
Adopted for Use by
the Federal Government

FIPS PUB 21·2

See Notice on Inside
Front Cover

ANSI X3.23-1985
ISO 1989-1985

for information systems -

programming language -
COBOL

'

This standard has been adopted as ISO International Standard 1989-1985. ISO (the International Organization for
Standardization) is a worldwide federation of national standards institutes (ISO member bodies). The work of devel
oping International Standards is carried out through ISO technical committees. Every member body interested in a
subject for which a technical committee has been set up has the right to be represented on that committee. Interna·
tional organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.

Draft International Standards adopted by the technical committees are circulated to the member bodies for approval
before their acceptance as International Standards by the ISO Council.

International Standard ISO 1989 was established by Technical Committee ISO/TC 97, Information Processing
Systems.

This International Standard cancels and replaces ISO 1989-1978, of which it constitutes a technical revision.

This standard has been adopted for Federal Government use.

Details concerning its use within the Federal Government are contained in Federal Infor
mation Processing Standards Publication 21-2, COBOL. For a complete list of the publi
cations available in the Federal Information Processing Standards Series, write to the
Standards Processing Coordinator (ADP), Institute for Computer Sciences and Technol
ogy, National Bureau of Standards, Gaithersburg, MD 20899.

Secretariat

ANSI®
XJ.23-1985

Revision of
ANSI X3.23-1974

American National Standard
for Information Systems

Programming Language -
COBOL

Computer and Business Equipment Manufacturers Association

Approved September 10, 1985

American National Standards Institute, Inc

ACKNOWLEDGMENT

Any organization interested in reproducing the COBOL standard and specifications in whole or in part, using ideas from this docu·
ment as the basis for an instruction manual or for any other purpose, is free to do so. 'However, all such organizations are requested
to reproduce the following acknowledgment paragraphs in their entirety as part of the preface to any such publication (any organiza
tion using a short passage from this document, such as in a book review, is requested to mention "COBOL" in acknowledgment of
the source, but need not quote the acknowledgment):

COBOL is an industry language and is not the property of any company or group of companies, or of any organization or
group of organizations.

No warranty, expressed or implied, is made by any contributor or by the CODASYL COBOL Committee as to the accuracy
and functioning of the programming system and language. Moreover, no responsibility is assumed by any contributor, or by
the committee, in connection therewith.

The authors and copyright holders of the copyrighted materials used herein

FLOW-MATIC (trademark of Sperry Rand Corporation), Programming for the UNIV AC (R) I and II, Data Automation
Systems copyrighted 1958, 1959, by Sperry Rand Corporation; IBM Commercial Translater Form No. F 28•8013, copy
righted 1959 by IBM; FACT, DSI 27A5260-2760, copyrighted 1960 by Minneapolis-Honeywell

have specifically authorized the use of this material in whole or in part, in the COBOL specifications. Such authorization ex
tends to the reproduction and use of COBOL specifications in programming manuals or similar publications.

American
National
Standard

Published by

Approval of an American National Standard requires verification by ANSI that the re
quirements for due process, consensus, and other criteria for approval have been met by
the standards developer.

Consensus is established when, in the judgment of the ANSI Board of Standards Review,
substantial agreement has been reached by directly and materially affected interests. Sub
stantial agreement means much more than a simple majority, but not necessarily unanim
ity. Consensus requires that all views and objectfons be considered, and that a concerted
effort be made toward their resolution.

The use of American National Standards is completely voluntary; their existence does not
in any respect preclude anyone, whether he has approved the standards or not, from man
ufacturing, marketing, purchasing, or using products, processes, or procedures not con
forming to the standards.

The American National Standards Institute does not develop standards and will in no cir
cumstances give an interpretation of any American National Standard. Moreover, no per
son shall have the right or authority to issue an interpretation of an American National
Standard in the name of the American National Standards Institute. Requests for inter
pretations should be addressed to the secretariat or sponsor whose name appears on the
title page of this standard.

CAUTION NOTICE: This American Na.tional Standard may be revised or withdrawn at
any time. The procedures of the American National Standards Institute require that
action be taken to reaffirm, revise, or withdraw this standard no later than five years from
the date of approval. Purchasers of American National Standards may receive current infor
mation on all standards by calling or writing the American National Standards Institute.

American National Standards Institute
1430 Broadway, New York, New York 10018

Copyright© 1985 by American National Standards Institute, Inc
All rights reserved.

No part of this publication may be reproduced in any form,
in an electronic retrieval system or otherwise, without
the prior written permission of the publisher.

Printed in the United States of America

PC10M1185/40

Fore word (This Foreword is not part of American National Standard X3.23-1985.)

This standard is a revision of American National Standard for Programming Language
COBOL, ANSI X3.23-1974. The language specifications contained in this standard were
drawn from both ANSI X3.23-1974 and the CODASYL COBOL Journal of Development.
Like its predecessors, this document provides specifications for both the form and interpre
tation of programs expressed in COBOL. It is intended to provide a high degree of machine
independence in such programs in order to permit their use on a variety of automatic data
processing systems.

Technical Committee X3J4 on COBOL was responsible for the preparation of a revision
of ANSI X3.23-1974. In performing this task, Technical Committee X3J4 held three pub
lic review and comment periods in which comments on the draft proposed revision were
received from the data processing community. Technical Committee X3J4 reviewed and
responded to all comments received during these public review periods. In April 1985,
Technical Committee X3J4 approved the final version of the draft proposed COBOL stan
dard.

Accredited Standards Committee on Information Processing Systems, X3, approved the
draft proposed COBOL standard for submittal to ANSI as the revised American National
Standard for the programming language COBOL in August 1985. The draft proposed
COBOL stab.dard was approved as an American National Standard by the American Na
tional Standards Institute on September 10, 1985.

This standard was processed and approved for submittal to ANSI by the Accredited Stan
dards Committee on Information Processing Systems, X3. Committee approval of this
standard does not necessarily imply that all committee members voted for its approval.
At the time it approved this standard, the X3 Committee had the following members:

Edward Lohse, Chair
Catherine A. Kachurik, Administrative Secretary

Organization Represented Name of Representative

American Library Association. Paul Peters
American Nuclear Society . Geraldine C. Main

D.R. Vandy (Alt)
AMP Incorporated . Patrick E. Lannan

Edward Kelly (Alt)
Association of American Railroads . R. A. Petrash
Association for Computing Machinery . Kenneth Magel

Jon A. Meads (Alt)
Association of the Institute for Certification

of Computer Professionals Thomas M. Kurihara
Ardyn E. Dubnow (Alt)

AT&T Corporation Henry L. Marchese
Richard Gibson (Alt)

AT&T Information Systems•............. Herbert V. Bertine
Paul D. Bartoli (Alt)
Stuart H. Garland (Alt)

Burroughs Corporation. Ira R. Purchis
Stanley Fenner (Alt)

Control Data Corporation . Charles E. Cooper
Keith Lucke (Alt)

Cooperating Users of Burroughs Equipment. Thomas Easterday
Donald Miller (Alt)

Data General Corporation . John Pilat
Lyman Chapin (Alt)

Data Processing Management Association Christian G. Meyer
Digital Equipment Computer Users Society William Hancock
Digital Equipment Corporation. Gary S. Robinson

Delbert L. Shoemaker (Alt)
General Electric Company . William R. Kruesi

Organization Represented

General Services Administration

GUIDE International.

Harris Corporation .

Hewlett-Packard. . .
Honeywell Information Systems

IBM Corporation

IEEE Computer Society

Lawrence Berkeley Laboratory .

Moore Business Forms
National Bureau of Standards ..

National Communications System

NCR Corporation

Perkin-Elmer Corporation .

Prime Computer, Inc

Recognition Technology Users Association .

SHARE, Inc

Sperry Corporation.

Texas Instruments, Inc . .

3M Company

Travelers Insurance Companies, Inc.
U.S. Department of Defense.

VIM

Wang Laboratories, Inc ..

Xerox Corporation

Name of Representative

William C. Rinehuls
Larry L. Jackson (Alt)
Frank Kishenbaum
Thomas F. O'Leary, Jr (Alt)
Sam Mathan
Rajiv Sinha (Alt)
Donald C. Loughry
Thomas J. McNamara
David M. Taylor (Alt)
Mary Anne Gray
Robert H. Follett (Alt)
Sava I. Sherr
David Gelperin (Alt)
Thomas A. Varetoni (Alt)
David F. Stevens
John S. Colonias (Alt)
Delmer H. Oddy
Robert E. Rountree
James H. Burrows (Alt)
Marshall L. Cain
George W. White (Alt)
Thomas W. Kern
A. R. Daniels (Alt)
Christopher Beling
Russ Lombardo (Alt)
Andrew F. Burlingame
Jacqueline Barbour (Alt)
Herbert F. Schantz
G. W. Wetzel (Alt)
Thomas B. Steel
Daniel Schuster (Alt)
Marvin W. Bass
Jeanne G. Smith (Alt)
Presley Smith
Richard F. Trow, Jr (Alt)
J. Wade Van Valkenburg
Ray Smith (Alt)
Joseph T. Brophy
Fred Virtue
Belkis Leong-Hong (Alt)
Chris Tanner
Madeleine Sparks (Alt)
Marsha Hayek
Joseph St. Amand (Alt)
John L. Wheeler
Arthur R. Machell (Alt)

Technical Committee X3J4 on COBOL, which developed this standard, had the following
members:

D. R. Warren, Chair
L. V. Willis, Past Chair
J. T. Panttaja, Past Chair
J. Couperus, Past Chair
L. Skidmore, Vice-Chair
P.A. Beard, Secretary
M. V. Vickers,

International Representative

G. F. Archer
G. N. Baird
J. R. Brieschke
J. M. Buttler
D. Caraway
J. H. Ciminski
J. S. Cousins
D.Curry
J. W. Curtis
M. D. Dent
J. J. Edwards
B. L. Gaarder
M. P. Gerbauckas
J. Garfunkel
G. Gloss
H. Gordon
W. Haccou
P.B.Hall
R. B. Hally
K. Howard
A. Jackson

Others who contributed to the work on the revision were as follows:

R. M. Barton
B. Cagle
M. Candela
D. W. Christensen
M. M. Cook
D. M. Dougherty
A. L. Forsyth
A. N. Gordon
G. K. Haas
N. W. Hubacker
C. S. Hansen
D. Last
M. J. Lee
B. W. McCormick
0. Newmann

C. A. Johnson
L. A. Johnson
S. D. Klute
P. L'Allier
J. A. Machemehl
M. J. Maddison
L. K. Madison
B. Mathias
R. McKenzie
B. Miller
R. L. Miller
B. R. Nelson
J. R. Peters
A. 0. Reimann
J. A. Rodriguez
M. E. Sanders
D. A. Schricker
F. D. Shea
J. A. Twentier
B. J. Verastegui
A. E. Vermilion

S.Ng
W. R. Osborne
P. Olshansky
B. M. Reynolds
M. J. Smith
K. Spence
G. Stephens
W. P. Storey
R. A. Surtees
R. H. Thompson
P.A. Trapp
J.M. Walker
J. F. Walton
D. Whalen
E. G. Williams

Preface This document provides the definition of the programming language features that make
up American National Standard X3.23-1985.

Within this document, the following terms are used:
•"First Standard COBOL" refers to American National Standard X3.23-1968.
•"Second Standard COBOL" refers to American National Standard X3.23-1974, which

superseded American National Standard X3.23-l 968.
•"Third Standard COBOL" or "Standard COBOL" refers to American National Standard
X3.23-1985, which supersedes American National Standard X3.23-1974.

Contents

SECTION I: INTRODUCTORY INFORMATION

Chapter 1: Introduction to the Standard

1.1 Scope and Purpose .. I-1
1.2 Structure of Language Specifications ••••••••••••••••••••••••••• I-1
1.3 Organization of Document . I-3
1.4 How to Use the Standard • . . • . I-3
1.5 Definition of an Implementation of Standard COBOL •••••••••••••• I-6
1.6 Definition of a Conforming Source Program •••••••••••••••••••••• I-9
1.7 Relationship of a Conforming Program to a Conforming

Implementation . I-9

Chapter 2: Summary of Elements by Module

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2 .11
2.12

General Description
Summary of Elements in the Nucleus Module ••••••••••••••••••••••
Summary of Elements in the Sequential I-0 Module •••••••••••••••
Summary of Elements in the Relative I-0 Module •••••••••••••••••
Summary of Elements in the Indexed I-0 Module ••••••••••••••••••
Summary of Elements in the Inter-Program Communication Module ••
Summary of Elements in the Sort-Merge Module •••••••••••••••••••
Summary of Elements in the Source Text Manipulation Module ,,,,,
Summary of Elements in the Report Writer Module ••••••••••••••••
Summary of Elements in the Communication Module ,,,,,,,,,,,,,,,,
Summary of Elements in the Debug Module ••••••••••••••••••••••••
Summary of Elements in the Segmentation Module •••••••••••••••••

Chapter 3: Summary of Elements by COBOL Di.vision

3 .1 General Description ..
3.2 Summary of Elements in Language Concepts
3.3 Summary of Elements in Identification Di.vision
3.4 Summary of Elements in Environment Di.vision
3.5 Summary of Elements in Data Di.vision
3.6 Summary of Elements in Procedure Di.vision

i

I-10
I-11
I-19
I-22
I-25
I-28
I-30
I-32
I-33
I-36
I-38
I-39

I-40
I-41
I-44
I-45
I-48
I-53

SECTION II: CONCEPTS

Introduction ••••••
Files
Report Writer
Table Handling
Shared Memory Area ••••••

1.
2.
3.
4.
5.
6.
7.

Program and Run Unit Organization and Communication •••••••
CoIIlID.unication Facility •...•••..•.........•..•••...........

SECTION III: GLOSSARY

1.
2.

Introduction
Definitions

SECTION IV: OVERALL LANGUAGE CONSIDERATION

Chapter 1 Introduction

Chapter 2: Notation Used in Formats

Chapter 3: Rules

Chapter 4: Language Concepts

Character Set •••••••••••••••••
Language Structure

4 .1
4.2
4.3
4.4
4.5

Concept of Computer Independent Data Description
Explicit and Implicit Specifications ••••••••••••••••
External Switch

Chapter 5: A COBOL Source Program

5.1
5.2
5.3

Introduction
Organization
Structure

Chapter 6: Divisions

Identification Division
Environment Division ••••••

6 .1
6.2
6.3
6.4

Data Division ••••••••••••
Procedure Division •••••••••••••••••

Chapter 7: Reference Format

Chapter 8: COBOL Reserved Words

SECTION V: COMPOSITE LANGUAGE SKELETON

ii

II-1
II-1
II-8
II-12
II-17
II-18
II-28

III-1
III-1

IV-1

IV-1

IV-3

IV-4
IV-4
IV-13
IV-25
IV-28

IV-29
IV-29
IV-29

IV-30
IV-31
IV-33
IV-35

IV-41

TV-45

V-1

•

SECTION VI: NUCLEUS MODULE

Chapter 1: Introduction to the Nucleus Module

1.1
1.2
1.3

Function ••.••••••••••••
Level Characteristics
Level Restrictions on Overall Language

Chapter 2: A COBOL Source Program

2 .1
2.2
2.3
2.4

General Description
Organization
Structure
End Program Header

Chapter 3: Identification Division in the Nucleus Module

3 .1 General Description
3.2 Organization
3.3 The PROGRAM-ID Paragraph
3.4 The DATE-COMPILED Paragraph
Chapter 4: Environment Division in the Nucleus Module

4 .1 General Description
4.2 Configuration Section
4.3 The SOURCE-COMPUTER Paragraph
4.4 The OBJECT-COMPUTER Paragraph
4.5 The SPECIAL-NAMES Paragraph
Chapter 5: Data Division in the Nucleus Module

5.1 General Description
5.2 Working-Storage Section
5.3 The Data Description Entry
5.4 The BLANK WHEN ZERO Clause
5.5 The Data-Name or FILLER Clause
5.6 The JUSTIFIED Claus'e
5.7 Level-Number
5.8 The OCCURS Clause
5.9 The PICTURE Clause
5 .10 The REDEFINES Clause
5 .11 The RENAMES Clause
5 .12 The SIGN Clause
5 .13 The SYNCHRONIZED Clause
5 .14 The USAGE Clause
5 .15 The VALUE Clause

iii

VI-1
VI-1
VI-1

VI-3
VI-3
VI-3
VI-5

VI-6
VI-6
VI-7
VI-8

VI-9
VI-9
VI-10
VI-11
VI-13

VI-18
VI-18
VI-20
VI;-22
VI-23
VI-24
VI-25
VI-26
VI-29
VI-38
VI-40
VI-42
VI-44
VI-46
VI-48

Chapter·6: Procedure Division in the Nucleus Module

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6 .10
6 .11
6.12
6 .13
6.14
6.15
6.16
6 .17
6.18
6 .19
6.20
6.21
6.22
6.23
6.24
6.25
6.26
6.27

General Description ••••••••••••••••••••
Arithmetic Expressions •••••••
Conditional Expressions
Common Options and Rules for Statements
The ACCEPT Statement
The
The
The
The
The

ADD Statement
ALTER Statement
COMPUTE

Statement
DISPLAY Statement

The DIVIDE Statement
The ENTER Statement •••••••
The EVALUATE Statement
The
The
The
The

EXIT Statement
GO TO Statement
IF Statement
INITIALIZE Statement

The INSPECT Statement
The MOVE Statement •••••••••••••••
The
The
The

MULTIPLY Statement
PERFORM Statement
SEARCH Statement

The SET Statement
The
The
The

STOP Statement •••••••••••••••••••••
STRING Statement
SUBTRACT Statement

The UNSTRING Statement

Chapter 7: Debugging in the Nucleus Module

7.1
7.2
7.3

General Description
Compile Time Switch
Debugging Lines

SECTION VII: SEQUENTIAL I-0 MODULE

Chapter 1: Introduction to the Sequential I-0 Module

1.1 Function
1.2 Level Characteristics
1.3 Language Concepts

.

.

.........
Chapter 2: Environment Division in the Sequential I-0 Module

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8

Input-Output Section •••••••••••••••••••••

The
The

The FILE-CONTROL Paragraph
File Control Entry
ACCESS MODE Clause
FILE STATUS Clause The

The ORGANIZATION IS SEQUENTIAL Clause
The PADDING CHARACTER Clause ••••••••
The RECORD DELIMITER Clause

1V

VI-51
VI-51
VI-54
VI-67
VI-71
VI-73
VI-75
VI-76
VI-77
VI-78
VI-80
VI-83
VI-84
VI-88
VI-89
VI-90
VI-92
VI-94
VI-103
VI-107
VI-109
VI-122
VI-127
VI-130
VI-131
VI-134
VI-136

VI-141
VI-141
VI-141

VII-1
VII-1
VII-1

VII-6
VII-7
VII-7
VII-9
VII-10
VII-11
VII-12
VII-13

Chapter 2: Environment Division in the Sequential I-0 Module (Continued)

2.9 The RESERVE Clause
2.10 The I-0-CONTROL Paragraph
2 .11 The MULTIPLE FILE TAPE Clause
2.12 The RERUN Clause
2 .13 The SAME Clause
Chapter 3: Data Division in the Sequential I-0 Module

3.1 File Section
3.2 The File Description Entry
3.3 The BLOCK CONTAINS Clause
3.4 The CODE-SET Clause
3.5 The DATA RECORDS Clause
3.6 The LABEL RECORDS Clause
3.7 The LINAGE Clause
3.8 The RECORD Clause
3.9 The VALUE OF Clause
Chapter 4: Procedure Division in the Sequential I-0 Module

4 .1
4.2
4.3
4.4
4.5
4.6
4.7

General Description
The CLOSE Statement
The OPEN Statement
The
The
The
The

READ Statement
REWRITE Statement
USE Statement
WRITE Statement

SECTION VIII: RELATIVE I-0 MODULE

Chapter 1: Introduction to the Relative I-0 Module

Fune t ion 1.1
1.2
1.3

Level Characteristics
Language Concepts ••••••

Chapter 2: Environment Division in the Relative I-0 Module

2.1 Input-Output Section
2.2 The FILE-CONTROL Paragraph
2.3 The File Control Entry
2.4 The ACCESS MODE Clause
2.5 The ORGANIZATION IS RELATIVE Clause
2.6 The I-0-CONTROL Paragraph
Chapter 3: Data Division in the Relative I-0 Module

3.1
3.2

File Section ••••••.•••••••••••.•••••••••••••
The File Description Entry ••••••••••••••••••

v

.
......
.

VII-14
VII-15
VII-16
VII-17
VII-19

VII-21
VII-22
VII-23
VII-24
VII-25
VII-26
VII-27
VII-30
VII-33

VII-34
VII-35
VII-39
VII-44
VII-48
VII-50
VII-52

VIII-1
VIII-1
VIII-1

VIII-8
VIII-8
VIII-8
VIII-10
VIII-12
VIII-13

VIII-14
VIII-14

Chapter 4: Procedure Division in the Relative I-0 Module

4 .1 General Description
4.2 The CLOSE Statement
4.3 The DELETE Statement
4.4 The OPEN Statement
4.5 The READ Statement
4.6 The REWRITE Statement
4. 7 The START Statement
4.8 The USE Statement
4.9 The WRITE Statement

SECTION IX: INDEXED I-0 MODULE

Chapter 1: Introduction to the Indexed I-0 Module

1.1
1.2
1.3

Function
Level Characteristics •••••••• • ••••••••
Language Concepts • • . • • • • • • • • . ••••••••

Chapter 2: Environment Division in the Indexed I-0 Module

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8

Input-Output Section •••••••
The FILE-CONTROL Paragraph
The File Control Entry
The ACCESS MODE Clause
The ALTERNATE RECORD KEY Clause
The
The

ORGANIZATION IS INDEXED Clause
RECORD KEY Clause

The I-0-CONTROL Paragraph
..

Chapter 3: Data Division in the Indexed I-0 Module

3.1
3.2

File
The

Chapter 4:

Section
File Description Entry

Procedure Division in the Indexed I-0 Module

4 .1 General Description
4.2 The CLOSE Statement
4.3 The DELETE Statement
4.4 The OPEN Statement
4.5 The READ Statement
4.6 The REWRITE Statement
4. 7 The START Statement
4.8 The USE Statement
4.9 The WRITE Statement

vi

VIII-16
VIII-17
VIII-19
VIII-21
VIII-26
VIII-30
VIII-33
VIII-35
VIII-37

IX-1
IX-1
IX-1

IX-8
IX-8
IX-8
IX-10
IX-11
IX-13
IX-14
IX-15

IX-16
IX-16

IX-18
IX-19
IX-21
IX-23
IX-28
IX-33
IX-36
IX-39
IX-41

SECTION X: INTER-PROGRAM COMMUNICATION MODULE

Chapter 1: Introduction to the Inter-Program Communication Module

1.1
1.2
1.3

Function
Level Characteristics
Language Concepts •••••••••

Chapter 2: Nested Source Programs

2.1
2.2
2.3
2.4
2.5

General Description
Organization
Structure
Initial State of a
End Program Header

Program

Chapter 3: Identification Division in the Inter-Program
Communication Module

3.1 The PROGRAM-ID Paragraph and Nested Source Programs

Chapter 4: Data Division in the Inter-Program Communication Module

4 .1
4.2

4.3

4.4

4.5
4.6

Linkage Sect ion•..........................
The File Description Entry in the Inter-Program

Communication Module••...•...............•.•....•.•
The Data Description Entry in the Inter-Program

Communication Madu le•...•..............••.......•......
The Report Description Entry in the Inter-Program

Communication Module . ••....
The EXTERNAL Clause
The GLOBAL Clause

Chapter 5: Procedure Division in the Inter-Program Communication Module

5.1 The Procedure Division Header
5.2 The CALL Statement
5.3 The CANCEL Statement
5.4 The EXIT PROGRAM Statement
5.5 The USE Statement
5.6 The USE BEFORE REPORTING Statement

SECTION XI: SORT-MERGE MODULE

Chapter 1: Introduction to the Sort-Merge Module

1.1
1.2

Function
Language Concepts

vii

X-1
X-1
X-1

X-8
X-8
X-8
X-10
X-11

X-12

X-13

X-15

X-19

X-22
X-23
X-24

X-25
X-27
X-31
X-33
X-34
X-35

•

XI-1
XI-I

Chapter 2: Environment Division in the Sort-Merge Module

2.1
2.2
2.3
2.4
2.5

Input-Output Section
The FILE-CONTROL Paragraph

File Control Entry
I-0-CONTROL Paragraph

The
The
The SAME RECORD/SORT/SORT-MERGE AREA Clause

Chapter 3: Data Division in the Sort-Merge Module

3.1
3.2

File Section .. .
The Sort-Merge File Description Entry ••••••••••••••••••••••••••

Chapter 4: Procedure Division in the Sort-Merge Module

4 .1
4.2
4.3
4.4

The MERGE Statement ••
The RELEASE Statement ••
The RETURN Statement
The SORT Statement

SECTION XII: SOURCE TEXT MANIPULATION MODULE

Chapter 1: Introduction to the Source Text Manipulation Module

1.1
1.2

Function .. .
Level Characteristics •••••••.••••••••••••••••••••••••••••••••••

Chapter 2: The COPY Statement

Chapter 3: The REPLACE Statement

SECTION XIII: REPORT WRITER MODULE

Chapter 1: Introduction to the Report Writer Module

1.1
1.2

Function .. .
Language Concepts ••

Chapter 2: Environment Division in the Report Writer Module

2.1
2.2
2.3
2.4

Jnput-Output Section
The FILE-CONTROL Paragraph
The File Control Entry ...
The I-0-CONTROL Paragraph

Chapter 3: Data Division in the Report Writer Module

3.1
3.2
3.3
3.4
3.5
3.6

File Section
The File Description Entry ••••••••••••••••••••••••••••••••••.•.•
The REPORT Clause •• •••
Report Sect ion ~
The Report Description Entry ••••••••••••••••••••••••••••••••••••
The CODE Clause •• •••

viii

XI-2
XI-2
XI-2
XI-3
XI-4

XI-6
XI-7

XI-8
XI-13
XI-14
XI-16

XII-1
XII-1

XII-2

XII-6

XIII-1
XIII-1

XIII-3
XIII-3
XIII-3
XIII-5

XIII-6
XIII-7
XIII-9
XIII-10
XIII-11
XIII-14

Chapter 3: Data Division in the Report Writer Module (Continued)

The CONTROL Clause •••••
The PAGE Clause
The Report Group Description Entry
Presentation Rules _ables •••••••••
The COLUMN NUMBER Clause
The Data-Name Clause ••••••••
The GROUP INDICATE Clause •••••••••
Level-Number ••••••••••
The LINE NUMBER Clause
The NEXT GROUP Clause

SIGN Clause
SOURCE Clause
SUM Clause

3.7
3.8
3.9
3. IO
3 .11
3.12
3 .13
3 .14
3 .15
3.16
3.17
3.18
3.19
3.20
3.21
3.22

The
The
The
The
The
The

TYPE Clause
USAGE Clause
VALUE Clause

Chapter 4: Procedure Division in the Report Writer Module

4 .1
4.2
4.3
4.4
4.5
4.6
4. 7
4.8
4.9

General Description
The CLOSE Statement
The GENERATE Statement
The INITIATE Statement

OPEN Statement The
The
The

SUPPRESS Statement ••••••••••••••
TERMINATE Statement •••••••••••••

The USE
The USE

AFTER EXCEPTION/ERROR PROCEDURE
BEFORE REPORTING Statement

SECTION XIV: COMMUNICATION MODULE

Statement

Chapter 1: Introduction to the Communication Module

1.1
1.2

Function
Level Characteristics

Chapter 2: Data Division in the Communication Module

.

2.1
2.2

Communication Sect ion
The Communication Description Entry •••••••••.••••••••••••••••••

Chapter 3: Procedure Division in the Communication Module

3.1
3.2
3.3
3.4
3.5
3.6

The ACCEPT MESSAGE COUNT Statement
The DISABLE Statement

ENABLE Statement The
The
The

PURGE Statement .•................
RECEIVE Statement ••••••••••••••••••••

The SEND Statement

1X

XIII-15
XIII-17
XIII-20
XIII-24
XIII-42
XIII-43
XIII-44
XIII-45
XIII-46
XIII-48
XIII-49
XIII-51
XIII-52
XIII-55
XIII-60
XIII-61

XIII-62
XIII-63
XIII-66
XIII-69
XIII-70
XIII-74
XIII-75
XIII-76
XIII-78

XIV-1
XIV-I

XIV-2
XIV-3

XIV-17
XIV-18
XIV-20
XIV-22
XIV-23
XIV-26

SECTION XV: DEBUG MODULE

Chapter 1: Introduction to the Debug Module

1.1
1.2
1.3

Fune t ion•..•......•....•.........•....
Level Characteristics-
Language Concepts ..•..•......•.....•.•..........••...•...•.•.•.

Chapter 2: Environment Division in the Debug Module

2.1 The WITH DEBUGGING MODE Clause

Chapter 3: Procedure Division in the Debug Module

3 .1
3.2

General Description
The USE FOR DEBUGGING Statement

SECTION XVI: SEGMENTATION MODULE

Chapter 1: Introduction to the Segmentation Module

1.1
1.2
1.3
1.4
1.5
1.6

Fune t ion•..•••....•..•.•....................
Level Characteristics ••
Scope ••
Organization .. .
Segmentation Classification
Segmentation Control .. .

