Enter

Note to two-floppy system users: If you have a low-density drive
(360K), your Program Disk can only hold one user interface at a time.
The simplest way to load the advanced user interface is to run
SP-SETUP and choose the advanced user interface as your default. Or, if
you want to load the advanced user interface from inside Sprint using
Customize/User Interface/Load, you first need to run SP-SETUP and
let it copy the advanced user interface (as an alternate user interface; that
is, as an alternate to whatever default user interface SP-SETUP placed
on your Program Disk) to a separate disk (see "Choosing a User
Interface" in Chapter 1 of the User's Guide for details on how to do this).
Then, when you want to load the advanced user interface, insert the
disk that contains it in Drive A before you choose Customize/User
Interface/Load. You can also insert the distribution disk that contains
the advanced user interface (SPADV.UI) into Drive A before choosing
Customize/User Interface/Load.

If you have a high-density drive (720K or more), you have room for
more than one user interface on your Program Disk. So, if the advanced
user interface was among any alternate user interfaces you chose when
you ran SP-SETUP, you'll see it listed when you choose Customize/
User Interface/Load with your Program Disk in Drive A. Otherwise, if
you want to load the advanced user interface, you must run SP-SETUP
again and choose it either as your default user interface or as an
alternate-depending on how much you plan to use it. See "Choosing a
User Interface" in Chapter 1 of the User's Guide for details.

3. Use the File Manager to make sure the file CABINET.SPR is in the
current directory before trying to open it. To do this, choose File/File
Manager /List Directory and ask to see a list of all files with the .SPR
extension (the Sprint default) in your current directory:

14

Press: Ft 0 FFL

Sprint prompts Files to list:

Press: Enter to see a list of all files with the .SPR extension

Sprint lists all files with the .SPR extension in the current directory.

Tip: If you want to see a list of all files in the current directory, type the DOS
wildcard for "all files" (*. *) at the prompt.

Sprint Advanced User's Guide

4. If CABINET.SPR is not present, choose File/File Manager/Duplicate­
Copy. When Sprint prompts File to copy:, specify the target file like
this:

a. Hard Drive Users:

i. Enter the path of the directory where SP-SETUP copied the
Sprint files and the file name-for example, C: \SPRINT\
CABINET. SPR-or place the distribution disk that contains
CABINET.SPR in Drive A and type A: CABINET. SPR.

ii. When Sprint prompts for the target path, type your current direc­
tory path (for example, C: \SPRINT).

Sprint returns your cursor to its previous position in your file
when the copy process is complete. For information about paths
and directories, refer to Appendix A, 1/ A DOS Primer," in the
User's Guide.

b. Floppy-Drive Users:
When you installed Sprint with the SP-SETUP program, it auto­
matically placed all the tutorial files you might need on the Data
Disk it created in Drive B. If for some reason you cannot find the file
CABINET.SPR, make sure the Data Disk in Drive B is the one
created by the SP-SETUP program.

5. Now that you're sure CABINET.SPR is in your current directory, open
the file with the File/ Open command:

Press: F10 FO (or use the shortcut Ctrl-F3)

Sprint prompts File to open:

Type: CABINET (you don't need to add the Sprint default file
extension .SPR)

Press: Enter
Sprint opens the file CABINET.SPR, which is a work order for building
some cabinets. This file doesn't yet contain any typefaces or formatting
commands; you'll be adding those in upcoming lessons.

Opening a Window and a New File

1. Choose the Window/Open command:

Press: F10 WO (or use the shortcut Shift-F3)
Tip: See Table 1.1 on page 13 for other window shortcuts.

Chapter 7, Advanced Tutorial 15

The screen is now split into two windows, each containing the file
CABINET.SPR. Your cursor is in the bottom window, which means this
window is the active window.

2. Create a new file called SMITH.SPR in the bottom (active) window by
choosing File/New:

Press: F10 FN (or use the shortcut Ctrl-F3)
Sprint prompts File to create:

Type: SMITH (Sprint automatically adds the default extension
.SPR)

Press: Enter
Your screen now displays two windows. CABINET.SPR, which contains
text you want to copy into your new file, appears in the top window;
your new, empty SMITH.SPR file appears in the bottom window.

The following table summarizes the tasks presented in Lesson 1:

Table 1.2: Tasks in Lesson 1

Task

List files in a directory

Action

Choose File/File Manager/List Directory
and specify the path of the directory whose
files you want to list (you can use DOS
wildcards; see /I A DOS Primer" in the
User's Guide for details).

Load advanced user interface Choose Customize/User Interface/Load,
then choose SP ADV and press Enter.

Copy a file to/from another
directory

Choose File/File Manager /Duplicate­
Copy and type the patn and/ or file name
of the file(s) you want copied.

Open a window and a new file Choose Window/Open, then choose File/
New and enter a file name.

This completes Lesson 1. The next step is to copy some text from the
CABINET .SPR file to the SMITH.SPR file. Go on to Lesson 2 for instruc­
tions.

16 Sprint Advanced User's Guide

Lesson 2: Copying Text between Windows

Block Select Commands and Windows

In Quick Start, you learned how to select a block of text and use block com­
mands to manipulate text in one file. Once you learn how to move between
open windows, you can easily perform any of the block commands on the
Edit menu (Move-Cut, Insert-Paste, and Copy, for example) on multiple
files.

In this lesson, you'll learn how to use a new Window command (Window /
Next) with the Block Select and Edit commands you learned in Quick Start.
In this way, you'll learn how to select a block of text in one open window
and copy it into a file in the other open window.

Practice

Follow the instructions below to switch back to the top window, select text
from the file displayed in that window (CABINET.SPR), and copy the text
to the Clipboard. Then, switch back to the window with the new file
(SMITH.SPR) and paste the text from the Clipboard into the new file.

Copying Text from One Window to Another

1. Return to the CABINET.SPR window by choosing Window/Next:
Press: F10 WN (or use the shortcut Shift-F6)

2. The section you need to copy is CABINET STYLE. Instead of paging
through the file, you can quickly search for these words with the Find
command:

Press: F7 or etr/-OF

Sprint prompts Forward search:

1rY1Pe: CABINET STYLE
Press: Enter

Sprint's search starts at the current cursor position; it highlights the
words CABINET STYLE when it finds them.

3. Select the text from the start of the words CABINET STYLE to the
bottom of the file:

Press: Home to move the cursor to the start of the line
Press: F3 (the shortcut for 1rurn Select Mode On)
Press: Ctrl-PgDn to move the cursor to the end of the file

Chapter 7, Advanced Tutorial 17

Sprint highlights everything from the beginning of the words CABINET
STYLE to the end of the file. That block of text can now be deleted,
moved, or copied.

4. Copy the text into temporary storage (the Clipboard):
Press: F4 (the shortcut for Edit/Copy)

5. Switch to the window containing the SMITH.SPR file (which is empty
except for a ruler line) by choosing Window/Next:

Press: F10 WN (or use the shortcut Shift-F6)
6. Paste the text from the Clipboard into the new file:

Press: F6 (the shortcut for Edit/Insert-Paste)

The block you selected is copied from CABINET.SPR and pasted into
SMITH.SPR.

You now have most of the text you want; however, you still need some text
from the proposal done in Quick Start (PROPOSAL.SPR). So the next thing
to do is select a portion of the PROPOSAL.SPR file and copy it into your
new work order, SMITH.SPR.

1. Return to the other window (the one containing CABINET.SPR):

Press: Shift-F6
2. Open the file PROPOSAL.SPR, which is the file you modified in the

Quick Start tutorial:

Press: Ctrl-F3
Sprint prompts File to open:

Type: PROPOSAL (Sprint supplies the default .SPR extension)
Press: Enter

Note: When you open a new file in a window, the file it replaces in the
window remains open and easily accessible, even though it's no longer
visible. You can always check which files are open by choosing File/
Pick from List (the shortcut is Ctrl-F9); Sprint will display a list of every
open file. To display any file in the list in your active window, choose it
with the arrow keys and press Enter. (If you prefer to switch between
open files without viewing a list, just press Ctrl-F6 and Sprint will move
from file to file in the same order as the Pick from List command
displays them.)

3. Place the cursor at the beginning of the TASK heading and select the text
down to but not including the COST ESTIMATE heading:

Press: F3 to turn Select mode on
Press: F7(the shortcut for Edit/Search/Find)

Sprint prompts Forward search:

18 Sprint Advanced User's Guide

1r)1?e: COST ESTIMATE
Press: Enter

Sprint finds COST ESTIMATE and highlights everything between your
starting cursor position and the end of the COST ESTIMATE line. Press
Home to un-select the the line COST ESTIMATE, which you don't want
to copy.

4. Copy the selected block into the Clipboard:
Press: F4

5. Switch back to the window containing SMITH.SPR:

Press: Sf1ift-F6
6. Move the cursor to the top of the file (make sure not to move it above

the ruler, though):
Press: etrl-PgUp

7. Paste the text from the Clipboard:
Press: F6

8. You've now completed copying text for the moment, so you'll get some
more room to work by closing the other window. Switch to the window
containing the proposal file, and close that window:

Press: Shift-F6
Press: F10 we (or use the shortcut Shift-F4>

Remember, you're not closing the proposal file; you're just closing the
window showing you this file. The proposal file remains open until you
deliberately close it with etrl-F4 or the File/ Close command.

The following table summarizes the tasks presented in Lesson 2:

Table 1.3: Tasks in Lesson 2

1rask

Copy text between windows

Switch between open files
with your cursor in one
window

Action

Select the text you want to copy in one
window, press F4 to copy, and switch
windows with the shortcut Shift-F6. Then,
position your cursor where you want to
insert the block and press F6.

Choose File/Pick from List, use the
arrow keys to choose a file name from the
list, and then press Enter to display the file in
the active window. (The shortcut for Pick
from List is etrl-F9.)

This completes Lesson 2. The next step is to modify the work order.

Chapter 7, Advanced Tutorial 19

Lesson 3: Search and Replace Operations

Besides the search option you've already used (the shortcut F7 for a
forward search), Sprint also allows you to search for and replace text using
the Search & Replace command from the Search-Replace menu. To reach
this menu, shown in Figure 1.2, choose Edit from the main menu and press
S for Search-Replace. You can also use the shortcut FB.

< ~Sprint
Notice the blinking light--called the cursor--that moves alonl ~ Alt-F
you type. You can think of the cursor as-a-- Edit 'Mil dl"l'
thing that tells you where you are on the Undelete
< 1-------1 Insert Alt-I
While we're on the subject of the cursor. Copy Typestyle Alt-T
around on the screen. On the right side of Move-Cut F5 Style Alt-S
important set of keys called the numeric k Insert-Paste F6 Layout Alt-L
up in the same pattern as a lO-key addlng Erase
provide more functions. There are four keyl-------IPrint Alt-P
pointing left. right. UP. and down. As you Block Select Window Alt-W
keys move the cursor in the direction they Write Block Utilities Alt-U
You should see the cursor moving back and Customize Alt-C
on your screen Search------.
your @k[Num Lo • Go to Page Quit Alt-Q

Search-Replace

it.) Notice th Next Occurrence Ctl-L Jump to Line F9 1--------1
text scrolls u Search & Replace F8 Place Mark
big plece ofpl-----------II------~
where that you
that spot in y
@K[Backspace]
cursor) or the
the cursor).<
<

Direction
Case Sensitive
Match Words Only
Use Wildcards
Enti re Fi 1 e

FORWARD w keys to move to
NO cters with the
NO he left of the
NO ters directly above
NO

a

... \RASPBERR\USERGYD\CH2.UG Ins 4:55p Ln.213 of 457 Col I

Figure 1.2: The Search-Replace Menu

When you choose Search & Replace, Sprint prompts

Search for:

Type the string you want to replace and press Enter; Sprint prompts

Replace with:

Enter the desired replacement string. Each time Sprint finds the search
string, it highlights the string and displays a small menu. You choose one of
the commands on the menu to indicate that you want to replace the string
(Yes), ignore it (No), or globally replace all occurrences (And the Rest)
without individual confirmation. Be careful when you decide to use And
the Rest; you must be sure that you want to replace the search string in
every case.

20 Sprint Advanced User's Guide

Another command you'll use in this lesson is Entire File, which toggles
(switches) from Yes to No. Setting Entire File to Yes is useful when you
want to search for a string throughout a file; when Entire File is set to No,
your search operations will start at your current cursor position and
continue to the end of the file.

For information on using search options like wildcards and case, see the
"Search and Replace" section of the "Editing: Tips, Tricks, and Techniques"
chapter in the User's Guide.

Practice

Assume there is a minor change to the cabinet materials: The old work
order specified oak veneer for the exterior, while the new job calls for birch
veneer. You'll change all the references to oak veneer in the old work order
to birch veneer in the file SMITH.SPR by searching the file for the word
"oak" and replacing it with ''birch.''

Searching and Replacing Text

1. Set Edit/Search-Replace/Entire File to Yes to let Sprint search the entire
file (no matter where the cursor is) for the word oak, then choose the
Search & Replace command:

Press: Alt-ES to choose Search-Replace
Press: F to toggle Entire File to Yes (No is the default)
Press: S to choose Search & Replace

Sprint prompts Search for:

2. Enter your search string:

Type: oak
Press: Enter

Sprint prompts Replace with:

3. Enter your replacement string:
Type: birch
Press: Enter

Sprint finds the first occurrence of the word oak and displays the
Replace This? menu choices: Yes, No, and And the Rest.
Tip: To stop a search at any time, just press Ctrl-U, the "abort" key; Sprint will
return to your original cursor position.

4. You want to replace oak with birch in this case, so choose Yes from the
Replace This? menu:

Press: Y

Chapter 7, Advanced Tutorial 21

Sprint replaces oak with birch and continues to the next occurrence of
oak.
Note: You don't want to use the And the Rest option this time, since that
would automatically replace all occurrences of the word oak with the
word birch. This is not what you want to do, as you'll see shortly.

5. The next two occurrences of oak also involve veneer, so answer Yes
twice:

Press: Yeach of the two times Sprint asks for confirmation

Sprint replaces oak with birch twice. Again, the search continues.

6. The next occurrence of oak involves the Shaker knobs, which you are not
replacing for this work order, so answer No:

Press: N
Sprint leaves this occurrence of oak as it stands and continues the search.
Since this is the last occurrence of oak, Sprint returns tty the place you
started the search and tells how many times you replaced the word.

The following table summarizes the search-and-replace task presented in
Lesson 3:

Table 1.4: Task in Lesson 3

Task

Search and replace a string

Action

Choose Edit/Search-Replace/Search &
Replace (or press F8), enter the search string,
ana press Enter. Enter the replacement string
and press Enter. Then, each time Sprint finds
an occurrence of the search string and asks
for confirmation, reply either Yes, No, or And
the Rest.

This completes Lesson 3. Assuming that these are the only changes you
need to make to the actual text of the document, you're now ready to
improve the appearance of the document. You start that process in the next
lesson.

Lesson 4: Adding Section Headings

One of the best ways to improve a plain document is to emphasize the
headings of different sections. You've already learned about the different
typestyles Sprint offers for emphasis; in this lesson, you'll use commands
from the Headings menu (Figure 1.3), which lists a variety of heading
formats for text.

22 Sprint Advanced User's Guide

failure. Sprint, of course, doesn't eliminate these situation
but it does protect your open files when failures occur.<
<

Sprint
File Alt-F
Edit Alt-E

Sprint automatically creates a swap (backup) file called SP.SI-------I
The file is automatically updated with your changes as you ed Insert Alt-I
In the event of a power failure, your text is safe and c.~an~be~ITjly!~:eils~tYllliie~A~lUlt-~T.1
retrieved as soon as power resumes. You simply [§StYl..- !ld'·. V."
continue where you left off. The most you can 1 Center Layout Al1-L
much you typed since the last three-second paus Modify
not much (unless your fingers never pause). IC~h~a~iiiiiiiil Print Alt-P
"Working with Files," explains eadings- I'M"iug Window Alt-W
< --Numbered-- Lists Utilities Alt-U
..... " 1,,1,,6'11 ... _111 •• ' W.ig Customize Alt-C
There are a variety of ways to section Table
and formatting capabilities. Y subsection Figure Quit
< paragraph Graphics
@BEGIN{hyphens}< appendix Index
choose commands from Sprint's appendixsection References
< -Unnumbered- X-Reference
press special "shortcut" keys headingA
or use a menu command without headingB
< headingC
define your own keystrokes to headingD

I-----It,
Other Format

of word
processin~ functions<

;'i~'P;' M'J1'~1'dd·.llu;",,". * Ins

Figure 1.3: The Headings Menu

Alt-Q

You can choose either numbered or unnumbered headings. If you choose a
Numbered heading command, Sprint automatically numbers the heading
and creates a table of contents for the document listing all the headings you
inserted in the file and the page numbers where they appear. If you move
the heading and section to another place in the document, Sprint auto­
matically updates both the heading number and the table of contents!

For example, suppose you want to create numbered section headings for a
paper on economics, starting with a section called "Free Market System."
To create the first numbered section heading, you'd choose Headings/
Section from the Style menu. Sprint prompts for the heading title, so type
Free Market System and press Enter. Onscreen, the heading looks like this:

SECTION Free Market System

When you print the document, Sprint automatically numbers the heading
as 1 (since it's the first in the document), and prints the heading number
and heading text in a large font (if your printer has one) and a bold
typestyle. Two blank lines will appear above and below the heading, like
this:

1. Free Market System

Chapter 7, Advanced Tutorial 23

If you choose Subsection from the Style/Headings menu, Sprint prints a
second-level numbered heading. This heading also prints in a large, bold
font, but the type size is somewhat smaller than the Section command. A
single blank line appears above and below a Subsection heading. For
example, a Subsection heading for a subsection of "Free Market System"
called "Supply and Demand" would print like this:

1.1 Supply and Demand

Note: When you use numbered headings with a Chapter command, a
Section command prints as I.!., a Subsection command prints as 1.1.1, and
so on, like this:

1.1 Free Market System
1.1.1 Supply and Demand

Also Note: If you don't want your headings numbered, choose Unnum­
bered headings; for example, Headings/HeadingA. You won't get a table of
contents, however, unless you do one of the following:

• Choose a Numbered heading somewhere in your file (that is, Chapter,
Section, Subsection, Paragraph, Appendix, or AppendixSection), in
which case Sprint will create a table of contents and will include all
headings (numbered and unnumbered) in the table.

• Move the cursor to the top--o.{ the file (below the ruler), choose Style/
Other Format, and type MAKETod. Sprint prompts

Type (R) for Region or (C) for Command:

• Type c, and Sprint willinsert the MAKETOC (make a table of contents) com-
mand in your file.

Note: Heading formats are defined in the STANDARD.FMT file. As with all
command definitions listed in STANDARD.FMT, they can be changed to
suit your particular word-processing needs. See the "Advanced
Formatting" section of this manual for information about the
STANDARD.FMT file.

Refer to the "Headings" section on page 78 of Chapter 2 for more
information about headings.

Practice

You'll insert numbered Section headings for each section heading in the
work order, and then assign that command to a single keystroke.

24 Sprint Advanced User's Guide

Choosing Heading Commands

1. Move the Cursor to the 1 TASK (line 2, column 0).
2. Choose Section from the list of Numbered headings:

Press: F10 SH to choose Style/Headings
Press: the arrow keys to choose Section
Press: Enter

3. When you've created a heading for TASK, choose the Section command
for each of the five remaining section headings (TIME ESTIMATE,
CABINET STYLE, MATERIALS, FINISHING INSTRUCTIONS, and
SUPPUERS):

Press: F7 (shortcut for Find command)
Type: TIME ESTIMATE at the prompt
Press: Enter

Sprint finds the TIME ESTIMATE heading and highlights it.
Press: F10 SH to choose Style/Headings

The highlighted choice on the Headings menu should still be Section.
Press: Enter

You can repeat the "Press F10 SH, then choose Section" process for each
of the remaining headings in the file after TASK. Before you do,
however, see the next part of the lesson for another option.

Assigning a Menu Command to a Key

To make it easier to use any menu command, you can assign a shortcut key
to perform the command for you. In this part of the lesson, you'll pick a
keystroke combination (for example, Alt-1) to perform the Style/Headings/
Section command.

1. Choose Style/Headings from the main menu and highlight the Section
command:

Press: F10 SH
Press: the Down arrow key until Section is highlighted-don't

press Enter; just highlight the command!
2. With the menus still displayed and your chosen command highlighted,

you can assign any command from the menus to a key:
Press: Ctrl-Enterto assign Style/Headings/Section to a key

Sprint prompts Shortcut for menu item:

3. Think of a keystroke combination that's easy to remember (for example,
Alt-1) and press those keys:

Chapter 7, Advanced Tutorial 25

Press: Alt-1
Now, whenever you press Alt-1, Sprint will insert the Section command.
For more information on assigning and saving Sprint shortcuts, see the
"Sprint Utilities" chapter in the User's Guide.

The following table summarizes the tasks presented in Lesson 4:

Table 1.5: Tasks in Lesson 4

Task Action

Insert a numbered heading Choose Style/Headings, then choose any of
the Numbered commands listed.

Insert an unnumbered
heading

Make a table of contents
for a file without
numbered headings

Assign a menu command
to a key

Choose Style/Headings, then choose one of
the commands listed as Unnumbered.

At the top of the file, choose the Style/Other
Format command and type MAKETOC. At the
prompt, type C for Command.

Step through the menus until you reach the
command you want to assign to a key; make
sure it's highlighted. Press etrl-Enter and press
a key to wnich you want to assign the
command.

This completes Lesson 4. In the next lesson, you'll format a section of the
work order with the Style/Lists/Description command.

Lesson 5: The Description List

The Quick Start Tutorial introduced the Lists menu (Figure 1.4) and you
formatted two sections of PROPOSAL.SPR with list commands: the Num­
bered command, which produces a numbered list; and the Hyphens com­
mand, which produces a list with items set off by hyphens.

26 Sprint Advanced User's Guide

< Sprint
Just choose the typestyle of your choice from the menu. The File Alt-F
entire block changes attribute (for example. if you choose Edit Alt-E
Underline on a monochrome monitor. the text is underlined
onscreen; on a color monitor. the text appears in a different Insert Alt-I
color).< ~style Alt-T
[• 1 • 2 • 3 • 4 • Styl rR'IJ II.
< Center Layout Alt-L
If you change the typeface of a block that is a Modify
typestyle (other than normal text). Sprint will 1-----1 Print Alt-P
typestyles (if your printer supports them). For Headings Window Alt-W
have some text that is marked as b Lists ,"', • Utilities Alt-U
choose Italic. your printed text w •• m •• ,ei- Customize Alt-C
< Numbered Table
You can also use this method of se Multilevel Figure
styles from the Typestyle menu to Description PostScript
Simply choose Normal from the Type 1-----1 Index
se 1 ected the text. < Asteri sks References
< Bullets X-Reference
If you've used a number of differe Hyphens
looking at a file created by someo Other Format

Quit

lmmediately obvious what typestyle some text is if
you have a monochrome monitor {which has a limited number of ways
it can chan e the a earance of text on our screen .<

, . ' .

Figure 1.4: The Lists Menu

Alt-Q

There are two ways to use the commands on the Lists menu; the first is
suited to formatting existing text, the second to setting up a list as you're
entering the text:

• Select a block of text using F3 or one of the commands on the Edit/Block
Select menu, then choose a Lists command. Sprint inserts BEGIN and
END commands for the list format before and after the selected block.

• Choose a command from the Lists menu and press B for Begin command;
Sprint inserts a BEGIN command for the list format. Type the text of the
list, making sure the items are double-spaced. Then choose the same List
command and press E for End command; Sprint inserts an END
command for the list format in your text.

The Description command, which is used in this lesson, creates a two­
column list; the column on the left (which prints in a bold typestyle)
typically contains a "subject," and the column on the right describes the
subject. You separate the subject from the descriptive text by pressing the
Tab key. The descriptive text is automatically indented 1/4 of the line length
(for example, if the lines in your text are 6 inches long, the descriptive text
will be indented 1.5 inches).

Chapter 7, Advanced Tutorial 27

Practice

The CABINET STYLE section of the work order lends itself to a Description
format. Face frames and Doors are the subjects in this list; the text to the right
of the subjects describes the style of the cabinet components.

Creating a Description List Format

1. Press F3 to select the text immediately following the CABINET STYLE
heading, down to but not including the MATERIALS heading, and then
choose the Style/Lists/Description command:

Press: F10 SLD
Press: Enter

Sprint inserts BEGIN and END DESCRIPTION commands around the
text you selected.

2. Now replace the two 1/ - 1/ (space, hyphen, space) character strings in
this section with a Tab using the Edit/Search-Replace/Search & Replace
command (shortcut F8):

28

Press: FB
Sprint prompts Search for:

Type: [space] [hyphen] [space]
Press: Enter

Sprint prompts Replace with:

Press: Tab
Press: Enter
Press: Y for Yes twice to replace both occurrences of 1/ - " in

this section with a Tab
Sprint will continue to find the 1/ - " string after the END DESCRIP­
TION command; don't replace these. Just press Ctrl-U (the "abort" key)
to escape from the Replace This? menu and return to your previous
cursor position. This is how your onscreen text should look now:

BEGIN DESCRIPTION
Face frames Simple, edges chamfered, built to suit kitchen plan
signed-off by owner

Doors 1/2" plywood, exterior covered with 1/4" birch
veneer, edges routed with Bit *32
END DESCRIPTION

The text looks a little strange on the screen, but when you print the file
the subjects Face frames and Doors will appear at the left margin, in
boldface, with the descriptive text indented, something like this:

Sprint Advanced User's Guide

Face frames

Doors

Simple, edges chamfered, built to suit kitchen plan
signed-off by owner

1/2" plywood, exterior covered with 1/4" birch veneer,
edges routed with Bit #32

The following table summarizes the list format task presented in Lesson 5:

Table 1.6: Task in Lesson 5

Task Action

Insert a two-column list Select the block of text you want to format as a
list. Make sure the items are double-spaced.
Choose Style/Lists/Description, press Enter, and
then insert a Tab to separate the two columns.

This completes Lesson 5. Now assume you want to insert an illustration
showing the kitchen plan referenced in the Face frames description. The
following section explains how to leave room for this figure in your text.

Lesson 6: Figures and Tables

In this lesson, you'll learn how to insert figures into your files. The Figure
command on the Style menu automatically assigns a number to the figure
and lets you create an optional caption. Use the Page Breaks/Reserve Space
command on the Layout menu to allow blank space for a figure in your
printed document (if desired). When you opt to give your figure a caption,
the formatter automatically assigns a number to the figure and references
the figure number, the caption, and the page number on a special List of
Figures page (part of the Table of Contents).

When you choose the Style/Figure command, Sprint first prompts for the
caption. The caption is optional; if you choose not to have one, just press
Enter. Sprint inserts the BEGIN and END FIGURE commands with your
cursor between them. If you typed in a figure caption at the prompt, it
inserts the CAPTION command on the line below your cursor. A List of
Figures page will be generated only if you give the figure a caption; if you
do, the figure will be referred to by assigned number, caption, and page
number.

You can specify the desired amount of blank space required for the figure
on the line after the BEGIN FIGURE command. You can always press the
Enter key a number of times to create the blank space, but the Layout/Page
Breaks/Reserve Space command lets you specify more precise dimensions

Chapter 7, Advanced Tutorial 29

for the figure (using, for example, inches, points, centimeters, lines, or a
portion of a page).

By definition, the Figure command tells Sprint to immediately begin the
figure format. You can, however, force figures to begin at the top or bottom
of a page. To do this, you need to modify the Figure command to include
either the above or below parameter. Lesson 16, beginning on page 60,
explains how to do this.

The Table command on the Style menu works the same way as the Figure
command; it prompts for an optional table caption, which generates a List
of Tables page in the Table of Contents. You can also modify a Table format
to automatically begin at the top or bottom of a page (see Lesson 16,
beginning on page 60).

Practice

First, you'll create a figure caption and reserve space in your work order for
a figure (in this case, a manually sketched illustration of the kitchen plan to
be pasted in later). Then, you'll format a block of text in the file with the
Style/Table command.

Inserting a Figure

1. Move the cursor to the line above SECTION MATERIALS and press
Enter.

2. Choose Style/Figure from the main menu. When Sprint prompts for a
caption, enter the figure caption:

Press: F10 SF for Style/Figure
Sprint prompts Caption:

T)1pe: Smith Kitchen Plan
Press: Enter

3. Now tell Sprint how much space to reserve for the figure. For this
exercise,let's assume the kitchen plan takes.up 2.5 inches of space. With
your cursor positioned on the line below the BEGIN FIGURE command,
choose the Layout/Page Breaks/Reserve Space command.

30

Press: F10 LPR
T)1pe: 2. 5 inches
Press: Enter

The group of commands for the figure will appear onscreen like this:

Sprint Advanced User's Guide

BEGIN FIGURE
RESERVE 2.5 INCHES

CAPTION Smith Kitchen Plan
END FIGURE

When you print the file, Sprint will leave 2.5 inches blank, and then
print the caption Figure 1: Smith Kitchen Plan (the figure number will be "l"
because it's the first in the file). The figure number and caption print in
small type, centered between the left and right margins (see page 10).

If there aren't at least 2.5 inches of blank space remaining on the page
when Sprint sees the BEGIN FIGURE command, Sprint will break the
page and leave room for the figure and the figure caption at the top of
the next page.

Creating a Table

1. Select the text under the MATERIALS heading, down to but not
including the FINISHING INSTRUCTIONS heading, and then choose
Style/Table. Sprint prompts you for a table caption:

T)1?e: Required Materials for Smith Job
Press: Enter

Sprint inserts BEGIN and END TABLE commands and the TCAPTION
command in the file. When you print, Sprint automatically numbers the
table and places the table number and caption in the Table of Contents.

2. The group of commands for the table will appear onscreen like this:

BEGIN TABLE
TCAPTION Required Materials for Smith Job
3/4" face frames - solid birch - 25 each

1/4" veneer exterior - birch - 2 sheets

Drawer slides - 502-436 - 10 pair

Drawer pulls - 1" oak shaker knobs - 10 each

Hinges - Brassware 237 - 12 each
END TABLE

Chapter 1, Advanced Tutorial 31

The following table summarizes the tasks presented in Lesson 6:

Task

Create a figure

Create a table

Table 1.7: Tasks in Lesson 6

Action

Choose Style/Figure, then specify a caption or press
Enter for no caption.

Choose Style/Table, then specify a caption or press
Enter for no caption.

Reserve blank space Choose Layout/Page Breaks/Reserve Space, then
specify the amount of space in inches, lines, points,
centimeters, or a portion of a page.

This completes Lesson 6. In the next lesson, you'll format the text of this
table with precisely measured tab stops.

Lesson 7: Precise Ruler Settings

You've already learned how to justify text and set margins, tabs, and
indents on the ruler line: choose Layout/Ruler/Edit on Screen, move to a
column on the ruler, and enter the appropriate ruler editing code (see
"Editing the Ruler" in Chapter 4 of the User's Guide for details on how to do
this). However, there may be times when you want to set tabs or margins
other than with column numbers. For example, you may want to set tabs I,
2, and 4 inches from the left margin, or offset the left margin by 4 picas in
an area of your file. The Layout/Ruler/Precise Settings menu (see Figure
1.5) lets you be more precise with your formatting dimensions after the
ruler line.

Note: If your printer doesn't support proportionally spaced fonts, your
results may not be identical to the example shown on page 11.

32 Sprint Advanced User's Guide

< Precise Settings
Just choose the typestyle of your choice from th
entire block changes attribute (for example, if

Font
Size

Underline on a monochrome monitor, the text is Ul-----------I
onscreen; on a color monitor, the text appears i
color) .<

Initial (first line) Indent
Left Indent

[. 1· 2· 3· 4· Right Indent
<
If you change the typeface of a block that is al Tab Stops NOT SET
typestyle (other than nonnal text), Sprint will '-------------'
typestyles (if your printer supports them). For instance, if you
have some text that is marked as bold, then select the text and
choose Italic, your printed text will be bold ttaltc.<
<
You can also use this method of selecting text and choosing
styles from the Typestyle menu to return text to plain text.
Simply choose Nonnal from the Typestyle menu after you've
selected the text.<
<
If you've used a number of different typestyles, or if you're
looking at a file created by someone else, it may not be
immediately obvious what typestyle some text is in, especially if
you have a monochrome monitor (which has a limited number of ways
it can chan e the a earance of text on our screen).< t. I: •• • • •

Figure 1.5: The Precise Settings Menu

The Precise Settings commands affect all text under the ruler line until you
insert a new ruler. So, at the point where you want to return to the settings
on the default ruler, use Layout/Ruler/Insert to insert another default
ruler.

Font Allows you to choose from a list of fonts your
printer supports

Size Lets you specify any type size your printer
supports

Initial (first line) Indent Lets you specify how much the first line of any
paragraph should be indented (the default is 0)

Left Indent Offsets the text from the left margin

Right Indent Offsets the text from the right margin

Tab Stops Allows you to specify tab stops

You can use any unit of measurement for Left Indent, Right Indent, or Tab
Stops when Sprint prompts you for a dimension (inches, picas, points,
centimeters, and so on).

When you choose the Font command, Sprint displays a list of fonts for your
printer. Some printers may only have two fonts, while others may have
several. Pick a font other than default and press Enter. Sprint will 'llide" a

Chapter 7, Advanced Tutorial 33

font code on the new ruler, instructing the formatter to print the following
text in the chosen font (you can display it by pressing Alt-Z to show codes).
You'll also see the name of the chosen font displayed next to the Font com­
mand on the Precise Settings menu.

Practice

In this lesson, you'll insert a new ruler to format the Required Materials for
Smith Job table, choose a font that's different from your printer's default
font, set precise tab stops, and offset the left and right margins from the
current margin settings.

Creating Precise Ruler Settings

1. Move the cursor to the line containing the TCAPTION command and
insert a blank line below it.

2. Press Alt-R to insert a new ruler. Delete the tab stop (T) preset at column 5
and type two new T's on the ruler line as placeholders for the two
precise tabs you'll set with the Tab Stops command. (The column
numbers you choose aren't important; try 25 and 50.) The precise tabs
will not print correctly without the placeholding tab symbols. Press Esc
to get out of the highlighted ruler line.

3. Specify a different font in which to print the section affected by the new
ruler. Choose Layout/Ruler/Precise Settings/Font:

Press: F10 LRPF
Sprint displays a list of fonts available on your printer.

Press: the arrow keys to choose a font other than the default
Press: Enter

4. Change the left margin by choosing the Left Indent command:
Press: L for Left Indent

Sprint prompts for the left indent value. Type. 75 inches, which will
offset the text below the ruler by .75 inches. This distance is measured
from the current left margin setting (1 inch), so your text will begin
printing 1.75 inches from the edge of the paper.
If you'd rather specify the indent in picas (approximately 6 picas per
inch) or centimeters, feel free to do so.

5. Change the right margin by choosing the Right Indent command:

34

Press: R for Right Indent
When Sprint prompts for the right indent, type .75 inches. This adds .75
inches to the current right margin setting.

Sprint Advanced User's Guide

6. Set tabs precisely measured in a dimension, not in columns, by choosing
the Tab Stops command:

Press: Tto choose Tab Stops
Sprint prompts P lace tabs at:

7. Set tabs at 1.75 inches and 3.5 inches:

T)1'e: 1.75 inches, 3.5 inches

Sprint inserts a TABSET command below the ruler line and displays the
precise tab settings onscreen. Press Enter twice to insert two blank lines
(you'll need the space later on).

8. Press Esc to remove the menu.

Note: The commands you chose for font, left indent, and right indent
are displayed on the Precise Settings menu; they're also hidden on the
ruler line. You can see them if you press Alt-Z to toggle Codes On.

Formatting a Table

1. Place your cursor on the line below the TABSET command and create
some headings for the columns you're going to format:

T)1'e: Material
Press: Tab
T)1'e: Type
Press: Tab
T)1'e: Quantity
Press: Enter twice to insert two blank lines

Don't be concerned that the tabs don't appear to be set 1.75 and 3.5
inches from the left margin. They will be precisely set when you format
and print the file.

2. Now you need to align the text of the materials table with the new tab
stops and column headings. Using the Search & Replace shortcut (FB),
replace the" - " (space, hyphen, space) characters with Tab:

Press: FB
Sprint prompts Search for:

T)1'e: [space] [hyphen] [space]
Press: Enter

Sprint prompts Replace with:

Press: Tab
Press: Enter
Press: Y for Yes 10 times

Chapter 7, Advanced Tutorial 35

Your text aligns onscreen because of the T symbols on the ruler line;
when you print, however, the first Tab prints text 1.75 inches from the
new margin you set with Left Indent, and the next Tab will print text 3.5
inches from the same margin. Your text should look like this onscreen:

BEGIN TABLE
TCAPTION Required Materials for Smith Job

+ --+
[1 2 T 4 T 6]L 7
+ --+
TABSET 1.75 inches, 3.5 inches

Material

3/4" face frames

1/4· veneer exterior

Drawer slides

Drawer pulls

Hinges
END TABLE

Type Quantity

solid birch 25 each

birch 2 sheets

502-436 10 pair

1" oak shaker knobs 10 each

Brassware 237 12 each

3. Since you don't need these precise settings for the rest of the work order
text, move the cursor to the line before the FINISHING INSTRUCTIONS
section and insert another ruler. This new ruler will look exactly like the
ruler at the top of the file.

The follOwing table summarizes the tasks presented in Lesson 7:

Task

Use a different font

Set a new left margin

Set a new right margin

Set precise tabs

36

Table 1.8: Tasks In Lesson 7

Action

Choose Layout/Ruler/Precise Settings from the
main menu, then choose Font. Use the arrow keys
to pick a font other than the default, then press
Enter.

Choose Layout/Ruler/Precise Settings from the
main menu, then choose Left Indent. Enter the
desired distanced from the current left margin at
the prompt, and press Enter.

Choose Layout/Ruler/Precise Settings from the
main menu, then choose Right Indent. Enter the
desired distanced from the current right margin
at the prompt, and press Enter.

Choose Layout/Ruler/Precise Settings/Tab
Stops. Enter the specified dimensions of the tabs,
separating each one with a comma (for example, 8
picas, 15 picas, 22 picas). Press Enter.

Sprint Advanced User's Guide

This completes Lesson 7. In the next lesson, you will view your formatted
file and verify that your table formats correctly.

Lesson 8: Previewing the Text

In the Quick Start tutorial, you learned how to use Print/Paginate to
preview page breaks in a file before printing.

In this lesson, you'll choose Screen Preview from the Print menu so you can
preview your formatted file. When you choose Print/Screen Preview,
Sprint saves your file to disk, then interprets the formatting commands
you've chosen and inserted into your file and checks for any errors you
may have made in entering these commands. If Sprint doesn't find any
errors, it displays the file one screen page at a time, as if it were printing the
file on your currently selected printer. If Sprint detects one or more errors

. during formatting, it displays an error message that explains the error and
references a line number.

The appearance of your screen preview depends on the currently selected
printer. (Usually, the most capable printer is installed as the default printer,
and any other printer(s) as alternate(s). If you're not sure how your printers
were installed for Sprint, see "Before You Begin" in the User's Guide for
installation instructions.)

If your currently selected printer (perhaps a dot-matrix) supports only
fixed-pitch fonts (for example, pica, elite, or courier), the output of a screen
preview will be similar to the way the printed output will appear. Most
screens can only display text in fixed-width fonts (typically 10 characters
per inch).

On the other hand, if your currently selected printer supports proportional
spacing, various fonts, and different character sizes (like some laser printers
do), the output onscreen will look strange at times. The reason is that your
screen can't display literally what your printer is capable of printing. For
example, most screens can't display enlarged characters (like those in a
Section heading) or reduced characters (like footnotes). With proportionally
spaced fonts, moreover, not all characters are the same width; when Sprint
tries to display proportionally spaced output on your screen, you'll see
characters overwriting each other, as if text were missing. Don't worry; this
won't be the case when your file is printed.

Note to two-floppy system users: When you want to print a document, you
must have the Sprint Program Disk in Drive A.

Chapter 7, Advanced Tutorial 37

Practice

In this lesson, you'll view your formatted file onscreen as well as any error
messages the formatter might generate.

Previewing Your File Onscreen

1. If you want to preview your text as if it were going to print on an
alternate printer (any printer other than the default), you need to identify
the printer you want to use. Choose the Print/Current Printer com­
mand and pick the printer you want to use. Do this before you choose the
Print/Screen Preview command.

Press: F10 PC

Sprint displays a list of printers that have been installed for Sprint use.
Press: the arrow keys to highlight the desired printer
Press: Enter

2. Choose Print/Screen Preview.

Sprint immediately saves the file. If no errors are found, your file
diplays one screen at a time. After each page, Sprint prompts

[Press any key for more, Esc to quit.]

If your printer has some of the capabilities we mentioned above (like
multiple fonts or character sizes), remember that the display will look
strange because your screen doesn't have the same capabilities.

3. If you get an error message, note it down, and then choose Edit/Jump
to Line (or F9). When Sprint prompts for the line number, enter the line
number displayed in the error message.

Tip: Sometimes, Sprint doesn't recognize an error until after it passes the line
containing the error; in these, cases, the line number Sprint cites in the error
message may not be precise. If you don't see anything unusual on a particular
line number, start looking backwards for the offending command.

4. Correct any errors, and then choose Print/Screen Preview again. You
don't need to save the file because Print commands automatically write
your file to disk before formatting and printing.

38

If you get several error messages, don't worry about writing them all
down before you press a key to continue; go on to Lesson 13, beginning
on page 52, which explains how to log all formatter/error messages to a
file on disk. When you're done with that lesson, come back to this
lesson, repeat the instructions for previewing your file on the screen,
and then continue this tutorial.

Sprint Advanced User's Guide

For more information about previewing your file and checking error
messages, see the "Printing" chapter in the User's Guide.

The following table summarizes the tasks presented in Lesson 8:

Table 1.9: Tasks In Lesson 8

Task

Switch printers

Preview your formatted file

This completes Lesson 8.

Action

Choose the Print/ Current Printer command
and pick the printer you want to use with the
arrow keys. Press Enter.

Choose Print/ Screen Preview from the main
menu, or press etr/-FB.

Lesson 9: Adding Headers and Footers

This part of the tutorial explains how to create running headers and footers
(also called page headings and page footings). Headers appear within the
top margin of each page; footers appear within the bottom margin of each
page.

Sprint supports multiple-line headers and footers and lets you specify how
the header and footer text should be formatted. You can place the text at the
left margin, aligned at the right margin, and/or centered between the left
and right margins. The commands to create headers and footers are on
Layout/Header and Layout/Footer menus. The menus are identical; the
Header menu is shown in Figure 1.6.

Chapter 7, Advanced Tutorial 39

< Sprint
Just choose the typestyle of your choice from the menu. The File Alt-F
entire block changes attribute (for example. if you choose Edit Alt-E
Underline on a monochrome monitor. the text is underlined
onscreen; on a color monitor. the text appears in a different Insert Alt-I
color).< Typestyle Alt-T
[• 1 2 3 4 5 6 Style Alt-S
< Layout Layout Alt-L
If you change the typeface of a block that is Ruler
typestyle (other than normal text), Sprint wil Page Breaks Print Alt-P
typestyles (if your printer supports them). FOI------IWindow Alt-W
have some text that is marked as bold. then se Columns Utilities Alt-U
choose Italic. your printed text will be bold Customize Alt-C

< r.~~i~~~iD!oc~u!me~n.t-.W.iide·I~~~==~~~ You can also use this method of se eade """# Quit Alt-Q
styles from the Typestyle menu to IAII'PM;- Footer
Simply choose Normal from the Type
selected the text.< Title Page Title Page
< Odd Pages
If you've used a number of differe Even Pages or if you're
looking at a file created by someo y not be
immediately obvious what typestyle Position in. especially if
you have a monochrome monitor (whi ed number of ways
it can change the appearance of text on your screen).<

'''''p:Jldi"'~1'Rd111';'.'1; ... n~t.;II!I.il!!ll".-.-plJl:1!.-.!r.I.-tflOlif:--A!D10

Figure 1.6: The Header Menu

Sprint's Header and Footer commands can appear anywhere in your
document. By default, the text of the page header or footer will appear on
all pages following the command except the first page.

As you can see in Figure 1.6, both the Header and Footer menus offer the
All Pages command. When you choose All Pages, Sprint inserts BEGIN and
END HEADER commands (for a header) or BEGIN and END FOOTER
commands (for a footer) into your file; you just enter the text of the header
or footer between those commands. The All Pages command prints the
header or footer you create on every page except the first. If you want your
header or footer to print on every page including the first, you must also
choose Title Page and enter the same header or footer text as you did for
All Pages. You can also use Title Page to create a special header or footer for
the first page only.

Two other commands the Header and Footer menus share are Odd Pages
and Even Pages: choose Header/Odd Pages and Header/Even Pages to
print different headers on odd and even pages (as we do in this manual);
choose Footer/Odd Pages and Footer/Even Pages to do the same for your
footers.

The headers and footers you create can be positioned on the page with the
Position command; specify the exact distance from the top of the page

40 Sprint Advanced User's Guide

(headers) or the bottom of the page (footers) in any dimensions your
printer supports.

By default, Sprint automatically prints the page number in the footer line of
every page; you need not choose a Footer command. However, if you do
choose a Footer command, you override this default function. If you want
page numbers in your footer, you need to tell Sprint where to place them.

Specifying a page number is a little abstract because it involves the concept
of variables, discussed in the" Advanced Formatting: Tips, Tricks, and
Techniques" chapter of this book. To print page numbers, you need to
insert the variable page and tell Sprint to print its current value.

Practice

You'll create a page heading for the Smith work order that contains the
name of the job and the date. The page footing will contain the company
name (Remodeling, Inc.) on the left, the words Work Order in the center, and
the page number on the right.

Inserting a Header

1. Move the cursor to the top of the file (but stay below the ruler line).
2. Choose Layout/Header/All Pages; this tells Sprint to print a header on

every page except the first:
Press: FlO LHA

Sprint inserts the following commands into your document:
BEGIN HEADER

END HEADER

3. With the cursor between the BEGIN and END HEADER commands,
enter the job name:

Type: Smith Job (Cabinets)

4. Choose Insert/Wide Space (Spring) to force the rest of the header (the
date) against the right margin, and then type the date:

Press: FlO IWto force what you type next to the right margin
Type: May 2, 1988
Press: Enter

5. Immediately below the END HEADER command, create a header for
the first page with Header/Title Page:

Press: FlO LHT
Sprint inserts the following commands into your document:

Chapter 7, Advanced Tutorial 41

BEGIN HEADERT

END HEADERT

6. Enter the same header information you entered for Layout/Header/All
Pages in order to get a first page header identical to the one that appears
on all the other pages.

Inserting a Footer

1. On the line directly below the END HEADERT command, choose
Layout/Footer / All Pages and proceed as you did to insert a header (see
above).

Press: F10 LFA

Sprint inserts the following into your document:
BEGIN FOOTER

END FOOTER

2. Enter the company name, Remodeling, Inc., between the BEGIN and
END FOOTER commands, choose Insert/Wide Space (Spring), and
enter the words Work Order:

Type: Remodeling, Inc.
Press: F10 IW to force what you type next to the right margin
Type: Work Order

3. After the words Work Order in the footer, insert another wide space with
Insert/Wide Space (Spring):

Press: F10 IW
4. Now, to insert the page number, choose Insert/Variable and choose

Page. (This insertion will force the words Work Order back towards the
center of the page. See the footer on page 11 for the way this prints.)

42

Press: F10 IV
Sprint displays the list of available variables.

Press: arrow keys to choose page
Press: Enter

Page is a variable; its value changes each time Sprint begins a new page.
When you insert the Page variable, you're telling Sprint to determine the
value of Page each time it prints a page of your file, and insert the
correct page number in the footer.

Once you choose Page, you'll see a menu that lets you pick a template
for how Sprint should print the page number (for example, in arabic
numbers, roman numerals, and so on).

Sprint Advanced User's Guide

5. Choose arabic (if you want to try a different numbering template,
choose another from the list). Sprint inserts the page variable and codes
for the template you chose.

6. On the line immediately below the END FOOTER command, create a
footer for the first page with Footer/Title Page:

Press: F10 LFT
Sprint inserts the following commands into your document:

BEGIN FOOTERT

END FOOTERT

7. Enter the same footer information· you entered for Layout/Footer/All
Pages in order to get a first page footer identical to the one that appears
on all the other pages.

8. Your header and footer commands should look like this onscreen:
BEGIN HEADER
Smith Job (Cabinets)
END HEADER
BEGIN BEADERT
Smith Job (Cabinets)
END BEADERT
BEGIN FOOTER
Remodeling, Inc.
END FOOTER
BEGIN FooTERT
Remodeling, Inc.
END FooTERT

May 2, 1988

May 2, 1988

Work Order PAGE, t="%d"

Work Order PAGE, t="%d"

9. Using the instructions provided in Lesson 8, Previewing Your Text, view
your formatted file, and verify that your header and footer lines print
correctly.

Chapter 7, Advanced Tutorial 43

The following table summarizes the tasks presented in Lesson 9:

Task

Insert a header

Insert a footer

Force text to right margin

Table 1.10: Tasks in Lesson 9

Action

Choose Layout/Header/All Pages from the
main menu. Type the text of the header
between the BEGIN and END HEADER commands
Sprint inserts. To create a header for the first
page, choose Layout/Header/Title Page.

Choose Layout/Footer/All Pages from the
main menu. Type the text of the footer
between the BEGIN and END FOOTER commands
Sprint inserts. To create a footer for the first
page, choose Layout/Footer/Title Page.

Choose Insert/Wide Space (Spring) before
you enter the text.

Insert page number variable Choose Insert/Variable, then pick page
from the list of variables Sprint displays and
choose a template for the way you want
Sprint to insert the page number at print
time.

This completes Lesson 9.

Lesson 10: Footnotes

The Footnote command (on the Style/References menu, Figure 1.7) allows
you to insert footnotes in your printed document.

44 Sprint Advanced User's Guide

failure. Sprint, of course, doesn't eliminate these situation
but it does protect your open files
<

when failures occur.<

(backup) file called SP.S
ith your changes as you ed

~. ~-Sprint
File Alt-F
Edit Alt-E

Insert Alt-I
Sprint automatically creates a swap
The file is automatically updated w
In the event of a power failure, yo
retrieved as soon as power resumes.
continue where you left off. The mo
much you typed since the last three
not much {unless your fingers never
"Working with Files," explains the
<

ur text is safe and can be ~estile Alt-T
You simply -Style-- r;· Ir."

st you can 1 Center Layout A t-L
-second paus
pause). Cha

Modify

backup file Headings
Lists

IlilI·11I'B< A! 't.'iilll" ••. miu6i11tMiIi •• m!
T ere are a variety 0 ways to ta e
and formatting capabilities. You ca
<
@BEGIN{hyphens}<
choose commands from Sprint's pop-u
<
press special "shortcut" keys to mo
or use a menu command without displ
<

advantage 0 Table
n< Figure

Graphics
Index

rReferences-I;mI~iiIBiJ._ 'Em;- X-Re erence
En note
Notes Other Format

define your own keystrokes to perform any number of word

Print Alt-P
Window Alt-W
Utilities Alt-U
Customize Alt-C

Quit Alt-Q

t.

rrocessini functions<
;' .• '8;18;'."'131111".; ,. .':1,1" •• 1"11.1'_'1'11

Figure 1.7: The References Menu

When you choose Style/References/Footnote, Sprint inserts BEGIN and
END FNOTE commands in your file and positions your cursor between
them. Just type the text of the footnote between the BEGIN and END com­
mands. When the Sprint formatter encounters a Footnote command in your
file, it automatically assigns a number to the footnote and prints the
number in small, raised type. At print time, the text of the footnote appears
beneath a line drawn across the bottom of the page. If the footnote refers to
something in a table, it will print at the end of the table instead of at the
bottom of the page. If your printer doesn't support a small font, Sprint
prints the number in plain text; if your printer can't perform vertical
microspacing, Sprint places the number one-half line above the text to be
referenced.

It seems a little strange to see footnote text in the middle of your other text
onscreen, but you can get an idea of how a printed table footnote looks on
page 11. A footnote in regular text looks the same, but occurs at the bottom
of the page. "

Note: If you want Sprint to print references at the end of the document
instead of on the current page, choose Endnote or Note from the References
menu instead of Footnote. Like Footnote, the Endnote command prints a
small, raised number in the text; instead of printing the reference text at the
bottom of the current page, however, Endnote prints the text and number
of the reference at the end of the document, on a Notes page. The Note com-

Chapter 1, Advanced Tutorial 45

mand doesn't print a reference number in text or on the Notes page; it
simply prints a note at the end of the document. This is useful when
constructing bibliographies or other unnumbered types of references.

If you'd prefer your footnotes to be referenced by an asterisk (*) in the text
and at the bottom of the page instead of by a number, you can use the
Notes command to get /I star" notes. This looks the same as a footnote
created with the Footnotes command, except that asterisks are used instead
of numbers. The first "star" note on a page will have one asterisk, the
second will have two, and so on.

Note: You can place notes at the end of each chapter rather than at the end
of the document-just choose Style/Other Format, type Place Notes, and
press C for Command. This only works for notes.

Practice

In this lesson, you'll insert a footnote at the end of the Drawer Slides line of
the Required Materials for Smith Job table, after the words 10 pair.

Creating a Footnote

1. Move the cursor to the end of the Drawer slides line of the Required
Materials for Smith Job table; your cursor should be at the end of the
word pair.

2. Choose Style/References/Footnote:

Press: F10 SRF
Sprint inserts BEGIN and END FNOTE commands and places the
cursor between them.

3. Enter the text of your footnote:

46

1rY1?e: Johnny's Hardware has the best price.

Because the item the footnote is referencing occurs in a table, the
footnote will appear at the end of the table instead of at the bottom of
the page.

Sprint Advanced User's Guide

The following table summarizes the task presented in Lesson 10:

Table 1.11: Tasks in Lesson 10

Task Action

Insert a footnote Choose Sgrle/References/Footnote from the main
menu and enter the text of your footnote between the
BEGIN and END FNOTE commands.

Insert an endnote Choose Style/References/Endnote and enter the text
of your endnote between the BEGIN and END
ENOTE commands.

Insert a "star" note Choose Style/References/Note and enter the text of
the note you want referenced with an asterisk (*)
between the BEGIN and END SNOTE commands.

This completes Lesson 10.

Lesson 11: Cross-References

If you previewed your file on screen, you've seen that Sprint automatically
replaces certain commands, such as tables, figures, headings, and footnotes,
with numbers. This ability is extended to let you cross-reference any
numbered element created with Sprint. For example, you can reference
section, table, and figure numbers without knowing the number Sprint will
assign when it prints your file. Suppose that, in the SUPPUERS section of
your file, you want to cross-reference the Required Materials for Smith Job
table you created. The SUPPUERS section might read:

Each company listed below can provide some or all of the materials
listed in Table

You could, of course, enter 1 after the word Table, since it's the only table in
your file. If you happened to insert one or more tables above it, though,
you'd have to go back and change your table reference. This "hard-coding"
scheme leaves a lot of room for error in a large document, and makes
maintaining a document a lot more work. That's why Sprint provides
cross-reference (X-Reference) commands. These commands let you make
"soft references;" that is, tag names (which you make up) are coded in the
file near the information you want to reference, such as your table. When
you want to reference an item, you refer to the tag, and let Sprint fill in the
correct number. That way, if you add or delete a table or figure, your
references will always be correct!

Chapter 7, Advanced Tutorial 47

Practice

This is a simple exercise to help you understand cross-referencing. Don't
worry if it's still a little confusing when you're through with this exercise;
after you use these commands a bit, you'll see their effect.

Since you're going to reference the Required Materials for Smith Job table in
the SUPPUERS section, you need to define a tag for this table.

Defining a Tag

1. Search for the TCAPTION command:
Press: F7 for the Find command

Sprint prompts Forward search:

Type: TCAPTION
Press: Enter

Note: The tag for a table or a figure must come after the caption, or else
the count that Sprint takes to cross-reference the table or figure number
will be wrong.

2. At the end of this line, insert a new lihe and choose the Style/X-
Reference/Define a Tag command:

Press: End to reach the end of the line
Press: Enter to insert one line
Press: F10 SXD

Sprint prompts Name for new tag:

What you want to do is tag the table number (which you don't know
until you print) with some unique word you'll remember, like materials.
That way, when you want to cross-reference the table number, you can
reference the tag you defined. When you print your file, Sprint will
automatically replace the references with the actual numbers of the
items you tagged.

3. Use the word materials as your tag and tell the formatter that what
you're referencing is a table:

48

Type: materials=table
Press: Enter

The =table part of the command is necessary for Sprint to realize you're
tagging a table and number it accordingly. (If you were tagging a figure
instead, you would have typed materials=figure.)

Sprint Advanced User's Guide

Referencing a Tag

1. Search the file for the the SUPPUERS heading, cursor down one line,
insert a blank line by pressing Enter, and enter the introductory sentence:

1rJ1?e: Each company listed below can provide some or all of
the materials listed in Table

Leave a blank space after the word Table. Don't press Enter yet. You're
going to insert a cross-reference there.

2. You now want to tell Sprint which table to reference. To do this, choose
Style/X-Reference/Reference a Tag and tell Sprint the name of the tag
you want to reference (the tag you defined for the table):

Press: F10 SXR
Sprint prompts Tag to reference:

1rJ1?e: materials
Press: Enter

Sprint then displays the Reference By menu. If you choose Page
Number, Sprint inserts the page number on which the tagged text
appears when it prints your file; if you choose Assigned Number, Sprint
will insert the actual number assigned to the tag. In this example,
choosing Assigned Number will insert the number Sprint assigns to
your table.

3. Choose Assigned Number:
Press: A for Assigned Number

Sprint inserts a "V character in front of the materials tag you specified,
and a "N at the end of it. You can see this by pressing Alt-Z(show hidden
control codes}.

4. Type a period (.) to end the sentence, and then press Enter.

That's all there is to it.· Use a tag to identify something you want to cross­
reference. Reference the tag by name when you want to refer to a tagged
item.

If this still doesn't seem crystal clear, don't worry. When you print or
preview your formatted text, you'll see the effect of your Define a Tag and
Reference a Tag commands.

Chapter 7, Advanced Tutorial 49

The following table summarizes the tasks presented in Lesson 11:

Task

Define a tag

Reference a tag

Table 1.12: Tasks in Lesson 11

Action

Choose Style/X-Reference/Define a Tag from the main
menu. Enter the name of the tag (a made-up reference
word), an equal sign (=), and toe Sprint item you're
tagging; the 1atter can be a table, a figure, a page, a
chapter, an appendix, etc.

Choose Style/X-Reference/Reference a Tag from the
main menu. Enter the tag name of the thing you've
defined, then press either P for Page Numoer or A for
Assigned Number (use Page Number only for page
references, Assigned Number for anything else).

This completes Lesson 11.

Lesson 12: Correcting Spelling

Sprint's spelling utility compares the text in a file with the words in Sprint's
built-in dictionary. Sprint can check the spelling of words as you type, or
when you've completed a document. You can check the spelling of a single
word, a marked block, from a specific point to the end of the file, or your
entire file. You'll find the spelling commands on the Utilities / Spelling
menu (Figure 1.8).

50 Sprint Advanced User's Guide

<
Just choose the typestyle of your choice from the menu. The
entire block changes attribute (for example. if you choose
Underline on a monochrome monitor. the text is underlined
onscreen; on a color monitor. the text appears in a different
co10r).<
[• 1 • 2 • 3 • 4 • 5 • 6
<

r--Sprint---
File Alt-F
Edit Alt-E

Insert Alt-I
Typestyle Alt-T
Style Alt-S
Layout Alt-L

If you change the typeface of a block that is already in anotl------I
typestyle (other than normal text). Sprint will try to use bo Print Alt-P
typestyles (if your printer supports the~tilities--- Window A1t-W
hav Spelling _Ilili. ,." III-Dili-i"M
cho Word Hyphenation Customize Alt-C
<
You
sty

Block Thesaurus A1t-Fl 1------1
File Glossary Quit Alt-Q
Rest of File 1-------1-------'

Sim 1-------------1 Arrange-Sort
sel Last Bad Word Line Drawing
< Every Bad Word Ctl-Fl 1-------1
If 1-------------IPotpourri
100 AutoSpe1l OFF QuickCard
imm Main Dictionary AMERICAN.LEX Macros if
you User Dictionary USER.DIC I-------Iys
it DOS Command

* I ns"C:..:......:==---JEe ••• Ij.lDrflf;.-.IADIO ... \RASPBERR\USERGYD\CH6.UG

Figure 1.8: The Spelling Menu

If you want Sprint to check your spelling as you type, set AutoSpell to On.
Whenever you type a word that's not in Sprint's dictionary, you'll hear a
beep. If AutoSpell is On, you can use the Last Bad Word and Every Bad
Word commands to search for spelling errors that were recorded as you
typed.

Note to two-floppy system users: If the dictionary files you need in order
to use the Sprint speller or thesaurus are not on your Program Disk, Sprint
will prompt you to remove the Program Disk from Drive A and insert the
disk that contains the files. When you've finished correcting spelling or
investigating synonyms, replace the Program Disk. Unfortunately, you
cannot use AutoSpell mode on a two-floppy system.

To check a word, a block, or your entire file, choose Utilities/Spelling, and
then select the text you want to check (for example, the current word, block,
file, and so on). Once you choose a command, Sprint displays the first
unknown word it encounters, provides a list of similarly spelled words,
and allows you to choose from five options:

Add to Dictionary Adds the highlighted word to Sprint's dictionary, so
it won't be considered a misspelled word.

Replace With Lets you retype the word correctly, and then inserts
the correctly spelled word in the file.

Chapter 7, Advanced Tutorial 51

Lookup

Skip Once

Ignore

Lets you choose the desired word from a list of
alternate similarly spelled words.

Ignores the spelling this time only.

Ignores this word throughout the file.

Note: If you wish to stop the spelling checker, press Esc at any time, rather
than choosing one of the five options.

Practice

Before printing your final document, you will want to make sure that
everything is spelled correctly.

Checking Your File's Spelling

1. If you have a two-floppy system, remove the Program Disk from Drive
A and replace it with the Spell Disk.

2. Choose Utilities/Spelling/File to tell Sprint you want to check the
entire file:

Press: F10 USF
Any words Sprint doesn't recognize (words not in the Sprint dictionary)
will now be brought to your attention, one at a time, and you'll see the
options listed above. When you are finished correcting your document,
be sure to save your file.

The following table summarizes the task presented in Lesson 12:

Table 1.13: Task in Lesson 12

Task Action

Spell-check a file Choose Utilities/Spelling/File from the main menu

This completes Lesson 12.

Lesson 13: Logging Error Messages

As we mentioned in Lesson 8 (beginning on page 37), Sprint displays an
error message on the screen whenever it detects an error during formatting,
and will not print the document until you correct the error. For example, if
you accidentally delete an END HEADER command and try to print the
file, Sprint displays a message like this:

52 Sprint Advanced User's Guide

annual.rpt line 11 Error: Begin Header on line 8 missing End

Before Sprint will print your file, you'll need to edit your file and add the
missing command.

Sprint may also display warning messages during formatting. These are
different from error messages because Sprint will continue formatting and
print your file if it doesn't find an error message along the way. Warning
messages occur if Sprint can't do what you wanted, but can "work around"
the problem to let you print. For example, many commands in the
STANDARD.FMT file are set up so that when you print on a fancy printer
(like an Apple or HP laser printer), Sprint will use different fonts and/or
typestyles. If you're printing a draft on a printer that can't support this type
of formatting, Sprint will display a warning message, like this:

\SPRINT\standard.fmt line 8 Warning: Printer does not have 'Times' font.

This means that a command you entered on or near line 8 calls for Sprint to
print the text in the Times font, but your currently selected printer can't
print that font. Sprint ignores the font change part of the command and
prints the text in a font supported by your printer. When you print your
document on a different, more capable printer, these warnings will no
longer appear.

When you choose Log Errors to File from the Print/Advanced Options
menu and set it to Yes, the formatter saves all error and warning messages
to a file with the same name as the file you're formatting; it adds a .LOG
extension to the error-log file name to distinguish it from your text file.
When you choose this option, you don't have to check the onscreen display
of error messages and manually note the location and nature of each error;
you can display the log file in one window and the file you're correcting in
another window, and switch between the two (using Shift-F6), to correct all
the errors listed in the .LOG file.

If you're formatting a large document, or a heavily formatted file, you may
end up with more formatting errors than you expect. Don't worry; it's quite
common.

Practice

In this lesson, you'll ask the formatter to log errors to a file.

Logging Errors to a File

1. Make sure to set Print/Advanced Options/Log Errors to File to Yes:
Press: F10 PAL

Chapter 7, Advanced Tutorial 53

When toggled to Yes, this print option logs all formatter messages to a
file on disk.

2. Print the file:

Press: Esc to remove the Advanced Options menu
Press: G to choose Go

Sprint writes the file to disk, and then begins formatting. If it finds any
error messages, it wiU display them on the screen and continue
formatting. When it completes formatting, you'll see a message saying
to press any key to continue.

3. Press any key and then open a window:
Press: Shift-F3 to open a window

4. Now open the log file:
Press: Ctrl-F3

Sprint prompts File to open:

Type: Smith .log

Both the SMITH.SPR and SMITH.LOG files should be displayed on the
screen.

5. With the cursor in the SMITH.LOG window, search for the word Error.
Note the line number listed in the error message.

6. Move to the other window and search for the line number listed in the
error message:

Press: Shift-F6 to move from one window to the next
Press: F9 to choose Jump to Line
Type: the line number of the error message at the prompt

In most cases, the error appears on the line number displayed in the
error message. There are times, though, when Sprint approximates the
line on which the error appears. If you can't find an error on this line,
begin looking backward for the missing or offending command.

7. Correct the error. If you have other errors in your file, repeat the steps
above for each error listed in your error log file.

8. If no errors were found, try making a couple deliberately. Delete the
command END HYPHENS from line 28, and deliberately misspell "inches" in
the RESERVE 2.5 inches command on line 50 by deleting a "c" so it reads
1/2.5 inces." Go ahead and print your file with the errors logged to a file
called SMITH.LOG (press F10 PAL, then PG). When you open the
SMITH. LOG file, you'll see these error messages:

54

SMITH.SPR line 50 Error: Unknown unit of measure 'inces' .
SMITH.SPR line 114 Error: Begin Hyphens on line 17 missing End.

Sprint Advanced User's Guide

Note: An error message saying that a format doesn't have an end or a
beginning is commonly caused by accidental deletion of a command or
by formats nested incorrectly (usually, this means the end format com­
mands are not listed in reverse order of the begin format commands, as
they should be).

9. Undo the experimental errors you created in the last step.

10. Now that you've checked for formatting errors and corrected them,
you're ready to print your file. You don't have to log error messages to a
file each time you want to print, but it's a good habit to get into. If Sprint
finds any errors, you'll have an accurate list to work from; if your file
doesn't contain any errors, Sprint will begin printing it automatically.

The following table summarizes the tasks presented in Lesson 13:

Task

Log errors to a file

Strip errors from a file

Table 1.14: Tasks In Lesson 13

Action

Choose Print/ Advanced Options/Log Errors to
File and toggle to Yes. Sendthe file to the printer
or to a file as you normally do.

Open the .LOG file Sprint creates. Read the error
message. Switching oack to the file you were
trying to print (preferably in an open window),
jump to the line number referenced in the error
message and correct it. Repeat the correction
process for each error message in the .LOG file.

This completes Lesson 13.

Lesson 14: Paginating and Adjusting
Page Layout

Sometimes a page of text doesn't end the way you'd like it to. For example,
you might end up with four lines of a paragraph at the bottom of one page,
and the last line of that paragraph at the top of the next page. Or, let's say
the formatter can only print step 1 of a procedure before a page becomes
full and has to place the remainder of your list on the next page. You can
always correct these problems after you print your file, but there's an easier
and faster way to determine where Sprint is going to break your
pages-the Print/Paginate command, which you used in the Quick Start
Tutorial.

Chapter 7, Advanced Tutorial 55

Paginate saves and formats your file, checks for all page breaks, and then
displays a solid bold line in your file to indicate each automatic page break.
If these page breaks are unacceptable, use the commands on the Layout/
Page Breaks menu to override the formatter page breaks and use Paginate
again until you're satisfied with the results.

If you aren't satisfied with a formatter page break, you can edit your file
and override the automatic page break. The commands on the Layout/
Page Breaks menu let you group text on the page and specify where the
formatter should break a page.

Insert (unconditional) Inserts a hard (unconditional) page break in
the file, and also displays a solid bold
underline to indicate a page break. Text
following this command will appear on the
next page.

Conditional Page Break Specifies where Sprint can break the page if
it has to.

Reserve Space Inserts a specified amount of blank space.

Blank Page{s) Inserts the specified number of blank pages.

Gr<~up Together on Page Keeps selected text together on a page.

Keep with Following Text Prohibits Sprint from breaking the page at
the location of this command.

Widow-Orphan Control Specifies the minimum number of lines that
may appear at the bottom or top of the page.

There is a disadvantage to the Insert (unconditional) command. If you later
add or delete text in your file, the new page you inserted may no longer be
appropriate. For example, you may have inserted an Insert (unconditional)
command so that a numbered list begins at the top of a new page. If you
later add a few lines of text before the text of this list, and it fills the page,
Sprint would begin a new page automatically, see the Insert
(unconditional) command, and then insert a new page before printing your
list. You'd end up with a blank page between your added text and the text
of your list. Then you'd have to go back to your file, remove the Insert
(unconditional) command, Paginate the file again to see if any of your other
changes, additions, or deletions affected the page breaks, and then print
your file.

If you are producing a lengthy document and/ or periodic drafts of a
"growing" document (like a specification or a manual whose content is
continually: changing), you should stay away from the Insert
{unconditional} command and use either Group Together on Page,

56 Sprint Advanced User's Guide

Conditional Page Break, or Keep with Following Text. Group Together on
Page keeps text together, no matter where it appears during formatting; it
tells Sprint that the text within this format must appear together, on the
same page, regardless of any page break or formatting commands.

For example, if you select the text of a numbered list and choose Layout/
Page Breaks/Group Together on Page, and the entire list can't fit on the
current page, Sprint automatically begins the list on the following page. If
you later add or delete text, and your page breaks are affected, you don't
have to worry about unnecessary Insert (unconditional) commands; Sprint
will always group that text on one page (unless the group's too large for the
page, in which case you'll get a warning message when you format)

You can also use the Conditional Page Break command. This allows you to
specify where Sprint can break a page if necessary. To enter a conditional
page break, choose Layout/Page Breaks/Conditional Page Break from the
main menu and press Enter.

Practice

Since we don't know what type of printer you're using, and where your
page breaks occur, we can't easily advise you on where to insert any of
these commands. Try changing the default page breaks in your file, using at
least one of the commands listed above, before going on to the next lesson.

The following table summarizes the tasks presented in Lesson 14:

Table 1.15: Tasks in Lesson 14

Task Action

Override automatic page breaks Choose a command from the Layout/
Page Breaks menu.

This completes Lesson 14.

Lesson 15: Conditionally Hyphenating Text

Sprint's Hyphenation menu allows you to specify discretionary hyphen­
ation within your file. When you insert a discretionary (soft) hyphen, Sprint
will only break a word into two hyphenated parts where necessary to
justify the line. If the line justifies well without breaking any words, Sprint
ignores the discretionary hyphen.

To use a hyphenation command choose Utilities/Hyphenation from the
main menu. Sprint displays the Hyphenation menu (Figure 1.9).

Chapter 7, Advanced Tutorial 57

Note to two-floppy system users: If the dictionary files you need to use
commands on the Hyphenation menu are not on your Program Disk, Sprint
will prompt you to remove your Program Disk from Drive A and replace it
with the disk that contains the files. When you've finished using commands
from the Hyphenation menu, replace the Program Disk.

failure. Sprint. of course. doesnlt eliminate these situation Sprint
but it does protect your open files when failures occur.< File Alt-F
< Edit Alt-E
Sprint automatically creates a swap (backup) file called SP.S
The file is automatically updated with your changes as you ed Insert Alt-I
In the event of a power failure. your text is safe and can be Typestyle Alt-T
retrieved as soon as power resumes. You Simply restart Sprint Style Alt-S
continue where you left off. The most you can lose depends on Layout Alt-L
much you typed since the last three-second pause. In,~o~t~he~r~w=o~I-;::::;:::--7,:-;;:-1
not much (unless your fingers never pause). Chapter Id'""111 Print Alt-P
"Working with Files. 11 explains the backur--Utilities Window Alt-W
< II ~ relling Sh-Fl IggU"".".
",".lil§i§m .. W rrhenation 3Ml6i.... Customize Alt-C

<
press special "sL...--------~Potpourri
or use a menu command without displaying QuickCard
< Macros
define your own keystrokes to perform anl--------I
processin~ functions<
a d'~1N:tjDjHi~'"Mll""Jt1lIh •

DOS Command

Figure 1.9: The Hyphenation Menu

40 of 593 Co114

Word Lets you conditionally hyphenate a word
with the cursor placed anywhere on it.

Block Lets you conditionally hyphenate a block
(select it first).

File Lets you conditionally hyphenate a file,
starting at the top.

Minimum Word Length Lets you change the minimum number of
characters required before a word may be
hyphenated. The default is 8. Sprint will
prompt you for the new minimum word
length.

Space Allowed Lets you specify the widest space allowed
between characters on a line to justify that
line. The default is 4.

58 Sprint Advanced User's Guide

When you choose Hyphenate/File, Sprint checks the file, beginning at the
top, for words that might need hyphenation. Each time it finds a word to
hyphenate, it displays a menu of hyphenation choices-to choose one, just
highlight it and press Enter.

Practice

For this lesson, you'll specify a minimum word length of six characters, set
the space allowable between words to two, and conditionally hyphenate
the entire file.

Hyphenating Your File

1. Change the minimum word length by choosing Utilitites/Hyphena­
tion/Minimum Word Length:

Press: F10 UHM
Sprint prompts Shortest word length to be hyphenated:

(If you have a two-floppy system, and the dictionary files you need are
not on your Program Disk, Sprint will prompt you to insert the disk that
contains the files).

2. Specify six characters as the shortest word to be hyphenated:

Type: 6
Press: Enter

Now Sprint will look at all words that contain at least six characters and
decide whether it should insert a conditional hyphen.

3. Change the amount of space that Sprint can add to a line when
justifying it. Choose Space Allowable from the Utilities/Hyphenation
menu:

Press: S for Space Allowable
Sprint prompts Widest allowable justification space:

4. Tell Sprint that, when it justifies a line, it can only add two extra space
characters between words. If Sprint needs to insert more than two space
characters between words to justify the line, it will "stretch" the
characters within one or more words on the line:

Type: 2
Press: Enter

5. Have Sprint hyphenate the entire file. Choose the File command from
the Hyphenate menu:

Press: F
Press: Enter

Chapter 7, Advanced Tutorial 59

Sprint will read the entire file, conditionally hyphenate the text (all
words with at least six characters that also appear near a line break),
and insert a maximum of two extra spaces between words (where
necessary) to justify the right margin.

The following table summarizes the tasks presented in Lesson 15:

Table 1.16: Tasks in Lesson 15

Task Action

Insert a discretionary hyphen Choose Utilities/Hyphenate/Word and
pick a hyphenation option from the list
Sprint displays.

Hyphenate a block

Hyphenate a file

Select a block, then choose Utilities/
Hyphenate/Block.

Choose Utilities/Hyphenate/File.

Change the number of spaces Choose Utilities/Hyphenate/Space
Sprint can insert into a lIne Allowable and enter the desired
to justify it number at the prompt (default is 4).

Change the length of the
shortest word Sprint can
hyphenate

This completes Lesson 15.

Choose Utilities/Hyphenate/Minimum
Word Length and enter the desired word
length at the prompt (default is 8
characters).

Lesson 16: Modifying Formats

Now that you've become familiar with some of Sprint's advanced func­
tions, you're ready to build on format skills.

Typically after printing you will want to change some of your text within
formats. You may wish to change the spacing of text within a format, force
Sprint to print a table at the top of a page, or change the justification of text
in a list. Appendix D in this book lists all the parameters you can add or
change in a format command. These parameters affect a chosen format
only; that is, if you modify a particular Numbered format, only the text in
that format will be affected. Text within other Numbered formats will not
be affected.

When you choose the Style/Modify command, Sprint begins searching
backward (toward the top of the file) for a BEGIN command (for example,
BEGIN TABLE, BEGIN FIGURE, and so on). As soon as it locates a BEGIN
command, it displays the Modify menu. This menu asks if you want to

60 Sprint Advanced User's Guide

modify This Format or the Previous Format. If you choose This Format,
Sprint prompts for the parameters you want to add; if you choose Previous
Format, it continues the search for a BEGIN command.

Practice

In this lesson, you're going to modify two formats. First, you're going to
modify the Numbered format in the FINISHING INSTRUCTIONS section.
By default, Numbered inserts a blank line between each paragraph within
the format. Let's modify the spread (distance) between paragraphs so there
are no blank lines; that is, you want the list to print single-spaced.

The second format you're going to modify is the Table format in the
MATERIALS section. By adding the Above parameter, you can force Sprint
to print the table at the top of the page.

Modifying Formats in Your File

1. Go to the end of the file and choose Style/Modify:
Press: Ctrl-PgDn to reach the end of the file
Press: F10 8M

Sprint searches backwards in the file and stops at the first format com­
mand it encounters, BEGIN NUMBERED. displaying the This Format or
Previous Format choices.

2. Choose This Format:
Press: T for This Format

Note: If Sprint stops at any other BEGIN command, choose Previous
Format until Sprint finds BEGIN NUMBERED. Then choose This
Format.

3. Specify single-spacing when Sprint prompts Modify by adding:

Type: spread 0
Press: Enter

Sprint automatically adds this parameter to the BEGIN NUMBERED
command line.

4. Choose Style/Modify again. After BEGIN NUMBERED, Sprint will find
the BEGIN FNOTE command. You don't want to modify this format, so
choose Previous Format.

5. When Sprint finds BEGIN TABLE, choose This Format and add the
following parameters:

Type: above I spread 0
Press: Enter

Chapter 7, Advanced Tutorial 61

The above parameter tells Sprint to print the table text at the top of the
page. The spread 0 parameter specifies that the table should print
single-spaced.
You can add any number of parameters, as long as you separate each
parameter with a comma.

6. To see the effect of your format changes, preview the file on your screen
or go on to the next lesson and print the final document.

Your file should look like Figures 1.10 and 1.11 at this point:

62 Sprint Advanced User's Guide

+ --- +
[T 1 2 3 4 5 6]L 7
+ --- +
BEGIN HEADER
Smith Job (Cabinets)
END HEADER
BEGIN BEADERT
Smith Job (Cabinets)
END HEADERT
BEGIN FOOTER
Remodeling, Inc.
END FOOTER
BEGIN FOOTERT
Remodeling, Inc.
END FOOTERT

SECTION TASK

BEGIN HYPHENS

Work Order

Work Order

Remove the existing cabinets and frames.

Construct new 3/4" face frames.

May 2, 1988

May 2, 1988

PAGE, t="td"

PAGE, t="'d"

Build replacement cabinets, using standard 3/4" birch and 1/4"
birch veneer facing.

Apply stain number 531 and satin finish.

Install the new cabinets.
END HYPHENS

SECTION TIME ESTIMATE

A job this size typically requires three to four working days.
If we start on Monday, June 30, we should be able to complete
the job by Thursday, July 3. Our contractors will arrive at
approximately 9:00 a.m. each day and will work until 4:00 p.m.

SECTION CABINET STYLE

BEGIN DESCRIPTION
Face frames Simple, edges chamfered, built to suit kitchen
plan signed off by owner

Doors 1/2" plywood, exterior covered with 1/4" birch
veneer, edges routed with Bit 132
END DESCRIPTION

BEGIN FIGURE
RESERVE 2.5 inches
CAPTION Smith Kitchen Plan
END FIGURE

Figure 1.10: Your New Work Order File, Page 1

Chapter 7, Advanced Tutorial 63

64

SECTION MATERIALS

BEGIN TABLE, above, spread 0
TCAPTION Required Materials for Smith Job
TAG materials=table
+ --- +
[1 2 T 3 4 T 6]L 7
+ --- +
TABSET 1.75 inches, 3.5 inches

Material

3/4 n face frames

1/ 4 n veneer exterior

Type

solid birch

birch

Drawer slides 502-436
hardware has the best price.END FROTE

Drawer pulls

Hinges
END TABLE

1 n oak shaker knobs

Brassware 237

Quantity

25 each

2 sheets

10 pairBEGIN FROTEJohnny's

10 each

12 each

+ --- +
[T 1 2 3 4 5 6 IL 7
+ --- +
SECTION FINISHING INSTRUCTIONS

BEGIN NUMBERED, spread 0
Sand all face frames with 100 sandpaper.

Sand all exterior surfaces with 150 sandpaper.

Sand both face frames and exterior surfaces with 220 sandpaper.

With a damp cloth, dampen all exterior surfaces.

Wait until the surfaces have dried, and then sand them with 400
sandpaper.

Remove all dust from all surfaces.

Apply stain number 531 on all surfaces. Let dry overnight.

Apply satin finish on all surfaces. Let dry 4 hours.

Buff with soft cloth.
END NUMBERED

SECTION SUPPLIERS

Each company listed below can provide some or all of the
materials listed in Table MATERIALS.

Johnny's Hardware, 546 El Camino Norte

Builder's Delight, 116 Calico Alley

Handle Haven, 1219 Main Street

The Lumberyard, 26 South Elm

978-1122

987-3456

987-6543

986-1234

Figure 1.11: Your New Work Order File, Page 2

Sprint Advanced User's Guide

The following table summarizes the tasks presented in Lesson 16:

Table 1.17: Tasks in Lesson 16

Task Action

Modify a format Choose Style/Modify, press P for Previous
format or T for This format, and enter the
parameter you want at the prompt.

Single-space text in a format

Print a format at the top
of the page

This completes Lesson 16.

Choose Style/Modify and enter the
parameter spread O.

Choose Style/Modify and enter the
parameter above.

Lesson 17: Printing a Final Document

Now your file is formatted exactly the way you want it, so you can print
your final document. If you've been previewing and printing your text with
an alternate printer, now is the time to choose your most capable printer.
Once you've done this, follow the steps below.

1. Assuming you've chosen your best printer for this job, display the Print
menu.

2. Check the Destination command:
Printer Means that Sprint will format the file for output to your

currently selected printer. If you want to change to a
different printer, choose Current Printer from this menu,
and then choose the printer you want to use.

File Means that Sprint will format the file as if it were going to
print it on your currently selected printer, but will write the
formatted text to a file on disk instead of to the printer.
When you choose Destination FILE, Sprint prompts you for
a file name. If you don't enter a file name, Sprint will auto­
matically write the formatted text to a file with the same
name as your text file, but will append the .PRN extension.
For example, if you format the file MYMEMO, Sprint will
write the formatted text to a file called MYMEMO.PRN.

The benefit to Destination FILE is that you can print the formatted file
, with the DOS PRINT command. Why do this? Because a DOS PRINT

command doesn't "tie-up" your machine while it's printing. Once you

Chapter 7, Advanced Tutorial 65

enter a DOS PRINT command, you return to the DOS prompt, so you
can enter another command.
For now, if Destination doesn't specify PRINTER (the default), toggle
the command from FILE to PRINTER.

3. Choose any options you'd like to include (for example, Number of
Copies, Log Errors to File, and so on).

4. Choose Go. Sprint begins formatting your file, and then outputs the
formatted version to the printer. Since you chose numbered headings,
Sprint will automatically print a table of contents at the end of the
document. You'll also get a list of figures and a list of tables; the Figure
and Table captions cause Sprint to create and print these lists.

5. If you see anything you'd like to change on the finished work order (like
a page break, spacing, tab stops, and so on), go ahead and edit the file
and then reprint it.

6. When the file completes printing, give yourself a well-deserved pat on
the back. You've just mastered the most comprehensive and flexible
word-processing system around!

66 Sprint Advanced User's Guide

c H A p T E

Advanced Formatting: Tips, Tricks,
and Techniques

R

2

This chapter expands on the basic formatting commands explained in the
"Basic Formatting" chapter of the User's Guide and explains Spoofs more
advanced features. Please note that you must be an advanced user (working
with the advanced user interface) to display and select some of the
commands explained in this chapter. To load the Advanced user interface,
choose Customize/User Interface/Load and then choose SP ADV from the
list of user interfaces.

Note: The Advanced Tutorial in this manual (Chapter 1) provides hands-on
practice using several commands in this chapter.

As an advanced user, you'll learn about·the following formatting features:

Precise Ruler-Line Settings
You can use a variety of dimensions to specify indents from the left and right
margins, the initial (first line) indent of paragraphs following the ruler, and
tabs stops set on the ruler. For example, you can use inches, picas,
centimeters, or character column to set indent values and tab stops. In
addition, you can tell Sprint to print text in a particular font and type size.

On page 71, we explain how to specify precise settings on the ruler and list
the various dimensions you can use.

Document-Wide Layout
You'll learn how to specify page size and set up global left and right margins
(ruler lines are relative to these margin settings), top and bottom margins,
and margins for page headers and footers. This discussion begins on page
74.

Chapter 2, Advanced Formatting: Tips, Tricks, and Techniques 67

Headings
Sprint's Headings menu lets you select from a variety of heading formats.
There are numbered headings, which automatically cause Sprint to
produce a table of contents, and unnumbered headings, which visually
separate headings from text but don't generate a table of contents. Heading
formats also vary in type size and type style. For more information about
heading formats, please see page 78.

Figures and Tables
Sprint's Figure and Table commands prompt for an optional caption, and
automatically keep the text within the format together on a page. Sprint
automatically numbers figures and tables and produces a list of figures and
a list of tables at the end of the printed document. The "Figures and Tables"
section (beginning on page 85) explains how to create and format figures
and tables in Sprint files.

Multiple Columns
You can specify the number of columns you want to print and the spacing
between the columns. Sprint supports snaking columns, which means that
the formatter prints as much text as it can in one column and then begins
printing the next column. You type the text in a single column (between
normal ruler-line margins), but when you print, Sprint will automatically
format the text in the specified number of columns. See page 86 for
information about multiple columns.

Footnotes, Endnotes, and Notes
Footnotes are automatically numbered and printed at the bottom of the
current page. Endnotes are formatted in the same way as Footnotes, but
instead of printing the text of the note on the current page, Sprint prints the
endnotes together at the end of the document. Slighty different from
Footnote, the Notes command prints asterisks instead of reference
numbers. We begin the discussion of these references on page 87.

Indexing
Sprint's Index commands let you quickly select words to be included in the
index. You can mark text to be indexed, add text to be indexed but not
printed as part of the text, include see also references, and specify a range of
pages for an indexed entry. Page 88 begins the description of Sprint's Index
commands.

File Linking
When creating large documents, you may find it more convenient to create
several smaller files and then merge them when you format and print the
document. This allows more than one person to work simultaneously on a
document. For information on how to link Sprint files, see page 90.

68 Sprint Advanced User's Guide

Centered Text
There are several ways to center text on the page: vertically (between top
and bottom margins) and horizontally (you can center a line, a region, or
the entire file). The centered text discussion begins on page 94.

Page Breaks
Sprint performs automatic page breaks but provides commands that let
you override the default page breaks, keep text together on a page, specify
an acceptable point at which Sprint can break a page, and control orphan
and widow lines at the top and bottom of a page. On page 95, we begin the
discussion of Page Break commands.

Spacing
You can vary the spacing between lines, paragraphs, words, and even
characters. Other spacing commands let you insert a fixed amount of blank
space. Information about spacing commands begins on page 98.

Special Characters
Even though your screen may not be able to display special characters
(such as the small box that a LaserWriter Plus prints, which we use as a
bullet), you can tell the formatter which character you want printed. You
can also specify a character to repeat across the line (for example, specify a
period as the character to create leaders in a table). See page 103 for details.

Nonprinting Comments
You can annotate a file with comments and decide whether you want the
formatter to print these comments. Page 105 explains how to do this.

Cross-References
You can avoid "hard" references (like typing in See Chapter 2 or to page 45)
by using Sprint's X-Reference (that is, cross-reference> commands. If you
reorganize a document that contains these commands, your references will
automatically be corrected the next time you print. For cross-reference
information and examples, see page 106.

In discussing many of these advanced formatting commands, we make
reference to STANDARD.FMT, a file that comes with your Sprint
distribution disks. This file defines many of the formatting commands you
can use. Chapter 3 explains this file in more detail.

Other Formats
Many Sprint formats are listed on the Style and Layout menus (for
example, Lists, Headings, Figures, and Tables). There are several other
formats, though, that aren't listed. For instance, the Example format
automatically indents text one-half inch from the left margin and prints the
text in a typewriter-style font. The Quotation command automatically
indents text from both margins~ These formats affect a marked block of text.

Chapter 2, Advanced Formatting: Tips, Tricks, and Techniques 69

There are other formats that affect text at the current cursor position. For
example, the MakeTOC command creates a table of contents when you've
selected only unnumbered headings in a file. The "Other Formats" section
begins on page 125. Within this section, Table 2.7 lists and explains the
formats that affect a region of text, and Table 2.9 lists the current-position
format commands.

Format Changes
Many formats can be modified to produce a different effect. For example,
the Lists/Numbered command automatically inserts a blank line between
each paragraph of a numbered list. You can modify this format, though, to
remove the blank lines or insert more than one line between paragraphs.
You can modify any format that inserts a BEGIN command in your file. The
lengthy discussion on modifying formats begins on page 135.

Brand-New Formats
For situations where a Sprint format doesn't quite create the look you want,
you can define your own format. See page 147 for more information.

Ruler Lines, Precise Settings, and Document­
Wide Margins

Probably the most common need of an advanced user is to adjust margins
and indents. Sprint is rich in ways to do this. Before we embark on
explaining the numerous commands, here are some basic guidelines for
using margin/indent commands:

• Use the Layout/Document-Wide margin commands when you want to
change margins for the entire document. Although the ruler line won't
reflect the margin command you typed, each page will print within the
specified margins. For example, if you choose Document-Wide/Left
Margin and type 8 picas, text will begin printing 8 picas from the left
edge of the page .

• Don't use the Docu men t-Wide margin commands to change the margins for a
region of text! Insert additional rulers and either change the margins on
the new ruler(s), or use the Layout/Ruler/Precise Settings commands to
change the indent from the document-wide margin(s) .

70

• If you change the margins on a new ruler line, the margins will be
relative to the document-wide margins you set. That is, if you set a
document-wide left margin at 1 inch, insert a second ruler, and set the
left margin at column 10, text below the second ruler will begin
printing 1 inch plus 10 columns from the left edge of the paper.

Sprint Advanced User's Guide

• If you choose Layout/Ruler/Precise Settings, the indent value you
specify will be added to (or subtracted from, if you type negative indent
values) the document-wide margin. For example, if you choose
Layout/Document-Wide/Left Margin and type. 75 inches, insert
another ruler, select Layout/Ruler/Precise Settings, and set the Left
Indent to .5 inch, the text below the second ruler will begin printing
1.25 inches from the left edge of the page (.75-inch left margin plus a
.5-inch left indent) .

• Don't change the default margins on the first ruler in a file. Instead, use
the Document-Wide margin commands.

The Ruler and Precise Settings

In Chapter 8 of the User's Guide, you learned how to set and change left and
right margins, paragraph indents, justification, and tab stops. The
information in that chapter pertained to columnar settings; that is, the
instructions were for settings at a particular column on the ruler.

If your printer supports proportional-width fonts or can vary the size of
printed characters, you may want more precise settings for a document's
margins and tabs. For example, you may want to set tabs in picas or inches
rather than at a particular column number. Sprint's precise settings give you
this ability. You can use any of the dimensions listed in Table 2.1 to specify a
precise setting.

Note: For ease of use and to avoid misspelling, many dimensions have
multiple names.

Chapter 2, Advanced Formatting: Tips, Tricks, and Techniques 71

char, chars,
character, characters

cm

em, ems

en, ens

in, inch, inches

line, lines

mm

page

pica, picas

pt, pts, p,
point, points

U, unit, units

Table 2.1: Formatting Dimensions

The width of a typical character (sometimes called
an en space). Since fonts can be different sizes, this
measurement varies from font to font. This measure­
ment can only be used to indicate horizontal
distances.

Centimeters.

Horizontally, the printer unit that is equal to the
width of a lowercase m (the widest character in a
proportional-space font). The em space varies from
font to font. Vertically, an em is the same distance as
a line.

The width of a typical character. See the definition of
character above.

Inches.

Lines.

Vertically, this is the height of a single-spaced line
(usually equal to the point size of tIle current font).
Horizontally, this is the distance between the left
and right margins.

Millimeters.

The height of the paper, which is usually 11 inches.
This dimension specifies vertical distance only.

The printer unit that is equal to 12 points, or 1/6 of
one mch (there are 6 picas per horizontal inch).

The printer unit that is equivalent to 1/72 of an inch
(that is, there are 72 points per vertical inch).

Derived from the printer definition, units represent
the minimal horizontal and vertical movement of
the print head on the printer. This is useful for
special effects, but is a printer-dependent
dimension. For exampfe, on a LaserWriter, there are
300 units to an inch. Horizontal and vertical units
may be different sizes.

Note: If you don't specify a dimension as part of a parameter, Sprint will
automatically use characters for horizontal measures and lines for vertical
measures.

72 Sprint Advanced User's Guide

Precise Settings also let you

• specify the font and type size you want for text following the current
ruler

• vary the line spacing
• set a paragraph indent (first line of each paragraph is indented)
• set up a region of text so that it's all indented from the current left or

right margin

When you choose Layout/Ruler/Precise Settings, Sprint searches
backward for the first ruler it finds and then displays the Precise Settings
menu.

To Print Text in a Different Font

Choose Font. Sprint displays a list of fonts for your default printer. Pick the
font you want to use, and the formatter prints all text following the ruler in
the selected font.

Note: If you want to change the font of a word or a selected area of text, use
the Typestyle/Font command.

To Change the Size of Printed Text

Choose Size and specify the size you want for characters following the
ruler line (for example, 8 points, 2 lines, or .5 lines). Remember: 1 inch
equals 72 points in Sprint.

Note: If you want to change the size of a word or a selected area of text, use
the Typestyle/ Character Size command.

To Set Precise Indents

Choose Initial (First Line) Indent when you want to specify where the first
line of each paragraph will begin printing. For example, if you type 1 inch,
the formatter will indent the top line of each paragraph 1 inch from the left
margin. If you want all text indented from the left or right margin, choose
the appropriate command (Left Indent or Right Indent) and specify a
distance (for example, 3 picas, .75 inches, 10 cm). The changes in indents set
this way are not seen until you print your document.

Chapter 2, Advanced Formatting: Tips, Tricks, and Techniques 73

To Set Precise Tab Stops

Choose Tab Stops and type the desired location for your tab(s). If you're
setting more than one tab stop, follow each setting with a comma. For
example,

Place tabs at: 2 points, 6 picas, 12 picas

Although the screen doesn't reflect the precise settings, Sprint inserts a
special command after the current ruler. (The special command word that
appears is TABSET.) When you print the document, the formatter will
interpret the precise settings on the ruler and send the desired output to
your printer.

Note: The Layout/Ruler/Precise Settings commands affect the current
ruler only! If you want to set up document-wide margins and indents, you
must have only one ruler in your document (at ,the top) or use the
commands on the Layout/Document-Wide menu. See the following
section, "Document-Wide Layout," for details.

Document-Wide Layout

Document-wide layout refers to how Sprint will format the entire document.
The default layout is dependent on page size-the dimensions of the paper
on which you're going to print. Given a particular page size, Sprint
automatically sets up top, bottom, left, and right margins. It also presumes
that you want text to print single-spaced in a single column, with a single
blank line between paragraphs. Figure 2.1 on page 75 illustrates the default
layout for an 8.5 x II-inch page. (The figure was reduced by 60 percent to
fit into the page size of this manual.) Table 2.2 on page 76 explains each
aspect of the default page layout. This section explains how to use the
Layout/Document-Wide menu to change the default layout.

74 Sprint Advanced User's Guide

l'
Top

Margin
l' 1"

.j. Header .j.Margin .5"

Left Right
Margin Margin

1" Text 1"
+------+ (

Area
) +------+

Last line of formatted text ,
Footnote divider line 1'25"

Text of footnote l'
Footnote
.j.Area

l' i
Bottom -#-

Footer Margin .5"
Margin -l-

1"
.j.

Figure 2.1: Default Page Layout

Chapter 2, Advanced Formatting: Tips, Tricks, and Techniques 75

Top Margin

Bottom Margin

Left Margin

Right Margin

Header

Footer

Paragraph Indent

Tabs

Justification

Spacing

Font

Paper Size

Table 2.2: Page Layout Defaults

1 inch from the top of the page

1 inch from the bottom of the page

1 inch from the left edge of the page

1 inch from the right edge of the page

.5 inches from the top of the page

.5 inches from the bottom of the page

The default setting is 0, which means the first line of each
paragraph is not indented from the left margin.

A tab is preset (on the ruler line) at column five, which also
sets tabs at every fifth column (column 5, 10, 15~ 20, etc.).

Left; text is automatically aligned at the left margin. The right
margin is ragged.

Single; the printer used determines the default spacing
between lines. Normally, printers print six (singIe-spaced) lines
per inch.

All text prints in the default font (the font selected when the
printer was installed with the SP-SETUP program).

Sprint supports paper of varying lengths and widths:

.8.5 x 11 inch

• 8.5 x 12 inch

.8.5 x 14 inch

.11 x 14 inch

.A4

• Other (you specify the paper height and width)

The default paper size is 8.5 x 11. If you'll be printing on a different paper
size, choose Layout/Document-Wide/Paper Size and then select the
correct size. If the correct paper size is not listed on the menu, choose
Other. Sprint will ask for the length and then the width of the paper on
which you'll be printing.

76 Sprint Advanced User's Guide

Margins

The default page layout provides the following margins:

Left 1 inch from the left edge of the page

Right 1 inch from the right edge of the page

Top 1 inch from the top of the page

Bottom 1 inch from the bottom of the page

Offset Set to 0 (no binding margin)

Header .5 inch from the top of the page (header prints within the top
margin)

Footer .5 inch from the bottom of the page (footer prints within the
bottom margin)

These margins affect the printed page only; you won't see the default or
changed margin settings onscreen.

To change a document's left, right, top, or bottom margin, choose Layout/
Document-Wide and select the margin you want to change. Sprint will
prompt you for the new margin. As with Precise Settings on the ruler line,
you can use any valid dimension to specify the new margin.

To change where Sprint prints the header (page heading), choose Layout/
Header/Position. When prompted, specify where the header should
appear (distance from the top of the page). To change the location of the
footer (page footing), choose Layout/Footer/Position and specify the
desired location (distance is measured from the bottom of the page).

Document-Wide Parameters (Using the Style
Command)

If you choose a Document-Wide command, Sprint inserts a Style command
(not to be confused with the Style menu) at the top of the file. If you choose
more than one Document-Wide command, Sprint adds to this Style
command. A Style command specifies the document-wide formatting
parameters, like those you choose from the Document-Wide menu. Style
commands affect all text until another Style command overrides the first. A
Style command at the top of your document defines what the first ruler's
margins settings stand for; subsequent ruler settings, however, are relative
to the first ruler.

Chapter 2, Advanced Formatting: Tips, Tricks, and Techniques 77

Some document-wide formatting parameters can't be entered from the
menus per se. For example, you can format an area of text to print in a
special font, but there's no document-wide menu command to specify a
different font for the whole document. By entering a Style command at the
top of your file and modifying it with the Font parameter, you can have
your whole file print in the desired font.

You can use the Other Format command and type your own Style
command to include the parameters you need to create the desired look for
a document. You can use almost any Sprint parameter with Style
commands, but a few parameters are used only with Style. Table D.4 in
Appendix D (page 428) lists the parameters that are used only with the
Style command. Page 129 explains how to enter Other Format commands.

Headings

Commands on the Headings menu let you format the text of document
headings. Some headings are centered and print in large, bold type. Other
headings are bold and left-justified. You can also decide whether you want
numbered or unnumbered headings.

Numbered headings are those that Sprint numbers for you; you don't have
to type chapter or section numbers. Numbered headings also mean you
don't have to manually create a table of contents. Sprint keeps track of all
your numbered heading commands and prints the headings and the page
number on which each appears in the table of contents.

Unnumbered headings are formatted just like numbered headings, but are
not numbered, do not include a word indicating type of section (like
"Chapter"), and do not by themselves create a table of contents.

The following sections explain the two types of headings and provide
examples of heading formats.

Numbered Headings

To create numbered headings in a file, choose Style/Headings and pick the
desired heading format.

Chapter
Begins on the next odd-numbered page and prints a big, bold, centered,
sequentially numbered heading, and creates an entry in the table of
contents. The word Chapter, followed by the chapter number, prints six
lines from the top of a new, odd-numbered page. The formatter then inserts

78 Sprint Advanced User's Guide

two blank lines and centers the title of the chapter. It inserts two more blank
lines and then begins printing the chapter text.

Section
Inserts two blank lines, prints a big, bold, left-justified, sequentially
numbered heading, and creates an entry in the table of contents.

Subsection
Inserts one blank line, prints a medium-large, bold, left-justified,
sequentially numbered subheading, and creates an entry in the table
of contents.

Paragraph
Prints a bold, left-justified, sequentially numbered subheading, and creates
an entry in the table of contents.

Appendix
Formats the heading just like the Chapter command, but the formatter
gives each appendix a letter (beginning with the letter A) and prints the
word "Appendix."

AppendixSection
Formats the heading just like a Section command, but precedes the number
with the letter assigned to the appendix followed by a number.

Note: The Heading commands are defined in the STANDARD.FMT file, so
you can change the way they format your text. See Chapter 3, "Modifying
and Creating Formats" and Appendix A, "Commands Defined in
STANDARD.FMT."

Chapter 2, Advanced Formatting: Tips, Tricks, and Techniques 79

Table 2.3: Sample Numbered Headings

Chapter looks like this at the top of an odd-numbered page:

Chapter 22

Advanced Formatting

Section looks like this:

1 First-Level Section Title

or like this I if you choose a Chapter command earlier in the file:

1.1 First-Level Section Title

Subsection looks like this:

1.1 Lower-Level Section Title

or like this I if you choose a Chapter command earlier in the file:

1.1.1 Lower-Level Section Title

Paragraph looks like this:

1.1.1 Lowest-Level Section Title

or like this I if you choose a Chapter command earlier in the file:

1.1.1.1 Lowest-Level Section Title

Appendix looks like this:

Appendix A

Options

AppendixSection looks like this:

A.l Hardware Options

80 Sprint Advanced User's Guide

When you choose one of these numbered headings, you only need to type
the title for the heading; the formatter does the rest. For example, to create a
chapter heading, choose Style/Headings/Chapter. Sprint prompts you for
the title of the chapter. Type the title of the chapter, press Enter, and Sprint
inserts the onscreen CHAPTER command. When you print the file, the
formatter automatically skips to the next odd-numbered page, drops down
six lines, centers the text Chapter 1 (if this is the first chapter command in
the file), inserts two blank lines, and then centers the chapter title you
entered. The next time the formatter sees a Chapter command in the file, it
increments the chapter number by one. At the end of the document, the
formatter creates a table of contents and prints the chapter number, chapter
title, and the page on which each chapter begins.

If you rearrange the chapters within a document, Sprint automatically
renumbers each chapter.

Tiered (Multilevel) Headings

If all headings in a file are of equal importance, you'll probably choose the
same command for each heading. For example, all your headings might be
formatted as Section headings. In this case, Sprint will give each heading a
single number (for example, 1,2, 3, and so on) and increment the number of
each heading by one digit.

If you choose different types of numbered headings in a file, you'll see
multilevel numbers assigned to your "lower-level" sections. For example, if
you choose Section and Subsection commands, the Section commands will
be a single digit (like 1, 2, 3), and the Subsection commands will have a
two-level number (like 1.1, 1.2, 1.3, 2.1, and so on). This is part of Sprint's
parenting concept. Chapter is the IIparent" of Section, Section is the "parent"
of Subsection, and so on. When you choose a numbered heading command,
the formatter checks to see if you previously selected that command's
parent. If you did, the formatter prints the number of the parent before it
prints the number assigned to that heading. For example, let's say you
create a chapter, and within that chapter, you use two Section commands,
three Subsection commands, and then two Paragraph commands. Your
sections would be numbered like this:

Chapter 2, Advanced Formatting: Tips, Tricks, and Techniques 81

Chapter 1
1.1
1.2
1.2.1
1.2.2
1.2.3
1.2.3.1
1.2.3.2

This parenting concept applies to figures and tables, too. Chapter is the
parent for these two formats. This means that if you choose a Chapter
command and within that chapter choose Style/Table, the table number
will be preceded by the chapter number (for example, Table 1.1). If you
don't want the formatter to number your tables and figures this way (that
is, if you want them numbered simply 1, 2 3, and so forth), you need to
open your backup copy of the STANDARD.FMT file and then search for and
delete these two lines:

@Parent(Figure = Chapter)
@Parent(Table = Chapter)

Unnumbered Headings

Unnumbered headings are formatted just like numbered headings; the
formatter just doesn't print a number or section title (like "Chapter") next
to the heading text.

The unnumbered heads in Sprint appear below the numbered ones in the
Style/Headings menu. Their names are HeadingA, HeadingB, HeadingC,
and HeadingD. The heads are ranked insofar as they get smaller and less
significant, but because they have no numbers attached to them, they have
no "parents."

As explained in the previous section, numbered headings force the formatter
to create a table of contents; unnumbered headings do not. This is because
you'll probably use numbered headings for large documents, and
unnumbered headings for memos or other short documents that don't
require a table of contents.

If you mix numbered and unnumbered heading commands in a file, the
formatter will create a table of contents and print all headings (numbered
and unnumbered) in the table of contents.

If you want only unnumbered headings and an automatic table of contents,
you need to insert the formatter command MakeTOC near the top of the
file. To do this, go to the top of your file and choose Style/Other Format.

82 Sprint Advanced User's Guide

Sprint prompts you for the format name. Type MakeTOC, press Enter, and then
press C to tell Sprint that MakeTOC is a command. When you print the
document, the formatter will include all of your unnumbered headings in a
table of contents. (For more information about Other Format, see page 130.)

Nesting Formats

Text can be affected by more than one format simulataneously. That is, you
can "nest" formats within other formats. For instance, you could select a
block that you want to keep together on a page and choose Layout/Page
Breaks/Group Together on Page. Sprint inserts a BEGIN GROUP
command at the beginning of the block and an END GROUP command at
the end of the block. If you also want the block to print in the Display
format, res elect the block, choose Style/Other Format, and type Display.

Similarly, if some of the grouped text should print as a numbered list, select
the text of the list and then choose Numbered from the Style/Lists menu. If
you want some of the paragraphs to be preceded by hyphens rather than
numbers, you could select this same text again and choose Hyphens. Of
course, you can also choose Typestyle commands to affect any of this text
as well. The following example shows you what your text might look like
(onscreen) if you nested a variety of formats.

Note: When you nest formats, you must end the formats in reverse order.
For example, if you begin the Group format and then nest the Text format
within Group, you must end the Text format before you end the Group
format. The following example illustrates this rule. If you don't end formats
in reverse order of entry, you'll get an error message when you try to print.

Hint: To quickly fix wrongly nested formats, you might try using the
Utilities/Potpourri/TransposeLines command, which switches the current
line with the one following it.

Chapter 2, Advanced Formatting: Tips, Tricks, and Techniques 83

BEGIN GROUP
BEGIN TEXT, size 14 points, centered
CAUTION: FLAMMABLE!

DO NOT USE NEAR FIRE OR FLAME
END TEXT

WARNING:

BEGIN HYPHENS, spread 0
Avoid spraying in eyes.

Contents under pressure.

Do not puncture or incinerate.

Do not store at temperatures above 120 degrees F.

Keep out of reach of children.

Use only as directed.

BEGIN NUMBERED
Hold can about 12 inches from hair, with small red arrow on valve pointed
toward hair.

Press valve down firmly.
END NUMBERED
END HYPHENS
END GROUP

The onscreen example would print like this:

CAUTION: FLAMMABLE!
DO NOT USE NEAR FIRE OR FLAME

WARNING:

- Avoid spraying in eyes.
- Contents under pressure.
- Do not puncture or incinerate.
- Do not store at temperatures above 120 degrees F.
- Keep out of reach of children.
- Use only as directed.

1. Hold can about 12 inches from hair, with small red arrow on valve
pointed toward hair.

2. Press valve down firmly.

84 Sprint Advanced User's Guide

Figures and Tables

Sprint's Figure and Table commands prompt for an optional caption and
try to keep the text within the format together on a single page. Sprint
automatically numbers figures and tables and produces a list of figures and
list of tables at the end of the printed document.

You can create tables by setting tabs on the ruler (either columnar tabs on
Sprint's standard ruler or precise tab settings), and then press the Tab key to
move text to a tab stop. You can also create simple figures from your
keyboard, or if you're using a printer that uses the PostScript page­
description language, you can choose commands that draw boxes,
horizontal bars, and key-cap graphics, as well as insert EPS (Encapsulated
PostScript) graphic files. Refer to the HGraphics" entry in the IJMenu
Encyclopedia" chapter of the Reference Guide for more information.

Graphics Commands

Figures and tables often profit considerably from graphics elements like
boxes and lines. If you have a printer that supports PostScript, you can
easily incorporate these graphic elements.

To take advantage of Sprint's graphics PostScript support, choose Style/
Graphics. The following examples illustrate the effect of Sprint's special
Graphics commands.

Table 2.4: Graphics Command Examples

We chose Draw Box to create the box around this table.
Onscreen, the table format appears within the BOX format.

Bar

Sprint prompts for the height of the bar. For this example,
we specified-6 points.

KeyCaps KeyCaps look like this:

Press ~

Note: If you don't have a PostScript printer, you can still create fancy lines
and boxes using the Utilities/Line Drawing command. (This command
works best with monospaced fonts.)

Chapter 2, Advanced Formatting: Tips, Tricks, and Techniques 85

Reserving Space for Figures and Tables

Often, you'll want to manually paste in a drawing or photograph. The
Reserve Space command allows you to reserve a fixed amount of blank
space for these "drop-ins." After you choose Style/Figure and type the
figure caption, choose Layout/Page Breaks/Reserve Space. When
prompted, type in the desired amount of space. You can use any of the
dimensions listed in Table 2.1 on page 72. A sample figure format might
look like this onscreen:

BEGIN FIGURE
RESERVE 2 inches
CAPTION Another Nice Figure
END FIGURE

If you want to reserve one or more pages for full-page figures, choose
Layout/Page Breaks/Blank Page(s). Sprint prompts for the number of
blank pages to insert. If the document contains Header and Footer
commands, these blank pages will contain the header and footer lines but
will otherwise be blank. (If you need completely blank pages, just
substitute a blank sheet for one of the ones Sprint produced.)

Columns

Newsletters and brochures are often printed in two-, three-, or four-column
format. Using Sprint's Layout/Columns commands, you can create from
one to six snaking columns per page and specify the gutter (spacing)
between columns. (Snaking means that Sprint formats the text of one
column until it reaches the end of the page, and then continues printing the
text at the top of the next column.)

To produce multiple columns on the printed page (you won't see the
columns on the screen):

1. Type the text in a single column (that is, between ruler-line margins),
select the text, and then choose Layout/Columns/Snaking Columns.
When prompted, type the desired number of columns. For example, if
you want the text to print in three columns, type 3.

2. Now enter the amount of space desired between columns.

86

a. If you want evenly spaced columns (the same amount of blank space
between columns), enter one dimension. For example, if you type 5
picas, Sprint will insert 5 picas of blank space between each column.

Sprint Advanced User's Guide

b. If you're happy with the default setting of one-half inch between
columns, press Enter when Sprint prompts for the space between
columns.

3. Sprint automatically fills a column and then begins a new column at the
top of the page. If you want to force the formatter to break a column
and begin a new column, choose Layout/Columns/Column Break.

4. If you change your mind about the gutter spacing, you can choose
Columns/Gutter Between. Sprint prompts you for the Columns
command you want to change, and then you can enter the new
dimension for the gutter.

Footnotes, Endnotes, and Notes

Footnotes, endnotes, and unnumbered notes are useful ways to refer
readers to supplementary infonriation. The References menu provides the
commands to produce such references.

Footnotes

Sprint's Footnote command automatically references text with a small,
superscripted number and places the text of your footnote at the bottom of
the appropriate page, column, figure, or table (assuming your printer can
do this). Footnotes are numbered consecutively. Before the formatter prints
the footnote text at the bottom of the page, it prints a solid line to separate
the footnote text from the rest of the text on the page.

When you want to insert a footnote, place the cursor immediately after the
text you want to reference and choose Style/References/Footnote. Sprint
inserts the BEGIN and END FNOTE commands and places the cursor

, between the two commands. Type the text of your footnote and then press
the Right arrow key to end the command. If you've already typed the text and
later decide you want to make it into a footnote, you can select the text and
then choose the Footnote command.

It may look a little strange with the footnote appearing in the body of your
text, but the formatter will automatically number the footnote and place the
footnote text at the bottom of the page when you print the file. If you move
the paragraph containing the footnote to a different place in your file, the
footnote automatically goes with the text, and so appears at the bottom of
the correct page with the correct number.

Chapter 2, Advanced Formatting: Tips, Tricks, and Techniques 87

Endnotes

If you want a document to contain notes at the end, instead of at the bottom
of pages of your document, use Sprint's Endnote command. This command
works the same way as the Footnote command, except that the formatter
places the notes at the very end of your document (on the so-called Notes
page) instead of at the bottom of each page.

You create endnotes in the same way you create footnotes. You can either
choose Endnote from the Style/References menu and then type the text of
your note, or you can type the text of the endnote, select it, and then choose
the Endnote command. In either case, Sprint inserts the onscreen
commands BEGIN ENOTE and END ENOTE.

If you want to print the endnotes elsewhere in the document (for example,
at the end of a chapter instead of at the end of the document), choose
Style/Other Format and type Place Notes. For instructions on placing
endnotes at the end of a chapter or changing the way Sprint numbers
endnotes, refer to the "Endnote" entry in Chapter 1 of the Reference Guide,

Notes

Notes are identical to footnotes, with one exception: Notes are not
numbered. Instead, they appear with asterisks (*), both in the text and at
the bottom of the page. The first note on a page has one asterisk, the second
has two, and so on. Sprint inserts the onscreen commands BEGIN SNOTE
and END SNOTE (which stands for "star note") when you choose this
command.

Indexing

The commands listed on the Index menu tell the formatter to create and'
print an index at the end of your document. To reach the list of index
commands, choose Style/Index. Sprint displays the following commands:

Word
Tells Sprint to print the current word (the word on which the cursor is
positioned or the selected block of text) in its present location and also enter
it in the index.

88 Sprint Advanced User's Guide

Reference Word
Lets you enter one or more words or a marked block of text in the index.
Reference words do not appear as part of the text; they appear only in the
index.

Master Keyword
Just like Reference Word but specifies text as a major topic in the index.
Sprint prints this word in regular typestyle, but prints its page number in
bold type. The indexed words do not appear as part of the text.

This command is useful for indexing text that appears in a glossary or
definition of terms. For example, a document might often refer to pie charts
and also include this term in a glossary at the end. You could use the Word
and Reference Word commands to index pie charts throughout the
document, but should make the glossary entry a Master Keyword, since this
is where you fully explain the term.

See
Lets you cross-reference index entries. This command lists a term in the
index (but not in the text), followed by the italicized word See, followed by
another entry. For example,

horseless buggies See cars, Model T.

Also See
Like the See command, lets you cross-reference related index terms. The
cross-reference prints in the index only, not in the text. For example,

cars See also trains; planes.

Index Under
Allows you to index a word under another specified word. For example,
you could index the number 12 so that it appeared in the index where the
word twelve would appear (that is, under the T's). These references print in
the index only, not in the text.

Range of Pages
Lets you specify a range of pages for an index entry (which prints in the
index only, not in the text).

For more complete information about these commands, see the "Index"
entry in Chapter 1 of the Reference Guide.

Once you mark a word with one of the above commands, Sprint
automatically creates an index; you do not have to tell Sprint to print one.
The index has a two-column layout, and each letter category (A, B, C, and
so on) is titled with the appropriate letter (in big, bold type, if your printer
has this capability). The word Index is centered at the top of the first page

Chapter 2, Advanced Formatting: Tips, Tricks, and Techniques 89

and also appears in big, bold type. The formatter continues to number
pages sequentially in the index.

If you choose any of the Numbered commands on the Style/Headings
menu, the formatter includes the Index heading in the table of contents and
lists its page number there.

Note: The format of the index is defined in the STANDARD.FMT file. If you
want to change the way the index prints, you can make a backup copy of
the STANDARD.FMT file, save it under another name (like
MYSTYLE.FMT), and change the Index definition. Refer to the uModifying
a Format" section beginning on page 135 for examples of how to modify a
Sprint command definition.

File Linking

When you're creating large documents like a manual, a book, or a
comprehensive report, you might want to create separate files for each
chapter or section. This makes editing faster-especially when you're using
the search operations. But when you print, you want Sprint to auto­
matically "link" your separate files and print one continuous document so
that page numbers, footnote numbers, and all cross-references print
correctly.

The Include command gives you this file-merge capability. Enter this
command in one file (choose Style/Other Format, type Include followed by
the file name you want to merge, and then press C), and the formatter
automatically merges the contents of the file name you specify when it
formats and prints your file.

Let's assume you have two files: GRIDBROS.SPR, which is a proposal
you've customized for Grid Brothers, and BOILER.SPR, which is the
boilerplate text you include in all your proposals. You could create the
GRIDBROS.SPR file and use the Include BOILER.SPR command to
automatically add the boilerplate text when you print your file. Of course,
you could manually type this text in your GRIDBROS.SPR file or copy it
from another file, but Include gives you a few advantages over either of
these options:

• The Include command is generally a faster way to include information in
a file. Instead of inserting a file within another file or selecting text in
another file, copying it to the Clipboard, and then pasting it in another
file, you only need to type a single command. And entering the Include
command is certainly faster than retyping the text you want!

90 Sprint Advanced User's Guide

• When you store frequently used text in a single file, and you need to
change the text, you change it once. For instance, if you include the file
BOILER.SPR (using the Include BOILER.SPR command) in 10
customized proposal files, and the boilerplate text changes, you only
have to change one file. If you included the boilerplate text by copying or
manually retyping it into the 10 files, you'd have to change the text 10
times!

• When you keep text in a file that you include rather than copy or retype,
you minimize the chance of typing mistakes.

• The Include command simplifies the task of reorganizing text. If all your
text appears in a single file, and you need to move the text around (let's
say Chapter 2 needs to be changed into Appendix C), you have a lot of
searching, marking, and moving to do. If you use Include commands,
you only move the one-line commands, not pages and pages of text.

• Several people can simultaneously work on the separate files. If the
document were all one (large) file, only one person could safely edit the
file.

The following example shows how to use the Include command to link
files. Following this example, we provide a few guidelines on when and
how to use the Include command.

Chapter 2, Advanced Formatting: Tips, Tricks, and Techniques 91

BEGIN HEADER
Annual Report
END HEADER

BEGIN FOOTER
Revision 1.0
END FOOTER

CHAPTER Introduction
INCLUDE INTRO.SPR

CHAPTER Executive Summary
INCLUDE EXECSUM.SPR

CHAPTER Findings
SECTION Preliminary
INCLUDE PRELIM.SPR

Page PAGE, t="%d"

SECTION Interactive Research
INCLUDE RESEARCH.SPR

SECTION Problems
INCLUDE PROBLEMS.SPR

SECTION Conclusions
INCLUDE CONCLUSN.SPR

CHAPTER Recommendations
INCLUDE RECOMMND.SPR

92

September 2, 1988

MONTH DAY YEAR

Sprint Advanced User's Guide

Guidelines:

1. Create a master file, which serves as an outline of sorts. Choose all your
major Headings commands within this file and enter the titles for your
chapters, sections, subsections, and so on. The headings double as
onscreen reminders of the contents of the files. (Of course, you can also
put the chapter titles within the files themselves. In that case, you would
not put them in the master file.) Also enter your Header and Footer
commands in this master file.

2. Create a separate file for each chapter. If your chapters are lengthy, you
can create different files for each of your major sections or subsections.

3. Within the master file, wherever you want the formatter to include the
text of another file, choose Style/Other Format, type Include and the
name of the file to be included, press Enter, and then press C (for
command). As shown in the example, an Include command often
follows a Headings command.

4. Avoid Include commands within files that are included by other files.
For example, if you type Include INTRO.SPR in your master file, don't
type an Include command within the INTRO.SPR file. The reason for
this is basic housekeeping. If you can see all the files you're including by
viewing a single file, it's a lot easier to find information when you're
editing from a printed copy. You can easily tell which file contains the
information you're looking for. If you nest (or, in this case, "bury")
Include commands within other "included" files, you can't tell where
your information is without opening multiple files and searching
through each.

5. When you want to print your entire document, choose your Print
command from the master file (that is, make sure the master file is the
current file). If you're printing from the DOS command line, enter the
master file name as part of your SPFMT command. For example,

SPFMT MASTER.RPT

The formatter begins formatting the master file, sees an Include
command, reads and formats the file name specified in the command,
and then returns to the master file. This process continues until all text
has been formatted, and then the formatter begins printing the
document. Pages will be numbered consecutively across all files, unless
you've added a command like Set page to the file.

Note: For information on how to insert variables in page headers and
footers (for example, the date or page number), see the "Variables" section
beginning on page 115.

Chapter 2, Advanced Formatting: Tips, Tricks, and Techniques 93

Centering Text

There are a variety of commands you can use to center text on the page.
You can center text horizontally (between the left and right margins) and
vertically (between the top and bottom margins).

To Center a Line of Text

Type the line to be centered and choose Style/Center. Sprint automatically
centers the current line on the screen and between the left and right
margins when you print.

To Center a Region of Text

Select the region to be centered and choose Style/ Center. But remember, if
you choose this command without previously selecting a block, only the
line containing the cursor will be centered.

You can also insert a ruler above the text to be centered, and type a C on this
ruler line. All text will be centered until you insert another ruler and
override the centered format (for example, type a J, L, or R).

To Vertically Center Text

When you want text centered between the top and bottom margins on the
first page of your document, choose Layout/Title Page. This automatically
inserts a CENTERP AGE (.5 page) command at the top of the file, followed
by a blank line, followed by a page break. On the blank line, type the text to
be vertically centered. If you also want this text to be centered between the
left and right margins, select the text and choose Style/ Center.

If you don't want to create a title page, but want vertically centered text on
pages other than the first, you can insert your own CenterPage command
with Style/Other Format. First, determine the vertical center for your text.
For example, if you want to center text between the top and bottom
margins, the vertical center is .5 page. If you wanted to center text in the top
half of the page, the vertical center would be .25 page. The vertical center is
simply the point around which you want the text centered (measured from
the top of the page).

To specify the vertical center, choose Style/Other Format and type
CenterPage, followed by the dimension around which the text should be

94 Sprint Advanced User's Guide

centered (for example, CenterPage .25 page) and press Enter. When
prompted, type C to indicate this is a command.

Move the cursor to the line above the CenterPage command and choose
Layout/Page Breaks/Insert (Unconditional). Then move the cursor below
the last line of text to be centered and insert another Page Break command.
With Screen/ Codes set to On, the screen would look like this (A L is the
code for an unconditional page break):

"L
"OCENTERPAGE .5 PAGE"N

Copyright (c) 1988 by Borland International. All rights reserved.
"L

This example centers the text vertically on the page. If you want the text
vertically and horizontally centered, use the Style/ Center command or use
rulers above and below the text.

Page Breaks

Sprint provides a variety of commands that let you specify what text (and
how much of it) prints on the current page. You can keep a block of text
together, intentionally spread text over two pages, prevent a page break,
force a page break, or tell the formatter to print one of two possible
messages, depending on the amount of space remaining on the current
page.

Sprint automatically prevents "bad" page breaks. For example, it won't
isolate the first or last line of a paragraph, or separate chapter or section
titles or headings from the text to which they belong. If Sprint has to
separate text, it does so but will not allow single lines at the top or bottom
of a page (often called widow and orphan lines).

When you want to influence the way Sprint breaks a page, you can use
these commands on the Layout/Page Breaks menu:

Insert (Unconditional)
Forces Sprint to begin a new page. When you choose this command, Sprint
inserts a bold, horizontal line to show you where the page break will occur.

Conditional Page Break
Allows the formatter to break the page where it normally would not. For
example, the formatter will not break the page between a Headings
command line and the text following the command line. When you choose
this command, Sprint inserts a PGBREAK command.

Chapter 2, Advanced Formatting: Tips, Tricks, and Techniques 95

Note: The Conditional Page Break command must appear at the beginning
or end of a paragraph; you cannot insert the command in the middle of a
paragraph.

Reserve Space
Inserts a fixed amount of blank space at the current cursor position. Sprint
prompts for the desired amount of blank space; you can specify any of the
valid dimensions listed in Table 2.1 on page 72 (for example, inches, points,
lines, part of a page, and so on). When you choose this command, Sprint
inserts a RESERVE command at the current cursor position.

The Reserve Space command is typically used when you want to paste in a
figure after the document prints. When the formatter sees this command, it
determines whether the specified amount of space will fit on the current
page. If there's enough room on the current page, the formatter inserts the
blank space immediately. If there isn't enough room on the current page,
the formatter breaks the page, begins a new page, and inserts the blank
space at the top of the new page.

Blank Page(s)
Inserts one or more blank pages in the file. If you've chosen a Header or
Footer command in the file, this information will print on the otherwise
blank page. When you choose this command, Sprint inserts a PGBLANK
command at the current cursor position.

If you want a completely blank page, don't use the Blank Page(s) command.
Instead, manually insert a blank sheet of paper after the file prints. If you
want the formatter to account for this manually inserted page when
printing page numbers (for example, the formatter prints page 2, you insert
a blank sheet of paper following page 2, and you want the formatter to
number the next printed page 4 rather than 3), you can still use the Blank
Page(s) command, manually substituting completely blank sheets of paper
after the file prints.

Group Together on Page
Forces Sprint to keep a region of text together on the same page. Select the
text you want to keep together and then choose this command. Sprint
inserts a BEGIN GROUP command above and an END GROUP command
below the marked text.

Note that you can often achieve the same results by choosing Style/Modify
and adding the Group parameter to the BEGIN format command.

Keep with Following Text
Ensures that the current line won't be the last line on the page, no matter
what. For example, you might type Send all inquiries to:, insert a blank
line, and then type an address. You want to make sure that the Send all
inquiries to: line isn't the last line on the page; you want it to print with the

96 Sprint Advanced User's Guide

address text. Choose the Keep with Following Text command at the end of
the line you want to keep together or on the line between the two
paragraphs you want to keep together. Sprint inserts the onscreen
command KEEPFOLLOWING. For example,

Send all inquiries to:
KEEPFOLLOWING
Borland International
P.O. Box 660001
Scotts Valley, CA

Widow-Orphan Control
Lets you specify the minimum number of lines required at the top and
bottom of a page. If the formatter can't print an entire paragraph at the end
of a page, you might want to force the formatter to print at least two lines
of the paragraph before it breaks the page, and make sure that at least two
lines of the paragraph print at the top of a page. This eliminates orphan lines
at the bottom and widow lines at the top of a page.

You only need to choose this command once. Sprint inserts a Style
command at the top of the file and includes the WidowPrevent parameter.
This command remains in effect throughout the file. The default value is 1.

Adapting Text According to Page Breaks
In some instances, you might want to print a message if text won't fit on a
single page. For example, you might want to print "Continued on next
page" at the bottom of the page if you can't fit an entire table on a single
page. To do this, choose Style/Other Format and type the following
HaveSpace command:

HaveSpace 3 inches, N "Continued on the next page"

The N in this command means that if there is less than 3 inches left on the
page, print the message "Continued on the next page."

Other times, the way you phrase something depends on the amount of
space left on the page. For example, if the current page contains enough
space to print a figure, you might say ''The following figure ... " but if the
figure is going to appear on the next page, you might say ''The figure on
the next page " You can use the HaveSpace command to let the formatter
decide which text to print, based on its knowledge of the remaining blank
space on the current page. For example,

HaveSpace 4 inches, N "The following figure @newpage", Y "The figure
below"

The N in the above command says if the page doesn't have 4 inches of
space remaining, print ''The following figure." The Y part of the command

Chapter 2, Advanced Formatting: Tips, Tricks, and Techniques 97

says if the current page has at least 4 inches left, print "The figure below."
The rest of the sentence is not dependent on the amount of space, so it isn't
included in the command text.

Some of the formats defined in the STANDARD.FMT file already include a
page break command. Also, you might find yourself nesting one command
in another. Therefore, you need to be aware of the following:

• PGBREAK (Conditional Page Break) overrides any surrounding Group
(Group Together on Page) format. This means that if you include the
PGBREAK command within a Group format, the PGBREAK command
takes precedence. If the text following a PGBREAK comman~ falls at the
end of a page, the formatter will break the page, even if the text is part of
a grouped format.

• If there are multiple PGBREAK and KEEPFOLLOWING (Keep with
Following Text) commands in a row, the last one takes precedence. For
example, if you begin an Address format (which includes the
KeepFollowing command in its STANDARD.FMT definition) but insert a
PgBreak command in your address text, the PgBreak command will
allow the formatter to split the address text over two pages, if necessary.

• The Layout/Page Breaks/Insert (Unconditional) command overrides a
Keep with Following Text command.

Spacing

Sprint has a variety of commands that let you vary the spacing between
lines, between paragraphs, and between words. The following sections
explain these commands and suggest ways to vary the spacing within a
document.

Spacing between Lines

The commands on the Layout/Ruler/Line Spacing menu let you specify
the amount of blank space between printed lines within a paragraph. You
can choose

Single A single blank line between each printed line

1.5 One and one-half blank lines between printed lines

Double Two blank lines between printed lines

Other You specify the distance between printed lines

98 Sprint Advanced User's Guide

Since line spacing is one of the formatter's functions, you won't see the
effect of the Line Spacing command until you print.

Setting Spacing for the Entire Document
If the file has a single ruler, choose Layout/Ruler/Line Spacing and specify
the desired spacing for the document. If you choose Other, you can specify
any valid dimension listed in Table 2.1 on page 72 (for example, 1.2 lines, 15
points, and so on).

Setting Spacing for a Region of a Text
Insert a ruler above the region, choose Layout/Ruler/Line Spacing, and
select the spacing value for the region. For example, if you want an area of
text to be double-spaced, insert a ruler above this area, choose the Line
Spacing command, and choose Double. When you want to resume single­
spaced format, insert another ruler. The new ruler is a copy of the topmost
one and therefore probably is set to single-spacing (the default). If you had
changed the top ruler, the new ruler will be changed, too. Choose Line
Spacing again to set the new ruler to Single.

Setting Spacing within a Format
Choose Style/Modify. When the cursor moves to the Begin command at
the start of that format, modify the format by adding Spacing dimension
(where dimension is any valid dimension listed in Table 2.1 on page 72).

For example, if you want to double-space text within a Description format,
choose Style/Modify. When the cursor moves to the BEGIN DESCRIP­
TION command line, choose This Format and, when prompted, modify the
format by entering Spacing 2. The formatter will double-space the text of
the list. As soon as the formatter sees the END DESCRIPTION command, it
will resume the spacing set before you started the DESCRIPTION format.
(See Chapter 3 for more information on modifying formats.)

Spacing between Paragraphs

By default, Sprint automatically inserts a single blank line between
paragraphs. If you want more or less space between paragraphs, choose
Layout/Document-Wide/lnter-Paragraph Spread and enter the desired
distance. You can use any of the valid dimensions listed in Table 2.1 on
page 72. For example, if you type 1 inch, Sprint will insert a whopping 1
inch of blank space between each paragraph.

Note: Sprint considers a paragraph to be any occurrence of two hard
returns in a row.

Chapter 2, Advanced Formatting: Tips, Tricks, and Techniques 99

Inserting Vertical Blank Space

The Layout/Page Breaks/Reserve Space command lets you specify blank
space in any of the vertical dimensions listed in Table 2.1. For example, you
could insert 180 points, 4 inches, or 2.5 lines of blank space. This is useful
when you want to reserve space for a figure you'll paste in after a
document prints. For more information about the Reserve Space command
or the Blank Page(s) command, refer to page 96.

Spacing between Words

Gaps between Words

If you want text justified (aligned) at the right margin, Sprint normally has
to insert extra blank space between words. The Layout/Document-Wide/
Word Spacing command lets you specify the maximum number of extra
spaces Sprint can insert between two words on a line. For example, if you
don't want any more than two blank spaces between words, choose Word
Spacing and type 2. If Sprint needs to insert more space to justify the line, it
will stretch the space between letters rather than between words.

Note: Choose this command only once. Sprint will use the specified Word
Spacing value throughout the file.

Tips: When the formatter sees a term containing a slash (for example, and/
or), it views the term as a single word and will not automatically break the
term after the slash. This means that if the end of a line contains the text
arrangement/rearrangement, Sprint won't try to break up the phrase; it will
place the entire phrase on the next line and insert the required amount of
space between words and characters to justify the preceding line. This can
result in large gaps between words and letters. To avoid this situation,
move the cursor below the top ruler in your file, choose Style/Other
Format, and type the following command:

TCT "I" = "I@!"

Press C for command. The TCT command tells the formatter to change the
Translation Character Table, so that a / character not only causes the
formatter to print this character, but also tells the formatter that it can break
the line after it prints this character (that's what the @! command does). For
a complete discussion of the TCT command, refer to the "TCT" entry in
Chapter 2 of the Reference Guide.

100 Sprint Advanced User's Guide

Sprint always considers a hyphen a legitimate place to break a line. There
are times, however, when you don't want a word containing a hyphen to be
broken. The word co-op and the number 2-1/2 are two examples. There is a
special command called Word that keeps characters together regardless of
length or spaces.

If you want to keep a hyphenated word together

• choose Style/ Other Format and type Word followed by the hyphenated
word

• press C for command

Sprint will now recognize the word(s) governed by the Word command as
an "unbreakable" unit.

Putting Extra Space between Words

Wide Spaces (Springs)

Headers and footers are good examples of why you might want to insert a
spring (a flexible area of blank space) between text on a line. For example,
you might want to print the chapter number on the left and align the
chapter title at the right margin. You can't be very precise if you press the
spacebar to insert the required amount of space, and if the length of your
chapter titles varies, you won't achieve a consistent result. That's the
purpose of the Insert/Wide Space (Spring) command.

This command automatically figures out how much space you need to
align text at the right margin. For example, type Hello, choose Insert/Wide
Space (Spring), and then type Goodbye. You'll see (both on screen and on the
printed page) that Sprint automatically aligns the text Goodbye at the right
margin:

Hello Goodbye

Let's say that you decide to add another word or phrase to the line, like
Hello again, and want a wide space between all three. Move the cursor so
that it is immediately after the word Goodbye and choose Insert/Wide
Space (Spring) again. Sprint moves the Goodbye text to the center and aligns
the Hello again text at the right margin. In essence, the Wide Space
command does the following:

• Looks at the current left and right margins .
• Determines the center point and then aligns text to the right of center.

Chapter 2, Advanced Formatting: Tips, Tricks, and Techniques 101

Once you insert a second Wide Space (Spring) command on a line, Sprint
moves the right-aligned text so that it begins printing at the center and
aligns the subsequently entered text to the right margin. If you insert
another Wide Space (Spring) command and type another word or phrase
(like Goodbye again), Sprint again moves the right-aligned text (Hello again)
so that it's centered between the previously entered text and the right
margin. For example,

Hello Goodbye Hello agairi Goodbye again

You can also use Wide Space (Spring) to exert more "pressure" on one side
of the page. For example, if you want Hello to print two-thirds of the way
across the page and Goodbye to print at the right margin, choose Wide Space
(Spring) twice, type Hello, choose Wide Space (Spring), and type Goodbye.
The text prints like this:

Hello Goodbye

Specifying a Distance

Tabs on the ruler line let you insert horizontal blank space between words.
This is useful in table formats, but if you want to insert a fixed amount of
blank space between words on a single line, you don't have to insert a ruler.
You can use the Hsp (Horizontal SPacing) command and specify the
precise distance between two words. For example, Hsp 9 picas tells the
formatter to move 9 picas (to the right) before printing the following text.
You can also move in the opposite direction; Hsp -2.5 characters tells the
formatter to back up (move to the left) two and one-half characters. The
maximum backwards movement is to the start of the current word.

To insert a fixed amount of blank space on a line, choose Style/Other
Format and type Hsp n (where n stands for the horizontal distance you want
to insert). Type C for command. When the formatter prints the file, it will
automatically insert the specified amount of blank space between the
words on either side of the command. For example,

This is a testHSP 3 PlCASof Sprint's formatting functions.

This is another lineHSP -3 CHARSof the test. It shows how you can move
the printer to the left.

Results in:

This is a test of Sprint's formatting functions.

This is another lmehe test. It shows how you can move the printer to the left.

Note: The specified backward distance can't be larger than the preceding
word. For example, if you type Turbo followed by the command Hsp -4

102 Sprint Advanced User's Guide

inches, the formatter will move left to the beginning of the word Turbo and
no further. A negative Hsp command followed by a space character doesn't
move the print head at all.

Kerning (Spacing between Characters)

If you're using a printer that supports the PostScript page-description
language, Sprint automatically adjusts the spacing between certain pairs of
characters that otherwise would appear with too much whitespace between
them. That's because Sprint has a set of predefined "kerning pairs" in the
file called POSTSCR.TCT.

You can add or change any kerning pair in POSTSCR.TCT or you can also
kern "on the fly" using the Kern command.

The Style/Other Format/Kern command lets you specify the distan~
between two characters. This distance is typically expressed in points, but
you can use any of the dimensions listed in Table 2.1 on page 72. For
example, if you want to close up the extra space between the first three
letters of the word WAVER:

1. Type w.
2. Choose Style/ Other Format, type Kern .1 em, and press C (for

command).

3. Type A, choose Style/Other Format, type Kern .1 em, and press C (for
command).

4. TypeVER.

The text onscreen looks like this:

WI<ERN .1 emAI<ERN .1 emVER

If you print this example, you'll see

WAVER

Note: The distance specified in a Kern command cannot exceed the width
of the character to the left of the command. For a list of character widths for
the chosen font, refer to your printer manual.

Printing Special Characters

Many printers can print characters that can't be easily typed from the
keyboard. Using Sprint's Char command, you can print any ASCII character

Chapter 2, Advanced Formatting: Tips, Tricks, and Techniques 103

supported by the current font if you know its numerical equivalent. To use
the Char command, choose Style/Other Format, type Char and the decimal
number assigned to the character you want to print. Press C to insert the
command.

For example, the current font may have an em dash (-), but your keyboard
doesn't. If you want to print a real em dash, you can use the Char
command and specify the decimal number that prints this character. The
Times font on PostScript printers stores this character at decimal location
208, so you'd choose Style/Other Format and type

Char 208

where you want the em dash to print.

You can make this process a bit less foreign by assigning understandable
names to the numbers that generate characters you'll be using. For
example, you could define the name emdash to be equal to 208 by choosing
Style/Other Format and entering Set emdash=208, and then pressing C.
Then, whenever you need to print an em dash, you can enter Char emdash
instead of Char 208.

Tip: POSTSCR.TCT, a file on the Sprint distribution disks, contains a
number of Char commands. The Char commands are part of numerous
"character translation" commands (TCT commands) that tell PostScript
printers to automatically print "_" whenever you type --, "«" whenever
you type «, and so on.

If you want to print a special character that isn't available with the current
font (but can be printed with an alternate font), you can combine the Char
and Typestyle/Font commands. For example, to print the box ''bullet'' on a
PostScript printer (a bullet is the symbol we use in this manual to begin
each paragraph of an unnumbered list), you need to choose Style/Other,
type Char, and specify the box's decimal equivalent, which is 110. Then you
need to reselect the text and define the text as printing in the printer's
special Dingbats font. For example:

I want to print a box here: DINGBATS CHAR 110

prints like this:

I want to print a box here: ..

To find out which special characters your printer supports, and the decimal
equivalents of these characters, refer to your printer manual. If your
manual lists codes in hex (H), binary (B), or octal (0), be sure to add the H,
B, or 0 after the number (for example, CHAR OdOH).

104 Sprint Advanced User's Guide

Repeating Text on a Line

If you want to repeat text so that it fills up whitespace, you can use the
Insert/Repeating Character command. When Sprint prompts for the
character, type the character you want to repeat. For example, to create
leader dots in a table, choose Insert/Repeating Character and type a
period. Sprint inserts a greater-than symbol and then the period on the
current line.

For example, type Shirts. Choose Insert/Repeating Character and type a
period. Type $10.00 each. Press Enter. Repeat these steps for Blouses at
$18.00 each. The onscreen text looks like this:

Shirts>.$10.00 each
Blouses>.$18.00 each

This example prints like this:

Shirts .. $10.00 each

Blouses ... $18.00 each

It might be helpful to think of the Repeating Character command as
working just like the Wide Space (Spring) command, except that it fills the
gap between the text with a specified character.

N onprinting Comments

Sometimes you may want to insert text in your file, but you don't want the
formatter to print the text. This kind of text might be a reminder to
yourself, an author query, or an explanation of some sort. There are two
ways to enter these kinds of comments:

• Mark the text that you want to comment, choose Typestyle/Hidden. For
example,

BEGIN COMMENT
Staff payroll information needs updating.
END COMMENT

• Start a comment line with a semicolon (i) or a Tab followed by a
semicolon. Note that the semicolon is not a command per se. You type it
as text at the beginning of a line (you don't choose any menus or
commands), or somewhere within the line if you want to comment text
from some point within the line to the end of the line. The formatter will
interpret the semicolon as the beginning of a commented line. For
example,

Chapter 2, Advanced Formatting: Tips, Tricks, and Techniques 105

;This line appears in the file but won't print.

Print this. TAB; But don't print this.

Note: You can use the semicolon only for single-line comments.

Comments marked with the Typestyle/Hidden command will only print if
you print your document unformatted. You can, however, decide whether
the formatter prints comments that begin with a semicolon. By default,
these comments are printed. To instruct the formatter not to print single­
line comments, go to the top of your file, choose Other Format from the
Style menu, type Style comments yes, and press C for command. This tells
Sprint not to print any lines that begin with a semicolon.

Cross-References

This section explains how to cross-reference text in a document without
using hard references. That is, instead of typing something like See page 45
(that's a hard reference), you can tag the page number and type See page
tablepg (that's a soft reference). When Sprint prints the file, the tag tablepg is
replaced with the correct page number automatically. This command keeps
your references accurate throughout your me.
When you choose X-Reference from the Style menu, Sprint displays two
options: Define a Tag and Reference a Tag. Using these two commands,
you can label a variable and refer back to that variable. You can use tags
anywhere in a document to identify a numbered entity-a chapter, table,
figure, section, or any other variable within your text. Sprint allows you to
reference these variable by page number or variable number.

Cross-referencing can be a vital part of creating sophisticated documents in
Sprint. Sprint's sophisticated cross-referencing commands use placeholders
to refer to numbers and pages of elements in your document. The actual
number gets filled in (by Sprint) only at print time. This "delayed
reference" is convenient-and necessary-because you don't see the effect of
your formatting commands until you print. For example,

• When you enter any of the Headings commands, like Chapter, Section,
Subsection, or Appendix, you don't see the number that Sprint assigns to
that entry. For example, you can see the Chapter command in your me,
but you don't see the actual chapter number until you print your file. To
cross-reference a chapter number, then, you need to insert a placeholder
(or "tag") that will be replaced by the actual number when you print.

• Sprint automatically numbers your pages, but you don't see the page
numbers until you print. Page is a variable that Sprint automatically
inserts in the footing line of every page. (The "Variables" section

106 Sprint Advanced User's Guide

beginning on page 115 explains variables ~n detail.) To cross-reference a
page number, therefore, you must use a tag to it that Sprint fills in later .

• When you type the text for a figure or table caption (that is, when you
choose Style/Figure or Style/Table, Sprint prompts for a caption, and
you type the caption text), you know that Sprint assigns a figure or table
number, but you don't see the number until you print. To cross-reference
a table number, therefore, you must use a tag, not a "hard" reference.

Keeping these things in mind while you read this section will help you
understand the way Sprint lets you cross-reference text. Sprint's cross­
reference commands make it easy to avoid "hard" references. For example,
if you enter "For more information, see Chapter 2," that's a hard reference.
If you use hard references throughout your document and then rearrange
your document so that Chapter 2 becomes Chapter 5, and Chapter 5
becomes Chapter 3, and Chapter 1 becomes Chapter 2, and so on, you have
to go back through your document, find all the erroneous hard references
(if you can!), and change them. If you've ever had to do this, you know
what an onerous and error-prone job this is.

Sprint's cross-reference commands let you create soft references. These
references let you tag (mark with Define a Tag command) text that you
want to refer to, without having to know the number or name Sprint will
assign to the text when it ultimately formats and prints your file. Using tags
and then referring to these tags means that no matter how often you change
a document's organization, your cross-references will always be accurate.

Tags and References

Since the concept of tagging is fairly abstract, we'll use several examples
and then explain each example. This will give you a general idea of how
Sprint's cross-referencing feature works. We encourage you to create these
examples as we explain the text, so that you have a better understanding of
how this feature works.

Example 1: Chapter References

Suppose you're creating a large document and want to cross-reference the
chapter numbers throughout your document. You want to use soft
references so that if you reorganize your document, you won't have to
change your chapter references. To do this, you tag each chapter and then
refer to the tag when you want to refer to the chapter number, like the
example that follows. Note: We abbreviated the chapter text for this
example.

Chapter 2, Advanced Formatting: Tips, Tricks, and Techniques 107

108

oareopages o 01ntroductoryomaterialoforoyouronewoinventionoo
Forocompleteoinstallationoinstructions,oreferotooChaptero~o<
<
Onceoyouoinstalloyouromach1ne,ogooonotooChaptero~oforoa o

detailedoguideotoooperat1ngoyouronewomach1neo<
<
Ifoyouoeverohaveoquestionsoaboutoaopart1cularofunct10n°oro
feature,·100koatoChaptero~00Thisochapteroconta1nsoeverything·
youldoever·want·tooknowoaboutoyourosystem.<
<

______ co...:.=~=01nstruct1 ons 0 • To otest oyouro install ati on, ogo·
0<

RA1'n""h v,nll 0 hA"i n. t'hi S 0 chapter, 0 you. shoul d 0 have 0 already 0 comp 1 eted·
Chapter·
<
Pages oofooperat1ng· 1nstructions.<
<
YouoshouldonowobeoableotoouseoallotheobasicosystemofunctionsooForomoreo
deta11edoinformation,oreferotooChaptero~.<
<
CHAPTER Reference
TAG-refer=chapter

Figure 2.2: Tagging Chapters

Sprint Advanced User's Guide

How It Looks Printed

Note: Sprint would normally start each chapter on a new even-numbered
page; we just condensed the printout to avoid confusion in this manual.

Chapterl
Introduction

Here are pages of introductory material for your new invention. For
complete installation instructions, refer to Chapter 2.

Once you install your machine, go on to Chapter 3 for a detailed guide to
operating your new machine.

If you ever have questions about a particular function or feature, look at
Chapter 4. This chapter contains everything you'd ever want to know about
your system.

Chapter 2
Installation

Pages of installation instructions. To test your installation, go on to Chapter
3.

Chapter 3
Operating Instructions

Before you begin this chapter, you should have already completed Chapter
2.

Pages of operating instructions.

You should now be able to use all the basic system functions. For more
detailed information, refer to Chapter 4.

Chapter 4
Reference

Chapter 2, Advanced Formatting: Tips, Tricks, and Techniques 109

How We Did It

In the first line of the example, we used the Chapter command to create the
chapter called "Introduction." Next, we choose Define a Tag from the X­
Reference menu. Sprint prompted

Name for new tag:

We entered intro=chapter, and Sprint displays this tag on the screen. The
reason we added = chapter is to be sure that, when we used this tag later,
the formatter would know to fill in the chapter number (not the page
number, for example). In this case, the word chapter is a variable that
contains the current chapter number. (For a list of all Sprint variables, see
Table 2.6 beginning on page 119.)

Note: All tags either explicitly or implicitly use variables. If you don't give
a variable with the tag, Sprint automatically uses the value of the
SectionName variable.

We continued to enter tagname=variable commands for each of the four
chapters shown in our example; we set a tag at each chapter and gave each
tag an easy-to-remember name. You can use anyone-word text in your
tag-except for names already assigned to Sprint variables-but mnemonic
abbreviations reduce the amount of typing and minimize errors.

Note: You cannot use actual variable names as tag names. See Table 2.6 for a
list of all reserved variable names.

In the text of the Introduction chapter, we used the Reference a Tag
command to create forward references-references to chapters found after
the current chapter. Let's take the first reference in the Introduction chapter.
We typed

For complete installation instructions,' refer to Chapter

and then choose the Reference a Tag command from the X-Reference menu.
Sprint displayed the following prompt:

Tag to reference:

We entered install, which is the tag name we assigned to the Installation
chapter. Then Sprint displayed the Reference By menu, which lets you
specify either an Assigned Number or a Page Number reference. We chose
Assigned Number, which means that Sprint replaces the reference
command text with the correct number when it prints the file. This
command refers to any Sprint-assigned number (except page num­
ber)-chapter number, table number, figure number, appendix letter, and so
on.

110 Sprint Advanced User's Guide

Page Number, on the other hand, tells Sprint you want to reference the
page on which the tagged text is located. You'll see how this works in the
next example.

We continued this process for each reference included in the example,
including the backward reference in the Operating Instructions chapter,
which told the reader to refer to an earlier chapter in the document. Sprint
supports both forward and backward references, and the method for
entering them is identical.

Example 2: Page and Figure References

The following example uses parts of Example 1 as a foundation, and creates
additional types of references:

Chapter 2, Advanced Formatting: Tips, Tricks, and Techniques 111

112

<
Make·sure·power·cord·A·is·connected·to·plug·B.·as·shown'in'Figure'
'N,I,'Ii'··';'I]. <
<
More·installation·instruct1ons ••• To·test·your·1nstallation.·go·on·
to'Chapter'~'<
<

Be1'or~!!' y~~~'["L n .t'h·S· chapter •• you' shoul d· have· already' comp 1 eted'

.pre11minary.opeIU!J,ii!@struct1ons"If'YOu'have.trouble'
nting.·refer·to·table··· • 'for.a'11st'Of.co~di~'ke.

&~JI7"i4§.·This.table'is'in'C apter·~.·on·page· I •
t. _.<
<

s.sect1on"be.sure'~'ve.read.sect1on'
... ·which·begins·on·page·'fdll!;'iI .'491'.<
<
YOU'Should'now'be.able.to.use.all.the'bas1c·R"ii~·fUnct1ons.·For·
more·deta1led·1nformation.·refer·to·Chapter· •
<

Y007BOND<
"f'·,liuJliI<

e·lists·compatible·printers.<

Figure 2.3: Referencing Page and Figures

Sprint Advanced User's Guide

How It Looks Printed

CHAPTER 1
Installation

Pages of Installation instructions.

Figure 1: Connecting the Power Cords

Make sure power cord A is connected to plug B, as shown in Figure 1.

More installation instructions ... To test your installation, go on to Chapter 2.

CHAPTER 2
Operating Instructions

Before you begin this chapter, you should have already completed Chapter
1.

2.1 Getting Started
Pages of preliminary operating instructions.

If you have trouble printing, refer to Table 1 for a list of compatible
printers. This table is in Chapter 3, on page 114.

2.2 Using Your System
Before reading this section, be sure you've read Section 2.1, which begins on
page 113.

You should now be able to use all the basic system functions. For more
detailed information, refer to Chapter 3.

Chapter 2, Advanced Formatting: Tips, Tricks, and Techniques 113

CHAPTER 3
Reference

The following table lists compatible printers.

How We Did It

Table 1: Compatible Printers
X02D2
YOO7BOND

In the Installation chapter of Example 2, we used the Define a Tag
command to tag a figure number. We later entered

.•. as shown in Figure

and then entered the Reference a Tag command. When Sprint prompted for
the name of the tag, we entered powercord and then chose Reference By /
Assigned Number. These steps are identical to those followed when we
tagged a chapter number in Example 1.

The next new reference appears in the Operating Instructions chapter. We
set a tag for each of the sections (Section headings) in that chapter. Tagging
a numbered heading involves the same steps as tagging a chapter or figure.
You can see that in the Using Your System section, we cross-referenced the
Getting Started section. When Sprint printed the file, it replaced the
GETSTART tag with the number assigned to the Section heading uGetting
Started." In this case, the printed reference looked like this:

Before reading this section, be sure you've read Section 2.1, ...

We also include a page reference in this section. When you Reference a Tag
and enter Page Number from the Reference By menu, the formatter knows
to replace the reference with the page number on which the tagged text
appears. For example, when the formatter sees the PAGEREF GETSTART tag, it
looks for the TAG GETSTART command. When it finds the tag, it replaces the
PAGEREF command with the page number of the "Getting Started" section.
For example, the printed text would look similar to this:

Before reading this s~ction, be sure you've read Section 2.1, which begins
on page 113.

In summary, you use the Define a Tag command whenever you want to tag
a numbered entry or page number, and you use the Reference a Tag
command when you want to refer to the tagged entry. If you want Sprint to

114 Sprint Advanced User's Guide

replace the reference command with a page number, choose Page Number
when Sprint displays the Reference By menu. Choose Assigned Number
when you want Sprint to replace the reference command with the Sprint­
assigned number of the entry (chapter number, section number, subsection
number, appendix letter, and so on).

If these concepts and commands seem confusing or hard to understand,
don't worry. Create a practice file and try using them. Once you use these
commands and see their effects, you'll feel comfortable including them in
your Sprint documents.

Another important part of cross-referencing is defining text variables, or
strings. The following section discusses the concept of strings and explains
how to use the Define Text Variable command in your Sprint files.

Variables

A variable is just what its name implies: something whose meaning varies.
For example, as seen in the examples in the previous section, Chapter is a
variable. The number Sprint assigns to a particular chapter depends on
how many chapter commands you entered before it. Day is another,
different type of variable. When you want to use this variable to tell Sprint
to print the current day, Sprint looks at the date set by DOS and then inserts
the day from that date when you print your file. ChapterTitle is also a
variable; it references the title of the current chapter. Variables can contain
either numbers or text.

Why would you use variables in a Sprint file? If your page headings
include the current date, for example, you could insert the date variables
(month, day, and year), and let the formatter determine the value of these
variables each time you print. That way, you never have to change the date
in your file.

Some variables are predefined by Sprint. Just like the formatting
commands that use them, variables are either built-in or defined in the
STANDARD.FMT file. These types of variables are defined in Table 2.5
(page 117) and Table 2.6 (page 119), which list built-in variables (Page, Year,
Month, Day) and variables defined in STANDARD.FMT (ChapterTitle,
Section Title, MonthName), respectively. To get Sprint to print the value of
these variables, use the Insert/Variable command, and choose the variable
you want to reference. Sprint then displays a "template" menu that shows
the various ways it can print the variable; you pick the template you want
Sprint to use.

Chapter 2, Advanced Formatting: Tips, Tricks, and Techniques 115

Before we explain how to do this, look through the following tables, so you
have an idea of the kinds of things Sprint calls variables. You can also create
your own variables with the Define Text Variable command. We discuss
this command in the section that follows the tables.

116 Sprint Advanced User's Guide

Variable

Day

FirstPage

Table 2.5: Built-in Variables

Description

The day of the month (values are 1-31).

The last page number of the introductory matter created by the
formatter (such as the Table of Contents) plus 1. For example, if the
table of contents is three pages long, the number of the FirstPage
variable is 4.

Normally, Sprint prints lowercase Roman numeral page numbers on
the introductory matter, and then resets the page counter when it
begins the body of the document. This means that the first page of
your document begins on page 1. If you don't want Sprint to reset
the counter, and would like your pages numbered continuously,
insert the Style/ Other Format command Set page=firstpage at the
beginning of the file.

Font The name of the current font (the full name, including dots). This
does not contain that name of any printer attribute like bold or
oblique.

Hour The hour of the day (values are 0-23). Test for Hour >=12 to
determine if it's am or pm.

Manuscript The name of the main file being printed. The main file is the file that
contains all the Include commands that tell the formatter to merge
other files. See page 90 for information about file merging.

Minute The minute of the hour (0-59).

Month The number of the current month (1-12). If you want to print the
name of the current month, use MonthName, a variable defined in the
STANDARD.FMT file.

Page The current page number. The formatter increments this value every
time it begins a new page but, using the formatting command Set
variable=value, you can set Page to any desired value. For example,
enter the Style/Other Format command Set page = 101.

Plain Has the value 0 if you're printing without formatting. You can use
this variable to test for plain printing so you can create a special
setup (like using a particular font) when printing plain.

Printer The name of the printer being used (like "proprinter" or "thinkjet").
This is not the name of the .SPP file, but the name of the printer
echoed on the status line when the formatter starts.

Size The current font size, measured in printer units.

Chapter 2, Advanced Formatting: Tips, Tricks, and Techniques 117

Table 2.5: Built-In Variables, continued

Variable Description

SourceFile The name of the current file being printed. This is usually the same
as Manuscript unless your file has Include commands.

SourceLine The current line number in the file being printed.

Version The current version number of the Sprint formatter.

Weekday The day of the week (Sunday = 0). The definition of this variable in
STANDARD.FMT creates a template that prints the names of the
days instead of the number.

Words The number of words printed so far. The formatter increments this
value for every word formatted in the main text (not including
formats that float to the top or bottom of a document-like
Index-or page headings). You can print the value of this variable in
a message to get a word count.

Year A two-digit number for current year (for example, 88 for 1988). All
dates and times are retrieved from DOS as soon as the formatter
begins formatting the file.

The best way to explain the use of these variables is to give an example of
how they might be used. Many of the variables listed in Table 2.5 are
especially useful in your page headings and footings. We discussed these
commands in Chapter 8 of the User's Guide and will now expand'the
discussion to include variables.

Let's say you want Sprint to print the current date (month, day, and year) in
the center of your page headings. You could type the date in your heading
command, like this:

BEGIN HEADER
December 9, 1987

END HEADER

Each time you wanted to print your file, however, you'd have to remember
to manually change the date. This is where variables come in handy. If you
use the variables that stand for the current date, Sprint will supply the
current date automatically, whenever you print your file.

Here's how to use the date variables in a Header command. First, choose
the Header command and then choose Insert/Variable. When Sprint
displays the list of variables, choose MonthName. When prompted to
choose a template for Monthname, choose None. Sprint inserts the
MonthName variable.

118 Sprint Advanced User's Guide

Press the Spacebar to create a space between the month and the day. Repeat
the Insert/Variable command, choose Day and then choose Arabic. Type a
comma, type 19, and then insert the Year variable with an Arabic template.
The Header command text looks like this:

BEGIN HEADER
MONTHNAME, t = "%d", 19YEAR, t = "%d"
END HEADER

From now on, whenever you print your file, Sprint replaces the variable
references with the date set by DOS. If today were the fifth of May, 1989,
the header on each page would print as:

May 5,1989

The following table lists the variables defined in the STANDARD.FMT file.
An example follows this table.

Appendix

AppendixTitle

Chapter

ChapterTitIe

Figure

Footnote

MonthName

Paragraph

ParagraphTitle

Section

SectionNumber

SectionTitIe

Subsection

SubSection Title

Table

Weekday

Table 2.6: Variables Defined in the STANDARD.FMT File

The current appendix letter.

The name of the last appendix started.

The current chapter number. This variable contains the chapter
number only if you've chosen the chapter command prior to
referencing this variable; if you haven't created any chapters,
the formatter prints a zero in place of the variable reference.

The name of the last chapter or appendix started.

The number of the last figure (which included a Caption
command).

The number of the last footnote or endnote.

The name of the current month (January, February, ...).

The current paragraph number.

The name of the last paragraph started.

The current section number.

The number of the last chapter, section, subsection,
or paragraph started.

The name of the last chapter, section, subsection, or paragraph
started.

The current subsection number.

The name of the last subsection started.

The number of the last table (which included a TCaption
command).

The name of the day (Sunday, Monday, ...).

Chapter 2, Advanced Formatting: Tips, Tricks, and Techniques 119

Let's say you want Sprint to print the chapter number and chapter title in
your page headings. This information varies, depending on the current
chapter number and its title. You could manually insert page heading
commands, and include the appropriate information each time you start a
new chapter, but that's a lot of work. Instead, as part of your heading
command, use the Insert/Variable command and choose the desired
variable. If the variable you want to use isn't listed on the Insert/Variable
menu, choose the Other command, and type the name of the variable you
want to reference. The following example explains this method, and tells
you how to include the chapter number and chapter title in a Header
command.

1. Choose the Layout/Header command. Sprint prompts for the type of
heading you want to create.

2. Choose All Pages. Sprint inserts the BEGIN HEADER and END HEAD­
ER commands.

3. Type the word Chapter followed by a space, and then choose Insert/
Variable/ Other. Sprint displays the following prompt:

Variable to reference:

4. Type chapter and press Enter. This tells Sprint you want to print the
number of the current chapter next to the word Chapter. Sprint then
displays a list of templates, which tells the formatter how you want the
chapter number to print (in Arabic numbers, Roman numerals, and so
on).

5. Choose Arabic and press Enter. Sprint inserts a template parameter next
to the chapter variable.

6. Type a colon (:) and press the Spacebar (following the chapter number).

7. Now choose Insert/Variable/Other again, and type ChapterTitle when
Sprint prompts for the variable name. Choose None when prompted for
a template.

Your page heading command now looks like this onscreen:

BEGIN HEADER
Chapter CHAPTER, t = "%d": CHAPTERTITLE
END HEADER

When Sprint prints your file, it replaces the Chapter variable with the
number of the current chapter, and the ChapterTitle variable with the name
of the current chapter. For example,

120

Chapter 1
Installation

Sprint Advanced User's Guide

appears in your page heading as soon as the formatter sees the CHAPTER
Installation command in your file. When it sees the next Chapter command,
Sprint changes the header information to display "Chapter 2:" followed by
the name you gave to your second chapter.

So far, we've explained Sprint-defined variables. Other variables can be
user-defined; that is, you can create a variable and determine what it
represents. This is useful when you want to cross-reference unnumbered
text or assign values to specific text strings. The following section explains
this powerful feature.

Defining Your Own Variables: String Assignments

If you've tried the Define a Tag command discussed on page 107, or the
Insert/Variable command explained on page 115, you're familiar with the
concept of placeholders being changed at printing time to something else.
For example, to tag a figure so you can refer to it later (without knowing
the figure number), you Define a Tag, give the tag a name, and make that
tag equal to the variable Figure (for example, mainmenu=figure). The Define
a Tag and Reference a Tag commands are an ideal way to cross-reference
numbered items like figures, chapters, sections, and tables.

The "Variables" section introduced the concept of variables, and how you
can get Sprint to replace a variable with its current value. For example, if
you choose the Insert/Variable command and tell Sprint you want to refer
to the time (by referencing the Hour or Minute variable), Sprint
automatically prints the current time when it prints your file.

You don't have to be a programmer to define and reference your own text
variables. You simply use the Insert/Define Text Variable command to
create a variable, and then type a string of text telling Sprint what your
variable means. A string is nothing more than a sequence of characters-a
word, a phrase, or even a block of text. You can assign a string to something
brief (like a name or address) or to something lengthy (like a paragraph of
boilerplate text for a contract or proposal).

For example, choose Insert/Define Text Variable, and Sprint prompts

Name to give the variable:

Enter a name that represents something you don't want to type over and
over again. For example,

Name to give the variable: aaa

Note: Variable names cannot start with numbers. So the name 3a, for
eXClmple, would have been illegal.

Chapter 2, Advanced Formatting: Tips, Tricks, and Techniques 121

Sprint then prompts for the text you want the formatter to print whenever
it sees the variable aaa in your file. For example,

Enter the text: Alliance of Angry Albanians

Now whenever you want to print the text "Alliance of Angry Albanians,"
you won't have to type it in the file. Instead, you can choose the Insert/
Variable/Other command and type aaa. When you print your file, the
formatter will automatically replace aaa with Alliance of Angry Albanians.
You've not only reduced the amount of typing you have to do, you've also
minimized the potential for typos!

Note: You must define a variable before you refer to it; that is, the Define
Text Variable command must appear before the Insert/Variable command
that refers to your string assignment. It doesn't matter where you insert the
Define Text Variable command, so long as you insert it before using the
Insert/Variable command.

Another equally important function of strings and variable references is
that they let you define specific information once; if that information
changes, you have to make only one change in your file. Let's say you're
writing a manual for a new software package called Strawberry. The
package is still in development, and Strawberry is only a code name. You
don't know when your company will decide on a real name, but you've got
to start writing now. If you use the code name throughout your drafts,
you'll have to go back and change every occurrence of Strawberry
throughout the document. You could use Sprint's Search-Replace command
to do this, but there's an easier and quicker way to resolve this problem.

Create a new file for your document, but before you begin writing, choose
the Define Text Variable command. When Sprint prompts

Name to give the variable:

type

Name

Sprint then prompts

Enter the text:

Type the current product name (the text you actually want printed; in this
case, Strawberry). Sprint inserts this information in your file, in the form

STRING name="Strawberry"

This onscreen command displays in reverse video, or in a different color if
you have a color monitor. This makes your strings easy to find, in case you
forget the exact text of your variable.

122 Sprint Advanced User's Guide

When you start writing, choose the Insert/Variable/Other command and
type name whenever you want to refer to the product's name. When
management decides on a real name for the product, all you have to do is
change the text of your Define Text Variable command at the top of your
file. Let's say the company changes the product name to "WonderCalc." All
you have to do is edit the Define Text Variable command and replace
"Strawberry" with "WonderCalc." You'll see the effect when you print; the
Insert/Variable commands throughout your manual will be replaced with
the name "WonderCalc."

Defining Your Own Numeric Variables

You use the Set command to define a brand new numeric variable. For
example,

Set NumberOfTeethLeft=25

automatically creates a variable called NumberOfI'eethLeft and assigns the
number 25 to it.

You use your own numeric variables just as you use predefined ones. You
reference them using the Insert/Variable command and change their
values using Set (see the next section).

Changing the Value of Variables

As mentioned in the preceding sections, Sprint automatically prints the
current value of a built-in or user-defined variable. If you want to change
the value that Sprint prints or define your own numeric variable, you can
use the formatting command Set and make the variable take on any
numerica value you'd like.

For example, let's say your document is made up of five different files that
are merged with the Include command. Also assume that each file contains
Chapter and Figure commands. Sprint will automatically number the
pages, chapters, and figures sequentially when you print your document.
But if you want to print only one of these files (to proofread it, for
example), your chapter and figure numbers won't be accurate. Since you're
not merging all the files, Sprint will number the first page, chapter, and
figure in this file 1. If you want Sprint to print the chapter and figure
numbers as they'll be.when you print the entire document, you can set the
variables Chapter and Figure to their correct values.

Chapter 2, Advanced Formatting: Tips, Tricks, and Techniques 123

Continuing this example, let's say that you want to print the last of the five
files. The first chapter in this file is actually chapter 10, and the first figure
in this chapter is actually Figure 18. (You know this because you've printed
out the complete book before.) At the top of this file, choose the Style/
Other Format command two times and type the following two commands:

Set chapter=9
Set figure=17

You set these variables to one less than their actual value because when
Sprint sees the Chapter and Figure commands, it automatically adds one to
the current value. You can expand upon this principle, and set the variable
Page to the last page number in the preceding (fourth) file.

This format for the Set command works for variables that have a numeric
value. If you want to change the value of a variable created with the Insert/
Define Text Variable command, choose Define Text Variable again and give
the variable a new value.

A Few Comforting Words

Don't worry if these cross-referencing concepts seem confusing at first;
they're hard to understand only until you try using them. Just remember
that, when you see a cross-reference command or variable on your screen,
think of them as placeholders for numbers or text that can change at any
time. It's only when you see the print-out, in which Sprint has filled in the
values represented by the variables, that they will make sense. (In fact,
that's a good way to learn about variables; refer to the tutorial chapter in
this manual for a hands-on lesson.)

In summary, here are some general rules for cross-referencing text and
using variables:

• Use Define a Tag to "tag" numbered elements, like figures, tables,
chapters, sections, and appendixes. Tags refer only to numbers, not text.

• Use Reference a Tag when you want to refer to the name of a tagged
element in your text. You can also use this command to reference the
page number on which a tagged element appears. Choosing.- a Print
command causes the formatter to replace each tag with a name and each
tag reference with the number it assigned to the tag .

• Use the Insert/Variable command when you want Sprint to print:

• The value of a built-in variable (like Month, Day, Year)
• The value of a variable defined in the STANDARD.FMT file (such as

Chapter, ChapterTitle, Table, Figure)

124 Sprint Advanced User's Guide

• The string you assigned to your own text variables (as explained in the
preceding examples)

• Choose the Define Text Variable command when you want to define
variables that pertain to your word-processing tasks. Make these
variables equal to a string (a sequence of characters enclosed in quotation
marks). When you reference the variable with the Insert/Variable
command, Sprint replaces the variable with the string you assigned.
Remember to assign the string before you reference it!

• Use the Set command to alter the value of any numeric variable or to
create a new one.

Other Formats

There are two kinds of other formats:

• Formats that affect a block of text.
• Formats that take effect at the current cursor position.

They're called other formats because they aren't listed on a Sprint menu,
per se. (They are, for the most part, rarely needed.) You choose Style/ Other
Format, type the name of the format you want to use, and then tell Sprint
whether the format should affect a region of text or be invoked at the
current cursor position on the line. (If a block of text is selected when you
choose Other Format, Sprint assumes you want the type of command that
affects a region.)