Chapter 2: Environment Division in the Segmentation Module

2.1
2.2
2.3

Configuration Section ..
The OBJECT-COMPUTER Paragraph
The SEGMENT-LIMIT Clause

Chapter 3: Procedure Division in the Segmentation Module

3.1
3.2
3.3

General Description
Segment-Numbers
Restrictions on Program Flow

x

XV-1
XV-1
XV-1

XV-3

XV-4
XV-5

XVI-1
XVI-1
XVI-1
XVI-1
XVI-2
XVI-3

XVI-4
XVI-4
XVI-5

XVI-6
XVI-7
XVI-8

SECTION XVII: APPENDICES

APPENDIX A: THE HISTORY OF COBOL

Chapter 1: The Development of COBOL

1.1
1.2
1.3
1.4
1.5

Organization of COBOL Effort •••••••••••••••••••••••••••••••••••
The COBOL Maintenance Committee ••.••••.•.•••••.•••••••••••••.••
The COBOL Commit tee ••••••••.••••••••.••••••••••••••••••••••••••
The Programming Language Commit tee •••.••••.•.••••.••••.••••.•.•
The CODASYL COBOL Commit tee ••..•••.•••.•.•••••••••••••...••.•••

Chapter 2: The Evolution of CODASYL COBOL

2.1 COBOL-60 ...
2.2 COBOL-61 , ..
2.3 COBOL-61 Extended ..
2.4 COBOL, Edition 1965 ..
2.5 CODASYL COBOL Journal of Development 1968
2.6 CODASYL COBOL Journal of Development 1969
2.7 CODASYL COBOL Journal of Development 1970
2.8 CODASYL COBOL Journal of Development 1973
2.9 CODASYL COBOL. Journal of Development 1976
2 .10 CODASYL COBOL Journal of Development 1978
2 .11 CODASYL COBOL Journal of Development 1981
2.12 CODASYL COBOL Journal of Development 1984
Chapter 3: The Standardization of COBOL

3.1
3.2
3.3
3.4

Initial Standardization Effort ••••••••••.•.•••••••••••••••••.••
USA Standard COBOL 1968 ••...•••••.••.••.•.•••••••••••.•••.•••••
American National Standard COBOL 1974
American National Standard COBOL 1985 .••.•••.••••••••.•••••.•••

Chapter 4: International Standardization of COBOL

4 .1
4.2
4.3

ISO Recommendation R-1989-1972 for COBOL •.••••••••••.•.•••••.••
ISO Standard 1989-1978 for COBOL •.•.••.••••••.••••••••••.••••••
ISO Standard 1989-1985 for COBOL •••••••••••••.•••••••••••••••••

APPENDIX B: DIFFERENCES BETWEEN SECOND AND THIRD STANDARD COBOL

Chapter 1: Surrnnary of Differences Between Second and Third

XVII-1
XVII-1
XVII-2
XVII-2
XVII-2

XVII-3
XVII-3
XVII-3
XVII-3
XVII-4
XVII-4
XVII-5
XVII-5
XVII-6
XVII-7
XVII-8
XVII-9

XVII-11
XVII-11
XVII-12
XVII-12

XVII-14
XVII-14
XVII-15

Standard COBOL • . . . • • . . • . . . • • • . . . • • . . XVI I -16

1.1
1.2
1.3
1.4
1.5
1.6

Surrnnary of Differences in Language Concepts ...•••••••••••.••••.
Surrnnary of Differences rn Identification Division ••••••••.•••••
Surrnnary of'-Differences in Environment Division ••••••••••.•••••.
Surrnnary of Differences in Data Division •••••..•.••••••••••••.••
Surrnnary of Differences in Procedure Division •.•••••••••.•••••••
Additional Surrnnary of Differences ••••••••••••.•••.•••.•••••.••.

xi

XVII-17
XVII-20
XVII-21
XVII-25
XVII-30
XVII-41

Chapter 2: Substantive Changes

2.1 Substantive Changes Not Affecting Existing Programs •••••••••••• XVII-42
2.2 Substantive Changes Potentially Affecting Existing Programs •••• XVII-51

APPENDIX C: LANGUAGE ELEMENT LISTS

Chapter 1: Obsolete Language Element List • • • • • • • • • • • . • • • • • . • • • • • • • • • XVII-81

Chapter 2: Implementor-Defined Language Element List •••••••••••••••• XVII-87

Chapter 3: Hardware Dependent Language Element List ••••••••••••••••. XVII-94

Chapter 4: Undefined Language Element List •••••••••••••••••••••••••• XVII-96

XVIII-I

xii

American National Standard
for Information Systems -

Programming Language
COBOL

-

SECTION I: INTRODUCTORY INFORMATION

1. INTRODUCTION TO THE STANDARD

1.1 SCOPE AND PURPOSE

The scope of this standard is to specify both the form and interpretation of
programs expressed in COBOL. Its purpose is to promote a high degree of machine
independence in such programs in order to permit their use on a variety of
automatic data processing systems.

1.2 STRUCTURE OF LANGUAGE SPECIFICATIONS

The organization of COBOL specifications in this standard is based on a
functional processing module concept. The standard defines 11 functional
processing modules: Nucleus, Sequential I-0, Relative I-0, Indexed I-0,
Inter-Program Communication, Sort-Merge, Source Text Manipulation, Report
Writer, Communication, Debug, and Segmentation. Nine of the modules have the
elements within the module divided into level 1 elements and level 2 elements.
Level 1 elements of a module are a subset of level 2 elements of the same
module. Two of the modules contain only level 1 elements.

The Nucleus module contains the language elements for internal processing of
data within the basic structure of the four divisions of a program. The Nucleus
also contains the language elements for the definition and access of tables.
The elements of the Nucleus are divided into two levels. Nucleus level 1
supplies elements that perform basic internal operations, i.e., the more
elementary options of the various clauses and verbs. Nucleus level 2 provides
elements for more extensive and sophisticated internal processing capabilities.

The Sequential I-0 module contains the language elements for the definition
and access of sequentially organized files. The elements of the Sequential I-0
module are divided into two levels. Sequential I-0 level 1 provides elements
for the basic facilities of definition and access of sequential files.
Sequential !-,.0 level 2 provides elements for the complete facilities of
definition and access of sequential files.

Introduction

The Relative I-0 module contains the language elements for the definition and
access of mass storage files in which records are identified by relative record
numbers. The elements of the Relative I-0 module are divided into two levels.
Relative I-0 level 1 provides elements for the basic facilities of definition
and access of relative files. Relative I-0 level 2 provides elements for more
complete facilities, including the capability of accessing the file both
randomly and sequentially in the same COBOL program.

The Indexed I-0 module contains the language elements for the definition and
access of mass storage files in which records are identified by the value of a
key and accessed through an index. The elements of the Indexed I-0 module are
divided into two levels. Indexed I-0 level 1 provides elements for the basic
facilities of definition and access of indexed files. Indexed I-0 level 2
provides elements for more complete facilities,
capability of accessing the file both randomly
COBOL program.

including alternate keys and the
and sequentially in the same

The Inter-Program Communication module contains the language elements which
enable a program to communicate with one or more other programs. The elements
of the Inter-Program Communication module are divided into two levels.
Inter-Program Communication level 1 provides elements for the transfer of
control to another program known at compile time; it also provides for the
access of certain common data items by both programs. Inter-Program
Communication level 2 provides elements for the transfer of control to another
program not identified at compile time; it also provides for the nesting of
programs within other programs.

The Sort-Merge module contains the language elements for the ordering of one
or more files. The Sort-Merge module also contains the language elements for
the combining of two or more identically ordered files. Optionally, a user may
apply some special processing to each of the individual records by input or
output procedures. The Sort-Merge module contains only level 1 elements.

The Source Text Manipulation module contains the language elements for the
insertion and replacement of source program text as part of the compilation of
the source program. The elements of the Source Text Manipulation module are
divided into two levels. Source Text Manipulation level 1 provides the facility
for copying text from a single library into the ·source program. Source Text
Manipulation level 2 provides the additional capability of replacing library
text during the copying process, specifying more than one COBOL library at
compile time, and replacing source program text.

The Report Writer module contains the
semi-automatic production of printed reports.
only level 1 elements.

language elements for the
The Report Writer module contains

The Communication module contains the language elements to access, process,
and create messages or portions thereof, and to communicate through a message
control system with communication devices. The elements of the Communication
module are divided into two levels. Communication level 1 provides elements for
the basic facilities to send or receive complete messages. Communication level
2 provides elements for a more sophisticated facility including the capability
to send or receive segments of a message.

I-2

Introduction

The Debug module provides a means by which the user can specify his debugging
algorithm -- the conditions under which data or procedure items are monitored
during execution of the program. The elements oi the Debug module are divided
into two levels. Debug module level 1 provides a basic debugging capability,
including the ability to specify selective or full paragraph monitoring. Debug
module level 2 provides the full COBOL debugging capability.

The Segmentation module provides for the overlaying at object time of
Procedure Division sections. The elements of the Segmentation module are
divided into two levels. Segmentation level 1 provides for section
segment-numbers and fixed segment limits. Segmentation level 2 adds the
capability for varying the segment limit.

1.3 ORGANIZATION OF DOCUMENT

This document is divided into eighteen sections. Section I is composed of
the introduction, a summary of elements by module, and a summary of elements by
COBOL division. Section II presents concepts pertaining to the use and
organization of features within the COBOL language. Section III is composed of
a glossary defining terms in accordance with their meaning in COBOL.

Section IV contains a presentation of overall language considerations.
Section V contains a composite language skeleton.

Sections VI through XVI contain specifications for the eleven functional
processing modules. Within these sections, specifications unique to level 2 of
the modules are enclosed in boxes.

Sections II ~hrough XVI comprise the detailed specifications of Standard
COBOL.

Section XVII contains the appendices to the document. Section XVIII contains
the index for the document.

1.4 HOW TO USE THE STANDARD

It is envisioned that the standard will be examined from several different
viewpoints. In addition to the table of contents and the index, the summary of
elements by module and the summary of elements by COBOL division are also
intended to serve as a key to the standard.

Determination of the content of any level within a module is made from the
sununary of elements beginning on page I-10. This list contains a detailed
breakdown of each element of Standard COBOL within'a given module. For example,
to ascertain the content of level 1 of the Sequential I-0 module, reference is
made to that module within the summary of elements by module (see page I-19).
There will be found a list of COBOL elements including overall language
considerations, Environment Division entries, Data Division entries, and
Procedure Division verbs that pertain to the Sequential I-0 module.

Determination of the modules and levels within modules in which a specific
language feature appears is made from the summary of elements by COBOL division
beginning on page I-40. This list shows in detail all elements of Standard

I-3

Introduction

COBOL and their occurrences within the various modules. Those elements which
are not completely contained within one level of a module are shown in
sufficient detail to specify the location of each subelement. For example, the
READ statement appears in level 1 of the Sequential I-0 module, the Relative I-0
module, and the Indexed I-0 module. Because certain phrases of the READ
statement appear only in level 2 of these modules; the subelements of the READ
statement are listed separately (see page I-59).

The schematic diagram on page I-5 is a graphic representation of the 11
functional processing modules forming the content of Standard COBOL. This
schematic diagram shows the hierarchy of levels within each functional
processing module. Within the schematic diagram a shorthand notation (such as
2 INX 0,2) indicates the hierarchical position of any level within the
functional processing module as well as the number of levels into which the
elements of the module have been divided. This shorthand notation is composed
of, from left to right, a one-digit number indicating the level's position in
the hierarchy, a three-character module abbreviation, and a two-digit number
indicating the minimum and maximum levels of the module to which the level
belongs. The number zero indicates a null level for the lowest level within a
module. For example, 2 INX 0,2 indicates that this level is the second non-null
level (level 2) of the Indexed I-0 module which contains a null level and two
non-null levels (level 1 and level 2). 2 NUC 1,2 indicates that this level is
the second non-null level of the Nucleus module which contains two non-null
levels (level 1 and level 2).

The three-character module abbreviations are as follows:

NUC Nucleus
SEQ Sequential I-0
REL Relative I-0
INX Indexed I-0
IPC Inter-Program Communication
SRT Sort-Merge
STM Source Text Manipulation
RPW Report Writer
COM Communication
DEB Debug
SEG Segmentation

I-4

H
I

\J1

Cl)

I-
w
Cl)
ca
:::>
Cl)

-'
0
ca
c
u

..c
en :c

.., -ca
:c ..,
E
.e
c -

E =
E ·c:
:E

Nucleus Sequential
1-0

2 NUC 1,2 2SEQ1,2

1 NUC 1,2 1 SEQ 1,2

1 NUC 1,2 1 SEQ 1,2

REOUIRED MODULES
(Required in Subsets)

Relative Indexed Inter-Program
1-0 1-0 Communication

2 REL 0,2 2 INX 0,2 2 IPC 1,2

1 REL 0,2 1 INX 0,2 1 IPC 1,2

Null Null 1IPC1,2

OPTIONAL MODULES
(Not Required in Subsets)

Sort-Merge Source Text Report Communication Debug Segmentation
Manipulation Writer

1SRT0,1 2STM 0,2

2 COM 0,2 2 DEB 0,2 2 SEG 0,2

1SRT0,1 1 STM 0,2 1RPW0,1

1 COM 0,2 1DEB0,2 1 SEG 0,2

Null Null

Implementation Definition

1.5 DEFINITION OF AN IMPLEMENTATION OF STANDARD COBOL

This document provides a definition of the language features that comprise
Standard COBOL. Standard COBOL consists of 11 modules, seven of which are
required and four of which are optional. Paragraph 1.5 and its subparagraphs
identify the criteria which must be met in order for a valid claim to be made
that an implementation conforms to Standard COBOL.

1.5.1 Definition of Subsets

The three subsets of Standard COBOL are: the high subset, the intermediate
subset, and the minimum subset. Each subset is composed of a level of the seven
required modules: Nucleus, Sequential I-0, Relative I-0, Indexed I-0,
Inter-Program Communication, Sort-Merge, and Source Text Manipulation. In terms
of the schematic diagram on page I-5, a subset of Standard COBOL is represented
by one of the three horizontal rows within the required module columns. The
four optional modules (Report Writer, Communication, Debug, and Segmentation)
are not required in the three subsets of Standard COBOL.

The high subset of Standard COBOL is composed of all language elements of the
highest level of all required modules, that is:

• Level 2 elements from Nucleus, Sequential I-0, Relative I-0, Indexed I-0,
Inter-Program Communication, and Source Text Manipulation

• Level 1 elements from Sort-Merge

The intermediate subset of Standard COBOL is composed of all language
elements of level 1 of all required modules, that is:

• Level 1 elements from Nucleus, Sequential I-0, Relative I-0, Indexed I-0,
Inter-Program Communication, Sort-Merge, and Source Text Manipulation

The minimum subset of Standard COBOL is composed of all language elements of
level 1 of the Nucleus, Sequential I-0, and Inter-Program Communication modules.

1.5.2 Definition of a Conforming Implementation

A conforming implementation of Standard COBOL must fully support any of the
three subsets defined in paragraph 1.5.1 above and may include none, all, or any
combination of the levels of the optional modules.

A conforming implementation of a given
support all the language elements of
paragraph 1.5.2.5 on page I-8.

subset of Standard COBOL must fully
that subset except as qualified in

A conforming implementation of a given level of an
Standard COBOL must fully support all the language elements
optional module except as qualified in paragraph 1.5.2.5 on

optional module of
of that level of the
page I-8.

Furthermore, any implementation must also meet the requirements of paragraphs
1.5.2.l through 1.5.2.4.

I-6

\

Implementation Definition

1.5.2.l Substitute or Additional Language Elements

An implementation must not require the inclusion of substitute or additional
language elements in the source program in order to accomplish a function
identical to that of a Standard COBOL language element. Additionally,
throughout the Standard COBOL specification there are certain language elements
whose syntax or function is specified to be, in part, implementor defined (see
page XVII-87, Implementor-Defined Language Element List). While the implementor
specifies the constraints on that portion of each element's syntax or rules that
is indicated in Standard COBOL to be implementor defined, such constraints must
not include any requirements for the inclusion in the source program of
substitute or additional language elements.

1.5.2.2 Acceptance of Standard Language Elements

An implementation must accept the syntax and provide the function for all
Standard COBOL language elements as specified in a given level of a module which
is claimed as being included in the implementation, except those language
elements dependent on specific hardware components which are specifically
exempted by paragraph 1.5.2.5.1 on page I-8. When an implementation supports
the syntax of Standard COBOL language elements from a given level of a module
other than that for which support is claimed, that implementation must provide
the function specified in Standard COBOL for that syntax or identify those
language elements as nonstandard extensions (see paragraph 1.5.2.5.2 on page
I-8).

1.5.2.3 Obsolete Language Elements

Obsolete language elements are identified as language elements in Standard
COBOL which will be deleted from the next revision of Standard COBOL (see page
XVII-81, Obsolete Language Element List). Obsolete language elements have been
neither enhanced nor modified during the preparation of Standard COBOL. The
interaction between obsolete language elements and other language elements is
undefined unless otherwise specified in Standard COBOL. Language elements to be
deleted from Standard COBOL will first be identified as obsolete language
elements prior to being deleted.

A conforming implementation of Standard COBOL is required to support obsolete
language elements of the subset and levels of optional modules for which support
is claimed. Documentation associated with an implementation must identify all
obsolete language elements in the implementation.

A conforming implementation of Standard COBOL must provide a warning
mechanism, which optionally may be invoked by the user at compile time to
indicate, if appropriate, that a program contains obsolete language elements
(see page XVII-81).

1.5.2.4 Externally Provided Functions

If any function is provided outside the source program that accomplishes a
function specified by a Standard COBOL language element contained in a given
level of a module which is claimed as being included in an implementation, then
the implementation must not require the specification of the external function
in place of, or in addition to, that Standard COBOL language element.

I-7

Implementation Definition

An implementation may require specifications outside the source program to
interface with the operating environment to support functions specified in a
source program.

1.5.2.5 Qualifications

The following qualifications apply to an implementation of the Standard COBOL
specifications:

1.5.2.5.1 Hardware Dependent Language Elements

There are certain language elements which pertain to specific types of
hardware components (see page XVII-94, Hardware Dependent Language Element
List). In order for an implementation to meet the requirements for this
Standard COBOL, the implementor must specify the hardware components that the
implementation supports. Furthermore, when support is claimed for a specific
hardware component, all language elements that pertain to that component must be
implemented if the module in which they appear is included in the
implementation. Language elements that pertain to specific hardware components
for which support is not claimed need not be implemented. The absence of such
elements from an implementation of Standard COBOL must be specified.

1.5.2.5.2 Extension Language Elements

An implementation that includes language elements in addition to the subset
and levels of optional modules for which support is claimed meets the
requirements of Standard COBOL. This is true even though it may imply the
extension of the list of reserved words by the implementor, and thereby may
prevent proper translation of some programs that meet the requirements of
Standard COBOL.

Documentation associated with an implementation must identify any standard
extensions (language elements not defined in the supported subset or supported
levels of optional modules but defined elsewhere in Standard COBOL) or
nonstandard extensions (language elements or functions not defined in Standard
COBOL) that are included in the implementation.

A conforming implementation of Standard COBOL must provide a warning
mechanism, which optionally may be invoked by the user at compile time to
indicate, if appropriate, that a program contains nonstandard extensions that
are included in the implementation.

1.5.2.5.3 Reserved Words

An implementation
the COBOL reserved
modules and the four

of Standard COBOL must recognize as reserved words
words occurring in the specification of the seven

optional modules. (See page IV-45, COBOL Reserved

1.5.2.5.4 Character Substitution

all of
required
Words.)

The definition of the COBOL character set on page III-3 presents the complete
COBOL character set for Standard COBOL. When an implementation does not provide
for a graphic representation for all the COBOL character set, substitute
graphics may be specified by the implementor to replace the characters not
represented.

I-8

Conforming Source Program

1.5.2.5.5 The ENTER Statement

An implementation of Standard COBOL may include the ENTER statement or not,
at the option of the implementor.

1.6 DEFINITION OF A CONFORMING SOURCE PROGRAM

A conforming source program is one which does not violate the explicitly
stated provisions and specifications of Standard COBOL. In order for a source
program to conform to Standard COBOL, it must not include any language elements
not specified in this standard. The execution of a program, the source text of
which conforms to Standard COBOL, is predictable only to the extent defined in
this standard. The results of violating the formats or rules of Standard COBOL
are undefined unless otherwise specified in this standard.

In order for a source program to conform to a specified subset of Standard
COBOL, it must include only language elements of that subset.

There are, in Standard COBOL, situations in which the results of executing a
statement are undefined or unpredictable (see page XVII-96, Undefined Language
Element List). A COBOL source program which allows this to happen may
nevertheless be a conforming program, although the resultant execution is not
defined by Standard COBOL.

1.7 RELATIONSHIP OF A CONFORMING PROGRAM TO A CONFORMING IMPLEMENTATION

The translation of a conforming source program by a conforming implementation
and the subsequent execution of the resultant object program is defined only to
the extent specified in Standard COBOL. However, the preceding statement does
not imply that the program will be translated or executed successfully;
translation and exetution depends on other factors, such as the use of
implementor-defined language elements, the logical correctness of the program,
and the data upon which the program operates.

In general, Standard COBOL specifies no upper limit on such things as the
number of statements in a program and the number of operands permitted in
certain statements. It is recognized that these limits wi 11 vary from one
implementation of Standard COBOL to another and may prevent the successful
translation of some programs that meet the requirements of Standard COBOL.

I-9

Element Summary by Module

2. SUMMARY OF ELEMENTS BY MODULE

2.1 GENERAL DESCRIPTION

This chapter contains a summary of all elements in Standard COBOL organized
according to the functional processing modules.

The column titled "LEVEL l" specifies the level 1 elements of the module.
The column tit led "LEVEL 2" specifies the level 2 elements of the /module.

The letter X in a column indicates the presence of the specified element
within the specified level of the module. The letter Nin a column indicates
the absence of the specified element from the specified level of the module.
The letter Z in a column indicates the presence of the specified element within
the specified level of the module; however this element is an obsolete element
in Standard COBOL because it is to be deleted from the next revision of Standard
COBOL.

The following is a list of the sunnnary of elements by module shown on pages
I-11 through I-39.

• Pages I-11 through I-18: Sunnnary of elements in the Nucleus module
• Pages I-19 through I-21: Sunnnary of elements in the Sequential I-0 module
• Pages I-22 through I-24: Sunnnary of elements in the Relative I-0 module
• Pages I-25 through I-27: Sunnnary of elements in the Indexed I-0 module
• Pages I-28 and I-29: Sunnnary of elements in the Inter-Program

Communication module

•
•
•
•
•
•

Pages I-30
Page I-32:
Pages I-33
Pages I-36
Page I-38:
Page I-39:

and I-31: Sunnnary of elements in the Sort-Merge module
Summary of elements in the Source Text Manipulation module

through I-35: Summary of elements in the Report Writer module
and I-37: Summary of elements in the Communication module

Summary of elements in the Debug module
Sunnnary of elements in the Segmentation module

I-10

Nucleus Element Summary

SUMMARY OF ELEMENTS IN THE NUCLEUS MODULE

ELEMENT

LANGUAGE CONCEPTS
Character Set

Characters used in words 0-9 A-Z
Characters used in punctuation

punctuation
"

(hyphen)
() '
(colon)

space
Characters used in
Characters used in
Characters used in
Characters used in

editing B + Z * $ 0 CR DB /

* I ** > < >= <=
arithmetic operations
relation conditions

+

Characters used in subscripting + -
Single character substitution allowed
Double character substitution allowed

Separators
" () '

(colon)
space

Character-Strings
COBOL words

Maximum of 30 characters
User-defined words

Alphabet-name
Class-name
Condition-name
Data-name
Index-name
Level-number
Mnemonic-name
Paragraph-name
Pro gr am-name
Routine-name
Section-name
Symbolic-character

System-names
Computer-name
Implementor-name
Language-name

Reserved words
Required words

Key words
Special character words
Arithmetic operators + - * I **
Arithmetic operators used in subscripting
Relation characters = > < >= <=

Optional words

I-11

+ -

LEVEL 1

x
x
N
x
N
x
x
x
z

x
N

x

x
x
N
x
x
x
x
x
x
z
x
N

x
x
z

x
x

N
x
x
x

LEVEL 2

x
x
x
x
x
x
x
x
z

x
x

x

x
x
x
x
x
x
x
x
x
z
x
x

x
x
z

x
x

x
x
x
x

Nucleus Element Surmnary

SUMMARY OF ELEMENTS IN THE NUCLEUS MODULE

ELEMENT

Character-Strings (Continued)
Special purpose words
Figurative constants

ZERO, SPACE, HIGH-VALUE, LOW-VALUE,
ALL option

ZEROS, ZEROES, SPACES, HIGH-VALUES,
ALL option

Symbolic-character
ALL option

ALL literal

QUOTE

LOW-VALUES, QUOTES

Literals
Numeric literals: 1 through 18 digits
Nonnumeric literals: 1 through 160 characters

PICTURE character-string
Comment-entries •..••••••

Uniqueness of Reference
Qualification

No qualification permitted; names must be
referenced

50 qualifiers
Subscripting

3 levels of subscripts
7 levels of subscripts
Subscripting with a literal
Subscripting with a data-name
Subscripting with an index-name
Relative subscripting

Reference modification

Reference Format

unique if

Sequence number•....•..............
Continuation of lines
Continuation of nonnumeric literal
Continuation of COBOL word, numeric literal,

PICTURE character-string
Blank lines
Comment lines
Asterisk (8) comment line
Slant (/) comment line

Debugging line with D in indicator

Source Program Structure
Identification Division required
Environment Division optional
Data Division optional
Procedure Div1sion optional
End program header ..••.••••

area

I-12

LEVEL 1

x
N
x
N
N
N
N

x
x
x
z

x
N

x
N
x
x
x
x
N

x

x

N
x

x
x
x

x
x
x
x
N

LEVEL 2

x
x
x
x
x
x
x

x
x
x
z

N
x

N
x
x
x
x
x
x

x

x

x
x

x
x
x

x
x
x
x
x

Nucleus Element Sunmary

SUMMARY OF ELEMENTS IN THE NUCLEUS MODULE

ELEMENT

IDENTIFICATION DIVISION
PROGRAM-ID paragraph

Program-name
AUTHOR paragraph
INSTALLATION paragraph
DATE-WRITTEN paragraph
DATE-COMPILED paragraph
SECURITY paragraph

ENVIRONMENT DIVISION
Configuration Section •••••••••

SOURCE-COMPUTER paragraph
Computer-name •••••••••••••
WITH DEBUGGING MODE clause

OBJECT-COMPUTER paragraph
Computer-name
MEMORY SIZE clause
PROGRAM COLLATING SEQUENCE clause

SPECIAL-NAMES paragraph ••••••
ALPHABET clause

STANDARD-I
STANDARD-2

option
option

NATIVE option
Implementor-name option
Literal option

CLASS clause
CURRENCY SIGN clause
DECIMAL-POINT clause
Implementor-name clause

IS mnemonic-name opt ion
ON STATUS IS condition-name option ••••••
OFF STATUS IS condition-name option

SYMBOLIC CHARACTERS clause •••••.••••••••

DATA DIVISION
Working-Storage Section
Record description entry
77 level description entry
Data description entry

BLANK WHEN ZERO clause
Data-name clause
FILLER clause
JUSTIFIED clause
Level-number clause

01 through 49; level-number may be
66
77
88

1 or 2 digits

I-13

LEVEL 1 LEVEL 2

x x
x x
z z
z z
z z
N z
z z

x x
x x
x x
x x
x x
x x
z z
x x
x x
x x
x x
x x
x x
x x
N x
x x
x x
x x
x x
x x
x x
x x
N x

x x
x x
x x
x x
x x
x x
x x
x x
x x
x x
N x
x x
N x

Nucleus Element Summary

SUMMARY OF ELEMENTS IN THE NUCLEUS MODULE

ELEMENT

OCCURS clause
Integer TIMES
ASCENDING/DESCENDING KEY phrase
INDEXED BY phrase ••••••••••••••
Integer-! TO integer-2 TIMES DEPENDING ON phrase

PICTURE clause
Character-string has a maximum of 30 characters
Data characters X 9 A
Operational symbols S V P
Nonfloating insertion characters B + - , $
Replacement or floating insertion characters
Currency sign substitution
Decimal point substitution

REDEFINES clause •••••••••••
May not be nested
May be nested •••••••

RENAMES clause
SIGN clause
SYNCHRONIZED clause
USAGE clause •••••••••

BINARY
COMPUTATIONAL
DISPLAY .••.•.•...•.•
INDEX •.••••••
PACKED-DECIMAL

VALUE clause
Literal
Literal series
Literal-! THROUGH literal-2
Literal range series

PROCEDURE DIVISION

0 CR DB /
$ + - z *

Arithmetic expression •••.....•...••••...•......•
Binary arithmetic operators + - *I**
Unary arithmetic operators + - •••••• • ••••••••

Conditional expressions .•••••..••..•••••
Simple condition ••••••.
Relation condition ••••••
Relational operators •••••••..••••••

[NOT] GREATER THAN
[NOT]) ••.•••••••••
[NOT]
[NOT]

LESS THAN
< ••••••.••

[NOT] EQUAL TO ••••••••••••
[NOT] = •••••• ,
GREATER THAN OR EQUAL TO
>=••..•...••.•...•
LESS THAN OR EQUAL TO
<=

Comparison of numeric operands

I-14

LEVEL 1 LEVEL 2

x x
x x
N x
x x
N x
x x
x x
x x
x x
x x
x x
x x
x x
x x
x N
N x
N x
x x
x x
x x
x x
x x
x x
x x
x x
x x
x x
N x
N x
N x

N x
N x
N x
x x
x x
x x
x x
x x
x x
x x
x x
x x
x x
x x
x x
x x
x x
x x

Nucleus Element Summary

SUMMARY OF ELEMENTS IN THE NUCLEUS MODULE

ELEMENT

Conditional expressions (continued)
Simple condition (continued)

Comparison of nonnumeric operands •••••••••••••••• • ••••••
Comparison of index-names and/or index data items •••••••

Class condition •••••••••
NUMERIC
ALPHABETIC
ALPHABETIC-LOWER
ALPHABETIC-UPPER
Class-name

Condition-name condition
Sign condition ••••••••••••
Switch-status condition

Com pl ex condition ••••••••••••
Logical operators AND OR NOT
~egated condition
Combined condition
Parenthesized conditions ••••••••••.•

Abbreviated combined relation conditions
Arithmetic statements •••••••••••••••••••••••
Arithmetic operands limited to 18 digits
Composite of operands limited to 18 digits

ACCEPT statement
Identifier ••••••••
Only one transfer of data
No restriction on number of transfers of data
FROM mnemonic-name phrase •••••••••••••••
FROM DATE/DAY/DAY-OF-WEEK/TIME phrase

ADD statement ••••••••••••••••
Identifier/literal
Identifier/literal series
TO identifier
TO
TO
TO

identifier series
identifier/literal GIVING
identifier/literal GIVING

identifier
identifier series

ROUNDED phrase •••••••••••
ON SIZE ERROR phrase
NOT ON SIZE ERROR phrase ••••••••••••••
END-ADD phrase ••••••••••
CORRESPONDING phrase

ALTER statement ••••••••••••
Only one procedure-name
Procedure-name series

, COMPUTE statement
Arithmetic expression
Identifier series
ROUNDED phrase ••••••
ON SIZE ERROR phrase
NOT ON SIZE ERROR phrase
END-COMPUTE phrase •••••••••••

I-15

...

..

LEVEL 1 LEVEL 2

x x
x x
x x
x x
x x
x x
x x
x x
N x
N x
x x
N x
N x
N x
N x
x x
N x
x x
x x
x x
x x
x x
x N
N x
N x
N x
x x
x x
x x
x x
x x
x x
x x
x x
x x
x x
x x
N x
z z
z N
N z
N x
N x
N x
N x
N x
N x
N x

Nucleus Element Sunmary

SUMMARY OF ELEMENTS IN THE NUCLEUS. MODULE

ELEMENT

CONTINUE statement
DISPLAY statement

Only one transfer of data
............

No restriction on number
Identifier/literal ••••••••••

of transfers of data

Identi~ier/literal
UPON mnemonic-name

series
phrase

WITH NO ADVANCING phrase
DIVIDE statement ••••••

BY identifier/literal
INTO identifier •••••••
INTO identifier series
GIVING identifier •••••••
GIVING identifier series
ROUNDED phrase
REMAINDER phrase
ON SIZE ERROR phrase
NOT ON SIZE ERROR phrase
END-DIVIDE phrase

ENTER statement
EVALUATE statement
Identifier/literal
Arithmetic expression
Conditional expression
TRUE/FALSE

ALSO phrase
WHEN phrase

ALSO phrase
WHEN OTHER phrase
END-EVALUATE phrase

EXIT statement
GO TO statement

Procedure-name is required
Procedure-name is optional
DEPENDING ON phrase

IF statement
Only imperative statements
Imperative and/or conditional
Nested IF statements •••••••••
THEN optional
NEXT SENTENCE

wqrd
phrase

ELSE phrase ••••••
END-IF phrase ••••••

INITIALIZE statement
Identifier
REPLACING
REPLACING

series
phrase
series

statements

I-16

LEVEL 1 LEVEL .2

x x
x x
x N
N x
x x
x x
N x
N x
x x
x x
x x
x x
x x
x x
x x
N x
x x
x x
x x
z z
N x
N x
N x
N x
N x
N x
N x
N x
N x
N x
x x
x x
x N
N z
x x
x x
x N
N x
x x
x x
x x
x x
x x
N x
N x
N x
N x

Nucleus Element Sunnnary

SUMMARY OF ELEMENTS IN THE NUCLEUS MODULE

ELEMENT

INSPECT statement
Only single character data item
Multi-character data item
TALLYING phrase

BEFORE/AFTER phrase
BEFORE/AFTER phrase series

TALLYING phrase series
REPLACING phrase ••••••••••••••••••

BEFORE/AFTER phrase
BEFORE/AFTER phrase series

REPLACING phrase series ••••••••
TALLYING and REPLACING phrases ••••••••••
CONVERTING phrase

MOVE statement
TO identifier
TO identifier
De-editing of
CORRESPONDING

series
numeric
phrase

MULTIPLY statement
BY identifier •••••••
BY identifier series
GIVING identifier

edited items

GIVING identifier series
ROUNDED phrase ••••••••••••••••
ON SIZE ERROR phrase
NOT ON SIZE ERROR phrase •••••••••••••
END-MULTIPLY phrase

PERFORM statement •••••••••
Procedure-name is optional
THROUGH procedure-name phrase
Imperative-statement option
END-PERFORM phrase
TIMES phrase
UNTIL

TEST
phrase
BEFORE/AFTER phrase

VARYING phrase ••••• , •••• , •••••••••
TEST BEFORE/AFTER phrase ••••••••••••
AFTER phrase

At least 6 AFTER phrases permitted
SEARCH statement

VARYING phrase ••••••••
AT END phrase •••••••••
WHEN phrase
WHEN phrase series
END-SEARCH phrase

SEARCH ALL statement

.. •'

AT END phrase
WHEN phrase
END-SEARCH phrase ..

I-17

LEVEL 1 LEVEL 2

x x
x N
N x
x x
x x
N x
N x
x x
x x
N x
N x
x x
N x
x x
x x
x x
N x
N x
x x
x x
x x
x x
x x
x x
x x
x x
x x
x x
x x
x x
x x
x x
x x
x x
N x
N x
N x
N x
N x
N x
N x
N x
N x
N x
N x
N x
N x
N x
N x

Nucleus Element Summary

SUMMARY OF ELEMENTS IN THE NUCLEUS MODULE

ELEMENT

SET statement •••••••••••••••••••
Index-name/identifier TO
Index-name UP BY/DOWN BY
Mnemonic-name TO ON/OFF
Condition-name TO TRUE

STOP statement
RUN
Literal

STRING statement
DELIMITED BY series
WITH POINTER phrase
ON OVERFLOW phrase
NOT ON OVERFLOW phrase
END-STRING phrase

SUBTRACT statement
Identifier/literal •••••••
Identifier/literal series
FROM identifier ••••••••••••
FROM identifier series
GIVING identifier
GIVING identifier series
ROUNDED phrase
ON SIZE ERROR phrase
NOT ON SIZE ERROR phrase
END-SUBTRACT phrase
CORRESPONDING phrase

UNSTRING statement
DELIMITED BY phrase
DELIMITER IN phrase
COUNT IN phrase ••••••
WITH POINTER phrase
TALLYING phrase
ON OVERFLOW phrase ••••••••••••••
NOT ON OVERFLOW phrase
END-UNSTRING phrase

I-18

LEVEL 1 LEVEL 2

x x
x x
x x
x x
N x
x x
x x
z z
N x
N x
N x
N x
N x
N x
x x
x x
x x
x x
x x
x x
x x
x x
x x
x x
x x
N x
N x
N x
N x
N x
N x
N x
N x
N x
N x

Sequential I-0 Element Summary

SUMMARY OF ELEMENTS IN THE SEQUENTIAL I-0 MODULE

ELEMENT

LANGUAGE CONCEPTS
User-defined words

File-name
Record-name

Reserved words
Special register

I-0 status
LINAGE-COUNTER

.
ENVIRONMENT DIVISION
Input-Output Section
FILE-CONTROL paragraph
File control entry

SELECT clause
OPTIONAL phrase

Input, I-0, and extend files only
MODE IS SEQUENTIAL clause
clause

ACCESS
ASSIGN

Implementor-name
Literal

FILE STATUS clause ••••.••••••••••••
ORGANIZATION IS SEQUENTIAL clause
PADDING CHARACTER clause
RECORD DELIMITER clause
RESERVE AREA clause

I-0-CONTROL paragraph
MULTIPLE FILE TAPE clause
RERUN clause
SAME
SAME

AREA clause •••••••
RECORD AREA clause

DATA DIVISION
File Section
File description entry

FD level indicator
BLOCK CONTAINS clause

Integer RECORDS/CHARACTERS •••••••••••••••••
Integer-1 TO integer-2 RECORDS/CHARACTERS

CODE-SET clause
DATA RECORDS clause
LABEL RECORDS clause
LINAGE clause

FOOTING phrase
TOP phrase
BOTTOM phrase

RECORD clause
Integer-1 CHARACTERS
VARYING IN SIZE phrase ••••••••••

FROMtnteger-2 TO integer-3 CHARACTERS
DEPENDING ON phrase •••••••••••••

Integer-4 TO integer-5 CHARACTERS

I-19

......

......
..........

.. •.

LEVEL 1

x
x

N
x

x
x
x
N
N
x
x
x
x
x
x
N
N
N
x
N
z
x
N

x
x
x
x
N
x
z
z
N
N
N
N
x
x
N
N
N
x

LEVEL 2

x
x

x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
z
z
x
x

x
x
x
x
x
x
z
z
x
x
x
x
x
x
x
x
x
x

Sequential I-0 Element Sunnnary

SUMMARY OF ELEMENTS IN THE SEQUENTIAL I-0 MODULE

ELEMENT

File description entry (continued)
VALUE OF clause •••••••••••••••

Implementor-name
Implementor-name
Implementor-name
Implementor-name

IS literal
IS literal series
IS data-name
IS data-name series

Record description entry ••••••••••••••

PROCEDURE DIVISION
Declarative procedures

DECLARATIVES
END DECLARATIVES

CLOSE statement
File-name
File-name series
REEL/UNIT phrase

FOR REMOVAL phrase
WITH NO REWIND/LOCK

OPEN statement
File-name

phrase

File-name series ••••••••
INPUT phrase

WITH NO REWIND phrase
REVERSED phrase

OUTPUT phrase
WITH NO REWIND phrase

I-0 phrase
EXTEND phrase
INPUT,
EXTEND

OUTPUT, and I-0 series
series

READ statement
...........

NEXT phrase
INTO phrase
AT END phrase
NOT AT END phrase
END-READ phrase

REWRITE statement

.....

FROM phrase •••••••
END-REWRITE phrase ••••••

USE statement ••••••••••••
EXCEPTION/ERROR PROCEDURE phrase

ON file-name •••••••
ON file-name series
ON INPUT
ON OUTPUT
ON I-0
ON EXTEND

I-20

. ...

LEVEL 1 LEVEL 2

z z
z z
z z
N z
N z
x x

x x
x x
x x
x x
x x
x x
x x
N x
N x
x x
x x
x x
x x
N x
N z
x x
N x
x x
N x
x x
N x
x x
N x
x x
x x
x x
x x
x x
x x
x x
x x
x x
x x
N x
x x
x x
x x
N x

Sequential I-0 Element Suunnary

SUMMARY OF ELEMENTS IN THE SEQUENTIAL I-0 MODULE

ELEMENT

WRITE statement
FROM phrase •••••••••••••••••••••
BEFORE/AFTER ADVANCING phrase

Integer LINE/LINES ••••••••
Identifier LINE/LINES •••••
Mnemonic-name
PAGE •••••••••••

AT END-OF-PAGE/EOP phrase •••••••••••••••••
NOT AT END-OF-PAGE/EOP phrase
END-WRITE phrase •••••••••••••

I-21

LEVEL 1

x
x
x
x
x
N
x
N
N
x

LEVEL 2

x
x
x
x
x
x
x
x
x
x

Relative I-0 Element Summary

SUMMARY OF ELEMENTS IN THE RELATIVE I-0 MODULE

ELEMENT

LANGUAGE CONCEPTS
User-defined words
File-name
Record-name

I-0 status

ENVIRONMENT DIVISION
Input-Output Section
FILE-CONTROL paragraph
File control entry

SELECT clause •••••••••••••••
OPTIONAL phrase ••••••••••••

Input, I-0, and extend files
ACCESS MODE clause

SEQUENTIAL
RANDOM
DYNAMIC
RELATIVE KEY phrase

ASSIGN clause •••••••
Implementor-name
Literal ••••••••••••

FILE STATUS clause
ORGANIZATION IS RELATIVE
RESERVE AREA clause

I-0-CONTROL paragraph
RERUN clause
SAME AREA clause
SAME RECORD AREA clause

DATA DIVISION
File Section
File

FD
description entry

level indicator
BLOCK CONTAINS clause

clause

only

Integer RECORDS/CHARACTERS ••••••••
Integer-I TO integer-2 RECORDS/CHARACTERS

DATA RECORDS clause
LABEL RECORDS clause
RECORD clause ••••••••
Integer-I CHARACTERS
VARYING IN SIZE phrase

FROM integer-2 TO integer-3 CHARACTERS
DEPENDING ON phrase ••••••••••••••••

Integer-4 TO integer-5 CHARACTERS
VALUE OF clause

Implementor-name
Implementor-name
Implementor-name
Implementor-name

Record description

IS
IS
IS

literal
literal series
data-name

IS data-name series
en try

I-22

•• i •

LEVEL 1

x
x
x

x
x
x
N
N
x
x
x
N
x
x
x
x
x
x
N
x
z
x
N

x
x
x
x
N
z
z
x
x
N
N
N
x
z
z
z
N
N
x

LEVEL.2

x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
z
x
x

x
x
x
x
x
z
z
x
x
x
x
x
x
z
z
z
z
z
x

Relative I-0 Element Sunnnary

SUMMARY OF ELEMENTS IN THE RELATIVE I-0 MODULE

ELEMENT

PROCEDURE DIVISION
Declarative procedures

DECLARATIVES
END DECLARATIVES

CLOSE statement
File-name •.•••••
File-name series
WITH LOCK phrase

DELETE statement
INVALID KEY phrase
NOT INVALID KEY phrase
END-DELETE phrase

OPEN statement
File-name
File-name series
INPUT phrase
OUTPUT phrase
I-0 phrase
EXTEND phrase
INPUT, OUTPUT, and
EXTEND series

READ statement
NEXT phrase
INTO phrase
AT END phrase
NOT AT END phrase
INVALID KEY phrase

I-0 series

NOT INVALID KEY phrase
END-READ phrase

REWRITE statement
FROM phrase •••••••
INVALID KEY phrase
NOT INVALID KEY phrase
END-REWRITE phrase

START statement
KEY phrase

EQUAL TO

GREATER THAN
>
NOT LESS THAN

< NOT
GREATER THAN OR EQUAL TO
>=

INVALID KEY phrase
NOT INVALID KEY phrase
END-START phrase ••••••••••••••••••••

LEVEL 1 LEVEL 2

x x
x x
x x
x x
x x
x x
N x
x x
x x
x x
x x
x x
x x
x x
x x
x x
x x
N x
x x
N x
x x
N x
x x
x x
x x
x x
x x
x x
x x
x x
x x
x x
x x
N x
N x
N x
N x
N x
N x
N x
N x
N x
N x
N x
N x
N x

I-23

Relative I-0 Element Sunnnary

SUMMARY OF ELEMENTS IN THE RELATIVE I-0 MODULE

ELEMENT

USE statement ••••••••••••••••••••
EXCEPTION/ERROR PROCEDURE phrase

ON file-name
ON file-name series
ON INPUT
ON OUTPUT
ON I-0
ON EXTEND

WRITE statement
FROM phrase
INVALID KEY phrase
NOT INVALID KEY phrase
END-WRITE phrase ••••••

I-24

LEVEL 1

x
x
x
N
x
x
x
N
x
x
x
x
x

LEVEL 2

x
x
x
x
x
x
x
x
x
x
x
x
x

Indexed I-0 Element Sunnnary

SUMMARY OF ELEMENTS IN THE INDEXED I-0 MODULE

ELEMENT

LANGUAGE CONCEPTS
User-defined words

File-name
Record-name

I-0 status

ENVIRONMENT DIVISION
Input-Output Section
FILE-CONTROL paragraph
File control entry •••••••••••••••••••

SELECT clause
OPTIONAL phrase •••••••••

Input, I-0, and extend files only •••••••••• ~ ••
ACCESS MODE clause

SEQUENTIAL •••••••
RANDOM

........................ ~
DYNAMIC

ALTERNATE RECORD KEY clause
WITH DUPLICATES phrase

ASSIGN clause
Implementor-name ••••••••••••••
Literal

FILE STATUS clause••••••••••••••••••
ORGANIZATION IS INDEXED clause
RECORD KEY clause
RESERVE AREA clauS'e

I-0-CONTROL paragraph
RERUN clause ••••••••••
SAME AREA clause ••••••••
SAME RECORD AREA clause

DATA DIVISION
File Section
File

FD
description entry

level indicator
BLOCK CONTAINS clause ••••••••
Integer RECORDS/CHARACTERS
Integer-1 TO integer-2 RECORDS/CHARACTERS

DATA RECORDS clause
LABEL RECORDS clause
RECORD clause ••••••••

Integer-1 CHARACTERS
VARYING IN SIZE phrase •••••••••••

FROM integer-2 TO integer-3 CHARACTERS
DEPENDING ON phrase

Integer-4 TO integer-5 CHARACTERS •••••.

I-25

... '• .

LEVEL 1

x
x
x

x
x
x
N
N
x
x
x
N
N
N
x
x
x
x
x
x
N
x
z
x
N

x
x
x
x
N
z
z
x
x
N
N
N
x

LEVEL 2

x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
z
x
x

x
x
x
x
x
z
z
x
x
x
x
x
x

Indexed I-0 Element SuIIDllary

SUMMARY OF ELEMENTS IN THE INDEXED I-0 MODULE

ELEMENT

File description entry (continued)
VALUE OF clause •••••••••••••••••

Implementor-name IS literal
Implementor-name IS literal series
Implementor-name IS data-name
Implementor-name IS data-name series

Record description entry
PROCEDURE DIVISION
Declarative procedures

DECLARATIVES ••••••••
END DECLARATIVES

CLOSE statement
File-name •.•...•..
File-name series
WITH LOCK phrase

DELETE statement
INVALID KEY phrase
NOT INVALID KEY phrase
END-DELETE phrase

OPEN statement •••••••
File-name
File-name series
INPUT phrase ••••••
OUTPUT phrase
I-0 phrase
EXTEND phrase
INPUT,
EXTEND

OUTPUT, and
series

READ statement
NEXT phrase
INTO phrase
AT END phrase
NOT AT END phrase
KEY phrase ••••••••
INVALID KEY phrase

I-0 series

NOT INVALID KEY phrase
END-READ phrase

REWRITE statement
FROM phrase •••••••
INVALID KEY
NOT INVALID
END-REWRITE

phrase
KEY phrase
phrase •••••••

I-26

LEVEL 1

z
z
z
N
N
x

x
x
x
x
x
x
N
x
x
x
x
x
x
x
x
x
x
N
x
N
x
N
x
x
x
N
x
x
x
x
x
x
x
x

LEVEL 2

z
z
z
z
z
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

Indexed I-0 Element Summary

SUMMARY OF ELEMENTS IN THE INDEXED I-0 MODULE

ELEMENT LEVEL 1 LEVEL 2

START statement N x
KEY phrase N x

EQUAL TO N x
= N x
GREATER THAN N x
> N x
NOT LESS THAN N x
NOT < N x
GREATER THAN OR EQUAL TO N x
>= N x

INVALID KEY phrase N x
NOT INVALID KEY phrase N x
END-START phrase N x

USE statement x x
EXCEPTION/ ERROR PROCEDURE phrase x x

ON file-name x x
ON file-name series N x
ON INPUT x x
ON OUTPUT x x
ON I-0 x x
ON EXTEND N x

WRITE statement x x
FROM phrase x x
INVALID KEY phrase x x
NOT INVALID KEY phrase x x
END-WRITE phrase x x

I-27

Inter~Program Communication Element Summary

SUMMARY OF ELEMENTS IN THE INTER-PROGRAM COMMUNICATION MODULE

ELEMENT

LANGUAGE CONCEPTS
Source program structure
Nested source programs

IDENTIFICATION DIVISION
PROGRAM-ID paragraph

COMMON clause
INITIAL clause

DATA DIVISION
File Section
File description

EXTERNAL clause
entry (FD level indicator)

GLOBAL clause
Data description entry

GLOBAL clause
(level-number 01)

Working-Storage Section
Data description entry

EXTERNAL clause
(level-number 01)

GLOBAL clause
Linkage Sect ion

Record description entry
77 level description entry

Report Section
Report description entry (RD

GLOBAL clause
level indicator)

PROCEDURE DIVISION
Procedure Division header

USING phrase
At least 5 operands permitted
No limit on number of operands

CALL statement
Literal ••••••
Identifier
USING phrase
Identifier
At least 5 operands permitted

permitted

No limit on
BY REFERENCE

number of operands permitted
phrase

BY CONTENT phrase
ON OVERFLOW phrase
ON EXCEPTION phrase
NOT ON EXCEPTION phrase
END-CALL phrase

CANCEL statement
literal
Identifier

EXIT PROGRAM statement

I-28

LEVEL 1

N

N
N

N
N

N

N
N
x
x
x

N

x
x
N
x
x
N
x
x
x
N
N
N
N
N
N
x
N
N
N
x

LEVEL 2

x

x
x

x
x

x

x
x
x
x
x

x

x
N
x
x
x
x
x
x
N
x
x
x
x
x
x
x
x
x
x
x

Inter-Program Communication Element Summary

SUMMARY OF ELEMENTS IN THE INTER-PROGRAM COMMUNICATION MODULE

ELEMENT LEVEL 1 LEVEL 2

USE statement
EXCEPTION/ERROR PROCEDURE phrase

GLOBAL phrase •• N x
USE BEFORE REPORTING statement

GLOB.AI. phrase ••• N x

I-29

Sort-Merge Element Sunnnary

SUMMARY OF ELEMENTS IN THE SORT-MERGE MODULE

ELEMENT

LANGUAGE ELEMENTS
User-defined words

File-name
Record-name

ENVIRONMENT DIVISION
Input-Output Section
FILE-CONTROL paragraph
File control entry ••••••

SELECT clause ••••••••••
ASSIGN clause ••••••

Implementor-name •••••••••
Literal

I-0-CONTROL paragraph •••••••••••
SAME SORT/SORT-MERGE AREA clause
SAME RECORD AREA clause •••••••••

DATA DIVISION
File Section
Sort-merge file description entry

SD level indicator ••••••
DATA RECORDS clause
RECORD clause ••••••••
Integer-! CHARACTERS
VARYING IN SIZE phrase ••••••••

.....

FROM integer-2 TO integer-3 CHARACTERS
DEPENDING ON phrase •••••••••••••

Integer-4 TO integer-5 CHARACTERS
Record description entry

PROCEDURE DIVISION
MERGE statement

ASCENDING/DESCENDING KEY phrase
COLLATING SEQUENCE phrase
USING phrase •••••••••••
OUTPUT PROCEDURE phrase •••••••••

Procedure-name
GIVING phrase

RELEASE statement
FROM phrase

RETURN statement
INTO phrase
AT END phrase ••••••
NOT AT END phrase
END-RETURN phrase

I-30

LEVEL 1

x
x

x
x
x
x
x
x
x
x
x

x
x
z
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x

Sort-Merge Element Sunnnary

SUMMARY OF ELEMENTS IN THE SORT-MERGE MODULE

ELEMENT LEVEL 1

SORT statement
ASCENDING/DESCENDING KEY phrase
DUPLICATES phrase •••••••••••.•••••••
COLLATING SEQUENCE phrase
INPUT PROCEDURE phrase ••••••••••
Procedure-name

USING phrase
OUTPUT PROCEDURE phrase

Procedure-name
GIVING phrase

I-31

x
x
x
x
x
x
x
x
x
x

Source Text Manipulation Element Sunnnary

SUMMARY OF ELEMENTS IN THE SOURCE TEXT MANIPULATION MODULE

ELEMENT

LANGUAGE CONCEPTS
Character set

Characters used in punctuation
User-defined words

Library-name
Text-name

ALL DIVISIONS
COPY statement

=

OF/IN library-name phrase
REPLACING phrase

Pseudo-text
...................................

Identifier
Literal
Word

REPLACE statement ••••••
Pseudo-text BY pseudo-text
OFF

I-32

LEVEL 1

N

N
x

x
N
N
N
N
N
N
N
N
N

LEVEL 2

x

x
x

x
x
x
x
x
x
x
x
x
x

Report Writer Element Sunnnary

SUMMARY OF ELEMENTS IN THE REPORT WRITER MODULE

ELEMENT LEVEL 1

LANGUAGE CONCEPTS
User-defined words

File-name
Report-name

Reserved words
Special registers

LINE-COUNTER
PAGE-COUNTER

..

ENVIRONMENT DIVISION
Input-Output Section
FILE-CONTROL paragraph
File control entry

SELECT clause
OPTIONAL phrase

Extend files only
ACCESS MODE IS SEQUENTIAL clause
ASSIGN clause

Implementor-name
Literal

FILE STATUS clause
ORGANIZATION IS SEQUENTIAL clause
PADDING CHARACTER clause
RECORD DELIMITER clause
RESERVE AREA clause

I-0-CONTROL paragraph
MULTIPLE FILE TAPE clause
SAME AREA clause

DATA DIVISION
File Section
File description entry

FD level indicator •••••
.. BLOCK CONTAINS clause

Integer RECORDS/CHARACTERS •••••••••••••••••••••••••••••••••••. !" •••

Integer-! TO integer-2 RECORDS/CHARACTERS
CODE-SET clause

.........................
LABEL RECORDS clause
RECORD clause •••••••
Integer-! CHARACTERS
Integer-4 TO integer-5 CHARACTERS

REPORT clause

IS literal
IS literal series

•••••••••••• ti •••••• ti •••

....................... VALUE OF clause
Implementor-name
Implementor-name
Implementor-name
Implementor-name

IS data-name ••••••••
IS data-name series

I-33

x
x

x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
z
x

x
x
x
x
x
x
z
x
x
x
x
z
z
z
z
z

Report Writer Element Sunnnary

SUMMARY OF ELEMENTS IN THE REPORT WRITER MODULE

ELEMENT LEVEL 1

Report Section
Report description entry

RD level indicator
CODE clause
CONTROL clause
PAGE clause

Report group description entry
BLANK WHEN ZERO clause
COLUMN NUMBER clause
Data-name clause
GROUP INDICATE clause
JUSTIFIED clause
Level-number clause

.....

01 through 49; one
LINE NUMBER clause

or two digit representation

NEXT GROUP clause
PICTURE clause
SIGN clause
SOURCE clause
SUM clause
TYPE clause
USAGE clause

DISPLAY
VALUE clause
Literal

....

PROCEDURE DIVISION
Declarative procedures

DECLARATIVES
END DECLARATIVES

CLOSE statement
REEL/UNIT phrase

FOR REMOVAL phrase
WITH NO REWIND/LOCK phrase

GENERATE statement
Data-name
Report-name

INITIATE statement
OPEN statement

OUTPUT phrase
WITH NO REWIND phrase

EXTEND phrase ,,,,,,
SUPPRESS statement
TERMINATE statement

i-34

' '

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

Report Writer Element Sunnnary

SUMMARY OF ELEMENTS IN THE REPORT WRITER MODULE

ELEMENT LEVEL 1

USE statement
EXCEPTION/ERROR PROCEDURE phrase

ON file-name •••••••
ON file-name
ON OUTPUT

series

ON EXTEND ••••••.••••••
BEFORE REPORTING phrase

I-35

x
x
x
x
x
x
x

Communication Element Summary

SUMMARY OF ELEMENTS IN THE COMMUNICATION MODULE

ELEMENT

LANGUAGE CONCEPTS
User-defined words

Cd-name

DATA DIVISION
Communication Section
Communication description entry

CD level indicator •••••••••••••••
FOR INPUT clause

INITIAL
END KEY
MESSAGE
MESSAGE
MESSAGE

phrase
clause
COUNT clause
DATE clause
TIME clause

SYMBOLIC QUEUE clause
SYMBOLIC
SYMBOLIC

SOURCE clause
SUB-QUEUE-1 clause

SYMBOLIC
SYMBOLIC

SUB-QUEUE-2
SUB-QUEUE-3

clause
clause

STATUS KEY clause ••••••••••
TEXT LENGTH clause ••••.•••••
Data-name series

FOR OUTPUT clause
DESTINATION COUNT clause
Must be one ••••••••••••
Must be one or greater

DESTINATION TABLE clause
INDEXED BY phrase

ERROR KEY clause
SYMBOLIC DESTINATION clause
STATUS KEY clause • • .
TEXT LENGTH clause ·~ •

FOR I-0 clause
INITIAL
END KEY

phrase ••••••
clause ••••••
DATE clause MESSAGE

MESSAGE TIME clause
STATUS KEY clause
SYMBOLIC TERMINAL clause
TEXT LENGTH clause
Data-name series

Record description entry

...........

............
J

............................
..........................

...

I-36

LEVEL 1 LEVEL 2

x x

x x
x x
x x
N x
x x
x x
x x
x x
x x
x x
N x
N x
N x
x x
x x
N x
x x
x x
x N
N x
N x
N x
x x
x x
x x
x x
x x
N x
x x
x x
x x
x x
x x
x x
N x
x x

Communication Element Summary

SUMMARY OF ELEMENTS IN THE COMMUNICATION MODULE

ELEMENT

PROCEDURE DIVISION
ACCEPT MESSAGE COUNT statement
DISABLE statement ··

INPUT phrase
TERMINAL phrase ••••••••

I-0 TERMINAL phrase
OUTPUT phrase •••••••••••
WITH KEY phrase •••••••••

ENABLE
INPUT

statement •••••••
phrase

TERMINAL phrase ••••••
I-0 TERMINAL phrase
OUTPUT phrase
WITH KEY phrase

PURGE statement
RECEIVE statement ••••••

MESSAGE phrase
SEGMENT phrase
INTO identifier
NO DATA phrase
WITH DATA phrase
END-RECEIVE phrase

SEND statement
FROM identifier
FROM identifier
WITH identifier

(portion of a message)
(complete message) ••••••••
phrase

WITH ESI phrase
WITH EMI phrase
WITH EGI phrase
BEFORE/AFTER ADVANCING phrase
Integer-! LINE/LINES
Identifier LINE/LINES
Mnemonic-name
PAGE

REPLACING LINE

I-37

LEVEL 1 LEVEL 2

x x
N x
N x
N x
N x
N x
N z
N x
N x
N x
N x
N x
N z N x
x x
x x
N x
x x
x x
x x
x x
x x
N x
x x
N x
N x
x x
x x
x x
x x
x x
N x
x x
N x

Debug Element Summary

SUMMARY OF ELEMENTS IN THE DEBUG MODULE

ELEMENT

LANGUAGE CONCEPTS
Reserved words

Special register DEBUG-ITEM

ENVIRONMENT DIVISION
Configuration Section

SOURCE-COMPUTER paragraph
WITH DEBUGGING MODE clause

PROCEDURE DIVISION
Declarative procedures

DECLARATIVES
END DECLARATIVES

USE FOR DEBUGGING statement
Procedure-name
ALL PROCEDURES
ALL REFERENCES OF identifier-I
Cd-name
File-name

I-38

LEVEL 1

z

z

z
z
z
z
z
z
N
N
N

LEVEL 2

z

z

z
z
z
z
z
z
z
z
z

Segmentation Element Sunnnary

SUMMARY OF ELEMENTS IN THE SEGMENTATION MODULE

ELEMENT

LANGUAGE CONCEPTS
User-defined words

Segment-number•...•..........

ENVIRONMENT DIVISION
OBJECT-COMPUTER paragraph

SEGMENT-LIMIT c la use •••••••••••••••••••••••••••••.••••••••••••

PROCEDURE DIVISION
Segment-numbers 0 through 49 for permanent segments ••••••••••••
Segment-numbers 50 through 99 for independent segments •••••••••
All sections with the same segment-number must

be together in the source program •••••••••••••••••••••••••••
Se~tions with the same segment-number need not be

physically contiguous in the source program •••••••••••••••••

I-39

LEVEL 1 LEVEL 2

z

N

z
z

z

N

z

z

z
z

N

z

Element Sunnnary by COBOL Division

3. SUMMARY OF ELEMENTS BY COBOL DIVISION

3.1 GENERAL DESCRIPTION

This chapter contains a sunnnary of all elements in Standard COBOL organized
according to the COBOL divisions.

The column titled "MODULE" specifies the module and the level within that
module for an element of Standard COBOL. The module is specified by a
three-character module abbreviation as shown in the following table.

Abbreviation

NUC
SEQ
REL
INX
IPC
SRT
STM
RPW
COM
DEB
SEG

Meaning

Nucleus
Sequential I-0
Relative I-0
Indexed 1-0
Inter-Program Communication
Sort-Merge
Source Text Manipulation
Report Writer
Communication
Debug
Segmentation

The level of an element within the module is indicated by the number
preceding the three-character abbreviation of the module. For example, 2 NUC
indicates that the element is a level 2 element within the Nucleus and 1 INX
indicates that the element is a level 1 element within the Indexed I-0 module.
The letter Z follows the three-character abbreviation of the module if the
element is an obsolete element in Standard COBOL that is to be deleted from the
next revision of Standard COBOL.

The following is a list of the sunnnary of elements by COBOL division shown on
pages I-41 through I-63.