Table 2.7lists the formats that affect a region of text, and Table 2.8 shows
the effect of each format. Following these tables, we explain how to insert
format commands in a file.

Chapter 2, Advanced Formatting: Tips, Tricks, and Techniques 125

Format

Address

Closing

Display

Example

FlushLeft

FlushRight

Quotation

Text

Undent

Verbatim

126

Table 2.7: Sprint Formats Affecting Regions

Description

Indents text by one-half of the line length (text begins printing from
the center of the line), and inserts two blank lines above and below
the text of the address. Sprint keeps the text of this format together
with the preceding text. The Address format ignores soft returns
(where Sprint wordwraps); you must press Enter wherever you
want to end a line.

Identical to Address (used for complimentary closings in letters,
and the like).

Leaves a blank line above and below the marked region, and
indents the text one-half inch from the current left margin. Display
prints your line endings exactly as you've entered them (ignoring
soft returns). This is useful for documenting screen displays and
other types of text that should be offset from the left margin, but
should otherwise appear verbatim. You must press Enterwhenever
you need to end a line.

Similar to the Display format, but uses a fixed-width or
"typewriter" font if available. This is useful when printing sample
computer programs.

Prints the text so it is aligned at the left margin only.

Aligns each line at the right margin.

Indents text one-half inch from both the left and right margins.
Sprint wordwraps lines within this format and inserts a blank line
above and below the quotation text.

Does not affect the format of text, unless you include a format
parameter such as spacing, indent, spread, font, and so on. The Text
format is generally used when you want to create a special effect
that's not defined by any other command (like double-spaced,
indented text). For more information on format parameters, see
page 429. For examples of how you might use the Text format, see
the "Custom Formats for Part of a Document: The Text Format"
section on page 148.

Prints the first line of each paragraph one-half inch to the left of the
current left margin, and fills lines.

Prints text exactly as entered. Lines are not wordwrapped, nor
indented; leading spaces are retained. (Normally, Sprint discards
leading spaces in a line when it reformats your text.)

Sprint Advanced User's Guide

Table 2.8: Format Examples

Address

Closing

Display

Enter your password:
Enter your userID:

Fill in the blanks:

Name

Address

Send all inquiries to:

Borland International, Inc.
P.O. Box 660001
Scotts Valley, CA 95066

Sincerely,

Frank Borland
Governor, State of California

Continue? Type Y for yes; N for no.

Example

program Overflow
var

A: integer
begin

A := 30000 + 30000
end.

FlushLeft

Send all inquiries to:

101 Main Street
Any town, USA

Chapter 2, Advanced Formaffing: Tips, Tricks, and Techniques 127

Table 2.8: Format Examples, continued

FlushRight

TodaY' is Friday.
Yesterday was Thursday.

Tomorrow is Saturday.

Quotation

"Age does not diminish the extreme disappointment of
having a scoop of ice cream fall from the cone."

-Jim Fiebig

Undent

This line is "undented" by one-half inch. The top line of each paragraph
will print like the top line of this example, and subsequent lines in
the paragraph will oegin printing at the current left margin.

If you don't want a paragraph undented, press Tab at the beginning
of the paragraph.

When you end the Un dent format, text resumes printing at the left margin.

Verbatim

The following example is an excerpt from Shel Silverstein's classic tale, The
Giving Tree, formatted with the Verbatim format.

Once there was a tree ...

and
she loved

a
little boy.

And every day
the boy
would come

he
and

would
gather

her
leaves

and make them
into crowns
and play king of the forest.

128 Sprint Advanced User's Guide

As explained in Chapter 3, you can create your own formats. Once defined,
you can type the name of a custom format in response to the Style/Other
Format prompt. (For instructions on creating your own formats, see
Chapter 3, the "Defining a Unique Format" section (beginning on page
150).

Selecting Other Formats

Remember, in order for Sprint to recognize any of the commands in the
preceding table, you must first choose Style/ Other Format and then type
the desired command. You cannot just type in the word unjusttext, for
example, and expect Sprint to recognize this as the command.

There are two ways to specify an Other Format for a region of text:

1. Select the text you want to affect, and then choose Style/Other Format.
Sprint prompts for the format you want to use. Type the format name
(see Table 2.7 for the list of formats you can enter), and press Enter.
Sprint automatically places a BEGIN command above the selected text
and an END command on the line following the selected text. For
example, type a paragraph, select it, choose Style/Other Format and
type Example. Sprint inserts a BEGIN and an END EXAMPLE command,
like this:

BEGIN EXAMPLE
Here's some text in the Example format.
END EXAMPLE

The example prints like this:

Here's some text in the Example format.

2. If you haven't already typed the text you 'want to format (for example,
you want to choose the format before you type the text):

a. Choose Style/Other Format and type the name of the desired
format.

b. When prompted, press R for Region. Sprint then displays the
following message in the status line:

Press (B) for Begin command, (E) for End command, or ESC to cancel:

c. Press B to begin the desired format, and Sprint inserts the correct
BEGIN command. For example, if you enter Display, Sprint inserts
the BEGIN DISPLAY command.

d. Now type the text. Once you've typed the text, choose the format
again (that is, choose Style/Other Format, type the format name and
press R), and then press E to end the format.

Chapter 2, Advanced Formatting: Tips, Tricks, and Techniques 129

If a format doesn't create the exact look you want, you can either modify it
with the Style/Modify command, or edit the STANDARD.FMT file and
redefine the format to better suit your needs. "Modifying a Format,"
beginning on page 135 in Chapter 3, briefly explains how to modify
formats, and "Defining a Unique Format," beginning on page ISO,
introduces the idea of creating your own formatting commands.

Other Format Commands

As mentioned on page 125, the Style/Other Format command lets you
specify a format for a region of text, or insert a command that takes effect at
the current. cursor position. This section discusses the latter-format
commands that affect a specific character, cause the printer to move a
specified distance, or tell the formatter to make a decision about some
formatting aspect of the file and then print something based on that
decision.

Table 2.9 lists all of the format commands you can invoke at the current
cursor position. For complete information about all of these commands, see
Chapter 2 of the Reference Guide.

Entering Other Format Commands

To insert a command listed in Table 2.9, choose Style/Other Format and
type the text of the command (be sure the cursor is positioned where you
want the command to take effect). When Sprint displays the prompt:

Insert for Region (R) or Command (C):

press C. Sprint inserts the command at the current cursor position.

Unlike Sprint formats that affect regions, these formats do not insert a
BEGIN and END command; instead, the command is immediately invoked
at the current cursor position.

130 Sprint Advanced User's Guide

Case

Column

Escape

HaveSpace

Hsp

Include

Incr

Kern

Label

MakeTOC

Message

Modify

NeedSpace

NoteChapter

NoteSection

o
Ovp
Parent

Set

StringInput

Style

TabDivide

TagString

Tct

Template

Timestamp

Word

<

Table 2.9: Other Format Commands Not Affecting Regions

Lets you set up form letters that print alternative text, depending on
certain conditIons that you specity.

Lets you set up parallel (as opposed to snaking) columns.

Sends raw data to the printer.

Causes the formatter to make a decision based on the amount of
space remaining on a page (see page 97).

Moves the print head (horizontally) a specified distance (see page
102).

Inserts the contents of a specified file during printing (see page 90).

Increments a variable.

Adjusts the distance between two characters (see page 103).

Sets a tag equal to the variable called SectionNumber (the current
Assigned ~umber).

Forces the creation of a table of contents (see page 82).

Prints a message on the screen during formatting.

Modifies a defined format (see page 142).

Causes the formatter to make a page break decision based on an
amount of space needed.

Places the number and title of the current chapter into the endnotes
(see page 88).

Places the number and title of the current section into the endnotes
(see page 88).

Overprints specified single letters.

Overprints specified text (one letter or more).

Sets the parent of one variable to another variable (see page 81).

Changes the value of a numeric variable or defines a new numeric
variaole (see page 123).

Prompts the user to type a string during formatting.

Sets global formatting parameters (see page 77).

Sets tab stops to create evenly spaced, tabbed columns.

Sets a tag to a text string.

Changes the value of one string to another (see page 100).

Creates a numbering template for a numeric variable (see page 120).

Inserts current data and time when printed. (The format is like this:
4/29/893:32pm.)

Keeps text together on a line (see page 100).

Allows a line break where one would not normally occur.

Starts a new line that prints on top of the previous line.

Chapter 3, Modifying and Creating Formats 131

132 Sprint Advanced User's Guide

c H A p T E R

3

Modifying and Creating Formats

Throughout the previous chapter, we've said that if you don't like the way
a format affects text, you can change the format or create a unique format to
produce the desired effect. This chapter explains both techniques.

Format changes All formats that use BEGIN and END commands can be
modified to produce a different effect. For example, the
Lists/Numbered format, by default, inserts a single
blank line between each paragraph of a numbered list.
You can change this format, however, to remove the
blank lines. The discussion of modifying formats begins
on page 135.

Custom formats When a Sprint format doesn't create quite the look you
want, you can define your own format. Instructions for
this begin on page 150.

Before you begin modifying or defining formats, you should be familiar
with each format's default effect. The STANDARD.FMT file on the Sprint
distribution disks contains the definition of many of Sprint's formats. This
file is often discussed on the following pages. Once you have worked
through this chapter, you should go to Chapter 4 for a detailed illustration
of how to modify formats. Also refer to Appendix A for a complete list of
all the formats defined in STANDARD.FMT.

Chapter 3, Modifying and Creating Formats 133

STANDARD.FMT: The Formatter's Style
Handbook

The -formatter isn't naturally intelligent. It uses a comprehensive list of
instructions to dictate what it should do when it sees a formatting
command in your file. Some of these instructions are built-in-they're part
of the Sprint program. Most of the formatter's instructions, however, are
defined in the STANDARD.FMT file. Since nearly everything the formatter
does is specifically defined in STANDARD.FMT, this file must be on the
disk you use to format and print Sprint files; without STANDARD.FMT, the
formatter won't run.

When Sprint formats your files, it uses the STANDARD.FMT file as its
reference guide; when the formatter reads your file before printing and sees
a formatting command in your file, it checks the STANDARD.FMT file to
see what it should do.

For example, when the formatter finds a Chapter command in your file, it
looks to the STANDARD.FMT file for a definition of Chapter. This
definition tells the formatter to

• start the chapter at the top of an odd-numbered page

• insert 1 inch of blank space

• give the chapter a number
• center the word Chapter and the chapter number, and print this line in a

big, bold font

• insert two blank lines, center the text of the chapter title, and print the
title in a big, bold font

• create an entry for the chapter number and title in the table of contents

• insert two more blank lines, and then begin printing the text of the
chapter

If you like the way Sprint's commands format your text, you'll never have
to do anything with the STANDARD.FMT file. It's enough to know that the
formatter uses this file to do its job. If you're curious about the content of
STANDARD.FMT, open the file and page through the text. (It's a plain text
file but, since the @-sign method of entering commands is necessary in
.FMT files, the format may look a little strange to you.) You might want to
look at the Chapter definition and see how the definition compares with the
explanation we provided earlier in this section. You'll see that the Chapter
definition specifies BigCenteredHead, which is another command defined in
STANDARD.FMT.

134 Sprint Advanced User's Guide

If you want to change the way a formatting command affects your text, you
can edit a version of the STANDARD.FMT file that's been saved under
another name (say, MYSTYLE.FMT) and then change the command's
definition. At the top of your document, you would choose the Style Sheet
command from the Layout/Document-Wide menu and enter the .FMT you
named and customized. For example, you could change the Chapter
definition in MYSTYLE.FMT so that it centers the chapter number and title
on a blank page, and then starts the text of the chapter on the following
page.

Refer to Chapter .4 for more information on writing your own .FMT file.

Table A.1 on page 354 lists the commands defined in the STANDARD.FMT
file. If this file doesn't contain a command that creates the look you want,
you can open the file, copy it to another name (keep the .FMT extension),
and create your own command in the new .FMT file to tell the formatter
exactly how you want an area of your file formatted. That's part of the
beauty of Sprint-you can create your own word-processing commands
and functions. See page 150 for details on creating your own commands.

Note: Always work with a backup of STANDARD.FMT, never the master.
You must have a working copy of this file for the formatter to run. If you
accidentally change your original version of this file, immediately choose
File/Revert to Saved; Sprint rereads the original version of the file from
disk. If you have a customized style sheet that's fully tested, you can have
Sprint automatically use it by renaming STANDARD.FMT (to
ORIGINAL.FMT, say) and then renaming your file to STANDARD.FMT.
Uritil you do this, you always have to use the Style Sheet command at the
top of each of your files to print with your customized .FMT file.

Modifying a Format

Table 2.7 (on page 126) lists the formats defined in STANDARD.FMT and
provides an example of each. There are a number of ways that you can
change how any of these formats affect your text, and this section explains
each of the methods you can use.

When you want to change how a format affects your text, you should
decide how often you want the format to be changed. Based on this, you
can

• Modify a single instance of a format (for example, modify a single
Description format). To do this, use the Style/Modify command, or
choose Style/Other Format, type the format name, and add the

Chapter 3, Modifying and Creating Formats 135

modifications to the format name. We discuss this method beginning on
page 136 .

• Modify all instances of a format within a file (for example, modify all
Description formats that occur in a particular file). In this situation, you'll
save time by entering the Other Format command called Modify (not to
be confused with the Style/Modify menu command). We discuss this
method beginning on page 142 .

• Edit a backup copy of STANDARD.FMT (and then rename it) and
modify the format definition so that the format changes affect all Sprint
documents. This discussion begins on page 144.

Regardless of the method, modifying a format requires that you add or
change format parameters. These parameters tell the formatter how you
want the format changed from its original definition. For example, there are
parameters that change margins, line spacing, the distance between
paragraphs, the current font, and so on. Table D.6 on page 429 lists the
valid format parameters you can add to any format that inserts a Begin
command in your file (for example, any of the Lists formats, the Footnote,
Table, and Figure formats, and so on). For a list of dimensions that can be
included in a parameter, refer to Table 2.1 on page 72.

You can add format parameters to any format that inserts BEGIN and END
commands. The following sections explain how to add format parameters.

Modify a Single Format

This section explains two ways to modify a single instance of a format (that
is, how to modify a specific format within your file).

1. If you've already entered a format (that is, if Sprint has already inserted
the BEGIN and END commands around your marked text), and then
decide to change how that format affects your text:

136

a. Choose Style/Modify. Sprint searches backward (toward the
beginning of the file) until it finds a BEGIN command (for example,
BEGIN NUMBERED).
When Sprint finds a BEGIN command, it displays a menu that asks
if you want to modify This Format (the format named in the BEGIN
command) or a Previous Format.

b. If you want to modify the currently selected format, choose This
Format. If you want Sprint to continue searching for a different
format, choose Previous Format until Sprint finds the desired
format.

Sprint Advanced User's Guide

Once you choose This Format, Sprint displays the following prompt
in the information line:

Modify by adding:

c. Type the parameter(s) you want to add. If you want to enter more
than one, separate the parameters with a comma. For example,

Modify by adding: leftindent 3 picas, spacing .75, spread 1.5

The example parameters tell the formatter to indent the text 3 picas
from the current left margin, "tighten-up" the text by inserting only
.75 of a blank line between lines (rather than the normal single blank
line for single-spaced text), and insert 1.5 blank lines between
paragraphs (instead of the normal 1 blank line). You only add
parameters that will change the format; don't bother typing
parameters you want to keep.
Note: You can add parameters only to formats that insert BEGIN and
END commands. The parameters will only affect text between the
currently selected BEGIN and END format commands.

2. If you haven't yet entered the format, but know how you want to
modify it:

You can enter parameters as part of an Other Format command. This
eliminates the need to choose Style/Modify to add the parameter(s)
later.

a. As you would normally do, choose Style/Other Format and type the
name of the format you want to use. Before you press Enter, type a
comma and the parameter you want to add. For example,

Format: Description, font Helvetica

This specifies the Description format, but also instructs the formatter
to print the text in the Helvetica font. If you didn't add the font
Helvetica parameter, the formatter would print the text in the default
font.

b. If you want to add more than one parameter, type a comma after
each parameter. For example,

Format: Description, font Helvetica, spacing 2

c. When Sprint prompts for either R or C, press R.

Note: You can only modify a format that affects a region (for example, a
format that, when chosen, inserts a BEGIN and END command in the file).
If you try to modify a format command that doesn't insert BEGIN and END
commands (like the Kern command), you'll get an error message when you
try to print your file.

Chapter 3, Modifying and Creating Formats 137

Note too that to modify a format "on the fly" like this, you must use the
Other Format command-even if the format has its own menu command
(as Description does).

Remember, when you use the modify techniques described in this section,
you are only affecting the current instance of the format. For example, if
you modify a Description format as explained above, you are only affecting
text in this particular Description format. Any other time you choose
Description, the formatter will format the text with the normal Description
format parameters.

If you want to modify all instances of a format within a file, use the Modify
command as described in the next section.

If you want to permanently change the effect of a format (for example,
modify the DeSCription format so that in every Sprint file the Description
format always prints text in the Helvetica font and double-spaces it), you
should edit a copy of the STANDARD.FMT file and add to the Description
format's definition in that file. See page 144 for instructions.

Note: If you can't easily create the "look" you want by modifying a format
(for example, you want text indented 3 inches from the right margin,
triple-spaced, printed in different font, and paragraphs numbered with
Roman numerals), you can define a format of your own. See the "Defining
a Unique Format" section beginning on page 150 for instructions.

Practical Example: Modifying the Description
Format

This section provides a practical example of how and why you might
modify a format. We take a look at the Style/Lists/Description format and
change the indent value to get a wider gap between columns.

Note: The Description format automatically moves the left margin in (to the
right) by .25 line. The first line of each paragraph, however, is outdented
from this new left margin by .25 line and prints in bold type. This means
that the first line of each paragraph begins printing at the old left margin,
and the rest of the paragraph prints .25 line to the right. For example:

One

Two

Three

138

The first number in a series.

The second number in a series. Two follows One, and
precedes Three; Three is described in the following
paragraph.

The third and final number in this series.

Sprint Advanced User's Guide

This format works well in many instances, but not always, as a look at the
example that follows reveals. This example uses nested Description formats
to format the body of a resume. In the first invocation of Description, the
outdent looks fine. But in the second case (the nested Description format),
we need to create a wider gap between the two columns.

Here's how the original output looks:

Objective

Education

Work History

Personal

To land a flexible, well-paying, undemanding job close
to home.

Graduated with honors from Ima Flayke University.

1985 to present
Unemployed

December, 1984
Sam's Toy Shop
Santa's Helper

November, 1984
Bonnie Doon Parks and Recreation
Department

Official mascot for the annual Turkey
Days celebration

October, 1984 Easy Money, Inc.
Telephone solicitor

Single, attractive, good sense of humor, always welcome
at social functions. Willing to relocate to southern
California.

Here's how the original file looks onscreen:

Chapter 3, Modifying and Creating Formats 139

2 3 4 5 6]L 7

<
Educatlon>Graduated'wlth'honors'from'Ima'Flayke'Unlverslty.<
<
Work'History<
<

1:1.""'11"'1"'* 1985·to·present> Unemployed<
<
December,·1984>Samls·toy·shop<
<
> Santals'Helper<
<
November,'1984>Bonnie'Doon'Parks'and'Recreatlon<
<
> Official·mascot·for·the·annual·Turkey·Days·celebration<
<
October,'1984> Easy·MoneY,·Inc.<
> Tele~hOne.sOlicitor<
""""11!;1 I"'NI<
<
C:\SPRINT RESUME.SPR * Ins 8:38am Ln.l of 27 ,

Figure 3.1: The Original Resume

After viewing the printed resume, you might decide that the "Work
History" section needs a wider gap between the date of employment and
the company/position columns. You don't want to change the Description
format permanently, you want to change it only in this particular instance.

Before you modify a format, you should know-at least in general
terms-how it's already defined in the STANDARD.FMT file. For example,
STANDARD.FMT defines the Description format like this (unless you or
someone else modified the STANDARD.FMT definition):

@Define(Description, indent -.25 line, WithEach lI@b(@eval) @\II,above 1,below 1)

Don't be alarmed at all the at-signs (@) and commands you don't know. @­

signs are the ASCII alternative to menu-selected formats. They are covered
in Chapter 3 of the Reference Guide, "Using @-Commands."

For now, all you have to notice is the indent parameter.

You can change the indent value for Description to be just about anything
you like, since it's always relative to the current left margin. If you don't
leave enough space to produce a gutter between the left and right sides of a
Description format, the formatter prints the left side as usual and then
begins the descriptive text on the next line. The first example of the
formatted, printed resume shows this "stair-step" effect.

140 Sprint Advanced User's Guide

To temporarily change the indent value of the Description format, move the
cursor to a line in your document (not in STANDARD.FMT) within this
format, press F10, and then choose Style/Modify.

Sprint searches for the last format, and then displays the Modify By menu.
Choose This Format, and Sprint displays the following prompt:

Modify by adding:

To change the indent parameter so that the left column is outdented by half
a line (instead of .25 line), type the following response:

Modify by adding: indent -.5 line

Sprint adds this information to the BEGIN DESCRIPTION command line,
and then returns the cursor to its location before you entered the Style/
Modify format command. You don't have to modify the END
DESCRIPTION command; the formatter automatically ends the Description
format and any format parameters you may have changed or added to the
BEGIN DESCRIPTION command.

Here's how the now-modified format prints:

Objective

Education

Work History

Personal

To land a flexible, well-paying, undemanding job close
to home.

Graduated with honors from Ima Flayke University.

1985 to present Unemployed

December, 1984 Sam's Toy Shop
Santa's Helper

November,1984 Bonnie Doon Parks and Recreation
Department

October, 1984

Official mascot for the annual Turkey
Days celebration

Easy Money, Inc.
Telephone solicitor

Single, attractive, good sense of humor, always welcome
at social functions. Willing to relocate to southern
California.

Chapter 3, Modifying and Creating Formats 141

Document-Wide Format Changes

You can modify a format so that it formats text differently throughout a
document. Rather than modify each instance of the format (for example,
using the Style/Modify command), you can insert the Other Format
command Modify in the file, specify the format you want to modify, and
add the parameters that create the effect you want. In essence, the Modify
command tells the formatter how, in this document only, a particular
format should affect your text.

Note: Unlike the Style/Modify method of modifying commands, which is
used to change a single occurrence of a format, the Modify command can
be used to change all subsequent occurrences of a format.

Note: Some commands are built-in, and cannot be modified. For a list of
these commands, see Table Bol on page 362.

The example in this section modifies the Quotation format, which normally
indents the text .5 inch from the left and right margins, inserts a blank line
above and below the quotation text, and single-spaces the text. We'll show
you how to modify this format so that throughout a document, the
Quotation format will double-space the text and print it in Helvetica.

Note: Before you insert a Modify command in an actual file, you should be
familiar with the default effect of the format you want to modify (the effect
as defined in STANDARD.FMT), and with the format parameters listed in
Table D.6 (page 429).

There are two ways to create a document-wide format change:

1. You can copy the original format definition in the STANDARD.FMT file,
paste the definition into your text file, edit the definition as necessary,
and then change the text @Define (the command that begins a format
definition) to @Modify.

2. You can choose Style/Other Format and type Modify, the name of the
format you want to modify, and the parameters required to change the
format.

We explain both methods in the following sections.

Copying the Definition from STANDARD.FMT

This method reduces the risk of typos in a Modify command, and starts
you off with a command that you know works already. If you copy a
definition from STANDARD.FMT, you'll end up with an @-sign command

142 Sprint Advanced User's Guide

in your file, but don't let that concern you. The @-sign version of Sprint
commands is usually only slightly different from the menu version. (For
more on @-sign commands, refer to Chapter 3 of the Reference Guide, "Using
@-Commands."

1. Open a copy of the STANDARD.FMT file and find the command that
defines the format you want to modify. For example, search for

@Define(Quotation,

2. Select the text of the entire definition.

3. Copy the definition to Sprint's Clipboard, switch back to your document
file, and then paste the definition near the top of the file. Be sure to paste
the text before any command that uses the command you're about to
modify. For example, paste the @Define (Quotation, text before any
BEGIN QUOTATION commands in your file.
Note: You cannot use Modify to change how a format works halfway
through a document. If you want to do this, either modify each
occurrence of the format with the Style/Modify command, or define a
new format (see the "Defining a Unique Format" section beginning on
page 150). Remember, the Modify command must appear before the
first occurrence of the format.

4. Change the word Define to Modify. For example,
@Modify{Quotation, margins +.5 in, above I, below I, spacing 1)

5. Change the desired parameter(s). For example, change spacing 1 to
spacing 2. This tells the formatter to double-space text within the
Quotation format.

6. Before the closing parenthesis, add any desired parameters and make
sure you insert a comma to separate parameters. For example, after
spacing 2, type a comma and add the parameter font Helvetica. The
sample Quotation format definition now looks like this:

@Modify{Quotation, margins +.5 in, above 1, below 1,
spacing 2, font Helvetica)

When you print the file, all text within the modified format will print as
you specified with the Modify command.

Using Style/Other Format

If you don't want to copy a definition from STANDARD.FMT, you can use
the Style/ Other Format command to insert a Modify command in your file.
If you choose this method, we recommend that you open a window to
display STANDARD.FMT while you insert the Modify command; that way,
you won't forget what is or isn't in the default format definition.

Chapter 3, Modifying and Creating Formats 143

1. Open a window and then open STANDARD.FMT in that window.
2. Search for the command that defines the format you want to modify.

For example, search for Quotation,.
3. Switch to the window containing your document file and move the

cursor near the top of the file. The Modify command that you insert
must appear before any use of the command you're modifying.

4. Determine whether you'll need to change any of the parameters listed
in the definition, or whether you just need to add some additional
parameters.

5. Choose Style/Other Format. At the prompt, type Modify, the name of
the format you want to modify, and the parameters you want to change
or add. Use the definition displayed in the other window for reference.
Using the Quotation example explained earlier, you would type

Modify Quotation, spacing 2, font Helvetica

You don't have to retype the entire format definition. You only add or
change the parameter(s) required to create a special effect. The formatter
changes the format only as specified in the Modify command. Using the
example above, you wanted to change the spacing, and tell the
formatter to print Quotation text in a Helvetica font. The margins are
fine and so is the amount of blank space inserted above and below the
format; so you don't have to retype those parameters.

6. Separate parameters with a comma, ·and then press Enter when you
complete the Modify command.

7. When prompted, press C for command. Sprint will insert the Modify
command in the file. When you print the file, all text within the
modified format will print as specified in your Modify command. For
example, all text within the Quotation format will be double-spaced and
in the Helvetica font.

8. Close the STANDARD.FMT file when you complete your Modify
command(s). If you accidentally changed anything in STANDARD.FMT,
Sprint will ask if you want to save the changes. Answer No.

Format Changes to All Sprint Files

To make permanent changes to a format (that is, to tell the formatter to
change a format's effect in all Sprint files), copy the STANDARD.FMT file,
rename it, change the desired format(s) in the copy of STANDARD.FMT,
and then use the Layout/Document-Wide/Style Sheet command in your
files and specify the name of the new format file. For example, you could

• Open STANDARD.FMT.

144 Sprint Advanced User's Guide

• Choose Write As and type MYFORMAT. FMT.

• Edit MYFORMAT.FMT and change the desired format(s).

• Whenever you want a file affected by the changes to MYFORMAT.FMT,
choose Layout/Document-Wide/Style Sheet and type MYFORMAT .FMT. This
tells the formatter to use MYFORMAT.FMT instead of STANDARD.FMT
when it formats the file.

Warning: Don't edit STANDARD.FMT; edit only copies of this file! You
must have a working copy of STANDARD.FMT in order to print a Sprint
file! You should also refer to Table D.6 (page 429) for a list of format
parameters.

Let's say that you want to force Sprint to automatically place Figure
formats at the top of a page. The default definition of Figure doesn't say
anything about placement; when you choose the Figure format, Sprint
immediately inserts the figure text and the prompt for the figure caption. If
you want all Figure formats in all Sprint files to appear at the top of a page:

1. Copy or write the STANDARD.FMT file to another file (the file name
must have the .FMT extension). For example, write the file as
MYFORMAT.FMT.

2. Open MYFORMAT.FMT and search for the line that begins with
@Define(Figure,.

3. At the current cursor position (immediately after@Define(Figure,), type

above page

followed by a comma (for example,
@Define(Figure, above page,

4. Save the MYFORMAT.FMT file.

5. Choose the Layout/Document-Wide/Style Sheet command and type
MY FORMAT .FMT in any file that should print figures at the top of the page.

That's all there is to it. If, after changing this file, you find that some people
prefer figures in-line with the text while others like figures at the top, use
STANDARD.FMT for files with in-line figures and MYFORMAT.FMT for
files with top-of-page figures.

Style Sheets

In Sprint terms, style sheet refers to the file the formatter will use to interpret
the formatting commands you've chosen. The default style sheet is
STANDARD.FMT, which defines all the formatting commands you see

Chapter 3, Modifying and Creating Formats 145

listed on the menus and a variety of others (see Table A.1 on page 354 for a
complete list).

If you want Sprint to use a file other than STANDARD.FMT when
formatting your files, you need to choose Layout/Document-Wide/Style
Sheet and type the name of the desired file. Sprint inserts the Format
FILENAME.FMT command on the first line of the file, above the ruler line.
Do not put anything above this command line! The formatter will ignore
any Format command that is not at the top of the file (you'll see a warning
message to this effect).

Why have more than one style sheet? Perhaps you create several types of
documents, and each type has its own format requirements. For example,
let's say that you produce internal specifications as well as reports that are
distributed outside the company.

The following scenario shows why you might have more than one style
sheet.

• Page, figure, and table numbers for internal specifications should be
numbered sequentially. In reports, however, you want page, figure, and
table numbers to include the number of the current chapter .

• Tables in internal specifications should always appear at the top of the
page. Tables within a report, however, should print in-line with the
preceding text .

• Section titles (Levelln heads) in internal specifications should print in the
printer's default type size, not in a large one. For reports, however, you
want section titles to be big. You also want the section number and title to
print in a Times font, rather than the default font.

In this case, it would be convenient to have two style sheets: one for
printing spec sheets, another for reports.

Here are suggestions to accompany this scenario:

1. Make two copies of the STANDARD.FMT file. Name one of the copies
INTERNAL.FMT and name the other copy REPORTS.FMT.

2. Edit INTERNAL.FMT as follows:

146

a. Delete the following lines:

@parent(figure = Chapter)
@parent(table = Chapter)

These lines tell the formatter to precede figure and table numbers
with the current chapter number.

Sprint Advanced User's Guide

b. Search for the Table definition and add the above page parameter to
this definition. This forces all Table formats to the top of the next
page.

c. Search for the Level1n macro and change MedLeftHead to FlushLeft.

3. When you create an internal specification, choose Layout/Document­
Wide/Style Sheet. When prompted for the name of the style sheet to
use, type INTERNAL. FMT. Be sure to do this at the very top of the file.

4. Edit REPORTS.FMT and make the following changes:

a. Search for the line @Parent(table = Chapter). On the following line,
type the following command:

@Parent{page = Chapter}

b. Search for the BigLeftHead definition. (The Level1n command uses
this command to format section titles.) Following the Big parameter,
add font Times, (be sure to add the comma to separate this
parameter from the next).

c. When you create a report file, choose Layout/Document-Wide/
Style Sheet. When prompted for the name of the style sheet to use,
type REPORTS .FMT. Be sure to do this at the very top of the file.

If you follow these guidelines, you won't have to modify formats all the
time. You have a style sheet for each of your different document types. You
also have the STANDARD.FMT file in its original state. You may want the
formatter to use this file to format your memos, letters, and so on, in which
case you do not have to choose the Style Sheet command. If the formatter
doesn't see a Style Sheet command at the top of a file, it automatically uses
STANDARD.FMT.

For a detailed example of creating a unique .FMT file, refer to Chapter 4.

Creating Your Own Formats

Sprint's Style and Layout menus provide enough document style and
format options to satisfy most word-processing applications. You can

• set left, right, top, and bottom margins; tabs; and paragraph indentation

• determine how text will be aligned

• design page headings and footings
• create divisions such as chapters, sections, and appendixes

• automatically generate a table of contents

• change typestyles, fonts, and type sizes

Chapter 3, Modifying and Creating Formats 147

• index a document
• insert footnotes and endnotes

• cross-reference text

At some point, however, you may see the need to format part of a
document but can't find a "predefined" format to create the desired effect.
In this situation, you can use the special Text format on just part of your
document and, by adding the appropriate format parameters, create a
format to produce the desired effect. The following section explains how to
use the Text command.

The Text command is handy for occasional customization of a format. But if
you need to use a changed format a lot, you'll want to use the Define
command to create a brand-new format that you can then use by name, like
any other. You do this by using the Define command, give the format a
unique name (that is, unique to the definitions listed in STANDARD.FMT),
and specify the parameters that create the look you want. The "Defining a
Unique Format" section beginning on page 150 explains how to define new
commands.

Custom Formats for Part of a Document: The Text
Command

The Text command lets you create a customized format for a particular area
of text. By itself (without any format parameters), the Text command won't
do anything to your text. In essence, Text is a "do-nothing" command that
is available exclusively to be modified. You can enter any number of valid
format parameters (as listed in Table D.6 on page 429) to create the desired
effect.

As an example, let's say you want to indent all text in a region (that is,
temporarily widen the left or right margin). There are a couple of
commands that affect the margins, such as Display and Quotation. Display
doesn't fully justify lines, though, and Quotation affects both the left and
right margins. What if you want to move the left margin in (to the right) 7
picas (or 2 inches, one-half line, or whatever), double-space the text, and
justify the lines? You'd use the Text command, and then modify it to
include the Leftlndent, Justify, and Spacing parameters.

The following example shows how the Text command creates a left margin
2 inches from the current left margin and double-spaces the printed text.

148 Sprint Advanced User's Guide

To create this printed example:

This text automatically appears 2 inches

from the current left margin, and is

double-spaced. You don't have to know

the column number of the left margin; you

can just tell the formatter to add 2 inches to

this setting before printing the marked

text. You don't have to insert an extra ruler,

either. Just add parameters to the Text

command.

1. Type the text to be affected. Don't indent the text yourself or vary the
line spacing.

2. Mark the text.

3. Choose Style/ Other Format.

4. When prompted, type Text, press Enter, and then press R.
5. Once Sprint inserts the BEGIN and END TEXT commands around the

marked block, choose Style/Modify.

6. When Sprint displays the Modify by adding: prompt, type:

LeftIndent +2 inches, Spacing 2, Justify Yes

Note: If you prefer, you can choose Style/Other Format, type Text, and
follow this format name with the parameter(s) you want to add to the
format. This eliminates the need to choose Style/Modify once you've
inserted the Text format.

Inserting the Text format and modifying it to format text a certain way is
similar to creating your own formats. Modifying the Text format, however,
is the easier of the two ways to do what you want and is best suited for
occasional use. If you find yourself using the same modified Text format
often, you should consider defining the modified format as a brand-new
format in the STANDARD.FMT file. The following section explains how to
do this.

Chapter 3, Modifying and Creating Formats 149

Defining a Unique Format

You can create your own format style with the Define command. One way
to do this is to find a format command in the STANDARD.FMT file that has
at least one formatting function in common with the functions you want to
perform. Once you find such a command, copy its definition and then alter
it to suit your needs. Table D.6 on page 429 lists all possible parameters that
can be included in a format definition.

Each new format must have a unique name; that is, the name of the new
format must be different from all other Sprint commands and
variables-either built-in or defined in STANDARD.FMT. The new name
can have up to 24 characters and contain any sequence of letters, digits, and
underscores; upper- and lowercase letters are treated equally. The name
can also contain any single ASCII symbolic character, such as % or # or +.
Here are some valid command names:

NewItemize
Form23B
UserEntry

*
Report
Newsletter

2Column
Acct_Invoice

The rest of this discussion will make more sense if there's an example to
reference. Let's say you're writing a user's guide and want to create a
format for information displayed by a software program. You want the
software messages and displays to stand out from the rest of the text; they
should be separated from surrounding text by a blank line and appear in
bold type, printed with a fixed-width font, indented from both the left and
right margins, and single-spaced. The first thing to do is look in the
STANDARD.FMT file for a format that comes close to the format you want
to create. The Quotation and Example format definitions share functions
common to the desired format. Quotation indents text from both margins;
Example indents text from the left margin and prints text in a fixed-width
font; both format definitions specify single spacing, and insert a blank line
above and below the text of the format. Let's work from the Quotation
definition and call the new format Computer.

Note: You don't have to start with a predefined command. It may be that
there is no predefined command that comes close to the effect you're trying
to achieve. In that case, you can start from scratch by skipping the first two
steps outlined next.

1. Open (a renamed copy of) the STANDARD.FMT file, search for Quotation,
and then select the definition:

@Define(Quotation, margins +.5 in, above 1, below 1, spacing 1)

150 Sprint Advanced User's Guide

2. Copy the definition to the Clipboard, and then paste it at the end of
your file. When you've done this, you'll have two"Quotation definitions.
You're going to convert the second one to the new format.

3. Now give the format a name. Move the cursor to the word Quotation in
the second Quotation definition and change it to Computer. The
definition now looks like this:

@Define(Computer, margins +.5 in, above 1, below 1, spacing 1)

Note: If you're starting to define a format from scratch, you should just
go to the bottom of the .FMT file and enter the @Define command,
followed by a name, followed by parameters, as shown.

4. Using the format parameters listed in Table D.6 on page 429, you can
add the missing functions: a bold typeface and a fixed-width font. Both
of these formatting functions are accomplished with the Font parameter.
If your printer has a font that prints text in bold fixed-width characters
(for example, courier.bold), you're in great shape. All you need to do is
add the font parameter to the Computer definition, and specify the
name of the printer font that prints bold, fixed-width characters. Be sure
to separate the font parameter from the others with a comma. For
example,

@Define(Computer, margins +.5 in, above 1, below 1,
spacing 1, font CourierBold)

If your printer doesn't have a bold, fixed-width font, you can't specify
both functions with a single font parameter. As noted in the Table D.6,
you can enter one font parameter per format; if you enter more than one,
Sprint accepts the first one and ignores the others. If you enter font bold
pica, for example, the printer prints the text in bold, but in the default
font, not a pica font.

In such cases, you can use the Font parameter to specify the desired
printer font, and the OverStruck parameter when you want text printed
in a bold typeface. OverStruck double-strikes characters in the format,
which makes them darker than the surrounding text. If your printer
definition includes a command to offset overstrikes, characters may be
slightly wider. Modify the Computer definition to include the Font and
Overstruck parameters:

@Define(Computer, margins +.5 in, above 1, below 1, spacing 1,
font pica, overstruck)

The Computer format definition now includes all the desired
parameters. Once you save the renamed copy of STANDARD.FMT, you
can use Computer like any other format: Choose Style/Other Format,
type Computer, and then press R to tell the formatter that this applies to a
region of text. If you haven't already selected text, Sprint will prompt
you whether to insert a BEGIN or END command. If you've preselected

Chapter 3, Modifying and Creating Formats 151

the text, Sprint automatically inserts the BEGIN and END commands as
soon as you enter the command name Computer.

5. To test the Computer format, create a new file called COMPUTER.TST.
If you try out new commands in a test file first, testing usually goes
faster and isolating problems becomes an easier task.

a. Enter the following text in the COMPUTER.TST file:

Once you type something, the program displays the
following message on your screen:

b. Choose Style/Other Format, type Computer, and then press R for
region.

c. Press B to signal that your cursor is at the beginning .of the format
reigons. Sprint inserts

BEGIN COMPUTER

d. Type

Do you really want to do this? Answer Y or N __

e. Now choose Style/Other Format again. Type Computer, press R, and
press E to signal the end of the region. Sprint inserts

END COMPUTER

f. Finish the section by typing:
Decide whether or not you want to, and then enter your response.

6. Print the COMPUTER.TST file. Your printed text looks similar to this:

Once you type something, the program displays the following
message on your screen:

Do you really want to do this?
Answer Y or N

Decide whether or not you want to, and then enter your response.
If Sprint displays an error message instead of printing your file, note the
line number on which the error occurred and check your entry against
the one shown in Step 4. Correct the error and repeat this step.

Be careful that your printer supports the font you specified as part of
the Font parameter. The example in Step 4 specifies pica, but your printer
might have an elite or courier font instead. (Or maybe it only has fixed­
width fonts.) Check your printer manual to find out if it has a fixed­
width font, and modify your Computer command so that it includes the
correct font name.

7. Once you verify that the new format does what you want it to, you can
use it to format text in any Sprint file.

152 Sprint Advanced User's Guide

c H A p T E R

4

Custom Document Design

As illustrated by this manual, Sprint can format and produce large,
complex documents as easily as small documents. This manual was created
with the same version of Sprint you have; as you can see, Sprint's
formatting capabilities are powerful. This power stems from the Sprint
formatting language.

In the previous two chapters, you were introduced to many of Sprint's
formatting commands. Using this book as a running example, this chapter
will show you how to build your own custom macros from the formatting
commands. You will gain further experience with STANDARD.FMT, the
text file that contains the definitions of most standard formatting
commands and macros. (Some commands are built-in and cannot be
altered.) The Sprint formatter uses the STANDARD.FMT file (or whichever
.FMT file you specify) when formatting your files. The .FMT file Sprint uses
is called a style sheet. You can change style sheets by choosing Layout/
Document-Wide/ Style Sheet.

Although you needn't be a programmer to work through this chapter, you
should be prepared for more technical language and concepts. We do
assume that you have read and understood the material in the "Advanced
Formatting" chapter.

Sprint's formatting macros produced the special chapter heading,
"running" footer that varies on odd and even pages, special table of
contents format, and other custom design formats you see in this book. To
get Sprint to produce this (and most other Borland manuals), we created
custom commands and put them in a special .FMT file. We then loaded the
new .FMT file with the Layout/Document-Wide/Style Sheet command.

Chapter 4, Custom Document Design 153

The formatting language consists of Sprint commands that allow you to
create other Sprint formatting commands. All of these commands are listed
in alphabetical order, in Appendix C. In this chapter, we will be using and
discussing the following commands:

• Style
• Define
• Macro
• Modify
• Eval
• Case
• Value
• String
• Incr
.If
• TocB

In .FMT files, you enter Sprint commands with @-signs, as in all pure ASCII
files. That is, instead of entering commands via the Sprint menus, you'll
enter an @-sign, followed by the name of the command.

Note: Since we used a PostScript typesetter to produce this manual, we had
access to many fonts and other capabilities. If you are using a different
printer or typesetter, you may not be able to do everything we discuss in
this chapter. However, you should still find it useful to read through the
chapter and learn about the concepts of custom format definitions.

There are four major Sprint commands you'll use in this chapter: @Style,
@Define, @Macro, and @Modify. @Style is used to describe formatting
styles for the entire document, @Define is used to describe a new format to
affect blocks of text, @Macro is used to define a formatting macro, and
@Modify is used to alter an already-defined format.

As you work through this chapter, you may want to open the
STANDARD.FMT file (on your Program Disk) to see examples of what we
are discussing.

Overall Document Style

Every Sprint document must have a document-wide style; the default
settings are those given in the @Style command at the top of
STANDARD.FMT. If you don't specify a style (with the @Style command),
Sprint will use the default values for the style parameters. These default
values and the use of the @Style command are described in Appendixes B
andC.

154 Sprint Advanced User's Guide

For this manual, we wanted a different style, so we used a different @Style
command:

@Style(counter SectionNumber,
LeftMargin 11.5 picas,
BottornMargin 1.5 inches,
Size 10 points,
Spread.6,
widowprevent on,

justify yes,
Rightmargin 11.5 picas,
TopMargin 9 picas,
Spacing 1.2,
fill no,
Font Palatino)

We could have specified values for every one of the parameters, but Sprint's
default values for the others were correct for our application.

There are three places you can put an @Style command:

1. In your document. You can place as many @Style commands as you
want in your document, but since the command specifies a document­
wide style, it makes sense to use only one @Style command at the very
beginning of your document (before the ruler line). Some of the @Style
parameters have a different effect if the @Style command is not placed
at the start of the document (before any ruler lines or printed text). To
be safe, you should use only one @Style in your document, and you
should position it at the start of your document. You should use
individual format commands for any other style and format changes.

2. In STANDARD.FMT. If most of the documents you create will use the
same style, put the @Style command in STANDARD.FMT. That way
you'll have to define a style only once.

3. In a custom .FMT file. If a group of your documents will have one style
and another group another style, you may want to create a custom .FMT
file for each of the groups. Then, specify the appropriate style in each
.FMT file.

Note: To subsequently use a different .FMT file when you use Sprint,
choose Layout/Document-Wide/Style Sheet, then choose the .FMT file you
want.

Caution: Before making any changes to STANDARD.FMT, you should
make a copy of the file so you can retrieve it in case you make changes you
didn't mean to.

Custom Formats

You'll use custom formats to create custom headings, examples, lists, and
any other chunks of text that should look different from the normal style of
the document (determined by the @Style command). All the formats in

Chapter 4, Custom Document Design 155

STANDARD.FMT can be customized to your liking, such as @Foot,
@Description, and heading formats. Before we explain how to create your
own custom formats, let's dissect one of the heading commands in
STANDARD.FMT. @Section uses the generic format SubHeading. The
definition (determined by the @Define command) of the SubHeading format
is:

@Define(Subheading = Large, above 2, below 2, fill no, group}

The equals sign in this definition tells the Sprint formatter to interpret
SubHeading as if it were Large, except for the changes specified by the
parameters above, below, fill, and group. (Note: A complete list of all possible
format parameters can be found in Appendix D.) The meanings of the
parameters used in the SubHeading format are as follows:

Above tells the formatter to leave space above the format (in this case,
two line spaces).

Below tells the formatter to leave space below the format (in this case,
two line spaces).

Fill no (or fill off) tells the formatter to do no filling (joining of lines) in
this format. (if filling is requested (with fill yes or fill on) the formatter
will fill up a line with text from the following line.

Group tells the formatter to keep the text in the format together.

The definition for the format SubHeading was built on the definition for the
format Large. Large is defined like this:

@Define(Large=B, font large dwidth, ifnotfound, size 1.414,
font bold, ifnotfound, overstruck,
afterexit "@NoHinge"}

The format B is defined this way:

@Define(B, font bold, ifnotfound overstruck)

Note: B is an example of a typeface format. Typeface formats do not force
the formatter to automatically start the text on a new line. All other formats
will automatically start a new line.

Font is used to specify the font for this format (in this case, bold).

Ifnotfound is followed by either script, size, overstruck, underline,
strikeout, or invisible and specifies what font to use if the preceding font is
unavailable on the printer. For example, font bold, ifnotfound,
overstruck tells the formatter to overstrike the text in this format if the
printer cannot print in bold. Note: It's a good idea to use ifnotfound in

156 Sprint Advanced User's Guide

your format definitions if your formats will be shared by people who use
different printers with Sprint.

Afterexit is an example of a command parameter. A command parameter
is quite different from the other format parameters. It is a command (or
group of commands) that is executed at a certain time in relation to the
other text in the format. In this example, the @NoHinge command is
executed immediately after the Large format is left, but immediately
before returning to the parent format (the format that encloses the Large
format).

There are six other command parameters: Divider, Initialize, AfterEntry,
BeforeEach, WithEach, and BeforeExit. These are fully described in
AppendixD.

Defining a Custom Format with @Define

All formats are defined in essentially the same way. The standard format
definition is:

@Define(newname = oldname, parameter = value, parameter = value, ...)

The = oldname part is optional. If you include it, the format newname (a
name you make up) will be a copy of the existing format oldname, except for
the changes to the listed parameters. (See the SubHeading example in the
previous section.) If you want to create a brand new format, leave off the =
oldname part (see the B example in the previous section).

You can specify as many parameters (elements to be included as part of the
format, such as font) as you want. The values for the parameters that you
don't specify will be inherited from the format's parent format. (The parent
format is the format enclosing the format you invoke.)

Note: A complete list of all possible parameters for the @Define command
can be found in Appendix D.

Example: A Section Heading

As an example, look at the heading for the main sections of this
chapter-for example, "Overall Document Style" on page 154. This head
(Ahead) is IS-point bold and underlined. In our custom .FMT file, we
defined the format for this heading as follows:

@Define(Ahead, font Palatino.bold, size 18 point,
above 2, below 1,
fill no, group,

Chapter 4, Custom Document Design 157

beforeExit n@PROM[@UX(@» l@*n)

Compare the heading for this section with this definition. You've seen
examples of all the parameters except Size and beforeExit.

Size specifies the size of the type. If no unit is specified, the value is
multiplied times the size of the parent format's type. For example, if the
parent's type size is 10 point, size .9 would produce 9 point type. To
specify a point size explicitly, follow the value with points: size 9 point.

beforeExit is another example of a command parameter (this concept
was introduced under the explanation for the B format). The string of
characters following beforeExit will be executed as commands at the end
of the format, just before returning to standard text. In this example, the
commands in the string ask for two other formats: PROM and UX. Both
of these formats were defined earlier in our .FMT file. PROM was
defined to be 10-point Palatino and UX was defined to mean underlined.
The @UX(@» command tells the formatter to underline the wide break.
In this case, the wide break is an entire (blank) line, so Sprint will print a
line as long as the linelength defined in the @Style command. That is, the
heading will be underlined with a 10-point Palatino line.

Note: Formats must be defined before they can be used.

Example: Program Listing

Let's look at another example of a format definition. The text of the
definitions of the formats-such as the one below-are formatted for this
manual by the format Program. It's in a typewriter (or monospaced),8-point
type. @Program is defined like this:

@Define(Program, font mono, size 8 point,
spacing 1, justify no,
fill no, spread 1, notct,
leadingspaces kept, blanklines kept,
initialize n@*n, beforeExit n@t n)

Spacing specifies the line spacing (or leading). If no unit is specified after
the value, line is assumed. spacing 1 specifies single-spacing, spacing 2
specifies double-spacing, etc. To explicitly specify leading, use points
(e.g., spacing 12 points).

Justify specifies the type of justification. Left, no, or off tell the formatter
to leave the right edge ragged (filling is still done). Both, yes, and on tell
the formatter to justify both edges. Right tells the formatter to justify the
right edge and leave the left edge ragged. Centered tells it to center the

158 Sprint Advanced User's Guide

text. Right and center turn off filling. Justification means the same as
justify. Centered means the same as justify center. Flushright means the
same as justify right. Flushleft means the same as justify left.

Spread is the same thing as paragraph spacing and means the extra
distance between paragraphs. Adding extra space between paragraphs is
an alternative to indenting paragraphs, and is used to visually separate
paragraphs.

Notct is the same as tct no. It tells the formatter to stop all character
translation in this format. (Character translation is further explained on
page 170.) All @Tct commands will be ignored. (If you specify the
parameter tct yes, character translation will be turned on. In this
example, we turned tct off for program listings because we wanted
them to be printed exactly as we typed them.

Leadingspaces can be ignored or kept. If you specify ignored, white space
at the start of a line is ignored (this is the default value). If you specify
kept, tabs or spaces at the start of a paragraph are left as is.

Blanklines can be kept, break, or hinge. If you specify kept, blank lines are
retained (this is the default value). If you specify break, multiple blank
lines will be ignored-only one blank line will be printed. If you specify
hinge, the formatter performs an automatic HINGE command at each
blank line. You'll probably want to also specify group in the format to
make this useful.

Initialize is another example of a command parameter. The commands
following initialize will be executed at the start of the format, before the
text is formatted by the command. In this example, we start off each
program listing with a blank line (specified by @*).

Example: An Index

As a final example, we'll look at a more complicated format: the index for
this book. Before looking at the index (on page 169), try to imagine how it
should look, based on the following format definition:

Chapter 4, Custom Document Design 159

@Define{Thelndex,
index, columns 2, gutter 3 picas, justify no,
size 9 points, spacing 11 points, spread .8, indent -2,
initialize
"@String(sectiontitle"Index")
@String(chaptertitle=sectiontitle) .
@If(page&1,y "@blankpage")@NewPage
@TocB(@*@PBold<Index@$>@Word[@>@eval(Page)]@nohinge@*)
@HeadingMajor(Index)@NewPage
@Tabset (2,4,6,8)",

BeforeEach
"@case[counter,O "", else
"@*@Mediumb[@*@char(counter)]@nohinge@*"]"

}

Some of the parameters are new:

Index is a special parameter. Like the After parameter, index format text is
saved until the end of document is reached, and then processed by the
formatter. The index is discussed further on page 169.

Columns tells the formatter to divide the page into columns. You can
divide a page into up to 6 columns.

Gutter tells the formatter how much space to leave between the
columns, in this case, 3 picas.

Indent tells the formatter where the indent margin is, relative to the left
margin (this is different from the indent field of a ruler, where the indent
is absolute). If you don't specify a unit for the value, character will be
assumed.

If the value for indent is positive, you're specifying an amount to indent
the first line of a paragraph. If the value for indent is negative, you will
get an "outdented" format (a hanging indent). In this case, the wrap
margin is set to the given amount. The wrap margin is the margin at
which all lines of a paragraph, except the first line, will start (the first line
of a paragraph will be printed flush against the left margin). If a
paragraph is indented in the input file (or starts with a tab), the first line
will also start at the wrap margin. (You can also set and move the wrap
margin by using the @$ command.)

Where You Should Keep Your Definitions

Definitions for all formats must be located either in the .FMT file you plan
to use for your document, or at the top of any file you print. If you might
use the formats in another document, go ahead and put the definitions in
STANDARD.FMT (or your standard .FMT file). Caution: As mentioned

160 Sprint Advanced User's Guide

earlier, you should make a copy of the original STANDARD.FMT in case
you make a lot of mistakes and want to retrieve the original file.

You can also put format definitions in your document file, but you should
define only formats that are unique to that document. For clarity, enter any
format definitions at the beginning of your document file.

Before studying this section further, acquaint yourself with the
STANDARD.FMT file. It contains many format definitions, and might
define all the formats you'll ever need.

Changing a Format with @Modify

You can make changes to any existing format (generic or custom) with the
@Modify command. Its structure is similar to @Define:

@Modify(format, parameter; value, ...)

All parameters that you don't specify will be left unchanged. For example,
if you decided that in one special report you wanted all of the @Quotations
to be italicized, you would enter the following command in your
document:

@Modify(Quotation, font; italic)

If you're going to modify a format, you must use @Modify before using the
format. You can't @Modify a format you've already used. If you need to use
a format that you want to modify later, you should instead use @Define to
describe a new format.

Example-Modifying @Numbered

The generic format @Numbered is used to create lists, and uses hyphens to
mark the beginning of each list item. Nested paragraphs are marked with
asterisks. For this manual, we modified @Numbered so that it would use
boxes and bullets (characters available on PostScript devices) to mark the
paragraphs, and we wanted extra space between the items. This is how our
@Modify statement looks:

@Modify(Numbered, numbered n%<@Ding[n]%i@Ding[z]%]n,
above 6 points,
below 6 points,
indent -2)

Numbered (the second one; the first one is the format name you're
modifying) means that the paragraphs in this format will be numbered

Chapter 4, Custom Document Design 161

automatically by the formatter. The string following the numbered is
called the template. It determines how the number of each paragraph will
be printed. The template in this example is a parent template.

The parent template prints different text for each parent of the variable.
We use a parent template for our itemized lists because we often have
lists imbedded in other lists (we call them sublists).

Parent templates start with %< and end with %]. In between is the
different text to print for each level of parent. The part of the template in
the middle specifies what character to print for the main list (@ding [n]). A
semicolon separates it from what character to print for the sublist
(@ding[z]). The characters are separated by a semicolon. (@DING is simply a
typeface format that says we want the PostScript Dingbats font.)

For example, if you have a dot matrix printer that can print all of the
ASCII characters and want to print solid boxes for the top level of lists,
asterisks for the second level, and hyphens for a third level, you would
use this template:

numbered "%< ;*;-%]"

There are a number of other types of templates; they are described in the
Reference Manual.

Command Macros

You've just learned how to define style formats. Now you will learn how to
define command macros.

A command macro is a collection of formatting commands. They are similar
to the command parameters you learned about in the first part of this
chapter (if you've forgotten what command parameters are, review the
explanation on page 157).

The commands in a command parameter are executed only when entering
or leaving the command format. The commands in a command macro are
executed as soon as the formatter encounters them. Here's an example of a
commonly-used macro, the macro to insert an item into the index:

@macro(Index() = "@ '@TheIndex(e=text,v="@, @eval(page) @,") @' ")

Notice that no style formatting is done to the text. The text is simply sent,
along with the page number, to another macro or format (called Thelndex,
which is described on page 169). To use the macro in your document, you
would type @IndexO around the word or phrase you want indexed. For
example, in our document file, the paragraph above starts:

162 Sprint Advanced User's Guide

A command macro@Index(command macros) is a collection of ...

Naming Command Macros

Command macros must be assigned unique names. The name can be made
up of any sequence of letters, digits, and ASCII symbols, up to 24
characters, either upper or lowercase letters can be used. The following are
examples of legal macro names:

@old_list
@Table

@­
@{

@Ahead
@Macro2a

@List2
@Salutation

Note: If you want to use an open delimiter such as {, (, [, or <, you should
put it in quotes when you define the macro.

Equate Macros

The simplest use of the @Macro command is to make a copy of (equate) an
existing format macro or format. For example, if you plan to use the
@Flushright format a lot, you might want to make a copy with a shorter
name:

@Macro(FR = FlushRight)

This @Macro command copies the definition of @Flushright into a new
format, @FR. Now, you can type the command @FR instead of @Flushright.
You can equate as many other commands as you like at the same time by
adding equations to a single @Macro command:

@Macro(FR = FlushRight, FL = FlushLeft, FC = Center)

You can also use @Macro to redefine existing commands. For example, if
you typed a document and used @U to emphasize words with underlining,
but later had access to a different printer that could print in italics, you
could redefine @U to mean @E:

@Macro(U = E)

That way you wouldn't have to change all the @U's in your document; you
would just include the equate macro at the top of that document (not in the
STANDARD.FMT file, since you don't want to permanently get rid of the
ability to underline).

Note: You cannot redefine a command after using it.

If you redefine an existing command with @Macro, you can use the original
definition inside the @Macro. For example, if you want the @Include

Chapter 4, Custom Document Design 163

command to display a message on the screen telling you when it's
including a file, you could use the following command:

@Macro[Include(} = "@Message(@* INCLUDING @eval)@Include(@eval)"j

Substitution Macros

If you have a long word that you have to type often in your document, you
can create a substitution macro. For example, if you're tired of typing Scotts
Valley, you could create a new command called @SY:

@Macro (SV = II Scotts Valley")

To invoke the macro, simply type @SY wherever you want Scotts Valley to
appear. When the formatter encounters @SY, it will expand the macro into
the text between the quotation marks.

If you're ever in the @SV area, please stop by Borland. We'll
gladly give you a tour of our facilities and introduce you to your
sales rep. Our address is: 4585 @SV Drive, @SV, CA 95066.

The formatter will expand each occurrence of @SY into Scotts Valley:

If you're ever in the Scotts Valley area, please stop by Borland. We'll gladly
give you a tour of our facilities and introduce you to your sales rep. Our address
is: 4585 Scotts Valley Drive, Scotts Valley, CA 95.066.

You can put other commands inside the definition of the command. Using
the same example, we could save some more time by creating @SYC:

@Macro(SVC = II@SV, CA 95066")

If you always want your company name to be printed in boldface but your
address in italic, you could create a new command:

@Macro(BI = "@B<Borland International>@*@~
@I<4585 @SV Drive>@*@~
@I<@SVC>@*")

@* tells the formatter to do a hard carriage return, and @..., tells the
formatter to ignore all whitespace (tabs, spaces) up to the next printing
character. (We could have typed all three lines of the address on one line,
but broke it up for clarity. The @..., makes sure that the formatter doesn't
insert extra whitespace in front of the second and third lines of the
address.) Complete definitions of these commands can be found in the
Reference Guide.

As you can see, substitution macros can get quite complex. You can include
any valid Sprint command or any of your own commands between the
quotation marks.

164 Sprint Advanced User's Guide

Macros with Arguments

Macros can also take arguments. An argument is a string of text that you
supply when you "call" (invoke) the macro. When the formatter processes
the macro, it inserts the argument into specified parts of the macro
definitions. For example, the definition of the macro UnNumbered is:

@Macro(UnNurnbered() = "@newpage@HeadingMajor(@*@* @eval) ")

The parentheses after UnNumbered serve as placeholders for the argument
you supply. At print time, the formatter replaces every occurrence of @eval
in the macro definition with the argument you supplied. If you invoke
UnNumbered with the argument Section Title, its definition is first expanded
to: "@newpage @HeadingMajor(@*@*Section Title) ", and then processed.

Here's another example: To make a macro @Indx that prints a piece of text
and includes that text in the index, you might use the following:

@Macro(indx() = n@eval@Index(@eval) ")

Now, typing @indx (word) is the same as typing word (except that word will
be listed in the index).

To indicate that a macro takes an argument, add a pair of delimiters such as
o after the macro name. To access the argument inside the macro definition,
refer to it with the command @eval or @eval(text).

You can invoke a macro (@Mac below) that takes an argument in three
ways:

Call

@mac
@macO
@mac(argument)

Result

No argument; text is undefined
text is set to a null string, a string of zero length
text is set to "argument"

@eval is the command that expands a variable. It is normally used with
delimiters and a variable name. When it is used inside a macro definition,
you can use it without a variable name. Then @eval will refer to the
argument given the macro, which is called text (unless otherwise
specified-read about multiple arguments on page 168).

Example

For an example, let's dissect the macro that defines a SubSection, a com­
mand that creates a numbered subheading.

@Macro (SubSection () = II

Chapter 4, Custom Document Design 165

@Incr(SubSection)
@String(SectionTitle = text)
@String(SubSectionTitle = text)
@Flushleft(@b(@*@value(SubSection) @eval@*@*@NoHinge))
@TOC(@\@\@eval(SubSection) @$@eval@word[@>(.)@eval(Page)]@*)")

@incr(SubSection)
increments (adds 1) to the value associated with the variable SubSection.
If the variable SubSection hasn't been used yet, the formatter will add 1 to
0, and the result of incr (SubSection) will be 1.

@String(SectionTitle = text)
@String(SubSectionTitle = text)
make the two string variables, Section Title and Subsection Title equal to the
specified argument. Notice that when you equate string variables, you
don't need to refer to the argument as @EV'al (text), just as text.

@flushleft(@b(@*@value(SubSection) @eval@*@*@NoHinge))
describes how the argument should be printed. The @b means boldface,
@* means print a blank line before the heading, @value(Subsection) means
print the number of the section, the two spaces will print as two spaces,
@Eval is expanded into the argument given the macro (the title of the
subsection) and then printed, the first @* means go to the next line, the
second means print a blank line, and the @NoHinge prevents the section
head from being separated from the text following it.

@TOC(@\@\@Eval(Subsection) @$@Eval@Word[@>(.)o@Eval(Page)]@*) ")
describes how the table of contents entry should look for this section.
The interpretation is straightforward: Move to the second tab, print the
section number and two spaces, set the wrap margin to here, print the
argument, some leader dots, then the page number and a forced return.
@WORD means to keep together the items included in delimiters (the
leader dots and the page number).

Since the table of contents will be printed later, you have to use
@eval(subsection) instead of @value(subsection}. @value(subsection) would
return the value of SubSection at the time the table of contents is printed.
This would be wrong: we want the current value of SubSection.

Example

Dissection of the formatting macro that produces this book's chapter heads
and page footers reveals some interesting techniques. The following are the
definitions of the macro and some included formats:

166 Sprint Advanced User's Guide

@macro (Chapter () = II

@makeodd()
@incr (Chapter)
@string(pho = II ")@string(phe = II ")

@string(pfe="@value<Page>@>@i{@value<BookTitle>}")
@string(pfo="@i[Chapter
@value<Chapter>,@title[Chapter]]@>@value<Page>")
@string(SectionTitle = text)@string(ChapterTitle =text)
@ChapterStart(C@>H@>A@>P@>T@>E@>R)
@AvGa7[@ux{@>}]@*@blankspace(4 points)
@HeadingMajor(@value(Chapter))@*
@*@*
@HeadingMinor(@eval)
@TOCB(@*@PBold<Chapter @eval(Chapter) @~
@$@eval>@Word[@>@eval(Page)]@nohinge@*)")

@Define(AvGa7, font AvantGarde, size 7 point)

@Define{HeadingMajor, font AvantGarde.bold, size 26 point,
columns 1, FlushRight, group)

@Define(HeadingMinor, font AvantGarde.bold, size 20 point,
columns 1, FlushLeft, below 2, group)

@Define(ChapterStart, columns 1, above 1 inch, below 0, size 8 point,
font AvantGarde, FlushLeft, group, spacing 0,)

Compare these definitions to the first page of this chapter. The formats are
simple and easy to understand, so let's go straight to interpreting the
macro:

@incr(Chapter)
Adds 1 to the variable Chapter.

@string(pfe="@value<page>@>@i{value<BookTitle>}")
Sets up the string variable pte, which is the string that's printed on the
bottom of each even page. The value of the variable page will be printed
flush against the left margin; @> inserts white space to fill up the center of
the line; the remainder of the string prints the title of the book in italic
type. Compare it to the footer printed on the bottom of one of the odd­
numbered pages in this manual.

@string(pfo="@i{value<ChapterTitle>@>@value<page>")
This is similar to the assignment to pte above, except that it refers to the
footer on each odd page. Compare it to the footer on one of the even­
numbered pages in this manual.

@string(SectionTitle = text)
This assigns a name to the string Section Title.

@string(ChapterTitle = text)
This assigns a name to the string ChapterTitle.

Chapter 4, Custom Document Design 167

@makeodd()
We want all chapters to start on new, odd pages. The makeodd command
makes sure they do.

@ChapterStart(C@>H@>A@>P@>T@>E@>R)@*
This spreads out (letterspaces) the word CHAPTER across the top of the
page. The last parameter of the @ChapterStart definition, spacing 0, sets
the line spacing to zero, so that no vertical advancement is made at the
end of the line (zero leading). (The @* moves the formatter back to the
start of this line.)

@AvGa7[@UX{@>}]@*
This prints a rule.

@HeadingMajor(@value(Chapter))@*
This prints the number of the chapter.

@*@*
Two blank lines.

@HeadingMinor(@eval)
This prints the title of the chapter.

@TocB(@*@PBold<Chapter @eval(Chapter)@$@eval>@Word[@>@eval(page)]
This is similar to the previous example, except the the chapter title is
printed in bold type, flush against the left margin.

Multiple-Argument Macros

Macros can also be passed more than one argument. To do this, you give
each argument a name, and you include the names in the beginning of the
macro definition. For example:

@macro[job(dept,after,rep) =

"Thank you for you interest you've shown in working for
Zendex Corporation. We have forwarded your resume to the
department. If you don't hear from us before

, please call ."

defines a macro to make form letters easier. When you use a multiple­
argument macro you must supply a definition for each of the arguments
you listed in the macro definition. This is how you would use the example
above:

168 Sprint Advanced User's Guide

Dear Mr. Jones,

@job(dept=IAdvertisingl,after="October lstl,rep="Ms. Rannice")

Sincerely,

Mark Thomas

You can supply the arguments in any order. If you don't supply one of the
arguments, that argument is undefined and won't print anything. You can
use the @IfDef command to check whether an argument is defined.

The Index and the Table of Contents

The Index

The index is formatted in a specialized After format. (If you don't remember
After, read about it in Appendix D.) You cannot insert the index format with
the @Place command, and you call the format using a special command
form.

To put a word into our format Thelndex (which later became the index), we
used this command:

@macro (Index () = (@ '@Thelndex (e=text, V="@, @eval (page) @, ") @' ")

The entries (words) are alphabetized and the values for each entry (page
number) are placed into the special index pool, where they are appended
together to make a string like

entryvaluevaluevaluevalue . . .

for each unique entry. The formatter ignores case and formatting com­
mands when comparing entries.

When the formatter reaches the end of the document, it formats the index
pool. The entries are printed in the Index format (see page 159).

In the index format, each time the initial letter changes, the variable Counter
is set to that letter (A is 65) and the BeginEach command is executed.

Commas in the value strings are used to make multi-level indexes. The text
before the comma locates the primary entry, and the rest of the text
describes an entry in a sub-index which is. printed after that entry. The
subindex formats just like the main index, except each line is printed with a
tab command (@\) in front of it. Subindexes may be nested any number of
times.

Chapter 4, Custom Document Design 169

Commas inside commands in the entry string are not used for this, so you
can use @Word(text,text) to put commas in an index entry.

Although it is useful to understand how the index is created, you need not
learn how the process works: just use the @Index formatting macro
provided in STANDARD.FMT. You can change the appearance of the index
by editing or modifying the index format.

The Table of Contents

Once you've figured out how the index works, the table of contents will
seem simple. Here is the definition of the format:

@Define(TocB, before, justify no, size 10 point, spacing 1.2,iniiialize "
@String(pfo = "@=@ref(page,ternplate'%i')")@string(pfe = pfo)
@String(pho = "")@string(phe = pho)
@String(sectiontitle "Table of Contents")
@String(chaptertitle=sectiontitle)
@HeadingMinor(Table of Contents)
@TabSet (1 en, 2 en, 3 en, 4 en, 5 en, 6 en) @*@*")

The TOC introduces two new features: use of template to change the
appearance of the page number; and the before parameter.

Like the index, the table of contents is created as your document is
formatted. The entries are kept in the TOe format in the same order they
are inserted (they aren't alphabetized). The format is processed at the end
of the document, after the index.

The page numbers will start at 1, and will appear as lowercase roman
numerals (see the description of @Template).

Compare the table of contents in this manual with the format definition
listed above.

Translating Characters

Character translation means that you want Sprint to automatically translate
characters (or words) into something else when it formats your document.
The format of the translate command is simple:

@tct("translate from" "translate to")

Let's say your printer can print the ® symbol. Since you can't display the ®
symbol on your screen, you decide to use the combination (R) every place

170 Sprint Advanced User's Guide

you want the registered trademark symbol. At· the top of your document,
or in your .FMT file, insert this command:

@tct(I(R)" "@char(y)")

where y is the character code for ® on you printer.

You can also include formatting commands in the translate to string. For
example, one of the first lines in STANDARD.FMT is

@tct("_" "_@I")

This command tells Sprint to translate all hyphens into hyphens followed
by ok-to-break-here commands. This will let the formatter break a line after
any hyphen.

In producing these manuals, we used a lot of @tct commands. They are all
listed in the file POSTSCR.TCT on your printer driver disk. This file is
@include'd by our .FMT file at formatting time.

Look through POSTSCR.TCT and study some tricks we used. For example,
all pair kerning is done in POSTSCR.TCT. Double quotes are changed into
open and close quotes with the following @tct commands:

@tct (' '" "@set (inquote 1) @char(OAAH) ")
@tct (' ("' "@set (inquote 1) (@char(OAAH) ")
@tct('"' "@set(inquote +l)@if(inquote&l,y "@char(OAAH)",n l@char(OBAH)")")

The first (and second) lines automatically translate all space quote (and (")
combinations into open quote symbols and set the variable inquote to 1. The
third line adds 1 to inquote then checks whether inquote is odd. If it is, the
double quote is translated into a open quote character; if inquote has an
even value, the double quote is changed into a close quote.

Note: Leading spaces in the translate from string are retained in the translate
to string. Only the first character in a translate from string can be a space.

Designing Your Own Document

As mentioned previously, the easiest way to design your own document is
to change, or add to, the design and common formats, and the formatting
macros listed in STANDARD.FMT.

After you have an idea of the design of your document, try to implement it
using the predefined formats and macros. Print out a version of your
document using those formats and then compare the result to the design
you want.

Chapter 4, Custom Document Design 171

If you need to make a lot of changes, you'll probably want to make a copy
of STANDARD.FMT. Give the new .FMT file a name similar to its purpose
(e.g., if it's for reports, call it REPORT.FMT).

Then change the format definitions and format macros to match your
design. Start with the easiest changes first. After changing the first few
formats or macros, you'll feel comfortable with making the big changes.
Don't be afraid to be creative. Sprint was designed for power and flexibility.
The more you learn about Sprint and push it to its limits, the better it will
perform for you.

172 Sprint Advanced User's Guide

p A R T

2

Programming Editor Macros

173

174 Sprint Advanced User's Guide

c H A p T E R

5

Sprint Editor Macros

A computer program that does macros provides you with the ability to
construct, record, and play back actions. A macro is simply a sequence of
instructions that tells the program to perform an action. In the context of
Sprint, a macro can be one instruction, several instructions, or many lines of
instructions. A collection of macros is placed in a file that has a file
extension of .sPM.

When you understand how the macros and the .SPM files work, you can
even build a whole new editing system by changing the collection of
macros stored in a user interface .SPM file, and then using that file as the
user interface file. In fact, we encourage you to change the editor if you
don't like the way it works. Welcome to the world of the write-your-own
word processor!

For example, perhaps your chapter headings are in all uppercase (capital)
letters and you want to change them so that they only start with an
uppercase letter. In such a situation, you could use the Search menu to find
each occurrence of a chapter. However, once you get there, you'd have to
manually move the cursor over to the chapter title, change the case of the
word, and then begin the search again. Using the macro facility, you can
automate the process so that all chapter headings are changed to uppercase
while you sit back and watch the process!

To help you learn how to create such macros, this chapter will

• introduce you to the concept of macros

• explain what is contained in an .SPM file

• tell you how to use the Macros menu

Chapter 5, Sprint Editor Macros 175

• teach you how to use macros, for which you don't need any
programming knowledge or experience (although we assume you know
Sprint reasonably well)

• lead you gently into making your own custom macros out of the macros
we supply (you don't need any previous programming experience to
make custom macros that allow quick access to some functions in the
editor)

• build an example of a semi-elaborate macro, so that you can begin to see
how to write useful macros

• provide a complete reference to the macro language itself, so that you
can continue to expand and improve your macros

Note: If you're already an experienced programmer, you may be tempted
to skip the introductory sections and dig right into the description of the
programming language. We don't recommend that, however, since the
short time it takes to read the introductory sections will save you a lot of
time later.

When used effectively, macros increase productivity and reduce the tedium
of repetitive typing. Sprint takes the macro concept and expands it as far as
possible; in fact, the entire user interface to the editor is the result of a
collection of macros.

There are already several macro-making programs on the market today,
including Borland's own SuperKey. Such products work independently of
the application in which they're being used, typically recording a sequence
of keystrokes and often allowing the user to edit the sequence. The macro­
makers then allow the user to easily reproduce the sequence with one or
more keystrokes. (In fact, Sprint itself has this ability; choose Utilities/
Glossary /Keyboard Record.)

In itself, this "keyboard-stuffing" isa valuable commodity. In fact, many
users, once they are familiar with one of those macro-makers, neglect to
learn an individual program's macro language. That way, they do not have
to . learn a new interface, nor learn about the idiosyncrasies of the language.
However, such macro-makers, by their independent nature, can't allow
access to the inner workings of the program with which they're dealing.

In contrast, Sprint's macros let you dig down into the structure of the macro
language itself. We think that Sprint's macros are so powerful that you will
not only use them, but soon wonder how you got along without them!
Sprint's macros allow you to access the commands that control the editor in
much the same way that the STANDARD.FMT file allows you to control
the behavior of the formatter.

176 Sprint Advanced User's Guide

Before we begin our discussion of how to use Sprint's macros, we'll talk
about the files in which Sprint defines macros.

A Note on Typography

Throughout this section, we use boldface type to indicate that a word is
one of the primitive (built-in) editor macros and variables. This convention
is preserved even in program listings, as a learning aid. When you enter
these macros, however, you should not make them boldface.

What Is an .SPM File?

A file with an .SPM extension is an ASCII text file containing one or more
macros written in Sprint's macro language .. SPM files are very important to
Sprint; in effect, they tell Sprint how the editor is supposed to respond to
keystrokes, in much the same way that .FMT files tell the formatter how to
respond to formatting commands. SP.SPM, for example, is the file that
causes the Sprint standard interface to act the way it does.

The distinction between .SPM files and .FMT files is an important one in
Sprint. In a sense, you are programming the formatter when you write or
modify .FMT files; but you are programming the editor when you write
macros or .sPM files. Remember, the macros discussed in this chapter have
absolutely no effect on how a document is formatted (the way it prints);
they solely concern the way the editor looks, acts, and responds.

You can create, read, modify, and save .SPM files using Sprint itself, as long
as you're sure not to include any ruler lines or on screen formatting.
Whenever an .SPM file is loaded and compiled, the file is converted into
memory and combined with the existing SP.OVL file (if any).

If you ever want to document your macros, make your own menus, or
actually change the functioning of the editor, you'll need to become familiar
with how Sprint uses the .SPM files to control the editor. To that end, we
start our discussion by explaining the interaction of the Macros menu with
the .SPM files.

Chapter 5, Sprint Editor Macros 177

Using the Macros Menu

The first thing you need to know about the macros is the gateway into
them. Like the other functions of the Sprint interface, the macros are
implemented as a menu option. In the default Sprint interface, you reach
the macros menu by taking the following steps:

1. Press F10 to display the main Sprint menu.
2. Press U or use the arrow keys to display the Utilities menu.
3. Press M or use the arrow keys to display the Macros menu.

You're then presented with three commands:

Load Loads and compiles a macro file, adding it to the current overlay
(.OVL file) that Sprint is using for its editor instructions.

Enter Allows you to enter the name of a macro (more about macro
names later) that can be executed directly, or assigned to a key for
later use.

Run A shortcut that allows you to save, load, and execute the current
.SPM file (that is, the one onscreen at the moment).

Each of these commands is discussed more completely in the sections that
follow.

Loading a Small .SPM File

It's possible that your interest in macro files is limited to using those
constructed by someone else. For example, Borland supplies an .SPM file
.called MATCH.SPM that is very useful when writing macros. Its function is
to show matching delimiters (like braces) around macro commands.

To load the file, take the following steps:

1. Press F10 to display the Sprint main menu.

2. Choose the Utilities menu.
3. Choose the Macros menu.

4. Choose the Load command. Sprint then displays a list of all .SPM files
in the current directory. In this case, you want to load the file named
MATCH.

5. Choose MATCH in the list of files and press Enter.

178

Note: If MATCH is not in the list, change directories to the Sprint
directory and try again. If it is still not there, find the appropriate

Sprint Advanced User's Guide

Borland distribution disk and copy MATCH.SPM into the current
directory.

6. Sprint then displays the message
Compiling <drivename> <pathname> \MATCH.SPM

on the status line as it loads and compiles the macro definition (that is,
as it translates the macro from Sprint macro language to computer
language).

7. When the compiling process finishes, the menus will disappear. This
means that the process was successful and all macros contained in the
MATCH.SPM file are ready to execute.

Loading an .SPM file adds any completely new macro definitions in that
file, and replaces any existing macros that conflict with the new macros. In
other words, if the new .SPM file contains a new key assignment for Ctrl-S,
that new assignment will replace the old assignment for Ctrl-S when you
load the new macro file.

In addition, if the new .SPM file defines a macro with the same name as an
already existing macro, the new macro replaces the old one. Keys used to
execute the original macro will now execute its replacement.

Note that, however, most macro files only replace conflicting macros or add
new ones; they leave intact those that do not conflict. Thus, they don't
replace any existing keys or shortcuts unless they conflict with macros in
the new file. For example, the MATCH.SPM file you just loaded only adds a
new macro, and leaves your existing assignments intact, with the single
exception of Alt-M, which it redefines to the MatchPair macro.

Warning: An important exception to this "overwrite only conflicting
macros" principle occurs if a #clear macro is in the new macro file.
(Directives are instructions to the compiler.) The #clear directive clears all
macros and starts over with only the key assignments and macros in the
new file. Generally, #clear is only used in user interface files, such as
WORDPERF.SPM. (Any macro file that includes the #clear directive must
have a macro called Main.)

Executing the Macro

After you load the .SPM file containing the selected macro, you have to
execute the macro. To execute the MatchPair macro, using MATCH.SPM as
a sample file, take the following steps:

1. Open MATCH.SPM, and position the cursor on any delimiter, like a
parenthesis or brace ("{").

Chapter 5, Sprint Editor Macros 179

2. Press F10 to display the Sprint main menu.

3. Choose the Utilities menu.

4. Choose the Macros menu.

5. Choose Enter. Sprint then displays the following prompt in the
information line:

Enter macro:

6. Type MatchPair and press Enter. Sprint then displays the following
prompt:

Execute (E) or Assign to a key (A):

7. If you wanted to assign this macro to a shortcut, you would press A;
however, in this case, you would probably want to execute the macro
only once, so press E.

8. The MatchPair macro then searches forward or backward for the
matching parenthesis or brace; when it finds the match, the macro
bounces the cursor back and forth between the matching characters
until you press a key.

Actually, since the MATCH.SPM file reassigned Alt-M to invoke this macro,
you could have pressed that key combination and skipped steps 2 through
8. In other instances, though, you'll need to use this process to enter a
macro.

You can use any number of macro files that someone else has constructed;
you simply follow the directions just described and substitute the correct
name of the macro when Sprint asks for it on the information line. Thus,
you can easily load and execute any small macros contained in .SPM files.

Note: Remember, when you load a new macro file, the new file overwrites
any conflicting macro definitions. Thus, if your new macro file redefines a
menu that already exists, your new menu will be used.

Clearing Out This Session's Macros

When you exit Sprint, any macros you load are automatically saved to the
SP .OVL file, and thus will be available the next time you want them.
However, you will sometimes load a macro that you want to execute only
once, and don't want to save as a part of the editor's macros. You can
prevent it from being saved by doing one of two things:

1. Use the Reset Shortcuts command on the Customize/User Interface
menu. This discards any macros you added to the original interface.

180 Sprint Advanced User's Guide

2. Write the existing assignments to a different file by using the Save
command on the User Interface menu. (You can reload this file by
choosing User Interface/Load.)

3. Preventing the loaded macros from being kept in SP.OVL saves some
memory space, but means that you will have to reload the macros the
next time you want to use them. In general, it's better to let Sprint
automatically save those macro files that you will be using often, and
discard those that you will only be using rarely.

4. Loading and executing someone else's macros is the simplest way to use
them. Don't feel restricted to this use, however, for there is yet another
layer of macros to be considered; you can write your own small .SPM
files! At this point, we think it fair to warn you: writing small macro
files provides so much power with so little effort that you may find it
addictive. In the next section, we introduce you to simple ways to do
such things as redefine the way almost all of the control and function
keys work.

Creating Your Own Small .SPM Files

As discussed in the User's Guide, you can assign shortcuts to menus and
menu options simply by using the menu system and pressing Gtrl-Enter. You
can then save all your shortcuts by choosing Customize/User Interface/
Save and reload them by choosing User Interface/Load. But you may want
to break up your shortcuts so that only a few are reload able, 'instead of all
of them. This is easily done with a custom .SPM file.

You can change the definition of any key, or even any macro, by writing the
changes in a small .SPM file, and then reading the file in so you use the new
key or macro definitions. This section presents some simple examples of
small .SPM files.

Remember, we're not recommending that you create a file to exactly match
these examples. (That would be against the spirit of customization.) We are
showing you examples of some changes that could be useful. You may
want to make the changes that we indicate, load in the small .SPM files to
verify that the examples work, and then throw those small files away by
using the Reset Shortcuts command.

Redefining the Control and Function Keys

A useful way to customize a small .SPM file is to copy the lines that define
what each key does from the SP.SPM file into another file. You can then

Chapter 5, Sprint Editor Macros 181

change the assignments for the keys in the new file. For example, say
you're an experienced Macintosh user, and thus are used to word
processors where Command-X means Cut and Command-C means Copy.
Now, you come back to your PC and find the usual problem; your fingers
absolutely insist on looking for those functions under those letters.
Therefore, you would like to redefine Ctrl-X and Ctrl-C as those functions.

Now, you could do so by using the menu-shortcut method, but it might be
safer to change those assignments permanently in a small .SPM file.

The best way to begin is to open the SP.SPM file and copy the entire key
table (that is, the list of keys defined for your user interface) to a small .SPM
file. That way, you can change the key assignments and quickly load them
in again (since it's a small file), instead of having to wait for. the entire
SP.SPM file to be loaded and compiled.

To copy the key table out of the .SPM file, take the following steps:

1. Create a new file called MYKEYS.SPM. (Be sure you use the .SPM
extension.)

2. Move to the ruler line and delete it by pressing Ctrl- Y. If you don't
remove the ruler from your macro file, it will not run correctly (Sprint
tries to interpret the codes in the ruler as macros-with unfortunate
results).

3. Press F10, choose File/Insert, and provide the name of the .SPM file
containing the user interface whose keys you wish to modify. (This file
will usually be SP.SPM.)

Note: We strongly recommend that you do make this copy, and don't
use the original file for your experimentation. That way, if you make
changes to the file, save those changes, and then find that the changes
are destructive, you can easily start over with a newcopy of the original
.SPM file.

4. When the file appears on your screen, use the search command (press F7
to search for the words Control and Function Keys. Skip the first
occurrence of the string, and look for the next one. When you find it, the
first few lines of the table will look something like this in SP.SPM:

182 Sprint Advanced User's Guide

;Control and Function Keys

EscapeKey : if RulerEdit (toeol c) else if record KeyRecordEnd else abort
CopyKey : if (RulerEdit && inruler) CopyLastRuler else BlockCopy

"@ : key + 256 keyexec ; handle IBM function key 0 prefix
AA : repeat WordBack
"B ReFormat
"C ScreenFwd
"D Right
AE Up
AF repeat WordFwd
"G DelFwd

5. The lines from here to the end of the file define the functions of all of the
keys on the keyboard. In the lines above, for example, etr/-A performs
the Words tar-like Go back one word function. You'll notice that the
function assigned to the key is fairly easy to understand; we've tried to
make the macro language read as much like English as possible.

6. Now, select all the lines preceding the start of this table and delete them
(you only want the key assignments in this file).

7. As an example of a key redefinition, let's start by modifying etr/-X. Find
the line that starts with "X (that's with a caret and an X). In the SP.SPM
file, it looks like this:

AX : Down

8. As defined in this user interface, etr/-x causes the cursor to drop down a
line. However, following our example, you've already decided you'd
rather use the key to cut text, so you'll have to replace the command
after the colon.

9. Next, you need to find the equivalent in the macro language for the
function that you want. Assume that you already know that F7 is the
functional equivalent of cut in the default interface. Look down a few
lines to the lines that define the function keys. In SP.SPM, they look like
this:

FI HelpMenu Fl
F2 GlossLookUp4 F2
F3 ToggleSelect F3
F4 CopyKey F4
F5 BlockDelete F5
F6 : BlockPaste F6
F7 FindFwd F7
F8 : QueryReplace F8
F9 : GotoLine F9
flO SprintMenu flO
FH SprintMenu Fll
Fl2 SprintMenu F12

Chapter 5, Sprint Editor Macros 183

10. In the above example, you can see that F5 performs the BlockDelete
function. As you remember, F5 performed the cut operation-that is, F5
moves the marked region to the Clipboard-so the term BlockDelete is
equivalent to the cut operation.

11. Go back up to the line that begins with "X, delete the existing command
(up to the end of the line), and type the word BlockDelete. The line
should look like this when you're through:

AX : BlockDelete

12. That's it! If you save MYKEYS.SPM, and then load it as a new macro
definition, the new definition of Ctrl-X will take effect, and you can use it
to cut a marked region of text. At the same time, you could have
redefined Ctrl-C to mean copy. Of course, you could have made menu
shortcuts to those functions on-the-fly, but then you would be subject to
the usual problem; the definitions would be lumped together with all
your other shortcuts. Now, you can add your Macintosh-like shortcuts
independently of any others by loading MYKEYS.SPM.

In the above example, we simply substituted an existing key assignment for
another existing key assignment. This provides a permanent, documented,
easily accessed home for the new assignments.

Note: We could have also added the meaning to any key that is undefined
in SP.SPM, such as Alt-K (for "Kut"), and thus retained the original key
meaning. The key you choose is up to you, although be careful of conflicts
with existing keys.

By now, you may be curious as to what an element like BlockDelete really is.
It is nothing more than another macro! That is, it is a macro contained
within the .SPM file controlling your particular user interface. Using such
macros, you can do far more than simply switch key assignments. There
are two parts to understanding the macros; finding their definition, which
we discuss in the next section, and understanding what the macro does.

Understanding exactly what the macro does, of course, means being able to
read the macro language. That information is in the section IIProgramming
the Macro Language." However, we think that you can do some more
modifications to .SPM files without understanding the language entirely, as
long as you understand that you want a certain operation to perform like
an existing operation. You do need to know what you're looking for and
what you want to do. Since the macro language has been designed to read a
lot like English, it's relatively easy to find the operation you want, as you'll
see in the next section.

184 Sprint Advanced User's Guide

Exploring the Menus in an .SPM File

Any computer program, including Sprint's .SPM file, is nothing more than
an orderly progression of steps. The trick is to be able to figure out the
correct order for the steps.

As mentioned at the beginning of this chapter, the SP.SPM file defines the
control and function keys and the menu structure of Sprint's default user
interface. For your first attempts at programming macros, all you need to
do is to look at a copy of SP.SPM and examine the action of that file as it
travels its way down through the menus to the operations you want to
copy. Thus, you need to learn how Sprint jumps from one spot to another in
the .SPM file.

At this pOint, open up a copy of the SP.SPM file you're using, and search
for the definition of the Sprint menu (press F7 and enter the word
SprintMenu). The Sprint menu definition looks like this:

SprintMenu :
menu "Sprint"

"File" FilesMenu,
"Edit" EditMenu,
" " , -
"Insert" InsertMenu,
"Typestyle" TypeStyleMenu,
"Style" StyleMenu,
"Layout" LayoutMenu,
It II , -
"Print" PrintMenu,
"Window" WindowsMenu,
"Utilities" UtilitiesMenu,
"Customize" CustomMenu,
II 11 ,
"Quit" ExitEditor

The word SprintMenu is the name of the macro. In any .SPM file, the macro
name appears before a colon, followed by the macro that is performed
when the name is given.

Note that all lines that follow the line with the colon should be indented (it
doesn't matter how much).

This macro uses the menu command. The structure of the menu command
can be represented as follows:

WhoAmI : menu "Onscreen name" ("first menu item name" MacrolToDoWhenChosen,
"second menu item name" Macro2ToDoWhenChosen,
and so on)

Chapter 5, Sprint Editor Macros 185

The structure of this example can be broken down as follows:

• WhoAmI is the macro name for the macro that follows.
• menu is the built-in Sprint macro that draws a pop-up menu on the

screen.

• The words in quotation marks are the words that appear on the screen
when the WhoAmI macro command is given.

• Macrol ToDo When Chosen and Macro2ToDo When Chosen are the names of
macros that are executed when the appropriate menu selection is made.

Note that the menu items are separated by commas, and that the entire list
is enclosed between delimiters -(in this case, parentheses). We'll explain the
importance of those marks in more detail shortly.

Now, back to the Sprint main menu: If the user chooses the File option on
the Sprint menu, the FilesMenu macro will be performed. The next trick is
to find the definitions of the macros to which the menus refer. Sprint's
search commands come in handy for this, since you can search the file, for
example, for FilesMenu. You can then inspect that menu, which looks
something like this:

FilesMenu :
menu "File"

"New"
"Open"
"Close"
"Insert"
II ..

-'

NewFile,
OpenFile,
CloseFile,
InsertFile,

II Save II Save,
"Write As" WriteFile,
"Revert to Saved" RevertToSaved,
.. "
-' "Translate"

"File Manager"
"Pick from List"

FileTrans,
DiskDirectory,
PickFile

As you can see, the FilesMenu is composed of more macros. For the
moment, and until you understand more about the macro language, you
should think about simply copying and combining the lines you need.
Using this method, you can find the menus or options that you want and
simply copy the lines into another .SPM file, as we'll show you in the next
section.

For example, if you wanted to add the function to open a file on a custom
menu of your own, you could copy the first few lines of the Files menu and
modify them, perhaps as follows:

186 Sprint Advanced User's Guide

MyMenu : menu "Custom Menu" ("Open" OpenFile,
... more menus or commands to end of menu)

In this example, MyMenu is the name of the macro, Custom Menu is the text
that would appear as the title of the menu on the screen, and Open will be
the first item on the menu.

You could similarly continue to move around in the .SPM file, copying the
functions you need and adding them to your new menu. In the next
section, we explore such an example of a custom-made menu.

Adding an "Index" Menu

This section constructs an example short menu out of macros already
provided in the default Sprint interface.

For the purposes of the example, assume that you want to make an
indexing pass through a document. At the same time, you want to fix some
of the inevitable typographical errors and typestyle discrepancies that creep
into a document as it is being written. Thus, you want to provide yourself
(and any of your other users) with a quicker, more convenient way tailored
to this specific use. At the same time, you don't want to cripple Sprint and
confuse the issue by replacing any of Sprint's normal interface. What you
really need to do in such instances is to provide an entirely new menu that
you and your users can conveniently call up and use.

One of the most important programming concepts is: learn to write your
own code by modifying the code of others! This time-honored method of
plagiarism is one of the best ways to learn the language. Thus, for a custom
menu, you might want to start by copying the first few lines of a menu that
contains some of the operations you want for your new menu. For this
example, start by copying and modifying some lines from the SprintMenu
macro in SP.SPM.

To find this macro, search for the word SprintMenu until you find the lines
that look like this (you actually already found this in the earlier section):

---------- Main Menu ----------

SprintMenu :
menu "Sprint"

"File" FilesMenu,
"Edit" EditMenu,
.. II

- '
"Insert"
"Typestyle"
"Style"
"Layout"

InsertMenu,
Typest yleMenu,
StyleMenu,
LayoutMenu,

Chapter 5, Sprint Editor Macros 187

It II

- '
"Print" PrintMenu,
II Window II WindowsMenu,
"Utilities 11 UtilitiesMenu,
"Customize" CustomMenu,
II II

-' "Quit" ExitEditor

Since we have proposed that this custom menu needs to contain the edit
and typestyle menus, you can copy the first seven lines from the menu
(down to the line that contains "Typestyle") into a new .sPM file. Copy the
lines and open a new file called MYINDEX.SPM.

When the new file is opened, take the following steps:

1. Delete the ruler line that automatically appears at the top of the new file
(otherwise an error will be generated when the macro file is loaded).

2. Paste in the seven lines you copied from the SP .SPM file.

3. Change the name of the label in the first line from SprintMenu to
MylndexMenu.

4. Change the name of the menu (in line 2) from Sprint to My Menu.
5. Delete the lines you don't need (lines 3, 5, and 6).

When you've finished these steps, the menu looks like this:

MylndexMenu :
menu liMy Menu"

II Edit II EditMenu,
"Typestyle" TypestyleMenu,

This is almost a complete macro in itself; however, you still need to delete a
comma and add a closing brace. You must use commas to separate menu
items, and pairs of braces or parentheses to enclose all of the menu items.
You'll find that punctuation is very important in Sprint's macro language.
This example will demonstrate some of the punctuation principles, and an
upcoming example will demons tate more of them. For further help, look at
the existing .SPM files and study the examples in the Macro Encyclopedia,
starting on page 225.

After you've modified the punctuation, your macro looks like this:

MylndexMenu :
menu liMy Menu"

"Edit II EditMenu,
"Typestyle" TypestyleMenu
}

188 Sprint Advanced User's Guide

Note: The brace could be directly after the word TypestyleMenu, but placing
the ending brace on a separate line helps to show the underlying structure
of the macro.

One of the great things about Sprint's menu processing is that the cursor
and first-letter selection techniques come for free in all of the menu
processing. Thus, the user using the menu called My Menu above could use
the arrow keys and press Enter or press E to display the Edit menu, and you,
as the macro writer, don't have to do anything extra!

The last option we'll place on the menu is the Index/Word command.
Because this function is on the Index menu, which in turn is on the Style
menu, getting to the macro to copy becomes somewhat complicated. Just
remember to follow the bouncing ball of the program flow until it comes to
rest on the operation you want.

Look in the SprintMenu macro in the SP.SPM file, and you'll see that the
Style menu performs the StyleMenu macro. Since we don't want the whole
menu, we need to find that StyleMenu macro to choose the function we
want. Search for the word StyleMenu. When you find it, it will look
something like this:

StyleMenu :
menu "Style" {

"Center Line"
"Modify"
II " - ,
"Headings"
"Lists"
" " -'
"Table"
"Figure"
"PostScript"
"Index"
"References"
"X-Reference"
II II ,

CenterLine,
ModifyEnv,

HeadingsMenu,
ListsMenu,

InsertTable,
InsertFigure,
PostScriptMenu,
IndexMenu,
ReferenceMenu,
XRefMenu,

"Other Formats" MiscCmdEntry

Since the index function is on the Index menu, we need to jump to still
another macro; the one called IndexMenu. That macro looks like this in
SP.SPM:

IndexMenu :
menu "Index"

"Word" if !select SelectWord '''0' CharFormat,
"Reference Word" if !select SelectWord

set Q8 "IXREF" MakeRegionIntoCmd,

Chapter 5, Sprint Editor Macros 189

"Master Keyword" if !select SelectWord
set Q8 "IXMASTER" MakeRegionIntoCmd,

.. ..
- '

"See"
"Also Seetl
tlIndex Under tl

tlPage Range tl

}

o SeeSeeAlso,
1 SeeSeeAlso,
IndexUnder,
IndexRange

Finally, there it is! Now the task is to copy the appropriate lines and paste
them into your new file.

For this example, let's assume that you only want the Word option in your
Index menu, so you need to copy only these two lines of the menu to your
MYINDEX.SPM file.

Since the example proposed that you wanted to make an indexing pass, it's
probably best to place this option at the top of the menu, so that it
automatically comes up selected. At the same time, for clarity's sake, it's
good to change Word to Index This Word. After you paste the lines in and
change the wording, your menu now looks like this:

MyIndeY.Menu :
menu tlMy Menu" {

"Index This Wordtl if !select SelectWord 'AD' CharFormat,
"Edit tl EditMenu,
"Typestyle tl TypestyleMenu
}

This is now a complete, valid Sprint macro statement, but there's something
drastically wrong; since you changed the name of the menu to
MyIndexMenu, no other macro or key calls this menu up. That is, no
keystroke will make this menu appear.

You could make the menu appear directly by using the Enter option on the
Macro menu and entering MyIndexMenu (don't type the file name; be sure
to type the macro name). However, using a technique you've already
learned, it is more convenient to assign a key to call up the menu. Let's
assign it to Alt-A.

Inspect the MYKEYS.SPM file you made earlier, or the key table at the end
of any existing .SPM file. Almost at the very end, you'll see the lines which
define the Alt keys. In SP.SPM, the appropriate lines look like this:

Alt-Letter codes

~A : ChangeRuler
~B : Reselect
~C : CustomMenu
~D :

190 Sprint Advanced User's Guide

~E : EditMenu
~F : FilesMenu
~G : MarkerJump
~H :

~ I : InsertMenu
~J :

~K :

~L : LayoutMenu
~M : MarkerSet
~N : NewPage
~O :
~P : PrintMenu
~Q : ExitEditor
~R : NewRuler
-S : StyleMenu
-T : TypestyleMenu
-u : UtilitiesMenu
~V :

~W : WindowsMenu
-X : ExitEditor
-y :
~Z : ++raw

To replace the Alt-A assignment, you should place the following line in the
appropriate alphabetical order:

NA : MylndexMenu

That's it! Save MYINDEX.SPM and the revised version of MYKEYS.SPM to
disk, and then load them as macro definitions, and you'll have your very
own custom-made indexing menu available at the touch of a key.

Note: Given the above example, MYINDEX.SPM must be loaded first, or
the macro facility would give you an undefined macro error when you tried
to load MYKEYS.SPM. You could have added the key assignment to the
end of the MYINDEX.5PM file, and thus would have to load only one
macro definition instead of two. But this would split up the definitions of
the key table, so it's not to our programming taste. However, it may be to
yours, and Sprint supports your right to program it that way!

So far, you've learned how to use an .SPM file to make your own quick
menu; this technique provides convenient shortcuts to the existing Sprint
interface. However, Sprint does not just provide you with ways to quickly
access the existing options. It's the only word processor we know that
actually lets you change or add to the way its editing commands work! The
next sections begin to show off some of Sprint's flexible nature.

Chapter 5, Sprint Editor Macros 191

Learning to Program Macros

As you begin to understand how the macros work, we hope you'll begin to
stretch and bend Sprint so that it fits your needs, combining existing
statements to make new functions. This means you'll have to learn more
about the macro language. Like any other programming language, the
macro language might seem a bit overwhelming until you get used to it.
Thus, we present in this section some more complex examples of macros.
You can review these examples and begin to experiment on your own,
which will naturally lead you into the programming specifications
presented in the last section of this chapter. When you succeed in actually
adding something new to Sprint, you're well on the road to successful
macro programming.

Macro Conventions

Like any programming language, there are certain conventions you have to
follow in order for Sprint to understand your commands. Happily, these
rules are few and aren't difficult.

The most important one involves indentation. When writing a macro, only
the first line (the line with the colon in it) can start at the left margin. All
lines that follow it must be indented (it doesn't matter how much). As you
will see in the examples, you can use indentation to your advantage by
visually grouping blocks of code.

Another important convention is that you cannot use the names of any of
the built-in macros as the names of macros you define. In other words, if
you're writing a macro designed to repeatedly go through a file looking for
two spaces in a row and changing them to a single space, you cannot call
this macro Repeat. If you did, the name would conflict with the built-in
primitive macro that's called repeat. Whenever a primitve macro is
mentioned in this manual, it's printed in bold letters to alert you to its
special status as a "reserved word."

Two other important restrictions in naming macros are that they cannot
contain space characters and must begin with a letter, not a number. You
can use numbers in the names, but not as the first letters. Also, upper- and
lowercase is irrelevant in macro names (although by convention the
primitive macros are printed in all lowercase letters). All the following are
legal Sprint macro names:

192 Sprint Advanced User's Guide

IsEmpty?
Ringadingy
One4theRoad
z999
TOUPPERCASE

The following are not legal names:

2UPPERCASE
KeyPressed
empty buffer

(starts with a number)
(is a reserved word)
(has a space character)

Your best guide to macro conventions is SP.SPM. Browsing through that
file will show you what can and cannot be done.

Making Macros That Move the Cursor and
Manipulate Text

So far, the discussion has been limited to those macros that are relatively
static; that is, they either make key assignments or cause menus to pop up.
Some of the macros you copied, however, have actually moved the cursor
through the text, although we didn't emphasize that function. The ability to
program a macro to move the cursor is one of the most important of the
macro language; such abilities allow you to automate many of the
repetitive tasks you'll be faced with during day-to-day text editing. By now,
you should be ready to learn about such macros.

Perhaps the simplest way to move the cursor is to tell Sprint to move one
character at a time. For example, assume the cursor in the current file is on
the first character of the word hello, as shown in the following line (the
underline represents the cursor):

£e110, world

Then, you can tell Sprint to move the cursor one character forward by
giving the simple macro command c (for character).

An excellent way to see exactly what a macro does is to use the menus to
reach the Enter command, typing the name of the macro you want, and
executing the macro by pressing Enter. You could also use the reassignment
techniques you've learned to provide a shortcut to the Enter command.

We recommend you execute the macro while the cursor is in a test file that
doesn't contain valuable information, to play it safe.

By entering the macro directly, you can test the macro under different
circumstances and see exactly what it does. In the preceding example, you

Chapter 5, Sprint Editor Macros 193

can place the cursor on the h of hello, and then interpret the macro c. When
you give the macro command c, the cursor moves forward one character, as
shown here:

h~llo, world

You can also direct Sprint to move the cursor backward through the file by
changing the direction with an r macro command (r stands for reverse). The
r command tells Sprint to go backward through the file. How far to go
backward depends on the command that follows it. Thus, the command

Enter macro: r c

would result in the cursor in the preceding example moving back one
character to the h. If you don't give the r macro command, Sprint always
assumes that you want the cursor to move forward. Under some
circumstances, you may have to change the direction from reverse to
forward with the f ("forward") macro command.

Another basic way you can move the cursor is by giving a to command.
The simplest kinds of those are direct commands, such as toeol. That
command directs Sprint to go to the end of the line. If you look at the
definition of the End key in the key table of SP.SPM, you'll see that the
definition is:

F14FH : toeol ; End

By the way, the Sprint macro language is not case-sensitive. By convention
the primitive, built-in macros are written in all lowercase letters (and
printed in bold in this manual to help you spot them). But if toeollooks too
odd to you, you could write it ToEol, which might improve legibility.

This assigns the to-end-of-line function to the End key.

This is an example of a very specific to command. Sprint also has a more
general to case which, when used in conjunction with another class of
movement commands called is commands, begins to give us the power to
move freely through a document.

The is- command tests whether the character at the cursor is either a
specified type of thing, or is not a specified type of thing. For example, the
Sprint macro command ispara tests whether the cursor is on a paragraph
mark (hard return) or not on a paragraph mark. For you to understand how
to ask Sprint for the results of the test, there's a couple of preliminary
concepts you should understand.

The way Sprint indicates that the cursor is or is not a specified type of thing
is by returning a value of either True or False. What is meant by returning a
value is that Sprint maintains and keeps track of a single value (called an
argument) that your macros can check to decide what to do. You might

194 Sprint Advanced User's Guide

think of the argument as a kind of combination in/out basket that can only
contain one thing at a time. The Sprint macro commands can look at the
contents of the basket and replace the contents with one of the following:

• a value of True or False (0 = False, Nonzero = True)

• a number in the range -32768 to 32767

• nothing at all; that is remove the value and not place anything new into it
• leave the current value as it is

In a way, such action is like the way you usually use the Clipboard; Sprint
retains the last thing entered into the argument for your use.

So, back to the is- command, which returns a value of True or False. Such
values are called Boolean values, and, by checking the condition of the value
from a particular is- command, you can tell such things as whether the
cursor is on a word or a space, or at the end of a sentence or paragraph.

By itself, such information isn't very useful. However, when you combine it
with to movement commands, you can move the cursor to a specific place
in the document.

For example, the macros that move by word units (such as move forward a
word or delete this word) need to understand just what is meant by a word.
Many of those macros reference the WordBack macro, which looks like this
in CORE.SPM:

WordBack : r to istoken r past istoken

This somewhat involved chain of movement commands performs the
function of moving the cursor either to the start of the current word or one
word to the left, depending on whether or not the cursor is already at the
beginning of a word. Let's break this macro down to see how that
movement is accomplished.

First, r command tells sprint to move backwards. Next, we have to tell
Sprint how far to back the cursor up. The to istoken command means that
the cursor is to back up until it is on one of those characters that Sprint
considers part of a word. Any letter, number, underscore, dollar sign,
percent sign, apostrophe, or hyphen is considered to be part of a word.

Thus, r to istoken means to Sprint that, if the cursor is not on a character
that is part of a word, Sprint should move the cursor backward until the
cursor is on a character that is part of a word; if the cursor is already on
such a character, don't move it.

The WordBack macro then does an r past istoken command. Again, the r
establishes the direction of the command. The past command then tells
Sprint to test the character underneath the cursor and move until istoken is

Chapter 5, Sprint Editor Macros 195

no longer True. In this case, Sprint moves the cursor backward until the
cursor is past the word, that is, until the cursor reaches a character that
Sprint does not consider part of a word, such as a space, period, or hard
return. .

After the command finishes, Sprint moves the cursor forward one
character. As a result, this part of the macro ensures that the cursor is left on
the very first letter of the word, which completes the move one word back
function.

This type of combination of movement commands is extremely important;
for fun, you might search through SP.SPM for combinations such as to is or
past is. Many macros depend on movement commands for the accurate
positioning of the cursor.

The complete specification of each movement command is listed in the
Macro Encyclopedia which begins on page 225, and you will need to read the
SP .SPM file and the individual descriptions in the encyclopedia to
understand them completely.

However, before you leave this topic, you should also know about the
built-in current variable. Current contains the ASCII value of the character
at the cursor position. When used in conjunction with an if statement-and
an ASCII table such as the one in SideKick or the appendix in the Sprint
Reference Guide-this provides you with the ability to check or change the
value of the current character. That's getting ahead of ourselves, though;
let's defer discussion of that concept until the next section, where you will
learn how to tell your macros to make decisions.

Constructing Macros That Make Decisions

To speak anthropomorphically, most of the ubrains" of any computer
program lies in that program's ability to make tests and then take different
actions based on the results. Such tests are very much like the tests we
make of the weather when we say, "If it is sunny, I'll go to the beach,
otherwise I'll stay home," or, "While it's raining, I'll stay home."

Such tests in programming are usually called conditionals, because they
check whether a certain condition is true or false. The tests are very much
like those involved in the movement commands discussed earlier. With the
addition of conditionals, however, you can extend the range of such tests to
include any variable.

Sprint uses the words if or while to indicate that a decision is to be made
based on whether a test is true or false.

196 Sprint Advanced User's Guide

Using "If" Statements

Using the if macro to check whether something is true or false, you can
direct the program to make a decision.

For example, as discussed earlier, the macro variable current allows your
program to find out what the character is to the right of the current point
(that is, the character "under" the cursor). Using an if statement, you can
direct your program to look ahead in the file and take action based upon
what if finds.

One of the more common instances of this checking ahead in the SP .SPM
file is the test used to see if the current character is a hard return character,
signifying the end of a paragraph. The ASCII code for that character is 10,
or II\I' (look these up in an ASCII table). Look at the following line:

if (current != '''J') ('''J' insert)

The exclamation point! means not to Sprint, so the line can be roughly
translated as: "If the current character is not a return character, insert a
return character; otherwise, don't do anything." Thus, this macro inserts a
hard return character in the text if one is not there already, but avoids
inserting two in a row. This is the test Sprint uses to make sure that such
things as Begin and End formats, when chosen from the menu, end with a
return character, and thus are on a line by themselves.

For another example, when you want to index a single word, the SP.SPM
macros will either index the word the cursor is on or index the word
already selected. Sprint accomplishes this by using an if test and the
predefined macro variable select; that variable is True if the user has
selected something, and false if the user hasn't made a selection.

Here are the lines in the SP .SPM file that do the "index a word" function
(only the first two lines are actual macro code; the rest is condensed into
English for the purposes of the example):

IndexMenu :
menu "Index" {

"Word" if !select SelectWord
'''0' CharFormat,

... otheroptions on the index menu ...

The if statement in combination with the !select test means the following:
"If nothing has been selected already, do the Select Word routine, then set the
argument to II\D' and do the CharFormat routine."

The if test does not always have to be combined with a not, of course;
frequently, you'll want to simply check whether something is true or false

Chapter 5, Sprint Editor Macros 197

and then take action based on that test. For example, the first two lines of
the macro that makes Beginning and End formats look like this in SP.SPM:

MakeBegEnd :
if select SetEnv
else { ...

}

The select predefined variable, if True, means that the user has selected a
word or words on the screen; thus, the if select SetEnv part of the statement
means: "If the user has selected something, do the SetEnv macro; otherwise
do the statements enclosed in braces." (We have left out the rest of the else
statement.)

The list of if examples could be continued forever, but by now you should
have some idea of just how powerful such decision-making can be. There is
at least one more important example of a type of implied if statement,
which is discussed in the next section.

Using "While" Statements

One last explanation of a programming concept, and we'll turn you loose!
This concept is the one of repeating a function until something is True. In
Sprint, you can accomplish this with a while or do ... while statement.

A use of a while test is illustrated in the ASCII export option. In order to
make a Sprint file into pure ASCII, the soft returns (represented by 'A _')

have to be replaced with hard returns (represented by lAY). Thus, the logic
of replacing soft returns with hard returns can be stated as: Replace all 'A_'

characters with I/I,/,. Using a while test, this statement is written as follows in
the SP .SPM file:

while ('A_' csearch) ('AJ' -> current)

Using a while test allows you to check the state of something until that
something reaches a predefined condition; in this case, until there are no
more soft returns in the file to be exported.

Building a Macro Step-by-Step

Up to this point, you've only seen isolated examples of how some of the
major concepts behind Sprint are implemented. In this section, you're
going to build a useful macro step-by-step so that you can better
understand some of those concepts.

198 Sprint Advanced User's Guide

The example uses a macro to implement one of those typical changes that
happens to a document when it's being edited. Imagine that you produced
a document which used the convention of double quote marks to set off
words with special meaning, such as in the following phrase: the "is"
commands.

Now, your boss wants you to replace that kind of convention with the one
where special words are marked in italic, as in the following phrase: the is
commands. A quick examination of the problem indicates that you
shouldn't do a global, since you undoubtedly don't want to replace all of
the quote marks in the file with italic commands.

You could also do two search-and-replaces to accomplish the effect; that is,
you could search for a quote mark and replace all appropriate beginning
quote marks with "E (Sprint's control code that starts italics), and then go
back through the file to search for the appropriate end quote marks and
replace them with "N (Sprint's control code that ends a format). However,
you obviously wouldn't want to go through the file twice if you can find a
way to go through it once.

Note: By the way, this set of circumstances really occurred during the
production of this manual, and the macros presented here were designed to
solve this problem.

When you start to analyze a problem for possible macro solutions, you may
want to write out the steps necessary to solve the problem. This
preliminary step of constructing the problem-solving steps (known as the
algorithm) in logical English can save you from a lot of mistakes.

For the problem at hand, you need to define what beginning and end quotes
are, since they are usually the same character when entered from the PC
keyboard. However, think about the position of the quotes in relationship
to words in the file, and you'll see that a beginning quote is followed
immediately by a word, while an ending quote is not followed immediately
by a word, but more likely by a space.

Also, for the moment, assume that you have placed the cursor on a quote
mark to be changed, and now need to simply replace the quote mark with
the appropriate character (we'll improve this part of the algorithm later).
Thus, the steps might be written:

1. If the quote mark is immediately before a word, replace the quote mark
with "E.

2. If the quote mark is not immediately before a word, replace the quote
mark with "N.

Chapter 5, Sprint Editor Macros 199

This algorithm clearly states the problem, but we need to define our terms a
little more carefully (computers have an unnerving tendency to do exactly
what we tell them). In this case, immediately before a word can be interpreted
to mean the character to the right of the quote must be a character that is part of a
word.

Also, the term replace hides two functions; that is, the existing quote mark
must be deleted and the new character inserted. Given this revised version
of the meaning of our terms, we can now present the steps as:

1. Beginning at the current cursor position, if the character to the'right of
the quote mark is part of a word, delete the quote mark and insert AE.
(The AE is the character that starts italics.)

2. Beginning at the current cursor position, if the character to the right of
the quote mark is not part of a word, replace the quote mark with AN.
(The AN is the character that ends a format.)

You now begin to interpret these steps in Sprint's macro language.

As you may remember from the preceding discussion of the WordBack
macro, Sprint provides commands to move forward or backward through
the file and the istoken command that tests whether a character is part of a
word. You may also remember the if conditionals and the current variable
that was discussed briefly. When you combine those concepts with the
algorithm presented earlier, you wind up with the following Sprint macro
statements:

QuoteToItal :
c if istoken (r c 'AE' -> current)
else (r c 'AN' -> current)

Here's a breakdown of the code:

QuoteToItal:
The name of the command; this is the name you would enter at the Enter
macro: prompt when you choose Macros/Run from the menus.

c
Move the cursor one position forward, so that we can check its value.

ifistoken
If the character at the cursor position is part of a word, do the statements
that follow in parentheses; otherwise, go to the else statement.

(r c IAE' -> current)
Reverse the direction, move one character in that direction, and replace that
character with AE. Note that parentheses enclose the commands that are
performed only if the character at the cursor position is part of a word.

200 Sprint Advanced User's Guide

Sprint uses parentheses and braces to group commands together into one
command; you can think of them as joining macro commands into a single
command, or as enclosing the commands between them. You'll see a lot
more of them as you continue to build this example.

else
If the character at the cursor position is not part of the word, do the
statements in parentheses.

(r c'AN' -> current)
Reverse the direction, move one character in that direction, and replace that
character with AN. Again, note that parentheses are used to enclose the
commands that are done only if the character at the cursor position is not
part of a word.

This routine will work only if the cursor is already on a quote mark.
However, it's more convenient to automatically move the cursor to the next
quote mark in the file and then perform the routine. We can do that by
using the csearch macro command as shown in the following macro:

QuoteToltal :
IIIIcsearch
c
if istoken (r c 'AE' -> current)
else (r c'AN' -> current)

Here's a translation of the new line:

"" csearch
Search for a quote character. Note that the character is enclosed in single
quote marks, which tells csearch to search for the ASCII equivalent to that
character. If you wanted to search for the quote character by decimal value,
you could give the command 34 csearch.

The rest of the macro functions in the same fashion as it did before; the
addition of the csearch command simply saves the user from placing the
cursor on the quote mark. This helps, but the user still has to invoke the
macro each time. It would obviously be better if the macro would continue
through the file, changing quote marks appropriately as it goes.

Such a task is perfect for a while macro command, which continues to do a
task until a specified condition is no longer true. In this case, assuming you
want to change all quote marks in a file, you simply tell Sprint to continue
to change quote marks until there are no more quote marks. You modify
the existng macro as follows:

Chapter 5, Sprint Editor Macros 201

QuoteToItal :
while (I '" csearch)

c
if istoken (r c '~E' -> current)
else (r c '~N' -> current)
}

Here's what the added while macro means:

while
This command says that, while csearch can still find a quote character,
continue doing the group of commands enclosed in braces. When csearch
cannot find any more quote characters, either because there are no more or
because the command has reached the end of the file, the commands in
braces are skipped, thus ending the macro.

To help you understand the way Sprint uses parentheses and braces to
group commands, you can think of the preceding example as taking the
following form (with the commands replaced by pN labels and dots for
emphasis-in this context, the commands can be anything):

QuoteToItal :
while (pL)

c
if

(p2 ••••••••••••.•••.)
else

(p3•.••.•..•...)

The commands within the pair of braces are those that will be performed
while the commands between the first pair of parentheses (p1) set the
argument to ,True (in this case, while csearch can find a quote character).

The macro will then do one command (the c) and then move on to the
if ... else command. If the if test is True, the macro will perform the
commands in p2; otherwise the macro will perform the commands in p3.
The while condition in pl is then evaluated again. If that condition still
returns a True argument, the commands in braces are performed again. If
the condition returns a False argument, the macro ends.

Note: As yet, you haven't given any commands to be performed if the
condition is False (in this example, if a quote character is not found). You'll
add that capability in the next example. As it stands, a False value just
brings the macro 'to a shuddering halt.

By now, you should be able to see that the placement of parentheses and
braces are very important when you're grouping commands to be executed
as a single command. You'll see more of them as you go along in this

202 Sprint Advanced User's Guide

example, but feel free to experiment with parentheses on your own. You'll
often find that, when one of your macros isn't working as it should, there's
a misplaced parenthesis or brace.

Remember, you can use the MatchPair macro in MATCH.SPM to help you
find a missing closing parenthesis or brace.

So far, you've told Sprint what to do if it finds a quote mark in the file, but
neglected to tell it what to do if it can't. This isn't particularly serious in this
case; this particular macro goes to the end of the file and quits. However,
it's better policy to tell the user what's happening if the character isn't
found.

To add this capability, you'll add another command so that, if the quote
character is not found, Sprint will sound the system speaker and produce a
message on the status line. One added line will do that:

QuoteToltal :
while ("11 csearch)
c

if istoken
(r c '~E' -> current)

else
(r c '~N' -> current)

Bell message "\nFinished; no more quotes"

The new line translates as follows:

bell
Sound the system speaker.

message I/\nFinished; no more quotes"
Put the indicated message on the status line. The message will remain on
the line until the user presses a key. The \n inserts a carriage return in the
string, which effectively removes any messages that might be left over from
other macros. (You'll see the importance of that later in this example.)

As an automatic quotes-changer, the macro is now complete; when the user
enters the macro command QuotesToItal, the macro will, from the cursor to
the end of the file, automatically change text enclosed in quotes into italics,
and will notify the user when there are no more quotes in the file.

But is the macro really done? Could it be improved? Up to now the
assumption has been that the user wants to change all pairs of quotes in the
file; that is, the commands simply change the quotes to italics without
asking. This is useful, since it makes a one-pass process out of what would
have been two, but is not much better than a global change, since it will
replace all of the quote marks in the file regardless of their function. When

Chapter 5, Sprint Editor Macros 203

you think about it, this is a perfect example of a macro that should ask the
user for confirmation before taking action, in much the same way that
search-and-replace works in the default Sprint interface.

The logic for the task at hand becomes as follows:

1. After a quote is found, highlight the quote on the screen. (Since you're
going to ask the user about replacing some quotes, you have to show
which ones you're talking about.)

2. Ask if the quote should be replaced.

3. If the user answers Yes, replace the pair of quotes and continue the
macro.

4. If the user answers No, skip the pair of quotes and continue the macro.

The expanded macro looks like this:

QuoteToItal :
while (' II' csearch) {

set themark 1 -> select c draw O->select
ask lI\nReplace pair of quotes?1I ? {

draw
if istoken {

r c '~E' -> current
('III csearch) (' ~N' -> current)

draw
csearch c

Bell message lI\nFinished: no more quotes ll

Here's a breakdown of the new commands:

setthemark

i turn off highlighting

i don't replace ...
i turn off highlighting

i skip matching quote

Sets the mark to be equal to the current cursor position. Marks are very
important when you're moving the cursor through the file and acting upon
various places in the text. You can think of marks as placeholders or signposts;
thus, setting a mark marks the current position as a place you want to
return to when a command or group of commands finishes. In this
particular instance, you're telling Sprint that this is the place where text will
begin to be highlighted.

1 -> select
Turns on onscreen highlighting. The term select is one of Sprint's
predefined variables; setting it to 1 turns on the highlighting. The
highlighting is actually accomplished the next time the screen is drawn.

204 Sprint Advanced User's Guide

c
Move the cursor to the other side of the quote. As a result, since
highlighting is turned on, the quote character will be highlighted the next
time the screen is drawn.

draw
Draw the screen so that the highlighting is displayed.

0-> select
Turns off onscreen highlighting at the current cursor position by setting
select to zero. Be careful not to think of this as turning off highlighting in
general; instead, think of it as saying "We've highlighted the section we're
working with; now stop the highlighting at this position, and get rid of the
highlighting the next time the screen is drawn."

ask "Replace pair of quotes?"
Puts into the status line the text that appears within the quote marks and
waits for a yeslno response from the user. Y or y means Yes; Nor n means
No.

? { ... } : { ... }
Instructs Sprint to test the value of the argument and perform one of the
commands or groups of commands. If the argument is True, Sprint
performs the first command or commands up to the colon; if the argument
is False, Sprint skips to the colon and performs the command or groups of
commands after the colon.

In this example, if the argument is True, the user has answered Yes to the
replace question, so Sprint will perform the commands that replace the
quote marks. If the argument is False, Sprint skips those commands and
moves to the next group of commands, as detailed in the following
description.

draw
Redraws the screen and so gets rid of the highlighting.

if istoken { ... }
Note that the commands in this statement have changed, as detailed in the
next description. There is now no else command for the if; that's valid in
Sprint's macro language. We'll add an else in an upcoming example.

("" csearch ('AN' -> current)
This searches for the next quote character and replaces it with a AN.

: { }
The commands after the colon and between the braces are performed only
if the argument is False. In this case, that means that the user doesn't want
the quotes replaced.

Chapter 5, Sprint Editor Macros 205

draw
Gets rid of the highlighting.

; turn off highlighting
Sprint treats everything to the right of a semicolon up to the end of a line as
a comment; that is, the terms included after the semicolon will not be
executed. The comments can thus be used to document and explain what's
happening in the macro. You'll find that the more comments you include in
your macros, the easier they'll be to understand three months after you've
written them.

1111 csearch c
This searches for the next quote character and then moves the cursor past
the character.

Added to the commands we already had in the macro, these commands
have turned the macro into a routine with a reasonable human interface;
the user can go through the file answering the prompt and replacing the
appropriate pairs of quotes. There are still some more tricks we can play to
improve the interface part of the macro, but first let's make some
allowances for user error.

Whenever you write a macro that will be used by other people, you should
try and anticipate what kind of mistakes they might make. In this example,
it would be very easy for the original file to have only one quote mark
where there should be two. This would get in the way of changing pairs of
appropriate quote characters. The following macro traps for ending quote
characters that don't have a beginning character:

QuoteToItal :
while ('''' csearch) {

set themark 1 -> select c draw O->select
ask "\nReplace pair of quotes?" ? {

draw
if istoken {

r c 'AE' -) current
(' '" csearch) (' AN' -> current)

else {
bell
message "\nUnrnatched quotes - ESC to abort, "
message "any other key to continue"
getkey
}

draw
'''' csearch c

; don't replace ...
; turn off highlighting

; skip matching

206 Sprint Advanced User's Guide

ball massage lI\nFinished: no more quotes ll

The translation of the new lines:

else { ... }
This reappearance of the else part of the if command indicates that the
commands in braces will be performed only when the character to the right
of the quote mark is not part of a word (that is, when if istoken is False).
Thus, this test ensures that the first quote of a matching pair must be a
starting quote.

bell
Sound the system speaker.

message "\nUnmatched quotes - ESC to abort, "
This message clears out the status line (the \n does that) and prints the first
part of the error message to the user. Note that there is an extra space after
the comma, placed there so that the first word of the next message doesn't
get squished together with this message.

message "any other key to continue"
This message finishes the message to the user. Note that there is no \n to
begin this message; in this case, we want the message to start immediately
after the last one. (In fact, the text of the message could be placed in one
message command. However, because a carriage return can't be placed in
the message itself, the text would run off the editing screen on the right­
hand side and be difficult to edit.

getkey
This command will wait for the user to press a key.

The example is now pretty well finished, at least in the functional sense. It
does everything it needs to do. Now, you can turn your efforts to
improving the user interface a little more, and to making it into a more
general purpose routine.

First, you'll add some messages that will display on the status line while
the search for a quote character goes on. Such messages reassure the user
that something is indeed happening.

Then, you'll add some variables at the beginning of the routine and use
them to hold the characters to be searched for and to be inserted. You'll find
it's good practice to make your macros as general-purpose as possible; that
way, you'll begin to build a library of routines that can be stored and reused
for other tasks. Since the macro will be made more general-purpose, you'll
also change some of the display messages to be more general.

Chapter5, Sprint Editor Macros 207

Finally, you'll also move the group of commands that result in highlighting
the quote character into another macro. This improves the readability of the
original macro and makes the function of highlighting a character found by
csearch easily available to other macros.

Here's the macro with these improvements:

HiliteChar : set themark 1 -> select c draw O->select

QuoteToItal :
-> int SearchChar

'AE' -> int TypestyleChar
'AN' -> int CloseChar
status "\nBeginning search ... "
while (SearchChar csearch) {

HiliteChar
ask "\nReplace pair of quotes?"

draw
if istoken {

r c TypestyleChar -> current
(SearchChar csearch) (CloseChar -> current)
}

else {
Bell
message "Unmatched quotes - ESC to abort, "
message "any other key to continue"
GetKey
}

draw
SearchChar csearch c

status "\nContinuing search ... "
}

Bell message "\nFinished"

HiliteChar : ...

; quote character
begin italics character

close typestyle character

; don't replace ...
turn off highlighting

skip matching

The commands in this macro are the same as they have been in preceding
examples. This example simply moves them out of the original macro and
places them in a separate macro. This improves the logical flow of the
original macro and makes the HiliteChar macro easily available to other
macros.

"" -> int SearchChar
Initializes a local variable called Search Char and assigns the quote
characters to it. This statement moves the assignment of the character to be
searched for to the front of the macro, where it can be easily changed if

208 Sprint Advanced User's Guide

necessary. Note also the comment that explains the function of the
command.

IAE' -> int TypestyleChar
Initializes a local variable called TypestyleChar and assigns AE to it. This
statement moves the assignment of the characters to be used as the
beginning type style character to the front of the macro, where it can be
easily changed if necessary. For example, note that the single change of A E
to A B makes the macro change characters between quotes to boldfaced text.

IAN' -> int CloseChar
Initializes a local variable called CloseChar and assigns AN to it. Like the
preceding commands, this command assigns the close typestyle character
in a convenient place.

status I/\nBeginning search ... "
This command shows a status message to the user while the search for the
initial quote character is taking place.

while (SearchChar csearch)
This is the first use of the Search Char variable. Sprint uses it exactly as if II
had been placed directly in the macro. The rest of the variables in this
routine are referenced in the same fashion.

HiliteChar
Sprint now calls the HiliteChar macro to do its work of highlighting the
character found by csearch.

status I/\nContinuing search ... "
This command shows a status message to the user while the search for the
next quote character is taking place.

The user interface to the macro could still be improved, since it won't, for
example, find two mismatched beginning characters in a row. Try to do
that if you like, or you could add prompts to ask the user what characters
were to be replaced with what.

This example has introduced you to some of the major concepts of the
macro language and has shown you a few examples of how those concepts
are used. By now you should get an idea of how to write your own macros,
and you'll need to start writing them to continue learning. Armed with the
background we've given you, and the reference material in the Macro
Encyclopedia section on page 219, we predict you'll soon be happily
extending and modifying the way Sprint works. To that end, we offer a
challenge.

Chapter 5, Sprint Editor Macros 209

A Challenge: Build Your Own Interface

Like any good programming language, Sprint's macro language lends itself
to learning by trial-and-error and experimentation. This chapter has so far
presented concepts and examples to help you get started.

During these long explanations of some macro examples, we've postponed
discussion of the actual macro language, hoping you'd get a feel for what
was happening before you had to look at the specifics. Now is the time for
you to review them. Before you go much further along the path to
programming Sprint macros, you'll need to know how the language works.

Here's a challenge: After you read about the inner workings of the macro
language, use your newfound knowledge to modify, extend, chop, swap,
hack, and customize the appropriate .SPM file to suit your own needs.
Perhaps you'll entirely rewrite the interface, and wind up with the editor
you always wanted!

The Macro Programming Language

This section defines the basic constructs of the macro programming
language, and as such is a fairly detailed account of how the macro
language works. If you aren't used to programming languages, and haven't
yet read the preceding sections of this chapter, we suggest you do so before
continuing.

If you are an experienced programmer, or you have gone through the
former sections, this section will provide you with background knowledge
that you'll find helpful as you program your macros. The concepts should
pose no problem, and you'll only have to get used to the syntax and
elements of the macro language (the syntax is similar to C but is not case­
sensitive, as Cis).

Structure of the Language

When you are in the editor, everything you type runs a macro. Macros are
behind-the-scenes sequences of commands executed from left to right. A
macro executes one word at a time. As the macro commands are executed,
Sprint keeps track of a ~ingle argument-the number that is passed to each
word as it is executed. That word then returns the next value for the
argument, which is then passed to the next word, and so on.

210 Sprint Advanced User's Guide

Your macros can check the argument to decide what to do. You might think
of the argument as a kind of combination in/out basket that can only
contain one thing at a time. The Sprint macro commands can look at the
contents of the basket and replace the contents with one of the following:

Boolean value A value of True (nonzero) or False (0)

numeric value A number in the range -32768 to 32767

null value Nothing at all; that is, remove the value and not place
anything new into it

not do anything That is, leave the current value as it is

Once the current command returns a value, Sprint passes the value to the
next command, and then executes that command. In a way, sllch action is
like the way you usually use the Clipboard; Sprint retains the last thing
entered into the argument for your use.

Most commands will use the argument, if it exists. For example, sometimes
the argument is used as a repeat count, and the command is done that
many times (if the argument is zero, the command is still done once). If the
argument doesn't exist, these commands will usually act as though the
argument is 1, but some commands act differently when there is no
argument. Many commands will ignore the argument, in which case it
doesn't matter whether it exists or not.

Most commands return a Boolean value indicating success as 1 (or nonzero)
or failure as 0 (zero); this value can then be checked by the conditional
commands. A movement command fails if it hits either end of the file
without fulfilling its conditions for completion.

For instance, c (move right one character) will succeed if the point is
anywhere other than at the end of the file. The toeol command, however,
will fail if the point is in the last line of the file and that line does not end
with a return character (when any movement command fails, the point is
left at the end of file).

For example, the command search returns a value of 1 if the item is found,
o if not; the macro if search "whatever" bell will cause the bell to ring when
whatever is found.

Some macro commands need to be followed by another macro command.
Instead of executing on its own, the first command controls the second's
execution; for instance, the repeat macro repeats the next macro N times,
and the if macro can skip the following macro if some condition is false.

A macro can move the pointer that indicates the next macro to be executed,
to allow for conditionals. For instance, the question-mark (?) command

Chapter 5, Sprint Editor Macros 211

moves the pointer past the next word if the argument is zero, thus skipping
the next command.

Note: Several macros can be combined into one word by enclosing the
commands in the brace characters, { }.

Many macro commands require more than one word. Often they are
followed by optional strings; these are used to provide values such as file
names or search strings, and these strings are considered part of that macro
command.

Strings can only be given in two ways, either as a quoted constant (like
"hello") to be inserted into the text, or as the name of one of the available
string registers, called QO thru QP. (In addition, some commands, such as
£list, act as if they return strings if placed in the right spot in a macro.)

If a command takes a string, it will usually do some obvious operation if
the string is missing. For instance open "foo" will always open the file
IIfoo," but just open will prompt the user to enter a file name, and then
open the specified file. Note, however, that a quoted string by itself is also a
macro command (it is inserted into the text).

The macros are written in text files with the extension .SPM; SP .SPM
contains the basic Sprint commands. You can read these files to see
examples of macros, and can change them as described below. The editor,
however, does not refer to a text file each time it executes a command;
instead it compiles a .SPM file into a binary file with the extension .OVL.
This reduces each command word to just a few bytes. The code can then be
executed very efficiently, so the standard editing macros generally run fast
enough to keep up with the fastest typists. It is this binary .OVL file that
actually stores the commands the editor uses; once it exists, you can
remove the .SPM files from the disk.

The Main Loop

Normally, as Sprint sits around waiting for the user to type a character, it
first updates the screen (see the draw macro). If no key has been pressed
when that is done, it then sits around for a few seconds in a loop (see the
swapdelay variable). If still no key has been pressed, it starts writing any
modified in-memory pages to the swap (backup) file, to preserve them in
case of a crash. If it gets done with this and still no key has been pressed, it
calls DOS directly and tells it to wait for a key to be pressed.

When a key is pressed, the editor takes the single 8-bit code and executes
the inacro assigned to that code.

212 Sprint Advanced User's Guide

Note: An IBM PC (and many other PC-compatibles) sends more than one
8-bit code for the function keys. The macro for the first code must read the
next code and correctly branch to the correct function key.

If there is no macro assigned to the code, the code is inserted into the text.
After the macro completes, the main loop continuesj the first thing it does is
draw the screen.

Input to the editor can be redirected with the <filename> switch on the
command line. The editor detects this (by checking if the isdev bit is zero on
stdin), and checks for end-of-file. When the editor encounters the end of the
input file, it will exit back to the operating system.

Operator Precedence

Some macros (such as +) take more than one argument. If so, the remaining
arguments are supplied by macro words after the one being executed. The
macro interpreter recursively calls itself to execute these "post" arguments
and to evaluate things in order of precedence. For instance, the macro 1 +2
first executes 1 (returning an argument of 1), then it executes +. The +
macro saves the 1 argument, then executes the next word, 2, which returns
an argument of 2. The + macro then checks the command after the 2 to see
if it has higher precedence (if it does, it will be executed next). Then + adds
the returned argument to the saved one, and returns a new argument of 3.

The precedence of these operators is as follows:

Unary-and -
*, /, %, & and 1\

«and »
+,-, and I
<, <=, = or ==, != or <>, >=, and>
Unary !
&&
II and->
All others, such as if, while, attribute

Note: This precedence is similar to that of the C language, but the bitwise
logical operators (&, -, 1\, and I) have been moved to a higher precedence
level.

Chapter 5, Sprint Editor Macros 213

Terms of the Macro Language

There are several terms you should know when working with Sprint editor
macros.

DOS Devices

Reference is occasionally made to the DOS terms for standard input device,
stdin, and for standard output device, stdout. Normally, the keyboard is the
input device and the screen is the output device, but both of these can be
changed, or redirected.

A related term is the register called isdev, which is the DOS flag indicating
the device or file.

Mark

The mark is an invisible indicator in a text buffer. It can be set at a particular
position using the set <mark> command. Like the point, a mark rests
between two characters. There exists 16 numbered marks (markO through
mark9 and markA through markF), as well as a gloabl mark (gmark). If
you are writing your own macros, you can also use a "stack" of marks,
whose top mark is called themark. Although there are many marks
available, there is only one mark usable at anyone time per text buffer.

Point

A point is the position in the text where editing occurs. The point is always
between two characters, before the first character in the file, or after the last
character. If you type a letter, it is inserted into the text at the point. Each
buffer has its own point.

Note that the point is not the same as the cursor position. On the screen, the
cursor is always on the character to the right of the point.

printf % Commands

C programmers will recognize print! as an indespensible function for
printing formatted text. Sprint adopts the print! conventions for specifying
formats in its macro language.

214 Sprint Advanced User's Guide

Formats are specified using the percent sign followed by a letter. For
example, the %d format specification says that data should be printed as an
integer. Here are the Sprint format specifications allowed:

• %d (number is printed as signed decimal integer)

• %u (number is printed as unsigned integer)

• %c (number is converted to character and printed)
• %x (number is printed as integer in hex format)

You can set the field width by placing a number between the % and the
letter; for example, a decimal field of width 4 would be %4d.

If you need to print a percent sign, enter %%.

Format specifications can also include the backslash followed by letter to
represent special characters being inserted into the string. This backslash­
plus-letter is known (for historical reasons) as an escape sequence. For
example, an \n at the start of the quoted string after the message macro
inserts a hard return character, which effectively clears the status line for
the message that follows. See .the entry for "Strings" in this section for a
complete list of escape sequences.

Push and Pop

Placing new data in the stack is called pushing; retrieving data (usually a
mark) is called popping.

Region

A region is the piece of text that's spanned by a macro or a series of macros
in their execution.

Slack

A buffer (used mostly for storing marks) constructed to be last-in, first-out.
That is, data is retrieved in the reverse order as it was stored. As a new
mark is added to the stack, it takes the topmost position, pushing all marks
already in the stack one spot lower.

Chapter 5, Sprint Editor Macros 215

Strings

Strings of text in Sprint macros are written between quotation marks. There
are also 26 predefined string variables, QO through Q9 plus QA through
QP, which you can use just like quoted strings.

Any characters within the quotation marks are taken literally except for the
following special "escape sequences":

• \a bell (AG)
• \ b backspace (A H)
• \f form feed (AL)
• \n hard return (A J)
• \r carriage return (AM)
• \t tab (AI)
• \ v vertical tab (ruler indicator, AK)
• \> wide space (spring, A F)
• \A caret
• \ \ backslash
• \' single quote
• \" double quote
• \NNN octal constant
• \xNN hex constant
.AX control character (X can be A-Z, @, [, \,] A, -J or?)

Classifying Macro Names

The terms of Sprint's macro language can be divided into the following
classes:

• Built-in macros
• Built-in macro variables
• Macro directives
• Automatically called macros

Macros in the first three categories appear in bold type in this chapter.

In this section, we give four tables that list all of the terms of the Sprint
macro language divided into these categories, and listed alphabetically
within each category.

216 Sprint Advanced User's Guide

Table 5.1: Built-In Macros

abort f1 ... f12 jamount readmler
action false key redraw
after themark fchange keyexec refill
again fcopy keyhelp regionfwd
ask fdelete keypressed repeat
at mark field keypushback replace
atoi files length return
beforemerk flags lines runengine
break flist macro scroll
buffind fmove mark search
bufnum fname marknumber set
bufswitch forced markregion set mark
call found match settab
case get menu showkeys
cd gmark message sound
cdstrip hardware mode sread
clear if ••• else move status
cleartab imenu mread stopped
close inbuff nexttab sub char
copy index offset swap mark
csearch infobox open swrite
datecheck inruler ovlread themark
debug insert ovlwrite time
del insert II string" pageread to
delay insertruler past to mark
delete isascii pickcolor toend
do isclose pickfile toeol
do .•. while isend pickfont togmark
dokey isgray prevmark toruler
draw isin printer tosol
else ismarkset put true
engine isnl qmenu undelete
erase isopen qnumber version
error ispara qswitch wait
exist issent r while
exit istab rangeget winswitch
exitmenus istoken rawout write
exitmessage isvisible read writeregion
f iswhite readpage writeruler

Chapter 5, Sprint Editor Macros 217

abortkey
append
attribute (=tct)
column
cpi
curatt
current
dcolumn
direction
dline
flag3
flag4
flagS

#clear
#define

Bell
DoHelp
EditKey
GetKey
Init

218

Table 5.2: Built-In Macro Variables

flag6 mousecursor
fontcpi overwrite
inagain ovlmodf
indent peek
ioport peekseg
isibm previous
justify raw
killswap record
leftedge rightmargin
leftmargin ruleredit
line rulermod
menudelay rwtrans
modf scancode

Table 5.3: Macro Directives

#include
int

Table 5.4: Automatically Called Macros

InitArg
Main
MenuKey
Restart

scrollborder
select
smodf
sounddur
soundfreq
statline
swapdelay
tabsize
tet (=attribute)
windows
wlines
wtop
zoom

Sprint Advanced User's Guide

c H A p T E R

6

Macro Encyclopedia

As you're making your custom key assignments, menu shortcuts, or
custom .SPM files, you'll eventually want to know about all of the built-in
entities in the macro language. The rest of this chapter provides a complete
reference to the language and will be your ongoing guide to building your
own macros.

The first section in this chapter lists the commands that don't" fit into
alphabetical order; the second section lists all macro commands and
variables that can be alphabetized.

In the list of macro commands and variables in this chapter, the following
conventions are used:

command Any single macro command (including sets of macros with
parentheses or braces).

commands A string of zero or more commands. Y Ql can group any
commands so they are treated as a single one (usually for
"posf' arguments). Parentheses or braces around a group of
commands preserve the current argument, and restore it if the
grouped expression does not return anything or ends with a
dollar sign ($).

region A string of one or more commands that move the point. the
area spanned by the macros is considered the "region."

-7 result Commands that return a result (don't confuse this with the ->
operator). The result is defined in each individual command.

Chapter 6, Macro Encyclopedia 219

x

Nor#

M

variable

"string"

A single macro command (or set of commands in parentheses
or braces) that returns an argument. For instance, the name of
a variable can be used here.

The value (argument) returned from the previous command.
It is never required that the previous macro return a value;
often, a default value of 1 is assumed. Nand # are just used
so that a command supplies a reasonable argument.

Any numeric value.

The name of a variable, either a built-in one or one defined by
a #define or int command. (This is more restrictive than X.)

An optional quoted string, or the name of a Q register (Q
registers store text that can be used by in various ways; see
below), or a macro that returns a string. In all cases this
string does not need to be placed in the macro. If it is
missing, the command will either ask the user for the string,
or supply a default string.

For instance, the open command needs a file name. Yat can
follow it with a string, as open "FILE.MSS". Or you can
follow it with a Q register, as open Q3. Or, if you don't give a
string after the open macro, the user will be asked for a file
name each time the macro is executed.

The Nonalphabetical Constructs

Some of Sprint's commands and variables can't be organized into
alphabetical order. Such things as math commands have only variable
names in them, and placing them under the symbol for that variable
doesn't seem logical. For this reason, you'll find them in this section.

macro name ~ result of macro
A macro can include the name of any predefined macro. The current
argument is passed to the first command in that macro, and the argument
that remains after the macro completes is passed to the next word in this
macro.

variable ~#
The name of any predefined or built-in variable returns the value of that
variable (this is a number, even if a Boolean was assigned to it earlier).

number~#

You can embed a constant number in the macro; the number, however,
must start with a digit. If it contains only digits, it is taken in decimal. To

220 Sprint Advanced User's Guide

get hex, octal, or binary numbers, you can end number with H, 0, or B,
respectively.

'X'~#
A character in quotes returns the ASCII value of that character.

IAX'~#

A control character (a caret followed by a character) within quotes returns
the value of that control character.

QO-P "string"
A Q register. Possible registers are QO to Q9 and QA to QP (26 total).

commands1 else commands2 ~ result of commands1
else is normally used for ifs. If encountered unexpectedly, else skips over
the next command, and leaves the current argument alone. Don't rely on
this effect, since the skipping action might be changed in the future.

commands1, commands2 ~ result of commands1
A comma (,) separates cases in a menu or case statement. If encountered
unexpectedly, it skips to after the parenthesis. This effect is here for again
processing; don't rely on it, since it might change in the future.

Achar ~ result of the key's macro
The caret (A) by a letter executes the macro bound to that control key (char
xor 64).

-char ~ result of the key's macro
A tilde (-) followed by a character executes the macro bound to that "meta"
key (that is, char with the high-bit set, or char + 128).

-Achar ~ result of the key's macro
A tilde (-) followed by the caret (A) and a letter executes the macro bound
to that "meta-control" key (char xor 64 + 128).

Fnumber ~ result of the key's macro
F and a number (usually 1-10) executes the macro given to a "hyper" or
function key (number + 256). See the key table at the end of SP.SPM for the
definition of keys.

N<>M~T/F
Returns True if N is not equal to M.

N!=M~T/F
Same as <> for the convenience of C programmers.

$
Returns 0, or selects the default in case macros, or assigns the argument to
null before a closing parenthesis.

Chapter 6, Macro Encyclopedia 221

N%M-7#
Returns N modulus M.

N&M-7#
Returns the bitwise AND of Nand M. (Remember, Booleans are treated as 1
orO.)

Returns the bitwise OR of Nand M.

! Boolean -7 T /F
An exclamation point (I) complements the True/False state of the argument
that follows it.

Booleanl && Boolean2 -7 T/F
Boolean2 is executed only if Booleanl is True. Returns True only if both
return True.

Booleanl I I Boolean2 -7 T/F
Boolean2 is executed only if Booleanl is False. Returns False only if both
return False.

Booleanl 1\", Boolean2 -7 T/F
Both Booleans are always executed. Returns True if only one of the two
return True.

Boolean? commandsl {:commands2} -7 result of commandsl or commands2
If Boolean is True, commandsl is executed (if specified). If Boolean is False,
commands2 is executed (if specified).

N*M-7#
Returns N multiplied by M.

N+M-7#
Returns the sum of Nand M. If N is null, returns M.

N-M-7#
Returns N minus M. If N is null, returns negative M.

++variable -7 #
Increments the contents of the variable, and returns the result. (For the
built-in variables that are Booleans, this complements the variable and
returns lor 0.) There is no postfix ++.

--variable -7 #
Decrements the contents of the variable, and returns the result. (Like ++,
this complements built-in Boolean variables.)

N -> variable -7 N (modulus what can go in variable)
Sets the variable to N. If the variable is a built-in Boolean, it is set to 1 if N is
not zero.

222 Sprint Advanced User's Guide

NIM-7#
Returns N divided by M, rounded down to the nearest integer. Returns N if
Mis zero.

N\M-7#
Returns N divided by M, unsigned and rounded down to the nearest
integer. Returns N if M is zero.

N <M -7 TjF
Returns True if N is less than M (a signed comparison).

N <=M -7 TjF
Returns True if N is less or equal to M.

N«M-7#
Shifts N left by M bits. (This multiplies the number by two, except for
numbers larger than 16383.)

N=M -7 TjF
Returns True if N equals M.

N = (at end of macro only)
Echoes the number on the status line; equivalent to message I/%d". This is
so you can quickly type macros such as 2 + 2 = and see the answer 4 on the
status line.

N = "string"
Echoes and formats the string on the status line. For example, you can enter
2 + 2 = "%x" and see the answer in hex.

N==M -7 TjF
Same as =.
N>M -7 TjF
Returns True if N is greater than M (a signed comparison).

N>=M -7 TjF
Returns True is N is greater or equal to M.

N»M-7#
ShiftsN right by M bits (unsigned shift). (This divides a positive number by
two.)

NAM-7#

Returns the bitwise XOR of Nand M.

As a macro file is read by an mread function, any line that starts with just a
colon is executed immediately. The compiled macro is then thrown away,
so it does not take any space. This allows you to write long ''batch'' macro
files, such as for the conversion of one word processor format to another,

Chapter 6, Macro Encyclopedia 223

without modifying the current overlay. Note that the colon is also used as
part of the ? command, mentioned earlier in this list.

Alphabetical Listing of Macros and Variables

The rest of this chapter contains detailed descriptions of every macro and
variable that lends itself to being listed in alphabetical order. Words in bold
indicate a built-in macro, built-in macro variable, or a macro directive.

224 Sprint Advanced User's Guide

abort

Syntax

Function

Example

See Also

abort

Exits either to the closest enclosing stopped macro or to
the closest enclosing menu macro. The abort macro will
exit to the closest enclosing menu only if an exitmenus
macro command was not given; when abort exits to the
menu, the menu will be redrawn and the user can select
another entry.

If this command is part of a macro assigned to a key,
that key acts as an abort key (like Esc in the default
interface) and cancels out of menus, cancels string
input, and breaks infinite loops.

GetKey -) x if (x = 'A[') abort

This example reads a key from the user and places it in
x. If x is the Escape key (AD, GetKey aborts the macro.

abortkey, break, exitmenus

abortkey (Variable)

Syntax

Returns

Function

Example

abort key

This variable is the code of the key that aborts loops and
is saved in the overlay file. In the SP.SPM interface, this
is Esc. You can set the key to any control character. You
can also set it to function key codes (that is, codes
greater than 256). Setting abortkey to 0 makes all
function keys abort loops on a PC because every
function key sends a 0 followed by its code.

The key represented by abortkey also acts like Esc in all
prompts and menus.

'AU' -) abortkey

This example assigns etr/-U as the key that will abort
loops.

See Also abort

Chapter 6, Macro Encyclopedia 225

action

Syntax

Returns

Function

Example

See Also

after (mark)

Syntax

Returns

Function

Example

See Also

226

action

T/F

This flag is True if there is an enclosing region-action
command (such as delete or copy) This is useful if you
want to set the current mark to somewhere other than
where the command started, but don't want to touch
the global mark.

Up : (if action (tosol set themark) $)
repeat (tosol r c)
if action to sol
else (dcolumn -> dcolumn)

This example defines the Up macro to move to the pre­
vious line in various fashions, depending on whether a
region-action command is currently in force, or whether
it was executed by pressing Up arrow.

mark, set (mark), to (mark)

after mark

T/F

Returns True if the point is after (to the right of)
the specified mark; otherwise, this returns False.

CtrlQDispatch :

Get Key CharToAlpha case {
'A' QueryReplace,
'B' if (after themark && select) swap themark,
... }

This macro, which is like the Wordstar Ctrl-Q B command,
checks if the point is to the right of the current mark
and, if something is currently highlighted, to swap the
point and the mark. (That is, it moves the cursor to the
start of the selection if it's not already there.)

before (mark), mark, set (mark), swap (mark)

Sprint Advanced User's Guide

again

Syntax

Function

Example

See Also

again

Reexecutes the last macro executed with a dokey
command; that is, again executes the macro saved for
"again" processing. The argument to this command, and
any prefix macros, are preserved with the saved
keystroke, so they are done as well. We recommend that
you not combine this macro with other macros.

"'A : again

This example causes Alt-A to reexecute the last macro.

dokey, inagain

append (Variable)

Syntax

Function

Example

See Also

append

This flag controls whether delete or copy commands
will append the text to whatever is already on the
Clipboard, or replace the text already in the Clipboard.
Normally, delete and copy commands append material
only if the new deletion is adjacent to the last one.

When append is set to 1, text will be added to the
Clipboard without replacing the text already there.
Where the text to be added is placed depends on the
direction in effect for the delete or copy command; if the
direction is forward, the text is placed at the beginning
of the Clipboard; if the direction is reverse, the text is
placed at the end.

The append variable is reset to 0 after each delete or
copy.

1 -> append DeleteRegion

This example causes the highlighted text to be deleted
and added to whatever already exists on the Clipboard.

copy, delete, erase

Chapter 6, Macro Encyclopedia 227

ask

Syntax

Returns

Function

Example

See Also

at (mark)

Syntax

Returns

Function

Example

See Also

228

ask "string"

T/F

Asks the user a yes/no question on the status line (as in
"Exit without saving text?"). The menukey macro is
used to parse the next keystroke. Y, Ctrl-M, and the
"accept" key result in True. N and the "cancel" key result
in False. Esc or the key defined as abortkey causes an
abort. Any other key causes Sprint to beep and repeat
the question.

massage "Name of file to write block to: II set QO
if (! (exist QO) II ask "Overwrite existing file?")

This example allows the user to type in a file name and
then checks to see if the file exists. If it does, the macro
asks whether the user wants to overwrite the file.

abortkey, menukey, message, status

at mark

T/F

Returns True if the point at the specified mark;
otherwise, returns False. For more details on what mark
can be, see set (mark) in this chapter.

mousetrack :

140H set themark set gmark 1 -> select, ; left press
143H if (at themark) 0 -> select set themark 0 -> x break,

; release
144H tosol set themark set gmark 1 -> select toeol,

; left double
15CH tosol r c dcolumn -> dcolumn, ; movements

before (mark), mark, set (mark), swap (mark)

Sprint Advanced User's Guide

atoi

Syntax

Returns

Function

Example

attribute

See tet.

before (mark)

Syntax

Returns

Function

Example

See Also

Bell

Syntax

Function

atoi "string"

Converts the string (usually a Q register) to a number. A
leading minus sign will make the number negative, and
a trailing H, 0, or B will make the number hex, octal, or
binary, respectively. Any other characters are illegal and
will cause errors.

message "ENTER a number to repeat:"
set QO
atoi QO -> x
message "Repeating "QO" times."

before mark

T/F

Returns True if the point is before the specified mark. For
more details on what mark can be, see set (mark) in this
chapter.

RegionUpper :
markregion while before themark ToUpper

This example changes characters to uppercase until it
reaches the current mark.

after (mark), at (mark), mark

Bell

This macro is automatically called whenever the user
needs to be alerted. The argument passed to Bell

Chapter 6, Macro Encyclopedia 229

indicates the severity of the error; 0 means that the user
mistyped a key, 1 means that the error should produce a
status line error message. Currently, other numbers are
not defined, although you are free to define them for
your own purposes.

The easiest way to sound the terminal bell is to send a
I\G to stdout with Bell : rawout "I\G". If Bell is
undefined (or can't be called due to an error such as
stack overflow), nothing is done.

Example Bell :

See Also

break

Syntax

Returns

Function

Example

See Also

buffind

. Syntax

Returns'

230

if isibm sounddur sound
else rawout II"G II

This is the Bell macro from CORE.SPM. It checks if the
current machine fits Sprint's definition of a "true" IBM,
and then either sounds the speaker for a specified time
or rings the terminal bell.

message, prompt, sound, sounddur, soundfreq

(commandsl) break (commands2)

Result of commandsl

Exits the closest enclosing loop. The macro returns the
current argument to the first command after the loop.

SetCols :
do{

1 Get IINumber of columns to format text inll -> x
if (0 < x && x < 7) break
else stopped error

IIOnly numbers between 1 and 6 are allowed. II

abort, abortkey

buffind "filename"

TjF

Sprint Advanced User's Guide

Function

Example

See Also

Searches through all the open buffers for a file whose
name matches the specified filename. A filename matches
if, after the name is expanded to a complete path name,
the name is the same as the fname of the buffer, ignoring
case and matching / to \. A filename also matches if it
contains no disk or directory name and matches the
name and extension of £name. A null filename does not
match any buffers, including other unnamed buffers.

If the buffer is found, buffind returns True, and the
editor switches to that buffer. If the buffer is not found,
buffind returns False, and nothing else happens.

if buffind QO close

This example closes a specified buffer (the name would
have been collected in an earlier macro) if that buffer is
currently open.

bufnum

bufnum (Variable)

Syntax

Returns

Function

Example

bufnum

This is the current buffer number and is a read-only
value from 1 to 24. One buffer is used for each open file.
This variable is useful for making macros that visit
every buffer and need to detect when they have gone all
the way around the ring.

ExitEditor :
bufnum -) x
do {

if modf {
draw while keypressed (key draw)
message "\nThe file"
message fname
if (ask "Has not been saved, save it?") Save
}

else if (IsUnnarned && IsOnlyRuler) close
} while (bufswitch && bufnum != x)

eraseswap I I !files -) killswap
GlossSave ; save glossary if in use
exit

Chapter 6, Macro Encyclopedia 231

See Also

bufswitch

Syntax

Returns

Function

Example

See Also

232

The bufnum in this example supplies the number of the
current buffer so that Sprint can check if every open file
has been saved before the user exits the editor.

buffind, bufswitch

bufswitch

T/F

Switches the window to display the next or previous file
in the buffer ring. If the direction flag is forward,
bufswitch goes to the next file; otherwise, it goes to the
previous one. Repeatedly doing this will cycle all the
way around the ring, visiting each file in turn.

The bufswitch command returns False if there is only
one buffer in the ring.

ExitEditor :
bufnum -> x
do {

if modf {
draw while keypressed (key draw)
if length fname {

message "\nThe file"
message fname
}

else message "\nThis Unnamed file"
if (ask "Has not been saved;

save it (Y,N,ESC)?") Save

else if (IsUnnamed && IsOnlyRuler) close
} while (bufswitch && bufnum != x)

eraseswap I I !files -> killswap
GlossSave ; save glossary if in use
exit

The bufswitch command in this example causes the
macro to switch to the next buffer until all files that have
been modified and not saved have been visited.

bufnum

Sprint Advanced User's Guide

c

Syntax

Returns

Function

Example

See Also

call

Syntax

Returns

Function

c

T/F

Moves one character to the right (or to the left, if
direction is reverse).

Right : repeat c

f, r, move

call "string"

T/F

Does a DOS exec-call of the specified program. The
returned value is that returned by the program on exit (0
usually means it worked). # refers to the bits in the
argument that determine how the call is done:

1 Do "Press any key to continue" after the called
program exits.

2 Append the program switches "-p=xxx -s=xxx"
to pass the current printer and screen to the
formatter.

4 Reserved.

8 Run the "restart" macro on reload (only works if
bit 16 is on).

16 Overlay the editor with the called program (uses
less memory). The editor then "executes itself"
with either -w or -r (depending on bits 1 and 8).
Note, however, that this call aborts the current
macro!

32 Don't do the "reset" from the screen definition
(for example, don't clear the screen under the
normal IBM setup). The cursor will be placed in
the lower left corner.

If the program name does not contain a directory name,
the macro searches the path. If the program name does

Chapter 6, Macro Encyclopedia 233

Example

case

Syntax

Returns

Function

Example

234

not have an extension, .EXE, .BAT, and .COM are tried.
In addition, if the program name is COMMAND, it is
replaced with the DOS COMSPEC environment variable
(if you really want to run COMMAND.COM, despite
the COMSPEC, use COMMAND.COM with the
extension).

Multiple strings can follow the call macro, in which
case, they are concantenated to make the full command
line to be used.

SystemCorrunand :
message "\nDOS corrunand:" set Q5
mark {

to Q5 delete past isgray
} ; get rid of leading spaces

if (0 subchar Q5) (1 call "corrunand Ic" Q5)
else {

exitmessage "--Type EXIT to return to Sprint--\r\n"
o call "corrunand"

The first call command in this example is the one that
calls COMMAND. COM, passing it the command line
entered by the user. The second call also executes
COMMAND. COM but does not pass any command to
it; instead, it presents the DOS prompt.

N case (Nl commands, N2 commands, ...)

Result of one of the commands

N selects the case to be executed. Each of Nl, N2, and so
on is executed in turn; if they return the same number as
N, then the command after them is executed, and the
rest of the case is ignored. If no other command is
executed, and a $ command is included, the commands
after the $ are taken as a default case and executed.

FindCharFwd :
status II Find _> II

mark {
CharFind case {

1 c set themark,
2 return,

Sprint Advanced User's Guide

See Also

cd (Variable)

Syntax

Function

Example

See Also

cds trip

Syntax

Function

$ message "Not found"
}

The case command in this example selects one of the
functions, depending on the value returned by the
CharFind macro.

Multiple values can be used for each NI, N2, and so on.
For example,

case {
1, 2,
3 •••
}

if, do, do ... while

cd

Contains the operating system's current disk and
directory. You can change the current disk and directory
with set cd "string". Note that the directory will remain
set to the specified string when you exit the editor.
However, a change in the directory does not relocate the
files that are already open; they will still be saved to the
directories from which they were read.

NewDirectory :
message "\nChange directory to:" set cd

This example in CORE.SPM allows the user to change
the directory without leaving Sprint.

cdstrip

cdstrip "filename"

Modifies the specified filename by removing the
directory from the front of it, if it's the same as the
current directory. This makes the file name more useful
for many purposes. For example, calling the formatter
with cdstrip fname instead of just £name will make the

Chapter 6, Macro Encyclopedia 235

Example

See Also

#clear

Syntax

Function

Example

clear

Syntax

Function

Example

236

formatter produce shorter error messages without the
complete file name. Similarly, cdstrip could be useful for
fixing file names in messages before reporting them to
the user.

DiskDirectory :
set QO cdstrip fname 1 -> x
menu "File Manager" {

"Duplicate-Copy" CopyFile,

The cdstrip command in this example from CORE.SPM
strips the path name from the file name so that the File
Manager menu can display just the file name.

cd

#clear

This is a compiler directive that erases all defined
macros, key bindings, and global variables, thus clearing
the macro memory. This is the only way to make an
.OVL file smaller.

If you use #dear, the macro will exit immediately unless
you also include a Main macro. If you do define a Main
macro that loops to interpret keys, make sure that you
have a keystroke that exits the editor.

'clear

This command is found in CORE.SPM and erases all
current macros so that a fresh start can be made.

clear

Erases everything in the current buffer (unrecoverable).
This is much faster but has the same effect as r toend
erase toend.

ReReadFile :
if (exist fname)

line -> x

Sprint Advanced User's Guide

See Also

cleartab

Syntax

Function

Example

See Also

close

Syntax

Returns

Function

Example

dline -> Y
clear
$ read fname
x -> line
y redraw
o -> select
}

else (error "File not yet saved.")

erase

I cleartab

; force back to same line
; make sure select is off

Removes a tab stop (if there is one) at # in the ruler line.
This modifies only the "cached" ruler line copy; see
readruler and writeruler.

RulerFromText
mark {

tosol
if isnl return

; use the current line to set a ruler

mark insert ruler 0 -> X ; clear all old tabs
while ((x nexttab -> x) < rightmargin) (x cleartab)

The c1eartab command in this example erases any tabs
already existing in the ruler line that are before the right
margin on the ruler.

readruler, settab, writeruler

close

TIF

Closes the current buffer and leaves the point in the
previous buffer. This command returns False if there is
no previous buffer (that is, the user is in the last open
buffer) and then creates a new, unnamed buffer.

if (!modf && IsUnnamed && IsOnlyRuler) close

Chapter 6, Macro Encyclopedia 237

This example checks to see if the file has not been
modified, is not named, and only contains a ruler; if all
of those conditions are true, the example closes the file.

See Also open

column (Variable)

Syntax

Function

Example

copy

Syntax

Returns

Function

Description

238

column

This read-only variable is the distance in screen
characters from the point to the first column of the
screen. The start of the line is column o. Setting this
moves the point to be as close to the given column as
possible; for example, 20 moves the point to column 20.

IsBlankLine : ispara && column = 0

This example checks whether the current character is a
carriage return, and whether the column number is
equal to zero, and returns True if both are true.

commands copy region
commands copy region QO-QP
commands copy region mark

Result of region

Copies a specified region to the Clipboard, to a specified
Q register, or to a specified mark.

The copy command pushes a new local mark, executes
the region command (as with all such mark commands,
the argument is passed to region). The area between the
mark and the point is copied to either the Clipboard, or
the specified Q register, or the specified mark. In any
case, the pOint stays where it is (it does not move back
to the mark), the mark is popped, and the argument is
set to the value returned (if any) from region.

The copy region QO-QP macro functions the same as the
copy region macro, except that the copy goes into the
specified Q register rather than the Clipboard.

Sprint Advanced User's Guide

Examples

See Also

The copy region mark copies region and inserts it at the
mark (which can be in this or any other buffer). The
mark can't be within or immediately after the region.

The copy region command uses the current setting of the
append macro variable to decide whether to replace or
add to the contents of the Clipboard or Q register.

CopyRegion :
if select {

FixRegionNoMod
copy togmark
Unselect
1 -> AppendNext
}

SeeSeeAlso : 0 = See command, 1 = SeeAlso
-> int see flag
if !select SelectWord
copy to themark QO i get word(s} to use
o -) select ; turn off select in case user aborts

The first example copies the selected region into the
Clipboard. The second example copies the selected word
into the QO register.

append, delete, erase, undelete

cpi (Variable)

Syntax

Function

Example

See Also

cpi

The cpi entry from the current cached ruler line.

SettheFont :
mark {

r toruler -> x
set QD field "font"
if !x DefaultRuler
r toruler set field "font" pickfont QD
}

if (fontcpi != O) fontcpi -> cpi

This example moves the value of fontcpi (if it is greater
than zero) into cpi. It can be used to adjust the margins
as displayed on a ruler.

fontcpi

Chapter 6, Macro Encyclopedia 239

csearch

Syntax

Returns

Function

Example

See Also

N csearch

T/F

Moves forward or backward (depending on the current
direction) until the point reaches a character with the
ASCII code N. The search is literal (that is, uppercase or
lowercase matters). This is much faster than the search
macro.

This example uses csearch to go to each occurrence of a
AB (which is the control character to turn bold on) in the
file and replace it with AS (which turns underlining on).

search

curatt (Variable)

Syntax

Returns

Function

Example

240

curatt

Returns a number indicating the current attribute
combination of the location of the point. This number is
o if the point is not inside any pairs of control characters
that define an attribute (like AB ... AN for bold, or
AE ... AN for italics). If nonzero, it is the internal "cache
number" of the current attribute combination. Larger
numbers usually indicate deeper nesting, and two equal
numbers mean exactly the same attribute nesting is
around the two points. Warning: These numbers can
change between runs of the editor!

You can also assign curatt. If you do, the editor will
insert open and close delimiters around the current
point, or move the point past a few delimiters to cause
the display to not change, but the point to have the
given attribute.

ReportType :
curatt -> X

message "\nCursor is in"
if !x (message "plain text." return)

Sprint Advanced User's Guide

mark {
dol

r to isopen
r c
curatt -> y
if (y < x) {

current case {
'''B' message "bold",

if (y -> x) (message "inside")
}

} while x
message "text."
}

The curatt variable in this example is used to indicate
the typeface of the current character.

current (Variable)

Syntax

Function

Example

datecheck

Syntax

Returns

Function

current

This is the ASCII value of the character to the right of
the point (that is, at the cursor location). Setting the
variable causes the point to move one character to the
right.

if (current = '''J') c

This example checks the current character and, if it is a
carriage return, moves the cursor right one character.
Hard returns are JI\I' or 10, and soft returns are 11\ _' or
31.

datecheck "filename"

Compares the date of the specified file with the current
buffer's date and returns -1 if the specified file is older
than the buffer, 0 if they are equal, or 1 if the file is
newer than the buffer. The buffer date is set to the
current time when the editor is started, and every time a

Chapter 6, Macro Encyclopedia 241

file is written. Reading a file sets the buffer date of that
file only if the date of the file is older than the buffer.

If datecheck fname > 0 when you visit an already-open
file, you should probably read the new version of the file
from disk with a clear read £name. If datecheck £name>
o when you want to write a file, the version on disk is
newer than the open file, and you probably shouldn't
write over the disk file without alerting the user.

The datecheck macro returns invalid values if the £name
is a device or if the current buffer is a Q register. The
macro returns 0 for any nonexistent file or if either date
is before 1987.

Example do {
if (!modf && (datecheck fname > 0))

clear
read fname
r toend
}

This example checks the date of a prespecified file and
reads in the file from disk if the disk file is newer than
the current buffer.

dcolumn (Variable)

Syntax

Function

Example

242

dcolumn

The "display column." This is used to make up and
down arrow functions work. Normally this is whatever
column the cursor was in when the user pressed the
keystroke starting the current macro. Usually, an
automatic column -> dcolumn is done each time the
screen is drawn. If a macro sets dcolumn directly,
however, the assignment is reversed during the next
draw, doing dcolumn -> column instead.

The Up arrow and Down .arrow keys do dcolumn ->
dcolumn. You should be able to see how this makes
them move straight up and down, even when going
through lines that are shorter than the starting column.

Down :
(if action (tosol set themark) $)

Sprint Advanced User's Guide

See Also

#define

Syntax

Function

Example

See Also

del

Syntax

Returns

Function

Example

See Also

repeat (toeol c)
if !action (dcolumn -> dcolumn)

action, column

#define name = value

Declares a global variable called name and initializes it to
value. If value is specified, it must be a single integer or
character expression.

If value is not specified, name is initialized to O.

Idefine MyVar 4

This example creates a new global variable called MyVar
and gives it an initial value of 4.

int (local), int (global)

del

T/F

Deletes one character (which can't be recovered) in the
current direction. Returns False if at the end of a file.
This is not the same function as the delete macro.

BackSpace :
if raw (r del return)
do{

if (!r c) return
if (isopen) mark { c if isclose (del r del) }
else if !isclose break
}

delete

Chapter 6, Macro Encyclopedia 243

delay

Syntax

Function

Example

See Also

delete

Syntax

Returns

Function

Example

See Also

244

N delay

Waits N milliseconds and doesn't do anything during
that time. The interval is accurate to the MS-DOS system
clock. Use this macro only if you need an interval
smaller than 1/2 second; if you want longer delays, use
the wait macro command.

Sound :
10 delay

wait

delete region
delete region QO-P
delete region mark

Result of region

; IBM PC specific
sync with the msec clock

Copies the specified region to the Clipboard, or to a
specified Q register, or to a specified mark, then erases
the region. Refer to the copy entry for more information
on the process.

The delete command uses the current setting of the
append macro variable to decide whether to replace or
add to the contents of the Clipboard or Q register.