• Pages I-41

• Page 1-44:

• Pages I-45

• Pages I-48

• Pages I-53

through I-43: Sunnnary of elements in language concepts
Sunnnary of elements in Identification Division

through I-47: Sunnnary of elements in Environment Division
through I-52: Sununary of elements in Data Division
through I-63: Sunnnary of elements in Procedure Division

I-40

Language Concepts Element Summary

SUMMARY OF ELEMENTS IN LANGUAGE CONCEPTS

ELEMENT MODULE

LANGUAGE CONCEPTS
Character Set

Characters used in words 0-9 A-Z (hyphen)
Characters used in punctuation II () space

' Characters used in punctuation (colon)
Characters used in punctuation = .
Characters used in editing B + z * $ 0 CR DB I
Characters used in arithmetic operations + * I **
Characters used in relation conditions > < >= <=
Characters used in subscripting + - .
Single character substitution allowed
Double character substitution allowed

Segar a tors
II ()

'
space

(colon) .
Character-Strings

COBOL words
Maximum of 30 characters
User-defined words

Alphabet-name ••••••
Cd-name ••••••••••••
Class-name ••••••••
Condition-name
Data-name
File-name

Index-name
Level-number
Library-name
Mnemonic-name
Paragraph-name ••••••••
Program-name
Record-name•.......

Report-name
Ro.utine-name .••..•........•.
Section-name
Segment-number ••••••
Symbolic-character
Text-name ••••••••••

.

I-41

.

..........

1 NUC
1 NUC
2 NUC 1 STM
1 NUC
2 NUC
1 NUC

....... 1 NUC
1 NUC
1 NUC z

1 NUC
2 NUC

1 NUC

1 NUC
1 COM
1 NUC
2 NUC
1 NUC
1 SEQ
1 REL
1 INX
1 SRT
1 RPW
1 NUC
1 NUC
2 STM
1 NUC
1 NUC
1 NUC
1 SEQ
1 REL
1 INX
1 SRT
1 RPW
1 NUC z
1 NUC
1 SEG z
2 NUC
1 STM

Language Concepts Element Surmnary

SUMMARY OF ELEMENTS IN LANGUAGE CONCEPTS

ELEMENT MODULE

Character-Strings (Continued)
COBOL words (continued)

Sys tern-names
Computer-name
Implementor-name
Language-name

Reserved words
Required words

Key words •••••••••
Special character words
Arithmetic operators + - * I **
Arithmetic operators used in subscripting
Relation characters = > < >= <=

Optional words •••••••••••••••••••••
Special purpose words
Figurative constants

ZERO, SPACE, HIGH-VALUE, LOW-VALUE,
ALL option

QUOTE

+ -

ZEROS, ZEROES, SPACES, HIGH-VALUES,
ALL option

LOW-VALUES, QUOTES

Symbolic-character
All option

All literal
Special registers

LINAGE-COUNTER
LINE-COUNTER
PAGE-COUNTER
DEBUG-ITEM ••••••••••••

Literals
Numeric literals: 1 through 18 digits ••••••••
Nonnumeric literals: 1 through 160 characters

PICTURE character-strings ••••••••••••••••
Comment-entries

Uniqueness of Reference
Qualification

No qualification permitted; names must be unique if referenced
50 qualifiers ..

Subscripting
3 levels of subscripts
7 levels of subscripts
Subscripting with a literal
Subscripting with a data-name
Subscripting with an index-name
Relative subscripting

Reference modification

I-42

1 NUC
1 NUC
1 NUC

1 NUC
1 NUC

2 NUC
1 NUC
1 NUC
1 NUC

1 NUC
2 NUC
1 NUC
2 NUC
2 NUC
2 NUC
2 NUC

2 SEQ
1 RPW
1 RPW
1 DEB

1 NUC
1 NUC
1 NUC
1 NUC

1 NUC
2 NUC

1 NUC
2 NUC
1 NUC
1 NUC
1 NUC
1 NUC
2 NUC

z

z

z

Language Concepts Element Summary

SUMMARY OF ELEMENTS IN LANGUAGE CONCEPTS

ELEMENT MODULE

Reference Format
Sequence number •••••••••••••••••••••••••.•••••••••••••••••••••••.•••••
Continuation of lines
Continuation of nonnumeric literal
Continuation of COBOL word, numeric literal,

PICTURE character-string
Blank lines
Comment lines
Asterisk(*) comment line ••••••
Slant (/) comment line

Debugging line with D in indicator

Source Program Structure
Identification Division required
Environment Division optional
Data Division optional
Procedure Division optional
End program header ••••••••••
Nested source program ••••••.

.
.

area

I-43

.............
.........

........

.

1 NUC

1 NUC

2 NUC
1 NUC

1 NUC
1 NUC
1 NUC

1 NUC
1 NUC
1 NUC
1 NUC
2 NUC
2 IPC

Identification Division Element Summary

SUMMARY OF ELEMENTS IN IDENTIFICATION DIVISION

ELEMENT

IDENTIFICATION DIVISION
PROGRAM-ID paragraph

Program-name
..............................

COMMON clause
INITIAL clause •••••••

AUTHOR paragraph ••••••
INSTALLATION paragraph
DATE-WRITTEN paragraph ••••••
DATE-COMPILED paragraph
SECURITY paragraph ••••.•••••••••••••

Source Text Manipulation in Identification Division
COPY statement

OF/IN library-name
REPLACING phrase
Pseudo-text
Identifier
Literal
Word ••••••••••••••••

REPLACE statement •••••••••••••••••••••
Pseudo-text BY pseudo-text
OFF

.

I-44

MODULE

I NUC
I NUC
2 IPC
2 IPC
I NUC z
1 NUC z
I NUC z
2 NUC z
1 NUC z

I STM
2 STM
2 STM

..... 2 STM
2 STM
2 STM
2 STM
2 STM
2 STM
2 STM

Environment Division Element Summary

SUMMARY OF ELEMENTS IN ENVIRONMENT DIVISION

ELEMENT

ENVIRONMENT DIVISION
Configuration Section

SOURCE-COMPUTER paragraph
Computer-name •..••.•....•.•.•.•..
WITH DEBUGGING MODE clause •••••••

OBJECT-COMPUTER paragr~ph
Computer-name
MEMORY SIZE clause •••••••••••••••
PROGRAM COLLATING SEQUENCE clause
SEGMENT-LIMIT clause

SPECIAL-NAMES paragraph
ALPHABET clause ••••••

STANDARD-! option
STANDARD-2 option •••••••••
NATIVE option
Implementor-name option
Literal option •••••••.•

CLASS clause
CURRENCY SIGN clause
DECIMAL-POINT clause
Implementor-name clause

IS mnemonic-name option
ON STATUS IS condition-name option
OFF STATUS IS condition-name option

SYMBOLIC CHARACTERS clause ...
Input-Output Section

FILE-CONTROL paragraph •• ! •••••••

File control entry

SELECT clause ...

I-45

MODULE

1 NUC
1 NUC
1 NUC
1 NUC
1 DEB
1 NUC
1 NUC
1 NUC
1 NUC
1 SEG
1 NUC
1 NUC
1 NUC
1 NUC
1 NUC
1 NUC
2 NUC
1 NUC
1 NUC
1 NUC
1 NUC
1 NUC
1 NUC
1 NUC
2 NUC

1 SEQ
1 REL
l INX
1 SRT
1 RPW
1 SEQ
1 REL
1 INX
1 SRT
1 RPW
1 SEQ
1 REL
1 INX
1 SRT
1 RPW
1 SEQ
1 REL
1 INX
1 SRT
1 RPW

z

z

z

Environment Division Element Summary

SUMMARY OF ELEMENTS IN ENVIRONMENT DIVISION

ELEMENT

SELECT clause (continued)
OPTIONAL phrase

Input, I-0, and extend files only

only
clause

Extend files
ACCESS MODE

SEQUENTIAL

RANDOM ...
DYNAMIC

.. RELATIVE KEY phrase
ALTERNATE RECORD KEY clause

WITH DUPLICATES phrase
ASSIGN clause

Implementor-name

Literal

FILE STATUS clause

ORGANIZATION clause
SEQUENTIAL

RELATIVE
INDEXED

PADDING CHARACTER clause

RECORD DELIMITER clause

I-46

MODULE

2 SEQ
2 REL
2 INX
1 RPW
2 SEQ
2 REL
2 INX
1 RPW

1 SEQ
1 REL
1 INX
1 RPW
1 REL
1 INX
2 REL
2 INX
1 REL
2 INX
2 INX
1 SEQ
1 REL
1 INX
1 SRT
1 RPW
1 SEQ
1 REL
1 INX
1 SRT
1 RPW
1 SEQ
1 REL
1 INX
1 SRT
1 RPW
1 SEQ
1 REL
1 INX
1 RPW

1 SEQ
1 RPW
1 REL
1 INX
2 SEQ
1 RPW
2 SEQ
1 RPW

Environment Division Element Summary

SUMMARY OF ELEMENTS IN ENVIRONMENT DIVISION

ELEMENT

File control entry (continued)
RECORD KEY clause
RESERVE AREA clause

I-0-CONTROL paragraph

MULTIPLE FILE TAPE clause

RERUN clause ..

SAME AREA clause

SAME RECORD AREA clause

SAME SORT/SORT-MERGE AREA clause

Source Text Manipulation in Environment Division
COPY statement

OF/IN library-name
REPLACING phrase

Pseudo-text
Identifier
Literal
Word

REPLACE statement ••••••
Pseudo-text BY pseudo-text
OFF

I-47

MODULE

1 INX
2 SEQ
2 REL
2 INX
1 RPW
1 SEQ
1 REL
1 INX
1 SRT
1 RPW
2 SEQ
1 RPW
1 SEQ
i REL
1 INX
1 SEQ
1 REL
1 INX
1 RPW
2 SEQ
2 REL
2 INX
1 SRT
1 SRT

1 STM
2 STM
2 STM
2 STM
2 STM
2 STM
2 STM
2 STM
2 STM
2 STM

z
z
z
z
z

Data Division Element Summary

SUMMARY OF ELEMENTS IN DATA DIVISION

ELEMENT

DATA DIVISION
File Section

File description entry ...

FD level indicator

BLOCK CONTAINS clause
Integer RECORDS/CHARACTERS

Integer-I TO integer-2 RECORDS/CHARACTERS

CODE-~ET clause •••

DATA RECORDS clause • •••

EXTERNAL clause
GLOBAL clause
LABEL RECORDS clause ..

LINAGE clause •••••••••••
FOOTING phrase •••••••••
TOP phrase
BOTTOM phrase

RECORD clause
Integer-I CHARACTERS

VARYING IN SIZE phrase

Integer-4 TO integer-5 CHARACTERS ~ ...

I-48

MODULE

1 SEQ
1 REL
1 INX
1 SRT
1 RPW
1 SEQ
1 REL
1 INX
1 RPW
1 SEQ
1 REL
1 INX
1 RPW

1 SEQ
1 REL
1 INX
1 RPW
2 SEQ
2 REL
2 INX
1 RPW
1 SEQ
1 RPW
1 SEQ z
1 REL z
1 INX z
2 IPC
2 IPC
1 SEQ z
1 REL z
1 INX z
1 RPW z
2 SEQ
2 SEQ
2 SEQ
2 SEQ

1 SEQ
1 REL
1 INX
1 RPW
2 SEQ
2 REL
2 INX
1 SEQ
1 REL
1 INX
1 RPW

Data Division Element Summary

SUMMARY OF ELEMENTS IN DATA DIVISION

ELEMENT MODULE

File description entry (continued)
REPORT clause
VALUE OF clause

Implementor-name IS literal

Implementor-name IS literal series

Implementor-name IS data-name ..

1 RPW

1 SEQ
I REL
I INX
1 RPW
1 SEQ
1 REL
1 INX
1 RPW
2 SEQ
2 REL
2 INX

z
z
z
z
z
z
z
z
z
z
z

1 RPW Z
Implementor-name IS data-name series

Sort-merge file description entry
SD level indicator
DATA RECORDS clause

..
...

RECORD clause
Integer-I CHARACTERS
VARYING IN SIZE phrase
Integer-4 TO integer-5

...
CHARACTERS

Record description entry in File Section

Working-Storage Section
Record description entry
77 level description entry ...
Linkage Section
Record description entry ••••••.••••.••.••..•••••••••••.••••••...•••
77 level description entry •..

I-49

2 SEQ
2 REL
2 INX
1 RPW

1 SRT
1 SRT
1 SRT

I SRT
I SRT
I SRT

1 SEQ
1 REL
1 INX
1 SRT

1 NUC
1 NUC
1 NUC

1 IPC
1 IPC
1 IPC

z
z
z
z

z

Data Division Element Summary

SUMMARY OF ELEMENTS IN DATA DIVISION

ELEMENT

Communication Section
Communication description entry •••• , • • •••••••.••••••••••••• , ••

CD level indicator
FOR INPUT clause •••••••

INITIAL
END KEY
MESSAGE
MESSAGE

phrase ••••••••
clause ••••••
COUNT clause
DATE clause

MESSAGE TIME
SYMBOLIC
SYMBOLIC
SYMBOLIC

clause
QUEUE clause
SOURCE clause •••••••••••
SUB-QUEUE-1 clause
SUB-QUEUE-2 clause
SUB-QUEUE-3 clause

SYMBOLIC
SYMBOLIC
STATUS KEY clause ••••••••
TEXT LENGTH clause
Data-name series

FOR OUTPUT clause
DESTINATION COUNT clause
Must be one ••••••••••••
Must be one or greater

DESTINATION TABLE clause
INDEXED BY phrase

ERROR KEY clause
SYMBOLIC DESTINATION clause
STATUS KEY clause
TEXT LENGTH clause

FOR I-0 clause
INITIAL phrase
END KEY
MESSAGE
MESSAGE TIME

clause
DATE clause •••••••

clause
STATUS KEY clause
SYMBOLIC TERMINAL clause
TEXT LENGTH clause
Data-name series

Record description entry

Report Section
Report description entry ••••••••••

RD level indicator •••••••
CODE clause
CONTROL clause
GLOBAL clause
PAGE clause

Report group description entry

I-50

...............

MODULE

1 COM
1 COM
1 COM
1 COM
2 COM
1 COM
1 COM
1 COM
1 COM
1 COM
1 COM
2 COM
2 COM
2 COM
1 COM
1 COM
2 COM
1 COM
1 COM
1 COM
2 COM
2 COM
2 COM
1 COM
1 COM
1 COM
1 COM
1 COM
2 COM
1 COM
1 COM
1 COM
1 COM
1 COM
1 COM
2 COM
1 COM

1 RPW
1 RPW
1 RPW
1 RPW
1 RPW
2 IPC
1 RPW
1 RPW

Data Division Element Surrnnary

SUMMARY OF ELEMENTS IN DATA DIVISION

ELEMENT MODULE

The following clauses appear in record description entry,
data description entry, 77 level description entry, or
report group description entry:

BLANK WHEN ZERO clause

COLUMN NUMBER clause
Data-name clause

EXTERNAL clause
FILLER clause
GLOBAL clause
GROUP INDICATE clause
JUSTIFIED clause

Level-number clause
01 through 49; level-number may be

66
77
88

LINE NUMBER clause
NEXT GROUP clause
OCCURS clause

Integer TIMES
ASCENDING/DESCENDING KEY phrase
INDEXED BY c la use ••...•.••.••.•

1 or 1 digits

Integer-I TO integer-2 TIMES DEPENDING ON phrase
PICTURE clause

Character-string has a maximum of 30 characters

Data characters X 9 A

Operational symbols s v p

Nonfloating insertion characters B + - $ 0 CR DB /

Replacement or floating insertion characters $ + - z *
Currency sign substitution

Decimal point substitution

REDEFINES clause
May not be nested
May be nested

RENAMES clause
SIGN clause

I-51

1 NUC
1 RPW
1 RPW
1 NUC
1 RPW
2 IPC
1 NUC
2 IPC
1 RPW
1 NUC
1 RPW
1 NUC
1 NUC
1 RPW
2 NUC
1 NUC
2 NUC
1 RPW
1 RPW
1 NUC
1 NUC
2 NUC
1 NUC
2 NUC
1 NUC
1 RPW
1 NUC
1 RPW
1 NUC
1 RPW
1 NUC
1 RPW
1 NUC
1 RPW
1 NUC
1 RPW
1 NUC
1 RPW
1 NUC
1 RPW
1 NUC
1 NUC
2 NUC
2 NUC
1 NUC
1 RPW

Data Division Element Summary

SUMMARY OF ELEMENTS IN DATA DIVISION

ELEMENT

SOURCE clause
SUM clause •••••••••••••••
)YNCHRONIZED clause ••••••
i'YPE clause
USAGE clause

BINARY •••••••
COMPUTATIONAL
DISPLAY
INDEX

...

PACKED-DECIMAL
VALUE clause ••••••••••••••• ti: •••••••••••

Literal ...
Literal series ..
Literal-1 THROUGH literal-2
Literal range series

Source Text Manipulation in Data Division
COPY statement ••••••••••••••••

OF/IN library-name •••••••••••
REPLACING phrase
Pseudo-text
Identifier •••••••••••••
Literal
Word

REPLACE statement
Pseudo-text BY pseudo-text
OFF '

....

I-52

MODULE

1 RPW
1 RPW
1 NUC
1 RPW
1 NUC
1 RPW
1 NUC
1 NUC
1 NUC
1 RPW
1 NUC
1 NUC
1 NUC
1 RPW
1 NUC
1 RPW
2 NUC
2 NUC
2 NUC

1 STM
2 STM
2 STM
2 STM
2 STM
2 STM
2 STM
2 STM
2 STM
2 STM

Procedure Division Element Summary

SUMMARY OF ELEMENTS IN PROCEDURE DIVISION

ELEMENT MODULE

PROCEDURE DIVISION
Procedure Division header •••••••••••••

USING phrase
At least 5 operands permitted •••••••
No limit on number of operands permitted •••••••

Declarative procedures •••

DECLARATIVES ..

END DECLARATIVES ..

Arithmetic expressions
Binary arithmetic operators + - *I**
Unary arithmetic operators + - ••••••••

Conditional expressions •••••••
Simple condition • • • • • • • ••••••••••
Relation condition •••••••••••• • ••••••••••••.

Relational operators ••••••••••. . .••........•.
[NOT] GREATER THAN
[NOT])
[NOT]
[NOT]

LESS THAN
<

[NOT] EQUAL TO
[NOT] =
GREATER THAN OR EQUAL TO
>=
LESS THAN OR EQUAL TO
<=

Comparison of numeric operands
Comparison of nonnumeric operands ••••••
Comparison of index-names and/or index data items

Class condition •••••••••• • ••••••••••••••••••
NUMERIC
ALPHABETIC
ALPHABETIC-LOWER
ALPHABET IC-UPPER
Class-name

Condition-name condition
Sign condition ••••••••••
Switch-status condition

....................

I-53

1 NUC
1 IPC
1 IPC
2 IPC
1 SEQ
1 REL
1 INX
1 RPW
1 DEB
1 SEQ
1 REL
1 INX
1 RPW
1 DEB
1 SEQ
1 REL
1 INX
1 RPW
1 DEB
2 NUC
2 NUC
2 NUC
1 NUC
1 NUC
1 NUC
1 NUC
1 NUC
1 NUC
1 NUC
1 NUC
1 NUC
1 NUC
1 NUC
1 NUC
1 NUC
1 NUC
1 NUC
1 NUC
1 NUC
1 NUC
1 NUC
1 NUC
1 NUC
1 NUC
1 NUC
2 NUC
2 NUC
1 NUC

z

z

z

Procedure Division Element Summary

SUMMARY OF ELEMENTS IN PROCEDURE DIVISION

ELEMENT

Conditional expression (continued)
Complex condition
Logical operators
Negated condition
Combined condition

AND OR NOT

Parenthesized conditions ••••••••••••
Abbreviated combined relation conditions
Arithmetic statements ••••••••••••••••••••
Arithmetic operands limited to 18 digits
Composite of operands limited to 18 digits

ACCEPT statement •••••••••••
Identifier
Only one transfer of data
No restriction on number of transfers of data
FROM mnemonic-name phrase ••••••••••••
FROM DATE/DAY/DAY-OF-WEEK/TIME phrase

ACCEPT MESSAGE COUNT statement
ADD statement •••••••••
Identifier/literal
Identifier/literal series
TO identifier •••••••
TO identifier series
TO identifier/literal GIVING identifier
TO identifier/literal GIVING identifier
ROUNDED phrase
ON SIZE ERROR phrase
NOT ON SIZE ERROR phrase
END-ADD phrase •••..••..
CORRESPONDING phrase

ALTER statement ••••••
Only one procedure-name
Procedure-name series

CALL statement
Literal ••••••
Identifier
USING phrase
Identifier

series

At least 5 operands permitted ••••••••
No limit on number of operands permitted

BY REFERENCE~phrase
BY CONTENT phrase ••••••

ON OVERFLOW phrase •.•••••••••••••••••••
ON EXCEPTION phrase ••••••••
NOT ON EXCEPTION phrase
END-CALL phrase

CANCEL ~tatement
Literal
Identifier ... "

I-54

MODULE

2 NUC
2 NUC
2 NUC
2 NUC
1 NUC
2 NUC
1 NUC
1 NUC
1 NUC
1 NUC
1 NUC
1 NUC
2 NUC
2 NUC
2 NUC
1 COM
1 NUC
1 NUC
1 NUC
1 NUC
1 NUC
1 NUC
1 NUC
1 NUC
1 NUC
1 NUC
1 NUC
2 NUC
1 NUC z
1 NUC z
2 NUC z
1 IPC
1 IPC
2 IPC
1 IPC
1 IPC
1 IPC
2 IPC
2 IPC
2 IPC
2 IPC
2 IPC
2 IPC
1 IPC
2 IPC
2 IPC
2 IPC

Procedure Division Element Sunnnary

SUMMARY OF ELEMENTS IN PROCEDURE DIVISION

ELEMENT

CLOSE statement

File-name

File-name series

REEL/UNIT phrase

FOR REMOVAL phrase

WITH NO REWIND phrase

WITH LOCK phrase ••••.••••••••••••••••••.••••••••••••••••••••••••••••••

COMPUTE statement •••••••••
Arithmetic expression
Identifier series
ROUNDED phrase
ON SIZE ERROR phrase
NOT ON SIZE ERROR phrase •••••••
END-COMPUTE phrase

CONTINUE statement
DELETE statement

INVALID KEY phrase

NOT INVALID KEY phrase •••.••••••

END-DELETE phrase .•.•..••••••••••••••••••••••••••••••••••••••.••••••••

DISABLE statement ••••••••••••
INPUT phrase

TERMINAL phrase
1-0 TERMINAL phrase
OUTPUT phrase
WITH KEY phrase

....................

I-55

MODULE

1 SEQ
1 REL
1 INX
1 RPW
1 SEQ
1 REL
1 INX
1 RPW
1 SEQ
1 REL
1 INX
1 RPW
1 SEQ
1 RPW
2 SEQ
1 RPW
2 SEQ
1 RPW
2 SEQ
2 REL
2 INX
1 RPW
2 NUC
2 NUC
2 NUC
2 NUC
2 NUC
2 NUC
2 NUC
1 NUC
1 REL
1 INX
1 REL
1 INX
1 REL
1 INX
1 REL
1 INX
2 COM
2 COM
2 COM
2 COM
2 COM
2 COM z

Procedure Division Element Summary

SUMMARY OF ELEMENTS IN PROCEDURE DIVISION

ELEMENT

DISPLAY statement
Only one transfer of data
No restriction on number of
Identifier/literal
Identifier/literal series
UPON mnemonic-nallie phrase
WITH NO ADVANCING phrase

DIVIDE statement ••••••••
BY identifier/literal
INTO identifier ••••••
INTO identifier
GIVING
GIVING

series
identifier •••••••
identifier series

ROUNDED phrase
REMAINDER phrase
ON SIZE ERROR phrase
NOT ON SIZE ERROR phrase
END-DIVIDE phrase

ENABLE statement
INPUT phrase

TERMINAL phrase
I-0 TERMINAL phrase
OUTPUT phrase
WITH KEY phrase

EVALUATE statement
Identifier/literal
Arithmetic expression
Conditional expression
TRUE/FALSE

ALSO phrase
WHEN phrase

ALSO phrase
WHEN OTHER phrase
END-EVALUATE phrase

EXIT statement •••.••
EXIT PROGRAM statement
GENERATE statement

Data-name
Report-name

GO TO statement
Procedure-name is required
Procedure-name is optional
DEPENDING ON phrase •••••••

transfers of data

I-56

MODULE

1 NUC
1 NUC
2 NUC
1 NUC
1 NUC
2 NUC
2 NUC
1 NUC
1 NUC
1 NUC
1 NUC
1 NUC
1 NUC
1 NUC
2 NUC
1 NUC
1 NUC
1 NUC
2 COM
2 COM
2 COM
2 COM
2 COM
2 COM Z
2 NUC
2 NUC
2 NUC
2 NU.C
2 NUC
2 NUC
2 NUC
2 NUC
2 NUC
2 NUC
1 NUC
1 IPC
1 RPW
1 RPW
1 RPW
1 NUC
1 NUC
2 NUC z
1 NUC

Procedure Division Element Summary

SUMMARY OF ELEMENTS IN PROCEDURE DIVISION

ELEMENT

IF statement ••••.••.•••••••
Only imperative statements
Imperative and/or conditional
Nested IF statements

statements

THEN optional
NEXT SENTENCE
ELSE phrase
END-IF phrase

word
phrase

INITIALIZE statement
identifier series
REPLACING phrase
REPLACING series

INITIATE statement
INSPECT statement
Only single character data item
Multi-character data item
TALLYING phrase

BEFORE/AFTER phrase
BEFORE/AFTER phrase series

TALLYING phrase series
REPLACING phrase •.••••.•••••••

BEFORE/AFTER phrase
BEFORE/AFTER phrase series

REPLACING phrase series
TALLYING and REPLACING phrase
CONVERTING phrase

MERGE statement
ASCENDING/DESCENDING KEY phrase
COLLATING SEQUENCE phrase
USING phrase •.•.•••••.•
OUTPUT PROCEDURE phrase

Procedure-name
GIVING phrase

MOVE statement
TO identifier
TO identifier series
CORRESPONDING phrase
De-editing of numeric edited

MULTIPLY statement
BY identifier
BY identifier series
GIVING identifier
GIVING identifier series
ROUNDED phrase
ON SIZE ERROR phrase
NOT ON SIZE ERROR phrase
END-MULTIPLY phrase •.•••.

items

I-57

MODULE

1 NUC
1 NUC
2 NUC
1 NUC
1 NUC
1 NUC
1 NUC
1 NUC
2 NUC
2 NUC
2 NUC
2 NUC
1 RPW
1 NUC
1 NUC
2 NUC
1 NUC
1 NUC
2 NUC
2 NUC
1 NUC
1 NUC
2 NUC
2 NUC
1 NUC
2 NUC
1 SRT
1 SRT
1 SRT
1 SRT
1 SRT
1 SRT
1 SRT
1 NUC
1 NUC
1 NUC 2 NUC

. • .. 2 NUC
1 NUC
1 NUC
1 NUC
1 NUC
1 NUC
1 NUC
1 NUC
1 NUC
1 NUC

Procedure Division Element Sununary

SUMMARY OF ELEMENTS IN PROCEDURE DIVISION

ELEMENT

OPEN statement

File-name ...

File-name series

INPUT phrase

WITH NO REWIND
REVERSED phrase

OUTPUT phrase ••••.•.

WITH NO REWIND phrase

I-0 phrase

EXTEND phrase •••••••••••••••••••••••••••••••••••.•••••.•••••••••••••••

INPUT, OUTPUT, and I-0 series

EXTEND series

PERFORM statement
Procedure-name is optional
THROUGH procedure-name phrase
Imperative-statement option
END-PERFORM phrase ••••••••••••••••••••
TIMES phrase

phrase UNTIL
TEST BEFORE/AFTER phrase ••••••••.••

VARYING phrase •••••••••••
TEST BEFORE/AFTER phrase
AFTER phrase ••••••••••••

At least 6 AFTER phrases permitted
PURGE statement

I-58

.......... ·~

MODULE

1 SEQ
1 REL
1 INX
1 RPW
1 SEQ
1 REL
1 INX
1 RPW
1 SEQ
1 REL
1 INX
1 RPW
1 SEQ
1 REL
1 INX
2 SEQ
2 SEQ z
1 SEQ
1 REL
1 INX
1 RPW
2 SEQ
1 RPW
1 SEQ
1 REL
1 INX
2 SEQ
2 REL
2 INX
1 RPW
1 SEQ
1 REL
1 INX
2 SEQ
2 REL
2 INX
1 NUC
1 NUC
1 NUC
1 NUC
1 NUC
1 NUC
1 NUC
2 NUC
2 NUC
2 NUC
2 NUC
2 NUC
2 COM

Procedure Division Element Sununary

SUMMARY OF ELEMENTS IN PROCEDURE DIVISION

ELEMENT

READ statement

NEXT phrase

INTO phrase

AT END phrase

NOT AT END phrase

KEY phrase ••••••••
INVALID KEY phrase

NOT INVALID KEY phrase

END-READ phrase

RECEIVE statement
MESSAGE phrase
SEGMENT phrase
INTO phrase
NO DATA phrase
WITH DATA phrase
END-RECEIVE phrase

RELEASE statement
FROM phrase

RETURN statement
INTO phrase
AT END phrase
NOT AT END phrase

phrase END-RETURN
REWRITE statement

FROM phrase

INVALID KEY phrase

NOT INVALID KEY phrase

END-REWRITE phrase

MODULE

1 SEQ
1 REL
1 INX
2 SEQ
2 REL
2 INX
1 SEQ
1 REL
1 INX
1 SEQ
1 REL
1 INX
1 SEQ
1 REL
1 INX
2 INX
1 REL
1 INX
1 REL
1 INX
1 SEQ
1 REL
1 INX
1 COM
1 COM
2 COM
1 COM 1 COM
1 COM
1 COM
1 SRT
1 SRT
1 SRT
1 SRT
1 SRT ... 1 SRT
1 SRT
1 SEQ
1 REL
1 INX
1 SEQ
1 REL
1 INX
1 REL
1 INX
1 REL
1 INX
1 SEQ
1 REL
1 INX

I-59

Procedure Division Element Summary

SUMMARY OF ELEMENTS IN PROCEDURE DIVISION

ELEMENT

SEARCH statement
VARYING phrase
AT END phrase
WHEN phrase
WHEN phrase series
END-SEARCH phrase

SEARCH ALL statement
AT END phrase
WHEN phrase
END-SEARCH phrase

SEND statement ••••••
FROM identifier
FROM identifier
WITH identifier
WITH ESI phrase
WITH EMI phrase

phrase
phrase
phrase

(portion of a message)
(complete message) ••••••••••

WITH EGI phrase •••••••
BEFORE/AFTER ADVANCING phrase
Integer LINE/LINES •••••••
Identifier LINE/LINES
Mnemonic-name
PAGE

REPLACING LINE phrase ••••••
SET statement •••••••••
Index-name/identifier TO
Index-name UP BY/DOWN BY
Mnemonic-name TO ON/OFF
Condition-name TO TRUE

SORT statement •••••••••
ASCENDING/DESCENDING KEY phrase
DUPLICATES phrase ••••••••••
COLLATING SEQUENCE phrase
INPUT PROCEDURE phrase
Procedure-name ••••••••••••••

USING phrase •••••••••••
OUTPUT PROCEDURE phrase

Procedure-name •••••••••••••
GIVING phrase

I-60

MODULE

2 NUC
2 NUC
2 NUC
2 NUC
2 NUC
2 NUC
2 NUC
2 NUC
2 NUC
2 NUC
1 COM
2 COM
1 COM
2 COM
2 COM
1 COM
1 COM
1 COM
1 COM
1 COM
2 COM
1 COM
2 COM
1 NUC
1 NUC
1 NUC
1 NUC
2 NUC
1 SRT
1 SRT
1 SRT
1 SRT
1 SRT
1 SRT
1 SRT
1 SRT
1 SRT
1 SRT

Procedure Division Element Summary

SUMMARY OF ELEMENTS IN PROCEDURE DIVISION

ELEMENT

START statement ..
KEY phrase ..