DeleteToChar :
status "Delete to:"
mark {

if (CharFirid = 1) delete to themark
}

This example deletes characters up to a character
specified by the user.

append, copy, erase, undelete

Sprint Advanced User's Guide

direction

Syntax

Returns

Function

Example

See Also

direction

T/F

Returns True if the current direction is forward, False if
reverse. You can use this to make a macro have
"direction sensibility" when enclosed in another macro.

CharFind : ; case insensitive
; move to char, maps AM to NL

returns 1 if found, 2 if illegal key, else False
key -) x
if (x < ' ') {

x case {
'AM' 'AJ' -) x,

x CharToUpper -) x
direction ? {

}It

{

; map return to NL

forward search

; backward search

The direction command in this example causes the
CharFind macro to take different action based on
whether the direction is currently forward or reverse.

c, f, r

dline (Variable)

Syntax

Function

Example

See Also

dline

The "display line." This is the number of lines between
the cursor and the top of the window. Setting it moves
the point to the start of that screen line.

o -) dline

This example moves the cursor to the top left comer of
the window.

dcolumn, line, lines, wlines

Chapter 6, Macro Encyclopedia 245

do

Syntax

Function

Example

See Also

do ... while

Syntax

Function

Example

246

do command

This repeats command indefinitely. The only way to get
out is to execute a break or to have the user abort the
loop by pressing the key assigned as abortkey.

BegEndInsert :
status "Press (B) for Begin command,

(E) for End command, or ESC to cancel:"
do{

GetKey CharToAlpha case {
'B'InsertBegin break,
'E' InsertEnd break,
, 1\ [', abortkey abort,
$ 0 Bell
}

This example loops until the user presses B, E, Esc, or the
abortkey (assigned as Ctrl-U in the default Sprint
interface).

abort, abortkey, break

do command while Boolean

Repeatedly executes command, stopping only when
Boolean returns False. No argument is returned unless a
break was executed inside the loop. This is similar to the
while macro, but Boolean is evaluated after command is
done. Therefore, command is always done at least once.

Main :
if Jfiles DefaultRuler
else {

bufnum -> x

; make sure files have rulers

do { ; read any files with newer versions
if (Jmodf && (datecheck fname > 0)) {

clear
read fname
r toend
}

bufswitch
} while bufnum J= x

Sprint Advanced User's Guide

See Also

DoHelp

Syntax

Function

Example

This example checks that a file has not been modified
and whether a newer version exists on disk; if so, it
reads in the newer version. Then. the example checks
whether the buffer number is not equal to a prespecified
number and, if the number is not, cycles through the
loop again.

while

. DoHelp:

This macro is automatically called when the user
requests help by typing a key that MenuKey or EditK.ey
evaluates as the 101H help code. QO contains a macro
name that is either pulled from the most recently called
macro or, in the case of a menu, pulled from the macro
that will be done if the current item is chosen. The value
in QO can be used to locate a keyword in the help text.

DoHeZp can do any actions desired in order to display
and allow the user to move around in the help text.
Whatever DoHeZp does, if it changes the screen, it should
restore things to the way they were and execute a draw
before returning.

HelpMenu :
1 -> Inhelp
menu IIHelp on ... II

II_Press Fl for Template ll ,
IISubjectll 0 -> InHelp message

"Enter subject:" set QO DoHelp,
"Key II 0 -> InHelp status

"\nPress key:" GetKey keyhelp DoHelp,
IILast Command" 0 -> InHelp $ keyhelp DoHelp
}

o -> InHelp

This example sets up a possible help menu.

Chapter 6, Macro Encyclopedia 247

dokey

Syntax

Returns

Function

dokey

Result of the macro for the key done

This macro effectively does draw key keyexec. The only
difference is that the argument passed to the macro
called for the key is #. (Doing key keyexec would not
pass a usable argument to the key's macro because the
key would be passed as the argument.)

dokey is usually placed in the Main macro loop.

Example do {
if stopped dokey
else {

AppendNext -> append
o -> AppendNext
}

This example shows the dokey part of the Main macros
loop.

See Also Main

draw

Syntax

Function

Example

See Also

248

draw

Does an incremental redisplay to show the current state
of the buffer on the screen. Be sure to do this before you
ask the user a question of some type; otherwise, the
screen will not contain current information. The
redisplay will halt if the user presses a key before draw
completes, and the screen will be left in a partially up­
dated state.

HiLiteFound :
mark (found 1 -> select
draw
o wait
Unselect swap themark)

The draw command in this example causes the screen to
be updated after a string has been found.

redraw

Sprint Advanced User's Guide

EditKey

Syntax

Function

EditKey :

The editor has a built-in "prompt editor" that accepts
some commands. The EditKey macro is automatically
called and works like MenuKey for this prompt editor; it
should read a keystroke and return a number indicating
what should be done. The return values are as follows:

o
l47H
l4BH
l4DH
l4FH
l52H
l53H
l6DH
l6FH
101H
IAH'
IA?'
lAM'
IA['
IAI'

abortkey

: throwaway keystroke
: start of line (Home)
: left
: right
: end of line (End)
: ins key (not used)
: del key
: word left (Ctrl-Left)
: word right (Ctrl-Right)
: help (Fl)
: delete left one character
: delete left one character
: confirm (CR)
: cancel (ESC)
: insert a hard return (NL) into string
: exit/ cancel

All other codes less than 100H or greater than l80H are
inserted into the string.

Although a generic EditKey that returns IBM function
codes would work, you probably want to create an
editing style that matches the control characters and
function keys in your editor. For instance, if Ctrl-F moves
forward a character, you could translate it to l4DH (the
Right arrow).

For another example, to simulate EMACS string entry,
where Esc confirms entry, and an Enter inserts a NL,
translate ESC (AD into AM and AM into AJ. You would
also probably want to set abortkey to AG.

To make a code such as A H or ESC insert themselves,
add l80H to the code. To make a quote prefix, make AQ
do GetKey, add l80H to the key, and return it.

If EditKey is undefined, the editor uses MenuKey.

Chapter 6, Macro Encyclopedia 249

Example

See Also

EditKey is also used by the ruler-line editor. If the ruler
line editor gets a number from EditKey that it can't use
(such as the up-arrow), it executes the macro for that key
at the start of the ruler line (with the point right before
the "K).

EditKey :
Get Key -) int ktmp case {

'AA' l6bh,
'AD' l4dh,
'AF' l6dh,
'AG' l53h,
'AQ' Get Key + l80h,
'AS' l4bh,
laah
ladh

, *' ,
'-' ,

; Ctrl-Left
; Right

; Ctrl-Right
; Del

i Quote
; Left

; PrtScr
; Grey-

labh '+', ; Grey+
lOlh
lOAh
l40h,144h
l4lh,145h
l4ch
19bh
abortkey
$
}

lOlh, ; Fl: Help
'AM', ; FlO: Accept
'AM' , ; mouse left key is Accept
'A[', ; mouse right key is Cancel
l50h, ; if code comes, make '5' Down Arrow
exitmenus 'A[', ; Ctrl/Alt-Esc
exitmenus 'AU',
ktmp

This is the EditKey routine from SP.SPM.

GetKey, MenuKey

engine (Variable)

Syntax

Function

250

engine

Contains the name of the current Borland word
"engine" that will be run when the runengine macro is
called. Setting this variable actually loads and initializes
the engine (if it isn't already loaded).

The string that identifies the engine can be the name of a
Q register. The first word in the string is the name of the
engine (an .ENG extension will be added if there is
none) that is loaded into memory. The rest of the string
consists of arguments to the engine, words that usually
identify the names of the dictionary and the files it needs
(.LEX extensions added by default), and words starting

Sprint Advanced User's Guide

Example

See Also

erase

Syntax

Returns

Function

Example

See Also

with dashes that serve as switches to control the engine.
For example, the command speller english user identifies
the files SPELLER.ENG, ENGLISH. LEX, and USER.LEX.

Currently, all engines take one or two dictionary files
and ignore all switches.

If you set the string to null, nothing happens when
runengine is called (and it is not considered an error).

LoadSpeller : ; force the speller into memory
if ((0 sub char engine) != 's')

{ status "Loading speller ... "
set engine QJ
swap themark)

run engine

erase region

Result of region

Deletes the area without copying it anywhere (and it
can't be retrieved). This is faster than delete and doesn't
change the Clipboard.

EraseRegion :
if select {

FixRegion
erase togmark
curatt -> DelAtt
Unselect
o -> AppendNext
}

else NoB lock

The erase command in this example causes the entire
region up to the global mark to be erased.

append, clear, copy, del, delete, undelete

Chapter 6, Macro Encyclopedia 251

error

Syntax

Function

Example

See Also

exist

Syntax

Returns

Function

Example

252

error "message"

Prints the string as an error message, waits for the user
to press Esc, and then does an abort. If you want, you
can print the current argument with a single %
command in the message.

AssignError :
stopped error "That key cannot be reassigned."

abort

exist "filename"

T/F

Returns True if filename exists on disk and is readable (if
a file has been created in the editor but not yet written
out, this will return False).

The value given in # controls where Sprint looks for the
file, as follows:

2 Searches the path for any matching files.

4 Forces the directory menu. A menu is drawn of
all matches (usually 1) even if there is no
wildcard (* or ?) in the name. In addition, names
ending in :, /, or \ have an asterisk (*) wildcard
added to them, so they list the contents of a disk
or directory.

8 Hides the extensions in the directory listing and
returns the file name with the extension
removed.

CopyFile :
message "File to copy:" set QO
set Ql QO
set QO fHst Ql
if' !exist QO { ; if spec'd file mask had no matches

set QD Ql
mark { to QD "\nNo files match' "toend" '." }
error QD
}

Sprint Advanced User's Guide

See Also

exit

Syntax

Function

Example

See Also

set Ql "" message "Copy" message QO message "to:" set Ql
status "\nCopying ... u

fcopy QO Ql
message "\nCopy complete."

The exist command in this example checks whether a
file given as the file to be copied exists on disk.

£list

exit

Exits the editor back to DOS.

If the kill swap variable is True, and the swap (backup)
file is a temporary one not created by SPRECOVE, the
swap file is deleted. If the ovlmodf variable is True, the
overlay file is written before exiting. Similary, if the
smodf variable is True, the screen description is written
before exiting.

ExitEditor :
bufnum -> x
do {

if modf {
draw while keypressed (key draw)
message U\nThe file"
message fname
if (ask "has not been saved, save it?") Save
}

else if (IsUnnamed && IsOnlyRuler) close
} while (bufswitch && bufnum != x)

eraseswap I I !files -> killswap
GlossSave ; save glossary if in use
exit

This example exits the editor in the default Sprint
version. Note that the routine before the exit command
checks whether a.file has been modified and prompts
the user about its unsaved condition before allowing the
user to exit.

kill swap, ovlmodf, smodf

Chapter 6, Macro Encyclopedia 253

exitmenus

Syntax

Function

Example

See Also

exitmessage

Syntax

Function

Example

See Also

254

exitmenus

Prevents menus from continuing. Doing exitmenus
causes all menus to disappear, even if the macros being
done are aborted. Normally, if a macro in. a menu is
aborted, Sprint redraws the menu and lets the user
select another operation. The exitmenus state stays on
until the last menu disappears from the screen.

MenuKey :
Get Key -> int ktmp case {

'''C' 151h,

'''U' exitmenus '''[',

; page down

The exitmenus command on line 5 in this example is
done if the user presses Ctrl-V.

abort, abortkey, break

exitmessage "string"

This macro specifies the string to be sent to standard
output the next time the screen is reset by either exiting
the editor or by calling another program. The string will
be sent after the screen is reset. Thus, you can display a
message even if resetting the screen will clear that
message.

SystemCommand :
message "\nDOS command:" set Q5
if (O subchar Q5) (I call "command Ic" Q5)
else {

exitmessage "--Type EXIT to return to Sprint--\r\n"
o call "command"

This example invokes the DOS command in CORE.SPM
and produces the message that instructs the user to type
exi t to return to Sprint.

call, exit

Sprint Advanced User's Guide

f
Syntax

Returns

Function

Example

See Also

false

Syntax

Returns

Function

See Also

fchange

Syntax

Function

Example

f command

Result of command

Executes the command with the direction forward and is
used to override an enclosing r command.

WindowFwd : f winswitch

This example ensures that the window being switched
to will be the "next" window instead of the "previous"
window.

c, r

false

False

Returns False. You can use this to directly set a Boolean
variable.

True

fchange "filenamel" "filename2"

Changes the file name specified in filenamel by replacing
any %'s in filenamel with the appropriate part specified
in filename2. You can use this command to modify a part
of a file name.

SetStyleSheet :
mark {

set QD 1111

message "Name of style sheet to use: II

set QD
set QD fchange "%.FMT" QD

Chapter 6, Macro Encyclopedia 255

See Also

fcopy

Syntax

Returns

Punction

Example

256

This example makes sure that the style sheet named by
the user (and placed in the QD register) is given an
extension of .FMT.

fcopy, fdelete, £list, £move

fcopy "filenamel" "filename2"

TIP

Copies disk filenamel to filename2. This is independent of
the swap file's contents; it does not matter if either
source or destination are opened or modified. The file is
copied in 32K chunks, the raw ioctl bit is set on the
destination, and the editor attempts to duplicate the
source's data onto the destination.

Returns True if the copy is successful, aborts if the copy
fails for any reason (for example, the source does not
exist).

If the destination already exists, the user will be asked if
it should be replaced. To prevent this question, the
macro should delete the destination first. If the user
answers no, an abort is done, so further commands in
the macro are not done.

CopyFile :
message "File to copy: " set QO
set Ql QO
set QO £list Ql
o AllCaps
if !exist QO {

set QD Ql
if length QD {

if spec'd file mask had no matches

mark { to QD "No files match'" toend III • "

}

else set QD "Can't copy unnamed files."
error QD
}

set Ql "" message "Copy" message QO
message " to: " set Ql

status "\nCopying ... "
fcopy QO Ql
message "\nCopy complete."

Sprint Advanced User's Guide

See Also

fdelete

Syntax

Function

Example

See Also

field

Syntax

Function

This example is the default file copy routine from
CORE.SPM.

fchange, fdelete, flist, £move

fdelete "filename"

Deletes the specified file from the disk (but does not
close any buffer containing that file).

DeleteFile :
message "File to erase:" set QO
set Ql QO
set QO flist Ql
o AllCaps
if !exist QO { ; if spec'd file mask had no matches

set QD Ql
mark { to QD "No files match'" toend '" ."
error QD
}

message "\nAre you sure you want to erase" message QO
if (ask "?") fdelete QO

This example is the DeleteFile routine from CORE.SPM.

fchange, fcopy, £move

field" fieldname"

Edits ruler lines and any command that starts with AO
and ends with AN. The macro simplifies reading and
writing fields in formatter commands.

To use the field macro, position the point on the AK in a
ruler line or on the AO at the start of any other
command. The editor splits the command into fields
with commas. The fieldname is the first word or symbol
after the comma, and the value of the field is everything
after the first word or symbol up to the next comma,
hard return; or AN, with any leading spaces stripped.
Notice that, if you have AOBegin text ... , the editor

Chapter 6, Macro Encyclopedia 257

Example

See Also

files

Syntax

Returns

Function

258

classifies the elements as a field called Begin with a value
of text.

If field is placed anywhere a string is expected, it will
return the contents of that field. For example,

set QO field "linelength"

puts the contents of the linelength field into QO. If the
field does not exist, QO is set to empty. (A field never has
a null value.)

You can set a field using the set macro command. For
example,

set field "linelength" QO

puts QO into the linelength field. If the field does not
exist, it is added to the end of the command. If you set a
field and don't give a source string, the user is asked for
one.

Whenever a field command is used, the point is moved
to the end of the field value or to the end of the
command if the field does not exist. You will usually
want to embed fields in mark commands so that the
point does not move.

SetLeftlndent :
mark {

r toruler -> x
set QD field "leftindent"
message "\nLeft indent:" set QD
if !x DefaultRuler
r to ruler set field "leftindent" QD
}

tomler

files

Retur-ns the number of open files/buffers (a number
between 1 and 24). The editor also supports the idea of
" no files." If the only open file is unnamed, has no
characters in it, and modf is False, then files returns O.

Sprint Advanced User's Guide

Example

See Also

CloseFile :
if modf {

message n\nThe file n

message fname
if (ask nhas not been saved, save it?n) Save
}

if (inbuff themark) (0 -> select)
close
if !files DefaultRuler

flist

; turn off select

flag3, flag4, flag5, flag6 (Variables)

Syntax

Function

Example

See Also

flags

Syntax

Function

flagN

These are scratch variables that you can use to control
the status line.

CtrlKDispatch :
(0 -> x $) -> x
if (!menudelay I I ! (menudelay wait)) (status n\n"Kn)
GetKey CharToAlpha case {

'N' if ColMode (0 ~> ColMode -> flag3)
else (1 -> ColMode -> flag3),

$ 1 Bell
}

The Flag3 command in this example is used to show the
status of column mode" in the status line in the default
interface.

flag, statline

flags "string"

Prints the contents of several variables on the status line.
The specified string should be a printf string indicating
how to print the flags. The flags are passed to printf in
the following order:

Select, Append, OverWrite, Flag3, Flag4, flagS, Flag6,
Hour, Minute, Hour >= 12

Chapter 6, Macro Encyclopedia 259

Example

See Also

Fn

Syntax

Function

Example

{list

Syntax

Function

260

NormalMode :
flags "%[

%[
mode ""

%:Sel%]%2g%[Ins%:Ovr%]
%:Col%]%7g%11+12'+2u:%02u%[a%:p%]m"

This is the macro used to define the status line flags (that
is, the middle section of the status line).

flag3, flag4, flagS, flag6, mode, statline

flo .. fl2

Names a function key. See the key table in Appendix E
for the definition of the keys.

Fl : HelpMenu ; Fl

This example assigns the HelpMenu macro to Fl.

flist "string"

If encountered by itself, the macro inserts all the
matching file names into the buffer, with a hard return
after each.

You will normally place this macro anywhere a string is
expected; the macro allows the user to enter or construct
a file name.

If the string contains a wildcard (* or ?), a menu is
drawn of all matching names, and the user is expected
to pick one.

If the string contains a %, it is constructed out of the
current fname and the supplied name:

% turns directly into fname

%.xxx turns into £name with the extension changed to
.xxx

xxx% tacks the base part of £name onto xxx, which is
usually a directory.

Sprint Advanced User's Guide

Example

See Also

fmove

Syntax

Returns

A string ending with :, I, or \ automatically has a %
added, so that x: is the same as x:% and I dirf is the
same as Idir/%.

Strings that don't contain %, :, I, and \ are returned
exactly.

The # is a combination of the following argument
switches:

2 Searches the path for any matching files. If the
user enters a * or if the 4 bit is set, £list draws a
menu listing all matches found in each directory
on the path. When the user picks one, flist
returns the file name without its directory name.

4 Forces the directory menu. A menu is drawn of
all matches (usually 1) even if there is no * or ?
in the name. In addition, names ending in :, I, or
\ have an * wildcard added to them (rather than
a %), so they list the contents of a disk or
directory.

8 Hides the extensions in the directory listing and
returns the file name with the extension
removed.

If you place £list where a string is not expected, it
automatically uses 4 as the argument and inserts a list of
matching files into the buffer. This capability can be
useful for constructing batch files.

MacroLoad : 10 set QO flist "*.spm" mread QO

This example is the one used in the default Sprint
interface to provide the user with a list of .SPM files
from which to choose. It searches the path for all files
with the .SPM extension and displays them in a menu
without their extension.

fcopy, fdelete, fmove, fname, pickfile

fmove II filenamel II II filename2"

T/F

Chapter 6, Macro Encyclopedia 261

Function

Example

See Also

fname

Syntax

Function

262

Moves (renames) a file. This does precisely the same
thing as fcopy, except the original (filenamel) disappears.
This is different from a DOS REN command in that it
can move files between directories (note that renaming I
alb to c: will move from directory I a to the current
directory) and will even move between disks (by
copying and then deleting the original).

Returns if successful, aborts if unsuccessful for any
reason (usually that the source does not exist).

If the destination exists, the user will be asked if it
should be replaced. To prevent this question, the macro
should delete the destination first. If the user answers
no, an abort is done, so further commands in the macro
are not done.

RenameFile :
message "File to rename or move: II set QO
set Ql QO
set QO flist Ql
if ! exist QO {

set QD Ql
i if spec'd file mask had no matches

mark { to QD IINo files match'lI toend III ."

error QD
}

set Ql "" message IIRename/move" message QO
message " to: " set Ql

o AllCaps
1 AllCaps
fmove QO Ql
message "\nRename complete. 1I

The fmove command in this example renames the file
from the name specified in the QO register to the name
specified in the Ql register.

fcopy, fdelete, flist

fname

You can use fname anywhere a string is expected to get
the current file name (complete with full disk and
directory name). You can use the set macro to change the
fname.

Sprint Advanced User's Guide

Example

See Also

If you just want the name of the file without the disk
and directory name, use the cdstrip macro.

ISUnnamed : length fname = 0

This example macro returns True if the file is unnamed
(that is, if fname is an empty string).

cdstrip, fchange, fcopy, fdelete, £list, £move

fontcpi (Variable)

Syntax

Returns

Function

Example

See Also

fontcpi

A recommended CPI (characters per inch) setting for the
font selected by the last pickfont macro (see pickfont).
For instance, the font "pica" would probably return 10,
and "elite" would probably return 12 (the value is
determined by the printer description).

Proportional-spaced fonts would have higher values,
like 15. By setting cpi equal to this, and then setting the
margins and indents to the correct number of "inches"
for that cpi, the onscreen text will approximate the
printer output (about 90% accuracy, good enough to do
manual hyphenation). Unfortunately, the text will
generally be wider than the screen, making it hard to
read and edit.

SettheFont :
mark {

r toruler -> x
set QD field "font"
if !x DefaultRuler
r tomer set field "font" pickfont QD
}

if (fontcpi != 0) fontcpi -> cpi

This example moves the value of fontcpi into cpi.

cpi, pickfont

Chapter 6, Macro Encyclopedia 263

forced

Syntax

Returns

Function

Example

found

Syntax

Returns

Function

Example

See Also

get

Syntax

Returns

264

forced command

Result of command

Executes a command but forces keypressed to be False
while doing so. This has the effect of not letting any
work be interrupted by keystrokes, although keyboard
input (such as GetKey) will still work.

For example, forced draw is the easiest way to make
sure that the screen is fully up-to-date. In normal cir­
cumstances, you don't need to use forced, since the
editor is designed to work without it. In particular, the
screen redisplay will normally be incrementally updated
at the correct time.

Init : NormalMode forced draw ...

found

TIF

After a search or a match, this command moves the
point to the other end of the located string. Repeatedly
executing found alternates the point between the two
ends of the string. Usually this is used to identify
a string to be highlighted or replaced.

HiLiteFound :
mark (found 1 -> select draw 0 wait Unselect swap themark)

The found command in this example is used to move
the cursor to the end of the string to be highlighted.

draw, mark, search, select

get "prompt"

Sprint Advanced User's Guide

Function

Example

See Also

GetKey

Syntax

Function

Asks the user to enter a number; when the user enters a
valid number, it appears on the status line and can be
edited with normal EditKey editing. The user can edit the
number and confirm the response by pressing Enter. If a
numeric argument is provided, it is used as a default
reply. The number can also be given with a terminating
H, 0, or B to indicate hex, octal, or binary, respectively.
The get macro automatically adds a colon and a space
(:) to the end of the specified prompt.

GoToLine :
if !select set thamark
LastLine get "Line number" -> LastLine -> line
if (Line != LastLine)

massage "Line was out of range. At end of file"

This example provides the JlGet line number" function
in the default Sprint interface.

ask, message, prompt, rangeget

GetKey

When the editor's internal typeahead queue is empty
and needs a keystroke, GetKey is automatically called,
and the result is assumed to be the necessary keystroke.
GetKey should combine any intermediate results into a
single keystroke; for instance, it should combine the IBM
null prefix code (generated by Function keys) with the
following code (Function key scan code) to get a number
greater than 255.

GetKey can also be programmed to do any other desired
input parsing. For example, it could generate the key­
strokes by reading a string. GetKey can also use
hardware to determine in non-DOS ways (such as doing
the BIOS call) what keystroke is next.

Technical Note: The editor checks the keyboard status
(using the DOS Jlioctl" call) to determine when the input
is ready for purposes of minimal screen or swap file
update, and the editor expects that if and only if this is
True, GetKey will return immediately. If input appears to
be ready all the time, the screen will not change. If it

Chapter 6, Macro Encyclopedia 265

Example

See Also

gmark

Syntax

Function

Example

See Also

hardware

Syntax

Returns

Function

266

appears to never be ready, the editor will completely
update the screen and swap file after each keystroke.

Make sure GetKey does not do anything that might cause
it to be called recursively; that is, don't do any user
prompts, key, and any loops (which will recall it for
abort checks).

GetKey : key I I key + 256

This is the definition of GetKey in the default Sprint
interface.

EditKey, MenuKey

gmark

This is the global mark (that is, the one on the top of the
stack if no others are pushed). If there are no enclosing
mark commands, this is the same as themark.

mousetrack :

x case {
140H set themark set gmark 1 -> select,
143H if (at themark) 0 ->

select set themark 0 -> x break,
144H tosol set themark set gmark 1 -> select toeol,

mark, the (mark), tog (mark)

hardware "stringll

Result of last hardware operation

Issues commands directly to the hardware using the
contents of the string.

You use hardware control strings with the hardware
macro. These strings allow three things to be done:
writing memory locations, writing 110 ports, and doing
random interrupts to call ROM utilities.

Sprint Advanced User's Guide

The string is read from left to right and can contain
numbers and operator symbols. Spaces serve to separate
words, but are otherwise ignored. At any time a single
"argument" is preserved; some operators set this
argument, others use it.

Numbers must start with a digit and can end with an H,
0, or B to indicate hex, octal, or binary, notation
(otherwise, they are decimal). If a number is
encountered in the string, the argument is set to it.

The operators available in hardware control strings are

% Sets the argument to a code off the
"argument list."

address Sets the argument to the contents of a
given byte of memory. The address can be
a single number, indicating something in
segment zero, or it can be number:number,
indicating a segment and offset. Don't
forget to put H on the end of the numbers
if you want hex addresses.

> address Sets the given byte to the argument. The
argument does not change.

> I address ORs the argument with the contents of the
byte. This can be used to set various bits.

>& address ANDs the argument with the contents of
the byte. This turns off bits.

>" address XORs the argument with the contents of
the byte. This toggles bits.

> reg Sets a given register to the argument.
These register values are used during the
next interrupt. On an 8086, the legal
registers are AH, AL, AX, BH, BL, BX, CH,
CL, CX, OH, DL, OX, SI, and 01. (Note:
You can't set the segment or BP registers.)

in number Sets the argument to the input from the
given I/O port.

out number Sends the argument to the given I/O port.

int number Does an interrupt. The argument is put in
the AH register; the other registers are set

Chapter 6, Macro Encyclopedia 267

Example

See Also

if ... else

Syntax

Returns

Function

Example

See Also

tmenu

Syntax

Returns

Function

268

as per the most recent > reg instructions,
then an int instruction is done. The
argument is set to whatever is an AX
when the interrupt returns.

Warning: Don't use this command unless you really
know what you're doing. You can easily crash the
machine.

hardware 110 > CH 8 > CL 1 int 10h ll

This example does the BIOS interrupt call that turns the
line cursor into a block cursor.

ioport, peek, peekseg

if Boolean commandl { else command2}

Result of command1 or command2

Conditionally does command1 or command2, depending
on the value of the Boolean expression.

Bell :
if isibm sounddur sound
else rawout '"' G"

This example performs the sound macro if the isibm
variable is True; otherwise, the example sends a I\G to
the operating system, which beeps the speaker.

case, do-while, while, ?

imenu "title" (# "item" commands, ...)

Result of commands

Just like the menu macro, except that the text of item
selected is placed into QO so that it can be referenced (for
example, to be inserted into the buffer).

Note: Item can be one string or several strings. If it's
more than one, the strings are concatenated to form the
menu text.

Sprint Advanced User's Guide

Example

See Also

PickCommandMenu :
imenu "Choose Command"

"again" ,
"bottomOfFile ll

,

IIbottomOfScreen" ,

This example allows the user to choose one of Potpourri
commands in the default Sprint interface.

menu,qmenu

inagain (Variable)

Syntax

Returns

Function

Example

See Also

inbuff

Syntax

Returns

Function

Example

ina gain

TIF

The variable is True if a macro invoked by the again
command is currently being executed. Macros can check
this to more accurately reproduce the last action taken.

Quote :
(if !inagain {

if (!menudelay II ! (menudelay wait)) {
status lI\nControl character to insert: 1I

This example inserts the same character as last time if it
was inserted by the again macro, rather than ask for a
new character.

again

inbuff mark

TIF
Returns True if the mark is in the same buffer as the
point. For more details on what mark can be, see set
(mark) in this chapter.

CloseFile :
if modf {

message lI\nThe file ll

message fname

Chapter 6, Macf() Encyclopedia 269

See Also

#include

Syntax

Function

Example

index

Syntax

Returns

Function

Example

270

if (ask "has not been saved, save it?") Save
}

if (inbuff themark) (0 -> select)
close
if !files DefaultRuler

mark, set(mark), themark

#include "filename"

; turn off select

This macro directive compiles the contents of the
specified filename. If you don't specify an extension,
.SPM is assumed. If you are specifying a path name, use
forward slashes. The #include macros can be nested to
any level, within the limits of the files parameter in the
CONFIG.SYS file.

'include "core"

This line in SP.SPM includes CORE.SPM when SP.SPM
is compiled.

N index II stringli

Searches string for the character represented by Nand
returns the offset of the first occurrence. The offset of the
first character in the string is O. If the character is not
found, the length of string is returned.

You can combine index with the sub char macro to
perform character translations, such as those that change
uppercase letters to lowercase letters and vice versa.

message "options: 1I

set Q4
if (('B' index Q4) != (length Q4)
message IISearching backward ... "

Sprint Advanced User's Guide

See Also

This example determines if a user enters liB" in a string
and makes a backward search if they did.

sub char

indent (Variable)

Syntax

Function

Example

See Also

infobox

Syr..tax

Returns

Function

indent

The value of the indent field from the current cached
ruler line.

SetLeftMargin
set QD "Left margin" leftmarqin GetColumn -> x
if (x >= riqhtmarqin)

(error "Left margin must be less than right")
else {

mark {
InsertFirstRuler
x -> leftmarqin
x -> indent
writeruler refill

This example asks the user for the setting for the left
margin and moves that value (if it is less than the right
margin) into the indent variable and into the leftmargin
variable.

leftmargin, readruler, writeruler

infobox "title" (# "item", # "item", ...) (commands)

Result of chosen command

Draws an information box. The box is drawn in the same
fashion as done by the menu macro. The box will
remain on the screen during commands; after that, any
menu or prompt causes the box to disappear.

Note: Item can be one string or several strings. If it's
more than one, the strings are concatenated to form the
menu text.

Chapter 6, Macro Encyclopedia 271

Example

See Also

Init

Syntax

Function

ToneMenu :
do{

infobox "Tone"
soundfreq "Pitch\>%d Hz ",
sounddur "Length \>%d msec",
" " ,
"UP\>Higher Pitch",
"DOWN\>Lower Pitch",
"LEFT\>Shorter Length",
"RIGHT\>Longer Length"
}

MenuKey case { ...

imenu, menu, qmenu

Init :

If defined, this macro is automatically called when the
editor first starts up. When an ovlread is performed, Init
is also done, but only if the argument is negative.

After Init is done, the Main macro is performed.

Example Init :

See Also

InitArg

Syntax

Function

272

NormalMode
forced draw
o -> n

-> ALineLength
-> RulerEdit
-> InHelp

; n = count of command-line files
; ASCII mode is forced of! on startup.

This example shows the beginning of the Init macro in
CORE.SPM.

InitArg, Main

InitArg

After the editor calls Init or Restart, it calls InitArg for
each file name provided on the command line that
started the editor. This name is put in QO, and then the
editor calls InitArg.

Sprint Advanced User's Guide

Example

See Also

inruler

Syntax

Returns

Function

Example

See Also

Note: The editor considers any word on the command
line that does not start with a dash to be a file name.

InitArg :
if (n < 6) (++n -) windows)
o AllCaps
if (0 CheckWild)

open ""
draw
close

; convert name to uppercase

force user to select file name

set Ql QO ; preserve so Ql starts w/proper guess
4 set QO flist Ql
if !length QO { ...

This example shows some of the structure of the InitArg
macro in CORE.SPM.

Init,Main

inruler

T/F

Returns True if the point is in a ruler line (that is, on the
"K or anywhere between the "K and the closing hard
return). Returns False if the raw macro variable is True,
or the point is not in a ruler line. This flag is used to
decide whether an unbound key should be inserted into
the text or used to edit the ruler. By examining this, a
macro can act differently if it is executed in a ruler, so
the characters in the ruler are not changed unexpectedly.

IsOnlyRuler :
mark (r to isend inruler && (toeol c isend))

This example checks to see if the ruler line is the only
line in the file (that is, if the character immediately after
the ruler line is the end-of-file marker).

insertruler, readruler, writeruler

Chapter 6, Macro Encyclopedia 273

insert

Syntax

Returns

Function

Example

See Also

insert

True

Inserts a specified character code into the buffer. Always
returns True. If the swap file fills up, an error message is
produced, and the macro is aborted.

OpenLine : repeat {,AJ' insert r c}

This example inserts a hard return (An as many times as
specified by the user.

insert "string"

insert" string"

Syntax

Function

Example

See Also

insertruler

Syntax

Function

274

insert "string"

Inserts the specified string into the buffer. The string can
be a Q register.

InsertBegin :
mark {

, AJ' r csearch
if (current = ,AJ') c
if inruler {toeol c}
IIAOBEGIN II
insert Q8

This example inserts the begin format marker and uses
the name of the format in the Q8 register (a preceding
macro would have already collected the name of the
format).

insert

insertruler

Inserts a copy of the current cached ruler at the start of
the current line and leaves the point before the AK. If

Sprint Advanced User's Guide

Example

See Also

int (global)

Syntax

Function

Example

See Also

int (local)

Syntax

Function

you want this ruler to be different from the current one,
you should modify the ruler settings and then do
insertruler.

Performing an insertruler turns off the rulermod
variable.

DefaultRuler :
65 - > rightmargin 5 settab insert ruler 0 - > modf

This example inserts the default ruler line into the file.

readruler, ruleredit, rulermod, writeruler

int name = value

As long as int appears outside of any macro definition, it
declares a global variable called name and initializes it to
value, if value is specified. value must be a single integer
or character expression. If value is not specified, name is
initialized to o.
int SearchDirection 1
int SearchOpt 3
int GlobalSearch 0

int GlobalReplace 0
int StrFound 0

; 1 = last search forward, else back
; standard options to search macro
1 = search from beginning of file

; 0 = from point
; passed into DoReplace

; used by DoReplace

These lines from CORE.SPM define variables to hold the
search options.

int (local)

int name

Declares a local variable called name and initializes it to
the current argument. The variable can be any name and
will override any earlier definition of that same variable.
Such variables are strictly local; if macro A defines a
local x and calls macro B, macro B cannot refer to A's x.

Chapter 6, Macro Encyclopedia 275

Local variables declared inside parentheses exist only
inside that expression. Outside of parentheses, the local
variables last for the entire macro.

The stack for local variables has 256 entries, so you can't
put more than 256 bytes of local variable names in a
single macro. Local variables can't be declared within
parentheses more than 10 deep. Also, don't use a local
variable declaration in a statement that's not in
parentheses. For example, the statement int x int y if
Oint z is not valid.

Example Sum :

See Also

int x
int y
get "First Number" -) x
get "Second Number" -) y
x + y message "Sum = %d"

int (global)

ioport (Variable)

Syntax

Function

Example

See Also

isascii

Syntax

Returns

Function

276

ioport #

An 8-bit machine I/O port at the address #. If you assign
it, an out instruction is done; if you read it an in
instruction is done. Using this command, you can go
straight to the hardware. But be careful; you can easily
crash the machine.

Ob6h -) ioport 43h

This example sends Ob6h to the port at 43h.

hardware, peek, peekseq

isascii

T/F

Returns True only if the normal ASCII character set uses
the character after the point for the same purpose as
Sprint. This is true for all characters greater than 32, and
for a tab (An, carriage return (AM), and hard return (AJ).

Sprint Advanced User's Guide

Example

See Also

is close

Syntax

Returns

Function

Example

See Also

isend

Syntax

Returns

Function

Example

If you are translating a file into ASCII, you should
replace any non-ASCII character with a space if it's a
visible character, or with nothing if it's invisible.

MyExport :
while (to !isascii) {

isvisible ?(' , -) current)
else (del)
}

This example does a very crude export to ASCII.

isend, isnl, ispara, is sent

isclose

T/F

Returns True only if the character after the point is a AN
close delimiter.

InsertNL :
if AutoCorrect CheckLastWord
past isclose
ALineFill
'''J' insert

i turns off the attribute

This example moves the point past any closing de­
limiters before inserting a hard return.

isopen

isend

T/F

If the direction is forward, this returns True if the point
is at the end of the buffer. If the direction is reverse, this
returns True if the point is at the start of the buffer.

IsOnlyRuler :
mark (r to isend inruler && (toeol c isend))

Chapter 6, Macro Encyclopedia 277

See Also

is gray

Syntax

Returns

Function

Example

See Also

isibm

Syntax

Returns

Function

Example

See Also

278

This example moves to the front of the file and then
finds out whether the end of the file is immediately after
the ruler line.

isnl, ispara, issent

isgray

TIF

Returns True if the current character is whitespace or a
line delimiter. This macro is the same as (iswhite II
isnl).

ParagraphFwd :
past isgray
'''J' csearch
past isnl

The past isgray commands in this example make sure
that the cursor is currently in the body of a paragraph.

isnl, iswhite

isibm

T/F

Returns True if the current machine fits the internal
definition of whether it is an IBM PC.

IsShift :
o -> peekseg isibm && (peek 417H) & 3

This example uses isibm to check on the value of the
Shift key.

hardware

Sprint Advanced User's Guide

isin

Syntax

Returns

Function

Example

See Also

ismarkset

Syntax

Returns

Function

See Also

isin

Determines what delimiters surround the current point.
is the code of an open delimiter. If the point is not
between that delimiter and its matching AN close
delimiter, isin returns o. If the point is between # and its
matching close delimiter, isin returns the number of
nesting levels to that delimiter; that is, 1 is returned if
the point is right after the open delimiter, 2 is returned if
the point is inside another delimiter inside the specified
one, and so on.

In addition, specifying the input # as 0 matches all
delimiters, so that 0 isin returns the total number of
nested delimiters around the current point.

If you want to copy or compare the current setting, use
the curatt macro variable, which is a single number.

HypWord :
if ((0 subchar engine) != 'h')

{ status "Loading hyphenator ... " }
set engine "hL disk hyam"
mark {

if istoken (past istoken)
else (r to istoken)
if ! (' "0' isin) {

29 r runengine past istoken
}

curratt

N ismarkset

TIF
Returns True if markN has been set. If that mark has not
been set, it is set to the current point the first time you
use that mark.

mark, set

Chapter 6, Macro Encyclopedia 279

isnl

Syntax

Returns

Function

Example

See Also

isopen

Syntax

Returns

Function

Example

See Also

ispara

Syntax

Returns

280

isnl

T/F

Returns True if the current character is a line delimiter,
that is, a NL, SpaceNL, HyphenNL, or CR. If you want
to check only for a real NL (a hard return), do current
10.

ParagraphFwd :
past isgray
, "J' os.arch
past isn!

The past isnl command in this example makes sure that
the cursor is currently at the beginning of a paragraph.

isgray, is end, ispara, issent

isopen

T/F

Returns True if the current character is a Sprint open
delimiter; that is, if it is a AA through AE or AO through
AX.

FixRegion :
int n
regionfwd {

f past isolose
r past isopen

; get point before the mark
don't include leading close delimiters
; include all leading open delimiters

The isopen command in this example makes certain that
open delimiters will be included in region commands.

isc10se

ispara

T/F

Sprint Advanced User's Guide

Function

Example

See Also

issent

Syntax

Returns

Function

Example

See Also

is tab

Syntax

Returns

Function

Example

Returns True if the point is on a hard return or at the
end of file.

IsBlankLine : ispara && column = 0

This example checks to see if the point is on a hard
return or at the end of the file, and the column is equal
to 0; thus, it returns True if the current line is blank.

isgray, isnl, issent, iswhite

issent

T/F

This tries to detect if the point is before the punctuation
mark at the end of a sentence. It returns True if ispara is
True. It also returns True if the current character is a
period, question mark, exclamation point, or colon,
followed by zero or more close delimiters (AN and any
of the set)] } > I "), followed by an isgray. Otherwise,
issent returns False.

SentenceFwd :
past isqray
to issent
to isqray
past iswhite

The issent command in this example makes sure that the
point moves to the end of the current sentence.

isgray, isnl, ispara, issent

istab

T/F

Returns True if there is a tab stop in the current ruler
line at column #.

if (x istab) (x -) leftmarqin)
else (leftmarqin + 5 -) leftmarqin)

Chapter 6, Macro Encyclopedia 281

See Also

istoken

Syntax

Returns

Function

Example

See Also

isvisible

Syntax

Returns

Function

282

This example checks if there is a tab at a specified
number and, if there is, sets the left margin to be the
same as the tab.

tab size

istoken

T/F

Returns True if the current character is considered part
of a word. Letters, numbers, the underscore, @-sign,
HYPHEN (that is, a discretionary hyphen, AA) and
HyphenNL (that is, a discretionary hyphen that appears
as a dash at the end of a line, A]) characters,and any
character with the high bit set are considered tokens.
Also, apostrophes and dashes (ASCII 45) are tokens only
if the characters on both sides of them are also tokens.

SentenceBack :
r to istoken
if inruler (r tosol r to istoken)
r to issent
past isgray
if inruler (toeol c) ; catches rulers at TOF

The r to istoken command in this example makes sure
the point is backed up to a character considered to be a
word.

isascii, isgray, iswhite

isvisible

T/F

Returns True if the current character is "visible" on the
screen. Only open and close delimiters and discretionary
hyphen (AA) are "invisible." Everything else, including
ends of lines and tabs that have zero width due to a
preceding spring, is considered visible. If the raw macro
variable is set, everything is visible.

Sprint Advanced User's Guide

Example

See Also

iswhite

Syntax

Returns

Function

Example

See Also

jamount

Syntax

Returns

Function

The isvisible macro returns 2 if the current character is
HyphenNL, which indicates the character is normally
invisible but is currently visible. (The HyphenNL
appears as a dash only when at the end of a line;
otherwise, it's hidden.)

DelBack :
while (r c !isvisible) $
DelFwd

This example makes sure that invisible characters are
not deleted; in particular, this macro prevents open
delimiters from being inadvertently removed while
backspacing.

isascii, istoken

iswhite

T/F

Returns True if the current character is a space, SpaceNL
(soft return), tab, or wide space (spring); otherwise,
returns False.

SentenceFwd :
past isgray
to issent
to isgray
past iswhite

The past iswhite command in this example makes sure
that the point is moved past any whitespace.

isgray, isnl

jamount

Moves the point to the end of the line and returns the
amount of justification this line needs (that is, the

Chapter 6, Macro Encyclopedia 283

Example

See Also

difference between the rightmargin and the number of
characters in that line).

HypRegionRest :
if ((0 subchar engine) != 'h')
{ status "Loading hyphenator ... " }

set engine "hLdisk hyam"
while before themark {

if (jamount > HypAsk && current != 'A]')

The jamount command in this example is checked to see
if it is greater than a predetermined hyphenation
amount.

justify

justify (Variable)

Syntax

Function

Example

See Also

key

Syntax

Returns

284

justify

The justify field from the current cached ruler line is
encoded as follows:

o = left ragged
1 = left-justified block
2 = center ragged
3 = center-justified block
4 = right ragged
5 = right-justified block

ToggleJustify :
InsertFirstRuler
justify ? 0 -> justify : 1 -> justify
writeruler

This example toggles the justification from left ragged to
left-justified block or vice versa, as in the Wordstar key
combination Ctrl-O J.

jamount

key

Sprint Advanced User's Guide

Function

Example

See Also

keyexec

Syntax

Returns

Function

Does a 0 wait, then gets a single character from either
the keypushback queue or, if that queue is empty, from
standard input.

If isibm is True, and if input is not redirected, input is
read from the IBM BIOS keyboard calls. The returned
values from the BIOS are falsified into a zero-prefix byte
stream so that key always returns bytes. Because of this
translation, the BIOS stream does not match what is
returned from the BIOS, although the letters, control
keys, and arrow keys return the same things.

Input to the editor may be redirected with < filename on
the command line. The editor detects this by checking
the isdev ioctl bit on stdin, and checks for end-of-file. If
the editor encounters the end of the input file, key does
an automatic exit and returns I\Z.

Refer to Appendix E for a list and explanation of key
codes.

GetKey : key I I key + 256

This example is from the CORE.SPM file and is that file's
principal mechanism for retrieving a keystroke.

GetKey, keyexec, keypushback, record

keyexec

Result of key macro

Executes the macro bound to the key specified by #,
which should be in the range 0 to 511 (if not, it is
masked to be in that range). Sprint takes action in the
following order:

• If # has been assigned a macro, that macro is
executed.

• If # is greater than 180H (the meta keys read from the
IBM BIOS), it is masked to be less than 128 and tried
again.

• If inruler is True, # is used to edit the ruler, and the
editor enters ruler-editing mode.

Chapter 6, Macro Encyclopedia 285

Example

See Also

keyhelp

Syntax

Function

Example

286

• If # is less than 256, the code is inserted into the text; if
is greater than 256, an error message is produced.

The main use of keyexec is to use macros to combine
multi-character key sequences into a single code.

For example, to simulate the EMACS "X prefix, you
might define" X as

AX : key "C-X_u key + 180H keyexec

which effectively converts "XY into the same code
returned by an Alt-Y.

The keyexec macro saves the current macro state for
again processing. The argument is first read from the
previous saved state, so that an argument (perhaps
entered with "G) can be passed through to a prefixed
function key.

The IBM function keys return a zero prefix followed by
another code. Thus, the macro for the zero prefix must
read that next code and turn out a function key number
to perform, as shown in the following example. (Refer to
Appendix E for a list and explanation of key codes.)

A@ : key + 256 keyexec ; handle IBM function key 0 prefix

This example is from SP .sPM and converts IBM function
keys into a code from 256 to 511.

key

1/ keyhelp

Does a "help parse" of the macro assigned to the given
key. This results in a word that describes that key, and
this word is put in QO in preparation for the DoHelp
macro. This is used for interrogative help, where a
macro can ask the user for the key to be described.

If there is no argument, the "help parse" is done to the
macro to which the again pointer is pointing. This is for
the "help on last action" function.

HelpMenu :
1 -> Inhelp

Sprint Advanced User's Guide

See Also

keypressed

Syntax

Returns

Function

Example

See Also

keypushback

Syntax

Function

menu "Help on ... 11 {

II_Press Fl for Template",
"Subject" 0 -)

InHelp message "Enter subject:" set QO DoHelp,
IIKeyll 0 -)

InHelp status lI\nPress key:1I
GetKey keyhelp DoHelp,

IILast Command" 0 -)
InHelp $ keyhelp DoHelp

o -) Inhelp

This example shows the macro that does the help menu
forSP.SPM.

DoHelp

keypressed

T/F

Returns True if there is a keystroke ready in either the
keypushback queue or in the system.

Restart :

while keypressed key ; eliminate typeahead

This example "swallows" all typeahead keystrokes.

keypushback

keypushback
keypushback "string"

The first form of keypushback is used to stuff the
specified character # into the internal queue. This is
designed for one-character pushback, and it is a last-in/
first-out queue. (Keystrokes appear in the opposite order
in which they were pushed.) To push back a function
key, you must push back first the actual code and then
the 0 prefix. The size of the queue is currently 1024.

Chapter 6, Macro Encyclopedia 287

Example

See Also

The second form of keypushback stuffs all the
characters in string into the internal queue from last to
first, so they will be read back out in forward order.
Unless string is a Q register, you can't push back zeros
(function key prefixes) with this mechanism. This form
of keypushback is usually used to play back a set of
keystrokes created by record.

Refer to Appendix E for a list and explanation of key
codes.

MenuBind :
do{

status n\nShortcut for menu item: n GetKey -> x
if x = 'A[' { 0 return} ; if ESC pressed return Null
if (x CanAssign) {

x keypushback
if (x > 255) (0 keypushback)
break
}

else AssignError
}

IAJI return

keypressed, record

killswap (Variable)

Syntax

Function

Example

288

killswap

If this flag is True when the editor exits, the backup
swap file is deleted. If False, the swap file is preserved,
so the next time the editor is run it comes up in the same
state with the same files open. This flag is False when
the editor starts up. Notice that if True, the swap file is
deleted even if modified buffers exist.

SPRECOVE.COM can be used to create a permanent
swap file. A permanent swap file causes the editor to
ignore killswap when exiting. You can delete the file
only with the DOS ERASE command. The main use of
the permanent swap file is to reserve a set of contiguous
disk blocks, which results in faster reading and writing
(this can be important on floppy disks).

ExitEditor :
bufnum -> x

Sprint Advanced User's Guide

See Also

do{
if modf {

draw while keypressed (key draw)
message "\nThe file"
message fname
if (ask "has not been saved, save it?") Save
}

else if (IsUnnamed && IsOnlyRuler) close
} while (bufswitch && bufnum != x)

EraseSwap I I !files -> kill swap
GlossSave ; save glossary if in use
exit

exit

leftedge (Variable)

Syntax

Function

Example

See Also

leftedge

The number of the column that marks the left edge of
the screen. This is normally 0, but is nonzero if the user
is scrolling horizontally. If you set leftedge and, in doing
so dcolumn is placed off the screen, the screen will be
recentered the next time a draw macro is performed.

ScrollRight :
leftedge + 40 -> leftedge

ScrollLeft :
if 1 leftedge (1 Bell return)
if ((leftedge -40) > 0) (leftedge) -40) -> leftedge
else 0 -> leftedge

These are the macro definitions of ScrollLeft and
ScrollRight in the Potpourri menu.

dcolumn, draw

leftmargin (Variable)

leftmargin Syntax

Function

Example

The leftmargin field from the current cached ruler line.

SetLeftMargin :
set QD "Left margin" leftmargin GetColumn -> x
if (x >= rightmargin)

(error "Left margin must be less than right")

Chapter 6, Macro Encyclopedia 289

See Also

length

Syntax

Returns

Function

Example

See Also

This example queries the user for the value for left
margin and moves that value into the leftmargin
variable.

rightmargin, settab

length

Returns the length of the current buffer in characters. It
overflows after 65535.

mark {
toend
length message "File contains %d characters."
}

offset

length # string"

Syntax

Returns

Function

Example

290

length "string"

Returns the number of characters of the string.

SetErnulation :
status "Getting user interfaces ... "
10 set QO fHst "*.UI"
if (!length QO) error

"No alternative user interfaces found."

This example uses length to check whether anything has
been returned in QO.

Sprint Advanced User's Guide

line (Variable)

Syntax

Function

Example

See Also

lines

Syntax

Function

Example

See Also

macro

Syntax

Function

Example

line

The current line number in the file. Setting this moves
the point to the start of the desired line.

GoToLine :
if !select set themark
LastLine get "Line number" -> LastLine -> line
if (line < LastLine) message

"Line was out of range. At end of file"
if (Last Line < line) {

1 -> LastLine message "At beginning of file II
}

This example shows the GoToLine macro in CORE.SPM.

dcolumn, dline, lines

lines

Returns the number of lines in the current buffer.

Print Guess ; try to guess which pass
: this file should print on

mark { ; RUN BEFORE CHANGING BUFFERS!!!
if (lines > GuessCutOff) (2 return)

This example shows the start of the PrintGuess macro in
the CORE.SPM file.

dcolumn, line

macro "string"

Compiles and assigns string as a macro to the key given
by the code #.

MacroEntry :
message "Enter macro:" set QI
status "Execute (E) or Assign to a key (A):"
do{

Chapter 6, Macro Encyclopedia 291

See Also

Get Key CharToAlpha case
'E' macro QI break,
'A' status

"\nTo which key should the macro be assigned:"
GetKey -> x if (x = 'A[') abort
if (x CanAssign) {

x macro QI
}

else AssignError
break, 'A[', abortkeyabort, $ 0 Bell
}

This example is from the SP.SPM file. The macro entered
in QI will be compiled and then assigned to the key
chosen by the user.

Note: The first occurrence of macro in line 6 of this
example shows the other use of the term; see the next
entry.

macro "string"

macro "string"

Syntax

Returns

Function

Example

292

macro II string ll

Result of macro

Compiles the string, then executes it once, and throws
away the compiled version. This allows macros to be
entered directly on the command line.

MacroEntry :
message "Enter macro: " set QI
status "Execute (E) or Assign to a key (A):"
do {

Get Key CharToAlpha case
'E' macro QI break,
'A' status

"\nTo which key should the macro be assigned:"
GetKey -> x if (x = 'A[') abort
if (x CanAssign) {

x macro QI
}

else AssignError
break, 'A[', abortkeyabort, $ 0 Bell
}

Sprint Advanced User's Guide

See Also

Main

Syntax

Function

Example

The macro command in line 6 of this example (from
SP.SPM) will immediately execute the macro the user
enters. For an explanation of the macro command in line
10, refer to the previous entry.

macro

Main :

All.SPM files that define a complete user interface must
have a Main macro. The editor automatically calls Main
upon startup (after Init or Restart or InitArgs) and also
immediately after an mread or ovlread instruction
(which have to abort the current macro because they
overwrite the space in which it is stored).

When Main ends, the editor is exited. Main is normally
defined as something like stopped do .dokey, but it can
be changed to anything desired.

Note: Init is called before Main and after ovlread or
mread, if any were negative.

Main :
if !files DefaultRuler
else {

bufnum -) x

; make sure files have rulers

do { ; read any files that have newer versions
if (!modf & & (datecheck fname) 0)) {

do {

clear
read fname
r toend
}

bufswitch
} while bufnum != x

if stopped dokey
else {

AppendNext -) append
o -) AppendNext
}

; newer version of file

Chapter 6, Macro Encyclopedia 293

See Also

mark

Syntax

Returns

Function

Example

See Also

markN

Syntax

Function

294

This is the Main macro from CORE.SPM.

[nit, InitArg, Restart

mark region

Result of region

Pushes a new mark and then executes the region. After
that, the point moves back to the mark (that is, the point
does not move), and the mark is popped. You can use
this to save your place while performing another
operation.

The command mark is used to "not move" when doing
a command. What it does is set a mark, then it does the
command, and then it moves the point back to that
mark. Therefore, if you do

mark (toend "This is the END\n")

the cursor will not move from its current position, but
the text "This is the END" and a hard return will be
added to the end of the file.

AllCaps : ; uppercase Qx
mark { qswitch while ! isend ToUpper }

after (mark), before (mark), to (mark), togmark

markN

There are 16 mark variables that store positions (N can
be 0 through F in hexadecimal). Some of the commands
that work with any of the numbered marks are as
follows:

atmarkN
before markN
setmarkN
swapmarkN
tomarkN

Sprint Advanced User's Guide

Example

See Also

marknumber

Syntax

Function

Example

See Also

markregion

Syntax

Function

Example

See Also

The first time you use a Inark after starting the editor,
that mark is set to the current position.

DeleteRegion :
if select {

FixRegion
delete togmark
curatt -> delatt
Unselect
1 -> AppendNext
set markC
}

else DelFwd

save position of deletion

after (mark), before (mark), to (mark), togmark

marknumber N

Defines a mark as N, where N can be any expression.

MarkerJump :
status "Go to marker (0-9): II
GetKey -30h -> x

(x<10 && x >= OJ? (to marknumber x) else abort

after (mark), before (mark), to (mark), togmark

markreqion commands

This macro is a shortened version of the command

mark (to themark mark (to themark
regionfwd commands))]

Regionlndent : I I tabsize -> y ; if no argument, use tabsize
markregion {

while (before themark) {

after (mark), before (mark), regionfwd, to (mark),
togmark

Chapter 6, Macro Encyclopedia 295

match

Syntax

Returns

Function

Example

See Also

menu

Syntax

Returns

Function

296

match II stringll

TIF

Returns True if the point is at the start of the given
string. The match is done using the normal search rules
for uppercase, lowercase, and wildcards. The point does
not move. # is the same argument as for search.

ModifyEnv :
mark {
do { ; go to top of current environment

status "Searching for last format command ... "
r (to isopen)
if (r isend) {

message "No corrunands found"
return

if (1 match "begin")

This example shows the match command in SP.SPM that
finds the "begin format" statement in order to modify it.

found, search

menu "title ll (# "itemll commands, ...)

Result of chosen commands

Draws a boxed menu on the screen, consisting of the
items (the # before the item is optional; if you include it,
you can put its value into the item with % commands).
After the user picks one, the the editor executes the
appropriate commands. If the commands execute
normally, the menu is erased and processing continues.
If the commands are aborted in any way (and no
exitmenus macro has been included), the menu is
redrawn, and the user can pick another item.

Note: Item can be one string or several strings. If it's
more than one, the strings are concatenated to form the
menu text.

Sprint Advanced User's Guide

The user can also bind a key to an item by pressing Ctr/­
Enter when that item is selected. This is done by storing
with the given key a pointer to the start of the correct
menu commands. This method is also used to store the
location for again processing.

The user can choose menu items by moving to them
with the cursor keys or spacebar ,and by pressing Enter.
Alternatively, a menu item can be chosen by pressing a
letter for an item that has a capital letter as the first
character. (Note that this will choose only the first item
starting with that capital letter ,if there is more than one
match.)

The new menu will appear to the left of any menu
already on the screen (whether or not the new menu
was called by a macro embedded in the old menu). The
menus do not disappear until the screen is redrawn
(such as with the draw macro).

Menu items that start with an underline character create
division bars that can't be selected. Any text after the
underline is centered in the division bar. The code
assumes that the bottom item in the menu is not a
division bar, and that there are no more division bars
than the screen is tall.

You can use exitmenus and abort in your macros to alter
the normal use of Esc to remove only the last-displayed
menu. Instead, you can remove all displayed menus.

By putting exitmenus on a key in menukey, that key
will remove all the menus. This was done to Shift-Esc in
our default setup.

By putting exitmenus on an item in the menu, that item
will not return to the menus even if the user does an
abort (by pressing Ctrl-lJ). If you put exitmenus before a
menu, you will prevent a return to that menu. For
instance, if you assign Ctr/-X to do exitmenus SprintMenu,
you will disable all "popping" of menus.

Assuming exitmenus does not override this, you can
put abort on menu items to cause the menu to repeat.
This is useful if you want only certain items to repeat. If
you want the menu to repeat no matter what the user
chooses, put the whole thing in a do loop.

Chapter 6, Macro Encyclopedia 297

Example

See Also

SprintMenu :
menu "Sprint"

"File II FilesMenu,
"Edit" EditMenu,
II II , -
"Insert" InsertMenu,
"Typestyle" TypeStyleMenu,
"Style" StyleMenu,
"Layout" LayoutMenu,
" " ,
"Print" PrintMenu,
"Window" WindowsMenu,
"Utilities" UtilitiesMenu,
"Customize" CustomMenu,
II " ,
IIQuit" ExitEditor

This example shows the SprintMenu macro from
SP.SPM.

abort, exitmenus, imenu, infobox, qmenu

menudelay (Variable)

Syntax

Function

Example

See Also

298

menudelay

The time it takes a menu to show up after the menu or
imenu macro is started. This delay is typically specified
in milliseconds on a normal IBM PC (and shorter on
faster machines). If you set this to 0 (the default), the
editor draws the menus immediately.

The menudelay is not used for qmenu or for internal
menus, such as those used by the spelling corrector.

(menudelay/100) "Menu Display Delay\>%[NO DELAY%:%4u%)"
menudelay/100 ranqeqet 100
"Delay before menu display (in tenths of seconds)"
* 100 -> menudelay,

These examples show the macros used to change menu
delay in SP .SPM.

imenu,menu

Sprint Advanced User's Guide

MenuKey

Syntax

Function

MenuKey

Returns a menu keystroke. This macro should be
defined to parse and interpret a key for menu item
selec'tion and return a number that tells the internal
menu code what to do next.

The return values are as follows (most of these are 100H
plus the IBM "scan code" for a given function key,
making the macro simple for an IBM):

o

147H
148H
149H
14BH
14DH
14FH
150H
151H
18DH
lOlH
"
II\H'
II\?'
II\M'
11\['

abortkey

: throwaway keystroke and redraw
current menu
: home
:up
: page up
: left
: righ~
: end
: down
: page down
: bind a key (Shift-Enter)
: help (P1)
: go down/right
: go up /left (backspace)
: go up /left (backspace)
: execute/ confirm (CR)
: exit/cancel (ESC)
: exit/cancel

All other codes less than lOOH or greater than 180H are
masked to capital letters and used to pick an item.

By changing MenuKey, you can change the actions of the
keys in a menu, so selection works the way you want it
to. For instance, to make a function key do the bind
action, have MenuKey translate it to 18DH. To make a
function key execute the current item, translate it to I\M.

This is also used for non-IBM clones, to translate
whatever they send for the arrow keys to these codes so
the menu-picker can understand it.

Chapter 6, Macro Encyclopedia 299

Example

See Also

message

Syntax

Function

300

If MenuKey is not defined, the editor· does key instead.
Refer to Appendix E for a list and explanation of key
codes.

MenuKey :
GetKey -) int ktmp case {

'''C' 151h,
'''0' 14dh,
'''E' 148h,
'''I' 150h,
'''J' MenuBind,
'''R' 149h,
'''S' 14bh,

exitmenus '" [' ,
150h,

; page down
; right

; up
; down
rebind

; page up
left

down
'''U'
'''X'
'''[' if IsShift exitmenus '''[',
101h
10Ah
14ch

inhelp ? (HelpTemplate 0) : 101h, ; F1: help
'''M' , flO: accept
150h, ; make '5' be down arrow if code comes

140h,144h '''M',
141h,145h '''[',
189h 148h,
1adh
1abh
19bh
$
}

o -) ShowKeys 0,
1 -) ShowKeys 0,
exitmenus '" [' ,
ktmp

; mouse left key is accept
; mouse right key is cancel

; backtab: up
; grey­
; grey+

; Ctrl/Alt-ESC

This example is the MenuKey macro from SP.SPM.

GetKey

message "string"

Prints the string (the optional argument (#) can be
included with % commands) on the status line. If you
put \n at the start of the string, the string overwrites
any messages already on the status line; otherwise, the
message is appended to the existing messages.

You can use a Q register as the source for the message;
the characters in the Q register are echoed literally,
regardless of \n or imbedded % characters.

Messages stay on the status line until

Sprint Advanced User's Guide

Example

See Also

mode

Syntax

Function

Example

• a message or a status (:ommand starting with \n is
performed

• after a question is asked on the status line

• the user presses a key

The message command should be used to report back to
the user and to set up prompts for questions. If you
want the messages to disappear when an operation
finishes, use the status command. If you want a message
to stay through many redisplays, use the mode
command.

InsertFigure
set QD 1111

message II Caption : II set QD
set Q8 IIFIGURE II MakeBegEnd
if length QD {

IIAJAOCAPTION II insert QD IIANII
r (tosol c)
}

The message command in this example asks the user to
enter a caption for a figure.

ask, error, mode, prompt, status

mode "string"

Sets up the string displayed on the second controllable
status line.

The second status line is normally not shown but can be
turned on or off by setting the appropriate values for
statline. Generally, you use the second status line to
show a "modal" instruction, such as "Keyboard
recording on; press ESC to cancel."

KeyRecordGloss :
mode IIKeyboard recording on. Press ESC to cancel. II

MacroCallBegin
set QF 1111

if record {
1 Bell message lI\nRecording canceled. 1I

o -> record
1 -> statline

Chapter 6, Macro Encyclopedia 301

See Also

else {
15 -> record
2 -> statline
}

flagN, flags, statline

mod! (Variable)

Syntax

Returns

Function

Example

See Also

modf

T/F

This flag is True if the current buffer has been modified
since it was last read or written. You can set this on or
off to fool the editor into thinking changes have or have
not been made. The asterisk (*) in the status line is on if
this is True.

The modf variable can also be set to 2 to indicate "read
only." The editor will then refuse to insert any characters
into the buffer and will not allow the buffer to be
written.

DefaultRuler :
65 - > rightmargin 5 settab insertruler 0 -> modf

This example resets the modf variable to 0 so that the
insertion of the original ruler is not viewed by the editor
as a modification to the file.

ovlmodf, smodf

mousecursor (Variable)

Syntax

Returns

Function

302

mouse cursor

T/F

This flag controls where the cursor is positioned on the
screen. If mousecursor is False, the cursor is placed at
dline/column, which is how most stream editors place
it. If mousecursor is True, the cursor is placed at dline/
dcolumn, which means it does not actually correspond
to where the next character will be inserted, but it moves

Sprint Advanced User's Guide

Example

See Also

move

Syntax

Returns

Function

Example

See Also

mread

Syntax

Function

Example

See Also

smoothly up and down between lines. This is useful if
you are controlling the cursor with a mouse.

mousetrack :
int x
1 -) mousecursor
o -) select
mark do { ... }
$ 0 -) mousecursor
if x (x keyexec)

This example turns mouse tracking on and off.

column, dline

move

TIF

Moves # characters forward or # characters backward (if
is negative).

5 move

This example moves five characters forward.

c, £, r

mread "macrofile"

Reads and compiles an .SPM file. Because this writes
over the existing macros, this aborts the current macro
(you can't put anything after the mread). Any com­
mands in the macro file (lines starting with just ":") will
be done. After the macro file is read, the Init macro
(whether read from this file or left over from older
mreads) will be executed.

QuickCard : 2 mread IIrefcard ll

This example reads and compiles the REFCARD.SPM
file, which builds the Sprint Quick Reference card.

Init, macro, ovlread

Chapter 6, Macro Encyclopedia 303

nexttab

Syntax

Returns

Function

Example

See Also

offset

Syntax

Returns

Function

Example

See Also

304

/I nexttab

Returns the next tab stop to the right of column #. For
instance, if you are in column 10, this will return a
number of 11 or higher, depending on the tab settings.
The first column is O.

RulerFromText
mark {

tosol
if isnl return
mark insert ruler

; Use the current line to set a ruler

o -) x ; clear all old tabs
while ((x nexttab -) x) < rightmargin) (x cleartab)

This example reads in all the tabs on the inserted ruler
and clears them.

cleartab, settab

offset

Returns (in characters) the offset of the point; offset
overflows after 65535 and looks negative after 32767.

CtrlQDispatch :
(0 -) x $) -) x
if (!menudelay II ! (menudelay wait)) (status "\n"Q")
GetKey CharToAlpha case {

'?' offset message "Cursor is at character %3u.",

length

Sprint Advanced User's Guide

open

Syntax

Returns

Function

Example

See Also

open" filename"

TfF
Creates a new buffer, sets fname to filename, reads that
file into the buffer, and places the point at the start of the
buffer. If the file does not exists, open returns False but
creates the buffer anyway. Also, a null filename allows
you to create an unnamed buffer.

DiskDirectory :

"Open" if x (set QO '"')
set Q1 QO
if !length Q1 (set Q1 ,,* .SPR")
set Q1 £list Q1
if !buffind Q1 open Q1
set QO "11

exitmenus,

close, fname

i get a file name in Q1

overwrite (Variable)

Syntax

Returns

Function

Example

overwrite

TfF
This flag indicates overwrite mode. If True, keys that
have no macros bound to them will replace any printing
characters rather than be inserted into the buffer. This
does not affect how any macros (such as insert) work, so
check the flag if you are constructing such things as
foreign letters.

Togglelns : ++overwrite

This example toggles the overwrite mode on and off.

Chapter 6, Macro Encyclopedia 305

ovlmodf (Variable)

Syntax

Function

Example

See Also

ovlread

Syntax

Function

306

ovlmodf

Returns True if anything has been changed that would
require the overlay file to be written. If you exit while
this is set, the last-read overlay (usually SP.OVL) is
written with the current macro contents. You can turn
off ovlmodf to prevent this.

User-defined macro variables are stored in the overlay
and changing them sets ovlmodf. Therefore, every time
you start the editor, the defined variables are in the state
they were when the overlay was last written.

Don't set ovlmodf needlessly; it results in an annoying
delay when exiting the editor.

PrintDestToggle :
!PrintDest -> PrintDest 1 -> ovlmodf

This example toggles the printer destination; then, in
order to save the toggled state, it sets ovlmodf to True.

modf, ovlread, ovlwrite

ovlread "overlay"

Reads in a compiled overlay file and executes the Main
macro in that file.

Because this command writes over the existing macros,
ovlread aborts the current macro (thus, anything after
the ovlread in the same command chain is ignored).

Because the previous overlay file is lost, you may want
to do

if ovlmodf ovlwrite "%"

to preserve any user key rebindings before you do the
ovlread.

The # argument is the same as that for the flist macro,
with the addition that you can give a negative number if
you want to force the overlay to be written as SP.OVL

Sprint Advanced User's Guide

Example

See Also

ovlwrite

Syntax

Function

Example

See Also

pageread

Syntax

Function

upon exit. Moreover, if the argument is negative, the Init
macro is executed before passing control to Main.

MacroClear :
if (2 exist "sprint.ui") (2 ovlread "sprint.ui")
else mread "sp"

This example reads in the SPRINT.UI file if it exists on
disk.

£list, ovlmodf, ovlwrite

ovlwrite "overlay"

Writes the current compiled set of macros to the
specified overlay file. Use % as the overlay name to write
to the overlay file most recently read.

When the user exits Sprint, the current overlay file will
be written to SP.OVL. If you want your variables saved
into a different overlay file, do an explicit ovlwrite
command to the appropriate file.

SaveUI :
$ ovlwrite "sprint.ui" ovlwrite "sp"

This example saves the current overlay file into the files
SPRINT.VI and SP.OVL.

ovlmodf, ovlread

paqeread "filename"

Interprets the specified file as a .LOG file from the
formatter and inserts soft page breaks (formfeeds with a
soft return at the end of the line) into the current file at
the indicated lines.

The pageread command also interprets error log files
from other programs such as Turbo C. Any file to be
interpreted must consist of lines that are formatted as
follows:

xxxfilename xxx# message

Chapter 6, Macro Encyclopedia 307

Example

See Also

past

Syntax

Returns

Function

Example

See Also

308

where xxx is 0 or more characters, spaces are one or
more spaces or tabs, and # is a set of digits. If the # is
greater than or equal to the previous number, the editor
goes to that line, inserts a formfeed, the message, and a
soft return. Any lines that aren't formatted as shown are
ignored.

Restart :
NormalMode
if (exist " log . $$$")

draw pageread "log.$$$"
fdelete "log.$$$"
while keypressed key
}

; eliminate typeahead

This example reads in the LOG.$$$ file.

readpage

past Boolean

T/F

If the direction is forward, past executes Boolean. If True,
past moves right one character, executes it again, and so
on until either Boolean is False, or it reaches the end of
the file. For example, past iswhite moves right to the
next printing character.

If moving backwards, past first moves left one character,
then tries Boolean. If False, it moves right one before
exiting. Thus, r past iswhite places the point right after
the last printing character.

The Boolean expression can be a whole series of com­
mands; however, don't use commands that move the
point.

WSWordFwd :
if isnl c else to isgray
past iswhite

The past command in this example makes sure that the
Wordstar-like "move forward one word" command
leaves the cursor on the next printing character.

isgray, isnl, ispara, issent, istoken

Sprint Advanced User's Guide

peek (Variable)

Syntax

Function

Example

See Also

peek #

The byte in the given location in memory. Writing (and
sometimes reading) it can do strange things to your
machine; be sure you know what you're doing. Since the
can range only between 0 and OFFFFH, you must also
set the peekseg variable to get at any location on your
machine. Hint: The IBM keyboard shift flags are at
0417H.

IsShift :
o -) peekseq isibm && (peek 417H) & 3

This example is used to determine the state of the Shift
key.

peekseg

peekseg (Variable)

Syntax

Function

Example

peekseg

Read/write location containing the segment number for
the peeks. You should set this before doing a peek. The
peekseg variable is 0 when the editor starts up.

IsShift :
o -) peekseq isibm && (peek 417H) & 3

This example is used to determine the state of the Shift
key.

See Also peek

pickcolor

Syntax

Returns

Function

pickcolor "title"

Draws a menu of all attribute numbers from 0 to 255,
lets the user pick one, and returns the selected attribute.
The number returned is the number that corresponds to
the selected attribute.

Chapter 6, Macro Encyclopedia 309

Example

pickfile

Syntax

Function

Example

310

ChangeAtt : -> which
tct which -> old
old pickcolor QO -> color -> tct which

This example (from the file COLORS.SPM) allows the
user to set screen attributes.

pickfile "string"

Draws a menu of all open files (that is, the £name of all
of the buffers) and lets the user pick one. The current file
is at the top of the menu, the next one is below it, all the
way down to the previous one at the bottom. Picking one
of the files makes it the current one and makes the
current one the previous one.

determines which file to highlight by default, as
follows:

-N

o or

Highlight Nth + 1 item from bottom
of menu

no argument Bighlight previous file at bottom of
menu

1 Highlight current file at top of menu

N (positive #) Highlight Nth item in menu from the
top

If you include the optional string, pickfile uses that
string as the title of the file menu; if you don't include
the string, Sprint automatically titles the menu "Open
Files."

FilesMenu :
menu "File"

"New"
"Open"
"Close"
"Insert"
" " -'

NewFile,
OpenFile,
CloseFile,
InsertFile,

"Save" Save,
"Write As" WriteFile,
"Revert to Saved" RevertToSaved,
" " ,

Sprint Advanced User's Guide

See Also

pickfont

Syntax

Function

Example

See Also

"Translate" FileTrans,
"File Manager" DiskDirectory,
"Pick from List" pickfile

This example is the file menu from SP.SPM.

flist

pickfont II stringll

Reads the printer description of the name set with
printer, draws a menu of all of the fonts and attributes
in it, and lets the user pick one. The pickfont command
should be used where a string is expected. If a string is
given, that font is initially highlighted.

If the user picks a font, the fontcpi variable is set to a
suggested value for cpi; you may want to put fontcpi
into the ruler line. If the user selects an attribute, fontcpi
is set to O.

SettheFont :
mark {

r toruler -) x
set QD field "font"
if !x DefaultRuler
r toruler set field "font" pickfont QD
}

if (fontcpi != 0) fontcpi -) cpi

This example provides the font option in SP.SPM.

fontcpi, printer

previous (Variable)

Syntax

Returns

Function

Example

previous

The ASCII code of the character to the left of the point or
zero, if the point is at the start of the buffer. This is a
read-only variable.

InsertTab : -) x

Chapter 6, Macro Encyclopedia 311

See Also

prevmark

Syntax

Function

See Also

if AutoCorrect CheckLastWord
if (previous = 32) {

x repeat ('AI' insert)
column -> x
r erase past (current = 32 I I current = ,A I')
if (previous = 'A_') (r c 'AJ' -> current)
while (column != x) ('AI' insert)
}

else {
if (previous = 'A_') (r c 'AJ' -> current)
x repeat ('AI' insert)
}

current

prevmark

Moves one mark down in the stack. If you are inside a
mark command, prevmark is the same as themark
outside of a mark command.

after (mark), before (mark), mark, set (mark)

printer (Variable)

Syntax

Function

Example

See Also

312

printer

Contains the name of the printer. To change the name of
the printer, use set printer "name".

SetQDPrinter : ; set QD = name of printer,
; if printer = nul, use 'DEFAULT'

if !length printer set QD "DEFAULT"
else set QD printer

This example supplies the "set printer" option in
SP.sPM.

pickfont

Sprint Advanced User's Guide

put

Syntax

Function

Example

qmenu

Syntax

Returns

Function

Example

put "string"

Inserts the specified number as text into the buffer. If
string is given, it should contain % commands des­
cribing how to format it (otherwise, the number is
inserted as a decimal number).

TimeDate : i insert the date as "January 1, 1980"
TimeMonth
time 3 put " %d, "
time 5 + 1900 put "%d ll

qmenu "title" (# "item" commands, ...)

Result of chosen commands

Just like menu, except:

• there is no menu delay
• you can't assign keys with Ctrl-Enter
• the menu is not returned to if a macro within qmenu

aborts

• no pointer is set for again processing

This is called a query menu and is used for asking
questions, such as in the Yes/No/And the Rest menu in
the Search & Replace process.

The argument is the number of the item to highlight,
numbered from O.

ModifyEnv :

if (1 match "begin II)
draw
qmenu IIModify ... 1I

IIThis environment" break,
"Previous environment" 0

Chapter 6, Macro Encyclopedia 313

See Also

qnumber

Syntax

Function

qswitch

Syntax

Function

Example

See Also

r

Syntax

Returns

Function

Example

314

This example shows some of the macro that does the
"Edit Format" function in SP.sPM.

menu, imenu

qnumber N

Just like invoking a numbered Q register, except that N
can be any expression. However, qnumber does not
work as the destination of copy, delete, or to.

qswitch

Places the point at the start of the specified Q register,
which the macro can edit just like a buffer.It is
recommended that you enclose this in a mark macro, so
the point is returned back to the previous editing buffer.
While in a Q register, the editor will act as if fname is
blank.

can be from 0 to 25.

AllCaps : ; uppercase Qx
mark {qswitch while !isend ToUpper}

The Q register in this example would have already been
specified by a former macro.

to QO-P

r command

Result of command

Executes command with the direction set to reverse.

SetWholeFile :
r toend set themark 1 -> select toend

Sprint Advanced User's Guide

The r in this example makes the toend command return
the point to the start of the file.

See Also f

rangeget

Syntax

Returns

Function

Example

See Also

X rangeget "prompt" Y

Asks the user to enter a number and checks that the
number is between 0 and Yi X is a default response.

The number will be entered on the status line using
normal EditKey editing. The user can edit the number
and confirm the response by pressing Enter. If a numeric
argument is provided, it is unparsed in decimal as a
default reply. The number can also be given with a
terminating H, 0, or B to indicate hex, octal, or binary,
respectively.

GoToPage :
1 rangeget 10000 "Page number" -> x
mark {

ask, EditKey, get, message, prompt

raw (Variable)

Syntax

Function

Example

See Also

raw

This flag indicates raw mode. When raw is set to 1, all
characters are visible, and the inruler variable is always
False. All control characters except the line-terminators
are displayed in caret notation. Raw mode also disables
automatic wordwrap.

DelFwd :
if (raw) (del return)

inruler

Chapter 6, Macro Encyclopedia 315

rawout

Syntax

Function

Example

See Also

read

Syntax

Returns

Function

Example

See Also

316

rawout "string"

Sends string to stdout. You can use rawout to draw
random things on the screen. Be careful, however; the
editor won't know the screen has changed and may not
erase the output during the next redisplay.

Bell :
if isibm sounddur sound
else rawout II"G II

hardware, ioport

read "filename"

T/F

Inserts the contents of the file into the current buffer,
leaving the point after the inserted text. If the file does
not exist, nothing is inserted and False is returned.

ReReadFile :
if (exist fname)

line -> x
dline -> y
clear
$ read fname
x -> line
y redraw
}

force back to same line

else (error IIFile not yet saved ll
)

This example from CORE.SPM is used to read the
original version of the file from disk when the user
wants to revert to the last saved version.

write

Sprint Advanced User's Guide

readpage

Syntax

Function

Example

readruler

Syntax

Function

Example

readpaqe

When the editor displays the current page number on
the bottom line, it keeps a cached copy of it and assumes
this cached copy is correct, until the cursor is moved
past a page break. The editor cannot know when a page
break has been deleted, modified, or inserted. If a macro
does any of those actions, it should run readpage to
force the page break to be reread.

ErasePages: ; depaginate - remove all temporary page breaks
mark {

r toend
while ('AL' csearch)

(toeol if (current != IAJ') (del erase tosol))

readpage ; make editor know page t is different

This example from CORE.SPM is used to read the
original version of the file from disk when the user
wants to revert to the last saved version.

readruler

To speed up processing, the editor stores copies of the
rulers internally. If the text of a ruler gets changed, or if
a ruler gets inserted, the editor might not notice this.
The readruler command actually causes the editor to
throw the current ruler out of the cache; the next
redisplay will usually cause it to be reparsed from the
file.

DefaultRuler :

GlossLookUpRest
o -> modf
readruler
return

; glossary item exists •...

so user can easily throwaway

Chapter 6, Macro Encyclopedia 317

See Also

The readruler command in this example reads in the
default ruler.

Unse~ler,lVriteruler

record (Variable)

Syntax

Function

Example

See Also

redraw

Syntax

Function

318

record

If you set record to any number except 0, all keystrokes
are appended to the Q register specified by #. Setting it
to 0 turns off recording. To playback the Q register, use
the keypushback macro. You can check the contents of
record to see if recording is being done.

Note: You can record any number of keystrokes, but you
can only push back 1024 of them before the keyboard
buffer overflows.

MacroCollBegin :
if record {

1 Bell message "\nKey recording canceled."
o -> record
}

else {
15 -> record
}

set QF 1111

keypushback

redraw

Redraws the screen from scratch.

The redralV macro is much slower than dralV, so you
probably want to use redralV only if another program
has affected part of the screen, or if you have changed
the attribute vector or terminal type, or if you have
performed a ralVout. The # controls the macro as
follows:

-1 Redraw the screen so that the cursor
is in the middle

Sprint Advanced User's Guide

Example

See Also

refill

Syntax

Function

Example

o Redraw the screen exactly as it
appears

N (positive #) Redraw the screen so that the cursor
is on the line Nth line

Actually, redraw marks all the lines on the screen for
updating; the screen isn't drawn until the next draw
command.

Reformat :
o redraw draw ; so the command also fixes corrupt screens

As the comment indicates, the first line of this example
fixes the screen.

draw

refill

Informs the editor that all lines between the current
point and the next ruler needs to be "refilled"; that is,
the wordwrapping needs to be refreshed. Any text on
the screen will be refilled during the next draw, so the
screen display always shows the text correctly. However,
the editor normally leaves other text in the buffer
unchanged. When refill is done, the editor continues to
work on refilling the appropriate region after the next
draw. A keystroke will interrupt the process, but then it
will continue during the next draw until it finishes.

Normally, you won't have to use refill, since an
automatic refill is done when the user exits the ruler. An
explicit refill is usually only necessary when you modify
a ruler directly, or read in a file that is not correctly
wordwtapped.

SetRightMargin :
set QD "Right margin" rightmargin GetColurnn -) x
if (x <= leftmargin)

(error "Right margin must be greater than left")
else {

mark {
InsertFirstRuler
x -) rightmargin

Chapter 6, Macro Encyclopedia 319

See Also

regionfwd

Syntax

Function

Example

See Also

repeat

Syntax

Function

Example

320

writeruler
refill
}

This example presents the user with a prompt to set the
right margin and then refills the text.

insertruler, readruler, writeruler

regionfwd commands

This macro is a shortened version of the command

if after themark (swap t~rk f <commands> swap themark)
else f <commands>

MakeBegEndRegion : ; make a begin/end pair around a region
if inruler (toeol c) ; start following a ruler if on one
if !select set themark
regionfwd {

""OBEGIN "

This example has a regionfwd to ensure that the
I\OBEGIN is put at the top of the region.

after (mark): markregion, swap (mark)

II repeat command

Does the command # times. This returns no value unless
a break exits the loop. The count is checked after
command is performed, so command is always performed
at least once, even if the argument is 0 or negative.

Note: If you need to not repeat on zero, enclose repeat in
an if statement.

DeleteLine :

Sprint Advanced User's Guide

replace

Syntax

Function

Example

See Also

Restart

Syntax

Function

(tosol $)
delete repeat (toeol c)

The repeat command in this example accepts the user's
number as a request to delete a specified number of
lines.

replace region "string"

Erases the area covered by region and inserts the
replacement string.

If the area corresponds to that found by the last search
or match macro (that is, region is a found region), the
editor performs wildcard replacement for any wildcards
passed in the last search or match.

DoReplace :
o -> StrFound
o -> x ; number found
set QD Q2 extra level of MARK to get around SET THEMARK
if (SearchOpt & 1)

(mark (to QD mark (toend RegionLower)))
mark {

if GlobalSearch (r toend f)
while (SearchOpt search QD)

1 -> StrFound set to display message
if GlobalReplace {

replace found Q3
++x status U\nReplaced %d. u

}

The replace command in this example replaces the
found string with a user-specified string.

found, match, search

Restart

If started with the "-r" switch, the editor automatically
calls Restart instead of the Init macro.

Chapter 6, Macro Encyclopedia 321

Example

See Also

return

Syntax

Function

Example

Paginate :
if (IsOnlyRuler) return
if (modf II (! length fname)) Save
status l\nPaginating ... "
PArg+8 call "spfmt -l=log.$$$ -pO" cdstrip fnama
Restart

This example from CORE.SPM does repagination and
calls the Restart macro.

Init,Main

return

Exits the current macro (going back to whatever macro
called it) and passes the current argument to the calling
macro.

DelFwd :
if (raw) (del return)

This example deletes a character and returns immedi­
ately if the raw variable is set.

rightmargin (Variable)

Syntax

Function

Example

See Also

riqhtmarqin

The rightmargin field from the current cached ruler line.

DefaultRuler :
65 -> rightmargin 5 settab insertruler 0 -> modf

This example sets up 65 as the value for the right margin
in the default ruler line.

indent, leftmargin

ruleredit (Variable)

Syntax

Function

322

ruleredit

Determines whether the ruler can be edited, as follows:

Sprint Advanced User's Guide

Example

See Also

o Rulers display as plain text and can't be edited,
although the user can move the cursor using the
arrow keys.

1 Ruler can be edited.

2 Ruler can be edited but, when the user exits the
ruler, ruleredit is automatically set to O.

ChangeRuler :
if !rulerEdit {

mark mark {
1 -> ruleredit
r toruler ? { ; if ruler found, edit it.

while inruler stopped dokey
}

else {
message "No rulers found."
}

o -> ruleredit
}

else message "\nRuler editing is already on."

insertruler, readruler, rulermod, writeruler

rulermod (Variable)

Syntax

Function

Example

See Also

runengine

Syntax

Returns

rulermod

Returns True if something has changed in the current
cached ruler line, indicating that you should do a
writeruler or insertruler.

if rulermod (SetRight mark (writeruler refill))

If the rulermod variable has been set to True, this
example sets the right margin, writes the ruler, and
wordwraps the text.

insertruler, readruler, writeruler

runenqine region

TIF

Chapter 6, Macro Encyclopedia 323

Function

324

Calls the Borland word engine previously named in the
engine macro variable, passes the engine the text in
region, and acts on what the engine returns.

The macro executes region and sends the area it covers to
the engine. Leading blanks, trailing blanks, control
characters, and all invisible characters are stripped
before passing the text to the region. The largest region
allowed to be passed is 80 characters.

Note: Most engines are set up to handle only single
words or phrases.

The editor will not call the engine with an empty region
or a region that starts in a ruler line.

An engine returns True or False based on whether it
finds region in its dictionary. In either case, an engine can
return a list of replacements. If the returned True/False
value matches the bits in #, the editor highlights region
and draws a menu to show the user the replacements.
The bits in # are as follows:

1

2

4

8

16

Draws a menu if the engine finds the word.

Draws a menu if the engine does not find the
word. Note that if both 1 and 2 are zero, no
menus appear, and the True/False value is
returned unchanged.

All returned dashes are turned into soft
hyphens when the replacement is done
(although the soft hyphens are not passed to
the engine; they're stripped because they're
invisible).

The entry Add to Dictionary is added to the
menu. If the user picks the option, the engine
is told to add the previous word to its
dictionary, and the editor asks as though
"Pass" was done. If the engine can't perform
this function, it returns an error message.

The entry Replace with ... is added to the
menu. If the user picks the option, the engine
asks the user to type in a replacement. The
engine is not informed about whether the
user completes the action.

Sprint Advanced User's Guide

32 Does the Lookup operation without putting a
question on the menu.

64 The entry Ignore is added to the menu. If the
user picks it, the word is added to an in­
memory dictionary and will be assumed to be
correct for the rest of the editing session.
When the session ends, the words are not
saved.

Note that an editing section ends when the
speller engine is no longer in memory. This
will happen if the user loads another engine
(Thesaurus or Hyphenation), exits the editor,
or calls the formatter for a preview, paginate,
or print.

If a user picks the Ignore option, the
corresponding bit will be set in the returned
value.

128 The entry Original Word is added to the menu.
If the user picks it, the returned value will
have the corresponding bit set. It is up to the
macros to handle the replacement.

256 The entry Previous Word is added to the menu.
If the user picks it, the returned value will
have the corresponding bit set. It is up to the
macros to handle the replacement.

If an engine returns an empty list of replacements, the
item Lookup is also put on the menu. If the user picks this
option, the editor requests that the engine generate a
real list and then redraws the menu. For example, this
technique is used by the spelling corrector, which
generates the list too slowly to be done without first
notifying the user. However, the word Lookup will
appear for any engine that returns a zero-length list
when first passed a word.

The returned value contains the following bits:

Chapter 6, Macro Encyclopedia 325

Example

See Also

1 Engine found the word.
2 User picked something that changed the

word.
4 Reserved for future use.
8 User chose Add to dictionary.
16 User chose Replace with
32 User chose Lookup.
64 User chose Ignore.
128 User chose Original Word.
256 User chose Previous Word.

You can use the return value to make the engine loop as
desired.

ThesMenu :
if ((0 subchar engine) != 't')

{ status "Loading synonym list ... "
set engine "thesaurus"
mark {

if select (1 runengine togmark)
else {

engine

if !istoken (r to istoken)
r past istoken
while (1 runengine past istoken) $
}

rwtrans (Variable)

Syntax

Function

326

rwtrans

Read/write translations. Normally, the editor does not
work on the exact image in the DOS file. When a file is
read and written, the editor does last-minute
translations between what is in the swap file and what is
on disk. The. rwtrans flag controls these translations.
When set to 0, no translations are done, resulting in the
fastest reading and writing. The bits that control the
translation are as follows:

Sprint Advanced User's Guide

1 Add a AM before each A J on writing and then strip
them on input. Most modern programs (including
the formatter) do not care if the AM is there;
however, a few do require it, such as the DOS
TYPE command and MASM. Setting the flag to 0
results in significantly faster file reading and
writing.

2 Change SpaceNL (a soft return) to SPACE and
HyphenNL to HYPHEN on writing. Each
paragraph is written as one very long line (a
scheme that is fast becoming a standard). The
formatter can format such a line; the only problem
is that error messages will have different line
numbers than the editor. Also, a refill must be done
after reading any file.

4 Strip any trailing AZ'S on input. The need for an
EOF marker is left over from CP 1M, and probably
not required by any MS-DOS program. If you need
a AZ when writing a file, use Sprint's quote facility
to place one in the file before writing the file.

By default, rwtrans has a value of 5. There is only one
flag, and it applies to all files. Setting the flag to zero will
result in faster file 1/0.

scancode (Variable)

Syntax

Function

scancode

If input is being read from the BIOS, the scancode
variable is set to the scan code of the last character read.

Note: The code might be wrong if the editor has
processed typeahead keystrokes.

The code can be used to differentiate between keys that
return identical codes from our BIOS translation. For
example, Shift, Gtrl, and Enter return identical codes but
different scan codes.

You can assign values to scancode, and they will remain
there until the next time a key is read from the BIOS.

Chapter 6, Macro Encyclopedia 327

See Also

scroll

Syntax

Function

Example

See Also

However, we strongly recommend that you use
scancode only to duplicate keystrokes of other word
processors.

GetKey, key

scroll

Moves the top line of the screen forward or backward #
lines (thus scrolling up or down). This does not move
the point; if the point goes off the screen, the next
redisplay will center it again. If you're using scroll, you
probably want to check dline to handle those boundary
conditions.

ScreenFwd :
I I wlines-ScrollBorder -> x if x <= 0 (1 -> x)
x repeat (toeol c)
if isend return
x scroll
dcolumn -> dcolumn

This example moves one screen forward.

dline, scrollborder

scrollborder (Variable)

Syntax

Function

Example

See Also

328

scrollborder

The number of lines the cursor tries to stay away from
the edge of the window (normally 2).

ScreenFwd :
I I wlines -ScrollBorder -> x if x <= 0 (1 -> x)
x repeat (toeol c)
if isend return
x scroll
dcolumn -> dcolumn

The value of scrollborder in this example would have
been set by a previous operation. (The default is 2.)

scroll

Sprint Advanced User's Guide

search

Syntax

Returns

Function

Example

See Also

search "string"

TjF

Moves the point forward or backward to a match of the
specified string. The # controls the type of search that is
done, as follows:

o Do an exact literal search

1 Lowercase in search string can match uppercase
in file

2 Do wildcards (? and [set]) and understand \
escape character

4 Word-only match (character on each side must
be !istoken)

The pOint is left before the first character in the matched
string. If not found, the point is restored back to where it
started, and this returns False.

RunFile :
set QO fname
if (mark (0 qswitch 1 search ". spm "))

if modf Save
mread fname
}

else (message "\nFile does not have .spm extension.")

The search command in this example is set to ignore
case and find any files with an extension of .SPM.

found, match, replace

select (Variable)

Syntax

Returns

Function

select

This flag turns on region highlighting on the screen.
Everything between the point and the current mark is
highlighted the next time the screen is drawn. Also,
setting this to 2 makes column highlighting for column
selection.

Chapter 6, Macro Encyclopedia 329

Example

See Also

set

Syntax

Function

Example

set (mark)

Syntax

Function

330

CopyRegion :
if select {

FixRegionNoMod
copy togznark
Unselect
1 -> AppendNext
}

This example copies any selected region into the
Clipboard.

copy, delete, search

set "stringl" "string2"

Copies string2 to stringl. If string2 is not supplied, the
user is prompted for it, and the old contents of the
destination are provided as the default.

Q registers can be used as the source or destination.

RepeatCount :
set QD "Repeat" 1 Arg -> RepCount
key -> RepChar
if (RepChar >= 32)

RepCount repeat (RepChar keypushback dokey)
}

else {
RepChar keypushback
RepCount dokey
}

This example sets the register QD to the word Repeat.

set themarkN

Moves the specified mark to the current point. A mark is
a pointer to a certain location in the text. You can move
a mark to the current point; conversely, you can
move the point to a mark. For instance,

mark (toeol set themark)

Sprint Advanced User's Guide

Example

See Also

will move the point to the end of the line despite the
attempts by the first mark to restore the point to its
original place.

There is a stack of marks. The bottommost mark on
this stack is called the global mark. This is the mark that
is used to indicate selected regions in the editor .The top
mark is called the current mark.

Every mark-setting editing command adds a new mark
to the top of the stack. This mark is set to the current
point. Then, the next command is executed. When it is
completed, the original editing command uses the mark
and the new point (that is, the cursor position after the
second command executes) and does something with
them (such as delete the text between them). The mark
is then removed (popped) from the stack.

You can set several different kinds of marks, as follows:

gmark The bottom of the mark stack, set
to current position at startup

markO-markF The 16 mark variables

marknumber N A mark variable set up by any
expression N

prevrnark The mark one below the top of the
mark stack

themark The top of the mark stack

ToggleSelect :
if !select {

set themark
Select Loop
}

else (0 -> select -> ColMode)

If select is currently off, this example sets a mark and
goes to the SelectLoop macro.

after (mark), before (mark), mark, to (mark)

Chapter 6, Macro Encyclopedia 331

settab

Syntax

Function

Example

See Also

settab

Sets a new tab stop at # in the internal cached copy of
the current ruler line. You should then normally use a
readruler or writeruler command.

DefaultRuler :
65 -> rightmargin 5 settab insertruler 0 -> modf

This example sets a tab stop at 5 in the default ruler line.

c1eartab, readruler, writeruler

showkeys (Variable)

Syntax

Function

Example

showkeys

If this variable is set to 1, keyboard shortcuts are shown
in the menus. If showkeys is set to 0, the shortcuts are
not displayed.

CustomMenu :
menu ItCustomize lt

ItAscii File Handling lt AsciiStuffMenu,
showkeys ItMenu Shortcuts \>%[NO%:YES%]It
!showkeys -> showkeys abort,
II It ,
ItOptions lt CustOptMenu
}

This example sets up the custom menu in SP.SPM.

smodf (Variable)

Syntax

Function

332

smodf

Returns True if the tet array has been changed since the
last swrite or sread. If this is True when the editor exits,
an automatic swrite is done.

The smodf variable is also True if one of the built-in IBM
screen types has been selected, so running the editor will
always create a DEFAULT.SPS file if none exists.
However, SPFMT and SprintMerge will not run without

Sprint Advanced User's Guide

See Also

sound

Syntax

Function

Example

See Also

an .SPS file. If you want to prevent the creation of such
files, turn smodf off during the [nit macro.

sread, swrite, tet

sound

Sounds the system speaker. The pitch of the tone is
determined by the current setting of the soundfreq
variable; the duration of the tone is determined by the
current setting of the sounddur variable.

Bell :
if isibm sounddur sound
else rawout ""G"

This example from CORE.SPM uses the sound macro to
generate a tone on an IBM PC.

Bell, sounddur, soundfreq

sounddur (Variable)

Syntax

Function

Example

See Also

sounddur

This variable sets the duration in milliseconds of the
tone generated by the sound macro.

Bell :
if isibm sounddur sound
else rawout ""G"

The sounddur in this example sets up the duration of
the tone generated on an IBM PC.

Bell, sound, soundfreq

soundfreq (Variable)

Syntax

Function

soundfreq

This variable sets the frequency (the pitch) of the tone
generated by the sound macro. The frequency is given
in Hz.

Chapter 6, Macro Encyclopedia 333

Example

See Also

sread

Syntax

Function

See Also

ToneMenu :
do {

infobox "Tone"
soundfreq "Pitch\>%d Hz",
sounddur "Length\>%d msec",

The soundfreq in this example allows the user to set the
pitch of the tone to be generated.

Bell, sound, sounddur

sread "filename"

Reads the terminal description from the given .SPS file
(or, if not found, attempts to "guess" whether this is an
IBM monochrome or color screen).

smodf, swrite

statline (Variable)

Syntax

Function

Example

See Also

334

stat line

A status variable that determines what is on the status
line. Settings for the bits are as follows:

o No status line; the status line disappears, giving
you 25 editing lines per screen.

1 Status line exists.

2 Display status line and mode line.

ScreenMenu :

!statline "status Line\>%[YES%:NO%]"
(statline ? (0 -> statline) : (1 -> statline))

These lines present the status line option to the user in
SP.sPM.

flag3, flag4,flag5,flag6, flags, mode

Sprint Advanced User's Guide

status

Syntax

Function

Example

See Also

stopped

Syntax

Returns

Function

status "string"

Prints the string on the status line. If a previous message
command has been done, and the status command does
not start with \n, string will be appended to the end of
the existing message.

Status messages stay on the status line until another
message or status is done, or a question is asked on the
status line, or the next draw is done. If you want the
message to remain until the user has read it, use the
message command. Use status for "Please wait a
moment" messages.

Reformat :
o redraw draw
mark {

if (ALineLength && !rightmargin)
status "Reformatting ... "

ask,erro~message/prompt

stopped command

TjF

Executes command, and returns True if any of the
following are true:

• if the user aborts the command by pressing Esc during
a loop, or during string input, or during a menu

• if an error occurred
• if the editor executed the abort macro

The stopped macro normally returns False and is the
only way to prevent a user from aborting a macro.
Normally, when a do or do-while loop is executed, the
editor checks the keyboard for a press of the abortkey. If
a stopped is executed inside a loop (but not inside an
inner nested loop), this test is disabled. This prevents the
editor from discarding typeahead keystrokes and from
unexpectedly exiting loops.

Chapter 6, Macro Encyclopedia 335

Example

See Also

subchar

Syntax

Returns

Function

Example

See Also

AssignError :
stopped error "That key cannot be reassigned. 1I

This example gives an error message to the user but
keeps the automatic abort done by the error macro
fromexiting back to Main.

abort

N subchar II string"

TIF

Returns the Nth character (starting from zero) of string.
If N equals the string length, subchar returns zero
(values greater than the string length return undefined
values).

For example, N subchar "Constant String" can be used to
implement a lookup table of character codes.

ThesMenu :
if ((0 subchar engine) != 't')

index, length

swapdelay (Variable)

Syntax

Function

Example

336

swapdelay

The time the editor should wait for a keystroke before
updating the backup swap file (in milliseconds on an
IBM PC). If you set this to zero, the editor will never
update the backup file, except for necessary swaps. By
default, swap delay is 3000 (3 seconds).

CustOptMenu :

3 range get 60
"Background save period (in seconds) II -> swapdelay

swapdelay * 1000 -> swapdelay,

These lines allow the user to set the time between swaps
inSP.SPM.

Sprint Advanced User's Guide

swap (mark)

Syntax

Function

Example

See Also

swrite

Syntax

Function

See Also

swap themarkN

Exchanges the point and the specified mark.

SetEnv :
markreqion {

InsertBegin
swap themark
InsertEnd

Unselect

set (mark)

swrite "filename"

Writes the current terminal description (including the tct
array) to the specified .SPS file (you probably want to
swrite 1/%").

smodf, sread

tabsize (Variable)

Syntax

Function

Example

See Also

tabsize

The width of tabs when there is no ruler line or when
there are no tabs set in the current ruler line. By default,
tab size is 8.

PrintOptions : ; add print options to end of Q reg passed

tabsize put "-t = %d"
}

This line in This example places the current value of
tab size into the print options.

cleartab, settab

Chapter 6, Macro Encyclopedia 337

tct

Syntax

Function

338

tct #

Specifies the translation table. # is the index into the
array, which specifies how characters show up on the
screen. There is one entry for each of the 256 possible
character codes, plus some extra entries for other
entities.

You can also use attribute as an exact synonym for tet.

For visible characters, this is the code that is to be put on
the screen. For instance, entry 10 is the "hard return
character. If you put a space in entry 10, the hard returns
will print a space on the screen (which can't be seen). If
you put 17 in entry 10, the hard returns will print a left­
pointing triangle character (on an IBM PC).

For open delimiters, such as AB,the entry is the onscreen
colors to use for that delimiter. When delimiters are
nested, the editor XORs each color with the color of the
plain text (tet 0), ORs the results together, and then
XORs that result with the plain color to determine what
to display on the screen.

The values for the tet entries are as follows:

-5 Color used for infoboxes

-4 Color used for menus

-3 Color used for error messages

-2 Color used for status line

-1 Color used for selected region

0 Color used for plain text

1-5 Colors for A A thru AE open delimiters

6 Character used to print at start of A F springs

7 Not used (AG)

8 Not used (AH)

9 Character to print at start of A I tabs

10 Character to print for hard new line (AD

11 Color used to draw ruler lines (A K)

Sprint Advanced User's Guide

Example

12 Color used to draw a page break line (A L)

13 Character to print for a carriage return (AM)

14 Not used (AN, close delimiter)

15 Color used for AO commands

16-24 Colors used for Ap through AX open
delimiters

25 Not used (Ay)

26 Not used (AZ)

27 Not used (AD

28 Character used for hard space

29 Character used for HyphenNL (should be a
dash)

30 Not used (HYPHEN)

31 Character used for SpaceNL soft return
(should match tet 32)

32 Character used for spaces, also tick marks in
ruler lines

33-255 Character used for given code in text

Note that the entries for all codes from 33-255 are used
everywhere on the screen. Thus, changing the entry for
S will change how the word Sprint is printed on the
status line. You can change the menu borders and the
dots in ruler lines by altering the entries for the IBM
line-drawing characters the editor uses. Be careful; that
will also change the entries for those characters in text.

Changing an entry in the tet will set smodf. The next
draw will do a minimal update to change the character;
this is usually right, but be aware that draw does not
check for changes to the status line.

ScreenMenu :
do{

menu "Screen"
(tct 10 = 32) "Paragraph Marks\>%[ON%:OFF%]"

((tct 10 = 32) ? 17 : 32) -> tct 10,
(tct 9 = 32) "Tabs\>%[ON%:OFF%]"

((tct 9 = 32) ? 16 : 32) -> tct 9,

Chapter 6, Macro Encyclopedia 339

themark

Syntax

Function

Example

See Also

time

Syntax

Returns

Function

Example

340

This example from SP.SPM controls the display of some
of the characters on the screen.

themark

The top of the mark stack.

CloseFile :
if modf {

if length fname {
message "\nThe file"
message fname
}

else message "\nThis Unnamed file"
if (ask "has not been saved; save it (Y,N,ESC)?") Save
}

if (inbuff themark) (0 -> select) ; turn off select
close
if !files DefaultRuler

after (mark), before (mark), mark, set (mark)

time N

Returns a number for some part of the time (the time
comes from DOS). N specifies the desired part of the
time as follows:

o second (0-59)
1 minute (0-59)
2 hour (0-23)
3 day (0-31)
4 month (1-12)
5 year-1900
6 day of week (Sunday = 0)
7 day of year (0-365, UNIX only)
8 >0 if daylight savings time (UNIX only)

TimeDate : ; insert the date as "January 1, 1980"
TimeMonth
time 3 put " %d, "

Sprint Advanced User's Guide

See Also

to

Syntax

Returns

Function

Example

See Also

toend

Syntax

Returns

Function

Example

time 5 + 1900 put n%dn

This example retrieves the current time and date.

datecheck

to Boolean

TIF
If direction is forward (True), this executes Boolean, and
if the result is False, the command moves right one
character, executes Boolean again, and so on until either
Boolean is True or the command reaches the end of the
file. For instance, to iswhite moves right to the next
whitespace character.

If direction is backward (False), to first moves left one
character, then tries Boolean. If True, it moves right one
before exiting. Thus, r to iswhite places the point right
after the last whites pace character.

WSWordFwd :
if isnl c else to isgray
past iswhite

The to isgray command in this example moves the point
forward until the character is a whitespace character or a
newline character.

isgray, isnl, isend, issent, istoken, iswhite, to end, toeol,
toruler, tosol

toend

True

If the direction is forward, toend goes to the end of the
file. If direction is reverse, toend goes to the start of the
file. Always returns True.

CorrectFile : mark (r toend CorrectRest)

Chapter 6, Macro Encyclopedia 341

See Also

toeol

Syntax

Returns

Function

Example

See Also

togmark

Syntax

Function

Example

See Also

342

The r toend command in this example moves the point
to the beginning of the file.

toeol, tosol

toeol

T/F

Moves to the end of the current line. The toeol
command ignores the current direction and always goes
forward.

Down :
(if action (tosol set themark) $)
repeat (toeol c)
if !action (dcolumn -> dcolumn)

The toeol command in this example moves the point to
the end of the line so that the down action can be
repeated correctly.

to end, tosol

to gmark
togmark

Moves the point to the global mark (that is, the one on
the top of the stack if no others are pushed). Usually this
mark is the other end of the selected region.

CopyRegion :
if select {

FixRegionNoMod
copy togmark
Unselect
1 -> AppendNext
}

The togmark command in this example defines the end
of the region to be copied.

after (mark), before (mark), to (mark)

Sprint Advanced User's Guide

to (mark)

Syntax

Function

Example

See Also

to QO-QP

Syntax

Returns

Function

Example

See Also

to markN

Moves the point to the specified mark. For more details
on what mark can be, see set (mark) in this chapter.

DeleteToChar :
status "Delete to: "
mark {

if (CharFind = 1) delete to themark
}

togmark

to Qn

TIF

Moves the point to the specified Q register. You can also
use the qswitch macro to do the same thing.

CopyFile :
message "File to copy: " set QO
set Q1 QO
set QO flist Q1
if !length QO { if spec'd file mask had no matches

set QD Q1
mark { to QD "No files match '" toend "'."
error QD
}

set Q1 "" message "Copy "
message QO message " to: " set Q1

status "\nCopying ... n
fcopy QO Q1
message n\nCopy complete. n

The to Qn command in this example moves the point to
the Q register containing the specified file name and
allows editing within the Q register. The enclosing mark
will force the point back to the file buffer when done.

qswitch

Chapter 6, Macro Encyclopedia 343

toruler

Syntax

Returns

Function

Example

tosol

Syntax

Returns

Function

Example

See Also

344

toruler

T/F

If the direction is forward, toruler moves the point to
the A K at the start of the next ruler line. If the direction
is reverse, toruler goes to the AK at the start of the
current ruler line. This is much faster than searching
because it uses the cached ruler marks. The toruler
command returns False if the specified ruler line does
not exist.

SetLeftIndent :
mark {

r toruler -> x
set QD field "leftindent"
message "\nLeft indent: II set QD
if !x DefaultRuler
r toruler set field "leftindent" QD
}

The toruler command in this example moves the point
back to the last ruler so that the left indent can be
changed.

tosol

T/F

Moves to the start of the current line, regardless of the
current direction.

Down :
(if action (tosol set themark) $)
repeat (toeol c)
if !action (dcolumn -> dcolumn)

The tosol command in this example moves the point to
the start of the current line if the point is currently in an
action region.

toeol

Sprint Advanced User's Guide

true

Syntax

Returns

Function

See Also

undelete

Syntax

Function

Example

See Also

version

Syntax

Returns

Function

Example

true

True

Returns True. You can use this to directly set a Boolean
variable to True.

false

undelete

Inserts the contents of the Clipboard into the buffer at
the current point and leaves the point after the inserted
text.

UndeleteN :

repeat undelete

The undelete command in this example inserts the text
from the Clipboard.

copy, delete, erase

version

Returns the version number of the editor.

InitScreen :
stopped {

statline -> x
o -> statline
mark {

to QD clear
version put lI%dll toend r (c c)
if (version < 100) 110. 11 else 11.11

}

open 1111 draw

Chapter 6, Macro Encyclopedia 345

wait

Syntax

Returns

Function

Example

See Also

while

Syntax

Function

Example

See Also

346

N wait

Waits N milliseconds, or until the user presses a key.
Returns 0 if no key was pressed, or the number of
milliseconds remaining if a key was pressed.

If the amount of time specified by swapdelay passes,
wait starts writing swap file pages to disk for crash pro­
tection.

If N is zero, wait will not return until a key is pressed.
After the swapdelay passes, and the swap file is
updated, wait does pushback GetKey, which will call
MS-DOS for a keystroke and thus allow a context switch
in multitasking programs.

HiLiteFound :
mark (found 1 -> select draw 0 wait Unselect swap themark)

delay, menudelay, swapdelay

while Boolean command

Executes Boolean, and if True, executes command, then
executes Boolean again repeatedly until either Boolean is
False, or the loop is broken.

Restart :
NormalMode
if (exist "log .$$$")

draw pageread "log.$$$"
fdelete "log.$$$"
while keypressed key
}

do ... while

; eliminate typeahead

Sprint Advanced User's Guide

windows (Variable)

Syntax

Function

Example

See Also

winswitch

Syntax

Returns

Function

Example

windows

The number of windows on the screen. You can set this
anywhere from 1 to 6. If you change it to a larger
number, the current window is split in half enough
times to make that many windows total, and the current
setting of direction controls which window is current
after each split. If direction is forward, the lower
window is current; if direction is reverse, the upper
window is current.

If you change windows to a smaller number, the current
window is merged with a neighbor window enough
times to make that many windows. The direction
controls this as well; if forward, the window above the
current one is merged, and, if reverse, the window
below is merged. This is so ++windows, -windows will
leave the display unchanged.

WindowDown :
windows repeat {

winswitch $
if !dUne Down
scroll
}

wlines, wtop

winswitch

If the direction is forward, winswitch goes to the next
window down (or to the top window if you are already
in the bottom one). If the direction is reverse, winswitch
goes up. Returns the number of the current window (top
one is zero).

WindowDown :
windows repeat {

winswitch $
if ! dUne Down
scroll

Chapter 6, Macro Encyclopedia 347

See Also windows

wlines (Variable)

Syntax

Function

Example

See Also

write

Syntax

Function

Example

See Also

348

wlines

The number of lines in the current window. Assigning
this variable changes the size of the current window.

WindowUp :
windows repeat {

winswitch $
if (dline = wlines - 1) Up
r scroll

windows

write II filename ll

Changes £name to the specified filename and then writes
the entire contents of the buffer to that file on disk.

WriteFile :
set QO cdstrip fname
message "Write file as:" set QO
o SetSPRext
if (! (exist QO) II ask "Overwrite existing file?")

bufnum -> x
if (buffind QO && (bufnum != x))

close

if ! (stopped (write QO))
set fname QO

;throw away copy if in buffer,
: and not current file

;change file name only if write successful

£name

Sprint Advatlced User's Guide

writeregion

Syntax

function

Example

See Also

writeruler

Syntax

Function

Example

See Also

writereqion region "filename"

Writes the area covered by region to the given file name.
Unlike write, this command does not change fname.

WriteSelected :
if (select && !ColMode) {

set QO ""
message "Name of file to write block to:" set QO
if (! (exist QO) II ask "Overwrite existing file?")

writeregion togmark QO
mark {

if (buffind QO) ReReadFile

Unselect
}

else (ColMode ? message

; if file was open, reread

"Columns cannot be written" : NoBlock)

write

writeruler

Deletes the current ruler line and inserts it again using
the cached data. When you use macros to change ruler
information (as with the macro linelength), you only
change the editor's internal cached copy. You must then
execute writeruler to update the file to match the cache.
You must do this before moving the point a large
distance because the current ruler might get thrown out
of the cache and thus lose the saved data.

ToggleJustify :
InsertFirstRuler
justify ? 0 -> justify : 1 ->justify
writeruler

insertruler, rulermod, readruler

Chapter 6, Macro Encyclopedia 349

wtop (Variable)

Syntax

Function

See Also

wtop

Shows where the window starts in number of lines
down from the top of the screen. The variable cannot be
assigned.

windows, wlines

zoom (Variable)

Syntax

Function

Example

See Also

350

zoom

If this flag is set to True, the current window will be
expanded to take up the entire screen.

WindowClose :
o -> zoom
if windows (--windows)

windows, winswitch, wlines

Sprint Advanced User's Guide

p A R T

3

Appendixes

351

352 Sprint Advanced User's Guide

A p p E N

Commands Defined in
STANDARD.FMT

D x

A

Table A.1 lists and briefly explains each of the commands defined in
STANDARD.FMT. You can change any of these commands using the
techniques described in Chapter 3.

Appendix A, Commands Defined in STANDARD.FMT 353

Table A.l: Commands Defined in STANDARD.FMT

Command Description

Format Regions of Text

Address Left-justifies the text halfway across the page.

Asterisks

Bullets

Center

Closing

Column

Description

Display

Example

FlushLeft

FlushRight

Hyphens

Multilevel

Numbered

354

Places an asterisk (* or, on a PostScript printer, .)
before each new paragraph. If these commands are
nested, the secona level lias bullets; the third, hyphens.

Places a bullet (•) before each new paragraph. If your
printer cannot print true bullets, it uses lowercase 0' s
Instead. If these commands are nested, the second level
has hyphens; the third, asterisks.

Centers the specified text between the current left and
right margins.

Same as Address; left-justifies the text halfway across
the page. Used mainly for the closing of letters typed
in a modified-block style.

Sets up parallel (not snaking) columns. The text
following the command starts Erinting at exactly the
same spot as the text governed by Cofumn.

Outdents text followed by a tab by one-quarter line.
This table is an example of the Description command.

Moves the left margin in (to the right) by one-half inch.
You must press Enter to end every line; onscreen
worwrapping is not kept.

Moves the left margin in (to the.right) by one-half inch,
and prints the text In a typewriter (fixed-width) font.
Onscreen wordwrapping is not kept; you must press
Enter to end every line.

Formats the selected text against the left margin.

Formats the selected text against the right margin.

Places a hyphen (-) before each new paragraph. If
these commands are nested, the next level has an
asterisk (*) mark; the third has bullets (.).

Numbers each paragraph like the Numbered
command, but if these commands are nested, the inner
levels are numbered as 1.1, 1.2, 1.3, 1.3.1, and so on.

Numbers each new paragFaph. If you nest
these commands, the top level is numbered 1,2,3, ... ,
the next level is a,b,c, ... , the next is i,ii,iii, ... , and then
the cycle starts again with 1,2,3

Sprint Advanced User's Guide

Table Al: Commands Defined In STANDARD.FMT, continued

Command

Outline

Quotation

Text

Undent

Verbatim

Description

Placed an uppercase Roman numeral before each
Earagraph. Nested commands use uppercase letters,
then Arabic numbers, then lowercase letters, then
lowercase Roman numerals. The sequence is like this: I,
A, 1, a, i.

Moves the left and right margins in (toward the center
of the Eage) by one-half inch and single-spaces the
markea text. Onscreen wordwrapping is not kept; you
must press Enter to end every line.

By itself, Text doesn't do anything. It is tn'ically used
with formatting parameters to create specIal effects.
For example, tlie command Text, columns=2 formats
marked text in two columns. The command Text, font
Times prints the marked text in a Times font.

Outdents the first line of each paragraph by one-half
inch. The first line appears one-half inch to the left of
all remaining lines in the paragraph.

Prints the text exactly as entered; Verbatim does not
change margins, indent text, or wordwrap lines.

Page Headings and Footings

PageHead text Prints the specified text at the top of the current page
only.

PageFoot text

Header text

HeaderEven text
HeaderOdd text
HeaderT text

Footer text

FooterEven text

FooterOdd text

Prints the specified text at the bottom of the current
page only.

Prints the specified text at the top of every page except
the first.

Prints the text at the top of every even-numbered page.

Prints the text at the top of every odd-numbered page.

Prints the text at the top of the first page (title page)
only.

Prints the specified text at the bottom of every page
except the first.

Prints the text at the bottom of every even-numbered
page.

Prints the text at the bottom of every odd-numbered
page.

Appendix A, Commands Defined in STANDARD.FMT 355

Table Al: Commands Defined in STANDARD.FMT, continued

Command

FooterT text

Description

Prints the text at the bottom of the first page (title page)
only.

Document Organization

Chapter title Starts a new chapter (begins a new page, prints a big,
centered, sequentially numbered major heading, ana

Section title

Subsection title

Paragraph title

Appendix title

AppendixSection
tttle

creates an entry in the table of contents).

Starts a new section (prints a big, left-justified,
sequentially numbered subheading, and creates an
entry in the table of contents).

Starts a new subsection (makes a bold, left-justified,
sequentially numbered subheading, and creates an
entry in the table of contents).

Starts a new paragraph (same format as Subsection,
but the numoering is one level lower).

Starts an appendix. This command is just like Chapter,
but the appendixes are numbered with capital letters.

Starts a new section in an appendix. This command
is just like Section.

Headings/Document Divisions

HeadingA text

HeadingB text

HeadingC text

HeadingD text

Toe text

TOFtext
TOT text

356

Prints the specified text as a large, centered title. If you
are printing two-column text, tliis heading is centered
above both columns.

Prints the specified text as a large, centered title. It's
similar to HeadingA, but it's a oit smaller and, if you're
printing two-column text, this heading is centerea
above one column.

Prints the specified text as a large, left-justified title.

Prints the specified text in bold type, justified at the left
margin.

Prints the specified text in the table of contents. Be
sure to insert an * (asterisk) formatter command after
the TOe command; otherwise, the next entry in the
table of contents will print on the same line.

Prints the specified text in the table of figures.

Prints the specified text in the table of tables.

Sprint Advanced User's Guide

Table Al: Commands Defined in STANDARD.FMT, continued

Command

Figures and Tables

Figure text

Caption text

FCapt text

Table text

TCaption text

TCapt text

Description

A format for figures. Similar to Verbatim except that
Figure keeps tIie marked text together on a page.

Sequentially numbers a figure, and lets you specify a
title for the fi~re. The figure number and caption
print in the LIst of Figures in the table of contents.

Like Caption, but no entry is generated in the table of
contents.

A format for tables. Similar to Verbatim except that
Table keeps the marked text together on a page (unless
the text exceeds the length of tlie page).

Sequentially numbers a table, and lets you specify a
title for the table. When printed, the table caption is
centered between the left and right margins. The table
number and caption print in the List of Tables in the
table of contents.

Like TCaption, but no entry is generated in the table of
contents.

Note: When using Fi~re and Table be sure to place
tags after the Caption, TCaption, or TCapt command to
a void reference aiscrepancies.

Footnotes and Endnotes

ENote text

FNote text

NoteChapter

N oteSection

SNote text

Prints the specified text in the endnotes of the
document, and prints a small, superscripted reference
number in the text.

Prints the specified text as a footnote (at the bottom of
the page), and prints a small, superscripted reference
number in the text. .

Prints the number and title of the current chapter at the
beginning of the endnotes.

Prints the title and number of the current section in
the endnotes.

Prints the specified text as a footnote (at the bottom of
the page), and prints a superscripted star (asterisk) as
the reference marker.

Appendix A, Commands Defined in STANDARD.FMT 357

Table A.l: Commands Defined in STANDARD.FMT, continued

Command Description

Typeface Commands

B text Prints the marked text in bold or overstrike. This is the
same as the AB open delimiter Sprint inserts when you
choose Bold from the Typestyle menu.

Large text

E text

I text

Qtext

S text

T text

U text

UN text

UX text

358

Prints the marked text in a large, bold, or double­
width font. This command is used when printing all
Heading commands. This is the same as the A A open
delimiter Sprint inserts when you choose Typestyle/
Large.

Prints the marked text in italics or underline
(depending on what your printer is capable of doing).
This is the same as the A E open delimiter Sprint inserts
when you choose Italic from the Typestyle menu.

Note: Although the formatter will only underline the
words and not the spaces, the editor (and screen
output) will display a solid underline.

Prints the specified text in italics. Same as E <text>.

Prints the text as a subscript. If possible, a smaller font
size is used. This is the same as the AQ open delimiter
Sprint inserts when you choose - Subscnpt from the
Typestyle menu.

Prints the text as a superscript. If possible, a smaller font is
used. This is the same as the AS open delimiter Sprint
inserts when you choose + Superscript from the
Typestyle menu.

Prints the marked text in a fixed-width typewriter font.
If both "elite" and "pica" are available, the smaller
"elite" font is used. This is the same as the AT open
delimiter Sprint inserts when you choose Typewriter
from the Typestyle/Font menu.

Underline all nonblank characters, including
punctuation. This is the same as the AW that Sprint
inserts when you choose word Underline from the
Typestyle menu.

Underlines only the alphanumeric characters. Blanks
and punctuation marks are not underlined.

Underlines everything within the marked region. This
is the same as the AU open delimiter Sprint inserts
when you choose Underline from the Type style menu.

Sprint Advanced User's Guide

Table Al: Commands Defined in STANDARD.FMl continued

Command

X text

-text

+ text

Indexing

Dtext

IXRef item,item, ...

IXMaster item

IXRange

IXSee

IXSeeAlso

Description

Stfikeel:lt the text with a solid line. This is the same as
the 1\ X open delimiter Sprint inserts when you choose
Overstrike from the Typestyle menu.

Same as Q <text>.

Same as 5 <text>.

Prints the marked text, and also places it in the index.
(This is the only index command that prints the text
both in the text and in the index.) This is the same as
the I\D open delimiter Sprint inserts when you choose
Word from the Style/Index menu.

Adds the specified item into the index with a reference
to the current page. Commas represent multilevel
entries. This is the same as choosing Reference Word
from the Style/Index menu.

Adds the specified item into the index, references the
current page, and prints the page number in bold. This
is the same as choosing Master key word from the
Style/Index menu.

Adds the specified item into the index and prints the
range of pages as defined from a user-defined tag. This
is tne same as choosing Page Range from the Style/
Index menu.

Creates a see reference in the index. This is the same as
chOOSing Index/ See.

Creates a see also reference in the index. This is the
same as choosing Index/Also See.

Cross-Referencing/Variables

Incr variable

Label tagname

Title variable

V variable

Increments the variable, and sets SectionNumber to the
increment value (so the formatter command Label will
use it).

Sets a tag equal to SectionNumber.

References the title of a built-in variable.

References the specified variable. This is the same as
the 1\ V open delimiter Sprint inserts when you choose
Insert/Variable command.

Appendix A, Commands Defined in STANDARD.FMT 359

Table A.l: Commands Defined in STANDARD.FMT. continued

Command Description

Print-Related Commands

EndF

EndS

Fontname

Kern dimension

Size dimension

Miscellaneous

Keep Text Together

NeedSpace
dimension

360

Reverts to the font that was current before the last Font
command.

Reverts to the font size that was current before the last
Size command.

Changes the current font to the named font.

Moves the print head back (to the left) by the specified
amount.

Changes the current font size to the specified
dimension.

Starts a new page if the specified amount of space is
not left on the current page.

Sprint Advanced User's Guide

A p p E N D x

B

Built-In Format Commands

Some formatting commands are built-in to the Sprint program, and can't be'
modified. Table B.1 lists these built-in commands. Most of the commands in
this table can be used (when appropriate) with the Style/Other Format
menu command. You can also use them with @-sign commands.

Appendix B, Built-In Format Commands 361

Command

@@

$

, (close quote)

, (open quote)

362

Table B.l: Built-In Formatting Commands

Description

Same as a soft hyphen. Specifies a conditional
hyphenation point; if necessary, a word can be broken at
this point, and a hyphen inserted.

Inserts a single hard space between two words.

Prints the @ sign.

Allows a line break in the middle of a word, but does
not print a hyphen (for example, this/!that tells the
formatter it can break this/that after the slash). The
Hyphenation utility uses this command to insert
discretionary hyphens in a file.

Sets the left margin and the indent dimension to the
column containing the [command. This commands acts
as if there were a ruler here that simply changed the left
margin.

Sets the right margin to the column containing the]
command.

Sets the left margin to the column containing the $
command, but does not change the first-line indent.
This command affects only the current paragraph.

Ignores all the whitespace (that is, spaces, tabs, and
blank lines) after this command, as well as the line break
that appears immediately after the command.

Deletes all the preceding whitespace on the current line.
The next word will then appear right next to the
previous one. Usually, this command is used in
conjunction with the' command.

Sprint Advanced User's Guide

Table B.1: Built-In Formatting Commands, continued

Command

*

, (comma)

/

\
A

<

- (tilde)

> text

Description

A forced new line. This acts exactly like a regular hard
return, except the Fill parameter cannot treat it as a
space. Any whitespace or new lines after an * command
are ignored, so an * command at the end of a line won't
unexpectedly act like two new lines. The * command is
most often used to show where new lines should be in a
macro definition, and to mark the ends of lines that
shouldn't be wordwrapped when the Fill parameter is
On.

Two of these commands formatted next to each other
will print a comma. Used by macros such as foot.

Moves to the next formatter tab stop. This serves the
same function as the Tab key but only takes effect when
you print the file.

Same as /.

Sets a formatter tab stop at the current column position.
This command is used in conjunction with the /
command, which moves the formatter to the tab stop
set by a A command. It does not affect the A I tabs in
the input file.

Prints nothing. This command is useful to prevent - or
another command from removing whitespace. You can
also place this command between characters to prevent
them from being recognized as a TCT sequence.

Starts a new line that prints on top of the current line
(similar to Strikethough, except that you can specify the
character(s) used to overprint).

Ignores any whitespace (including hard returns).

Wide break; that is, forces text following the command
to the current right margin. This is the same as the
Insert/Wide Space (Spring) command. The (text)
argument is optional. If an argument is given, it is
replicated to fill the space the = takes up. In that case, it
operates the same as the Repeating Character command.

Appendix B, Built-In Format Commands 363

Table B.1: Built-In Formatting Commands, continued

Command Description

= text Acts like Insert/Wide Space (Spring), but only expands
half as much, centering the text after it.

AtEnd command, Gives Sprint a DOS command to carry out after
Ic DOS command completing its formatting of a document.

Begin command,
arguments

Case variable,
value" text",
value "text",,,.

CenterPage
dimension

Char #

ColumnBreak

Comment text

364

Starts a command or a specific format. Similar to
@<command> except the arguments can be used to
modify the command. For example, Begin Description,
indent 5 spaces will begin the description format and
indent all new paragraphs five spaces.

Executes a case statement on string variables.

Centers all the text on the current page vertically
around the given position. For example, using the
command Centerpage .5 page at the start of a short
letter is often easier than fiddling with the leading blank
lines to center the letter on the page. The Title Page
command uses CenterPage.

Formats the specified character with the given ASCII
code. TCT (character translation) is not done on this
character. Usually this is placed in TCT entries, in
macros, or in conjunction with the <fontname>
command.

Inserts a mandatory break in the column. The text
following this command will start at the top of the next
column.

Ignores everything within the comment delimiters,
and the new line that follows the end of the comment
text. Comments cannot be nested within each other .The
formatter will end the comment field at the first
matching close delimiter. You may want to use BEGIN
and END COMMENT commands when commenting
out a large area of text. This is the same as Typestyle/
Hidden.

Sprint Advanced User's Guide

Table B.1: Built-In Formatting Commands, continued

Command

Default text

Define
new
command

Description

Prints the specified text in the default font, without any
additional attributes (such as bold, underlining, and so
on). This is easiest way to turn off enclosing attributes.

Defines a new command to affect the format of a
region of text.

{=existing command},
attributes/parameters ...

End command,
arguments

Error text

Escape
h = dimension,
d = dimension,
w = dimension,
s = "string"
or f = "filename"

Eval expression,
template
"string"

<fontname> text

Format file.fmt

Closes a command started with BEGIN, and provides
some arguments that can affect the closing. The
arguments are currently ignored, but allowed for future
enhancements.

Prints the given text (which can contain Value
commands) as an error message. The error message will
also include the input file name, and line number on
which the error occurred.

Sends raw data to the printer (using the printer's
command language, not Sprint's).

Immediately expands the specified expression. See the
entry on the Value command for the difference between
Eval and Value.

Prints the specified text in fontname font. The <fontname>
is a name of any font or attribute in the printer
description that does not have a dot in it. This is the
same as the Typestyle/Font command.

Specifies a file other than STANDARD.FMT to
be automatically included at the start of the formatting
process. This is the same as Layout/Document-Wide/
Style Sheet.

Appendix B, Built-In Format Commands 365

Table B.1: Built-In Formatting Commands, continued

Command

Group text

Havespace
distance
{,y #text"}
{,n, # text"}

Hsp distance

HUnits number

If expression,
{, {y} # text"}
{,{n I else}
"text"}

IfDefname
{,{y} "text"}
{",n I else}
"text"}

Include file

KeepFollowing

366

Description

Does not allow a page break to separate the specified
text (unless a PgBreak command is entered somewhere
in the specified text). This is the same as Layout/Page
Breaks/ Group Together on Page.

If there is distance space left on the page, then executes
the y text. If there is not enough space left on the page,
executes the n text.

Moves distance horizontally from the last character
printer. A negative number moves left; the maximum
leftward movement is to the beginning of the current
word.

Moves the print head the specified number of units to
the right (if the number is positive) or to the left (if the
number is negative).

If the specified expression is not equal to zero, executes
the y part of the text. Otherwise, if the expression is
equal to zero, executes the n part (which can also be
written as the else part) of the command line. This
command is also used to check whether an argument
was passed to a multi-argument macro.

If the name command exists, executes the y part of the
command. If the name variable does not exist,
executes the n part (which can also be written as the else
part) of the command.

During formatting, inserts the contents of the specified
file here. If the desired file is in a different directory
than the input file, you must also specify the
appropriate directory path with the file name.
For example, Include \dirl \dir2\filename.doc. The new
line after the Include command is disregarded by the
formatter.

Prevents a page break between this line and the next
line. This is the same as Layout/Page Breaks/Keep with
Following Text.

Sprint Advanced User's Guide

Table B.l: Built-In Formatting Commands, continued

Command

Message text

Modify command,
fields ...

NewColumn

NewPage

NoTCT text

o text

OVP text

PageRef
expression
{,template
"string"}

Parent varl =var2

PgBlank number

Description

Prints the specified message on the screen during
formatting.

Modifies a previously defined format as specified.
You cannot modify an format after it has been used.

Same as ColumnBreak.

Begins a new page. This is the same as Layout/Page
Breaks/Insert (unconditional).

Formats the enclosed text with all TCT (character
translation) commands temporarily disabled.

Overprints all the enclosed letters (a maximum of 12
letters is allowed). You can use a superscript command
and other commands here to move accents to print in
the right place. To print good-looking accent marks,
always put the accent mark first.

Formats the text, then backs up and continues
formatting right on top of it.

Prints the page number of the page where the expression
variable was set using the Define a Tag command. This
is the same as choosing Reference a Tag from the
Style/X-Reference menu, and then choosing Reference
By/Page Number.

Makes varl the parent of var2. Var2's parent remains
unchanged. You can do this only once for each varl.

The next time the formatter begins a new page, it will
print number blank pages. (To have this command
executed immediately, insert an unconditional page
break command right before it.) Note that a blank page
is not immediately printed, but the formatter waits until
the end of the page it is currently formatting. If the
number is not included, one blank page is printed.

Appendix a, Built-In Format Commands 367

Table B.1: Built-In Formatting Commands, continued

Command

PgBreak

Place command

Printer name

ReadEPS filename

Ref expression
{,template
"string"}

Description

A page break can appear here. Has priority over all
possible ways the formatter might prevent a page break
(for example, group), except for the KeepFollowing
command. This is the same as Layout/Page Breaks/
Conditional Page Break.

Prints an "after" format (specifically Endnotes) here.

Prints on the printer <name> (defined in a file called
<NAME>.SPP). The file <NAME>.SPP must be on
the disk. This is the same as choosing Print/ Current
Printer and then choosing the desired printer name.

Checks filename to see if it's a true encapsulated
PostScript file.

Prints the value of expression that is assigned by the
Define a Tag command somewhere in the text. The main
difference between this command and the Value
command is that it doesn't matter if a variable is set yet
or not. This is the same as the Reference a Tag command
on the Style/X-Reference menu.

Reserve dimension Leaves the specified amount of space blank. For
example, RESERVE 3 inches leaves 3 inches of blank
space immediately following the command. If the blank
space won't fit on the current page, a new page is
started, and the entire blank space is put at the top of

Ruler text

Set variable
= expression

String variable
= string

368

the new page. .

Does a ruler line. The input parser converts a ruler line
1\ K into Ruler(text) where "text" is the text on the ruler
line. Ruler is exactly the same as Style except that is
clears the "ruler" tab stops.

Assigns a new value to a variable. The variable's value
can be changed throughout the document.

Assigns a string of values to the variable. This is the
same as the Define Text Variable command on the Insert
menu.

Sprint Advanced User's Guide

Table B.l: Built-In Formatting Commands, continued

Command

Stringlnput
{limessage" ,}
variable

Style fields ...

Tab dimension

TabDivide
dimension

Description

Asks the user to input a string from the terminal.

Changes the global formatting specifications, and makes
changes to the current format. You can put as many
Style commands throughout your document as is
necessary. However, to avoid formatting problems
during the two different printing passes, you should set
global style specifications only once.

Acts just like pressing Tab, except that it moves to the
given horizontal location from the left margin.

Sets n-l formatter tab stops evenly spaced across the
line.

TabSet dimension Sets a formatter tab stop at the given
horizontal position.

Tag name
{=expression}

Sets a tag for the variable name. You can then use the
Ref tagname command to print out the expression. If
the expression part of the command is missing, then the
current format's value will be assigned to name. For
example, if you placed the command Tag test in section
2.1 of your document, Ref test would have a value of 2. 1
This is the same as the Style/X-Reference/Define a Tag
command.

TagString name = Sets a tag to a string value (in quotes).
"string"

TCT "stringl" =
"string2"

Template
variable =
IIstring"

Changes the value of stringl to the value of string2;
string2's value remains unchanged.

Permanently sets how a variable prints. You can
execute this command only once for each variable.

Appendix B, Built-In Format Commands 369

Table B.l: Built-In Formatting Commands, continued

Command

Under text

Value
expression
{,template
"string"}

VUnits number

Word text

370

Description

The main use of this command is to allow an index entry
to appear somewhere other than its normal alphabetical
location within the index. For example, you could have
the index print 20 where twenty would normally appear
(numbers are ordinarily indexed together at the
beginning of the index). This command must be used
within a regular Index command. This is the same as
Style/Index/Index Under.

Prints the value of the specified expression. The
difference between this command and the Eval
command is that Eval is done immediately when
encountered (except in a format), while Value is not
done until the text it is in is being formatted. Value is
the same as the Insert/Variable command.

Moves the print head the specified number of units
down (if the number is positive) or up (if the number is
negative).

Doesn't allow any line breaks in this text. The whole
text should be regarded as a single "word."

Sprint Advanced User's Guide

A p p E N D x

c

Style Sheet Commands

Sprint has a number of commands that are meant to be used exclusively (or
at least primarily) when modifying style sheets (that is, files with the .FMT
extension that contain command definitions).

These .FMT -specific commands are therefore a special breed of Sprint
formats since you virtually never need them unless you are creating your
own format (.FMT) files. And because format files normally use @-sign
commands (and not commands accessed through the menus), you have to
type in the commands using the @-sign method.

For a full list of Sprint's more frequently used commands, see the Reference
Guide.

AtEnd

Keystrokes

Function

@AtEnd[Command / c DOS commands]

Gives Sprint a DOS command to carry out after
completing its formatting of a document.

You can have your .FMT file always carry out a
particular DOS command after every formatting cycle
(but before actual printing) by including this command
at the end of it.

This would be handy if, for example, you needed to run
a particular spooling program before printing. In that
case you could add the command

@AtEnd[spool @Value(Manuscript)]

Appendix C, Style Sheet Commands 371

AtEnd

Define

Keystrokes

Function

How To

372

If you omit the 1// c", Sprint will wait at the DOS shell
until you type exit to return to Sprint.

Some DOS commands need to be preceded with the
words Command Ic in order to work. This is because
certain DOS commands actually get interpreted by the
COMMAND. COM program. As a result, you have to
call COMMAND before running DOS standbys such as
DIR, DEL, ERASE, COPY, and the like.

If you don't want a particular DOS command run after
every formatting cycle, you can include the command at
the end of any document for which you want the
command carried out.

@Define[FormatName, attributel, attribute2, ...]

@Define[NewFormatName=OldFormatName, attributel,
attribute2, .. .]

Creates a new format.

This powerful command lets you create new formats.
After you create a new format command with the Define
command, you can use it just like any of the predefined
format commands.

New (format) commands can be modeled after existing
commands. You can make the new command equal to an
existing one, and then list the attributes that make it
different from the model. See the "Modifying Formats"
entry in Chapter 1 of the Sprint Reference Guide for the
"Format Parameters" table that lists all valid parameters
you can include in a command definition.

For a detailed list of parameters that can be included in a
command definition, and for examples of several
customized commands, refer to Appendix D.

To define a command, give it a name and a set of
attrioutes. If the new command has several attributes in
common with an existing command, include an equal
sign followed by the name of the other command.

Sprint Advanced User's Guide

Define

The following example creates a format called
RightColumn. This format is defined such that it prints
double-spaced text on only the right half of a page; since
it has a lot in common with the Address format, we
included this format in the definition, and added a few
other attributes.

You should insert the Define command in a copy of the
STANDARD.FMT file (or some other .FMT file that
you've created). Note that you could insert the command
only at the top of the documents that need it, thereby
guarding against accidentally introducing an error into
STANDARD.FMT, which must remain error-free when
printing and formatting. In either case, we recommend
you use the @-sign method of entering the Define
command.

Type

@Define[RightColumn=Address, spacing 2, justify yes, above 0,
below 0]

Now save your .FMT file that has this new definition.

When you want text to print in this format, make sure
your document is set up to recognize your special .FMT
file (if you created one) by choosing Layout/Document­
Wide/Style Sheet. Then choose Other Formats from the
Style menu and type RightColumn. Here's how
RightColumn will look when printed:

This is an example of RightColumn. As you can

see, the text begins to the right of the current

left margin and is aligned at the right margin.

The text is also double-spaced.

Global Change
First decide whether you want to permanently change a
format definition. If you think you might want to use a
format as it's defined in STANDARD.FMT, we
recommend that you create a new command, rather than
modify the existing definition. (See the Define entry in
this menu encyclopedia for details.)

Appendix C, Style Sheet Commands 373

Define

374

If you want to permanently change a format definition,
you can edit the STANDARD.FMT line that contains the
format definition (for example, @Define(Bullets, ... » and
make the desired changes. Be careful with this method,
since you are making a change that will affect all files
containing this format command.

A safer way to modify a format in STANDARD.FMT is
to:

1. Copy the format definition within STANDARD.FMT
(mark the current definition and then copy it).

2. Move the cursor to the line below the current format
definition, and paste the definition (with the Paste
command).

3. Change @Define to @Modify.

4. Add to, change, or delete the format attributes to
create the effect you want.

5. Save the STANDARD.FMT file before printing a
document.

For example,

@Define(Hyphens=Numbered, numbered "%<-%;*%;0%]",
BeforeEach "@> () @value (counter) @hsp (. 2in) @\")

@Modify(Hyphens,numbered "%<X%;*%]")

This example modifies the Itemize format so that it
prints a lowercase x instead of a hyphen at the
beginning of each new paragraph. We only had to
change @Define to @Modify, change the numbering
template, and remove the parameters following the
template.

(Note: If you're using a PostScript printer, you'll have to
modify the printing template for the Hyphens format in
POSTSCR.TCT instead.)

When you modify a format, any attributes that you omit
are left unchanged. The formatter recognizes everything
contained in the format definition, except the parameters
that you override with the Modify command. For
example, if you type the command:

MODIFY Numbered, indent -5

Sprint Advanced User's Guide

Tips

Error

Keystrokes

Function

Define

you are only changing the indent value (the point at
which each new paragraph begins within an Numbered
format). The rest of the parameters contained in its
definition (the line that begins @Define(Numbered, .. . »
remain in effect.

Commands and formats are typically defined in .FMT
files (like the STANDARD.FMT file). You can create your
own specialized .FMT files by copying all of
STANDARD.FMT into a new file, modifying it, and
giving it a new name. You then tell Sprint to format
using this .FMT file by using the Style Sheet command.

If the command is only going to affect one document,
you can insert it near the top of this document. Make
sure you define the new format before you actually use
it.

For a complete detailed list of parameters that can be
included in a command definition, refer to the Sprint
Reference Guide in the "Menu Encyclopedia" entry called
Modifying Formats. Note that several parameters are
valid only when used with Define. These are noted in the
list. For an extended example of several customized
commands, refer to Chapter 4.

@Error[error message text]

Reports an error in user-defined formatter macros.

The Error command lets you generate error messages in
your formatter macros. The command produces an error
message just like the built-in Sprint error messages,
complete with the file name and line number containing
the error. As with all error messages, the formatter will
abort the Print/Printer command after the first pass.

If you create a macro that requires the user to do
something (for example, assign a value to a string), you
can include the Error command as part of your macro.
For example,

@IfDef[name,N "@Error<You must do @string(name =
"BookTitle") >")

Appendix C, Style Sheet Commands 375

Error

Tips

Eval

Keystrokes

Function

376

If the user forgets to do @string[name= "The manual"],
whatever command actually uses the string can test if
it's been set, and force a more friendly, informative
message.

The following NamelnFooter macro will cause the
formatter to put whatever string given as the BookTitle
in the footer of a document. Since the macro requires a
string value for the variable BookTitle, the file will have
to contain an Define Text Variable or @String command
that defines the book title. If you try to use the macro
without inserting the string (that is, BookTitle = liMy
diary"), the formatter will generate the informative error
message You must do @string(booktitle = "name"). Note the
correct sequence of commands, @string, then @macro,
then the new command itself:

@string[booktitle="My Diary"]

@macro(Nameinfooter = "@ifdef(booktitle,N "
@error(You must do @string(booktitle = "name"))",
Y"@string(pfe = booktitle)@string(pfo = booktitle) ")")

@nameinfooter

If you want to generate a warning instead of an error,
use the Warn command instead (which is also described
in this chapter).

@Eval

Represents the value of a variable.

@Eval is the value of a Sprint-defined variable (such as
Page, Counter, Chapter, and so on), or a variable that you
create with the Define Text Variable or @String
command.

For example, if you place @Eval(page) in the definition
of a string, the number of the current page (that is, the
page the @Eval command appe"rs on) will become part
of the string.

Sprint Advanced User's Guide

Eval

It is important to understand the difference between this
command, which refers only to the present value of the
variable, and @Value (which equals Insert/Variable
from the menus), which refers to whatever value the
variable later takes on.

The value of an Eval command is filled in immediately,
but the value of a Value command is not filled in until
the last possible moment before printing.

(For programmers, the difference between Eval and
Value is that between "lexical" and "dynamic." Eval
computes a value when it is first defined, while Value
computes the value when it is used.)

The following illustrates the difference between @Eval
and@Value:

@b(Passage One)@set(passage = 1)
Medieval philosophy buffs will recognize the
difference between "Eval" and "Value" as an example
of the distinction between @i<intentio prima>,
wherein a concept refers directly to an object, and
@i<intentio secunda>, wherein a concept refers to
another concept.

@String[PrimaRef = "I mentioned @i(intentio prima) in
passage @eval(passage), and you are now reading
passage @value(passage) ."]

@b(Passage Forty-six)@set(passage = 46)
@value(PrimaRef). See?

results in:

Passage One
Medieval philosophy buffs will recognize the
difference between "Eval" and "Value" as an example
of the distinction between intentio prima, wherein a
concept refers directly to an object, and intentio
secunda, wherein a concept refers to another concept.

Passage Forty-six
I mentioned intentio prima in passage I, and you are
now reading passage 46. See?

Eval is also used to place macro arguments in the
"macro expansion" (see the chapter on macros in this

Appendix C, Style Sheet Commands 377

Eval

HUnits

Keystrokes

Function

How To

Tips

If

Keystrokes

Function

378

manual); you can see many examples of this in the file
STANDARD.FMT. In this context, if you don't give a
variable name to Eval, the default variable text is used.
In macros, Eval is not given a value when the macro is
defined, but when it is used in the text.

For example, the command Label is merely a Tag
(Define a Tag) command evaluated for the current value
of the variable SectionNumber:

@macro(label () = "@tag(@eval SectionNumber) ")

Eval can also take two other parameters: a new template
for printing the variable differently, and a default value
to be used if the variable is not defined. For example:

@Eval{page,template = "%0")

See the Template entry in the Sprint Reference Guide for a
list of all available templates.

@HUnits[n]

Moves the print head n units to the right (if the number
is positive) or to the left (if the number is negative).

This command uses printer units, which are the printer's
primitive unit of measurement. For this reason, a unit on
one printer might not be the same as a unit on another.

Use this command to construct sophisticated (but
printer-dependent) commands. STANDARD.FMT uses
@HUnits in its special EPS commands (for use with
PostScript printers).

HUnits is often used in conjunction with VUnits.

@If[value, then Clause, elseClause]
@If[value, yesClause, no Clause]

Creates macros that have decision-making capabilities.

Sprint Advanced User's Guide

How To

If

The If commands let you specify cases within your
macros.

You can use If command's throughout your macros for
changing the way things print. For example, you could
use the If command to control printing on different
printers, depending on the value of a variable called
draft. For example:

@If(draft=l, y "@printer[draft.spp]", n
"@printer[laser]")

If a file contains the formatter command set draft=l,
Sprint will format the file for printing on the printer you
installed with the name draft. If you set the variable draft
to a value other than 1 or if you don't define it at all,
Sprint will format the file for output to a printer called
laser.

The If command is also useful for printing special page
footings in your normal Sprint documents. For example:

BEGIN FOOTER
@if(draft)=l, "Draft Copy", else "Final Version"))
END FOOTER

would print Draft Copy in your footing if draft was set to
1, but would print Final Version if the value of draft was
anything else.

There are also more complex uses for the If command.
For example, suppose you have a database with a
customer list, and this customer list contains a field
called "credit" that contains the type of credit extended
to the customer, encoded as follows:

l=COD 2=Net 10 3=Net 20 4=Net 30 5=Net 60

You can create a macro that returns a string when given
the values 1-5. Using such a string, you could send each
customer a customized version of a form letter
specifying payment terms.

To accomplish this, you would enter the following
macro:

@macro(terms="@If(credit=l, "COD", else @If(credit=2, "NET
10" ,

Appendix C, Style Sheet Commands 379

If

IfDef

Keystrokes

Function

How To

380

else @If(credit=3, IINET 20 11
, else @If(credit=4, IINET

30 11
,

else IINET 60 11))))11)

For each customer you would enter the following:

Your current credit with us is @terms.

By using such a macro, you can universally change the
credit limits for each customer by adding a field or
changing the text in the macro. When times get tough,
changing the command to

@macro(terms=ICOO")

could save a lot of money.

Using If commands can get rather confusing when
several are in a string. To avoid this confusion, you can
use the Case command. Think of the Case command as a
table of input, and the If command as an action, similar
to the inital description of the encoding of the credit
example.

Using Case instead of several If's, the macro becomes

@macro (terms="@case (credit, 1 II COD II , 2 "NET 10", 3
"NET 20", 4 "NET 30", 5 "NET 60")"

@IfDef[CommandName, Y 'text or command(s)', N 'text or
commands(s)']

This command instructs the formatter to make a
decision based on whether a particular command has
been defined up to that point

The command takes a "Y" (yes, the command is defined)
and an "N" (no, the command isn't defined) case.

Enter the @IfDef command wherever you need to have
the formatter do one of several actions depending on the
existence of a particular command. HDef takes as
parameters the name of the command being tested, and
a Yes and No clause.

Sprint Advanced User's Guide

If Odd

Keystrokes

Function

How To

IfOef

For example, the following bit of code forces documents
to include the date as a text variable to be printed in the
header of odd pages (that's what the pho variable does):

@IfDef (date, y "@String (pho=date) ",
n "@Error(You must define "Date" to print this file)"}

@IfOdd[VariableName, Y 'text or command(s)', N 'text or
commands(s)']

Instructs the formatter to make a decision based on
whether the value of a numeric variable (like page) is
odd or even.

The command takes a "Y" (yes, the value is odd) and an
liN" (no, the value isn't odd) case: If the value is odd (for
example, the current page number is odd), Sprint
automatically executes the lIy" case; otherwise, Sprint
executes the liN" case.

Use the If Odd command when a formatter function
should depend on whether a variable is odd or even.
You ordinarily use the @-sign command version of this
command, since you usually use the command in .FMT
files.

You can, however, also use it in your normal Sprint
documents. For example, let's say you want a table to
begin on an odd page. If the text before the table ends on
an odd page, you want the formatter to center the text
This page intentionally left blank on the following page (an
even-numbered page), and then start the table on the
following (odd-numbered) page. You could use the
following I£Odd command:

@IfOdd[page, N "@NewPage @CenterPage[.5 page)
@Center<This page intentionally left blank.>
@NewPage lf

]

Insert the If Odd command before the

BEGIN TABLE

Appendix C, style Sheet Commands 381

If Odd

Tips

Macro

Keystrokes

Function

How To

382

command in your file. When the formatter sees the
If Odd command, it looks at the value of the current
page. If the page number is odd, it skips to the next
page, centers the text This page intentionally left blank and
then skips to the next (an odd-numbered) page and
begins printing the table. If the text before the table ends
on an even-numbered page, the formatter ignores the
command.

If you want the formatter to print text based on the
value of a non-numeric variable, use the Case command.

You will find the If Odd command defined in the
STANDARD.FMT file.

@Macro[Name="string"]

Creates a Sprint formatter macro.

This command lets you create a macro that the formatter
will execute. It is often used as a substitution command,
when you want to type a short string of text, and have
the formatter substitute a longer string during printing.
In other words, a macro can let you combine several
variables into one string and assign a single word to
recall that string.

When you have repetitive text in one or more
documents, use a Macro command. For example,

@Macro[ShortString="Longer, Replacement String"]

The text entered in your @Macro command may be as
simple as an abbreviation; for example,

@Macro[Sprint = "Sprint: The Professional Word Processor"]

This makes Sprint a formatter command that you can
enter with the Style/ Other Formats command. When
the formatter sees the Sprint command during
formatting, it will substitute the command text Sprint
with the longer string Sprint: The Professional Word
Processor. In this example, the Macro command lets you
type the short string Sprint, and instrUcts the formatter
to print the longer string.

Sprint Advanced User's Guide

Tips

See Also

MakeOdd

Keystrokes

Function

Macro

You can also build on existing macros to create more
complex ones. For example, you could create a macro to
print your company name in several places throughout
your document:

@rnacro(BI = "Borland International, Inc.")

You could then build on this macro, taking advantage of
the "BI" definition by adding your address:

@rnacro(BIA = "@BI@*4585 Scotts Valley Dr. @*SV, CAli)

The macro BIA calls up and runs the macro BI, and
continues with the execution of the new macro. (The @*
commands are formatter commands that tell the
formatter to break the line.)

If the macro will be used only in a single file, you can
insert the Macro command in the file, before you want
to execute the macro. If the macro will be used in several
files, you should insert the macro command in a copy of
the STANDARD.FMT file (or the .FMT file you typically
use to format your documents).

See Chapter 4 for an in-depth discussion of the Macro
command.

@MakeOdd

Tells the formatter to start printing on an odd-numbered
page.

Use this command when you want to force text to
appear on an odd page. In STANDARD.FMT, MakeOdd
is part of the Chapter command definition, which is why
chapters in Sprint documents always begin on an odd
page. The MakeOdd macro looks like this:

@rnacro (rnakeodd () = n@newpage@if (page&l, else
n@blankpage()n)")

This says to start a new page and then decide if the page
number is odd or even. If the page number is odd, the
formatter begins printing text; if the page number is

Appendix C, Style Sheet Commands 383

MakeOdd

How To

Keystrokes

Function

384

even, the formatter will insert a blank page and begin
printing on the following (odd) page.

Ordinarily you use the @-sign command in .FMT files.
You can, however, also include the command in your
normal Sprint documents. For example, to force text to
print on an odd page, choose Style/Other Formats, and
type MakeOdd. Press C to indicate that this is a command.
Used with the Table command, it would look like this in
a Sprint document:

MAKEODD
BEGIN TABLE

In the example, MakeOdd ensures that the table will
begin on an odd-numbered page.

none

Tells the formatter to carry out certain commands at the
start of every SprintMerge record.

This command is defined in STANDARD.PMT to start
each record on a new page and to reset all variables.
Whenever Sprint starts a new record, it automatically
invokes the Merge_Init_ command (that's why there are
no "keystrokes" listed for you to press).

If your merged records require some special handling
(like needing a custom footer printed on every other
page), you can customize the Merge_Init_ command by
changing its definition in your .FMT file.

For example, to create a special footer for records
appearing on odd-numbered pages, you could enter a
Merge_Init_ command like this in your .FMT file:

@macro(Merge Init =
"@place(toc)@place(tof)@newpage@Reset@Passlnit@FooterO[II You
May Already Be a Winner! ") ")

Sprint Advanced User's Guide

NoFloats

Keystrokes

Function

PageInit

Keystrokes

Function

NoFloats

@NoFloats

Prevents any more "floating" .formats (for example,
figures) from being printed on the current page.

A "floating" format is any command that's defined to
print at the top or bottom of a page (that is, if it has the
above or below parameter in its definition) or before or
after some other part of the document has printed. The
page heading commands (like Chapter) all float to the
top of the page and automatically include a NoFloats
command in their definition (so you can't get two
commands vying for the top of the page).

If you define a command that floats, you can use the
NoFloats command to prevent figures from floating to a
particular page.

@PageInit

Allows you to define a command string that is carried
out by the formatter at the start of every new page.

The PageInit command is executed as soon as the
formatter knows it is starting a new page. PageInit can
be executed on the second or third line that will be
printed on that page, and this can happen any­
where-generally right between two words in the
regular text. If you define it to print something, for
example,

@macro (PageInit = "ding-dong")

you will get the interesting but useless effect of having
"ding-dong" stuck into your text somewhere at the top
of every page.

It is far more practical to use this command to format
text into a so-called floating format. STANDARD.FMT
defines two floating formats for this, PageHead and
PageFoot. These are one-column formats defined as

Appendix C, Style Sheet Commands 385

Pagelnit

Parent

Keystrokes

Function

386

"above page" and "below page," respectively. The
Pagelnit command formats text into both of these
formats. It also prints the current page number on the
screen with an @Message command.

So that you can modify the page headings and footings
inside a document, their actual text is saved in the string
variables phe, pho, pIe, phI, ptf, and plo. These strings are
initialized with the Passlnit command (also in
STANDARD.FMT) to print the page number on the
bottom and nothing on top. Then, the @Header and
@Footer commands are used to set these variables to
various concatenations of the left, right, center, and line
arguments.

@Parent{variable=numeric variable}

Prints two-tiered numbers.

Since Sprint can reference the values of variables during
formatting, the Parent command lets you include the
value of a numeric variable (such as chapter) when
printing the value of another variable (such as page,
figure, table). A typical use for this command is to
include the chapter number as part of the page number
(for example, page 1-1, 1-2, and so on). In this example,
chapter is the parent for page.

The subsection variable also helps to explain the function
of the Parent command. The subsection number (the
value of the variable subsection) is dependent on the
section number (the current value of the variable
section). For example, if the value of section is 1, the first
SubSection command causes the formatter to print 1.1.
The next subsection is numbered 1.2. Each time you
choose a SubSection command, the formatter includes
the value of its parent (the value of section).

Note: Every time you start a new section, subsection
numbering starts over again at 1. Likewise, with every
new chapter, section numbering starts over at 1. The
Parent command provides this capability. The overall rule

Sprint Advanced User's Guide

How To

Parent

is that whenever a parent is changed, its "children" are
automatically reset to zero.

Look at the STANDARD.FMT file for further examples
of the Parent command at work.

To include the value of a parent variable when printing
another variable, use the Parent' command. You can do
this either in an .FMT file or in a Sprint document. For
example,

@PARENT(figure=chapter)'

This example appears in the STANDARD.FMT file. It
tells the formatter that whenever it prints a figure
number, it should also include the chapter number.
Figures in chapter 1 will begin with the number I,
followed by the number of the figure (for example, 1.1,
1.2, 1.3, and so on); figure numbers in chapter 2 will
begin again at I, and will be prefaced with the new
chapter number (for example, 2.1, 2.2,2.3, and so on).

The STANDARD.FMT file includes a Parent command
for the Figure, Table, Paragraph, Section, and Subsection
variables. Chapter is defined as the parent variable for
Figure, Table, and Section. Section is the parent of
Subsection; and Subsection is the parent of Paragraph.

If you don't want variables to print with their defined
parent, edit the STANDARD.FMT file and delete the
appropriate Parent command.

By default, page numbers do not have a parent assigned to
them. This means that pages are numbered sequentially,
beginning with the number 1. You may prefer to include
the current chapter number as part of the page number.
If you want to print the chapter number as part of the
page number, type the following command in the
STANDARD.FMT file:

@PARENT[page = chapter]

Page numbers will now print as 1.1, 1.2, 1.3, 2.1, and so
forth (and as usual, they will have dashes before and
after them). If you want the chapter and page numbers
separated by a dash, rather than the default period, you
need to add the Template command, which tells the
formatter how to print the page numbers:

Appendix C, Style Sheet Commands 387

Parent

ReadEPS

Keystrokes

Function

Reset

Keystrokes

Function

388

@TEMPLATE(page="U-%] %d")

The above command consists of twq parts, %#-%1 and
%d. The first part (11%#_%]) tells the formatter to print the
parent of the variable being defined (page), followed by a
"_". The second part tells it to then print the value of the
variable page.

After the two commands above, Sprint would change its
page number format to Chapter-Page (for example, 2-14).
See the Template entry in this chapter for details on
numbering templates.

@ReadEPS[filename]

Checks filename to see whether it is a true encapsulated
PostScript file.

This command makes sure the named file starts with the
characters %! and has a "BoundingBox" comment in the
header of the file. If the file doesn't have these two
things, the command generates an error message telling
you the file is not a legal EPS file.

If the file satisfies these criteria, the command reads the
dimensions found in the BoundingBox comment into the
variables llx, lly, urx, and ury.

If all this is Greek to you, don't use the ReadEPS
command.

@Reset

Releases all variables except tags.

The Reset command makes all non-tag variables
undefined, as though they had never been set. This
command is primarily used by the Merge_Init_
command to clear the slate after each merged document
is printed.

Sprint Advanced User's Guide

VUnits

Keystrokes

Function

How To

Warn

Keystrokes

Function

Tips

* (Asterisk)

Keystrokes

Function

VUnits

@VUnits[n]

Moves the print head n units down (if the number is
positive) or up (if the number is negative).

This command uses printer units, which are the printer's
primitive unit of measurement. For this reason, a unit on
one printer might not be the same as a unit on another.

Use this command to construct sophisticated (but
printer-dependent) commands. STANDARD.FMT uses
@VUnits in its special EPS commands (for use with
PostScript printers).

VUnits is often used in conjunction with HUnits.

@Warn[warning message text]

Reports a warning in user-defined macros.

The Warn command works just like the Error command
except that it generate a warning message instead of an
error. Warning messages do not abort the formatting
passes, so documents that generate warnings (but no
errors) still print.

You use this command to generate warning messages in
your macros just like the built-in Sprint warning
messages, complete with the file name and line number
containing the problem.

Refer to the Error command entry in this chapter for
details and examples on using this command.

@*

This command forces a hard return to be executed.

Appendix C, Style Sheet Commands 389

* (Asterisk)

How To

, (Comma)

Keystrokes

Function

Insert this command wherever you want a hard return
(the equivalent of pressing Enter). For example, if you're
defining a format that automatically skips three lines
before printing the word lA.hrning in large, bold letters,
you would include this in the definition:

... @*@*@*@large[Warning]",

The result would be three blank lines (three hard returns
in a row), followed by

Warning

@,

Produces a comma when two of these commands
appear next to each other.

You use this command to create a comma to separate
conditional references in macros. Note that a single @,

command does nothing.

For example,

@+_(@,@ref(footnote)@,)

This line is taken from the STANDARD.FMT definition
of the Footnote command. If two footnotes are placed
together in the text referring to the same word, the two
footnote numbers appear with a comma between them
(because there are then two@, commands in a row).

The command is also responsible for Sprint's knowing to
put a comma between page numbers in an index entry
but not after the last page number.

; (Semicolon)

Keystrokes

Function

390

@. ,
Tells Sprint to "do nothing," which means it halts the
current activity.

Sprint Advanced User's Guide

Tips

; (Semicolon)

If you use this command after @- or @', it prevents
them from removing whitespace.

You can also use this command (in normal documents)
to prevent Sprint from splitting a word at a hyphen.

For example,

CO-@iOP

keeps Sprint from ending a line at this hyphen no matter
what.

'(Single Close Quote)

Keystrokes

Function

How To

@'

Ignores all whitespace immediately following.

To remove a line break, tabs, or space characters, enter
@' . For example:

Here is a line @'
and another that will be on the same line, @'

and a third that won't have a blank line above it.

Result:

Here is a line and another that will be on the same line,
and a third that won't have a blank line above it.

Exception: When an @' command (ignore preceding
whitespace) precedes an @' command, and if @' isn't at
the beginning of a line, Sprint will not execute the @'
command and will instead perform the @' command.
This is useful for removing whitespace within macros.
For instance, the command @DoSomething could be
defined as follows:

@form(DoSomething () = "@'@message<do one thing and
another>@'")

The @' and @'commands around the macro cause the
following text:

This is a sample @DoSomething(sample) of
IDoSomething."

Appendix C, Style Sheet Commands 391

'(Single Close Quote)

to print correctly:

This is a sample of "DoSomething".

If the@' and @'commandsweren'tthere, there would be
two spaces in the output between the words "sample"
and "of." However, if @DoSomething is entered this
way:

text text text text text text text text text text
@DoSomething(text) text text text text

@' will be executed

, (Single Open Quote)

Keystrokes

Function

How To

392

@'

Ignores whites pace preceding the command.

This command ignores all space characters or tabs
(whitespace) that appear before the command.

To eliminate leading whitespace· in a line, enter @'. For
example:

this @' that

prints as:

this that

Typically, you use this command at the start of formatter
macros, so that the macro can be set off by a space in the
document without distorting the printout. The following
example shows how @' is used in the TEXT.MAK
definition of the Index command. Index is defined as:

@macro(Index() = 1@'@TheIndex(e=text,v="@, @eval (page)@, ") @' ")

Let's say your text includes the text:

... various chemicals in the urban
drinking water @index{chemicals, in
water}, and the pollutants introduced by
various industries, have an adverse
affect on the taste, as well as the
nutritional value, of this vital resource.

Sprint Advanced User's Guide

Tips

@- (Tilde)

Keystrokes

Function

How To

, (Single Open Quote)

The following table lists the chemicals
found in our water, and their effects.

Notice that there is a space before the Index command.
This is an extra space, since you don't want it to print
before the comma following the index entry. If the Index
command definition didn't contain the @' command, the
line of text would print like this:

... various chemicals in the urban
drinking water, and the pollutants
introduced by ...

Instead, the formatter removes the extra space before
printing the comma.

This command is useful at the start of formatter macros,
which allow macros to be set off by a space in the
document without distorting the printout.

If you're a Borland SuperKey user, and have this pro­
gram loaded, you'll need to type the open quote twice to
get it to print on the screen.

@-

Ignores all whitespace.

This command eliminates all whitespace (spaces, tabs,
and blank lines) up to the next printing character.

You sometimes need this command in .FMT files when
you need the formatter to ignore any spaces that
intervening commands may have introduced.

Appendix C, style Sheet Commands 393

394 Sprint Advanced User's Guide

A p p E N D x

D

Format Parameters

A command or format can include a variety of parameters, or modifiers.
These parameters affect the text within the format; they take effect as soon
as you begin the format, and end when you end the format. If you've
started a format, and before ending it start another format, the second for­
mat not only has its own set of parameters, but also inherits the parameters
of the parent format (the format you already started but haven't ended).

These parameters can be used with virtually any format-assuming it
makes sense to do so. For example, Group could logically be used with the
RESERVE command, but the Underline parameter makes no sense there.

The one exception to this rule is the Style command: There are several pa­
rameters that make sense only with the Style command because they make
global changes. These are BottomMargin, FormFeed, LeftMargin, Paper,
PaperWidth, RightMargin, TabSize, and TopMargin.

You also can use any of the parameters when you define your own format
using the Define command in .FMT files. If you use these parameters to
modify existing commands in .FMT files (or to create brand-new ones
there), you'll be using the @-sign versions of the commands. If you use
these parameters to modify formats in your Sprint files, you should use the
menus to insert the command and then choose Style/Modify to add the pa­
rameter.

Appendix D, Format Parameters 395

Here are some examples of parameters at work:

In Sprint documents:

HYPHENS, group, font Helvetica

BEGIN HEADER, size 6 points, linelength 5 inches

STYLE, notct, spread 1.5 lines, fill on, leftindent + 3 picas

TEXT, above 2 lines, below 2 lines, centered, font elite,
ifnotfound pica, leadingspaces kept

In .FMT files:

@Define(myfont, font Times, size 12 points, script + 3 picas,
spacing 13 points)

@modify(PageHead, linelength 6 inches)

Table Dol lists all the parameters that Sprint recognizes.

Table D.l: Format Parameters

Above Flushright Offset
AbovePage Font OverStruck
After FormFeed Paper
AfterEntry Free PaperLength
AfterExit Group PaperWidth
Before Gutter RightIndent
BeforeEach IfNotFound Script
BeforeExit Increment Size
Below Indent Spacing
BelowPage Index Spread
BlankLines Initialize Strikeout
BottomMargin Inline TabSize
Centered Invisible TCT
Column Justify TopMargin
Columns LeadingSpaces Underline
Comments LeftIndent VerticalJustify
Counter LineLength WidestBlank
Divider Margins WithEach
Fill Numbered Within
FIushleft

Most of these parameters has its own section in this appendix, and all of
them have brief descriptions in the complete list that starts on page 429.

396 Sprint Advanced User's Guide

It's often useful to categorize parameters; that is, some parameters affect the
typeface of text, others affect where on the page the text will appear. Table
D.2 lists the various categories of format parameters, and briefly describes
the function of each.

Typestyle Parameters

Formatting Parameters

Floating Formats

Enumeration Parameters

~acroParameters

Table D.2: Parameter Categories

Font, IfNotFound, Invisible, OverStruck, Script, Size,
StrikeOut, Underline

These are parameters that can be used with typeface
commands. If you specify any parameters other than
those listed, the command is not considered a typeface
command, and will therefore start on a new line.

If you don't specify new parameters for the com­
mand, the format mherits these parameters from the
parent format. (The parent format is the format
enclosing the format you invoke.) Therefore, if the
parent format is already printing in bold type, the
new format will also.

Above, AbovePage, Below, BelowPage, BlankLines,
BottomMargin, Centered, ColumnOffset, Columns, Fill,
FiushLeft, FlushRfght, FormFeed, Group, Indent,
Justification, Justity, LeadingSpaces, LeftIndent, Margins,
Paper, RightIndent, Spacing, Spread, TabSize, TopMizrgin,
VerticalJustify, WidestBlank

These parameters change the text layout. If any of
them nave non-null values, text within the format will
begin on a new line; text following the END com­
mand will also start on a new line.

Above, After, Before, Below, Free, Index, Inline

These parameters create different types of floating
formats (those which are forced to appear at the top
or bottom of a page, or at the beginning or end of the
document). You can only use one of them in a given
format definition.

Counter, Increment, Numbered, Within

Sprint can count the paragraphs within a format. This
count is stored in variables, and all the commands to
set or print the value of variables work on these pa­
rameters.

AfterEntry, AfterExit, BeforeEach, BeforeExit, Divider,
Initialize, WithEach

These parameters define command strings that are
automatically executed at various places in the for­
mat. This gives the format macro capabilities, and
allows for special effects.

Appendix 0, Format Parameters 397

When an entry says it uses a dimension, this means you can use any appro­
priate Sprint dimension (like inches, picas, characters, or lines). Refer to the
"Dimensions" entry in the Reference Guide for a full list.

Starting on the next page are detailed descriptions of most of the param­
eters along with examples of how to use that parameter in a command
definition. Many of the examples use @-sign commands because it's
assumed that you'll often be using them in your .FMT files (style sheets).