EQUAL TO ...
= ...
GREATER THAN ...
>

NOT LESS THAN

NOT <

GREATER THAN OR EQUAL TO

>= ..
INVALID KEY phrase

NOT INVALID KEY phrase ••

END-START phrase ..
STOP statement

RUN
Literal

STRING statement
DELIMITED BY series ••••••
WITH POINTER phrase
ON OVERFLOW phrase
NOT ON OVERFLOW phrase ••••••
END-STRING phrase

SUBTRACT statement
Identifier/literal ••••••
Identifier/literal series .••

identifier ••••••.••••••• FROM
FROM identifier series •••••••
GIVING identifier •.••••
GIVING identifier series
ROUNDED phrase ••••••••••
ON SIZE ERROR phrase •••••••••••••••••
NOT ON SIZE ERROR phrase ••••••••
END-SUBTRACT phrase
CORRESPONDING phrase

SUPPRESS statement ••••••••••••••••••••
TERMINATE statement

I-61

........

MODULE

2 REL
2 INX
2 REL
2 INX
2 REL
2 INX
2 REL
2 INX
2 REL
2 INX
2 REL
2 INX
2 REL
2 INX
2 REL
2 INX
2 REL
2 INX
2 REL
2 INX
2 REL
2 INX
2 REL
2 INX
2 REL
2 INX
1 NUC
1 NUC
1 NUC z
2 NUC
2 NUC
2 NUC
2 NUC
2 NUC
2 NUC
1 NUC
1 NUC
1 NUC
1 NUC
1 NUC
1 NUC
1 NUC
1 NUC
1 NUC
1 NUC
1 NUC
2 NUC
1 RPW
1 RPW

Procedure Division Element Summary

SUMMARY OF ELEMENTS IN PROCEDURE DIVISION

ELEMENT

UNSTRING statement
DELIMITED BY phrase
DELIMITER IN phrase
COUNT IN phrase •••••••••
WITH POINTER phrase
TALLYING phrase
ON OVERFLOW phrase
NOT ON OVERFLOW phrase
END-UNSTRING phrase

USE statement

EXCEPTION/ERROR PkOCEDURE phrase

GLOBAL phrase
ON file-name

ON file-name series

ON INPUT

ON OUTPUT

ON I-0

ON EXTEND

BEFORE REPORTING phrase
GLOBAL phrase ••••••••••••••

FOR DEBUGGING phrase
Procedure-name
ALL PROCEDURES
ALL REFERENCES
Cd-name
File-name

OF identifier-I

I-62

MODULE

2 NUC
2 NUC
2 NUC
2 NUC
2 NUC
2 NUC
2 NUC
2 NUC
2 NUC
1 SEQ
1 REL
1 INX
1 RPW
1 DEB Z
1 SEQ
1 REL
1 INX
1 RPW
2 IPC
1 SEQ
1 REL
1 INX
1 RPW
2 SEQ
2 REL
2 INX
1 RPW
1 SEQ
1 REL
1 INX
1 SEQ
1 REL
1 INX
1 RPW
1 SEQ
1 REL
1 INX
2 SEQ
2 REL
2 INX
1 RPW
1 RPW
2 IPC
1 DEB z
1 DEB z
1 DEB z
2 DEB z
2 DEB z
2 DEB z

Procedure Division Element Sununary

SUMMARY OF ELEMENTS IN PROCEDURE DIVISION

ELEMENT·

WRITE statement

FROM phrase

BEFORE/AFTER ADVANCING phrase
Integer LINE/LINES
Identifier LINE/LINES
Mnemonic -name
PAGE ••••••••••••••••••

AT END-OF-PAGE/EOP phrase
NOT AT END-OF-PAGE/EOP phrase
INVALID KEY phrase •••••••••••

NOT INVALID KEY phrase

END-WRITE phrase

Segmentation
Segment-numbers 0 through 49 for permanent segments
Segment-numbers 50 through 99 for independent segments
All sections with the same segment-number must be

together in the source program •••••••••.••••••••••••.•••
Sections with the same segment-number need not be

physically contiguous in the source program

Source Text Manipulation in
COPY statement •••••••.

OF/IN library-name phrase
REPLACING phrase •••••••
Pseudo-text
Identifier
Literal
Word

REPLACE statement ••••••
Pseudo-text BY pseudo-text
OFF

Procedure Division

.....

I-63

MODULE

1 SEQ
1 REL
1 INX
1 SEQ
1 REL
1 INX
1 SEQ
1 SEQ
1 SEQ
2 SEQ
1 SEQ
2 SEQ
2 SEQ
1 REL
1 INX
1 REL
1 INX
1 SEQ
1 REL
1 INX

I SEG z
1 SEG z

1 SEG Z

2 SEG Z

I STM
1 STM
2 STM
2 STM
2 STM
2 STM
2 STM
2 STM
2 STM
2 STM

SECTION II: CONCEPTS

1 • INTRODUCTION

COBOL offers many features which allow the user
function without programming the function in detail.
these features is discussed, considering the reason for
language and the concept of its use and organization.

2. FILES

Concepts

to obtain a necessary
In this section each of
its inclusion in the

A file is a collection of records which may be placed into or retrieved from
a storage medium. The user not only chooses the file organization, but also
chooses the file processing method and sequence. Although the file organization
and processing method are restricted for sequential media, no such restrictions
exist for mass storage media.

When describing the capabilities of .COBOL programs to manipulate files, the
following conventions are used. The term 'file-name' means the user-defined
word used in the COBOL source program to reference a file. The terms 'file
referenced by file-name' and 'file' mean the physical file regardless of the
file-name used in the COBOL program. The term 'file connector' means the entity
containing information concerning the file. All accesses to physical files
occur through file connectors. In various implementations the file connector is
referred to as a file information table, a file control block, etc.

2.1 FILE ATTRIBUTES

A file has several attributes which apply to the file at the time it is
created and cannot be changed throughout the lifetime of the file. The primary
attribute is the organization of the file, which describes its logical
structure. There are three organizations: sequential, relative, and indexed.
Other fixed attributes of the file provided by the COBOL program are prime
record key, alternate record keys, code set, the minimum and maximum logical
record size, the record type (fixed or variable), the collating sequence of the
keys for indexed files, the blocking factor, the padding character, and the
record delimiter.

2.1.1 Sequential Organization

Sequential files are organized so that each record, except the last, has a
unique successor record; each record, except the first, has a unique predecessor
record. The successor relationships are established by the order of execution
of WRITE statements when the file is created.- Once established, successor
relationships do not change except in the case where records are added to the
end of a file.

II-I

Concepts - Files

A sequentially organized mass storage file has the same logical structure as
a file on any sequential medium; however, a sequential mass storage file may be
updated in place. When this technique is used, new records cannot be added to
the file and each replaced record must be the same size as the original record.

2.1.2 Relative Organization

A file with relative organization is a mass storage file from which any
record may be stored or retrieved by providing the value of its relative record
number.

Conceptually, a file with relative organization comprises a serial string of
areas, each capable of holding a logical record. Each of these areas is
denominated by a relative record number. Each logical record in a relative file
is identified by the relative record number of its storage area. For example,
the tenth record is the one addressed by relative record number 10 and is in the
tenth record area, whether or not records have been written in any of the first
through the ninth record areas.

In order to achieve more efficient access to
number of character positions reserved on
logical record may be different from the number
description of that record in the program.

records in a relative file, the
the medium to store a particular
of character positions in the

2.1.3 Indexed Organization

A file with indexed organization is a mass storage file from which any record
may be accessed by giving the value of a specified key in that record. For each
key data item defined for the records of a file, an index is maintained. Each
such index represents the set of values from the corresponding key data item in
each record. Each index, therefore, is a mechanism which can provide access to
any record in the file.

Each indexed file has a primary index which represents the prime record key
of each record in the file. Each record is inserted in the file, changed, or
deleted from the file based solely upon the value of its prime record key. The
prime record key of each record in the file must be unique, and it must not be
changed when updating a record. The prime record key is declared in the RECORD
KEY clause of the file control entry for the file.

Alternate record keys provide alternative means of retrieval for the records
of a file. Such keys are named in the ALTERNATE RECORD KEY clauses of the file
control entry~ The value of a particular alternate record key in each record
need not be unique. When these values may not be unique, the DUPLICATES phrase
is specified in the ALTERNATE RECORD KEY clause.

2.1.4 Logical Records

A logical record is the unit of data which is retrieved from or stored
file. The number of records that may exist in a file is limited only
capacity of the storage media. There are two types of records: fixed
and variable length •. When a file is created, it is declared to contain
fixed length or variable length records. In any case, the content of the

II-2

into a
by the
length
either
record

Concepts - Files

area does not reflect any information the implementor may add to the record on
the physical storage medium (such as record length headers), nor does the length
of the record used by the COBOL programmer reflect these additions.

2.1.4.1 Fixed Length Records

Fixed length records must contain the same number of character positions for
all the records 1n the file. All input-output operations on the file can
process only this one record size. Fixed length records may be explicitly
selected by specifying format 1 of the RECORD clause in the file description
entry for the file regardless of the individual record descriptions.

2.1.4.2 Variable Length Records

Variable length records may contain differing numbers of character pos1t1ons
among the records on the file. To define variable length records explicitly,
the VARYING phrase may be specified in the RECORD clause in the file description
entry or the sort-merge file description entry for the file. The length of a
record is affected by the data item referenced in the DEPENDING phrase of the
RECORD clause or the DEPENDING phrase of an OCCURS clause or by the length of
the record description entry for the file.

2 .1.4 .3 Implementor-Defined Record Types

Where no RECORD clause is specified in the file description entry for a file,
or where the RECORD clause specifies a range of character positions, it is
implementor defined whether fixed length or variable length records are
obtained.

2.2 FILE PROCESSING

A file can be processed by performing operations upon individual records or
upon the file as a unit. Unusual conditions that occur during processing are
communicated back to the program.

2.2.1 Record Operations

The ACCESS MODE clause of the file description entry specifies the manner in
which the object program operates upon records within a file. The access mode
may be sequential, random, or dynamic.

For files that are.organized as relative or indexed, any of the three access
modes can be used to access the file regardless of the access mode used to
create the file. A file with sequential organization may only be accessed 1n
sequential mode.

The organization, format, and contents of an output report may be specified
using the report writer feature. (See page II-8, Report Writer.)

2.2.1.1 Sequential Access Mode

A file can be accessed sequentially irrespective of the file organization.

For sequential organization, the order of sequential access is the order in
which the records were originally written.

II-3

Concepts - Files

For relative organization, the order of sequential access is ascending based
on the value of the relative record numbers. Only records which currently exist
in the file are made available. The START statement may be used to establish a
starting point for a series of subsequent sequential retrievals.

For indexed organization, the order of sequential access is ascending based
on the value of the key of reference according to the collating sequence
associated with the native character set. Any of the keys associated with the
file may be established as the key of reference during the processing of the
file. The order of retrieval from a set of records which have duplicate key of
reference values is the original order of arrival of those records into the set.
The START statement may be used to establish a starting point within an indexed
file for a series of subsequent sequential retrievals.

2.2.1.2 Random Access Mode

When a file is accessed in random mode, input-output statements are
access the records in a programmer-specified order. The random access
only be used with relative or indexed file organizations.

used to
mode may

For a file with relative organization, the programmer specifies the desired
record by placing its relative record number in a relative key data item. With
the indexed organization, the programmer specifies the desired record by placing
the value of one of its record keys in a record key or an alternate record key
data item.

2.2.1.3 Dynamic Access Mode

With dynamic access mode, the programmer may change at will
accessing to random accessing, using appropriate forms
statements. The dynamic access mode may only be used on files
indexed organizations.

2.2.1.4 Open Mode

from sequential
of input-output

with relative or

The open mode of the file is related to the actions to be performed upon
records in the file. The open modes and purposes are: input, to retrieve
records; output, to place records into a file; extend, to append records to an
existing file; I-0, to retrieve and update records. The open mode is specified
in the OPEN statement.

When the open mode is input, a file may be accessed by
The START statement may also be used for files organized
which are in sequential or dynamic access modes.

the READ statement.
as indexed or relative

When the open mode is output, the records are placed into the file by issuing
WRITE, GENERATE, or TERMINATE statements.

When the open mode is extend, new records are added to the logical end of a
file by issuing WRITE, GENERATE, or TERMINATE statements.

Only mass storage files may be referenced in the open I-0 mode. The
additional capabilities of mass storage devices permit updating in place, thus
READ and REWRITE statements may always be used. A mass storage file may be
updated in the same manner as a file on a sequential medium, by transcribing the

II-4

Concepts - Files

entire file into another file (perhaps in a separate area of mass storage) using
READ and WRITE statements. However, it is sometimes more efficient to update a
mass storage file in place. This mass storage file maintenance technique uses
the REWRITE statement to return to their previous locations on the storage
medium only those records which have changed. READ and REWRITE statements are
the only operations allowed while updating in place sequentially organized
files. However, for indexed or relative organized files, the following
additional functions may be applied: the START statement may be used in
sequential or dynamic access mode to alter the sequence of record retrieval; the
DELETE statement may be used with any access mode to remove a record logically
from a file; the WRITE statement may be used in random or dynamic access mode to
insert a new record into the file.

2.2.1.5 Current Volume Pointer

The current volume pointer is
facilitate exact specification
file. The status of the current
READ, and WRITE statements.

2.2.1.6 File Position Indicator

a conceptual entity used in this document to
of the current physical volume of a sequential

volume pointer is affected by the CLOSE, OPEN,

The file position indicator is a conceptual entity used in this document to
facilitate exact specification of the next record to be accessed within a given
file during certain sequences of input-output operations. The setting of the
file position indicator is affected only by the OPEN, READ and START statements.
The concept of a file position indicator has no meaning for a file opened in the
output or extend mode.

2.2.1.7 Linage Concepts

The LINAGE clause may be used when specifying an output report. It
facilitates definition of a logical page, and the positioning within that
logical page of top and bottom margins and a footing area. Use of the LINAGE
clause implicitly defines an associated special register, the LINAGE-COUNTER,
which acts as a point~r to a line within the page body.

2.2.2 . File Operations

Several COBOL statements operat'e upon files as ent1t 1es or as collections of
records. These are the CLOSE, MERGE, OPEN, and SORT statements.

2.2.2.1 Sorting and Merging

2.2.2.1.1 Sorting

In many sort applications it is necessary to apply some special processing to
the contents of a sort file. The special processing may consist of addition,
deletion, creation, altering, editing, or other modification of the individual
records in the file. It may be necessary to apply the special processing before
or after the records are reordered by the sort, or special processing may be
required in both places. The COBOL sort feature allows the user to express
these procedures and to specify at which point, before or after the sort, they
are to be executed. A COBOL program may contain any number of sorts, and each

II-5

Concepts - Files

of them may have its own input and output procedures. The sort feature
automatically causes execution of these procedures at the specified point.

Within an input procedure, the RELEASE statement is used to create the sort
file. That is, at the completion of execution of the input procedure those
records that have been processed by use of the RELEASE statement (rather than
the WRITE statement) comprise the sort file, and this file is available only to
the SORT statement. Execution of the SORT statement arranges the entire set of
records in the sort file according to the keys specified in the SORT statement.
The sorted records are made available from the sort file by use of the RETURN
statement during execution of the output procedure.

The sort file has no label procedures which the programmer can control and
the rules for blocking and for allocation of internal storage are peculiar to
the SORT statement. The RELEASE and RETURN statements imply nothing with
respect to buffer areas, blocks, or· reels. A sort file, then may be considered
as an internal file which is created (RELEASE statement) from the input file,
processed (SORT statement), and then made available (RETURN statement) to the
output file. The sort file itself is referred to and accessed only by the SORT
statement. A sort-merge file description can be considered to be a particular
type of file description. That is, a sort file, like any file, is a set of
records.

2.2.2.1.2 Merging

In some applications it is necessary to apply some special processing to the
contents of a merged file. The special processing may consist of addition,
deletion, altering, editing, or other modification of the individual records in
the file. The COBOL merge feature allows the user to express an output
procedure to be executed as the merged output is created. The merged records
are made available from the merge file by use of the RETURN statement in the
output procedure.

The merge file has no label procedures which the programmer can control and
the rules for blocking and for allocation of internal storage are peculiar to
the MERGE statement. The RETURN statement implies nothing with respect to
buffer areas, blocks, or reels.

A merge file, then, may be considered as an internal file which is created
from input files by combining them (MERGE statement) as the file is made
available (RETURN statement) to the output file. The merge file itself is
referred to and accessed only by the MERGE statement. A sort-merge file
description can be considered to be a particular type of file description. That
is, a merge file, like any file, is a set of records.

2.2.3 Exception Handling

During the execution of any input or output operation, unusual conditions may
arise which preclude normal completion of the operation. There are three
methods by which these conditions are communicated to the object program; status
keys, exception declaratives, and optional phrases associated with the
imperative statement.

II-6

Concepts - Files

2.2.3.1 I-0 Status

I-0 status is a conceptual entity used in this document to facilitate exact
specification of the status of the execution of an input-output operation. The
setting of I-0 status is affected only by the CLOSE, DELETE, OPEN, READ,
REWRITE, START, and WRITE statements. The I-0 status value for a given file is
made available to the program via the data-name specified in the FILE STATUS
clause of the file control entry for that file. The I-0 status value is placed
into this data item during the execution of the input-output statement and prior
to the execution of any imperative statement associated with that input-output
statement or prior to the execution of any exception declarative.

2.2.3.2 Exception Declaratives

A USE AFTER EXCEPTION procedure, when one is specified for the file, 1s
executed whenever an input or output condition arises which results in an
unsuccessful input-output operation. However, the exception declarative is not
executed if the condition is invalid key and the INVALID KEY phrase 1s
specified, or if the condition is at end and the AT END phrase is specified.

2.2.3.3 Optional Phrases

The INVALID KEY phrases may be associated with the DELETE, READ, REWRITE,
START, or WRLTE statements. Some of the conditions that give rise to an invalid
key condition are when a requested key does not exist in the file (DELETE, READ,
or START statements), when a key is already in a file and duplicates are not
allowed (WRITE statement), and when a key does not exist in the file or when it
was not the last key read (REWRITE statement). If the invalid key condition
occurs during the execution of a statement for which the INVALID KEY phrase has
been specified, the statement identified by that INVALID KEY phrase is executed.

The AT END phrase may be associated with a READ statement. The at end
condition occurs in a sequentially accessed file when no next logical record
exists in the file, when the number of significant digits in the relative record
number is larger than the size of the relative key data item, when an optional
file is not present, or when a READ statement is attempted and the at end
condition already exists. If the at end condition occurs during the execution
of a statement for which the AT END phrase has been specified, the statement
identified by that AT END phrase is executed.

II-7

Concepts - Report Writer

3 • REPORT WRITER

The report writer is a special purpose feature which places its emphasis on
the organization, format, and contents of an output report. Although a report
can be produced using the standard COBOL language, the report writer language
features provide a more concise facility for report structuring and report
production. Much of the Procedure Division programming which would normally be
supplied by the programmer is instead provided automatically by the report
writer control system (RWCS). Thus the programmer is relieved of writing
procedures for moving data, constructing print lines, counting lines on a page,
numbering pages, producing heading and footing lines, recognizing the end of
logical data subdivisions, updating sum counters, etc. All these operations are
accomplished by the report writer control system as a consequence of source
language statements that appear primarily in the Report Section of the Data
Division of the source program.

3.1 REPORT SECTION

The Report Section
description entries
of a report.

of a COBOL Data Division contains one or more report
(RD entries), each of which forms the complete description

The report named in the report description entry is not assigned directly to
an output file. Instead, it is associated with a file-name in the File Section
and that file-name is associated with a file when an OPEN statement specifying
the file-name is executed. More than one report may be associated with the same
file-name and the CODE clause is used to differentiate among the reports. For
an external file connector referenced by a file-name, separately compiled
programs may specify different reports for the same file-name. The file
description entry of a file-name to which a report is assigned may not contain
record description entries which describe data records. This file description
entry must specify the name of a report description entry for each report
associated with that file-name in this program.

The report description entry contains a set of clauses that names the r,eport
and supplies specific information about the format of the printed page and the
organization of the subdivisions of the report. An identification code may be
given in the report description entry so that each report may be identified
separately in an intermediate output file.

Following each report description entry are one or more 01 level-number
entries, each followed by a hierarchical structure similar to COBOL record
descriptions. Each 01 level-number entry and its subordinate entries describes
a report group. Each report group consists of zero, one, or more print lines
that are regarded as a unit. A report group that is to be printed is printed
entirely on one logical page; it is never split across pages.

3.2 REPORT STRUCTURE

When structuring a report, major consideration must be given to vertical and
horizontal spacing requirements, manipulation of data, and the physical and
logical subdivisions of a report.

II-8

Concepts - Report Writer

3.2.1 Vertical Spacing

The report writer feature allows the user to describe report groups
containing multiple lines. The vertical positioning of the lines on a page is
specified by the LINE NUMBER clause that is associated with each line. The NEXT
GROUP clause indicates how many lines to space after presenting the last line of
the group. The first LINE NUMBER clause of the next group indicates additional
spacing information to be used in positioning of that group.

3.2.2 Horizontal Spacing

The report writer allows the user to position the fields of data on a report
line by means of the COLUMN NUMBER clause. The report writer control system
supplies space fill between all defined fields.

3.2.3 Data Manipulation

When the report writer feature is used, data movement to a report group is
directed by Report Section clauses rather than Procedure Division statements.
The Report Section clauses which effect the manipulation of data are the SOURCE,
SUM, and VALUE clauses.

The SOURCE clause specifies the sending data item of an implicit MOVE
statement. The receiving printable item is defined by the description of the
report group item in which the SOURCE clause appears.

The SUM clause automatically causes the establishment of a sum counter. The
object of the SUM clause names the data item(s) which are added to the sum
counter when a GENERATE statement is executed. The move of the sum counter
contents to the receiving printable item, defined by the description of the
report group item in which the SUM clause appears, is accomplished automatically
when that report group is presented.

The VALUE clause defines a literal that appears in the printable item of a
report group each time that report group is to be presented.

In summary, a data item in a report group is presented only if it has a
COLUMN NUMBER clause specifying where it is to be presented. The value that is
placed in a printable item is determined by the SOURCE, SUM, or VALUE clause
stated in the report group description. Under no circumstances may a report
group printable item receive a value directly via a Procedure Division
statement.

3.2.4 Report Subdivisions

The physical and logical organization of a report interact tb determine what
is presented on a page.

3.2.4.1 Physical Subdivision of a Report

The PAGE clause specifies the length of the page, the size of the heading and
footing areas, and the size of the area in which the detail lines will appear.
The report writer control system uses the LINE NUMBER and NEXT GROUP clauses to
position these report groups, and when necessary, to advance to a new page with
automatic production of PAGE HEADING and PAGE FOOTING report groups.

II-9

Concepts - Report Writer

3.2.4.2 Logical Subdivisions of a Report

Detail report groups may be structured into a nested set of control groups.
Each control group may begin with a control heading report group and end with a
control footing report group.

When nested control groups are defined, the recognition of a change in value
of a control data item in a control hierarchy is called a control break and the
heading and footing lines associated with the control data-name are called
control heading and control footing report groups.

During the execution of a GENERATE statement, the report writer control
system uses the control hierarchy to check automatically for control breaks. If
a control break has occurred, all controls that are minor to it are considered
to have changed, even though they may not in fact have changed. The occurrence
of a control break causes the following sequence of events to take place:

(I) All control footing report groups are presented up to and including the
one at the level at which the control break occurred.

(2) All control heading report groups are presented from the control break
level down to the most minor control.

(3) The detail report group named in the GENERATE statement 1s presented.

3.3 PROCEDURE DIVISION REPORT WRITER STATEMENTS

The report writer statements that appear 1n the Procedure Division are:
INITIATE, GENERATE, TERMINATE, SUPPRESS, and USE BEFORE REPORTING.

The INITIATE statement causes the report writer
automatically a number of initialization functions.
before any detail processing may take place.

control system to perform
A report must be initiated

The GENERATE statement which specifies a data-name causes the named DETAIL
report group to be formatted and written to the output device. In addition, it
triggers the report writer control system to perform the many implicit actions
described in the preceding section.

The GENERATE statement which specifies a report-name provides a means of
sunnnary reporting. A report produced by this type of statement has all detail
print lines suppressed automatically and consists of only the sunnnary totals
accumulated during the processing of the DETAIL report group. The report writer
control system processing for a GENERATE report-name statement is identical to
that which occurs for a GENERATE data-name statement, except that the former
results in the suppression of detail print lines.

The TERMINATE statement causes the report writer control system to perform
all of the automatic functions associated with the termination of a report. The
TERMINATE statement must be executed before the file containing the report 1s
closed.

The SUPPRESS statement provides the object time facility to suppress the
printing of an entire report group.

II-10

Concepts - Report Writer

The BEFORE REPORTING phrase of the USE statement provides a mechanism whereby
Procedure Division statements may be executed at specifi~ instances within the
automatic procedures performed by the report writer control system. The
statements in the USE BEFORE REPORTING procedure may alter the contents of the
data items that are referenced by SOURCE clauses. Thus control is possible over
the contents of data items referenced within report groups that are produced
automatically.

II-11

Concepts - Table Handling

4. TABLE HANDLING

Tables of data are common components of business data processing problems.
Although the repeating items that make up a table could be otherwise described
by a series of separate data description entries all having the same
level-number and all subordinate to the same group item, there are two reasons
why this approach is not satisfactory. First, from a documentation standpoint,
the underlying homogeneity of the items would not be readily apparent; and
second, the problem of making available an individual element of such a table
would be severe when there is a decision as to which element is to be made
available at object time.

Tables of data items are defined in COBOL by including the OCCURS clause in
their data description entries. This clause specifies that the item is to be
repeated as many times as stated. The item is considered to be a table element
and its name and description apply to each repetition or occurrence. Since each
occurrence of a table element does not have assigned to it a unique data-name,
reference to a desired occurrence may be made only by specifying the data-name
of the table element together with the occurrence number of the desired table
element. The occurrence number is known as a subscript.

The number of occurrences of a table element may be specified to be fixed or
variable.

4.1 TABLE DEFINITION

To define a one-dimensional table, the programmer uses an OCCURS clause as
part of the data description of the table element, but the OCCURS clause must
not appear in the description of group items which contain the table element.
Example 1 shows a one-dimensional table defined by the item TABLE-ELEMENT.

Example 1:

01 TABLE-1.
02 TABLE-ELEMENT OCCURS 20 TIMES.

03 DOG
03 FOX •••

In example 2, TABLE-ELEMENT defines a one-dimensional table, but DOG does not
since there is an OCCURS clause in the description of the group item
(TABLE-ELEMENT) which contains DOG.

Example 2:

02 TABLE-1.
03 TABLE-ELEMENT OCCURS 20 TIMES.

04 DOG OCCURS 5 TIMES.
05 EASY
05 FOX

In both examples, the complete set of occurrences of TABLE-ELEMENT has been
assigned the name TABLE-1. However, it is not necessary to give a group name to
the table unless it is desired to refer to the complete table as a group item.

II-12

Concepts - Table Handling

None of the three one-dimensional tables which appear in the following two
examples has a group name.

Example 3:

01 ABLE.
02 BAKER
02 CHARLIE OCCURS 20 TIMES •••
02 DOG •••

Example 4:

01 ABLE.
02 BAKER OCCURS 20 TIMES •••
02 CHARLIE •••
02 DOG OCCURS 5 TIMES •••

Defining a one-dimensional table within each occurrence of an element of
another one-dimensional table gives rise to a two-dimensional table. To define
a two-dimensional table, then, an OCCURS clause must appear in the data
description of the element of the table, and in the description of only one
group item which contains that table element. Thus, in example 5, DOG is an
element of a two-dimensional table; it occurs 5 times within each element of the
item BAKER which itself occurs 20 times. BAKER is an element of a
one-dimensional table.

Example 5:

02 BAKER OCCURS 20 TIMES •••
03 CHARLIE •••
03 DOG OCCURS 5 TIMES •••

In the general case, to define an n-dimensional table, the OCCURS clause
should appear in the data description of the element of the table and in the
descriptions of (n - 1) group items which contain the element.

4.2 INITIAL VALUES OF TABLES

In the Working-Storage Section, initial values of elements within tables are
specified in one of the following ways:

(1) The table may be described as a series of separate data description
entries all subordinate to the same group item, each of which specifies the
value of an element, or part of an element, of the table. In defining the
record and its elements, any data description clause (USAGE, PICTURE, etc.) may
be used to complete the definition, where required. The hierarchical structure
of the table is then shown by use of the REDEFINES entry and its associated
subordinate entries. The subordinate entries, following the REDEFINES entry,
which are repeated due to OCCURS clauses, must not contain VALUE clauses.

(2) All the dimensions of a table may be initialized by associating the
VALUE clause with the description of the entry defining the entire table. The
lower level entries will show the hierarchical structure of the table; lower
level entries must not contain VALUE clauses.

II-13

Concepts - Table Handling

(3) The value of selected table elements may be specified using VALUE
clauses.

4.3 REFERENCES TO TABLE ITEMS

Whenever the user references a table element or a condition-name associated
with a table element, the reference must indicate which occurrence of the
element is intended, except in a USE FOR DEBUGGING statement and SEARCH
statement. For access to a one-dimensional table the occurrence number of the
desired element provides complete information. For tables of more than one
dimension, an occurrence number must be supplied for each dimension of the
table. In example 5, then, a reference to the fourth BAKER or the fourth
CHARLIE would be complete, whereas a reference to the fourth DOG would not. To
reference DOG, which is an element of a two-dimensional table, the user must
reference, for example, the fourth DOG in the fifth BAKER.

4.4 SUBSCRIPTING

Occurrence numbers are specified by appending one or more subscripts to the
data-name.

The subscript can be represented either by an integer, a data-name which
references an integer numeric elementary item, or an index-name associated with
the table. A data-name or index-name may be followed by either the operator t

or the operator and an integer, which is us~d as an increment or decrement,
respectively. It is permissible to mix integers, data-names, and index-names.

The subscripts, enclosed in parentheses, are written immediately following
any qualification for the name of the table element. The number of subscripts
in such a reference must equal the number of dimensions in the table whose
element is being referenced. That is, there must be a subscript for each OCCURS
clause in the hierarchy containing the data-name including the data-name itself.

When more than one subscript is required, they are written in the order of
successively less inclusive dimensions of the data organization. If a
multi-dimensional table is thought of as a series of nested tables and the most
inclusive or outermost table in the nest is considered to be the major table
with the innermost or least inclusive table being the minor table, the
subscripts are written from left to right in the order major, intermediate, and
minor.