Following the detailed descriptions is Table D.6 (on page 429), which is a
complete list of all the parameters recognized by Sprint and short
descriptions of each.

398 Sprint Advanced User's Guide

Above

Above

Syntax: Above dimension

This forma,tting parameter defines how much extra blank space (leading)
will be inserted before the first line of the format. The specified blank space
will appear between the preceding text and the first line of text within this
format. If you insert blank lines at the start of a format, the formatter will
ignore them unless they exceed the Above dimension. For example,

BEGIN QUOTATION margins +.5 in, above 1, below 1, spacing 1

The Quotation command automatically inserts a blank line before
beginning the text within the format. If a blank line precedes the BEGIN
QUOTATION command, the formatter will ignore it; however, if there are
two or more blank lines preceding the command, the formatter will insert
this blank space in the printed text.

If you don't include a dimension, but instead follow the Above parameter
with a comma or the name of another format, the meaning of this param­
eter changes. See the following Above section.

Above

Syntax: Above

If you don't include a dimension with the Above parameter, Above becomes
a floating format parameter. Floating formats are those formats that the for­
matter automatically moves (floats or sinks) to either the top or the bottom
of the page. Page headers and footers are examples of floating formats;
page headers always float to the top and page footers always sink to the
bottom of the page.

Formats that include the Above parameter with no dimension specified
always print at the top of the page. If you use a format that includes the
Above parameter within multi-column text, it will float the text to the top of
the column instead of the page. For example:

Appendix D, Format Parameters 399

Above

BEGIN TEXT, COLUMNS 2
Here's some text that will print in two columns. Before ending this
format, we'll introduce a format that uses the Above parameter. Note
that the following text will actually print at the top of the column.

BEGIN QUOTATION, above, font bold
This text appears at the top of the current column, since the Text,
Columns 2 format is still in effect.
END QUOTATION

Here's the rest of the text to finish out the Text format.
END TEXT

The example prints like this:

This text appears at
the top of the cur-

Here's some text that will print in two
columns. Before ending this format,
we'll introduce a format that uses the
Above parameter. Note that the follow­
ing text will actually print at the top
of the column.

rent column, since
the Text, Columns 2
format is still in
effect.

Here's the rest of the text to finish out
the Text format.

If you specify Above Page, the format will take the full page width. For
example,

BEGIN TEXT, COLUMNS 2
Here's some text that will print in two columns. ,Before ending this
format, we'll introduce a format that uses the Above parameter. Note
that the following text will actually print at the top of the page.

BEGIN QUOTATION, above page, font bold
This text appears at the top of the page and across the width of the
page, even though the Text, Columns 2 format is still in effect.
END QUOTATION

Here's the rest of the text to finish out the Text format.
END TEXT

Look at the following page to see how the example now prints.

400 Sprint Advanced User's Guide

This text appears at the top of the page and across the width of
the page, even though the Text, Columns 2 format is still in in
effect.

Above

Here's some text that will print in two
columns. Before ending this format,
we'll introduce a format that uses the
Above parameter. Note that the

Here's the rest of the text to finish out
the Text format.

following text will actually print at
the top of the page.

If the formatter encounters a format that includes the Divider parameter, the
Divider text, if any, will print below the Above format. For example, if you
added the Above parameter to the Figure format definition (to force figures
to appear at the top of the page) and also added the Divider parameter to
the definition (to create a divider between the figure and the text following
the figure), the divider text (an underline, perhaps) would appear below the
figure. If the same format is used more than once on the page (e.g., two or
more Figure formats), the divider text is printed only once, below all of
them. If the format is too big to fit on the page above the text that invoked
it, and if the format is not grouped, the formatter splits the text of the for­
mat and continues on the next page; the divider then appears below both
sections. You can force such splits by choosing Insert (Uncoditional) Page
Break command.

If you invoke more than one Above format on a single page, the formatter
stacks them in the order in which they were invoked.

Also refer to the Below parameter for related information.

After

Syntax: After

This floating-format parameter saves the text in a floating format for later
execution, instead of printing the text immediately. The formatter fills in the
Variable commands in the text, but doesn't print anything until after all
other text in the document prints. During formatting, the formatter
appends the After text in memory. If you specify more than one Before or
After format in a document, the text of these formats is printed in the order
in which it was defined.

When the formatter reaches the end of the document (or encounters the for­
matter command Place), it then invokes the After format, and formats all
the text in it at this place in the file. This can be used for endnotes,

Appendix 0, Format Parameters 401

After

bibliographies, tables of authority, and other pieces of text that are
referenced throughout the document, but printed together at the end. For
example, the Notes definition looks like this:

@Define(Notes, after, above 3, spacing 1, indent 5, initialize
I@Heading(Notes)")

This definition instructs the formatter to print the text of the endnotes after
the text of the document completes printing.

AfterEntry

Syntax: AfterEntry "string"

This macro parameter executes the specified string at the start of the for­
mat. It acts as though it's right after the opening BEGIN command. For
example, you might create a format that displays a line of asterisks before
printing any text. This format could be defined as follows:

@Define(StarScreen = Verbatim, group, afterentry "@>{*}@*",
beforeexit "@*@>{*}")

BEGIN STARSCREEN
Here's a starry screen display.

END STARSCREEN

The example prints like this:

Here's a starry screen display.

Note: The parameters AfterEntry and Initialize have the same effect.

AfterExit

Syntax: AfterExit "string"

The string in this macro parameter is special, in that it's not executed within
the format. Instead, it is saved until after the format ends, and then
executed in the enclosing format. It acts as though it is placed immediately
after the END command. The primary use for this parameter is to print
reference numbers in floating formats, such as footnotes. For example:

402 Sprint Advanced User's Guide

@Define(Foot, font small, ifnotfound, size .707, spacing 1,
below, counter footnote, above .5,
divider "@u(@»",
AfterEntry "@ref(Footnote). @[",
AfterExit "@+(@, @ref(Footnote) @,) ")

AfterExif

The AfterExit string in this example says that immediately, after the
Footnote command ends, the formatter must superscript (print above the
baseline) the value (number) of the footnote (the @, is used to force multiple
references to include commas between them).

Before

Syntax: Before

Before is like the After parameter, except that the Before format text is for­
matted for placement at the start of the document. For example, the table of
contents is a Before format, as shown in the partial TOe definition below:

@Define(TOC, before, indent -3, justify no, margins .5in, ...)

The pages for the Before format are numbered starting with the Roman
numeral i. The variable FirstPage is set to the last page used by the Before
format. If you start the document with the command Set Page=FirstPage, the
page numbering will continue from the last page of the printed Before for­
mat.

Note: The text of a Before format is actually printed after the document is
printed; you need to move the printed pages to the front of the printed
document.

BeforeEach

Syntax: BeforeEach "string"

This parameter executes the specified string at the start of each paragraph.
For instance, to print a dash before each paragraph in the format, use
BeforeEach "- ". A paragraph must be separated from the previous one by a
blank line and cannot be indented. If a blank line doesn't separate two
paragraphs, the second paragraph is considered a sub-paragraph (part of the
previous one). This is the same way paragraphs are counted with the
Numbered parameter.

Appendix D, Format Parameters 403

BeforeEach

The Numbered format definition includes the BeforeEach parameter to
number each paragraph within the format:

@Define(Numbered, indent -6,above l,below 1,
numbered lI%&.%]%<%u%i%a%i%i%]11,
BeforeEach "@> () @value (counter) . @hsp (. 2in) @\ ")

The BeforeEach parameter in the Numbered example tells the formatter to
begin each paragraph with the value (number) of the counter, followed by a
period. After the formatter prints the number and period, it performs the
Hsp (horizontal space) command, which moves the print head to the right
0.2 inch. Finally, the BeforeEach string instructs the formatter to insert an @\
command to set the wrap margin for the rest of the paragraph ..

The Hyphens command definition includes this parameter to print a dash
at the beginning of each paragraph in this format, and an asterisk at the
beginning of nested Hyphens paragraphs:

@Define(Hyphens=Numbered,numbered 1%<-%i*%]",BeforeEach
"@> () @value (counter) @hsp(.2in) @\")

Note: This parameter is similar to With Each (see page 426); only one of
these two parameters may be specified within a single format definhion.

BeforeExit

Syntax: BeforeExit "string"

This macro parameter executes the specified string at the end of the format.
It acts as though it is placed immediately before the END command.

For example, you might create a format that displays a line of asterisks after
printing the text of the format. This format could be defined as follows:

@Define(StarScreen = Verbatim, group, afterentry "@>{*}@*",
beforeexit "@*@>{*}")

BEGIN STARSCREEN
Here's a starry screen display.

END STARSCREEN

The example prints like this:

**
Here's a starry screen display.

**

404 Sprint Advanced User's Guide

Below

Below

Syntax: Below dimension

This formatting attriubte defines how much extra blank space (leading) that
will be inserted below the last line in the format. It works like the Above pa­
rameter at the end of a format.

If you don't include a dimension, but instead follow the Below parameter
with a comma or the name of another format, the meaning of this param­
eter changes. See the following Below section for details.

Below

Syntax: Below

This floating-format parameter is just like Above (no dimension), except
these formats appear below the main text. This is used for footnotes. For­
mats that specify Below (no dimension) will appear at the bottom of the
current column.

BlankLines

Syntax: BlankLines hinge/break/kept

This parameter can be set to one of those listed above. Break causes multiple
blank lines to be ignored (the formatter will print only the spread value).
Kept just turns off break. Hinge is like Break, but causes the formatter to
automatically perform a PGBREAK command (see the "Page Breaks" entry
in the Reference Guide) on each blank line; you should also add the group pa­
rameter to make this useful. For example,

@Define(Center, centered, indent 0, group, blanklines hinge)

Kept is the default.

Centered

Syntax: Centered
Justify Center

Appendix D, Format Parameters 405

Centered

This formatting parameter centers text between the current left and right
margins. For example,

@Define(Center, centered, indent 0, group, blanklines hinge)

This is the definition for the Center format, which centers text between the
current left and right margins. For example,

BEGIN CENTER
Caution!
Slow children on board!
END CENTER

The example prints like this:

Caution!
Slow children on board!

By default, the Centered parameter also turns fill mode off, but you can turn
it back on by following the Centered parameter with the Fill parameter. For
example,

@Define{nonsense=center, filIon}

If you formatted the earlier example with the Nonsense format, the text
would print like this:

Caution! Slow children on board!

Columns

Syntax: Columns number

This formatting parameter specifies the number of columns for the format.
If you don't include this parameter, or give it a value of zero, the defined
format will print in as many columns as defined by the parent format. If
you include a number with this parameter (including 1), the formatter will
end the current column(s), balance the column(s) at the top of the page, and
then divide the page into the specified number of columns for the duration
of this format. After you exit this format, the columns are ended and
balanced, and the previously specified number of columns resumes. For
example,

406 Sprint Advanced User's Guide

@Define{MultiColumn=text, columns 4}
BEGIN TEXT, COLUMNS 2

Columns

Some years ago, it was impossible to buy a package of one particular
chicken part--breasts, wings, drumsticks, or thighs. As consumption of
chicken increased because of nutritional considerations and cost,
poultry packers had an incentive to produce pre-packaged, one-of-a-kind
chicken parts.

After these appeared on supermarket shelves, health-conscious cooks
proved willing to pay a little extra for boneless, skinless chicken
breasts. Now, boneless, skinless, TASTELESS chicken is available at
many markets.

BEGIN MULTICOLUMN
This text is totally unrelated to chicken. In fact, many of us are so
tired of chicken, we'd rather not read anything about it. Hamburgers,
though high in fat, calories, and numerous other dietary nightmares,
are a much more interesting topic, especially for dieters. A so-called
chicken sandwich just can't compare with a juicy, messy, incredibly
large burger. And if you're really into blowing ~ diet, you can add
guacamole, extra cheese, salsa, bacon, mushrooms, barbeque sauce,
ketchup, mayonnaise, mustard, and relish, as well as the standard
lettuce, tomato, onion, and pickles. Jimmy Buffet once wrote a song
entitled "Cheeseburger in Paradise" the lyrics of which lead me to
believe he'd been on a diet for far too long.
END MULTICOLUMN

Now we return to a two-column format, so it makes sense that we return
to the subject of chicken. The only food one might find more boring
than this is smelly fish!
END TEXT

The example prints like this:

Some years ago, it was impossible to
buy a package of one particular chick­
en part-breasts, wings, drumsticks,
or thighs. As consumption of chicken
increased because of nutritional con­
siderations and cost, poultry packers
had an incentive to produce pre­
packaged, one-of-a-kind chicken
parts.
This text is tot- so tired of chick-
ally unrelated to en, we'd rather
chicken. In fact, not read any-
many of us are thing about it.

Appendix D, Format Parameters

After these appeared on supermarket
shelves, health-conscious cooks
proved willing to pay a little extra for
boneless, skinless chicken breasts.
Now, boneless, skinless, TASTELESS
chicken is available at many markets.

Hamburgers,
though high in
fat, calories, and
numerous other

dietary night­
mares, are a
much more in­
teresting topic,

407

Columns

especially for really into blow-
dieters. A so- ing a diet, you
called chicken can add guaca-
sandwich just mole, extra
can't compare cheese, salsa,
wi th a juicy, bacon, mush-
messy, incred- rooms, barbeque·
ibly large burg- sauce, ketchup,
er. And if you're mayonnaise,
Now we return to a two-column for-
mat, so it makes sense that we return
to the subject of chicken. The only

Counter

Syntax: Counter {variable}

mustard, and
relish, as well as
the standard let­
tuce, tomato,
onion, and pick­
les. Jimmy
Buffet once
wrote a song en-

titled uCheese­
burger in Para­
dise" the lyrics
of which lead
me to believe
he'd been on a
diet for far too
long.

food one might find more boring than
this is smelly fish!

This enumeration parameter names a global variable that acts as the
counter, and is incremented each time you invoke the format. You can print
the value of this variable by referencing Counter, as well as the name of the
global variable you've selected. The Footnote command definition provides
an example of this:

@Define(Foot, font small, ifnotfound, size .707, spacing I,
below, counter footnote, above .5,
divider "@u(@»)",
AfterEntry "@ref(Footnote). @[",
AfterExit 1@+(@,@ref(Footnote)@,)")

The counter footnote parameter tells the formatter to keep track of the
number of Footnote commands entered, and to increment the counter each
time a Footnote command appears in the file. If you want to print the
current footnote number, you could choose the Variable command and
type footnote.

If you don't name a variable in the definition, the formatter will use the
local counter (the counter currently in effect).

Divider

Syntax: Divider Ustring"

This macro parameter produces a kind of visual separation, e.g., the bar
that appears above footnotes at the bottom of the page. The text produced

408 Sprint Advanced User's Guide

Divider

by this string will be printed between the invocations of this format and the
running text. The Footnote command includes the Divider parameter in its
definition:

@Define(Foot, font small, ifnotfound, size .707, spacing 1,
Below, counter footnote, above .5,
divider "@u (@»",

AfterEntry "@ref(Footnote). @[n,
AfterExit n@+(@,@ref(Footnote)@,)")

The parameter divider "@u(@>)", specifies a solid underline character
repeated to the right margin. For example,

Here's a footnote referenced in text.1 Look at the bottom of this page for
an example of how the Divider parameter works.

Note: You can include Divider only in a floating format definition (a
definition that contains one of the following parameters: Above (no
dimension), After, Below (no dimension), Before, Free, or Index).

Fill

Syntax: Fill Yes/No, On/Off, or 1/0

This formatting parameter specifies whether the formatter should fill out
the line length of paragraphs. The formatter recognizes a paragraph as text
followed by either a blank line (two Enter characters in a row), the formatter
command @*, or a line that's indented. Fill On means that if a line in the file
ends without one of these, the formatter replaces the soft or hard return
with a space, and the paragraph continues. For example,

BEGIN TEXT, Fill On
Here's an example
of how the Fill parameter
works. Regardless of where the hard
return characters are in the file,
the
formatter fills up the
lines
between the left
and right margins.
END TEXT

1. This is the text of the footnote

Appen.dix D, Format Parameters 409

Fill

The printed example:

Here's an example of how the Fill parameter works. Regardless of where
the hard return characters are in the file, the formatter fills up the lines
between the left and right margins.

Fill On means that you want the lines to end wherever you have a hard
return, and forces verbatim output. To show the difference, here's the same
example text affected by the Fill Off parameter.

BEGIN TEXT, FILL NO
Here's an example
of how the Fill parameter
works. Regardless of where the hard
return characters are in the file,
the
formatter fills up the
lines
between the left
and right margins.
END TEXT

Prints like this:

Here's an example
of how the Fill parameter
works. Regardless of where the hard
return characters are in the file,
the
formatter fills up the
lines
between the left
and right margins.

Fill Off also turns off justification. You can tum it back on by following the
Fill parameter with the Justify parameter.

FlushLeft

Syntax: FlushLeft
Justify Left

This formatting parameter justifies text at the current left margin. As each
line completes, or a tab appears, the formatter aligns the text at the left
margin. For example,

410 Sprint Advanced User's Guide

@Define{PushLeft, font italic, flushleft, fill off}
BEGIN PUSHLEFT
The PushLeft command is a
command that we made up to demonstrate
how the FlushLeft/Justify Left parameter works.
It could be used to format addresses in letters.
END PUSHLEFT

FlushLeft

This example creates a command called PushLeft that prints text in an italic
font, aligns text at the current left margin, and does not fill lines. The
example prints like this:

The PushLeft command is a
command that we made up to demonstrate
how the FlushLeftlJustify Left parameter works.
It could be used to format addresses in letters.

If you don't specify a Justify parameter in your format definition, its setting
is inherited from the parent format. The default for the outermost page for­
mat is On; the formatter justifies text at both the left and right margins.

FlushRight

Syntax: FlushRight
Justify Right

This formatting parameter justifies text at the current right margin. As each
line completes, or a tab appears, the formatter aligns the text at the right
margin. For example,

@Define{PushRight, font italic, flushright, fill off}
BEGIN PUSHRIGHT
The PushRight command is a
command that we made up to demonstrate
how the FlushRight/Justify Right parameter works.
It could be used to format return addresses in letters.
END PUSHRIGHT

This example creates a command called PushRight that prints text in an
italic font, aligns text at the current right margin, and does not fill lines. The
example prints like this:

Appendix 0, Format Parameters 411

Font

Font

Syntax: Font fontname(s)

The PushRight command is a
command that we made up to demonstrate

how the FlushRight/Justify Right parameter works.
It could be used to format return addresses in letters.

This typeface parameter specifies the font(s) to be used in this format. For
example,

@Define(Example = Display, font elite pica courier, size 10 pt,
ifnotfound)

If the printer has a font or parameter that matches one of the font names
listed, it uses it for the duration of the format. If there is more than one
match, the formatter uses the first one, and the other font names are
ignored. The formatter will generate a warning during formatting if none
of the specified font names exist
for the current printer, unless the IfNotFound parameter follows, as shown

above.

The Example definition shown above is based on the Display format, but
includes the Font parameter. This means that the formatter should format
the text as if it were in a Display format, but with a different font. The for­
matter will first check to see if the printer can print an elite font. If it can, the
text will print with this font; if it can't, the formatter will determine
whether the print can print in a pica font, and so on. (See also Size and
IfNotFound in this appendix).

If you specify a single font like Font bold, and your printer doesn't have this
capability, it may attempt to double-strike the characters to make them
darker. If the printer doesn't have an alternative to match (or approximate)
the font you specify, the formatter will display a warning message
indicating the specified font cannot be found. The document will print, but
the text will print in the printer's default font.

Free

Syntax: Free

412 Sprint Advanced User's Guide

Group

Free formats begin in the current column, immediately after the line in
which they are invoked, and before the next line. This can be used for local
floating figures, quotations, and notes. They differ from regular formats in
that text after them may be added to the preceding line by the format to fill
it to the right margin. As soon as the formatter finishes the line, the text of
the free format will be printed.

Group

Syntax: Group Yes/No

This formatting parameter prevents page breaks anywhere inside the for­
mat. This is the same as enclosing the entire format in a Group format. If
you don't specify this parameter in your format/command definition, its
setting is inherited from the parent format.

The Figure command uses the Group parameter, to prevent figures from
being split across pages. Its definition looks like this:

@Define(Figure, above, group, columns 1, spacing 1,
fill n, linelength 0, notct, below 1)

This definition specifies text centered between the current left and right
margins, with indentation (if specified by the parent format) turned off. All
text within the Center format will appear together on the same page (as
specified by the Group parameter). If the text contains multiple blank lines,
the formatter will ignore them and insert a single blank line; if the text
cannot fit on a page, the formatter will break the page at a blank line.

Gutter

Syntax: Gutter distance

This formatting parameter specifies the gap (amount of blank space)
between columns in a multi-column format. The Index format, for example,
specifies a .75 inch gutter between the columns in the index, as shown in
the partial definition below:

@Define(Thelndex, index, columns 2, spread .5, spacing 1,
justify no, margins +.75 inch, gutter. 75 inch, indent -5,

If you don't specify the Gutter parameter, its setting is inherited from the
parent format. The default is three characters.

Appendix D, Format Parameters 413

IfNotFound

IfNotFound

Syntax: IfNotFound

This typeface parameter is meaningful only if preceded by a typeface pa­
rameter (Font, Invisible, Overstruck, Script, Size, Strikeout, or Underline). If
you follow a typeface parameter with the IfNotFound parameter, and the
printer can't print the typeface specified, the formatter will not give a
warning. For example,

@Define(Example = Display, font elite pica courier, size 10 pt,
ifnotfound)

This format tells the formatter to print the text in the Display format, but
use either an elite, pica, or courier font. In addition, the formatter should
print the text in lO-point type, but if the printer doesn't have this capability,
it should ignore the command (but not give any message). Without the
IfNotFound, an error mesage would be generated.

The other use of IfNotFound is to provide a substitute for a typeface. The
example Font italic, IfNotFound bold tells the formatter to print text in italics;
if the printer doesn't have an italic font, the IfNotFound bold parameter tells
the formatter to use bold for the text within this format instead.

If you don't include the IfNotFound parameter, and 'specify a font that your
printer can't print, you'll get a warning message during formatting, and the
text will print in the printer's default typeface.

You can also follow IfNotFound with an alternate typeface, to be used only if
the printer can't print with the typeface you specified prior to the
IfNotFound parameter. For example,

font bold, ifnotfound, overstruck

will overstrike only if the printer does not have a "bold" font. In essence,
you're giving the formatter an alternative, rather than having the printer
try to simulate the desired typeface.

Increment

Syntax: Increment variable

Same as Counter.

414 Sprint Advanced User's Guide

Indent

Indent

Syntax: Indent (+/-) distance

This formatting parameter specifies the indent or outdent value for the first
line of each paragraph in the format. This indent value is relative to the
current left margin. If the distance is positive, it specifies by how much the
first line of each paragraph should be indented. All paragraphs will start at
this column, even if they don't look indented on the screen. For example,

@Define(Notes, after, above 3, spacing 1, indent 5,
initialize "@Heading(Notes) ")

The definition of the Notes command (which equals the Endnote command
on the References menu) indents the text of the notes five characters from
the global left margin.

If you don't want a paragraph to be indented, begin the paragraph with a
single tab. Press Tab at the beginning of the paragraph, and then type the
text of the paragraph.

If you want a paragraph within the format to be indented more than the
specified indent value, you can begin the paragraph with two or more tabs;
the text will be indented to the specified tab stop on the printed copy.

If the Indent distance is negative, the format is an outdented format. In this
case, the wrap margin is set to the specified distance. Paragraphs that are not
indented in the file will start printing at the left margin, but all continuing
lines in the paragraph will start at the wrap margin. The Description format
uses a negative indent distance of -.25 line, which means the first part of
each paragraph will appear 1/4 of the line length to the left of the
remaining text in the paragraph. To begin printing text at the wrap margin,
press Tab. The following example shows you the definition of the.
Description format, followed by text formatted with Description.

@Define(Description, indent -.25 line, WithEach "@b(@eval)
@\",above 1,below 1)

BEGIN DESCRIPTION
Milk Tab A nutritious beverage that's full of vitamins, calcium, and
protein.

Cookies Tab A not-so-nutritious snack that tastes great with milk.

Tab Homemade cookies are a favorite among toddlers, school children,
and adults alike.
END DESCRIPTION

Appendix D, Format Parameters 415

Indent

The example prints like this:

Milk

Cookies

A nutritious beverage thafs full of vitamins, calcium,
and protein.

A not-so-nutritious snack that tastes great with milk.

Homemade cookies are a favorite among toddlers,
school children, and adults alike.

As shown in the previous example, if you indent a paragraph with the Tab
key, the line will also start at the wrap margin.

Indentation is not inherited from the enclosing format. It is set to zero
unless otherwise specified.

Index

Syntax: Index

The index is printed using a specialized After format. This type of format
cannot be used with the formatter command Place, and it is called using a
special command form.

A call to an index type format looks like this:

ForrnatName entry string, value string ...

or

FormatName e string, v string

where the strings are quoted strings or the names of string variables.

The entries are alphabetized, and the values for each entry are appended
together with them to make a string like:

EntryValueValueValue ...

for each unique entry. Sprint ignores case and formatting commands when
comparing entries. When Sprint finishes formatting the document, it for­
mats the index. These strings are printed in the Index format, with a double
hard return after each.

In these formats, each time the initial letter changes, the variable Counter is
set to that letter (A is 1) and the BeginEach command is executed; this lets
you title each letter.

416 Sprint Advanced User's Guide

Index

Commas in the entry string are used to make multi-level indexes. The text
before the comma locates the primary entry, and the rest of the text
describes an entry in a sub-index which is printed after the entry. The sub­
index formats just like the main index, except each line is printed with a tab
in front of it. Sub-indexes can be nested any number of times.

Commas inside commands in the entry string are not used for this, so you
can use the command word text,text to put commas in an index entry.

The typical user avoids all this complexity by using macros. The Index
macro, defined in STANDARD.FMT, lets you make index entries containing
the page number by choosing an Index command from the menus or using
one of the equivalent @-sign index commands. It expands to:

@\@Thelndex(e = "@eval",v = "@, @eval (page)@,")@'

Notice the use of @, to place commas between the values provided for the
page numbers.

Initialize

Syntax: Initialize "string"

This macro parameter executes the specified string at the start of the for­
mat. It acts as though it's right after the opening BEGIN command. The
definition of the formatter command TCapt uses the Initialize parameter, as
follows:

@Define(tcapt = center, size 8 point, font AvantGarde,
counter table, Initialize="@*Table @value (table): ",
BeforeExit=I@*@ux{@>}@*@*@NoHinge")

This Initialize parameter in this definition states that immediately following
a TCapt command, the formatter should begin a new line, print the word
Table followed by the number (value) of the current table, and then print a
colon and a space.

Also refer to the entry on the AfterEntry parameter for more information.

Invisible

Syntax: Invisible Yes/No

This typeface parameter lets you hide the characters inside a format; the
formatter instead prints a blank space of equal size. Underlining and

Appendix D, Format Parameters 417

Invisible

strikeout, if included in the command definition, will occur as though the
characters were actually printed.

Invisible can be useful for table alignment.

Justification

Same as Justify.

Justify

Syntax: Justify Left, No, off,o
Justify Right
Justify Center
Justify Both, Yes, On, 1

This formatting parameter specifies how text should be aligned. As each
line completes, or a tab appears, the formatter. decides what to do with the
text formatted thus far (align it at the left or right, between both margins, or
centered between the margins). If you don't specify this parameter, its
setting is inherited from the parent format. The default for the outermost
page format is On; the formatter justifies text at the left and right margins.
Justify Yes, Justify On, Justify Both, and Justify 1 have the same effect.

Justify No, Justify Off, Justify Left, and Justify 0 have the same effect; text is
justified only at the left margin.

Justify Center centers text between the margins and turns off filling.

Justify Right aligns text at the right margin and also turns off filling.

If you specify Justify Center, Right, or Left and want Sprint to fill paragraphs,
you can turn filling back on by following the Justify parameter with the Fill
parameter.

For examples of the Justify parameter, see Center, FlushLeft, and FlushRight
in this section.

LeadingSpaces

Syntax: LeadingSpaces kept or ignored

418 Sprint Advanced User's Guide

Leftlndent

If this parameter specifies ignored, the formatter will ignore any indentation
(tabs or space characters) at the start of a paragraph.

Leftlndent

Syntax: Leftlndent (+/-) distance

This formatting atribute sets the left edge of the text in a format. You can
either set it absolutely from the left margin, or (more commonly) relative to
the enclosing format's left indent by typing a + or - before the dimension.
(The left indent can be different than the left margin; the Description format
is an example of left indent vs. left margin.)

The Address command definition sets an absolute left indent one-half of the
entire line length (the left indent is set half-way across the page, measuring
from edge to edge):

@Define(Address, leftindent.5 line, above 2, below 2,fill
n,group,initialize="@nohinge")

This means that regardless of the left indent set by the parent format (if one
exists), the left indent of text in the Address format will be one-half line
from the left edge of the paper. Similarly, if the definition included the pa­
rameter Leftlndent .5 inch, the left indent for text in this format would be O.S
inch from the left edge of the paper, regardless of the parent format's left
indent setting.

The Display format definition sets the left indent relative to the current for­
mat's left indent. The left indent for text in the Display format is O.S inch
from the current left indent:

@Define(Display = Verbatim, leftindent +.5 in, above 1, below 1,
group, blanklines hinge)

When you set a left indent relative to the current left indent, you don't have
to know what the current left indent is. You just specify how far to the left
or right of the current indent you want text to begin; + moves the left
indent in (to the right) the specified distance, and - moves the left indent
out (to the left) the specified distance.

LineLength

Syntax: LineLength distance

Appendix D, Format Parameters 419

LineLength

This formatting parameter specifies the length of a printed line, measured
from the current left margin. For example, LineLength 32 picas means each
line (except the last line of a paragraph) will be 32 picas in length; the right
margin will be 32 picas from the left margin.

You can use the parameter LineLength 0 to tum off wordwrap. For example,

@Define(Verbatim, indent a, spacing 1, fill n, linelength 0, notct)

Text typed within the Verbatim format is printed as a single line, until the
formatter sees a hard return (Enter) character.

Margins

Syntax: Margins (+ / -) distance

This formatting parameter sets both Leftlndent and Rightlndent at once, to
the same absolute or relative values. The Quotation format definition uses
the Margins parameter to move both the left and right indents in (toward
the center of the page) by 0.5 inch: .

@Define(Quotation, margins +.5 in, above 1, below 1, spacing 1)

See the Leftlndent and Rightlndent sections for details on these parameters.

NoTCT

Same as TCT No.

Numbered

Syntax: Numbered Template

This enumerati9n parameter specifies that this is a numbered format, which
means the formatter will increment the Counter each time a paragraph
begins. Each paragraph that is separated from the previous one by a blank
line (and not indented) will be counted.

If you don't specify a global variable with Counter, the formatter uses a local
variable, which can be ~ccessed by the name Counter while you're in the
format. This local variable disappears when you end the format. In this

420 Sprint Advanced User's Guide

Numbered

case, a string argument to Numbered can supply a numbering template. The
Numbered and Hyphens format definitions provide an example of this
concept:

@Define(Numbered, indent -6,above 1,below 1,
numbered "%&.%]%<%u%i%a%i%i%]",
BeforeEach "@> () @value (counter) .@hsp (.2in) @\")

@Define(Hyphens=Numbered,nurnbered n%<_%;*%] ", BeforeEach
1@>()@value(counter)@hsp(.2in)@\")

Note: If a definition includes the Numbered parameter as well as a Before or
After parameter, the formatter won't increment the counter until the text is
actually formatted.

Overstruck

Syntax: Overstruck

This typeface parameter is usually included to allow for printers that can't
print in bold type. Overstruck specifies printing characters twice, in order to
make them appear bold. The printer definition may tell Sprint to offset
these overstrikes, in which case the resulting text will be wider. You might
use this parameter if you sometimes print on a printer that doesn't have a
bold typeface. For example,

@Define(B, font bold, ifnotfound, overstruck)

This is the command definition for bold, which tells the formatter to print in
bold, and if the formatter doesn't find a bold typeface, it should instruct the
printer to overstrike the text to make it darker.

Rightlndent

Syntax: Rightlndent (+ / -) distance

This formatting parameter sets the right edge of the text either absolutely
from the right edge of the paper or relative to the enclosing format's right
indent. Note that positive numbers move the right indent to the left. For
example,

RightIndent +.5 inch

increases the right margin by 0.5 inch; the right indent for text will be 0.5
inch to the left of the parent format's right indent.

Appendix D, Format Parameters 421

Rightlndent

RightIndent -.5 inch

moves the right indent 0.5 inch to the right (the right, indent is 0.5 inch
closer to the right edge than the parent format's right indent).

When you set a right indent relative to the current right indent, you don't
have to know what the current right indent is. You just specify how far to
the left or right of the current indent you want text to begin; + makes the
right indent larger (moves it to the left the specified distance), and - shrinks
the right indent (extends the line length by the specified distance).

Script

Syntax: Script (+/-) distance

This typeface parameter specifies where the formatter should print text in
relation to the baseline of text. For example, when you choose the +
Superscript command on the Typestyle menu, the formatter knows that it
should print the text .35 of a line above the baseline (the bottom of the
current line). The formatter gets this information from the definition of "S"
(superscript):

@Define(S, font super, ifnotfound, script .3~, font small, ifnotfound,
size .707)

The number entered as part of the Script parameter can be positive or
negative, and is expressed in relation to the baseline. For example, Script +2
raises and prints text two full lines above the baseline; Script -.5 instructs
the formatter to print the text one-half line below the current baseline. This
offset is measured using the height of the font in the parent format. Positive
is up; a negative number is down. The default Script values for superscript
and subscript use +.35 and -.25 respectively.

The signed (+ or -) number will be rounded to the nearest vertical printer
unit, except that it will always use at least one unit, even if the rounded
value is zero.

If the offset (after rounding) exceeds +.66 or -.33, the neighboring lines will
be moved away to make room for the script characters. Otherwise, the lines
will remain where they are, even though the letters might touch.

Note that the distance used with the Script parameter is always in terms of
lines. For this reason, you should not include any dimension abbreviation
except "line" or "lines."

422 Sprint Advanced User's Guide

Size

Size

Syntax: Size n

This typeface parameter specifies the point size of characters within the for­
mat, if the printer supports font scaling. You can specify size in absolute
units, such as inches or points, or you can use lines, scaling relative to the
parent format's point size.

The Big format provides an example of the Size parameter:

@Define(Big=B, font large dwidth, ifnotfound, size 1.414,
font bold, ifnotfound, overstruck, afterexit "@nohinge")

This example means the formatter should try to find a font called large, or
look up the current font name (in the .SPP file for the printer) and see if
there's a font that ends with .large (e.g., Helvetica.large). If the formatter finds
such a font, it uses this font to print the text within the format. If it doesn't
find it, it tries the same thing with the dwidth font (large is a common font
on laser printers; dwidth is more common among dot matrix printers). If
neither font is available, the formatter determines whether the printer
supports font scaling. If so, it sets the character size to be 1.414 times larger
than it is now, and prints the text in the bold font. (In typesetting lore, 1.414
(the square root of 2) is said to be an appropriate size for characters in
headings, titles, etc.)

Spacing

Syntax: Spacing dimension

This formatting parameter specifies line spacing. This is the space
(calculated by font height) between lines in the printed output. The number
2 specifies double spacing (2 lines), 3 specifies triple spacing, 1.5 specifies
one and one-half spacing, etc. You can use any valid vertical dimension to
specify line spacing; points is the typical unit of measure for most desktop
publishing applications (see Table 2.1 on page 72 for a complete list of
dimensions). There are 72 points per vertical inch, so if you want 6 lines per
inch, specify Spacing 12 points (72 divided by 6); if you want 8 lines per inch,
specify Spacing 9 points. If you don't specify the Spacing parameter, its
setting is inherited from the parent format.

This parameter is useful if your overall page format specifies line spacing
other than single. If you want certain formats to be single-spaced, you
could include this parameter in the format definition. For example, let's say

Appendix D, Format Parameters 423

Spacing

that you set up a document to have .75 spacing, but you want the page
headings to be single spaced. The following definition shows you how
PageHead is defined in the STANDARD.FMT file.

@Define(PageHead,above page,columns 1,below 2,spacing 1)

This definition "floats" the page head (a page heading that affects only the
current page) to the top of the page, prints the heading in a single column,
inserts two blank lines below the heading, and sets up single-spaced
output.

Spread

Syntax: Spread distance

This formatting parameter specifies the depth that appears whenever the
formatter sees a single blank line. You can use this parameter to create more
or less space between paragraphs. If the Spacing is 1 and Spread is 1, there is
a single blank line between the paragraphs. If Spread is 2, there are two
blank lines between paragraphs; if Spread is .5, there is one-half blank line
between paragraphs; if Spread is 0, there are no blank lines between
paragraphs. Spread a is useful for enumerated formats. You must insert
blank lines in the file to separate the paragraphs, but if you don't want the
blank lines to print, use the Spread a parameter. If you don't specify this pa­
rameter, its setting is inherited from the parent format.

The following example shows part of the Index definition:

@Define(Thelndex, index, columns 2, spread .5, spacing 1,

The beginning of this definition specifies a two-column format for index
entries. The entries will be single-spaced, but each blank line will be
replaced with one-half of one line, rather than the full blank line.

The Spread parameter only affects single blank lines. Blank lines that appear
after the first one produce full blank lines in the printed file. That is, N

424 Sprint Advanced User's Guide

Spread

blank input lines in a row will produce N-l plus the Spread number in the
printed copy. For example,

@Define{SillySpace=Numbered, spread 0, spacing 2}
BEGIN SILLYSPACE
Text of item 1.

Text of item 2. This will be a longer item to demonstrate the Spacing 2
parameter. This item will print double-spaced.

Text of item 3.

Text of item 4. We inserted two blank lines between item 3 and item 4.
When the example prints, there will be one blank line (2 minus 1, plus
the spread (0) equals 1 blank line in the output).
END SILLYSPACE

This nonsense format is similar to Numbered, except that the output is
double-spaced, and the spread (number of blank lines between paragraphs)
is zero. The printed example looks like this:

1. Text of item 1.
2. Text of item 2. This will be a longer item to demonstrate the Spacing 2

parameter. This item will print double-spaced.
3. Text of item 3.

4. Text of item 4. We inserted two blank lines between item 3 and item

4. When the example prints, there will be one blank line (2 minus I,

plus the spread (0), equals 1 blank line in the output).

StrikeOut

Syntax: StrikeOut Off/Alphanumeric/NonBlank/All

This typeface parameter specifies what should be struck out by printing
dashes though it. It works just like Underline (see page 426). For example,

DEFINE Xout=Example, StrikeOut alphanumeric
BEGIN XOUT
Strikeout this sample text.
END XOUT

Appendix D, Format Parameters 425

TeT

Prints like this:

StFikeout tftis. sample teff.

TCT
Syntax: TCT Yes/No

This macro parameter determines whether TCT commands should affect
text within this format. For example,

@Define(Verbatim, indent 0, spacing 1, fill n, linelength 0, TeT No)

This definition tells the formatter to ignore any character translation (TCT)
commands for the duration of this format. Once the format ends, the TCT
commands resume their effect. For more information on the TCT com­
mand, see the "TCT" entry in the Reference Guide.

Underline

Syntax: Underline Off/Alphanumeric/NonBlank/All

This typeface parameter specifies how text should be underlined when
printed in this format. For example,

@Define(E, font italic uns, ifnotfound, underline nonblank)

This is the definition used by the Italic command on the Typestyle menu. It
says to print the text in an italic typeface, and if the formatter can't find this
typeface, to underline everything except the blank spaces in the text.

Underline Nonblank tells the formatter to underline everything that's not a
blank space; Underline All underlines all text, including spaces between
words; Underline Alphanumeric underlines all letters and numbers, but not
punctuation symbols or blank spaces; Underline Off turns the underline font
off, if the parent format has turned it on. If you don't specify one of the
various types of underlining, the formatter will assume Underline All.

Wi thEa ch

Syntax: WithEach "string"

The specified string enables a formatter macro at the start of each
paragraph, using the text up to the first tab or hard return, as an argument

426 Sprint Advanced User's Guide

WithEach

to the macro. Use the Eval command in the string where you want the text
to appear. For example, you can make the Description format print the item
in bold, and set the wrap margin right after the item by using the following
Modify command:

@Modify(Description, WithEach II@B{@eval) @$"})

Note: A format definition can contain either one WithEach or one BeforeEach
parameter; these two parameters are mutually exclusive.

Within

Syntax: Within variable

This enumeration parameter works in conjunction with the Numbered pa­
rameter. If you specify Numbered in your format definition, the Within
variable parameter can name a variable that acts as the parent to the Counter
variable. If you don't use this to name a parent, the formatter uses the
counter for the enclosing format as the parent.

List of Parameters

Sprint has over 60 different parameters available, all of which are listed in
Table 0.6.

Note that the Style command is unique in that it sets global settings in a
document. Because of this, there are certain parameters that can only be
used with the Style command. These parameters are listed in Table D.4.

There are also some parameters that can only be used with formats that
affect regions of text. These commands include any format that starts with
the command BEGIN, any that is editable with the Style/Modify com­
mand, or any command you create yourself using the Define or Modify
commands. (You enter the Define and Modify commands using the Style/
Other Format menu command.) Parameters valid only for these formats are
in Table 0.3.

A third group of parameters are those that are valid anywhere: both in
Style commands and in all other commands. This group of parameters
appears in Table 0.5.

After the three short tables comes a complete alphabetical list (Table 0.6) of
all the parameters with short descriptions about each.

Appendix 0, Format Parameters 427

Table 0.3: Parameters Used Only with Formats Affecting Regions

Above
AbovePage
After
AfterEntry
AfterExit
Before
BeforeEach
BeforeExit
Below
BelowPage
BlankLines

Centered Inline
Column Invisible
Columns LeadingSpaces
Divider Margins
FlushLeft Numbered
FlushRight Overstruck
Free Script
Group Strikeout
IfNotFound Underline
Index WithEach
Initialize Within

Table 0.4: Parameters Used Only with Style Commands

BindingOffset Increment RightMargin
BottomMargin LeftMargin TabSize
Comments Offset TopMargin
Counter Paper WidowPrevent
FormFeed PaperWidth WordSpacing

Fill
Font
Gutter
Indent
J ustifica tion

428

Table 0.5: Parameters Used Anywhere

Justify Size
LeftIndent Spacing
LineLength Spread
NoTCT TCT
RightIndent

Sprint Advanced User's Guide

Table D.6: Format Parameters (Complete Ust)

Field

Typeface Parameters

Font name(s)

IfNotFound

Invisible

Overstruck

Script {+/-} dimension

Size dimension

Strikeout type

Underline type

Description

Uses the name font. The Font parameter can be one font
name or a list of names. For example, Font courier pka elite
allows any of these fonts to be used. The first match is the
one used.

Ignores any script, size, overstruck, underline, strikeout,
or invisible fields if the most recent font was matched by
something from the printer. For example, Font bold,
IfNotFouna, Overstruck will overstrike only if the printer
does not have a bold font. This command, if at the end of a
definition, also prevents the error message that is
normally printed if a specified font is not sU2ported by
the printer; for exampfe, @Define(Typewriter, Font couner,
IfNotFound).
Does not print the specified text. However, the text
still takes up space and gets underscored and struck out if
appropriate.

Prints the text once, offsets slightly, and prints again. It is
similar to the bold format.

Moves up or down by the given dimension. (The
dimension must be in lines.)

Specifies the point size. Size can be given in absolute units
such as inches or points, or it can be given in lines (the
width of the line depends on the current font's point size).
If the dimension is in lines, nesting such formats will
cause the point size to grow or shrink geometrically.

The specified text will be struck out. For example, STRI~
60MBTHlNG OUT ... For a list of acceptable types, refer
to Underline.

Underlines the specified text. There are four different
types of underline formats:

all Everything will be underlined.

alphanumeric All letters and numbers will be underlined.

nonblank Everything except blanks will be
underlined.

off No underlining will occur.

If no type is specified, then all will be used.

Appendix D, Format Parameters 429

Table D.6: Format Parameters, continued

Field

Formatting Parameters

Above dimension

AbovePage

Below dimension

BelowPage

BlankLines type

BottomMargin
dimension

Centered

Column

Columnsn

Comments {yes/no}

430

Description

At least this much blank space will be put above the for­
mat.

"Floats" this format to the top of the page.

At least this much blank space will be put below the for­
mat.

"Sinks" this format to the bottom of the page.

Defines how the formatter will view blank lines entered
in the text. Valid types are

break Multiple blank lines are i~ored. Together they
will result in a single spread line.

kept Formats each blank line (opposite of break). Kept is
the default.

hinge Similar to break, but an automatic Hinge command
is inserted on each blank line.

This is the space between the end of the text area (which
includes the footer if there is one) and the bottom edge of
the paper. Default value is 1 inch. Set this value only once,
at tlie beginning of the document, and only as a modifier
to the Style command.

Centers the text within the defined margins (same as
Justify center.
Sets up a format to print parallel (not snaking) columns.
The lines that come after this format start printing at
exactly the same spot as the lines in it. (For this reason,
you need to set a new left indent after the command that
has the Column parameter.)

Divides the page uE into this many columns (maximum is
6). If you set n equal to 0 (the default value), the text will
be formatted into one column.

Tells the formatter whether to hide comments (that is, any
line starting with a semicolon) entered in your file. Yes
means to omit the comments from the printed version of
the file; no means to :print the comments. See the
Comments entry for Instructions on entering comments.
The default value of this parameter is Comments no and is
set on the last line of STANDARD.FMT. Used only as a
modifier to the Style command.

Sprint Advanced User's Guide

Table 0.6: Format Parameters, continued

Field

Fill {on/off}, {yes/no}

FlushLeft

FlushRight

FooterSpacing
dimension

FormFeed {on/off}

Group {yes/no}

Gutter dimension

HeaderSpacing
dimension

Indent {+/-} dimension

Justification type

Description

Turns Fill mode on or off for this format. Turning Fill on
causes the formatter to wordwrap a 'para~aph, ignoring
single hard returns if necessary. Settmg Fzll to ofrmeans
Sprint always starts a new line if it encounters a sin~le
hard return character. (If you do not wish to left jushfy,
you can override this by Inserting another justifY com­
mand after the fill command.)

Forces all lines to begin at the left margin (same as Justify
left)·
Forces the end of all lines to the right margin (same as
Justify right).

Defines the distance between the bottom of the page and
the place where the footer begins printing.

Defines whether the formatter will send form feed
characters to the printer to advance the printer to the top
of the next page. If you specify off, the formatter sends hne
feed characters to the printer Instead of form feeds. You
may need to used this parameter if your paper length is
not 11 inches (the usual default paper length). Default is
FormFeed on. Used only as a modifier to tlie Style com­
mand.

Groups this format. You can also disable grouping with
Group no.

Defines the distance between columns in a multi-column
format. Default value is .5 inch.

Defines the distance between the top of the page and
the place where the header begins printing.

Defines the amount of sEace the first line of a Earagraph
will be indented (or outCiented) relative to the left margin.
Default value is 0 (no indent). If this parameter is a
positive number (for example,3 picas), the formatter
mdents the first line of eve'Y. paragraph by this amount. If
you specify a negative number, the first lme of every
paragraph will be outdented by the specified amount
(printed to the left of the remaining text in the paragraph).
The Indent parameter has the same effect as the Layout/
Ruler /Precise Settings/Initial (First Line) Indent com­
mand.

If an area of text is affected by a command that indents by
default, or if you specify an indent value in a Style com­
mand and don't want an area of your file indented,
modify the command affecting tne text that shouldn't be
indented.

Same as Justify.

Appendix D, Format Parameters 431

Table D.6: Format Parameters, continued

Field

Justify type

LeadingSpaces type

LeftIndent {+}
dimension

LeftMargin

LineLength {+/-}
dimension

Margins {+/-}
dlmension

NoTCT

Offset dimension

Paper dimension

432

Description

Defines the type of justification. Valid types are left, right,
no, y'es, off, on, Doth, and center. Right and center types also
set the fifi command to off. The default value is Yes; all
paragraphs justified to the left and right margins. If you
set tllis parameter to No, Sprint prints with ragged-nght
margins.

Defines how the formatter will treat indentation by tabs or
spaces at the start of a paragraph. Valid types are

kept Formats each blank space.

ignored Formats two or more blank spaces as a single
blank space. Manual indentation by tabs or
spaces at the start of a paragraph is ignored.

Defines the new left margin relative to the current
format's left mar~n. For example, Leftlndent 1 inch starts
the left margin 1 Inch from the previous format's left
margin. You cannot use negative numbers with Leftlndent.

Defines the left margin. You can use this parameter only
once in a document and only at the top or the file
modifying a Style command. The defaUlt value is 1 inch.

Defines the length of a line of text (that is, the placement
of the right margin relative to the left margin). When
the dimension is set to 0, paragraph wordwrap ("fill")
does not occur (so long lines can go off the right side of the
page).

Simultaneously defines both the left and the right margin.
For example, margin .5 inch creates a left and right margin
ofl/2 incn.

Same as TCT no.

Adds this much space to the inner margin (that is,
alternating between the left and right margins) to facilitate
binding. Use this parameter onlX once in a document and
only as the first parameter modIfying a Style command.

Changes the paper length as defined in the selected
printer's printer definition (typically 11 inches). Be sure
this parameter matches the form length of the paper in the
printer, or the text will "drift" over tne pages.

Warning: Many printers take a form feed command and will
not adjust to tne longer or shorter paper unless the form
len~th switch on the printer is changed to the correct
position. If this is necessary with your printer, you can tell
Sprint not to use the form feed command by running SP­
SETUP and answering N to the question Use Form Feed
(Control-L)? You can also insert a Style command with the
Formfeed No parameter. Default value is read from the
printer defiriition, usually set at 11 inches.

Sprint Advanced User's Guide

Table D.6: Format Parameters, continued

Field

PaperWidth dimension

RightIndent {+/-}
dimension

RightMargin

Spacing dimension

Spread dimension

TabSize dimension

TCT {yes/no}

TopMargin

WordSpacing
dimension

Description

Note: Set this value only once, at the beginning of your
document, as a modifier to the Style command.

Changes the paper width, as specified in the selected
printer's printer definition (default is typically 8-1/2
Inches), thus moving the right edge of the text further
right or left. The length of the lines increases or decreases
without changing the margins. Default value is read from
the printer definition, usually set at 8-1/2 inches. Used
only as a modifier to the Style command.

Defines the new right margin relative to the
current format's right margin. A positive number moves
the indent to the left of the right margin; a negative
margin moves it to the right.

Defines the right margin. You can use this parameter only
once in a document and only at the top of a file modifying
a Style command.

Changes the distance between each line of the text.
Spacing can be given in absolute units such as inches or
points, or it can be specified in lines (the depth of the line
aepends on the current font's point size). Default is 1 line.

Defines the depth of a single blank line. If this value is
equal to the spacing value, then blank lines in the input
look just like blank lines in the output. The default IS
1 line. Often the printout looks better if this value is set to
less than one line.

Determines the distance between ASCII tabs. You should
only use this value if you're creating an ASCII file and
don't have any ruler lines in your file. Default value is 8
characters. Used only as a modifier to the Style command.

Disables/ enables TCT translations inside this format.

Defines the top margin. You can use this parameter only
once in a document and only: at the top ot a file modifying
a Style command. The default is 1 incli.

Determines the maximum extra s)2ace the formatter can
insert between words during jUstification. When justifying
text, Sprint stretches the spaces between words mst; if this
stretdiing has reached a maximum, and the line is still not
justified, Sprint sl'reads out the letters of individual
words. If your pnnter can handle microspacing between
each letter without slowing down consiaerably, you may
want to set this to 2 or 3, so that words will also be
stretched. Some people even like to set WJrdSpacing to 1,
which inserts space evenly across all the letters and spaces
in a line with no special consideration for stretching word
spacing first. Default value is WJrdSpacing 10,000, which in
effect disables this feature. Used exclusively as a modifier
to the Style command.

Appendix D, Format Parameters 433

Table D.6: Format Parameters, continued

Field Description

WidowPrevent {on/off/N} Prevents widows (a partial paragraph at the bottom of a
page) and orphans (a partial paragraph at the top of a
Rage). N is tlie minimum number of fines permissible at
the bottom or top of a page. On is the same as entering 1;
off is the same as entermg O. Setting this parameter to a
large number (like 100) is a good way to prevent
paragraphs from ever being split across pages. Used
exclusively as a modifier to tne Style command.

Enumeration Parameters

Counter variable

Increment variable

Numbered "string"

Within variable

Macro Parameters

AfterEntry"text"

AfterExit "text"

BeforeEach "text"

434

Uses the variable as the counter (if variable is not specified,
a "local" counter will be used, which can be referenced by
the name counter). Used exclusively as a modifier to the
Style command.

Sets the built-in variable Counter to the specified variable
for this format only:. This command is used mainly to
affect the number the formatter assigns to text affected by
the Define a Tag and Reference a Tag commands. The
STANDARD.FMT file, by default, sets this counter to
SectionNumber, but you can use this Earameter to override
this Counter setting. Note, however, that the formatter
doesn't increment each paragraph if you set the counter
with a Style command.

Basically, Counter tells tags what variable to save for later
reference. Therefore, Styfe counter SectionNumber causes
tags to save the current section number for later reference.
Similarly, Style counter Figure causes tag to reference the
Figure variaole.

Same as Counter.

Increments the counter for each paragraph. "String" is an
optional template for the counter.

Sets a global variable to be the "parent" of the counter. (If
variable is not specified, the enclosing format's counter is
used.)

Defines a macro to be executed immediately after the for­
mat is started.

Defines the macro to be executed in the format that called
this one. This command is usually used to print reference
numbers to floating environments.

Defines the macro to be executed before each paragraph
(as long as the paragraph is separated from tne pre­
vious paragrapb by a blank line and is not indented).

Sprint Advanced User's Guide

Table 0.6: Format Parameters, continued

Field

BeforeExit "text"

Divider "text"

Initialize "text"

WithEach "text"

Floating Parameters

Above

After I Before

Below

Free

Inline

Index

Description

Defines a macro to be executed at the end of the format.

Executes a macro to produce the "divider line" between a
footnote or figure ana the regular text. Divider is used only
by float and sink formats.

Same as AfterEntry.

Similar to BeforeEach, except all leading text up to the first
tab is read in and placed in the variabfe "text' . The
macro is then executed.

"Floats" this format to the top of the column.

Saves text to be printed either at the end of the document
or at the very start. The text saved is exactly what was
placed in the format call. You can ima~ne this as a file into
which all text is written, then that file IS reread by the for­
matter and formatted. New lines are not appended after
each item. Initialize and BeforeExit are done when the com­
mand is formatted.

"Sinks" this format to the bottom of the column.

Formats a "free" format in the column after the current
line is finished.

Turns off any floating switches (Free, Above, Below, etc.).

Used in creating indexes. Initialize and BeforeExit are
executed when the format is executed. Refer to the
explanation in the Advanced User's Guide for details.

Appendix D, Format Parameters 435

436 Sprint Advanced User's Guide

A p p E N D x

E

Key Codes

There are 512 different key codes (entries in the key macro table) available
in Sprint. This appendix describes and lists all possible key codes.

Three Types of Key Codes

There are three types of key codes.

The first 256 codes correspond to characters that are actually placed into the
buffer. There are three effective subdivisions of these. The first 32 are
commonly called control codes .. These do not have any printed graphic
(although a caret with letter conventially used to represent them, for
example,AC), and Sprint and most other programs give them defined
imbedded functions (for instance, AJ is a hard return). The 32 (20H) scan
code is the space character, and all the other codes are printing characters.
Exactly what these codes print is up to the device they are printed on,
although there is agreement on the codes from 20H through 7EH, which
make up the standard ASCII character set.

The next 128 codes (256-383, or hex 100 to 17F) are function keys. Except for
putting the numbered function keys on N+256, the assignments here are
mostly based on the IBM scan codes.

The last 128 key codes (384-512, hex 180 to IFF) are the meta keys. These are
gotten by holding down Alt and typing one of the first 128 codes. These
should also be produced if there is any "alternative" way to produce an
ASCII code. For instance the Ctrl-M produces a meta-AM, because the Enter
key produces the normal AM. And the keypad numbers and symbols
produce meta-numbers, because the top-row numbers produce regular

Appendix E, Key Codes 437

ones. Unless they must make the distinction, programs should pretend
these are the regular ASCII codes by subtracting 180H from them.

Modifier Keys

There are three modifier keys on the keyboard:

Shift

Ctr/

Alt

Used to switch between the printed legends on the keys.
If there is only one legend on the key, Shift should do
nothing (because during rapid typing it is often held
down accidentally).

Changes the function of a key. It turns X into A X, makes
the Backspace and Enter keys produce A? and AI, and
changes the function keys such as the arrows into their
Ctr/ versions. Ctr! always overrides Shift. If there is no Ctrl
alternative to a key, Ctr! acts like Alt.

"Meta-izes" a key if it is in the range 0-127 by adding
180H to it. If the code is not 0-127, Alt acts like Ctrl. Alt also
"shifts" certain keys, so that A/t-a is an uppercase Meta-A
and Alt+numbers is Meta-symbol to avoid conflict with a
numeric keypad.

CapsLock simply inverts the Shift effect for the A-Z keys,
and is not considered a modifier key. NumLock is also
ignored here.

Key Code Functions

The keys can be divided into these functional areas:

Normal ASCII. A thru Z, @, [, \,], A, and _ (the Ctr/-able characters): these
produce the obvious code when typed. If Ctrl is held down, the uppercase
code XOR'd with 40H is produced, except for A@, AH, AI, AI, AM, and A[,
which are automatically "meta'd" to avoid conflict with the Spacebar,
Backspace, Tab, Enter, and Esc keys (so Alt has no effect on these).

Special Characters. All the other ASCII letters, symbols, and foreign letters.
These produce the obvious code when typed. (Ctrl should act like Alt on
these, but doesn't because the BIOS instead makes them "dead," which is
very user unfriendly but unavoidable.)

438 Sprint Advanced User's Guide

Control Characters. Keys that produce the correct ASCII control codes: Esc,
Backspace, Del (Gtrl-Backspace), Enter, line feed (Gtrl-Enter), Spacebar, and nul
(Gtrl-Spacebar. Alt or Gtrl (if Gtrl is not used to produce the normal code) will
produce the Meta-version.

Numbered Function Keys. Numbered function keys produce codes of
N+256 (or Function N). The Shift keys effectivly add constants to the
function number to make many more numbered function keys (a total of 40
on a PC keyboard, and the potential for 64 with the addition of an FO, FII­
Fl5 keys). Shift adds 10H, Ctrl adds 20H, and Alt adds'30H.

Other Function Keys. These include arrow keys, Ins, Del, Home, End, and the
like. These produce 256 plus the IBM scan code number. Thus the 8-bit
stream looks exactly like that read from DOS input. Shift has no effect on
these keys (unless there is another legend, su~h as numbers, on them). Gtrl
and Alt both add 40H to them.

Keypad Keys. These are the numbers and symbols (0-9, period, +, -, and
any other symbol keys not on the main keyboard. They produce
Meta+symbol. Gtrl, Shift, and Alt have no effect on these keys (unless they
have multiple legends on them).

Key Code Table

In the table that follows, the first column is the key code in hex, the second
is the name you must give for it in SP.SPM. The third column indicates the
keys you should press to generate that character. Aside from the standard
ASCII set (up to scan code 7F), a character with nothing in the third column
means there is no way to generate that character from the normal IBM
keyboard.

An asterisk (*) indicates the IBM BIOS does not produce the code (but it
would be nice if it did). A plus sign (+) indicates the code is only produced
by the "new BIOS call" that works with the newer 110-key keyboards.

There is some overlap in these key codes; in these cases the keys are
indistinguishable as far as key rebinding and the menu reports go.
However, the scan code of the last keypress will be available, and the macro
for the code can check this to differentiate the identical cases. The scan code
for the less common case is in angle brackets; you should check for equality
to this code (do not check for equality with the more common code). This should
only be used if necessary to emulate another word processor.

Appendix E, Key Codes 439

o "@
1 "A
2 "B
3 "C
4 "0
5 "E
6 "F
7 "G
8 "H
9 "I
A "J
B "K
C "L
o "M
E "N
F "0

10 "P
11 "Q
12 "R
13 "5
14 "T
15 "U
16 "V
17 "W
18 "X
19 "Y
1A "Z
1B "[
1C "\
10 "]
IE ""
1F "

20
21
22 "
23 #
24 $
25 %
26 &
27 '
28 (
29)
2A ...
2B +
2C ,
20 -
2E •
2F /

30 0
31 1

440

Table E.l: Key Code Table
NORMAL ASCII 32 2

(not produced, see 100)
Ctr/·A
Ctr/·B
Ctr/·C
Ctr/·D
Ctr/·E
Ctr/·F
Ctr/·G
Backspace
Tab
Ctr/·Enter
Ctr/·K
Ctr/·L
Enter
Ctr/·N
Ctr/·O

Ctr/·p
Ctr/·Q
Ctr/·R
Ctr/·S
Ctr/·T
Ctr/·U
Ctr/·V
Ctr/·W
Ctr/·X
Ctr/·Y
Ctr/·Z
Esc
Ctr/·\
Ctr/·J
Ctr/-6
Ctrl-

Spacebar

33 3
34 4
35 5
36 6
37 7
38 8
39 9
3A
3B i
3C <
3D =
3E >
3F ?

40 @*

41 A
42 B
43 C
44 0
45 E
46 F
47 G
48 H
49 I
4A J
4B K
4C L
40 M
4E N
4F 0

50 P
51 Q
52 R
53 5
54 T
55 U
56 V
57 W
58 X
59 Y
SA Z
5B [
5C \
50]
5E "
SF

60 I

61 a
62 b
63 c
64 d

SprInt Advanced User's Guide

Table E.l: Key Codes, continued

65 e 97 U Alt-151
66 f 98 b Alt-152
67 g 99 Alt-153
68 h 9A 0 Alt-154
69 i 9B ¢ Alt-155
6A j 9C £ Alt-156
6B k 90 ¥ Alt-157
6C 1 9E Pt Alt-158
60 m 9F f Alt-159
6E n AO a Alt-160 6F 0 A1 f Alt-161
70 P A2 6 Alt-162
71 q A3 11 Alt-163
72 r A4 ft Alt-164
73 s AS I'1 Alt-165
74 t A6 il Alt-166
75 u A7 II Alt-167
76 v A8 l Alt-168
77 w A9 Alt-169
78 x AA -. Alt-170
79 Y AB 1/2 Alt-171
7A z AC 1/4 Alt-172
7B { AOj Alt-173
7C I AE « Alt-174
70 } AF » AIt-175
7E - BO Alt-176 7F "?

FOREIGN LEITERS B1 Alt-177
B2 Alt-178

80 ~ Alt-128 B3 Alt-179
81 ii Alt-129 B4 Alt-180
82 e Alt-130 B5 Alt-181
83 a Alt-131 B6 Alt-182
84 a Alt-132 B7 Alt-183
85 a Alt-133 B8 Alt-184
86 a Alt-134 B9 Alt-185
87 ~ Alt-135 BA Alt-186
88 e Alt-136 BB Alt-187
89 e Alt-137 BC Alt-188
8A e Alt-138 BO Alt-189
8B 1 Alt-139 BE Alt-190
8C i Alt-140 BF Alt-191
80 i Alt-141 CO Alt-192
8E A Alt-142 C1 Alt-192
8F A Alt-143 C2 Alt-194

90 E Alt-144 C3 Alt-195
C4 Alt-196 91 re Alt-145 C5 Alt-197 92)E Alt-146

93 0 Alt-147 C6 Alt-198

94 0 Alt-148 C7 Alt-199

95 0 Alt-149 C8 Alt-200

96 U Alt-150

Appendix E, Key Codes 441

Table E.': Key Codes, continued

C9 Alt-201 FC n Alt-252
CA Alt-202 F0 2 Alt-253
CB Alt-203 FE Alt-254
CC Alt-204 FF Alt-255
CO Alt-205
CE Alt-206

FUNCTION KEYS

CF Alt-207 100 FO etrl-space

00 Aft-20B
101 Fl Fl

01 Alt-20B
102 F2 F2

02 Alt-210
103 F3 F3

03 Alt-211
104 F4 F4

04 Alt-212
105 F5 F5

05 Alt-213
106 F6 F6

06 Alt-214
107 F7 F7

07 Alt-215
108 F8 F8

08 Alt-216
109 F9 F9

09 Alt-217
lOA FlO FlO

OA Alt-21B
lOB Fll F11+

OB Alt-219
10C F12 F12+

OC Alt-220
100 F13

00 Alt-221
10E F14

DE Alt-222
lOF F15

OF Alt-223 110 F16

EO <X Alt-224
111 F17 Shift-F1

El ~ Alt-225
112 F18 Shift-F2

E2 r Alt-226
113 F19 Shift-F3

E3 1t Alt-227
114 F20 Shift-F4

E4 L Alt-22B
115 F21 Shift-F5

E5 cr Alt-229
116 F22 Shift-F6

E6 J.l Alt-230
117 F23 Shift-Fl

E7 't' Alt-231
118 F24 Shift-FB

E8 <I> Alt-232
119 F25 Shift-F9

E9 e Alt-233
llA F26 Shift-F10

EA n Alt-234
llB F27 Shift-F11+

EB 0 Alt-235
llC F28 Shift-F1~

EC 00 Alt-236
110 F29

EO 0 Alt-237
11E F30

EE E Alt-23B
llF F31

EF (\ Alt-239 120 F32

FO - Alt-240
121 F33 etrl-F1

Fl ± Alt-241
122 F34 etrl-F2

F2 ~ Alt-242
123 F35 etrl-F3

F3 s Alt-243
124 F36 etrl-F4

F4 en Alt-244
125 F37 etrl-F5

F5 § Alt-245
126 F38 etrl-F6

F6 + Alt-246
127 F39 etrl-F7

F7 Alt-247
128 F40 etrl-FB

F8 0 Alt-24B
129 F41 etrl-F9

F9 • Alt-249
12A F42 etrl-F10

FA . Alt-250
12B F43 etrl-F11+

FB ..J Alt-251
12C F44 etrl-F1~

442 Sprint Advanced User's Guide

Table E.l: Key Codes, continued

120 F45
12E F46
12F F47

130 F48
131 F49 Alt·F1
132 F50 Alt·F2
133 F51 Alt·F3
134 F52 Alt·F4
135 F53 Alt·F5
136 F54 Alt·F6
137 F55 Alt·F7
138 F56 Alt·F8
139 F57 Alt·F9
13A F58 Alt·F10
13B F59 Alt·F11+
13C F60 Alt·F1~
130 F61
13E F62
13F F63

140 F40H mouse left
141 F41Hmouse right
142 F42H mouse middle
143 F43H release of any mouse button
144 F44H mouse left dbl
145 F45H mouse right dbl
146 F46H mouse middle dbl
147 F47H Home
148 F48H Up arrow, mouse up
149 F49HPgUp
14A F4AH

mouse left
14B F4BH

Left arrow
14C F4CH

Center+
140 F40H

Right arrow
14E F4EH

mouse right
14F F4FHEnd

150 F50H Down arrow, mouse down
151 F51H PgDn
152 F52Hlns
153 F53HDel
154 F54H
155 F55H
156 F56H
157 F57H
158 F58H
159 F59H
15A F5AH

Appendix E, Key Codes

15B F5BH
15C FSCH
150 F50H
15E F5EH
15F F5FH

160 F60H Ctrl·Alt·mouse left
161 F61H Ctrl·Alt·mouse right
162 F62H Ctrl·Alt·mouse middle
163 F63H
164 F64H Ctrl·Alt·mouse left dbl
165 F65H Ctrl·Alt·mouse right dbl
166 F66H Ctrl·Alt·mouse middle dbl
167 F67H Ctrl·Alt·Home
168 F68H Ctrl·Alt·Up+
169 F69H Ctrl·Alt·PgUp
16A F6AH
16B F6BH

Ctrl·Alt·Left
16C F6CH

Ctrl·Alt·Center""
160 F6DH

Ctrl·Alt·Right
16E F6EH
16F F6FHCtrl·Alt·End

170 F70H Ctrl·Alt·Down+
171 F71H Ctrl·Alt·PgDn
172 F72H Ctrl·Alt·lns+
173 F73H Ctrl·Alt·Def*"
174 F74H
175 F75H
176 F76H
177 F77H
178 F78H
179 F79H
17A F7AH
17B F7BH
17C F7CH
170 F7DH
17E F7EH
17F F7FH

META KEYS
180 _I\@ Ctrl·2<3>, CtrJ.Alt·Space+
181 _I\A Ctr/·AIt·a+
182 _I\B Ctrl·Alt·b+
183 _I\C etrl·Alt·c+
184 -1\0 etrl·Alt·cr
185 _I\E Ctrl·Alt·e+
186 _I\F Ctrl·Alt·'
187 _I\G Ctrl·Alt·g+
188 _I\H etrl·h<23>, Alt·Backspace+
189 -1\1 Ctrl·i<17>, etrf'lShiftlAIf"·Tab

443

18A _I\J Ctr/-j<24>, Ctrl-A/t-enter
18B _I\K Ctr/-A/t-k+
18C _I\L Ctr/-A/t-f

190 _1\ P Ctr/-Alt-p+
191 _I\Q Ctr/-A/t-q+
192 _1\ R Ctr/-A/t-t
193 -1\5 Ctr/-Alt-s+
194 _I\T Ctr/-Alt-t'"
195 _1\ U Ctrl-Alt-u+
196 _I\y Ctrl-Alt-V'"
197 _I\W Ctrl-Alt-w+
198 _1\ X Ctrl-Alt-x"
199 _I\y Ctrl-Alt-y+
19A _I\Z Ctrl-A/t-z+
19B _1\[Ctrl-{<1A>, Ctr/-Alt-Ese
19C _1\\ Ctr/-A/t-\+
190 _1\] Ctrl-Alt-,
19E _1\1\ Ctr/-Alt-6*'
19F _1\ _ Ctrl-Alt--+

lAO -space

lAl -!
lA2 _"
lA3 -#
lA4 -$
lA5 -%
lA6 -&
lA7 -'
lA8 -(
lA9 -)
lAA -*
lAB -+
lAC -,
lAD -­
lAE -.
lAP -/

lBO -0
lBl -1
IB2 -2
IB3 -3
IB4 -4
IB5 -5
IB6 -6
IB7 -7
IB8 -8
IB9 -9
IBA -:
IBB -;
IBC -<

Alt-space
A/t-1 •
A/t-Shift-'
Alt-S
Alt-4
AIt-5
Alt-7
Alt-'*"
A/t-9
A/t-O
keypad *, Alt-8<9>
keypad +
keypad,
keypad­
keypad.
keypad ;+

keypad 0
keypad 1
keypad 2
keypad 3
keypad 4
keypad 5
keypad 6
keypad 7
keypad 8
keypad~
A/t-Shift-;
Alt-;+
A/t-,+

IBO -= A/t-=+<D>
IBE -> A/t-.+

444

180 _I\M Ctr/-m<S2>, A/t-Enter<1C>+, keypad Entet
18E -I\N CtrI-AIt-n+
18F -1\0 Ctr/-Alt-o+

IBF -?
lCO -@
lCl -A
lC2 -B
lC3 -C
lC4 -0
lC5 -E
lC6 -F
lC7 -G
lC8 -H
lC9 -I
lCA -J
lCB -K
ICC -L
lCO -M
ICE -N
lCF -0

100 -p
101 -Q
102 -R
103 -5
104 -T
105 -U
106 -V
107 -W
108 -x
109 -y
IDA -Z
lOB -[
10C -\
100 -]
IDE _1\
10F -_

lEO -'
lEI -a
IE2 -b
lE3 -c
lE4 -d
lE5 -e
lE6 -f
lE7 -g
IE8 -h
lE9 -i
lEA -j
IEB -k
lEC -1
lED -m
lEE -n

A/t-t

Alt-2
Alt-a
Alt-b
Alt-e
Alt-d
Alt-e
Alt-f
AIt-g
A/M
Alt-i
A/t-j
Alt-k
A/t-!
Alt-m
Alt-n
Alt-o

Alt-p
Alt-q
Alt-r
A/t-s
Alt-t
A/t-u
A/t-v
A/t-w
Alt-x
A/t-y
Alt-z
A/t-r
Alt-\+
Alt-'
Alt-6
Alt--

A/t-""
Shift-A/tea
Shift-Alt-b
Shift-A/t-c
Shift-Alt-d
Shift-Alt-e
Shift-Alt-f
Shift-A/tog
Shift-A/t-h
Shift-Alt-i
Shift-Alt-j
Shift-A/t-k
Shift-Alt-I
Shift-Altom
Shift-Alt-n

Sprint Advanced User's Guide

1EF -0 Shift-AltoO 1F1 -q Shift-Alt-q

1FO Shift-Alt-p 1F2 -r Shift-Alt-r
-p

1F3 -s Shift-Alt-s 1FA -z Shift-Alt-z
1F4 -t Shift-AIt-t 1FB -{ Shift-AIt-r
1FS -u Shift-Alt-u 1FC -I Shift-Alt-\+
1F6 -v Shift-Alt-v 1FD -} Shift-Alt-!.
1F7 -w Shift-Alt-w 1FE Shift-Alt-•
1FS -x Shift-Alt-x IFF

.
_A? Ctrl/<35>, Ctr/-Alt-Backspace

1F9 -y Shift-Alt-y

Appendix E, Key Codes 445

446 Sprint Advanced User's Guide

A p p E N D x

F

Build Your Own Printer and Screen
Drivers
Some companies would be satisfied with having a programmable editor,
but Borland is expected to have more; and we do. Before you read on, we
want to warn you that this chapter has a great deal of technical
information-most of which can be ignored. You only need to read this
section if you must

• print on a device (printer or typesetter) that Sprint doesn't support
• send output to a port Sprint doesn't support
• use a screen adapter, or even a terminal that Sprint doesn't support

Sprint has an "open architecture." This means that there are facilities built
into Sprint to allow adding support for many different types of hardware.
You can control this configuration; there is no need to write "device
drivers," or to wait for Borland to supply one.

Most programs that can be configured require the company that makes the
program to have the saine equipment you do and to write an interface
program for it. Often this interface program must be linked into their
program, resulting in a completely different version of the program.

Sprint, on the other hand, lets the user do the configuration-no program­
ming or linking is required. Instead, you can use the Sprint editor to write a
description of the device (the library file), and then run the SP-SETUP
program, which converts this ASCII description into a binary file. The
editor and formatter are able to read these binary files, and use them to
control the device.

Appendix F, Build Your Own Printer and Screen Drivers 447

Therefore, if you have an unusual system, you don't have to give up on it
just because it isn't "standard," nor do you have to wait until a new version
of Sprint is released-you can do it yourself!

Configuration is not trivial, but it is not extremely difficult either.
Admittedly, it helps to have had some programming experience before you
attempt it. This appendix describes how to make your own library files for
Sprint.

The SP-SETUP Program

When you ins,talled Sprint for your computer and printer, you used the
Sprint setup program, SP-SETUP.EXE. What you didn't see when running
SP-SETUP was its ability to automatically adapt itself to new printer,
screen, and port definitions as they are added to its database.

When run, SP-SETUP reads the database file (MAIN.SPL) that contains
descriptions of devices and how to control them. It then presents a list of
the devices it found, and allows the user to choose from the list. Once the
user chooses a device, the device's description is used to create a binary
representation of the description in the database. These binary descriptions
are then used by the editor and formatter to control the devices.

The database that SP-SETUP uses is often referred to as a library file, and
has an extension of .SPL (Sprint Library). It is a text file to which more
devices can be added by using Sprint to add the required information.

After the necessary binary files are created using SP-SETUP, SP-SETUP and
the library files are not needed to run Sprint, and can J:>e removed from
your work disk or hard disk to provide more storage.

There are three types of devices that the user can define for Sprint:

Screens

448

Screens are descriptions of display adapters and terminals.
The driver for this is contained in the file DEFAULT.SPS. This
file contains a description of the screen and the colors (or
attributes) to be used. Alternative drivers can exist in other
files as name.SPS. Using this capability, for example, you can
have two drivers for your computer with an EGA card, one
supporting the 43-line mode, and another for 25-linemode.
You can tell Sprint to use the alternative driver by starting
Sprint with liSp -s=fname".

If no DEFAULT.SPS file is found by the editor on startup, it
will automatically detect the type of screen adapter and use
its built-in description for it.

Sprint Advanced User's Guide

Printers

Ports

Printers are descriptions of output devices. These output
devices may be dot-matrix, daisy wheel, or laser printers, or
typsetters. In Sprint, we refer to all these as printers. The
printer description includes information about all the fonts
the printer can use, the size of the letters in those fonts, and
all the attributes (such as boldface) available. The driver for
the default printer is written to the file DEFAULT.SPP. Other
printer descriptions are written to name.SPP. The printer to
use can be selected from the editor, the formatter command
line, or with the @Device formatter command within a file.

If no DEFAULT.SPP file, is found by the formatter, and no
alternate is specified, Sprint will assume a plain printer with
no special features.

Ports are descriptions of how Sprint can talk to an external
terminal or printer. Usually, Sprint sends codes to these
devices using the normal operating system interface to them.
Sometimes DOS may not support the port, or the port
requires different handshaking than that provided by DOS. A
port describes how to run the actual computer hardware
(usually a serial communication chip).

The binary version of a port record, if one is selected, is added
to the binary version of the screen or printer record, so this
does not create a new file. Ports are selected from the SP­
SETUP program.

NOTE: Ports for screens are requested by the install program
only if a screen definition does not use the BIOS for cursor
positioning. In this case, it assumes that the installation is for
an external terminal.

The Library File

SP-SETUP reads its data from a library file. These files must have the
extension .SPL (for SPrint Library). SP-SETUP reads its definitions from the
file MAIN.SPL. As shipped, Sprint comes with many additional library
files, including HP.SPL, POSTSCR.SPL, and DIABLO.SPL. These library
files contain definitions for the HP Laserjet series,. the Apple LaserWriter
(and other PostScript printers), and DIABLO (and compatible) printers.
These library files are automatically read into SP-SETUP and used to
provide definitions for these printers.

Appendix F, Build Your Own Printer and Screen Drivers 449

Library Records

The library file contains ASCII records for each defined device. Every record
starts with the type of record, (that is, screen, printer, or port), the name of
the device, and finally, specific information describing the device. (There
are also special sub-records used for printer descriptions. They are font, attr,
tct, and pst. These records are added to selected printers.)

Because a single manufacturer can have many types of printers, a record
can contain a root name field (name is optional-if not given, the record
name will be used). Root records appear on the device menu, and when
chosen, cause another device menu to display all records named
name.subname, from which the actual device can be chosen:

printer Hewlett-Packard,root HP

The information used to describe the device is made up of fields. Each field
has a name which must be first, a space, and then a value. The value can be a
string, a number, or a yes/no value, depending on the type of the field.
There must be commas between the fields to separate them. The last field in
a record has no comma after it.

A record can contain many lines. All but the first line must be indented.
The first line of a record must be at the left margin.

Comments start with double semicolons, and extend through the end of the
line. We highly recommend that you put lots of comments in your
descriptions; they won't be clear otherwise. Comments that follow a
record's name, yet appear before the last line of a record, and start in the
first column, will be displayed when the particular device is selected. This
allows important printer-dependent information to be conveyed.

Here is a sample record, that of the Hewlett-Packard ThinkJet printer:

printer HP.ThinkJet.IBM Mode,flag2,
;; This driver is for the HP ThinkJet printer, in IBM mode.

vpi 72,size 12,crAM,nl AMAJ,ffAL,
svpA[A%cA[2,mvm 8S,hpi 600,
initA [OA [G,resetAM
font Elite,width SO,onARAT
font Cpi6,width 100, onARAN, off AT
font Cpil0,width S6,onAOAN,offARAT
font Cpi21,width 28,onARAO,offAR
attr bold,onA[E,offA[F
attr uns,onA[-l,offAr-O

The first line indicates that this is a printer record, and the name of this
printer is HP.ThinkJet.mM Mode. The second line is a comment which will
be written to the screen if the user selects this printer. The next three lines

450 Sprint Advanced User's Guide

have the fields that describe the character sequences and dimensions used
by the ThinkJet printer.

This example also illustrates several sub-records for the HP ThinkJet. These
sub-records describe the Elite font, several different font sizes, and two font
attributes (bold, and underline).

Since there is much overlap among different devices, records can also
indicate that they resemble another record of the same type, by using the as
field. Then any field not specified in this record is copied from the as
record:

printer Okidata.84,as Okidata.92

The above example defines a printer called Okidata.84 to be exactly like an
Okidata.92.

Records may indicate that they are stored in a different file by using the in
field. You cannot use any other fields along with in. The record must appear
(with exactly the same name) in the other file:

printer Apple, in apple.spl

This example tells SP-SETUP that the definition for Apple printers will be
found in the file APPLE.SPL

(Note: You cannot use as to reference printers defined in a different file.)

Separate files have two advantages: (1) they are faster to configure from,
because you have to search only the other file for font tables, and (2)
auxiliary records (such as font tables for a printer) can have names that
duplicate the names used in the main file.

Yes/No Fields

If a field takes a yes/no value, it can be followed either by any word
starting with "Y" or "N"(we use Yay, nay and YES, NO). Or, if the field is
immediately followed by a comma SP-SETUP will default to yes. (Flags can
also be followed by a number from 0 to 255; this feature is reserved for
future use.

Numeric Fields

If a field takes a numeric value, the number can be given in decimal after
the field. The number can also be given in hexadecimal by following it with

Appendix F, Build Your Own Printer and Screen Drivers 451

an H, or in octal by following it with the letter O. The largest number
allowed is 32,767.

Dependent Files

Certain screen or printer drivers are dependent on other files in order to
operate. To meet these needs, and ensure the files are copied when the
installation calls for it, four dependency file fields exist. They are named
DFILE1, DFILE2, DFILE3, and DFILE4. Any driver that requires another
file (or files), can list the names as DFILES within the driver, and SP-SETUP
will automatically copy the files when the user chooses one of these.

The Hercules InColor Card requires a font file to be downloaded to it. This
is normally accomplished by the file SPHERC.COM, which sends the font
file SPHERC.FNT. To ensure that the files are installed on the hard disk
when the user selects this driver, we made the definition look like:

screen Hercules-InColor, as Monochrome, init Cspherc spherc.fnt,
dfilel SPHERC.COM, dfile2 SPHERC.FNT ...

String Fields

String fields are somewhat more complicated. Leading blanks are skipped,
and the string is taken to be all the characters up to the comma, a comment,
or the end of the line.

Since this does not allow you to put all possible characters in the string,
there are special ways to construct the other characters.

You can get any control character by typing a caret (A) followed by a letter.
For instance, AX will put a Control-X (ASCII code 24) into the string. Code
127 (DEL) can be gotten with A? Be careful not to put real control codes in the
.SPL file. SP-SETUP can't read them.

You can get characters with decimal values greater than 127 by putting a
tilde (....) before them. For instance, X is the code 216 (128 + 88), and _AX is
the code 152. See the Appendix G for a decimal number to code letter
conversion.

The backslash (\) is used as an escape character, to put other codes into the
string that can't be put in otherwise. You need it before any character that is
interpreted specially, and also to name some common control characters.
Users of the C programming language will find this very familiar:

452 Sprint Advanced User's Guide

\, -comma
\A -caret
\- -tilde
\ \ - back slash
\; - semicolon (\;; does not start a comment)
\<sp>

-leading or trailing spaces
\e - escape (AD
\t - tab (AI)
\b - backspace (A H)
\r - return (AM)
\n -line feed (A J)
\f - form feed (A L)
\nnn - any code in decimal notation
\xnn - any code in hex notation

You cannot put NUL (A@ or ASCII code 0) into any string (C programmers
will know why). If you want to send a null to a device, you must use the
%z printf command (which we'll soon describe).

Character Fields

Some fields (especially the printer translation tables) have values that are
one character. These are simply one-character strings. If you want to put in
a specific decimal code, use the \nnn method.

Printf Strings

The formatter and editor programs send commands to devices using print!
strings. These strings let you specify how a numerical value is sent to the
device.

A printf string contains text and placeholders for information to be included
within the text. These placeholders describe where information being
passed to it gets inserted, and in what form it should be inserted (hex,
decimal, character, and so on.)

These strings are an extension of the print! string format used in the C
programming language. Any character except % in the string is sent to the
printer unchanged. % indicates a place where one of the arguments to the
string is to be used. Each argument is used in order, for instance the cur
string in a screen definition takes two arguments, the line number and

Appendix F, Build Your Own Printer and Screen Drivers 453

column number, so the first % encountered uses the line number, and the
second one uses the column number.

%c

%nc

%nw

%u

%d

%nd

%nu

%(... %)

%[... %; ... %;
... %: ... %]

The number is turned into a character and printed.

Print n-2 nulls, then an integer as two characters, high byte
first (n = 2 is most useful).

Print an integer as two characters, low byte, then high byte,
followed by n-2 nulls.

The number is turned into an unsigned decimal number,
and the digits printed.

The number is turned into signed decimal and printed.

The number is turned into signed decimal and printed in a
field n characters wide. (Use %On to pad with D's.)

The number is turned into decimal in a fixed field width of
n. N is a number typed into the string, as in %4u. If the
number n starts with a zero (e.g %04u), the field is padded
with leading zeros, otherwise it is padded with leading
spaces.

The text between the %(and the %) is repeated that
number of times. Zero also works.

This is a case statement. Negative numbers and zero print
the first case (the part between the % [and the first %;), 1
prints the second case, 2 prints the third, and so on. If there
is a %:, this indicates a default case that is printed for all
remaining numbers. If there is no %:, a number larger than
the number of cases given wraps around to the first,
second, etc.

You can put other % commands inside the cases, in which case the same
variable is reused for them. Cases cannot be nested. .

Each time you do one of the above operations, the argument pointer ad­
vances. So if there are multiple arguments, each successive % command
prints the subsequent one.

An argument can be modified by inserting any number of the following
math operations between the % and the above operations: this math is done
using signed 16-bit integers, even for %u. In all these cases, n is 1 if it is not
given.

n+ Add the constant n to the argument.

n- Subtract n from the argument.

454 Sprint Advanced User's Guide

n* Multiply the argument by n.

n/ Divide it by n.

n \ \ Unsigned divide by n (result is positive for numbers greater that
32767).

n> Shift the argument right by n (divide it by 2n). Shifts are trivially
faster than multiplications.

n< Shift the argument left by n (multiply by 2n).

n# Get the remainder of dividing the argument by n (otherwise known
as taking the argument modulus n).

n& AND the binary bits in the argument with n.

n I OR the bits with n.

n" XOR (exclusive or) the bits with n. This toggles all the bits in the
argument when there is a one bit in n.

Complement the argument <toggle all the bits). You can also get the
negative value of the argument by using +.

Example: %14+2S*-c takes the current argument, adds 14, then multiplies
the result by 25, then subtracts 1 (because the default for n is 1), then prints
the result as a single character.

And another example: If X is the argument, and you need to print
round(X/4)+1 (a common occurrence on some printers), you would use
something like %2+4/+u, which first adds 2 in order that the integer
division rounds the result, then divides by 4, then adds I, then prints the
result in ASCII digits.

The following operations don't use any of the arguments. Any math
operations before them are ignored.

%% Print a %.

%ng This lets you rearrange the arguments as needed, by switching
which one is used next. %Og goes to the first argument, %lg goes to
the second, etc.

To reverse the order of coordinates passed for a cursor positioning
command, you would use: %lg%c%Og%c

%nz Sends n nulls.

Do not use any other % combinations, such as %s or %r. These are reserved
for internal use by the formatter, and will cause unpredictable results if
they are put in a configuration string.

Appendix F, Build Your Own Printer and Screen Drivers 455

It is important to realize that the SP-SETUP program does not pay any
attention to the % commands. As far as it knows, % is a regular character,
and is not treated specially. Errors with the % commands will not be
detected until the editor is run, and even then, they will just be detected as
odd behavior.

Hardware Control Strings

Hardware control strings are used in some of the screen definitions, and are
also interpreted by the hardware editor macro. They are designed to allow
the editor to perform hardware-level control of the computer. They allow
three things to be done:

• access memory locations
• access 110 ports
• perform software interrupts to call ROM functions

Hardware strings are interpreted from left to right, and can contain
numbers and operator symbols. Spaces serve to separate words, but are
otherwise ignored. At any time, a single "argument" is preserved; some
operators set this argument, others use it.

Numbers must start with a digit, and can end with H or 0 or B to indicate
hex, octal, or binary (otherwise they are decimal). If a number is
encountered in the string, the argument is set to it.

Operators:

1/* address"

"> address"

"> I address"

456

Sets the argument to a code off the "argument list." For
the hardware editor macro, this can be done once.
Commands in hardware descriptions can take this more
than once, it depends on which string is being defined.

Sets the argument to the contents of a given byte of
memory. The address can be a single number, indicating
something in segment zero, or it may be
"number:number" indicating a segment and offset.
Don't forget to put H on the end of the numbers if you
want hex addresses.

Sets the given byte to the argument. The argument does
not change.

OR's the argument with the contents of the byte. This
can be used to set various bits.

Sprint Advanced User's Guide

">& address"

">/\ address"

"> reg"

"in number"

"out number"

"int number"

AND's the argument with the contents of the byte. This
turns off bits.

XOR's the argument with the contents of the byte. This
toggles bits.

Sets a given register to the argument. These register
values are used during the next interrupt. Legal registers
are AH, AL, AX, BH, BL, BX, CH, CL, CX, DH, DL, DX,
SI,OI. (Note you can't set the segment or BP registers.)

Sets the argument to the input from the given if 0 port.

Sends the argument to the given I/O port.

Does an interrupt. The argument is put in the AH
register. The other registers are set as per the most recent
1/> reg" instructions, then an int instruction is done. The
argument is set to whatever is in AX when the interrupt
returns.

As an example, you can change the cursor to a dash with:

"5>ch 6>cl lint lOh"

Screen Descriptions

A screen record fully describes how Sprint accesses the display screen on
the computer. Since all information concerning how to run a screen is in
this file, you should be able to get any arrangement of hardware to operate,
including larger screens than those normally sold, external terminals, even
devices for the handicapped. Sprint will work with screens of up to 120
lines and 255 columns.

Terminals are generally operated by sending escape sequences (special code
sequences starting with the /\[or ESC character) to them. Unfortunately,
escape sequences are not standardized, and the only attempt at a standard
(ANSI) is a very poor and slow one, requiring excessive sequence length
and computation.

To allow for both screen adapters and external terminals of various kinds,
Sprint can use any combination of escape sequences-sent to the MS-DOS
standard output in raw mode, IBM PC BIOS calls, and "direct memory
mapping" of the character output into an in-memory array that matches the
screen display (which is faster than the other methods).

Appendix F, Build Your Own Printer and Screen Drivers 457

Screen descriptions can also reference a output port to send escape
sequences to, in case it is impossible to redirect the standard output to an
external device.

The following fields are supported in a screen record. Some of them are
required, such as rows and cols, others are not needed, such as up, but the
screen update will be faster if they are provided.

I\A to 1\ _ (nu~bers) Entries for attribute 1 through attribute 31. The
default for all the printing ones is dash or space, for all the
attributes it is the same as select.

clreol (string) This string is sent by the editor to clear from the
cursor, to the end of line. If not given, the editor will clear
using spaces.

cols (number, required) The number of columns on the screen.
Most have 80, although a few have 132. The editor has a
maximum of 255. 40 is the minimum. If this is a memory­
mapped screen, Sprint assumes each row on the screen takes
this many locations (that is, each row is this many words
apart).

On terminals, if it does line wrap and you can't turn it off with
an initialization string, you will have to set this number to 1
less than the maximum. Otherwise the screen will scroll when
the status line is drawn, destroying the display.

cur (string, two arguments, required) This string is used to
position the cursor. The first argument is the row, the second
is the column. The upper left corner is 0,0.

If you give a capital B for this string, it will attempt to move
the cursor using IBM Video BIOS call number 2, and to print
all characters using IBM BIOS call number 9 (unless map is
given as well). This will disable all other strings except init
and reset.

dc (string, one argument) Delete N characters at the cursor,
moving the characters to the right N left. This should add
blanks at the right end of the line, and not move the cursor.
(This string is not used in the current version of the Sprint
editor.)

dl (string, one argument) Delete N lines at the row the cursor is
on, moving all lower lines up, and adding Nblank lines at the
bottom.

458 Sprint Advanced User's Guide

down

error

ic

il

infobox

init

map

(string, four arguments) This is the string to send to stdout to
scroll a region down. Takes the same four arguments as up. A
capital B causes the BIOS call to be used. (Note that some
clones have this call broken; Sprint lets you control the use of
up and down calls separately.)

(number) The attribute number to use for the error messages
(attribute -3). The default is the same as select.

(string, one argument) Insert N characters at the cursor,
pushing the character the cursor is on and all the others to the
right. It doesn't matter what characters are inserted or where
this moves the cursor. (This string is not used in the current
version of the editor.)

(string, one argument) Insert N blank lines at the row the
cursor is on, pushing it and all lower lines down by N. It
doesn't matter if this moves the cursor. Not used if there is an
up and down string given.

(number) The attribute to use for infoboxes (attribute -5). The
default is the same as select.

(string) This string is sent to stdout when the editor is started.
It can send any escape sequences wanted to set modes or
print messages.

If the screen requires running a program to set a particular
mode, that program can be run automatically by using a file
name with init in the form "Cprogramname" (for example, "init
Cset.com 55" will run SET. COM, passing it 55 on the
command line). Do not run any programs this way that will
terminate and stay resident, that is, memory-resident
programs. The string can start with an 'H' to execute a
hardware command.

(number) Memory map segment address. For increased speed
Sprint can directly write to a memory-mapped display. The
map is assumed to be an rows by cols array of words, the
high-order byte of which is the attribute, the low-order is the
character (IBM display style). This field indicates the segment
address (top 16 bits) of the screen memory. Sprint will word­
address this memory map only (not character-address). Sprint
will handle the map correctly even if this map is write-only
(although it uses reads to restore the contents behind menus,
resulting in temporary garbage that will be cleared by the
next redraw).

Appendix F, Build Your Own Printer and Screen Drivers 459

menu

plain

rein it

reset

rows

select

set

snows

SP

status

up

460

(number) The attribute number to use for the menus (attribute
-4). The default is the same as select.

(number) The attribute number to use for plain text (attribute
0). The default is O.

(string) This string is sent after the init string, and after every
screen redraw of the editor. It is used to clear the screen, but if
not given, the editor will use clreol's or fill the screen with
spaces. As with init, programs can be run using the
"Cprogramname" or the "Hhardware string" construct.

(string) This string is sent when the editor is exited. As with
init, you can run programs using reset with a file name in the
form of the "Cprogramname" or the "Hharware string"
construct.

(number, required) The number of rows on the screen. Most
screens have 25. The editor will work with up to 120 rows.

(number) The attribute number to use for selected text
(attribute -1). The default is 1.

(string, one argument) This is the string to be sent to stdout to
set the color to the argument. Not used if map or BIOS is used.

If you put in this flag on a memory-mapped device, Sprint
will enable its built-in snow prevention. This snow prevention
is specific to the IBM CGA and is useless on others. Sprint
looks only at this flag; it does not check the screen type itself
(because it is sometimes wrong). If this flag is not given, you
will get snow on a color screen. If it is given,. Sprint will check
the CGA retrace flag before writing any character, even if this
is not a CGA. On a non-CGA screen, if snows is on, it will
wait forever before writing any characters.

(number) Entry for attribute 32 (spaces). The default is a
space.

(number) The attribute number to use for the status line
(attribute -2). This attribute is also copied to any unfilled
locations in the attribute vector by SP-SETUP. The default is
the same as select.

(string, four arguments) This is the string to send to stdout to
scroll a region up. Takes four arguments: the top line to scroll,
the line after the last line to scroll, the amount to scroll, and
the difference between the last line and the amount to scroll
(which you can usually ignore, but is useful for some

Sprint Advanced User's Guide

schemes). If the string is a capital B then the BIOS scroll call is
used. Notice that even when map is given, Sprint needs a
scrolling method, it does not scroll the contents of the map
itself!

When creating new screen descriptions, be careful to save any working
version of DEFAULT.SPS that you have. If not, you may break the editor
with a bad screen description, and be unable to edit it to fix it.

Port Descriptions

To allow for changing operating systems and printer features, and to allow
for optimal performance, Sprint can directly control the computer's
hardware. This control provides a means for sending output to any serial
port, parallel port, or memory-mapped output port.

For most systems, Sprint's default formatter output method (sending text to
PRN:) is sufficient. But if the printer or screen needs XON /XOFF
handshaking, or if you want the output to go "around" the operating
system to a different port, you will need to select a port for it.

Note that using a port will prevent print spoolers and shared printers on a
network from working.

Port records have the following fields:

imask (number) Input ready mask. This is AND'ed with the value
read from the input status port.

in it (string) Port initialization string. This string contains values to
send to the output port to set things up. Each character is
sent (at full speed, with no handshake). You can cause data to
go to other ports by placing "%np" in the string, where n is
the number of the port you want to send to (unfortunately, N
must be in decimal-refer to Appendix G for help).

io Defines the type of I/O. This can be PORT, which means it
accesses machine I/O ports, DMA, which means it accesses
direct memory mapped locations, or DEVICE, which means
that Sprint will open the port's name (which should be
something like \dev\Zptl), as a file, and write to it. If DEVICE
is given, all other fields are ignored.

iport (number) Input data port number, which describes where to
read the input data from.

iseg (number) DMA segment number for both iport and istat.

Appendix F, Build Your Own Printer and Screen Drivers 461

iready

is tat

omask

oport

oready

oseg

ostat

(number) Input ready value. After AND'ing with the imask, if
the status byte equals this number the formatter assumes
there is an input to be read from the input data port.

(number) Input status port. This port is read to check the
input status, to see if an input character is ready.

(number) Output ready mask. The byte read from the output
status port is AND' ed with this.

(number) This is the port number to send output characters
to.

(number) Output ready value. After AND'ing with the omask,
the status byte is compared with this number. If equal, the
port is considered ready for transmission. This should have 0
bits where the omask has 0 bits.

(number) If this is a DMA port, this is the segment number
(top 16 bits) for both the oport and ostat addresses.

(number) Output status port. The port number to read to
check the output status.

reset (string) Port reset string. This string is sent after all the data to
close the port.

send (string) Sends a string. Some ports (such as IBM parallel
ports) need a few outputs to send a character. This string
works like the init string, and is done to send each character.
Put %c in the string where you want the character to be.

sync (XON) XON means uses the XON/XOFF ("S/"Q) protocol.
This is by far the most popular scheme; in it, the printer sends
a "S to the computer to tell it to stop transmitting data, and a
"Q to tell it to start again. The Sprint formatter will react
within one character of the stop signal.

If you don't specify sync, there is no synchronization protocol,
and the input port is ignored. To do DTR and other line signal protocols,
set up the output status port to check the line.

Using an External Terminal

In some cases, it may be useful to use an external terminal device, rather
than the screen that is built into the computer. Sprint can support external
terminals, plugged into the communication ports on the back of your

462 Sprint Advanced User's Guide

computer, with up to 120 lines. Assuming you have already added the
screen definition to the MAIN.SPL file, here is how the setup can be done:

• Get the necessary cables to plug the external terminal into the COM1 port
on the back of your computer, and connect it up. You do not need the
terminal's keyboard (you will be typing on your computer's normal keyboard), so
move it out of the way if possible. Place the monitor where you can see the
screen.

• Use your favorite communications program to make sure the connection
to the terminal is working. If possible, turn on the XONjXOFF protocol for
the terminal, and set the baud rate as high as possible, such as 9600 baud for a
standard IBM Pc.

• Run SP-SETUP, and select the correct terminal type. When SP-SETUP
asks for the port to use, select COM1 port.

• Run the Sprint editor as normal. Your display will come out on the alternate
terminal. When you exit, you will go back to the regular display.

• If you want, before you run Sprint, type "command >coml" at the DOS
prompt, and all your normal MS-DOS output will also come out on the
alternate terminal. However, programs that use BIOS calls or direct memory­
map will come out on your old display. Do not use IBM's ctty command as this
redirects input from the terminal's keyboard as well, and will result in strange
effects in many programs.

There are also some terminals with taller screens that come with a card that
you put inside your IBM. These are less versatile, but work with more
existing software. If the editor, set to either IBMMono or IBMColor,
displays on the top 25 lines of these screens fine, you can make Sprint use
the entire screen by modifying the description in DEFAULT.SPL to have
the correct number of rows (change the "25" to whatever the correct
number is). If now the initial display is then fine, but scrolling doesn't work,
remove the BIOS scrolling calls by adding "up ,down" to the screen
description.

If you have one of these larger screens (especially one that is wider than 80
columns), and IBMMono or IBMColor does not seem to work, try IBMBios.
If this displays in the upper-left corner of the screen, modify it to have the
correct screen dimensions and use it. If IBMBios does not work (or is too
slow for your taste), you should write or obtain a "device driver" which
interprets escape sequences to work on your screen, and make a screen
description using these escape sequences.

Appendix F, Build Your Own Printer and Screen Drivers 463

Printer Definitions

Printers used with computers-whether they're dot matrix, letter quality,
laser, or phototypesetting-are controlled by sending a sequence of data
bytes to them. This sequence is sent through either a serial or parallel port,
and through a cable to the printer.

The Sprint formatter is able to generate virtually any sequence of bytes
needed to operate a printer. It can even run printers that don't take ASCII
code, or ones that don't use a carriage return or line feed to end the line.
Even if Sprint can't run a particular printer (a rarity, but it could happen), it
can still generate an intermediate file in almost any format you want, which
can then be read by a simple translation program to send data to the
printer.

Printer Requirements

Sprint does require a few minor things from the printer. In most cases, these
things don't prevent any printer from being used, but they can limit the
ways in which it can be used.

For example, the formatter assumes there is a print head that can be moved
around the page, and that remains where it was last placed until another
command is sent. On purely mechanical printers such as Diablos, this is of
course the actual print head mechanism. On laser printers this is just an
abstract idea, stored as state variables in the micro computer that runs the
laser. Most printers fall somewhere in between these two extremes, for
instance most dot-matrix printers move a physical head vertically, but
construct horizontal lines with a virtual print head, and don't actually print
the line until a vertical move is required.

The most important printer requirement is that the printer have a horizontal
resolution unit. This is a fixed-size, but usually very small, horizontal
distance that is the minimum amount the print head can move. No command or
character (including proportionally spaced characters) can move the print
head a non-integer number of these. Moreover, there must be a method of
moving the print head by one of these units without printing.

On a typical dot matrix printer, the horizontal unit is the same width as a
letter. The method used to move the print head on these printers is to print
spaces. On more advanced printers, letters are often 10 or 12 horizontal
units wide, and on these you can move by these units using special escape­
sequence commands. On daisy wheel printers, these units are very fine,

464 Sprint Advanced User's Guide

usually 1/60 or 1/120 inch, and horizontal motion is usually simple to
configure.

An example of a printer that is limited by this requirement is a "dumb"
printer that can print both 10 pitch and 12 pitch. If you try to set it up so
both fonts can be used in the same document by the formatter, the
horizontal resolution unit is 1/30 of an inch (the difference between the 1/
12 and 1/10 of an inch letter widths). But there is no way to position the
print head with this accuracy, so you cannot combine these fonts into a
single printer definition.

A far more common case is printers that have a proportionally spaced font
but that cannot move by the units that the proportional widths are
multiples of. If such a printer has a method of positioning the print head
relative to the left edge of the paper, and the units used for this positioning
do not vary depending on the font and if they are sufficiently small, Sprint
supports a work-around for this case. You can tell Sprint that the horizontal
unit is the unit required for the proportional widths. Then when the
formatter wants to move to a location, the printer actually moves to the
nearest approximation based on these new units. Otherwise, you are
unable to use proportional spacing on such printers.

Another requirement is that there be an equivalent vertical resolution unit. It
does not need to be the same size as the horizontal unit. Almost all printers
fulfill this requirement. On some, an equivalent problem to the 10 pitch/12
pitch problem is that they can be set to 6 or 8 lines per inch, but not to the
1/24th of an inch difference. These printers can only run in one line spacing
at a time.

The last requirement is that the formatter be able to fully control the priz:tter.
The formatter must be able to position the print head anywhere on the page
(although it won't print too close to the margins, and will always advance
down the page, never up), and print characters there. This only causes
trouble with "intelligent" printers that also attempt to be word processors.
Watch out for printers that justify lines all by themselves. This is a sure sign
that there will be some difficulty getting Sprint to run them.

Printer .8PL Records

A printer is described by a number of records in a library file.

The most important record is the printer record. This describes most of the
printer, including the horizontal and vertical resolution, how to move the
print head and print characters, and global aspects of how the printer

Appendix F, Build Your Own Printer and Screen Drivers 465

works, such as whether to pause after each page. The printer record also
names the printer.

After the printer record in the library file, there can be any number of font
records, with a minimum of one. Each font record describes one of the fonts
that the printer can print, including the commands used to turn that font on
and off, and the size of the letters in that font, given in horizontal and
vertical units.

There can also be attribute records (which are just called attr in the library).
Each attribute record also has a name, and describes the commands used to
turn that attribute on and off.

Attributes are different than fonts in that they cannot change the widths of
characters. There is always exactly one font in effect at all times. There can
be any set (zero or more) of attributes turned on at any time, but the widths
used are the widths of the current font.

Fonts can refer to proportional spacing table records (called just pst in the
library). These provide the widths of each character in a proportionally
spaced font. Many fonts can use the same proportional spacing table, and
the table can be anywhere in the library file.

Fonts can also refer to translation character table (called just tct in the library)
records. These allow a one-character to one-character translation of ASCII
codes to a different code to be sent to the printer. These were originally
designed to translate codes for daisy-wheel printers where the letters were
arranged differently on the wheel. They are also used to indicate to the
formatter which characters (including high-order foreign symbols) the
printer can print, and to translate to EBCDIC and other non-standard
character codes.

All these records are assembled by SP-SETUP into a single .SPP file. The
formatter opens this file and reads most of it into memory. The spacing and
translation tables are swapped into memory as needed (it keeps two of each
in memory).

Printer Record Fields That Concern the Formatter

This is a list of the fields a printer record can have. This section lists the
fields that the formatter uses to figure out where to position the text. All the
fields in all records have a default value of zero unless otherwise noted.

hpi (number, required) Horizontal units per inch. This field defines the
size of a horizontal printer unit, which is used for all other measure­
ments for this printer. A printer unit is the smallest possible

466 Sprint Advanced User's Guide

horizontal motion of the print head. See the earlier discussion on
the requirements for horizontal resolution.

Common values are 10 or 12 for most fixed-width devices, and 120,
144, 160, and many other values for microspacing devices. Laser
printers are in the range of 300 to 1000.

Watch out for Diablo "compatible" printers, which have commands
to move in 120ths, but round these to some other unit, usually
180th of an inch. The real hpi of these is 60 (the greatest common
divisor of 120 and 180), and arguments to the horizontal motion
commands must all be multiplied by two.

All character widths (including proportional fonts) must be
multiples of this unit. There must also be some method of moving
the print head by one of these units without printing anything. A
suprising number of printers fail to fulfill these requirements, and
Sprint will be unable to use them fully. There are, however, lots of
ways to cheat. The simplest is just to remove fonts until the
remaining set is all multiples of a usable hpi (for example, remove
Pica or Elite if they conflict). Another is to use the second argument
of fwd to position absolutely using the finest units the printer does
accept, and have the fwd string do math to round the hpi units to
these units (for instance if the proportionally spaced font is
measured in 360ths of an inch, and there is a command to
absolutely position horizontally by 60ths of an inch, a fwd string
containing "% Ig%4/ ... " and an hpi of 360 will do the job with
unnoticeable error.

To prevent internal overflows, the page cannot be more than about
32,000 units wide, meaning the maximum for hpi is about 3500.

vpi (number, required) Vertical units per inch. This field defines the
size of the vertical printer unit, which is the vertical analogy of a
printer unit. It is the smallest possible vertical motion of the print
head.

Common values are 6 or 8 for fixed-feed devices, 12 or 16 for half­
line feeding devices, and 48 or 72 for micro-feeding devices. Laser
printers generally have the same vpi as hpi.

To prevent internal overflows, the page cannot be more than about
32,000 units tall, meaning the maximum for hpi is about 2500.

Appendix F, Build Your Own Printer and Screen Drivers 467

Device Control

The following printer record fields control much of the general operation of
the printer:

file (yes/no) File output. If this is given, the output will be sent to a file
with the name xxxx.PRN, rather than to an output port. This can be
used to generate online-readable output, or to generate output that
needs further manipulation or transmission, such as to a remote
typesetter. Page pausing, paper offset, and wheel changing are
ignored for file output.

Normally, this field is specified when the SP-SETUP program is
run, and should be left off in the printer description.

init (string) Initialization String. This string is sent to the printer before
anything else. Direction, pitch, shift, ans so forth will be
automatically initialized after this. If ipo is zero, this should leave
the printer at the top of a blank page.

If you have a two-bin sheet feeder, you can make this string feed
from the letterhead bin, and the ff string (discussed on page 471)
feed from the plain paper bin. Using this strategy, only the first
page will be on the letterhead. For special printer support, the init
string can be given as: "F<filename>" to dump a whole file of
initialization data or a downloaded font to the printer, excluding a
trailing A Z.

This can be used to download a "soft font" to a printer, as long as
the file being downloaded contains leading data to alert the printer
that font data follows.

ipo (number) Initial paper offset. For convenience in tearing off pages
of fan-fold paper, Sprint can advance the paper a specified amount
past the last page boundary after printing a file. It also assumes the
paper has been advanced this distance when printing starts. This
can be used to align the perforations with a page cutter or other
reference point. The distance is given in 6ths of an inch.

If page pausing is turned on, this is ignored.

leftm (number) Left margin. It is highly recommended that the printer be
set up so that column zero is at the left edge of the paper.
Unfortunately, ~ome printers cannot move the carriage that far left
(or the paper that far right), therefore this field lets you specify (in
10ths of an inch) how far from the left edge of the paper "column
zero" is. The formatter will subtract this amount from the

468 Sprint Advanced User's Guide

horizontal position of everything it wants to print, and won't print
anything formatted to the left of this.

If you run SP-SETUP and specify that cut sheets are to be used, you
can also specify leftm because many sheet feeders insist that the
paper be in the middle of the platen rather than the left edge.

pause (yes/no) Page pause. Sets whether, by default, the formatter will
pause for the user to insert new pages into the printer. This can be
overridden by the -pause formatter option. Normally, this field is
set when the SP-SETUP program is run, and should be left off in
the printer description.

print (string) Print a string of characters. The string must contain I/%s,"
and is used to enclose and group of printing characters if the
printer requires them. Our PostScript driver has the string I/(%s)p "
to produce a string and send it along with the "p" command to the
printer. so and si are placed inside this string, but all other escape
sequences, and @Escape commands, are outside of it.

reset (string) Reset string. This is the last thing sent to the printer.
Direction, pitch, shift, and so forth will be set to reasonable defaults
before reset is sent (for this reason, reset can change them because it
has access to them last). The F string construct also works here, just
as in init.

scale (number) Indicates the printer can scale the fonts (such as
PostScript printers). Sizes are given in vertical units, and the
number is the minimum increment between sizes (the fornlatter
will only ask for sizes that are a multiple of the number). Size is set
by sending a number with each font's on string (see the description
on page 476).

topm (number) Top Margin. The printer should also be set so the top of
the print head is at the top edge of the paper when each page is
started. However, some printers will not allow this (usually
because they take cut sheets, and the sheets must be fed in enough
to get under the platen rollers). This field tells how far (in 6ths of an
inch) the print head starts down the page. Text formatted above
this point will not be printed correctly.

Usually, this field is left unspecified, and is supplied by the SP­
SETUP program when you indicate that cut sheets are to be used.

Appendix F, Build Your Own Printer and Screen Drivers 469

Printer Horizontal Movement Control

Sprint must be able to control exactly the position of the print head across
the paper, down to the resolution specified by hpi. Unfortunately, many
modern printers try to be "too smart," handling justification by themselves,
which often makes it very difficult to do exact control. You must disable
this "feature" and carefully use the following field descriptions to get
around any strange effects of it.

back (string, three arguments) Same as fwd, but goes in opposite
direction.

bs (string) String to move the carriage backwards by th~ horizontal
pitch (usually a I\H will do this). In general, formed-character
printers can do this, dot matrix printers can't. On many
proportional-space printers the size of a backspace depends on the
last character printed. In such case, this field cannot be used.

cm (Width/Pitch) Character motion. This defines the distance the print
head moves after it I prints any character except space. One of the
following keywords is allowed:

• Width means the print head moves the width of the character.
This is by far the most common, and results in the most compact
output coding .

• Pitch means it moves by the horizontal pitch. A printer that does
this should have the shp control sequence (although it will work
without it, but incredibly inefficiently). This results in much
longer output, but has the advantage that the width table is
independent of the printer, and can be adjusted by editing the
library file. Most daisy wheel printers do this.

cr (string) This string causes the carriage to return to the left margin
without advancing the paper. Usually a I\M (carriage return) will
do this.

fwd (string, three arguments) Forward by N units (first argument), or to
the M'th column (second argument). This string moves the carriage
N printer units to the right, or to the M'th column. Many printers
will do this, but the correct command is hidden cryptically in the
printer manual. Look for "variable spacing" commands, or a set of
characters that are spaces of different widths. You may have to go
into "graphics mode" and send N nulls, but only if there is nothing
else. (This is what Epson and IBM graphics printers do, and they
are very slow at it!)

470 Sprint Advanced User's Guide

The current horizontal pitch is passed as the third argument to fwd,
and is useful if the command changes it and you have to set it back.

mhm (number) The maximum allowable argument for fwd, back, and shp.
If the formatter wants to move further than this amount, it will
send multiple commands in a row. If not specified, the formatter
assumes any N can be sent.

shp (string, one argument) Set horizontal pitch to N. The distance the
print head moves when it prints a space is called the horizontal pitch
of the printer. Some printers (Diablos and compatibles) have the
capability of changing the horizontal pitch to any number of
printer units. This is the string sent to cause this change. If this
string is not given, the horizontal pitch is assumed to be the width
of a space in the current font, and is unchangeable.

tab (string) String to cause the carriage to move to the next tab stop.
Tab stops are assumed to be every tabsize (default is 8 unless it is
overridden by the -t formatter option or by the Tab Expansion
menu command) columns. This is usually A I, and is useful mostly
for file output.

Vertical Movement Control

Vertical movement is similar to horizontal movement. Fortunately, Sprint
only needs to advance down the page, so there are no backwards
commands.

down (string, two arguments) Move down N units (first argument), or to
the M'th unit from the top of the page (second argument). This
string feeds the paper N printer units up. If you have a printer that
can feed paper in half-line increments, make this string do the
half-line feed (ignoring the argument) and set mvm to 1.

ff (string, one argument) Form feed string. Feeds paper to top of next
page, or otherwise does something to indicate the separation of two
pages. Usually a AL will work. If not given, the formatter assumes
If, nI, and down can be used to move to the next page. Important:
The formatter automatically sends the cr string first. If the printer
has no cr string, this string must also return the print head to the
left margin.

The previous page number is sent as an argument to this string.
This can be used to update a page number display on the device.

Appendix F, Build Your Own Printer and Screen Drivers 471

If (string) This string advances the paper by the current vertical pitch
without moving the carriage horizontally. A "J(line feed) will often
do this. Make sure it does not move to the left margin as well.

mvm (number) Maximum vertical move. This is the maximum argument
for up, down, and svp. If more vertical movement is desired, the
formatter will send multiple commands. If not specified, the
formatter assumes any N can be sent.

ni (string) This string advances the paper by the current vertical pitch
(line height), and returns the print head to the first column. A "M"J
will usually do the trick. Whenever possible, the formatter will
send this string, even if another string may work.

page (string) String to send at the start of each page. The current page
number is supplied as an argument and can be put in with %d (or
tested for odd/even to control which side of the paper to print). If
this field is given, SP-SETUP will assume this is a laser printer and
not ask the user about manual feeding or paper positioning.

rlf (string) This string moves back by the current vertical pitch (reverse
line feed). Not required, and not used.

svp (string, one argument) Set vertical pitch to N. The amount the
paper moves vertically when the printer is sent ni or If is the vertical
pitch. This string changes the vertical pitch to any number of printer
units (commands to set the lines per inch cannot be used!). The nl or
If string will always be sent immediately after this string. If this
isn't given, the vertical pitch is assumed to be the size of the current
font.

up Move up N units (first argument), or to the M'th unit from the top
of the page (second argument). Not required, and not used.

Font/Attribute Controls

shadow (number) Bold shadow. The number of printer units to move right
when overstriking bold characters. This makes bold characters
wider and they stand out much more. The default is 0, and the
maximum is 255.

so,si (strings) Shift out string, shift in string. If your printer has an
"uppercase" and "lowercase" that must be toggled to print all the
characters, the translation table can control this. The high-order
bit of the translated character tells the printer to "shift out." This
high-order bit is masked before printing the character.

472 Sprint Advanced User's Guide

If si is not given, but so is, so is instead sent with each character
that has the high bit set. You must put %c in the string to indicate
where the character should be printed. For instance, to do the
Diablo ESC-x sequence, set so to A[%C, don't set si, and place
x+ 128 in the translation table.

If neither si or so is given, the high bit from the translation table is
sent to the printer unchanged.

unc (string, one argument) Print N underscored spaces. The formatter
usually underscores by backing up and printing underscore
characters over the letters. Unfortunately, most dot-matrix
printers do not print a respectable underscore when this is done,
and this string provides an alternative method.

The result of printing this string should be equivalent to printing
N underscore characters in a row, but the result should be an
unbroken line at the correct height. Usually this string is
"<on>%(%)<011>" (where <on> and <off> are the correct
sequences to enter and exit underscore mode). Be sure the width
of an underscore given in the width table is correct for this, the
same as a space.

unw (string, one argument) Underscore a width. On some printers
doing underscores by single dots is more convenient and looks
better. This command should move the print head to the right by
N hpi units, underscoring the area it passes over. The argument is
the width (in printer units) to be underscored.

xnc (string, one argument) Strikeout N characters. Normally, the
formatter strikes out characters by printing dashes, half a width of
a dash apart, over the characters. This string provides an
alternative way, and works the same as unc, except it is supposed
to strikeout N times the width of a dash character.

xnw (string, one argument) Strikeout a width. Same as unw, but it
should draw a horizontal line through the characters for
strikeouts.

Special Flags

Special flag variables are available that allow printer descriptions to over­
ride certain "features" on printers. If false, they do nothing. If true, they try
to circumvent the feature by brute-force methods.

Appendix F, Build Your Own Printer and Screen Drivers 473

fLagl (yes/no) Indicates that horizontal movement does not work
in some fonts. The precise result of fLagl is that before a fwd or
back is done, the off string for the current font is sent, then the
movement is done, then the on string is sent. The numerical
value for fLagl should be the h-pitch that the printer will have
after the off string is sent. (Note: any attribute with the * field is
shut off whether or not fLagl is given.)

This fixes the common case where the horizontal units vary
depending on the font. This is done by sending the off string
for the current font, but no on string until after the horizontal
spacing is done.

fLag2 (yes/no) Indicates that vertical movement does not work in
some fonts or attributes. The precise result of fLag2 is that
before a cr, If, nl, or down is done, the off string for all
attributes and the current font is sent. After the movement,
the on string for the font is sent. The most common reason for
this flag is that some of these commands turn things off
anyways. This should also be used if the printer definition file
has a font attribute called uns (underline string), so it does not
underscore the leading spaces on the next line.

fLag3,fiag4 (yes/no) Extra flags. These flags currently do nothing.

Special Notes on Daisy Wheel Printers

Diablos, Spin Writers, and their kin are very popular machines. Therefore,
we have designed some special fields around their own peculiarities. You
can use these fields for other printers, but it's unlikely they will be useful.
Note: Newer Diablos and compatibles that use microprocessors and have
an internal proportional spacing mode are much smarter, and you may
want to avoid these fields and run that processor directly in proportional
mode.

center (yes/no) Centers characters. Most daisy wheel printers center the
character graphic at the carriage position rather than put the left
edge there. If this is given, the print head is positioned half a
character width to the right before printing. This will only work
correctly if the printer also has cm Pitch.

474

Some printer manuals get very confusing on this point. Generally,
if the printer has built-in widths for proportional characters (often
specified as a "left" and "right" half-width that you must add
together), the characters are not centered.

Sprint Advanced User's Guide

wheel (yes/no) Change print wheels. This indicates that all font changes
require the operator to place a new print wheel in the printer. The
formatter will pause and prompt the user as necessary.

Font Defaults/Overrides

The following fields affect the font descriptions that go with the printer:

pst (name) Names a width table to use instead of any width table given
for a font. If you specify this, all proportionally spaced fonts for the
printer will use this table, rather than their own, but fixed-width
fonts will still be fixed-width.

size (number) Standard height. The default height for a font, in vertical
printer units. In most cases, all the fonts for a printer have the same
height, so it is easiest to specify it here.

tct (name) Names a default translation table to use. All fonts use this
translation table unless they specify a different one of their own.

Font Descriptions

A font is a different form of text. It can change the width and height of
characters, and change their appearance. Only one font is "active" at any
time.

A printer is assumed to have all the fonts and attributes that are listed in
the .SPL file between it and the next printer description. These font
descriptions can be interspersed with pst and tct tables, blank lines, and
even comments (contrary to popular belief).

The difference between "fonts" and "attributes" is this: A font can change
the width and height of characters, and exactly one font can be in force at
any time. Before turning on a new font (even if the commands are nested),
the formatter will always send the off string for the previous font. An
attribute, however, cannot change the widths of characters (disregarding the
* field), any set of attributes (zero or more) can be in force, and the formatter
does not send the off string for the previous one when turning on a new
one.

At a higher level, the formatter tries to treat all the fonts and attributes the
same. This is why commands use only "font" fields, even though you can
freely put the names of either fonts or attributes there. All the font records
for a printer should be listed right after the printer record in the library file.

Appendix F, Build Your Own Printer and Screen Drivers 475

In the library, a font name is a string of words separated by periods, like
bold.italic. The formatter splits this name up into separate commands. You
cannot give the command @Bold.italic, but you can give the commands
@Bold and @Italic, nested in either order inside each other, and get the font
"bold.italic." (This only works if there are also "bold" and "italic"
intermediate fonts, and these font records must be given in order, with the
simple fonts first, and the "compound" fonts afterwards.)

Font records can have the following fields:

* (number) A multiplier for the pst table. This is useful for
phototypesetters that do multiple sizes of the same font. It lets you
use a single greatest common divisor width table for the entire set.
Watch out for typesetters that modify the widths (for good reasons)
as the type size changes; you will have to make separate tables for
each size of type. The maximum value allowed is 255.

off (string) This string is provided to prevent long and complex on
strings. It is sent immediately before sending the on string for the
next font, and turns off the effects of this font.

This is also the string that is sent to "turn off" a font when flagl or
flag2 is given. Note that in many cases no off string is needed.

on (string) String to send to turn the font on. Takes one argument, the
size desired (on any device that can't scale, this argument will be
equal to the size field). Notice that the on string will be used to
change the size of the current font as well as to switch fonts.

pst (name) The proportional spacing table to use. If none is given, the
font is fixed-pitch. Either width or pst can be given for a font, but
not both. Any number of fonts can use the same width table.

476

Width tables are described with pst records, and can appear
anywhere in the same .SPL file. We recommend you put them
immediately after the font. Each field in a pst is a letter, with
appropriate quoting by backslash, followed by a number giving the
width. The best way to make a new one is to copy an old one and
edit the numbers. Make sure there is a comma after every number
except for the last one in the last row, or the configuration parser
will throwaway the rest of the table without warning you. Any
characters not defined will be given the same width as the '2'
character.

Characters (such as accent marks) can be given a zero width, but
first make sure the printer does not move its print head when sent
this character, because that's what the formatter will expect.

Sprint Advanced User's Guide

size (number) Standard height. The height of the font, in vertical printer
units. This is the distance between baselines when this font is
printed. The vertical pitch is set to this value when the font
changes. The default is the size value in the printer description, or 1
if that isn't given.

On printers that can scale, this field indicates what size the width
table is for, to determine how much to multiply it by for the current
font size. For best accuracy, make this be 12 points or whatever
your most-used size is, so this multiplication and resulting
rounding is not done.

width (number) Standard width. This is the width, in horizontal printer
units, of a character in a fixed-pitch font. The default for this is 1.

tct (name) The translation table to use. If none is given, the default
translation table from the printer record is used. If none is given
there, the printer is assumed to print just the regular ASCII
characters (from space to tilde). The tct table describes what code to
actually send to the printer when a certain letter is needed, usually
for printers that do not take the ASCII character set. This is a
completely separate process than the TCT command, which is
handled by the formatter, not the printer driver. Notice that the
Char command is translated by this table; that is, it doesn't
necessarily send the literal character to the printer. Use the Escape
command to send literal characters.

Often a tct table is used with the so string to translate some
characters to multi-character escape sequences. Any code with the
high bit set in the tct table is sent with the so string. By using the %[
case in the so string, theoretically you can have up to 128 arbitrary
different sequences sent for different characters, but this gets pretty
hairy to define and debug.

Translation tables are defined with tct records. Like width tables,
these can appear anyWhere in the .SPL file, but we recommend you
put them right after they are referenced. Each field is a character, as
in pst tables, followed by a code to translate that character to (a
number, not a character). As with width tables, make sure there is a
comma after every field or the table will get truncated without
telling you. Any locations that are undefined are translated to
themselves.

You cannot translate a character to zero unless you use so to do it. A zero
entry in the TCT table will cause the formatter to produce the "can't print a
'x'" error message. Translating space (SP) to zero will prevent the driver
from sending spaces to do horizontal positioning, if for any reason spaces

Appendix F, Build Your Own Printer and Screen Drivers 477

don't work (a good example of this is Compugraphic typesetters, which
have no space in their fonts).

Attribute Descriptions

An attribute changes the appearance of the text, but does not change its size
(except to possibly multiply the width by a constant). Any set of the
available attributes can be "active" at any time. All the attribute records for
a printer should be listed immediately after the printer record in the library
file.

Attribute (attr) records take the following fields:

* (number) Size multiplier for the attribute. This is for "double­
width" attributes common to dot-matrix printers, although
numbers other than 2 will work. The default is 1. Such an attribute
will be turned off before the formatter attempts to move
horizontally.

on (string) This string turns the attribute on.

off (string) String to turn the attribute off. All off strings are sent before
any on strings for the next attribute or font. Unlike fonts, the off
string is required for correct attribute operation.

Proportional Spacing Tables

Pst records look much different from other records in the library file, but
are actually read using the same rules. Each field name is a character.
Control characters and meta-characters are read just as in strings; for
instance, you must quote the caret with a backslash. The width value is in
printer units.

The special field SP is the width of a space character.

It is quite difficult to type in a pst table from scratch. We recommend that
you copy one of the existing ones, and edit the numbers to the new values
you want.

Characters that are not specified are assumed to have the same width as a
'2' character. The width of a '2' must be specified.

A range of characters can be given the same width by using two letters
with a hyphen between them (as in "a-z"). You can also supply an as field,
in case two tables are similar.

478 Sprint Advanced User's Guide

Note: If the printer description has an unc string, use the width of a space
for the width of an underscore.

Translation Tables

Tct tables in the library look like proportional space tables. The field names
are the same, but in these the value is a character to translate to. The
character can be a Control character or a "meta-character," or a zero can be
given. A meta-character indicates the "shift" state, and causes the si and so
strings to be sent (if the printer has them). It is often convenient to place \
nnn as the character, to translate to a certain decimal number.

No value or zero indicates that the font cannot print the given character,
and the character is constructed using the formatter's TCT table.

By default, all ASCII characters from space to tilde translate to themselves.
If the printer cannot print one of these characters, you must indicate that
fact by entering that character followed by no value into the table.

You can name a range of characters and cause them to be translated to
another range by supplying the first value in the range to be translated to.
This is useful for translating all the IBM foreign characters to themselves
(do I\@_ @ I\@).

Note: The formatter assumes that every font can print an underscore, a
hyphen, and a 2. It also ignores the si/so state for spaces.

Making Your Own Printer Type

All printers are different. What follows are some general instructions and
guidelines to follow to make the formatter run your printer.

Sprint can support every printer in the world,2 even ones we have never
seen before! Of course, if we don't yet support your printer, you will have
to do a bit of work to drive it, but it will be well worth your effort .

• You need a complete understanding of the structure and fields of a
printer description. Read the previous sections thoroughly. Print out a copy
of our library files and study it. Despite any initial impressions, you do
not need to be a computer scientist to do this, but a good understanding
of how printers and ASCII code work would be helpful.

2. Well, almost. SErint won't support "Fortran Carriage Control" line printers. Generally, there
must be some relationship to ASCII, even if the codes are completely different.

Appendix F, Build Your Own Printer and Screen Drivers 479

• Next, make sure the Sprint formatter can talk to your printer. This can be
checked by using the "Plain" printer definition. It is important to
completely debug the serial or parallel connections and synchronization
protocols before attempting to use tested printer definitions. Make sure
the printer prints many sequential pages of text without losing data.

• You need very accurate knowledge of your printer. Get the manual, and
read the section on "programming" or "control codes." Use a
communication program and try sending each escape sequence to your
printer to see exactly what it does. Too often, the manuals are wrong,
leave out some important information, or are unbelievably obtuse.

• Then write your new .SPL entry. It may be helpful to copy one of ours,
then edit it to your specifications. Change only one field at a time, so
when disaster strikes, you'll have an idea of what caused it. Put lots of
comments in to say what you are doing. If your printer does multiple
fonts, don't try to define them all at once. Instead, pick a simple fixed­
pitch font for your initial tests.

Printer manuals often give the escape sequences in BASIC, or list the
characters to be sent in other obscure ways. The ASCII conversion chart on
page 483 provides a way to convert it to standard notation. For example,
chr$ (27) in BASIC means character 27 decimal. Look up the number in the
Decimal column of the chart. Three letter codes such as ESC indicate the
ASCII names of the control characters. These are also listed in the table.

Test it, using very short files first. It is quite possible to crash the formatter
with an error in the printer description. Don't worry if this happens, just
reboot and try to figure out what you did wrong. The formatter will crash
(in an infinite loop) if you do not provide the necessary escape sequences
(such as fwd) to move the print head to any unit. If you get a "divide by
zero" error, a field such as vpi that must be non-zero was set to zero or left
unspecified.

If your printer does proportional spacing, you must make a pst table for it.
Sometimes the widths of the characters are listed in the back of the printer's
manual. Make sure these are listed in the same units you used for the hpi. If
they are, you can use them. If not, you will have to convert them first.

If the manual does not have such a table, you can come very close by
measuring the character widths yourself. First, you must have run the
following macro that creates the test file SPACING. TXT:

open "SPACING. TXT" clear 32->x 224 repeat(SO repeat (x insert) ++x 10
insert)

Next, add the new proportionally spaced font to the printer definition, but
just give it a sw field to indicate that it is fixed-width. Then format

480 Sprint Advanced User's Guide

SPACING.TXT with the -plain switch and the -font xxx switch to select the
font.

There are 50 characters in each line in SP ACING. TXT. If you measure the
length of each line, and then divide by 50, you will then have the width of
each character in the font. Next, you must convert the result into whatever
units you used for the hpi field when writing the printer driver.

Share Your Configurations!

If you have configured Sprint to work on a new printer, computer, or other
device, no matter how obscure, we would enjoy seeing your work, and
adding it to the distributed Sprint database.

Once you have perfected a new configuration, send the new library entries
on disk (IBM-readable format) to us. Please don't edit the MAIN.SPL and
send that; make a new xxxx.SPL with just your additions in it. Also send a
letter or text on disk describing what you did and interesting points about
the new hardware. Our address is

Borland International
4585 Scotts Valley Drive

P.O. Box 660001
Scotts Valley, California 95066-0001

United States

Appendix F, Build Your Own Printer and Screen Drivers 481

482 Sprint Advanced User's Guide

A p p E N D x

G

ASCII Character Set

The American Standard Code for Information Interchange (ASCII) is a
code that translates alphabetic and numeric characters and symbols and
control instructions into 7-bit binary code. Table Col shows both printable
characters and standard control characters.

You'll especially need these ASCII numbers if you're creating your own
hardware drivers. You also need the ASCII numbers in Sprint when you're
using the Char command. You also need to note the order of the characters,
since the Utilities/Arrange-Sort command arranges according to ASCII
order.

Appendix G, ASCII Character Set 483

Table G.l: ASCII Table

IBM Extended ASCII Character Set
DEC HEX CHAR DEC HEX CHAR DEC HEX CHAR DEC HEX CHAR

0 0 "@ NUL 32 20 64 40 @ 96 60 ,

1 1 "A © SOH 33 21 ! 65 41 A 97 61 a

2 2 "B • STX 34 22 " 66 42 B 98 62 b

3 3 "C • ETX 35 23 # 67 43 C 99 63 c

4 4 "D • EaT 36 24 $ 68 44 D 100 64 d

5 5 "E .. ENO 37 25 % 69 45 E 101 65 e

6 6 "F • ACK 38 26 & 70 46 F 102 66 f

7 7 "G • BEL 39 27 71 47 G 103 67 9

8 8 "H a BS 40 28 (72 48 H 104 68 h

9 9 "I 0 TAB 41 29) 73 49 I 105 69 i

10 A "J I LF 42 2A * 74 4A J 106 6A j

11 B "K cJ' VT 43 2B + 75 4B K 107 6B k

12 C "L 9 FF 44 2C , 76 4C L 108 6C I

13 D "M l' CR 45 2D - 77 4D M 109 6D m

14 E "N ~ SO 46 2E 78 4E N 110 6E n

15 F "0 0: SI 47 2F / 79 4F a 111 6F 0

16 10 "P ~ DLE 48 30 0 80 50 P 112 70 P
17 11 "0 DC1 49 31 1 81 51 0 113 71 q

18 "12 "R ! DC2 50 32 2 82 52 R 114 72 r

19 13 "S !l DC3 51 33 3 83 53 S 115 73 s
20 14 "T ~ DC4 52 34 4 84 54 T 116 74 t

21 15 "U § NAK 53 35 5 85 55 U 117 75 u

22 16 "V • SYN 54 36 6 86 56 V 118 76 v

23 17 "W 1 ETB 55 37 7 87 57 W 119 77 w

24 18 "X T CAN 56 38 8 88 58 X 120 78 x

25 19 "Y 1 EM 57 39 9 89 59 Y 121 79 Y

26 1A "Z -+ SUB 58 3A 90 5A Z 122 7A z

27 1B "[+- ESC 59 3B , 91 5B [123 7B {

28 1C "\ L FS 60 3C < 92 5C \ 124 7C I
29 1D "] ++ GS 61 3D = 93 5D] 125 7D }

30 1E "" .. RS 62 3E > 94 5E " 126 7E -
31 1F " 'Y US 63 3F ? 95 5F 127 7F - -

484 Sprint Advanced User's Guide

Table G.l: ASCII Table, continued

IBM Extended ASCII Character Set, continued
DEC HEX CHAR DEC HEX CHAR DEC HEX CHAR DEC HEX CHAR

128 80 C; 160 AO a 192 CO L 224 EO ex

129 81

130 82

131 83

132 84

133 85

134 86

135 87

136 88

137 89

138 8A

139 8B

140 8C

141 80

142 8E

143 8F

144 90

145 91

146 92

147 93

148 94

149 95

150 96

151 97

152 98

153 99

154 9A

155 9B

156 9C

157 90

158 9E

159 9F

u
e
a
a
a
a
<;
e
e
e
i

i

i

A
A
E
~

IE

a
o
o
U

11
y
b
U
¢
£
¥

R-

f

161 A1

162 A2

163 A3

164 A4

165 A5

166 A6

167 A7

168 A8

169 A9

170 AA

171 AB

172 AC

173 AD

174 AE

175 AF

176 BO

177 B1

178 B2

179 B3

180 B4

181 B5

182 B6

183 B7

184 B8

185 B9

186 BA

187 BB

188 BC

189 BO

190 BE

191 BF

Appendix G, ASCII Character Set

i

6

U

fi

N

Q

«

»

II
I
I
1
~
11
11

'1

~I

" 11
:!J

11

:::I

l

193 C1

194 C2

195 C3

196 C4

197 C5

198 C6

199 C7

200 C8

201 C9

202 CA

203 CB

204 CC

205 CD

206 CE

207 CF

208 DO

209 01

210 02

211 03

212 04

213 05

214 06

215 07

216 08

217 09

218 OA

219 DB

220 DC

221 DO

222 DE

223 OF

T

~

+
F
I~
~

rr
JL

lr

I~

JL
lr
-.L

lL

T

IT
li

b

F

IT

1~
-.L
T
J

r • •
I
I
•

225 E1

226 E2

227 E3

228 E4

229 E5

230 E6

231 E7

232 E8

233 E9

234 EA

235 EB

236 EC

237 ED

238 EE

239 EF

240 FO

241 F1

242 F2

243 F3

244 F4

245 F5

246 F6

247 F7

248 F8

249 F9

250 FA

251 FB

252 FC

253 FD

254 FE

255 FF

~
r

T

cp

e
[2

6
00

E

n

±

~

r
J

485

486 Sprint Advanced User's Guide

Index

Index 487

! (macro negator) 197, 222
! command 131
#c1ear (macro) 179,236
#define (macro) 243
#include (macro) 270
$ (macro operator) 221
% (hardware control string operator)

267
% (macro format sign) 215,260
% (macro operator) 222
& (macro operator) 222
&& (macro operator) 222
, command 391
() (parentheses) delimiters

in macros 188, 201, 203
{} (braces) delimiters 222

in macros 188, 201, 203
* (printer driver field) 476, 478
++ (macro operator) 222
- (macro operator) 222
-> (macro operator) 222
: (colon) in macros 185
: (macro operator) 223
; (macro comment) 206
< command 131
«(macro operator) 223
<fontname> command 365
= (macro operator) 223
I (macro operator) 222
I I (macro operator) 222

.... (tilde) in macros 221
> (hardware control string operator)

267
>& (hardware control string

operator) 267
»(macro operator) 223
>" (hardware control string

operator) 267
> I (hardware control string

operator) 267
? (macro operator) 205,222
@! command 362
@$ command 362

example 160
@' command 362, 391
@* command 363, 389

488

example 164
@, command 363, 390, 403
@-sign commands 154, 371
@/ command 363

example 169
@i command 363, 390
@< command 363
@= command 364
@> command 363

example 167
@@ command 362
@[command 362
@\ command 363
@] command 362
@" command 363
@_ command 362
@' command 362, 392
@ I command 362
@ command 363, 393

example 164
\ (macro escape character) 215
\ (macro operator) 223
\n (macro escape sequence) 203
" (caret) in macros 221
"(macro operator) 223
"" (macro operator) 222
, command 392

A
abort (macro) 225
abortkey (macro variable) 225
Above parameter 399, 430,435

example 156
floating 399

AbovePage parameter 430
accent marks 476
action (macro) 226
Address command 126, 354, 419
addresses, formatting 126
advanced user interface 13
after (macro) 226
After parameter 401, 435
AfterEntry parameter 402, 434
MterExit parameter 402, 434

example 157
again (macro) 227
algorithms 199
alignment See justification

Sprint Advanced User's Guide

Also See command 89
Alt key 438
alternative user interfaces 8

advanced 13, 67
switching between 13

append (macro variable) 227
Appendix command 79, 356
Appendix variable 119
AppendixSection command 356
AppendixTitle variable 119
arguments in macros 165, 194
Arrange-Sort command 483
as (printer driver field) 451, 478
ASCII

characters 437,438
printing 103
table 483

codes 483
files, tabs in 433

ask (macro) 228
Assigned Number command 114
asterisk (*) command 389
Asterisks command 354
at (macro) 228
at-sign commands See @-sign

commands
AtEnd command 364,371
atoi (macro) 229
attribute records 478
attributes

printer drivers 475
AUTOEXEC.BAT 8
AutoSpell command 51

B
B command 358
back (printer driver field) 470
Bar command 85
before mark (macro) 229
Before parameter 403, 435
BeforeEach parameter 403, 434
BeforeExit parameter 158, 404, 435
Begin and End commands 364, 365
bell (macro) 229
Below parameter 405,430, 435

example 156
floating 405

BelowPage parameter 430

Index

binding margins 432
bitwise logical operators 213
Blank Page(s) command 96
blank pages 86
blank space (vertical) 100
BlankLines parameter 405, 430

example 159
block copying 17
Boolean values 195,211,255,345
BottomMargin parameter 430
break (macro) 230
bs (printer driver field) 470
buffind (macro) 230
bufnum (macro variable) 231
bufswitch (macro) 232
bullet characters 104
Bullets command 354

C
c (macro) 193,233
C programming language 210, 213
CABINET.SPR 8
call (macro) 233
canceling 225, See also deleting
CapsLock key 438
Caption command 357
case (macro) 234
Case command 131, 364

versus IfOdd 382
cd (macro) 235
cdstrip (macro) 235
center (printer driver field) 474
Center command 94, 354
Centered parameter 405, 430

example 159
centering text 94, 405

vertically 94
CenterPage command 94,364
Change Directory command 13
Chapter command 78, 356
chapter headings, customizing 166
Chapter variable 119
ChapterTitIe variable 119
Char command 103,364,483
character widths 467
characters

repeating 105
spacing 103

489

translation 170
clear (macro) 236
cleartab (macro) 237
Clipboard 18, 195

appending to 227
close (macro) 237
close quote command 391
Closing command 126, 354
clreol (screen driver field) 458
cm (printer driver field) 470
colons in macros 185
column (macro variable) 238
Column command 131,354
Column parameter 430
ColumnBreak command 364
columns 86, 406

Gutter parameter 413
in screen drivers 458
snaking 430

Columns command 86
Columns parameter 406, 430

example 160
Comma command 390
command macros 162
command parameter 157
COMMAND.COM 234
commands See also formats

conditional378,380
crea ting 372
STANDARD.FMT 353

commas in macros 221, 390
Comment command 364
comments See also nonprinting text

in macros 206
in printer drivers 450
nonprinting 105

Comments parameter 430
Compugraphic typesetters 478
CompuServe 3
conditional commands 378, 380
conditional hyphenation See

hyphens, soft
Conditional Page Break command 56,

95
configuration

printers 464
screens 457

configuring hardware 447

490

context-sensitive help See help
control characters 439

in macros 221
in printer drivers 452
italic 199

control codes See control characters
control keys, redefining 181
control strings 266
copy (macro) 238
copying a block See blocks, copying
copying a file See files, copying
Counter parameter 408, 434
Counter variable 169
cpi (macro variable) 239
cr (printer driver field) 470
cross-referencing 47, 106, See also

tags, See also tagging; X-Reference
menu
page numbers 114

csearch (macro) 201,240
Ctrl key 438
cur (screen driver field) 458
curatt (macro variable) 240
current (macro variable) 196,241
custom formats 133

document-wide 142
headings 157, 165, 166
index 159, 169
table of contents 170

customization
hardware 447
printers 447

cut sheets 469

D
D command 359
datecheck (macro) 241
Day variable 117
dc (screen driver field) 458
dcolumn (macro variable) 242
Default command 365
DEFAULT.SPP 449
DEFAULT.SPS 448
Define a Tag command 48, 110
Define command 150,365,372,395

example 157
parameters 427

Sprint Advanced User's Guide

Define Text Variable command 121,
376

del (macro) 243
delay (macro) 244
delete (macro) 244
delimiters

matching 178
Description command 26, 354

modifying 138
Destination command 65
device drivers 447
Diablo printers 467
DIABLO.SPL 449
dictionaries 324
dimensions (table) 72
direction (macro) 245
directories changing (with macros)

235
discretionary hyphens See hyphens,

soft
display adapters 448
Display command 126, 354
Divider parameter 401, 408, 435
dl (screen driver field) 458
dline (macro variable) 245
do (macro) 246
do ... while (macro) 198,246
Document-Wide menu 74

Style command and 77
vs. rulers 70

DoHelp (macro) 247
dokey (macro) 248
DOS

commands in FMT files 371
exec-call 233
wildcards See wildcards, DOS

down (printer driver field) 471
down (screen driver field) 459
draw (macro) 248
Draw Box command 85
drivers 447

screen 457
Duplicate-Copy command 15

E
E command 358
EditKey (macro) 249
else (macro) 221, 268

Index

End command See Begin and End
commands

EndF command 360
Endnote command 45, 88, See also

footnotes
endnotes 45, 88

placement of 88
EndS command 360
engine (macro variable) 250
ENote command 357
Enter command 178
EPS See EPS Picture command;

PostScript
EPS command 378
EPS files 85, 388
equate macros 163
erase (macro) 251
error (macro) 252
error (screen driver field) 459
Error command 365, 375
error messages

defining your own 375
preventing with IfN otFound 429
printing 52
undefined macro 191

Escape command 131,365,477
escape sequences 457
Eval command 365, 376

example 165
templates and 378
versus Value 376

Example command 126,354
exist (macro) 252
exit (macro) 253
exitmenus (macro) 254
exitmessage (macro) 254

F
f (macro) 194,255
False value 195
FCapt command 357
fchange (macro) 255
fcopy (macro) 256
fdelete (macro) 257
ff (printer driver field) 471
field (macro) 257
Figure command 29, 357,413
Figure variable 119

491

figures 85
caption 29
floating 30
full-page 86
list of 29
numbered 82
reserving space for 29,86

file (printer driver field) 468
File Manager menu 13
files

ASCII See ASCII, files
binary 448
copying 15
extensions

FMTl77
OVL212
PRN 468
SPL448
SPM 175, 177
SPP466

extesnsions
SPL449

library 448, 449
linking 90
listing 14
macros 235
moving text between 17
multiple 12, 16, 18
opening 12
switching 232

files (macro) 258
Fill parameter 409, 431

example 156
Find command 17
FirstPage variable 117
flagl (printer driver field) 474
flag2 (printer driver field) 474
flag3 (macro variable) 259
flag3 (printer driver field) 474
flag4 (macro variable) 259
flag4 (printer driver field) 474
flagS (macro variable) 259
flag6 (macro variable) 259
flags (macro) 259
flist (macro) 260
floating formats 385, 397, 399, 401,

405
FlushLeft command 126, 354

492

FlushLeft parameter 410,431
example 159

FlushRight command 126, 354
FlushRight parameter 411, 431

example 159
fmove (macro) 261
FMT files 161, 177,371,395

creating 135, 144, 153
modifying 153

fname(macro)262
FNote command 357
Font command 34, 73, 360

Char command with 104
Font parameter 412, 429

example 156
fontcpi (macro variable) 263
FontName variable 117
fonts 412, See also typestyles

changing 73
character translation 170
default 76
downloading 468
fontcpi (macro) 263
parameters 414, 429
pickfont (macro) 311
printer drivers 475
printers and 33
proportionally spaced 465
sizes 423
soft 468

Footer command 355
FooterEven command 355
FooterOdd command 355
footers 39, See also headers

All Pages command 40
customizing 167
If command and 379
page numbers 41
Position command 40
time and date in 118
Title Page command 40
variables 118

FooterSpacing parameter 431
FooterT command 356
Footnote command 44, 87
Footnote variable 119,408
footnotes 44, 87, See also Endnote

command

Sprint Advanced User's Guide

divider line 408
end of chapter 46
printing reference numbers 402

forced (macro) 264
foreign characters 479
form feeds 432
Format command 365
formats See also commands

built-in 361
creating 133, 372
custom 155

Define command 157
Macro command 154
Modify command 154
Style command 154

dimensions used in 72
floating 385, See floating formats
index 159, 169
line spacing in 99
lists 161
modifying 60, 133, 161, 353, 373
nesting 83
parameters 397
parent 82
STANDARD.FMT 353

formatter error messages 375
formatter macros, creating 382
formatting 153

commands
built-in 361
creating 382

FormFeed parameter 431
found (macro) 264
Free parameter 412,435
function keys 437, 439

redefining 181
fwd (printer driver field) 470

G
get (macro) 264
GetKey (macro) 265
gmark (macro) 266
Graphics menu 85
Group command 366
Group parameter 413,431

example 156
Group Together on Page command

56,96

Index

grouping 96
Gutter parameter 413,431

example 160

H
handshaking 461
hard returns 197,410, See also soft

returns
in macros 389

hard space See Non-Breaking Space
command

hardware
control strings 456

hardware (macro) 266,456
hardware configuring 447
HaveSpace command 97, 366
Header command 355
HeaderEven command 355
HeaderOdd command 355
headers 39, See also footers

All Pages command 40
customizing 167
even pages 40
odd pages 40
page numbers 41
Position command 40
time and date in 118
Title Page command 40
variables 118

HeaderSpacing parameter 431
HeaderT command 355
HeadingA command 356
HeadingB command 356
HeadingC command 356
HeadingD command 356
HeadingMajor command 168
HeadingMinor command 168
headings

custom formats 165
defining 157
modifying 166
multilevel 81
numbered 23, 78
table of contents and 82
unnumbered 24, 78, 82

Headings menu 22, 78
help 9

DoHelp macro 247

493

Hercules 452
Hewlett-Packard ThinkJet 450
Hidden command 105, See also

nonprinting text
horizontal printer unit 464
hot keys See shortcuts
Hour variable 117
HP.SPL449
hpi (printer driver field) 466
Hsp command 102,366
HUnits command 366, 378
hyphenation

soft hyphens 57
words with slash(!) 100

Hyphenation menu 57
HyphenNL 280, 282, 283, 327
hyphens

soft 57
Hyphens command 354, 404

I
I command 358
IBM PC 278
ic (screen driver field) 459
if (macro) 197,268
If command 366, 378

versus Case 380
IfDef command 366, 380
IfNotFound parameter 412,414,429

example 156
lfOdd command 381

versus Case 382
il (screen driver field) 459
imask (port description field) 461
imenu (macro) 268
inagain (macro variable) 269
inbuff (macro) 269
Include command 90, 366
InColor Card 452
Incr command 131,359

example 166
Increment parameter 414, 434
indent (macro variable) 271
Indent parameter 415,431

example 160
indenting 33, 73, See also margins

first lines 73
parameters 415,419,420,421

494

index (macro) 270
Index command 170
Index menu 88
Index parameter 416, 435

example 160
indexing 88

commands 359
custo~ing 90, 169
formats 159
page ranges 89

infobox (macro) 271
infobox (screen driver field) 459
Init (macro) 272
init (port description field) 461
init (printer driver field) 468
init (screen driver field) 459
InitArg (macro) 272
Initial (First Line) Indent command

73
Initialize parameter 417,435

example 159
Inline parameter 435
inruler (macro) 273
insert (macro) 274

string 274
Insert (Unconditional) page break

command 95
insertruler (macro) 274
installation 432, 448
int (macro) 208

global 275
local 275

Inter-Paragraph Spread command 99
Invisible parameter 417, 429
io (port description field) 461
ioport (macro variable) 276
ipo (printer driver field) 468
iport (port description field) 461
iready (port description field) 462
isascii (macro) 276
isclose (macro) 277
isdev register 214
iseg (port description field) 461
isend (macro) 277
isgray (macro) 278
isibm (macro) 278
isin (macro) 279

Sprint Advanced User's Guide

ismarkset (macro) 279
isnl (macro) 280
isopen (macro) 280
ispara (macro) 194,280
issent (macro) 281
istab (macro) 281
istat (port description field) 462
istoken (macro) 195,282
isvisible (macro) 282
iswhite (macro) 283
italic macro conversion 199
IXMaster command 359
IXRangecommand359
IXRef command 359
IXSee command 359
IXSeeAlso command 359

J
jamount (macro) 283
justification 76, 158, 432

FlushLeft parameter 410
FlushRight parameter 411
parameters 418

justify (macro variable) 284
Justify parameter 418, 432

example 158

K
Keep with Following Text command

56,96
KeepFollowing command 97, 366
Kern command 103,360
kerning 103, 171
key (macro) 284
key codes 437

table 439
Keyboard Record command 176
keyboard shortcuts See shortcuts
KeyCaps command 85
keyexec(macro)285
keyhelp (macro) 286
keypressed (macro) 264,287
keypushback (macro) 287
killswap (macro variable) 288

L
Label command 131, 359
Large command 156, 358
large documents 153

Index

layout See page layout
leading See line spacing
LeadingSpaces parameter 418, 432

example 159
leftedge (macro variable) 289
LeftIndent parameter 419, 432
leftm (printer driver field) 468
leftmargin (macro variable) 289
LeftMargin parameter 432
length (macro) 290

string 290
level commands 23
LEX extension 250
If (printer driver field) 472
license statement 2
line (macro variable) 291
line break

ignoring 391
line spacing 76, 98
Line Spacing command 98
LineLength parameter 419,432
lines (macro) 291
List Directory command 13, 14
List of Figures 29
lists

custom formats 161
description 26
two-column 26

Lists menu 27
Load command 178
Log Errors to File command 53
LOG.$$$308

M
Macintosh 182
macro (macro)

numbers 291
string 292

Macro command 154,382
example 163

macros
aborting 225,230,335
arguments 210
buffers 230, 232, 269, 302
conditional 196, 198,234,246,268,
346
copying regions 238
cursor movement 193

495

defined 175
deleting 243, 244, 345
directives 179
editing 257
erasing 236
escape sequences 215, 216
executing 179
file names 235, 255, 256, 257, 258,
260,261, 262, 310
fonts 240
formatter 382

arguments 165
command 162
equate 163
multiple arguments 168
substitution 164

formatting 214
indentation 192
justification 283, 284
keystrokes 249,284,285, 286, 287,
327,332
loading 179
menus 268, 271, 296, 313
naming 192
operators 213
parameters 397, 434
punctuation 188
returned values 194
searching 240, 264, 329
string conversion 229
strings 212, 216
tabs 237, 281,304, 332, 337
types 216
variables 220, 243, 275

Macros menu 178
Main (macro) 179,236,293
main loop 212
MAIN.SPL 448
MakeOdd command 383

example 167
MakeTOC command 83
Manuscript variable 117
map (screen driver field) 459
margins 76, 77, See also indenting

bottom 430
custom 148
document-wide 70

Margins parameter 420, 432

496

mark (macro) 204,294
after 226
at 228
before 229
defined 214
global 266
ismarkset 279
marknumber 295
markregion 295
prevmark 312
set 330
swap 337
themark340
to 343
togmark342
variables 294

marknumber (macro) 295
markregion (macro) 295
Master KeYword command 89
match (macro) 296
MATCH.SPM 178
MatchPair macro 179
memory-mapped display 459
menu (macro) 296
menu (screen driver field) 460
menudelay (macro variable) 298
MenuKey (macro) 299
menus

creating 268, 296, 313
creating 185
exiting 254

Merge_Init_ command 384,388
message (macro) 203,300
Message command 131,367
meta keys codes 437
mhm (printer driver field) 471
Minute variable 117
mode (macro) 301
modf (macro variable) 302
modifier keys 438
Modify command 60, 141, 154, 161,

367, See also formats, modifying
modifying formats See formats,

modifying
Month variable 117
MonthName variable 119
mousecursor (macro variable) 302
move (macro) 303

Sprint Advanced User's Guide

mread (macro) 303
Multilevel command 354
multiple columns See columns
multiple files 12, 16
multiple-argument macro 168
mvm (printer driver field) 472

N
Needspace command 131,360
nesting formats 83
networks

printing on 461
New command 16
NewColumn command 367
NewPage command 367
nexttab (macro) 304
nl (printer driver field) 472
no-operation command 390
NoFloats command 385
NoHinge command 166
nonprinting text 105, 430
NoTCT command 367
NoTCT parameter 159, 420, 432

example 159
Note command 88
NoteChapter command 357
Notes command 46
notes, unnumbered 88
NoteSection command 357
NUL 453
Numbered command 354

modifying 161
numbered heading commands 79
numbered lists 161
Numbered parameter 420, 434
numeric keypad keys 439
numeric variables 386
NumLock key 438

o
o command 131, 367
off (printer driver field) 476, 478
offset (macro) 304
Offset parameter 432
omask (port description field) 462
on (printer driver field) 476, 478
open (macro) 220,305
Open command 15
open quote (') command 392

Index

opening files See files, opening
opening windows See windows,

opening
oport (port description field) 462
oready (port description field) 462
oseg (port description field) 462
ostat (port description field) 462
Other Format command 125
Outline command 355
Overstruck parameter 421,429
overwrite (macro variable) 305
OVL files 212
ovlmodf (macro variable) 306
ovlread (macro) 306
ovlwrite (macro) 307
Ovp command 131,367

P
page (printer driver field) 472
page breaks 95

conditional 95
preventing 413, 434
unconditional 56, 95

Page Breaks menu 56, 95
page footers See footers
page headers See headers
page numbers

resetting 117
Page variable 41, 117

example 167
PageFoot command 355
PageHead command 355
Pagelnit command 385
pageread (macro) 307
PageRef command 367
pages

default layout 75
odd 383

vs. even 381
renumbering 96, 117
size 76

Paginate command 55
paginating 55
Paper parameter 432
Paper Size command 76
PaperWidth parameter 433
Paragraph command 356
paragraph indent 73, 76

497

paragraph spacing 99, 159
Paragraph variable 119
ParagraphTitIe variable 119
parallel ports 461
parameters 395

Above 399, 430, 435
AbovePage 430
After 401, 435
AfterEntry 402, 434
AfterExit 402,434
Before 403, 435
BeforeEach 403, 434
BeforeExit 404, 435
Below 405,430, 435
BelowPage 430
BlankLines 405, 430
BottomMargin 430
Centered 405,430
Column 430
Columns 406, 430
command 157
Comments 430
Counter 408, 434
Divider 401, 408, 435
enumeration 397, 434
Fill 409, 431
floating 397, 399,405,435
FlushLeft 410, 431
FlushFUght411,431
Font412,429
FooterSpacing 431
formatting 136, 397, 430
FormFeed 431
Free 412, 435
Group 413, 431
Gutter 413, 431
HeaderSpacing 431
IfNotFound 412, 414,429
Increment 414, 434
Indent 415,431
Index 416,435
Initialize 417, 435
Inline435
Invisible 417, 429
Justify 418, 432
LeadingSpaces 418,432
LeftIndent 419, 432
LeftMargin 432

498

LineLength 419, 432
macro 397, 434
Margins 420, 432
NoTCT 420, 432
Numbered 420, 434
Offset 432
Overstruck 421,429
Paper 432
PaperWidth 433
FUghtIndent 421, 433
FUghtMargin 433
Script 422, 429
Size 423, 429
Spacing 423, 433
Spread 424, 433
Strikeout 425, 429
Style command 427
table 429
TabSize433
TCT426,433
TopMargin 433
typeface 429
typestyle 397
Underline 426, 429
WidowPrevent434
with regions of text 427
WithEach 426, 435
Within 427, 434
WordSpacing 433

parent 81
Parent command 367, 386
parent templates 162
PassInit command 386
past (macro) 195,308
pause (printer driver field) 469
peek (macro variable) 309
peekseg (macro variable) 309
Pfe variable 386

example 167
pff variable 386
Pfo variable 386

example 167
PgBlank command 367
PGBREAK command 98, 368, 405
phe variable 386
phf variable 386
pho variable 381, 386
Pick from List command 18

Sprint Advanced User's Guide

pickcolor (macro) 309
pickfile (macro) 310
pickfont (macro) 311
Place command 46, 88, 368

example 169
plain (screen driver field) 460
Plain variable 117
point, defined 214
pop command 215
port configuration 449
ports 461
Position command 77
POSTSCRSPL 449
POSTSCRTCT 171
PostScript 9, 154

bullet characters 104
character translation 170
EPS files 388
HUnits command and 378
VUnits command and 389

Precise Settings menu 32, 73
previous (macro variable) 311
prevmark (macro) 312
print (printer driver field) 469
printer (macro variable) 312
Printer command 368
printer unit 464
Printer variable 117
printers

configuring 464
daisy wheel 474
Diablo 464, 467, 471, 474
drivers 447, 449

default 449
Fortran Carriage Control 479
networked 461
paper size 432
PostScript See PostScript
ThinkJet 450

printf commands 214
printf strings

in printer drivers 453
printing 65

Destination command 65
error messages 52
errors to a LOG file 53
If command 379
moving print head 378,389

Index

odd pages 383
pausing 469
previewing 37

PRN files 468
proportional spacing tables 478
PROPOSAL.SPR 8
pst (printer driver field) 466,475,476
push command 215
put (macro) 313

Q
Q command 358
Q registers 220, 221, 314, 343
qmenu (macro) 313
qnumber (macro) 314
qswitch (macro) 314
Quotation command 126, 355, 399
quotations, formatting126

R
r (macro) 194,314
ragged text See justification
Range of Pages command 89
rangeget (macro) 315
raw (macro variable) 315
rawout (macro) 2307 316
read (macro) 316
read /write translations 326
ReadEPS command 368, 388
readpage (macro) 317
readruler (macro) 317
record (macro variable) 318
records in SPL files 450
redirection of input 213
redraw (macro) 318
Ref command 368
REFCARD.SPM 303
Reference a Tag command 49, 110
Reference By menu 110
Reference Word command 89
References menu 87
refill (macro) 319
regionfwd (macro) 320
regions in macros 215
reinit (screen driver field) 460
Remove Formatter Page Breaks

command 55
REN (DOS command) 262

499

repeat (macro) 320
Repeating Character command 105
replace (macro) 321
replacing text See searching, search/

replace
Reserve command 368
Reserve Space command 30, 86, 96,

100
reset (port description field) 462
reset (printer driver field) 469
reset (screen driver field) 460
Reset command 388
Reset Shortcuts command 180
Restart (macro) 321
return (macro) 322
RightIndent parameter 421,433
rightmargin (macro variable) 322
RightMargin parameter 433
rlf (printer driver field) 472
rows in screen drivers 460
Ruler command 368
ruler lines See rulers
Ruler menu 32
ruleredit (macro variable) 322
rulermod (macro variable) 323
rulers

deleting from macro files 188
margins 70
precise settings 32, 71
vs. Document-Wide menu 70

Run command 178
runengine (macro) 323
rwtrans (macro variable) 326

S
S command 358
Save (UI) command 181
scale (printer driver field) 469
scan codes 437
scancode (macro variable) 327
Screen Preview command 37
screens

alternate 448
configuring 457
drivers 447
escape sequences 457
external 462

Script parameter 422, 429

500

scroll (macro) 328
scrollborder (macro variable) 328
scrolling, screen drivers 460
search (macro) 240, 329
Search-Replace menu 20
searching 17

search/ replace 20
Section command 356
section titles 157, 165
Section variable 119
SectionNumber variable 119
SectionTitle variable 119
See command 89
select (macro variable) 197,204,329
select (screen driver field) 460
semicolon command 390
semicolons and nonprinting text 105
send (port description field) 462
serial ports 461
set (macro) 258

mark 330
string 330

set (screen driver field) 460
Set command 117, 123, 368
settab (macro) 332
setting margins See margins
setting tabs See tabs
setup See installation
shadow (printer driver field) 472
sheet feeders 469
Shift key 438
shortcuts 332

Ctrl-Enter 25
defining 25
variables as 122
window 12

showkeys (macro variable) 332
shp (printer driver field) 471
si (printer driver field) 472
size (printer driver field) 475
Size command 73, 360
Size parameter 423, 429

example 158
Size variable 117
SMITH.SPR 13
smodf (macro variable) 332
snows (screen driver field) 460

Sprint Advanced User's Guide

so (printer driver field) 472
soft hyphens See hyphens, soft
soft returns 241, See also hard returns
sound (macro) 333
sounddur (macro variable) 333
soundfreq (macro variable) 333
SourceFile variable 118
SourceLine variable 118
SP (printer driver field) 478
SP (screen driver field) 460
SP-SETUP 8, 447, 448
SP-SETUP.EXE See also installation
SP.OVL 177
SP.SPM 177,212
SpaceNL 283, 327
spacing

between characters 103
between lines 98
between paragraphs See Inter­
Paragraph Spread command;
paragraph spacing
between words 100,433
lines See line spacing

Spacing parameter 423, 433
example 158

spelling 50
AutoSpell mode 51
floppy-disk systems 51

Spelling menu 50
SPL files 448, 449

printer 465
SPM extension 175,177
spoolers 461
SPP files 466
SPR files 14
spread between paragraphs See

Inter-Paragraph Spread command;
paragraph spacing; Spread
parameter

Spread parameter 424, 433
example 159

SPRECOVE.COM 288
springs See Wide Space (Spring)

command
SprintMerge initialization 384
sread (macro) 334
stack, defined 215
standard input device 214

Index

standard output device 214
STANDARD.FMT 24, 134, 154, 161,

373
commands in 353
modifying 373
variables in 119

statline (macro variable) 334
status (macro) 335
status (scre,en driver field) 460
status line creating 259, 301, 334, 335
stdin214
stdout214
stopped (macro) 335
Strikeout parameter 425, 429
string assignments 121
String command 368, 376

example 166
string variables See Define Text

Variable command
StringInput command 131,369
Style command 77, 369

example 154
parameters 395,427

Style Sheet command 144, 146, 153,
373

style sheets 134, 145, 371
commands used in 371
creating 144, 153,371

subchar(macro) 336
Subheading format 156
subheads See Headings menu
subscript parameter 422, 429
Subsection command 356
Subsection variable 119
Subsection Title variable 119
substitution macros 164
SuperKey 176
superscript parameter 422, 429
svp (printer driver field) 472
swap themark (macro) 337
swapdelay (macro variable) 336
swrite (macro) 337
synch (port description field) 462
synchronization 462

T
T command 358
tab (printer driver field) 471

501

Tab command 369
TabDivide command 131, 369
Table command 30, 357
table of contents

customizing 166, 170
unnumbered headings and 82

Table variable 119
tables 85

captions 30
floating 30
numbered 82

tabs 76
precise settings 74
printer configurations 471

TabSet command 369
tabsize (macro variable) 337
TabSize parameter 433
Tag command 369
tagging 47, See also cross-referencing

defining 48
numbers 434
referencing 49

tags 106
TagString command 131, 369
TCapt command 357
TCaption command 357
tct (macro) 338
tct (printer driver field) 466,475,477
TCT command 100,369,477

example 170
TCT parameter 159,426,433
technical support 3
Template command 369
templates 115

example 162, 170
terminals 448

external 462
text alignment See justification
Text command 126, 148, 355
TheIndex format 169
themark (macro) 340
Tilde command 393
time (macro) 340
time variables 117
Title command 359
Title Page command 94
to (macro) 194, 341

mark 343

502

Q register 343
to QO-QP (macro) 343
TOC command 356
TocB command 168
toend (macro) 341
toeol (macro) 194,342
TOF command 356
togmark (macro) 342
topm (printer driver field) 469
TopMargin parameter 433
toruler (macro) 344
tosol (macro) 344
TOT command 356
translation tables 479

in SPP files 466
true (macro) 345
True value 195
Turbo C 307
tutorial 7-66
type size changing 73
typeface format 156
typefaces See fonts
typestyles See also fonts

in this manual 177
parameters 397

U
U command 358
UN command 358
unc (printer driver field) 473
undefined macro error message 191
undelete (macro) 345
Undent command 126,355
Under command 89, 370
Underline parameter 426, 429
Unnumbered format 165
unw (printer driver field) 473
up (printer driver field) 472
up (screen driver field) 460
User Interface menu 13
user interfaces See alternative user

interfaces
UX command 358

example 158

V
V command 359
Value command 370

Sprint Advanced User's Guide

example 166
versus Eval376

Variable menu 115, 122,377
variables 115

Appendix 119
AppendixTitle 119
built-in 117
changing value of 123
Chapter 119
ChapterTitle 119
conditional 381
cross-referencing and 110
Day 117
defining 121
Figure 119
FirstPage 117
FontName 117
Footnote 119
Hour 117
Manuscript 117
Minute 117
Month 117
MonthName 119
odd vs. even 381
Page 41, 117
Paragraph 119
ParagraphTitle 119
parents 386
Plain 117
Printer 117
Section 119
Sectio~umberl19

SectionTitle 119
Size 117
SourceFile 118
SourceLine 118
STANDARD.FMT 119
SubSection Title 119
SubSubSection 119
Table 119
templates 115
undefining 388
user-defined 121
value of 376
Version 118
Weekday 118, 119
Words 118
Year 118

Index

Verbatim command 126,355
version (macro) 345
Version variable 118
vertical printer unit 465
vpi (printer driver field) 467
VUnits command 370, 389

W
wait (macro) 346
Warn command 376, 389
warning messages, creating 389
Weekday variable 118, 119
wheel (printer driver field) 475
while (macro) 198,346
whitespace, ignoring 392, 393
Wide Space (Spring) command 101
Widow-Orphan Control command 97
WidowPrevent parameter 97, 434
width (printer driver field) 477
wildcards, DOS 13
Window menu 12

Next command 17
shortcuts 12

windows
moving text between 17
opening 12, 15

windows (macro variable) 347
winswitch (macro) 347
WithEach parameter 426, 435
Within parameter 427, 434
wlines (macro variable) 348
word 165
Word command 88, 101,370

example 166
word counting 118
word spacing 100
Word Spacing command 100
Words variable 118
WordSpacing parameter 433
wordwrapping 431
write (macro) 348
writeregion (macro) 349
writeruler (macro) 349
wtop (macro variable) 350

X
X command 359

503

X-Reference command See also
cross-referencing

X-Reference menu 47, 106
xnc (printer driver field) 473
xnw (printer driver field) 473
XON /XOFF 461, 462

504

y
Year variable 118

Z
zoom (macro variable) 350

Sprint Advanced User's Guide

•

I NTERNAT IO NAL

BORLAND INTERNATIONAL, INC., 4585 scons VALLEY DR., P.O. BOX 660001 , scons VALLEY, CA 95066-0001 PAm 22 MN-SPT03 BOR 0821