A reference to an item must not be subscripted if the item is not a table
element or an item or condition-name within a table element.

The lowest permissible occurrence number
occurrence number in any particular case is
the item as specified in the OCCURS clause.

is 1. The highest permissible
the maximum number of occurrences of

4.4.1 Subscripting Using Integers or Data-Names

When an integer or data-name is used to represent a subscript, it may be used
to reference items within different tables. These tables need not have elements
of the same size. The same integer or data-name may appear as the only
subscript with one item and as one of two or more subscripts with another item.

II-14

Concepts - Table Handling

4.4.2 Subscripting Using Index-Names

In order to facilitate such operations as table searching and manipulating
specific items, a technique called indexing is available. To use this
technique, the programmer assigns one or more index-names to an item whose data
description entry contains an OCCURS clause. An index associated with an
index-name acts as a subscript, and its value corresponds to an occurrence
number for the item to which the index-name is associated.

The INDEXED BY phrase, by which the index-name is identified and associated
with its table, is an optional part of the OCCURS clause. There is no separate
entry to describe the index associated with index-name since its definition is
completely hardware oriented. At object time the contents of the index
correspond to an occurrence number for that specific dimension of the table with
which the index is associated; however, the manner of correspondence is
determined by the implementor. The initial value of an index at object time is
undefined, and the index must be initialized before use. The initial value of
an index is assigned with the PERFORM statement with the VARYING phrase, the
SEARCH statement with the ALL phrase, or the SET statement.

The use of an integer or data-name as a subscript referencing a table element
or an item within a table element does not cause the alteration of any index
associated with that table.

An index-name can be used to reference only the table to which it is
associated via the INDEXED BY phrase.

Data that is arranged in the form of a table is often
statement provides facilities for producing serial and
binary) searches. It is used to search a table for
satisfies a specific condition and to adjust the value
to indicate that table element.

searched. The SEARCH
nonserial (for example,
a table element that
of the associated index

Relative indexing is an additional option for making references to a table
element or to an item within a table element. When the name of a table element
is followed by a subscript of the form (index-name + or integer), the
occurrence number required to complete the reference is the same as if
index-name were set up or down by integer via the SET statement before the
reference. The use of relative indexing does not cause the object program to
alter the value of the index.

The value of an index can be made accessible to an object program by storing
the value in an index data item. Index data items are described in the program
by a data description entry containing a USAGE IS INDEX clause. The index value
is moved to the index data item by the execution of a SET statement.

II-15

Concepts - Table Handling

4.4.3 Subscripting Example

Assuming the following data definition:

02 XCOUNTER •••

02 BAKER OCCURS 20 TIMES INDEXED BY BAKER-INDEX •••
03 CHARLIE •••
03 DOG OCCURS 5 TIMES

04 EASY
88 MAX VALUE IS ••.
04 FOX

05 GEORGE OCCURS 10 TIMES •••
06 HARRY •••
06 JIM •••

references to BAKER and CHARLIE require only one subscript, references to DOG,
EASY, MAX, and FOX require two, and references to GEORGE, HARRY, and JIM require
three.

To illustrate the requirement of order from major to minor, HARRY (18, 2, 7)
means the HARRY 1n the seventh GEORGE, in the second DOG, in the eighteenth
BAKER.

Mixing integers, data-names, and
HARRY (BAKER-INDEX, 4, XCOUNTER + 5).

II-16

index-names is illustrated by

Concepts - Shared Memory Area

5. SHARED MEMORY AREA

This feature is basically oriented toward saving memory space in the object
program as it allows more than one file to share the same file area and
input-output areas.

When the RECORD option of the SAME clause is used, only the record area 1s
shared and the input-output are.as for each. file remain independent. In this
case any number of the files sharing the same record area may be active at one
time. This factor can give rise to an increase in the speed of the object
program.

To illustrate this point, consider file maintenance. If the programmer
assigns the same record area to both the old and new files, he not only saves
memory in the object program, but because this technique eliminates a move of
each record from the input to the output area, significant time savings result.
An additional benefit of this technique is that the programmer need not define
the record in detail as a part of both the old and new files. Rather, he
defines the record completely in one case and simply includes the level 01 entry
in the other. Because these record areas are in fact the same area, one set of
names suffices for all processing requirements without requiring qualification.

When the SAME clause is used without the RECORD option not only the file
areas but the input-output areas as well are shared.

As a result, only one of the files sharing the same set of areas is permitted
to be active at one time. This form of the clause is designed for the
application in which a series of files is used during different phases of the
object program. In these cases, the SAME clause allows the programmer to save
memory space.

II-17

Concepts - Program Communication

6. PROGRAM AND RUN UNIT ORGANIZATION AND COMMUNICATION

Complete data processing problems are frequently solved by developing a set
of separately compilable but logically coordinated programs which at some time
prior to execution may be compiled and assembled into a complete problem
solution. The organization of COBOL programs and run units supports this
approach of dividing large problem solutions into small, more manageable,
portions which may be programmed and validated independently.

6.1 PROGRAM AND RUN UNIT ORGANIZATION

There are two levels of computer programs in a COBOL environment. These are
the source level and the object level.

At the source level, the most inclusive unit of a computer program is a
source program. A source program may contain other source programs. A source
program is a syntactically correct set of COBOL statements as specified in this
document and consists of an Identification Division followed optionally by an
Environment Division and/or a Data Division and/or a Procedure Division. A
source program which itself is not contained within another source program can
be converted by a compiler into an object program that either alone, or together
with other object programs, is capable of being executed. In general, a source
program which is contained within another program cannot itself be converted by
a compiler into an object program, since the specifications in this document
explicitly permit a contained source program to reference data in a containing
source program.

The Procedure Division of a source program is organized into a sequence of
procedures of two types. Declarative procedures, normally termed declaratives,
are procedures which will be executed only when special conditions occur during
the execution of a program. Nondeclarative procedures are procedures which will
be executed according to the normal flow of control within a program.
Declaratives may contain nondeclarative procedures but these will be executed
only during the execution of the declarative which contains them.
Nondeclarative procedures may contain other nondeclarative procedures but must
not contain a declarative. Neither declaratives nor nondeclarative procedures
can contain programs. In other words, in COBOL the terms 'procedure' and
'program' are not synonyms.

At the object level the most inclusive unit of organization of computer
programs is the run unit. A run unit is a complete problem solution consisting
of an object program or of several inter-communicating object programs. A run
unit is an independent entity that can be executed without communicating with,
or being coordinated with, any other run unit except that it may process data
files and messages or set and test switches that were written or will be read by
other run units.

When a program is called, parameters upon which it is to operate may be
passed to it by the program which calls it. As any separately compiled program
may be the first program executed in a run unit, the first executed program of a
run unit may receive parameters.

II-18

Concepts - Program Communication

A run unit may also contain object code and data storage areas derived from
the compilation of programs written in languages other than COBOL; in this case
the requirements for the relationship between the COBOL and the non-COBOL
programs are defined by the implementor.

6.2 ACCESSING DATA AND FILES

Some data items have associated with them a storage concept determining where
data item values and other attributes of data items are represented with respect
to the programs of a run unit. Likewise, file connectors have associated with
them a storage concept determining where information concerning the positioning
and status of a file and other attributes of file processing are represented
with respect to the programs of a run unit.

6.2.1 Names

A data-name names a data item. A file-name names a file connector.
names are classified as either global or local.

These

A global name may be used to refer to the object with which it is associated
either from within the program in which the global name is declared or from
within any other program which is contained in the program which declares the
global name.

A local name, however, may be used only to refer to the object with which it
is associated from within the program in which the local name is declared. Some
names are always global; other names are always local; and some other names are
either local or global depending upon specifications in the program in which the
names are declared.

A record-name is global if the GLOBAL clause is specified in the record
description entry by which the record-name is declared, or, in the case of
record description entries in the File Section, if the GLOBAL clause is
specified in the file description entry for the file-name associated with the
record description entry. A data-name is global if the GLOBAL clause is
specified either 1n the data description entry by which the data-name is
declared or in another entry to which that data description entry 1s
subordinate. A condition-name declared in a data description entry is global if
that entry is subordinate to another entry in which the GLOBAL clause is
specified. However, specific rules sometimes prohibit specification of the
GLOBAL clause for certain data description, file description, or record
description entries.

A file-name is global if the GLOBAL clause is specified 1n the file
description entry for that file-name.

If a data-name, a file-name, or a condition-name declared 1n a data
description entry is not global, the name is local.

Global names are transitive across programs contained within other programs.

6.2.2 Objects

Accessible data items usually require that certain representations of data be
stored. File connectors usually require that certain information concerning

II-19

Concepts - Program Communication

files be stored. The storage associated with a data item or a file connector
may be external or internal to the program in which the object is declared.

6.2.2.l Object Types

6.2.2.1.1 Working Storage Records

Working storage records are allocations of sufficient storage to satisfy the
record description entries in that section. Each record description entry in a
program declares a different object. Renaming and redefining do not declare new
objects; they provide alternate groupings or descriptions for objects which have
already been declared.

6.2.2.1.2 File Connectors

File connectors are storage areas which contain information about a file and
are used as the linkage between a file-name and a physical file and between a
file-name and its associated record area.

6.2.2.1.3 Record Areas for Files

No particular record description entry in the File Section is considered to
declare the storage area for the record. Rather, the storage area is the
maximum required to satisfy associated record description entries. These
entries may describe fixed or variable length records. In this presentation,
record description entries are said to be associated in two cases. First, when
record description entries are subordinate to the same file description entry,
they are always associated. Second, when record description entries are
subordinate to different file description entries and these file description
entries are referenced in the same SAME RECORD AREA clause, they are associated.
All associated record description entries are redefinitions of the same storage
area.

6.2.2.1.4 Other Objects

Examples of other objects declared in
description entries, report description
associated with the Communication, Linkage,

6.2.2.2 Object Attributes

COBOL programs are: communiyation
entries, and control information

and Report Sections.

A data item or file connector is external if the storage associated with that
object is associated with the run unit rather than with any particular program
within the run unit. An external object may be referenced by any program which
describes the object. References to an external object from different programs
using separate descriptions of the object are always to the same object.

An object is internal if the storage associated with that object is
associated only with the program which describes the object.

External and internal objects may have either global or local names.

II-20

Concepts - Program Communication

6.2.2.2.1 Working Storage Records

A data record described in the Working-Storage Section is given the external
attribute by the presence of the EXTERNAL clause in its data description entry.
Any data item described by a data description entry subordinate to an entry
describing an external record also attains the external attribute. If a record
or data item does not have the external attribute, it is part of the internal
data of the program in which it is described.

6.2.2.2.2 File Connectors

A file connector is given the external attribute by the presence of the
EXTERNAL clause in the associated file description entry. If the file connector
does not have the external attribute, it is internal to the program in which the
associated file-name is described.

6.2.2.2.3 Record Areas for Files

The data records described subordinate to a file description entry which does
not contain the EXTERNAL clause or a sort-merge file description entry, as well
as any data items described subordinate to the dat~ description entries for such
records, are always internal to the program describing the file-name. If the
EXTERNAL clause is included in the file description entry, the data records and
the data items attain the external attribute.

6.2.2.2.4 Other Objects

Data records, subordinate data items, and various associated control
information described in the Linkage, Communication, and Report Sections of a
program are always considered to be internal to the program describing that
data. Special considerations apply to data described in the Linkage Section
whereby an association is made between the data records described and other data
items accessible to other programs. (See page II-24, Passing Parameters to
Programs.)

6.2.3 Name Resolution

Certain conventions apply when programs contained within other programs
assign the same names to data items, conditions, and file connectors. Consider
the situation when program A contains program B which itself contains program C;
further, programs A and B, but not program C, contain Data Division entries for
a condition-name, data-name, -0r a file-name named DUPLICATE-NAME.

(1) If either DUPLICATE-NAME references an internal object, two different
though identically named objects exist. If both DUPLICATE-NAMEs reference an
external object, only one object exists.

(2) Program A's reference to DUPLICATE-NAME is always to the object which it
declares. Program B's reference to DUPLICATE-NAME is always to the object which
it declares.

(3) If DUPLICATE-NAME is a local name in both programs A and B, program C
cannot refer to that name.

II-21

Concepts - Program Communication

(4) If DUPLICATE-NAME in program B is a global name, program
the object referenced by the name in program B, regardless of
DUPLICATE-NAME is a global name in program A.

C may access
whether or not

(5) If DUPLICATE-NAME in program A is a global name but in program B it is a
local name, program C's reference to DUPLICATE-NAME is to the object referenced
by the name declared in program A.

6.3 PROGRAM CLASSES

All programs which form part of a run unit may possess none, one, or more of
the following attributes: common and initial.

6.3.1 Common Programs

A common program is one which, despite being directly contained within
another program, may be called by any program directly or indirectly contained
in that other program. The common attribute is attained by specifying the
COMMON phrase in a program's Identification Division. The COMMON phrase
facilitates the writing of subprograms which are to be used by all the programs
contained within a program.

6.3.2 Initial Programs

An initial program is one whose program state is initialized when the program
is called. Thus, whenever an initial program is called, its program state is
the same as when the program was first called in that run unit. During the
process of initializing an initial program, that program's internal data is
initialized; thus an item of the program's internal data whose description
contains a VALUE clause is initialized to that defined value, but an item whose
description does not contain a VALUE clause is initialized to an undefined
value. Files with internal file connectors associated with the program are not
in the open mode. The control mechanisms for all PERFORM statements contained
in the program are set to their initial states. The initial attribute is
attained by specifying the INITIAL phrase in the program's Identification
Divis ion.

6.4 INTER-PROGRAM COMMUNICATION

When the complete solution to a data processing problem is subdivided into
more than one program, the constituent programs must be able to communicate with
each other. This commuqication may take four forms: the transfer of control,
the passing of parameters, the reference to common data, and the reference to
common files. These four inter-program communication forms are provided both
when the communicating programs are separately compiled and when one of the
communicating programs is contained within the other program. The precise
mechanisms provided in the last two cases differ from those in the first two
cases; for example, a program contained within another program may reference any
data-name or file-name possessing a global name in the containing program. (See
page II-19, Names.)

II-22

Concepts - Program Comniunication

6.4.1 Transfer of Control

The CALL statement provides the means whereby control may be transferred from
one program to another program within a run unit. A called program may itself
contain CALL statements.

When control is transferred to a called program, execution proceeds from
statement to statement beginning with the first nondeclarative statement. If
control reaches a STOP RUN statement, this signals the logical end of the run
unit. If control reaches an EXIT PROGRAM statement, this signals the logical
end of the called program only, and control then reverts to the next executable
statement following the CALL statement in the calling program. Thus the EXIT
PROGRAM statement terminates only the execution of the program 1n which it
occurs, while the STOP RUN statement terminates the execution of a run unit.

The CALL statement may be used to call a program which 1s not written in
COBOL, but the return mechanism and inter-program data communication are not
specified in this document. A COBOL program may also be called from a program
which is not written in COBOL, but the calling mechanism and inter-program data
communication are not specified in this document. In both the above cases, only
those parts of the parameter passing mechanism which apply to the COBOL program
are specified in this document.

6.4.1.1 Names of Programs

In order to call a program, a CALL statement identifies the program's name.
The names assigned to programs which directly or indirectly are contained within
another program must be unique.

The names assigned to each of the separately compiled program which
constitute a run unit must also be unique.

6.4.1.2 Scope of the CALL Statement

In the following, the calling program may or may
program attributes, it may either be separately
either be contained within programs or contain other

not possess any of the
compiled or not, and it may
programs:

(1) Any calling program may call any separately compiled program in the run
unit.

(2) A calling program may call any program which is directly contained
within the calling program.

(3) Any calling program may call any program possessing the common attribute
which is directly contained within a program which itself directly or indirectly
contains the calling program, unless the calling program 1s itself contained
within the program possessing the common attribute.

(4) A calling program may call a program which neither possesses the common
attribute nor is separately compiled if, and only if, that program is directly
contained within the calling program.

II-23

Concepts - Program Communication

6.4.1.3 Scope of Names of Programs

Certain conventions apply when, within a separately compiled program, a name
identical to that specified for another separately compiled program in the run
unit is specified for a contained program.

Consider the situation
DUPLICATE-NAME, program B
contains program DD.

when program A
contains program

contains program B and program
BB, and program DUPLICATE-NAME

The name DUPLICATE-NAME has also been specified for a separately compiled
program.

(1) If program A, but not any of the programs it contains, calls program
DUPLICATE-NAME, the program activated is the one contained within program A.

(2) If either program B or program BB calls program DUPLICATE-NAME then:

a. If the program DUPLICATE-NAME contained within program A possesses
the common attribute, it is called.

b. If the program DUPLICATE-NAME contained within program A does not
possess the common attribute, the separately compiled program is called.

(3) If either program DD or program DUPLICATE-NAME contained within program
A calls program DUPLICATE-NAME, the program called is the separately compiled
program.

(4)
program
program

6.4.2

If any other separately compiled program in the run unit or any other
contained within such a program calls the program DUPLICATE-NAME, the

called is the separately compiled program named DUPLICATE-NAME.

Passing Parameters to Programs

A program calls another program in order to have the called program perform,
on behalf of the calling program, some defined part of the solution of a data
processing problem. In many cases it is necessary for the calling program to
define to the called program the precise part of the problem solution to be
executed by making certain data values, which the called program requires,
available to the called program. One method for ensuring the availability of
these data values is by passing parameters to a program, as is described in this
paragraph. Another method is to share the data. (See page II-25, Sharing
Data.) The data values passed as parameters also may identify some data to be
shared; hence the two methods are not mutually independent.

6.4.2.1 Identifying Parameters

Data passed as a parameter by a program calling another program must be
accessible to the calling program and the data item receiving the data must be
declared in the Data Division of the called program. In the called program the
parameters required are identified by listing references to the names assigned,
in that program's data description entries, to the parameters in that program's
Procedure Division header. In the calling program the values of the parameters
to be passed by the calling program are identified by listing references in the
CALL statement used to call the called program. These lists establish, on a

II-24

Concepts - Program Communication

positional basis at object time, the correspondence between the values as they
are known to each program; that is, the first parameter on one list corresponds
to the first parameter on the other, the second to the second, etc. Thus a
program, which may be called by another program, may include:

PROGRAM-ID. EXAMPLE.

PROCEDURE DIVISION USING NUM, PCODE, COST.

and may be called by executing:

CALL "EXAMPLE" USING NBR, PTYPE, PRICE.

thereby establishing the following correspondence:

Called program (EXAMPLE)

NUM
PCODE
COST

Calling program

NBR
PTYPE
PRICE

Only the positions of the data-names are significant, not the names
themse 1 ves.

6.4.2.2 Values of Parameters

The calling program controls the methods by which a called program evaluates
the values of the parameters passed to it and by which the called program
returns results as modified parameter values.

The individual parameters referenced in the CALL statement's USING phrase may
be passed either by reference or by content. A cal led program is al lowed to
access and modify the value of the data item referenced in the calling program's
CALL statement as a parameter passed by reference. This permission to access
and modify a data item in the calling program is denied to the called program if
the data item is specified in the CALL statement as a parameter passed by
content. The value of the parameter is evaluated when the CALL statement is
executed and is presented to the called program. This value may be changed by
the called program during the course of its execution, but the value of the
corresponding data item in the calling program is not modified. Thus a
parameter passed by reference may be used by a called program to return to the
calling program whereas a parameter passed by content cannot be so used.

The parameters referenced in a called program's Procedure Division header
must be described in the Linkage Section of that program's Data Division.

6.4.3 Sharing Data

Two programs in a run unit may reference common data in the following
circumstances:

(1) The data content of an external data record may be referenced from any
program provided that program has described that data record. (See page II-19,
Objects.)

II-25

Concepts - Program Communication

(2) If a program is contained within another program, both programs may
refer to data possessing the global attribute either in the containing program
or in any program which directly or indirectly contains the containing program.
(See page II-19, Names.)

(3) The mechanism whereby a parameter value is passed by reference from a
calling program to a called program establishes a common data item; the called
program, which may use a different identifier, may refer to a data item in the
calling program.

6.4.4 Sharing Files

Two programs in a run unit may reference common file connectors in the
following circumstances:

(1) An external file connector may be referenced from any program which
describes that file connector. (See page II-19, Objects.)

(2) If a program is contained within another program, both programs may
refer to a common file connector by referring to an associated global file-name
either in the containing program or in any program which directly or indirectly
contains the containing program. (See page II-19, Names.)

6.5 INTRA-PROGRAM COMMUNICATION

The procedures
communicate with
data.

which constitute the Procedure Division of a program
one another by transferring control or by referring to common

6.5.1 Transfer of Control

There are four methods of transferring control within a program:

(1) A GO TO statement.

(2) A PERFORM statement.

(3) An input procedure associated with a SORT statement, or an output
procedure associated with either a SORT or a MERGE statement.

(4) A declarative procedure which is activated whenever certain conditions,
including errors and exceptions, occur.

An input-output procedure can be considered as an implicit PERFORM statement
which is executed in conjunction with a SORT or MERGE statement; and, for this
reason, the restrictions on the PERFORM statement apply equally to input-output
procedures.

Stricter restrictions, than those for the PERFORM statement, apply to
declarative procedures.

6.5.2 Shared Data

All the data declared in a program's Data Division may be referenced by
statements in the procedures, input-output procedures, and declaratives which

II-26

Concepts - Program Communication

constitute that program. Under certain conditions a program may reference data
items whose declarations are not included 1n its Data Division. (See page
II-19, Accessing Data and Files.)

6.6 SEGMENTATION

The segmentation facility permits the user to subdivide physically the
Procedure Division of a COBOL object program. All source paragraphs which
contain the same segment-number in their section headers will be considered at
object time to be one segment. Since segment-numbers can range from 00 through
99, it is possible to subdivide any object program into a maximum of 100
segments.

Program segments may be of three types: fixed permanent, fixed overlayable,
and'independent as determined by the programmer's assignment of segment-numbers.

Fixed segments
entire program,
executing another
temporarily.

are always in computer storage during the
i.e., they cannot be overlayed except
program, in which case fixed segments may

execution of the
when the system is

be 'rolled out'

Fixed overlayable segments may be overlayed during program execution, but any
such overlaying is transparent to the user, i.e., they are logically identical
to fixed segments, but physically different from them.

Independent segments may be overlayed, but such overlaying will result in the
initialization of that segment. Therefore, independent segments are logically
different from fixed permanent/fixed overlayable segments, and physically
different from fixed segments.

II-27

Concepts - Communication Facility

7. COMMUNICATION FACILITY

The communication facility provides the ability to access, process, and
create messages or portions thereof. It provides the ability to communicate
through a message control system with local and remote communication devices.

7.1 THE MESSAGE CONTROL SYSTEM

The implementation of the communication facility
control system (MCS) be present in the COBOL
environment.

requires that a message
object program's operating

The message control system (MCS) is the logical interface to the operating
system under which the COBOL object program operates. The primary functions of
the message control system are the following:

(1) To act as an interface between the COBOL object program and the network
of communication devices, in much the same manner as an operating system acts as
an interface between the COBOL object program and such devices as card readers,
printers, magnetic tape, and mass storage devices.

(2) To perform line discipline, including such tasks as dial-up, polling,
and synchronization.

(3) To perform device-dependent tasks, such
insertion of control characters, so that
device-independent programs.

as character
the COBOL

translation and
user can create

The first function, that of interfacing the COBOL object program with the
communication devices, is the most obvious to the COBOL user. In fact, the
COBOL user may be totally unaware that the other two functions exist. Messages
from communication devices are placed in input queues by the message control
system while awaiting disposition by the COBOL object program. Output messages
from the COBOL object program are placed in output queues by the message control
system while awaiting transmission to communication devices. The structures,
formats, and symbolic names of the queues are defined by the user to the message
control system at some time prior to the execution of the COBOL object program.
Symbolic names for message sources and destinations are also defined at that
time. The COBOL user must specify in his COBOL program symbolic names which are
known to the message control system.

During execution of a COBOL object program, the message control system
performs all necessary actions to update the various queues as required.

7.2 THE COBOL OBJECT PROGRAM

The COBOL object program interfaces with the message control system when it
is necessary to send data, receive data, or to interrogate the status of the
various queues which are created and maintained by the message control system.
In addition, the COBOL object program may direct the message control system to
establish or break the logical connection between the communication device and a
specified portion of the message control system queue structure. The method of
handling the physical connection is a function of the message control system.

II-28

Concepts - Communication Facility

7.3 RELATIONSHIP OF THE COBOL PROGRAM TO THE MESSAGE CONTROL SYSTEM AND
COMMUNICATION DEVICES

The interfaces which exist in a COBOL communication environment are
established by the use of a communication description entry (CD entry) in the
Communication Section of the Data Division. There are two such interfaces:

(1) The interface between the COBOL object program and the message control
system, and;

(2) The interface between the message control system and the communication
devices.

The COBOL source program uses three statements to control the interface with
the message control system:

(1) The RECEIVE statement, which causes data in a queue to be passed to the
COBOL object program,

(2) The SEND statement, which causes data associated with the COBOL object
program to be passed to one or more queues, and;

(3) The ACCEPT MESSAGE COUNT statement, which causes the message control
system to indicate to the COBOL object program the number of complete messages
1n the specified queue structure.

The COBOL source_program uses two statements to control the interface between
the message control system and the communication devices:

(1) The ENABLE statement, which establishes logical connection between the
message control system and one or more given communication devices, and;

(2) The DISABLE statement, which breaks a logical connection between the
message control system and one or more given communication devices.

These relationships are shown in figure 1, COBOL Communication Environment,
on page II-30 and explained on page II-33, Enabling and Disabling Queues.

II-29

Concepts - Communication Facility

COBOL Program

RECEIVE

RECEIVE

SEND

"' c
0

·g_

Message Control System
(MCS)

(communication using queues)

w
....J
co

Communication

Devices

·;::
~
Cl>
Cl
c
0

·.;::;

~~~~~~~~~ ~ 
r-~~~~~~--=:::i a r----~ 

.~ 
SEND ~1------1 c 

:::l 
E 
E 

....... 
w 
....J 
co 
<( 
z 
w 

8 

R ECEIVE-i------.1 (transaction communication) 

SEND 

COBOL/MCS MCS/Communication Device 
Interface Interface 

Figure 1: COBOL Communication Environment 

II-30 



Concepts - Communication Facility 

7.3.l Invoking the COBOL Object Program 

There are two methods of invoking a COBOL communication object program: 
scheduled initiation and message control system (MCS) invocation. Regardless of 
the method of invocation, the only operating difference between the two methods 
is that MCS invocation causes certain areas in the referenced communication 
description entry (CD entry) to be filled. 

7.3.1.1 Scheduled Initiation of the COBOL Object Program 

A COBOL object program using the communication facility may be scheduled for 
execution through the normal means available in the program's operating 
environment, such as job control language. In that case, the COBOL program can 
use three methods to determine what messages, if any, are available in the input 
queues: 

(1) The ACCEPT MESSAGE COUNT statement, 

(2) The RECEIVE statement with a NO DATA phrase, and 

(3) The RECEIVE statement without a NO DATA phrase (in which case a program 
wait is implied if no data is available). 

7.3.1.2 Invocation of the COBOL Object Program by the MCS 

It is sometimes desirable to schedule a COBOL object communication program 
only when there is work available for it to do. Such scheduling occurs if the 
message control system (MCS) determines what COBOL object program is required to 
proces·s the available message and subsequently causes that program to be 
scheduled for execution. Each object program scheduled by the MCS establishes a 
run unit. Prior to the execution of the COBOL object program, the message 
control system places the symbolic queue and sub-queue names in the associated 
data items of the communication description entry that specifies the FOR INITIAL 
INPUT clause, or the message control system places the symbolic terminal name in 
the associated data item of the communication description entry that specifies 
the FOR INITIAL I-0 clause. 

A subsequent RECEIVE statement directed to that communication description 
entry will result 1n the available message being passed to the COBOL object 
program. 

7.3.1.3 Determining the Method of Scheduling 

A COBOL source program can be written so that its object program can operate 
with either of the above two modes of scheduling. In order to determine which 
method was used to load the COBOL object program, the following is one technique 
that may be used: 

(1) One communication description entry (CD entry) must contain a FOR 
INITIAL INPUT clause or a FOR INITIAL I-0 clause. 

(2) When the program contains a CD with the FOR INITIAL INPUT clause, the 
Procedure Division may contain statements to test the initial value of the 
symbolic queue name in that communication descriptton entry. If it is space 
filled, job control statements were used to schedule the COBOL object program. 

II-31 



Concepts - Communication Facility 

If not space filled, the message control system has invoked the COBOL object 
program and initialized the data item with the symbolic name of the queue 
containing the message to be processed. 

(3) When the program contains a CD with the FOR INITIAL I-0 clause, the 
Procedure Division may contain statements to test the initial value of the 
symbolic terminal name in that CD. If it is space filled, job control 
statements were used to schedule the COBOL object program. If not space filled, 
the MCS has invoked the COBOL object program and initialized the data item with 
the symbolic name of the communication terminal that is the source of the 
message to be processed. 

7.4 THE CONCEPT OF MESSAGES AND MESSAGE SEGMENTS 

A message 
data, whose 
comprise the 
be processed 

consists of some arbitrary amount of information, usually character 
beginning and end are defined or implied. As such, messages 

fundamental but not necessarily the most elementary unit of data to 
in a COBOL communication environment. 

Messages may be logically subdivided into smaller units of data called 
message segments which are delimited within a message by means of end of segment 
indicators (ESI). A message consisting of one or more segments is delimited 
from the next message by means of an end of message indicator (EMI). In a 
similar manner, a group of several messages may be logically separated from 
succeeding messages by means of an end of group indicator (EGI). When a message 
or message segment is received by the COBOL program, a communication description 
interface area is updated by the message control system to indicate which, if 
any, delimiter was associated with the text transferred during the execution of 
that RECEIVE statement. On output the delimiter, if any, to be associated with 
the text released to the message control system during execution of a SEND 
statement is specified or referenced in the SEND statement. Thus the presence 
of these logical indicators is recognized and specified both by the message 
control system and by the COBOL object program; however, no indicators are 
included in the message text processed by COBOL programs. 

A precedence relationship exists between the indicators EGI, EMI, and ESI. 
EGI 1s the most inclusive indicator and ESI is the least inclusive indicator. 
The existence of an indicator associated with message text implies the 
association of all less inclusive indicators with that text. For example, the 
existence of the EGI implies the existence of EMI and ESI. 

7.5 THE CONCEPT OF QUEUES 

The following discussion applies only when the COBOL communication 
environment is established using a communication description entry without the 
FOR I-0 clause. 

Queues consist of one or more messages from or to one or more communication 
devices, and as such, form the data buffers between the COBOL object program and 
the message control system. Input queues are logically separate from output 
queues. 

The message control system logically places in queues or removes from queues 
only complete messages. Portions of messages are not logically placed 1n queues 
until the entire message is available to the message control system. That 1s, 

II-32 



Concepts - Communication Facility 

the message control system will not pass a message segment to a COBOL object 
program unless all segments of that message are in the input queue; even though 
the COBOL source program uses the SEGMENT phrase of the RECEIVE statement. For 
output messages, the message control system will not transmit any segment of a 
message until all its segments are in the output queue. Interrogation of the 
queue depth, or number of messages that exist in a given queue, reflects only 
the number of complete messages that exist in the queue. 

The process by which messages are placed into a queue is called enqueueing. 
The process by which messages are removed from a queue is called dequeueing. 

7.5.1 Independent Enqueueing and Dequeueing 

It is possible that a message may be received by the message control system 
from a communication device prior to the execution of the COBOL object program. 
As a result, the message control system enqueues the message in the proper input 
queue (provided that input queue is enabled) until the COBOL object program 
requests dequeueing with the RECEIVE statement. It is also possible that a 
COBOL object program will cause the enqueueing of messages in an output queue 
which are not transmitted to a communication device until after the COBOL object 
program has terminated. Two common reasons for this occurrence are: 

(1) When the output queue is disabled. 

(2) When the COBOL object program creates output messages at a speed faster 
than the destination can receive them. 

7.5.2 Enabling and Disabling Queues 

Usually, the message control system will enable and disable queues based on 
time of day, message activity, or other factors unrelated to the COBOL program. 
However, the COBOL program has the ability to enable and disable queues itself 
through use of the ENABLE and DISABLE statements. 

7.5.3 Enqueueing and Dequeueing Methods 

In systems that allow the user to specify certain MCS functions, it may be 
necessary that the user specify to the message control system, prior to 
execution of programs which reference these facilities, the selection algorithm 
and other designated MCS functions to be used by the message control system in 
placing messages in the various queues. A typical selection algorithm, for 
example, would specify that all messages from a given source be placed in a 
given input queue, or that all messages to be sent' to a given destination be 
glaced in a given output queue. 

Dequeueing is often done on a first in, first out basis. Thus messages 
dequeued from either an input or output queue are those messages which have been 
in the queue for the longest period of time. However, the message control 
system can, upon prior specification by the user, dequeue on some other basis, 
e.g., priority queueing can be employed. 

7 .5 .4 Queue Hierarchy 

In order to control more explicitly the messages being enqueued and dequeued, 
it is possible to define in the message control system a hierarchy of input 

II-33 



Concepts - Communication Facility 

queues, i.e., queues comprising queues. In COBOL, four levels of queues are 
available to the user. In order of decreasing significance, the queue levels 
are named queue, sub-queue-I, sub-queue-2, and sub-queue-3. The full queue 
structure is depicted in figure 2, Hierarchy of Queues, where queues and 
sub-queues have been named with the letters A through O. Messages have been 
named with a letter according to their source (X, Y, or Z) and with a sequential 
number. 

QUEUE l 
SUB-QUEUE (1) l 
SUB-QUEUE (2) l 
SUB-QUEUE (3) l 

MESSAGE l 

H 

Z1 
X2 

D 

B 

I 

X3 
X4 
X5 

J 

X1 
Y3 
Y5 
Z5 

E 

K 

Z6 
ll 
Y6 

A 

L 

Y7 
YB 

Figure 2: Hierarchy of Queues 

c 

F G 

M N 0 

Y1 X6 Z2 
Y2 Z3 

Z4 
Y4 

Let us assume that the message control system is operating under the 
following queueing algorithm: 

(1) Messages are placed in queues according to the contents of some 
specified data field in each message. 

(2) With the RECEIVE statement, if the user does not specify 
sub-queue level, the message control system will choose the sub-queue 
level in the alphabetical order, e.g., if sub-queue-! is not specified 
user, the message control system will dequeue from sub-queue-! B. 

a given 
from that 

by the 

The following examples illustrate the effect of the above algorithms (see 
figure 2, Hierarchy of Queues): 

(1) The program executes a RECEIVE 
communication description entry: 

Queue A 

statement, 

Message control system returns: Message Zl 

II-34 

specifying via the 



(2) The program executes a RECEIVE 
communication description entry: 

Queue A 
Sub-queue-I c 
Message control system returns: 

(3) The program executes a RECEIVE 
communication description entry: 

Queue A 
Sub-queue-1 B 
Sub-queue-2 E 
Message control system returns: 

(4) The program executes 
communication description entry: 

Queue A 
Sub-queue-1 C 
Sub-queue-2 G 
Sub-queue-3 N 

a RECEIVE 

Concepts 

statement, 

Message Y7 

statement, 

Message Xl 

statement, 

Message control system returns: Message X6 

- Communication Facility 

specifying via the 

specifying via the 

specifying via the 

If the COBOL programmer wishes to access the next message in a queue, 
regardless of which sub-queue that message may be in, he specifies the queue 
name only. The message control system, when supplying the message, will return 
to the COBOL object program, any applicable sub-queue names via the data items 
in the associated communication description entry. If, however, he desires the 
next message in a given sub-queue, he must specify both the queue name and any 
applicable sub-queue names. 

For output, the COBOL user specifies only the destination(s) of the message, 
and the message control system places the message in the proper queue structure. 

There is no one-to-one relationship between a communication device and a 
source/destination. A source or destination may consist of one or more physical 
devices. The device or devices which comprise a source/destination are defined 
to the message control system. 

7.6 THE CONCEPT OF TRANSACTION COMMUNICATION 

In contrast with the previously described queueing mechanism, some 
applications require a direct dialogue between a communication device and the 
object program. In this case, it is unnecessary to queue messages for 
processing since they are to be processed immediately. It is possible in COBOL 
to specify this kind of processing by using the CD that specifies the FOR I-0 
clause. A CD that specifies the FOR 1-0 clause can communicate. with only one 
terminal; however, a run unit may contain more than one CD that specifies the 
FOR I-0 clause and these CD's can communicate with the same or a different 
terminal. When the INITIAL phrase is used in a CD that specifies the FOR I-0 
clause, the program may be scheduled by the MCS. 

II-35 



• 



Glossary 

SECTION III: GLOSSARY 

1. INTRODUCTION 

The terms in this section are defined in accordance with their meaning in 
COBOL, and may not have the same meaning for other languages. 

These definitions are also intended as either reference or introductory 
material to be reviewed prior to reading the detailed language specifications 
that follow. For this reason, these definitions are, in most instances, brief 
and do not include detailed syntactical rules. Complete specifications for 
elements defined in this section can be located in Sections IV through XVI of 
this document. 

2. DEFINITIONS 

Abbreviated Combined Relation Condition. The combined condition that results 
from the explicit omission of a common subject or a common subject and common 
relational operator in a consecutive sequence of relation conditions. 

· Access Mode. The manner in which records are to be operated upon within a 
file. 

Actual Decimal Point. 
characters period (.) 
item. 

The physical representation, using the decimal point 
or comma (,),of the decimal point position in a data 

Alphabet-Name. A user-defined word, in the SPECIAL-NAMES paragraph of the 
Environment Division, that assigns a name to a specific character set and/or 
collating sequence. (See page VI-13, The SPECIAL-NAMES Paragraph.) 

Alphabetic Character. A letter or a space character. 

Alphanumeric Character. Any character in the computer's character set. 

Alternate Record Key. A key, other than the prime record key, whose contents 
identify a record within an indexed file. 

Arithmetic Expression. An identifier of a numeric elementary item, a numeric 
literal, such identifiers and literals separated by arithmetic operators, two 
arithmetic expressions separated by an arithmetic operator, or an arithmetic 
expression enclosed in parentheses. 

Arithmetic Operation. The process caused by the execution of an arithmetic 
statement, or the evaluation of an arithmetic expression, that results in a 
mathematically correct solution to the arguments presented. 

III-1 



Glossary 

Arithmetic Operator. A single character or fixed two-character combination 
which belongs to the following set: 

Character 
+ 

* 
I 
** 

Meaning 
addition 
subtraction 
multiplication 
division 
exponentiation 

Arithmetic Statement. A statement that causes an arithmetic operation to be 
executed. The arithmetic statements are the ADD, COMPUTE, DIVIDE, MULTIPLY, and 
SUBTRACT statements. 

Ascending Key. A key upon the values of which data is ordered starting with 
the lowest value of key up to the highest value of key in accordance with the 
rules for comparing data items. 

Assumed Decimal Point. A decimal point position which does not involve the 
existence of an actual character in a data item. The assumed decimal point has 
logical meaning with no physical representation. 

At End Condition. A condition caused: 

(1) During the execution of a READ statement for a sequentially accessed 
file, when no next logical record exists in the file, or when the number of 
significant digits in the relative record number is larger than the size of the 
relative key data item, or when an optional input file is not present. 

(2) During the execution of a RETURN statement, when no next logical 
record exists for the associated sort or merge file. 

(3) During the execution of a SEARCH statement, when the search operation 
terminates without satisfying the condition specified in any of the associated 
WHEN phrases. 

Block. A physical unit of data that is normally composed of one or more 
logical records. For mass storage files, a block may contain a portion of a 
logical record. The size of a block has no direct relationship to the size of 
the file within which the block is contained or to the size of the logical 
record(s) that are either contained within the block or that overlap the block. 
(See page IV-13, Conceptual Characteristics of a File.) The term is synonymous 
with physical record. 

Body Group. Generic name for a report group of TYPE DETAIL, CONTROL HEADING, 
or CONTROL FOOTING. 

Bottom Margin. An empty area which follows the page body. 

Called Program. A program which is the object of a CALL statement combined 
at object time with the calling program to produce a run unit. 

Calling Program. A program which executes a CALL to another program. 

III-2 



Glossary 

Cd-Name. A user-defined word that names an MCS interface area described in a 
communication description entry within the Communication Section of the Data 
Division. 

Character. The basic indivisible unit of the language. 

Character Position. A character position is the amount of physical 
required to store a single standard data format character whose 
DISPLAY. Further characteristics of the physical storage are defined 
implementor. 

Character-String. A sequence of contiguous characters which form 
word, a literal, a PICTURE character-string, or a comment-entry. 
IV-5, .Character-Strings.) 

storage 
usage is 

by the 

a COBOL 
(See page 

Class Condition. The proposition, for which a truth value can be determined, 
that the content of an item is wholly alphabetic or is wholly numeric or 
consists exclusively of those characters listed in the definition of a 
class-name. 

Class-Name. A user-defined word defined in the SPECIAL-NAMES paragraph of 
the Environment Division that assigns a name to the proposition for which a 
truth value can be defined, that the content of a data item consists exclusively 
of those characters listed in the definition of the class-name. 

Clause. A clause is an ordered set of consecutive COBOL character-strings 
whose purpose is to specify an attribute of an entry. 

COBOL Character Set. The complete COBOL character set consists of the 
characters listed below. 

Character 
0, 
A, 
a, 

1' 
B, 
b, 

+ 

* 
I 
= 
$ 

II 

( 
) 

> 
< 

' 

' 

9 
z 
z 

Meaning 
digit 
uppercase letter 
lowercase letter 
space 
plus sign 
minus sign (hyphen) 
asterisk 
slant (solidus) 
equal sign 
currency sign (represented as ~ in the 

International Reference Version of 
International Standard ISO 646-1973) 

comma (decimal point) 
semicolon 
period (decimal point, full stop) 
quotation mark 
left parenthesis 
right parenthesis 
greater than symbol 
less than symbol 
colon 

III-3 



Glossary 

NOTE 1: In the cases where an implementation does not provide all 
of the COBOL character set to be graphically represented, 
substitute graphics may be specified by the implementor to 
replace the characters not represented. The COBOL 
character set graphics are a subset of American National 
Standard X3.4-1977, Code for Information Interchange. 
With the exception of '$', they are also a subset of the 
graphics defined for the International Reference Version 
of International Standard ISO 646-1973, 7-Bit Coded 
Character Set for Information Processing Interchange. 

NOTE 2: When the computer character set includes lowercase 
letters, they may be used in character-strings. Except 
when used in nonnumeric literals and some PICTURE symbols, 
each lowercase letter is equivalent to the corresponding 
uppercase letter. 

COBOL Word. 
user-defined 
Words.) 

A character-string of not more than 30 characters which forms a 
word, a system-name, or a reserved word. (See page IV-5, COBOL 

Collating Sequence. The sequence in which the characters that are acceptable 
to a computer are ordered for purposes of sorting, merging, comparing, and for 
processing indexed files sequentially. 

Column. A character position within a print line. The columns are numbered 
from 1, by 1, starting at the leftmost character position of the print line and 
extending to the rightmost position of the print line. 

Combined Condition. A condition that is the result of connecting two or more 
conditions with the 'AND' or the 'OR' logical operator. 

Comment-Entry. An entry in the Identification Division that may be any 
combination of characters from the computer's character set. 

Comment Line. A source program line represented by an asterisk (*) in the 
indicator area of the line and any characters from the computer's character set 
in area A and area B of that line. The comment line serves only for 
documentation in a program. A special form of comment line represented by a 
slant (/) in the indicator area of the line and any characters from the 
computer's character set in area A and area B of that line causes page ejection 
prior to printing the comment. 

Common Program. A program which, despite being directly contained within 
another program, may be called from any program directly or indirectly contained 
1n that other program. 

Communication Description Entry. An entry in the Communication Section of 
the Data Division that is composed of the level indicator CD, followed by a 
cd-name, and then followed by a set of clauses as required. It describes the 
interface between the message control system (MCS) and the COBOL program. 

Communication Device. A mechanism (hardware or hardware/software) capable of 
sending data to a queue and/or receiving data from a queue. This mechanism may 
be a computer or a peripheral device. One or more programs containing 

III-4 



Glossary 

communication description entries and residing within the same computer define 
one or more of these mechanisms. 

Communication Section. The section of the Data Division that describes the 
interface areas between the message control system (MCS) and the program, 
composed of one or more communication description areas. 

Compile Time. The time at which a COBOL source program is translated, by a 
COBOL compiler, to a COBOL object program. 

Compiler Directing Statement. A statement, beginning with a compiler 
directing verb, that causes the compiler to take a specific action during 
compilation. The compiler directing statements are the COPY, ENTER, REPLACE, 
and USE statements. 

Complex Condition. A condition in which one or more logical operators act 
upon one or more conditions. (See page III-14, Negated Simple Condition; page 
III-4, Combined Condition; and page III-14, Negated Combined Condition.) 

Computer-Name. A system-name that identifies the computer upon which the 
program is to be compiled or run. 

Condition. A status of a program at execution time for which a truth value 
can be determined. Where the term 'condition' (condition-I, condition-2, ••• ) 
appears in these language specifications in or 1n reference to 'condition' 
(condition-I, condition-2, ••• ) of a general format, it is a conditional 
expression consisting of either a simple condition optionally parenthesized, or 
a combined condition consisting of the syntactically correct combination of 
simple conditions, logical operators, and parentheses, for which a truth value 
can be determined. 

Condition-Name. A user-defined word that assigns a name to a subset of 
values that a conditional variable may assume; or a user-defined word assigned 
to a status of an implementor-defined switch or device. When 'condition-name' 
is used in the general formats, it represents a unique data item reference 
consisting of a syntactically correct combination of a condition-name, t'ogether 
with qualifiers and subscripts, as required for uniqueness of reference. 

Condition-Name Condition. The proposition, for which a truth value can be 
determined, that the value of a conditional variable is a member of the set of 
values attributed to a condition-name associated with the conditional variable. 

Conditional Expression. A simple condition or a complex condition specified 
in an EVALUATE, IF, PERFORM, or SEARCH statement. (See page III-23, Simple 
Condition, and page III-5, Complex Condition.) 

Conditional Phrase. A conditional phrase specifies the action to be taken 
upon determination of the truth value of a condition resulting from the 
execution of a conditional statement. 

Conditional Statement. A conditional statement specifies that the truth 
value of a condition is to be determined and that the subsequent action of the 
object program is dependent on this truth value. The conditional statements are 
listed on page IV-37. 

III-5 



Glossary 

Conditional Variable. A data item one or more values of which has a 
condition-name assigned to it. 

Configuration Section. A section of the Environment Division that describes 
overall specifications of source and object programs. 

Contiguous Items. Items that are described by consecutive entries in the 
Data Division, and that bear a definite hierarchical relationship to each other. 

Control Break. A change in the value of a data item that is referenced in 
the CONTROL clause. More generally, a change in the value of a data item that 
is used to control the hierarchical structure of a report. 

Control Break Level. The relative position within a control hierarchy at 
which the most major control break occurred. 

Control Data Item. A data item, a change in whose content may produce a 
control break. 

Control Data-Name. A data-name that appears in a CONTROL clause and refers 
to a control data item. 

Control Footing. A report group that 1s presented at the end of the control 
group of which it is a member. 

Control Group. A set of body groups that is presented for a given value of a 
control data item or of FINAL. Each control group may begin with a control 
heading, end with a control footing, and contain detail report groups. 

Control Heading. A report group that is presented at the beginning of the 
control group of which it is a member. 

Control Hierarchy. A designated sequence of report subdivisions defined by 
the positional order of FINAL and the data-names within a CONTROL clause. 

Counter. A data item used for storing numbers or number representations in a 
manner that permits these numbers to be increased or decreased by the value of 
another number, or to be changed or reset to zero or to an arbitrary positive or 
negative value. 

Currency Sign. The character '$' of the COBOL character set. 

Currency Symbol. The character defined by the CURRENCY SIGN clause in the 
SPECIAL-NAMES paragraph. If no CURRENCY SIGN clause is present in a COBOL 
source program, the currency symbol is identical to the currency sign. 

Current Record. In file proce~sing, the record which 1s available in the 
record area associated with a file. 

Current Volume Pointer. A conceptual entity that points to the current 
volume of a sequential file. 

Data Clause. A clause, appearing in a data description entry in the Data 
Division of a COBOL program, that provides information describing a particular 
attribute of a data item. 

III-6 



Data Description Entry. An entry, in the Data Division of a 
that is composed of a level-number followed by a data-name, 
then followed by a set of data clauses, as required. 

Glossary 

COBOL program, 
if required, and 

Data Item. A unit of data (excluding literals) defined by the COBOL program. 

Data-Name. A user-defined word that names a data item described in a data 
description entry. When used in the general formats, 'data-name' represents a 
word which must not be reference-modified, subscripted, or qualified unless 
specifically permitted by the rules of the format. 

Debugging Line. A debugging line is any line with a 'D' in the indicator 
area of the line. 

Debugging Section. A debugging section is a section that contains a USE FOR 
DEBUGGING statement. 

Declarative Sentence. A compiler directing sentence consisting of a single 
USE statement terminated by the separator period. 

Declaratives. A set of one or more special purpose sections, written at the 
beginning of the Procedure Division, the first of which is preceded by the key 
word DECLARATIVES and the last of which is followed by the key words END 
DECLARATIVES. A declarative is composed of a section header, followed by a USE 
compiler directing sentence, followed by a set of zero, one, or more associated 
paragraphs. 

De-Edit. The logical removal of all editing characters from a numeric edited 
data item in order to determine that item's unedited numeric value. 

Delimited Scope Statement. Any statement which includes its explicit scope 
terminator. (See page IV-27, Explicit and Implicit Scope Terminators.) 

Delimiter. A character or a sequence of contiguous characters that identify 
the end of a string of characters and separates that string of characters from 
the following string of characters. A delimiter is not part of the string of 
characters that it delimits. 

Descending Key. A key upon the values of which data is ordered starting with 
the highest value of key down to the lowest value of key, in accordance with the 
rules for comparing data items. 

Destination. The symbolic identification of the receiver of a transmission 
from a queue. 

Digit Position. A digit position is the amount of physical storage required 
to store a single digit. This amount may vary depending on the usage specified 
in the data description entry that defines the data item. If the data 
description entry specifies that usage is DISPLAY, then a digit position is 
synonymous with a character position. Further characteristics of the physical 
storage are defined by the implementor. 

III-7 



Glossary 

Division. A collection of zero, one, or more sections or paragraphs, called 
the division body, that are formed and combined in accordance with a specific 
set of rules. Each division consists of the division header and the related 
division body. There are four divisions in a COBOL program: Identification, 
Environment, Data, and Procedure. 

Division Header. 
that indicates the 
program are: 

A combination of words, followed by a separator period, 
beginning of a division. The division headers in a COBOL 

IDENTIFICATION DIVISION. 
ENVIRONMENT DIVISION. 
DATA DIVISION. 
PROCEDURE DIVISION [USING {data-name-1} ••• ]. 

Dynamic Access. An access mode in which specific logical records can be 
obtained from or placed into a mass storage file in a nonsequential manner and 
obtained from a file in a sequential manner during the scope of the same OPEN 
statement. (See page III-19, Random Access, and page III-22, Sequential 
Access.) 

Editing Character. A single character or a fixed two-character combination 
belonging to the following set: 

Character Meaning 
B space 
0 zero 
+ plus 

minus 
CR credit 
DB debit 
z zero suppress 

* check protect 
$ currency sign 

comma (dee imal point) 
period (dee imal point) 

I slant (solidus) 

Elementary Item. A data item that is described as not being further 
logically subdivided. 

End of Procedure Division. The physical posit ion of a COBOL source program 
after which no further procedures appear. 

End Program Header. A combination of words, followed by a separator period, 
that indicates the end of a COBOL source program. The end program header is: 

END PROGRAM program-name. 

Entry. Any descriptive set of consecutive clauses terminated by a separator 
period and written in the Identification Division, Environment Division, or Data 
Division of a COBOL program. 

Environment Clause. A clause that appears as part of an Environment Division 
entry. 

III-8 



Glossary 

Execution Time. The time at which an object program is executed. 
is synonymous with object time. 

The term 

Explicit Scope Terminator. A reserved word which terminates the scope of a 
particular Procedure Division statement. 

Expression. An arithmetic or conditional expression. 

Extend Mode. The state of a file after execution of an OPEN statement, with 
the EXTEND phrase specified, for that file and before the execution of a CLOSE 
statement without the REEL or UNIT phrase for that file. 

External Data. The data described in a program as external data items and 
external file connectors. 

External Data Item. A data item which is described as part 
record in one or more programs of a run unit and which itself 
from any program in which it is described. 

of an external 
may be referenced 

External Data Record. A logical record which is described in one or more 
programs of a run unit and whose constituent data items may be referenced from 
any program in which they are described. 

External File Connector. A file connector which is accessible to one or more 
object programs in the run unit. 

External Switch. A hardware or software device, defined and named by the 
implementor, which is used to indicate that one of two alternate states exists. 

Figurative Constant. A compiler generated value referenced through the use 
of certain reserved words. (See page IV-10, Figurative Constant Values.) 

File. A collection of logical records. 

File Attribute Conflict Condition. An unsuccessful attempt has been made to 
execute an input-output operation on a file and the file attributes, as 
specified for that file in the program, do not match the fixed at tri bates for 
that file. 

File Clause. A clause that appears as part of 
Division entries: file description entry (FD 
description entry (SP entry.) 

any of 
entry) 

the 
and 

following Data 
sort-merge file 

File Connector. A storage area which contains information about a file and 
is used as the linkage between a file-name and a physical file and between a 
file-name and its associated record area. 

FILE-CONTROL. The name of an Environment Division paragraph in which the 
data files for a given source program are declared. 

File Control Entry. A SELECT clause and all its subordinate clauses which 
declare the relevant physical attributes of a file. 

III-9 



Glossary 

File Description Entry. An entry in the File Section of 
that is composed of the lev.el indicator FD, followed by a 
followed by a set of file clauses as required. 

the Data Division 
file-name, and then 

File-Name. A user-defined word that names a file connector described in a 
file description entry or a sort-merge file description entry within the File 
Section of the Data Division. 

File Organization. The permanent logical file structure established at the 
time that a file is created. 

File Position Indicator. A conceptual entity that contains the value of the 
current key within the key of reference for an indexed file, or the record 
number of the current record for a sequential file, or the relative record 
number of the current record· for a relative file, or indicates that no next 
logical record exists, or that the number of significant digits in the relative 
record number is larger than the size of the relative key data item, or that an 
optional input file is not present, or that the at end condition already exists, 
or that no valid next record has been established. 

File Section. The section of 
description entries and sort-merge 
associated record descriptions. 

the Data Division that contains file 
file description entries together with their 

Fixed File Attributes. Information about a file which is established when a 
file is created and cannot subsequently be changed during the existence of the 
file. These attributes include the organization of the file (sequential, 
relative, or indexed), the prime record key, the alternate record keys, the code 
set, the minimum and maximum record size, the record type (fixed or variable), 
the collating sequence of the keys for indexed files, the blocking factor, the 
padding character, and the record delimiter. 

Fixed Length Record. A record associated 
or sort-merge description entry requires 
number of character positions. 

with a file whose file description 
that all records contain the same 

Footing Area. The position of the page body adjacent to the bottom margin. 

Format. A specific arrangement of a set of data. 

Global Name. A name which is declared in only one program but which may be 
referenced from that program and from any program contained within that program. 
Condition-names, data-names, file-names, record-names, report-names, and some 
special registers may be global names. (See page X-6, Conventions for 
Condition-Names, Data-Names, File-Names, Record-Names, and Report-Names; page 
X-18, general rule 1 concerning LINAGE-COUNTER; and page X-22, general rule 1 
concerning LINE-COUNTER and PAGE-COUNTER.) 

Group Item. A data item that is composed of subordinate data items. 

High Order End. The leftmost character of a string of characters. 

I-0-CONTROL. The name of an Environment Division paragraph in which object 
program requirements for rerun points, sharing of same areas by several data 
files, and multiple file· storage on a single input-output device are specified. 

III-10 



I-0-CONTROL Entry. An 
Division which contains 
transmission and handling 

/ program. 

entry in the I-0-CONTROL 
clauses which provide 

of data on named files 

paragraph of 
information 

during the 

Glossary 

the Environment 
required for the 
execution of a 

I-0 Mode. The state of a file after execution of an OPEN statement, with the 
I-0 phrase specified, for that file and before the execution of a CLOSE 
statement without the REEL or UNIT phrase for that file. 

I-0 Status. A conceptual entity which contains the two-character value 
indicating the resulting status of an input-output operation. This value is 
made available to the program through the use of the FILE STATUS clause in the 
file control entry for the file. 

Identifier. A syntactically correct 
qualifiers, subscripts, and reference 
reference, that names a data item. The 
the general formats may, however, 
subscripting, or reference modification. 

combination of a data-name, with its 
modifiers, as required for uniqueness of 
rules for 'identifier' associated with 

specifically prohibit qualification, 

Imperative Statement. A statement that either begins with an imperative verb 
and specifies an unconditional action to be taken or is a conditional statement 
that is delimited by its explicit scope terminator (delimited scope statement). 
An imperative statement may consist of a sequence of imperative statements. 

Implementor-Name. A system-name that refers to a particular 
available on that implementor's computing system. 

feature 

Implicit Scope Terminator. A separator period which terminates the scope of 
any preceding unterminated statement, or a phrase of a statement which by its 
occurrence indicates the end of the scope of any statement contained within the 
preceding phrase. 

Index. A computer storage area or register, the content of which represents 
the identification of a particular element in a table. 

Index Data Item. A data item in which the values associated with an 
index-name can be stored in a form specified by the implementor. 

Index-Name. A user-defined word that names an index associated with a 
specific table. 

Indexed File. A file with indexed organization. 

Indexed Organization. The permanent logical file structure in which each 
record is identified by the value of one or more keys within that record. 

Initial Program. A program that is placed into an initial state every time 
the program is called in a run unit. 

Initial State. The state of a program when it is first called in a run unit. 
(See page X-10, Initial State of a Program.) 

Input File. A file that is opened in the input mode. 

III-11 



Glossary 

Input Mode. The state of a file after execution of an OPEN statement, with 
the INPUT phrase specified, for that file and before the execution of a CLOSE 
statement without the REEL or UNIT phrase for that file. 

Input-Output File. A file that is opened in the I-0 mode. 

Input-Output Section. The section of the Environment Division 
files and the external media required by an object program and 
information required for transmission and handling of data during 
the object program. 

that names the 
which provides 

execution of 

Input-Output Statement. A statement that causes files to be processed by 
performing operations upon individual records or upon the file as a unit. The 
input-output statements are: ACCEPT (with the identifier phrase), CLOSE, 
DELETE, DISABLE, DISPLAY, ENABLE, OPEN, PURGE, READ, RECEIVE, REWRITE, SEND, SET 
(with the TO PN or TO OFF phrase), START, and WRITE. 

Input Procedure. A set of statements, to which control is given during the 
execution of a SORT statement, for the purpose of controlling the release of 
specified records to be sorted. 

Integer. A numeric literal or a numeric data item that does not include any 
digit position to the right of the assumed decimal point. When the term 
'integer' appears in general formats, integer must not be a numeric data item, 
and must not be signed, nor zero unless explicitly allowed by the rules of that 
format. 

Internal Data. The data described in a program excluding all external data 
items and external file connectors. Items described in the Linkage Section of a 
program are treated as internal data. 

Internal Data Item. A data item which is described in one program in a run 
unit. An internal data item may have a global name. 

Internal File Connector. A file connector which is accessible to only one 
object program in the run unit. 

Intra-Record Data Structure. The entire collection of groups and elementary 
data items from a logical record which is defined by a contiguous subset of the 
data description entries which describe that record. These data description 
entries include all entries whose level-number is greater than the level-number 
of the first data description entry describing the intra-record data structure. 

Invalid Key Condition. A condition, at object time, caused when a specific 
value of the key associated with an indexed or relative file is determined to be 
invalid._ 

Key. A data item which identifies the location of a record, or a set of data 
items which serve to identify the ordering of data. 

Key of Reference. The key, either prime or alternate, currently being used 
to access records within an indexed file. 

Key Word. A reserved word whose presence is required when the format in 
which the word appears is used in a source program. 

III-12 



Language-Name. 
language. 

A system-name that specifies a particular 

Letter. A character belonging to one of the following 
(l) uppercase letters: A, B, C, D, E, F, G, H, I, J, K, L, M, N, 
T, u, v, W, x, Y, Z; (2) lowercase letters: a, b, c, d, e, f, g, 
l' m, n, o, p, q, r, s' t, u, v, w, x, y, z. 

Glossary 

programming 

two sets: 
0, P, Q, R, S, 
h, i, j' k, 

Level Indicator. Two alphabetic characters that identify a specific type of 
file or a position in a hierarchy. The level indicators in the Data Division 
are: CD, FD, RD, and SD. 

Level-Number. A user-defined word, expressed as a one or two digit number, 
which indicates the hierarchical position of a data item or the special 
properties of a data description entry. Level-numbers in the range l through 49 
indicate the position of a data item in the hierarchical structure of a logical 
record. Level-numbers in the range l through 9 may be written either as a 
single digit or as a zero followed by a significant digit. Level-numbers 66, 
77, and 88 identify special properties of a data description entry. 

Library-Name. A user-defined word that names a COBOL library that is to be 
used by the compiler for a given source program compilation. 

Library Text. A sequence of text words, comment lines, the separator space, 
or the separator pseudo-text delimiter in a COBOL library. 

LINAGE-COUNTER. A special register whose value points to the current 
position within the page body. 

Line. A division of a page representing one row of horizontal 
positions. Each character pos1t1on of a report line is aligned 
beneath the corresponding character position of the report line 
Report lines are numbered from 1, by 1, starting at the top of the 
term is synonymous with report line. 

character 
vertically 
above it. 
page. The 

Line Number. An integer that denotes the vertical position of a report line 
on a page. 

Linkage Section. The section in the Data Division of the called program that 
describes data items available from the calling program. These data items may 
be referred to by both the calling and the called program. 

Literal. A character-string whose value is implied by the ordered set of 
characters comprising the string. 

Logical Operatqr. One of the reserved words AND, OR, or NOT. In the 
formation of a condition, either AND, or OR, or both, can be used as logical 
connectives. NOT can be used for logical negation. 

Logical Page. A conceptual entity consisting of the top margin, the page 
body, and the bottom margin. 

Logical Record. The most inclusive data item. The level-number for a record 
is 01. A record may be either an elementary item or a group item. The term is 
synonymous with record. 

III-13 



Glossary 

Low Order End. The rightmost character of a string of characters. 

Mass Storage. A storage medium in which data may be organized and maintained 
in both a sequential and nonsequential manner. 

Mass Storage Control System (MSCS). An input-output control system that 
directs, or controls, the processing of mass storage files. 

Mass Storage File. A collection of records that is assigned to a mass 
storage medium. 

MCS. Message control system; a communication control system that supports 
the processing of messages. 

Merge File. A collection of records to be merged by a MERGE statement. The 
merge file is created and can be used only by the merge function. 

Message. Data associated with an end of message indicator or an end of group 
indicator. (See page III-14, Message Indicators.) 

Message Control System (MCS). A communication control system that supports 
the processing of messages. 

Message Count. The count of the number of complete messages that exist in 
the designated queue of messages. 

Message Indicators. EGI (end of group indicator), EMI (end of message 
indicator), and ESI (end of segment indicator) are conceptual indications that 
serve to notify the message control system that a specific condition exists (end 
of group, end of message, or end of segment). Within the hierarchy of EGI, EMI, 
and ESI, an EGI is conceptually equivalent to an ESI, EMI, and EGI. An EMI is 
conceptually equivalent to an ESI and EMI. Thus, a segment may be terminated by 
an ESI, EMI, or EGI. A message may be terminated by an EMI or EGI. 

Message Segment. Data that forms a logical subdivision of a message, 
normally associated with an end of segment indicator. (See page III-14, Message 
Indicators.) 

Mnemonic-Name. A user-defined word that is associated in the Environment 
Division with a specific implementor-name. 

MSCS. Mass storage control system; an input-output control system that 
directs, or controls, the processing of mass storage files. 

Native Character Set. The implementor-defined character set associated with 
the computer specified in the OBJECT-COMPUTER paragraph. 

Native Collating Sequence. The implementor-defined collating sequence 
associated with the computer specified in the OBJECT-COMPUTER paragraph. 

Negated Combined Condition. The 'NOT' logical operator immediately followed 
by a parenthesized combined condition. 

Negated Simple Condition. The 'NOT' logical operator immediately followed by 
a simple condition. 

III-14 



Next Executable Sentence. The next sentence to which control 
transferred after execution of the current statement is complete. 
IV-25, Explicit and Implicit Transfers of Control.) 

Next Executable Statement. The next statement to which control 
transferred after execution of the current statement is complete. 
IV-25, Explicit and Implicit Transfers of Control.) 

Glossary 

will be 
(See page 

will be 
(See page 

Next Record. The record which logically follows the current record of a 
file. 

Noncontiguous Item. Elementary data items, in the Working-Storage and 
Linkage Sections, which bear no hierarchic relationship to other data items. 

Nonnumeric Item. A data item whose description permits its content to be 
composed of any combination of characters taken from the computer's character 
set. Certain categories of nonnumeric items may be formed from more restricted 
character sets. 

Nonnumeric Literal. A literal bou~ded by quotation marks. The string of 
characters may include any character in the computer's character set. 

Numeric Character. A character that belongs to the following set of digits: 
0, 1, 2, 3, 4, 5, 6, 7, 8, 9. 

Numeric 'Item. A data item whose description restricts its content to a value 
represented by characters chosen from the digits 'O' through '9'; if signed, the 
item may also contain a '+', '-', or other representation of an operational 
sign. (See VI-42, The SIGN Clause.) 

Numeric Literal. A literal composed of 
may contain either a decimal point, or an 
point must not be the rightmost character. 
be the leftmost character. 

one or more numeric characters that 
algebraic sign, or both. The decimal 

The algebraic sign, if present, must 

OBJECT-COMPUTER. The name of an Environment Division paragraph in which the 
computer environment, within which the object program is executed, is described. 

Object Computer Entry. An entry in the OBJECT-COMPUTER par~graph of the 
Environment Division which contains clauses which describe the computer 
environment in which the -object program is to be executed. 

Object of Entry. A set of operands and reserved words, within a Data 
Division entry of a COBOL program, that immediately follows the subject of the 
entry. 

Object Program. A set or group of executable machine language instructions 
and other material designed to interact with data to provide problem solutions. 
In this context, an object program is generally the machine language result of 
the operation of a COBOL compiler on a source program. Where there is no danger 
of ambiguity, the word 'program' alone may be used in place of the phrase 
'object program'. 

Object Time. The time at which an object program is executed. The term is 
synonymous with execution time. 

III-15 



Glossary 

Obsolete Element. A COBOL language element in Standard COBOL that is to be 
deleted from the next revision of Standard COBOL. 

Open Mode. The state of a file after execution of an OPEN statement for that 
file and before the execution of a CLOSE statement without the REEL or UNIT 
phrase for that file. The particular open mode is specified in the OPEN 
statement as either INPUT, OUTPUT, I-0, or EXTEND. 

Operand. Whereas the general definition of operand is 'that component which 
is operated upon', for the purposes of this document, any lowercase word (or 
words) that appears in a statement or entry format may be considered to be an 
operand and, as such, is an implied reference to the data indicated by the 
operand. 

Operational Sign. An algebraic sign, associated with a numeric data item or 
a numeric literal, to indicate whether its value is positive or negative. 

Optional File. A file which is declared as being 
each time the object program is executed. The 
interrogation for the presence or absence of the file. 

not . necessarily present 
object program causes an 

Optional Word. A reserved word that is included in a specific format only to 
improve the readability of the language and whose presence is optional to the 
user when the for~at in which the word appears is used in a source program. 

Output File. A file that is opened in either the output mode or extend mode. 

Output Mode. The state of a file after execution of an OPEN statement, with 
the OUTPUT or EXTEND phrase specified, for that file and before the execution of 
a CLOSE statement without the REEL or UNIT phrase for that file. 

Output Procedure. A set of statements to which control is given during 
execution of a SORT statement after the sort function is completed, or during 
execution of a MERGE statement after the merge function reaches a point at which 
it can select the next record in merged order when requested. 

Padding Character. An alphanumeric character used to fill the unused 
character positions in a physical record. 

Page. A vertical division of a report representing a physical separation of 
report data, the separation being based on internal reporting requirements 
and/or external characteristics of the reporting medium. 

Page Body. 
and/or spaced. 

That part of the logical page in which 
(See page VII-27, The LINAGE Clause.) 

lines can be written 

Page Footing. A report group that is presented at the end of a report page 
as determined by the report writer control system. 

Page Heading. A report group that is presented at the beginning of a report 
page as determined by the report writer control system. 

III-16 



Glossary 

Paragraph. In the Procedure Division, a paragraph-name followed by a 
separator period and by zero, one, or more sentences. In the Identification and 
Environment Divisions, a paragraph header followed by zero, one, or more 
entries. 

Paragraph Header. A reserved word, followed by the separator period, that 
indicates the beginning of a paragraph in the Identification and Environment 
Divisions. The permissible paragraph headers in the Identification Division 
are: 

PROGRAM- ID. 
AUTHOR. 
INSTALLATION. 
DATE-WRITTEN. 
DATE-COMPILED. 
SECURITY. 

The permissible paragraph headers in the Environment Division are: 

SOURCE-COMPUTER. 
OBJECT-COMPUTER. 
SPECIAL-NAMES. 
FILE-CONTROL. 
I-0-CONTROL. 

Paragraph-Name. A user-defined word that identifies and begins a paragraph 
1n the Procedure Division. 

Phrase. A phrase is 
character-strings that 
COBOL clause. 

an ordered set of one or more consecutive COBOL 
form a portion of a COBOL procedural statement or of a 

Physical Page. A device dependent concept defined by the implementor. 

Physical Record. The term is synonymous with block. 

Prime Record Key. A key whose contents uniquely identify a record within an 
indexed file. 

Printable Group. A report group that contains at least one print line. 

Printable Item. A data item, the extent and contents of which are specified 
by an elementary report entry. This elementary report entry contains a COLUMN 
NUMBER clause, a PICTURE clause, and a SOURCE, SUM, or VALUE clause. 

Procedure. A paragraph or group of logically successive paragraphs, or a 
section or group of logically successive sections, within the Procedure 
Division. 

Procedure Branching Statement. A statement that causes the explicit transfer 
of control to a statement other than the next executable statement in the 
sequence in which the statements are written in the source program. The 
procedure branching statements are: ALTER, CALL, EXIT, EXIT PROGRAM, GO TO, 
MERGE (with the OUTPUT PROCEDURE phrase), PERFORM and SORT (with the INPUT 
PROCEDURE or OUTPUT PROCEDURE phrase). 

III-17 



Glossary 

Procedure-Name. A user-defined word which is used to name a paragraph or 
section in the Procedure Division. It consists of a paragraph-name (which may 
be qualified), or a section-name. 

Program Identification Entry. An entry in the PROGRAM-ID paragraph of the 
Identification Division which contains clauses that specify the program-name and 
assign selected program attributes to the pro~ram. • 

Program-Name. In the Identification Division and the end program header, a 
user-defined word that identifies a COBOL source program. 

Pseudo-Text. A sequence of text words, comment lines, or the separator space 
in a source program or COBOL library bounded by, but n6t including, pseudo-text 
delimiters. 

Pseudo-Text Delimiter. Two contiguous equal sign ( =) characters used to 
delimit pseudo-text. 

Punctuation Character. 

Character 

II 

( 
) 

Qualified Data-Name. 
by one or more sets 
data-name qualifier. 

A character that belongs to the following set: 

Meaning 
comma 
semicolon 
colon 
period (full stop) 
quotation mark 
left parenthesis 
right parenthesis 
space 
equal sign 

An identifier that is composed of a data-name followed 
of either of the connectives OF and IN followed by a 

Qualifier. (1) A data-name or a name associated with a level indicator 
which is used in a reference either together with another data-name which is the 
name of an item that is subordinate to the qualifier or together with a 
condition-name. 

(2) A section-name which is used in a reference together with a 
paragraph-name specified in that section. 

(3) A library-name which is used in a reference together with a text-name 
associated with that library. 

(See page IV-18, Qualification.) 

~. A logical collection of messages awaiting transmission or processing. 

Queue Name. A symbolic name that indicates to the message control system the 
logical path by which a message or a portion of a completed message may be 
accessible in a queue. 

III-18 



Glossary 

Random Access. An access mode in which the program-specified value of a key 
data item identifies the logical record that is obtained from, deleted from, or 
placed into a relative or indexed file. 

Record. The 
A record may 
synonymous with 

most inclusive data item. 
be either an elementary 
logical record. 

The level-number for a record 1s 01. 
item or a group item. The term is 

Record Area. A storage area allocated for the purpose of processing the 
record described in a record description entry in the File Section of the Data 
Division. In the File Section, the current number of character positions in the 
record area is determined by the explicit or implicit RECORD clause. 

Record Description. The total set of data description entries associated 
with a particular record. The term is synonymous with record description entry. 

Record Description Entry. 
associated with a particular 
description. 

The total set of 
record. The term 

data description entries 
1s synonymous with record 

Record Key. A key whose 
Within an indexed file, 
alternate record key. 

contents identify a record within an indexed file. 
a record key is either the prime record key or an 

Record-Name. A user-defined word that names a record described in a record 
description entry in the Data Division of a COBOL program. 

Record Number. The ordinal number of a record in the file whose organization 
is sequential. 

Reel. A discrete portion of a storage medium, the dimensions 
determined by each implementor, that contains part of a file, all 
any number of files. The term is synonymous with unit and volume. 

of which are 
of a file, or 

Reference Format. A format that provides a standard method for describing 
COBOL source programs. 

Reference Modifier. The leftmost-character-position and length used to 
establish and reference a data item. (See page IV-22, Reference Modification.) 

Relation. The term is synonymoqs with relational operator. 

Relation Character. 

Character 
> 
< 
= 

A character that belongs to the following set: 

Meaning 
greater than 
less than 
equal to 

Relation Condition. The proposition, for which a truth value can be 
determined, that the value of an arithmetic expression, data item, nonnumeric 
literal, or index-name has a specific relationship to the value of another 
arithmetic expression, data item, nonnumeric literal, or index-name. (See page 
III~20, Relational Operator.) 

III-19 



Glossary 

Relational Operator. A reserved word, a 
consecutive reserved words, or a group 
relation characters used in the construction 
permissible operators and their meanings are: 

relation character, a group of 
of consecutive reserved words and 

of a relation condition. The 

Relational Operator 

IS [NOT] GREATER THAN 
IS [NOT] > 

IS [NOT] LESS THAN 
IS [NOT] < 
IS [NOT] EQUAL TO 
IS [NOT] = 

IS GREATER THAN OR EQUAL TO 
IS )= 

IS LESS THAN OR EQUAL TO 
IS <= 

Meaning 

Greater than or not greater than 

Less than or not less than 

Equal to or not equal to 

Greater than or equal to 

Less than or equal to 

Relative File. A file with relative organization. 

Relative Key. A key whose contents identify a logical record in a relative 
file. 

Relative Organization. The permanent logical file structure 
record is uniquely identified by an integer value greater 
specifies the record's logical ordinal position in the file. 

in which each 
than zero, which 

Relative Record Number. 
organization is relative. 
an integer. 

The ordinal number of a record in a file whose 
This number is treated as a numeric literal which is 

Report Clause. A clause, in the Report Section of the Data Division, that 
appears in a report description entry or a report group description entry. 

Report Description Entry. An 
Division that is composed of 
report-name, followed by a set of 

entry in the Report Section of 
the level indicator RD, followed 

report clauses as required. 

the 
by 

Data 
the 

Report File. An output file whose file description entry contains a REPORT 
clause. The contents of a report file consist of records that are written under 
control of the report writer control system. 

Report Footing. A report group that is presented only at the end of a 
report. 

Report Group. In the Report Section of the Data Division, an 01 level-number 
entry and its subordinate entries. 

Report Group Description Entry. An entry in the Report Section of the 
Division that is composed of the level-number 01, an optional data-name, a 
clause, and an optional set of report clauses. 

III-20 

Data 
TYPE 



Glossary 

Report Heading. A report group that 1s presented only at the beginning of a 
report. 

Report Line. A division of a page representing one row of horizontal 
character positions. Each character pos1t1on of a report line is aligned 
vertically beneath the corresponding character position of the report line above 
it. Report lines are numbered from 1, by 1, starting at the top of the page. 

Report-Name. A user-defined word that names a report described 1n a report 
description entry within the Report Section of the Data Division. 

Report Section. The section of the Data Division that contains zero, one, or 
more report description entries and their associated report group description 
entries. 

Report Writer Control System (RWCS). An object time control system, provided 
by the implementor, that accomplishes the construction of reports. 

Report Writer Logical Record. A record that consists of the report writer 
print line and associated control information necessary for its selection and 
vertical positioning. 

Reserved Word. A COBOL word specified in the list of words which may be used 
in a COBOL source program, but which must not appear in the program as 
user-defined words or system-names. 

Resource. A facility or service, controlled by the operating system, that 
can be used by an executing program. 

Resultant Identifier. A user-defined data item that 1s to contain the result 
of an arithmetic operation. 

Routine-Name. A user-defined word that identifies a procedure written in a 
language other than COBOL. 

Run Unit. One or more object programs which interact with one another and 
which function, at object time, as an entity to provide problem solutions. 

RWCS. Report writer control system; an object time control system, provided 
by the implementor, that accomplishes the construction of reports. 

Section. A set of zero, one, or more paragraphs or entries, called a section 
body, the first of which is preceded by a section header. Each section consists 
of the section header and the related section body. 

III-21 



Glossary 

Section Header. A combination of words followed by a separator period that 
indicates the beginning of a section in the Environment, Data, and Procedure 
Division. In the Environment and Data Divisions, a section header is composed 
of reserved words followed by a separator period. The permissible section 
headers in the Environment Division are: 

CONFIGURATION SECTION. 
INPUT-OUTPUT SECTION. 

The permissible section headers in the Data Division are: 

FILE SECTION. 
WORKING-STORAGE SECTION. 
LINKAGE SECTION. 
COMMUNICATION SECTION. 
REPORT SECTION. 

In the Procedure Division, a section header is composed of a section-name, 
followed by the reserved word SECTION, followed by a segment-number (optional), 
followed by a separator period. 

Section-Name. A user-defined word which names a section 1n the Procedure 
Division. 

Segment-Number. A user-defined word which classifies sections in the 
Procedure Division for purposes of segmentation. Segment-numbers may contain 
only the characters 'O' ,'l', ••• , '9'. A segment-number may be expressed 
either as a one or two digit number. 

Sentence. A sequence of one or more statements, the last of which 1s 
terminated by a separator period. 

Separately Compiled Program. A program which, together with its contained 
programs, is compiled separately from all other programs. 

Separator. A 
character-strings. 

CQaracter or two contiguous 
'(see page IV-4, Separators.) 

characters used to delimit 

Sequential Access. An access mode in which logical records are obtained from 
or placed into a file in a consecutive predecessor-to-successor logical record 
sequence determined by the order of records in the file. 

Sequential File. A file with sequential organization. 

Sequential Organization. The permanent logical file structure in which a 
record is identified by a predecessor-successor relationship established when 
the record is placed into the file. 

Sign Condition. The proposition, for which a truth value can be determined, 
that the algebraic value of a data item or an arithmetic expression is either 
less than, greater than, or equal to zero. 

III-22 



Simple Condition. Any single condition chosen from the set: 

relation condition 
class condition 
condition-name condition 
switch-status condition 
sign condition 
(simple-condition) 

Glossary 

Sort File. A collection of records to be sorted by a SORT statement. The 
sort file is created and can be used by the sort function only. 

Sort-Merge File Description Entry. An entry in the File Section of the Data 
Division that is composed of the level indicator SD, followed by a file-name, 
and then followed by a set of file clauses as required. 

Source. The symbolic identification of the originator of a transmissidn to a 
queue. 

SOURCE-COMPUTER. The name of an Environment Division paragraph in which the 
computer environment, within which the source program is compiled, is described. 

Source Computer Entry. An entry in 
Environment Division which contains 
environment in which the source program 

the SOURCE-COMPUTER paragraph 
clauses which describe the 

is to be compiled. 

of the 
computer 

Source Item. An identifier designated by a SOURCE clause that provides the 
value of a printable item. 

Source Program. Although it is recognized that a source program may be 
represented by other forms and symbols, in this document it always refers to a 
syntactically correct set of COBOL statements. A COBOL source program commences 
with the Identification Division; a COPY statement; or a REPLACE statement. A 
COBOL source program is terminated by the end program header, if specified, or 
by the absence of additional source program lines. 

Special Character. A character that belongs to the following set: 

Character Meaning 
+ plus sign 

minus sign 
* asterisk 
I slant (solidus) 
= equal sign 
$ currency sign 

II 

( 
) 
> 
< 

comma (decimal point) 
semicolon 
period (decimal point, full stop) 
quotation mark 
left parenthesis 
right parenthesis 
greater than symbol 
less than symbol 
colon 

III-23 



Glossary 

Special Character Word. A reserved word which is an arithmetic operator or a 
relation character. 

SPECIAL-NAMES. The name of an Environment Division paragraph in which 
implementor-names are related to user-specified mnemonic-names. 

Special Names Entry. An entry in the SPECIAL-NAMES paragraph of the 
Environment Division which provides means for specifying the currency sign; 
choosing the decimal point; specifying symbolic characters; relating 
implementor-names to user-specified mnemonic-names; relating alphabet-names to 
character sets or collating sequences; and relating class-names to sets of 
characters. 

Special Registers. Certain compiler generated storage areas whose primary 
use is to store information produced in conjunction with the use of specific 
COBOL features. 

Standard Data Format. The concept used in describing data in a COBOL Data 
Division under which the characteristics or properties of the data are expressed 
in a form oriented to the appearance of the data on a printed page of infinite 
length and breadth, rather than a form oriented to the manner in which the data 
is stored internally in the computer or on a particular medium. 

Statement. A syntactically val id combination of words, literals, and 
separators, beginning with a verb, written in a COBOL source program. 

Sub-Queue. A logical hierarchical division of a queue. 

Subject of Entry. An operand or reserved word that appears immediately 
following the level indicator or the level-number in a Data Division entry. 

Subprogram. A program which is the object of a CALL statement combined at 
object time with the calling program to produce a run unit. The term is 
synonymous with called program. 

Subscript. An occurrence number represented by either an 
data-name optionally followed by an integer with the operator 
index-name optionally followed by an integer with the operator + 
identifies a particular element in a table. 

integer, a 
+ or -, or an 
or - which 

Subscripted Data-Name. An identifier that is composed of a data-name 
followed by one or more subscripts enclosed in parentheses. 

Sum Counter. A signed numeric data item established by a SUM clause in the 
Report Section of the Data Division. The sum counter is used by the Report 
Writer Control System to contain the result of designated summing operations 
that take place during production of a report. 

Switch-Status Condition. The proposition, for which a truth value can be 
determined, that an implementor-defined switch, capable of being set to an 'on' 
or 'off' status, has been set to a specific status. 

Symbolic-Character. 
figurative constant. 

A user-defined word that specifies a user-defined 

III-24 



Glossary 

System-Name. A COBOL word which is used to communicate with the operating 
environment. 

Table. A set of logically consecutive items of data that are defined in the 
Data Division of a COBOL program by means of the OCCURS clause. 

Table Element. A data item that belongs to the set of repeated items 
comprising a table. 

Terminal. The originator of a transmission to a queue, or the receiver of a 
transmission from a queue. 

Text-Name. A user-defined word which identifies library text. 

Text Word. A character or 
margin A and margin R in a 
which is: 

a sequence of contiguous characters between 
COBOL library, source program, or in pseudo-text 

(1) A separator, except for: space; a pseudo-text 
opening and closing delimiters for nonnumeric literals. 
and left parenthesis characters, regardless of context 
source program, or pseudo-text, are always considered text 

delimiter; and the 
The right parenthesis 
within the library, 
words. 

(2) A literal including, in the case of nonnumeric literals, the opening 
quotation mark and the closing quotation mark which bound the literal. 

(3) Any other sequence of contiguous COBOL characters except comment 
lines and the word 'COPY', bounded by separators, which is neither a separator 
nor a literal. 

Top Margin. An empty area which precedes the page body. 

Truth Value. The representation of the result of the evaluation of a 
condition in terms of one of two values: true, false. 

Unary Operator. A plus (+) or a minus (-"-) sign, which precedes a variable or 
a left parenthesis in. an arithmetic expression and which has the effect of 
multiplying the expression by +l or -1 respectively. 

Unit. A discrete portion of a storage medium, the dimensions of which are 
determined by each implementor, that contains part of a file, all of a file, or 
any number of files. The term is synonymous with reel and volume. 

Unsuccessful Execution. The attempted execution of a statement that does not 
result in the execution of all the operations specified by that statement. The 
unsuccessful execution of a statement does not affect any data referenced by 
that statement, but may affect status indicators. 

User~Defined Word. A COBOL word that must be supplied by the user to satisfy 
the format of a clause or statement. 

Variable. A data item whose value may be changed by execution of the object 
program. A variable used in an arithmetic-expression must be a numeric 
elementary item. 

III-25 



Glossary 

Variable Length Record. A record associated with a file whose file 
description or sort-merge description entry permits records to contain a varying 
number of character positions. 

Variable Occurrence Data Item. A variable occurrence data item is a table 
element which is repeated a variable number of times. Such an item must contain 
an OCCURS DEPENDING ON clause in its data desc~iption entry, or be subordinate 
to such an item. 

Verb. A word that expresses an action to be taken by a COBOL compiler or 
object program. 

Volume. A discrete portion of a storage medium, the dimensions of which are 
determined by each implementor, that contains part of a file, all of a file, or 
any number of files. The term is synonymous with reel and unit. 

Word. A character-string of not 
user-defined word, a system-name, 
Words.) 

more than 30 characters which forms a 
or a reserved word. (See page IV-5, COBOL 

Working-Storage Section. The section of the Data Division that describes 
working storage data items, composed either of noncontiguous items or working 
storage records or of both. 

77-Level-Description-Entry. A data description entry that describes a 
noncontiguous data item with the level-number 77. 

III-26 



Notation 

SECTION IV: OVERALL LANGUAGE CONSIDERATION 

1. INTRODUCTION 

The language considerations and rules specified in this section, apply to the 
highest level of Standard COBOL. When a particular level of a module does not 
allow all of these language concepts, the restrictions will be pointed out in 
the section describing that language element. Throughout this document, 
specifications unique to the high level are enclosed in boxes. It should also 
be noted that restrictions contained in one module might possibly affect other 
modules. For example, qualification is not allowed in level 1 of the Nucleus; 
therefore, any module which is combined with level 1 of the Nucleus would have 
the same restriction. The flowcharts in this document illustrate the logic of 
the statement under which they are contained and are not meant to dictate 
implementation. 

2. NOTATION USED IN FORMATS 

2.1 DEFINITION OF A GENERAL FORMAT 

A general format is the specific arrangement of the elements of a clause or a 
statement. A clause or a statement consists of elements as defined below. 
Throughout this document a format is shown adjacent to information defining the 
clause or statement. When more than one specific arrangement is permitted, the 
general format is separated into numbered formats. Clauses must be written in 
the sequence given in the general formats. (Clauses that are optional must 
appear in the sequence shown if they are used.) In certain cases, stated 
explicitly in the rules associated with a given format, the clauses may appear 
1n sequences other than that shown. Applications, requirements, or restrictions 
are shown as rules. 

2.1.1 Elements 

Elements which make up a clause or a statement consist of uppercase words, 
lowercase words, level-numbers, brackets, braces, connectives, and special 
characters. 

2.1.2 Words 

All. underlined uppercase words are called key words and are required when the 
functions of which they are a part are used. Uppercase words which are not 
underlined are optional to the user and need not be written in the source 
program. Uppercase words, whether underlined or not, must be spelled correctly. 

Lowercase words, in a general format, are generic terms used to 
COBOL words, literals, PICTURE character-strings, comment-entries, or 
syntactical entry that must be supplied by the user. Where generic 

IV-I 

represent 
a complete 
terms are 



Notation 

repeated in a general format, a number or letter appended to the term serves to 
identify that term for explanation or discussion. 

2.1.3 Level-Numbers 

When specific level-numbers appear in data description entry formats, those 
specific level-numbers are required when such entries are used in a COBOL 
program. In this document, the form 01, 02, 09 is used to indicate 
level-numbers 1 through 9. 

2.1.4 Brackets, Braces, and Choice Indicators 

When 
options 
portion 

brackets, [ ] , enclose a portion of 
contained within the brackets may 

of the general format may be omitted. 

a general format, one of the 
be explicitly specified or that 

When braces, { } , enclose a portion of a general format, one of the options 
contained within the braces must be either explicitly specified or implicitly 
selected. If one of the options contains only reserved words which are not key 
words, that option is the default option and is implicitly selected unless one 
of the options is explicitly specified. 

When choice 
more of the 
specified, but 

indicators, <I I}, enclose a portion of a general format, one or 
unique options contained within the choice indicators must be 
a single option may be specified only once. 

Options are indicated in a general format or a portion of a general format by 
vertically stacking alternative possibilities, by a series of brackets, braces, 
or choice indicators or by a combination of both. An option is selected by 
specifying one of the possibilities from a stack of alternative possibilities or 
by specifying a unique combination of possibilities from a series of brackets, 
braces, or choice indicators. 

2 .1.5 Ellipsis 

In text, other than general formats, the ellipsis ( ••• ) shows omission of a 
word or words 'when such omission does not impair comprehension. This is the 
conventional meaning of the ellipsis, and the use becomes apparent in context. 

In the general format, the ellipsis ( ••• )represents the position 
the user elects repetition of a portion of a format. The portion of 
that may be repeated is determined as follows: 

at which 
the format 

Given ••• (the ellipsis) in a format, scanning right to left, determine the ] 
(right bracket) or } (right brace) delimiter immediately to the left of the ••• 
(ellipsis); continue scanning right to left and determine the logically matching 
[ (left bracket) or { (left brace) delimiter; the ••• (ellipsis) applies to the 
portion of the format between the determined pair of delimiters. 

2.1.6 Format Punctuation 

The separators comma and semicolon may be used anywhere the separator space 
is used in the formats (see page IV-4, Separators). In the source program, 
these separators are interchangeable. 

IV-2 



Rules 

The separator period, when used in the formats, has the status of a required 
word. 

2.1.7 Use of Special Character Words in Formats 

The special character words '+', '-', '>', '<', '=', '>=', '<=', when 
appearing in formats, although not underlined, are required when such portions 
of the formats are used. 

3. RULES 

3.1 SYNTAX RULES 

Syntax rules are those rules that define or clarify the order in which words 
or elements are arranged to form larger elements such as phrases, clauses, or 
statements. Syntax rules may also either impose restrictions on individual 
words or elements or relax restrictions implied by words or elements. 

These rules are used to define or clarify how the statement must be written, 
i.e., the order of the elements of the statement and the restrictions or 
amplifications of what each element may represent. 

3.2 GENERAL RULES 

A general rule is 
relationship of meanings 
or clarify the semantics 
execution or compilation. 

a rule that defines or clarifies the meaning or 
of an element or set of elements. It is used to define 
of the statement and the effect that it has on either 

IV-3 



Language Concepts 

4. LANGUAGE CONCEPTS 

4.1 CHARACTER SET 

The most basic and indivisible unit of the language is the character. The 
set of characters used to form COBOL character-strings and separators includes 
the letters of the alphabet, digits, and special characters. The character set 
consists of the characters as defined under COBOL Character Set in the glossary 
on page III-3. In the case of nonnumeric literals, comment-entries, and comment 
lines, the character set is expanded to include the computer's entire character 
set. The characters allowable in each type of character-string and as 
separators are defined in paragraph 4.2 below. 

Certain of the characters comprising the COBOL character set may not be 
graphically represented in definitions of national and international standard 
character sets. In these instances, a substitute graphic may be specified to 
replace the character(s) not represented. 

When a character set contains fewer than 51 characters, double 
must be substituted for the single characters. This double 
substitution is an obsolete feature in Standard COBOL because it 
deleted from the next revision of Standard COBOL. 

4.2 LANGUAGE STRUCTURE 

characters 
character 

is to be 

The individual characters of the language are concatenated to form 
character-strings and separators. A separator may be concatenated with another 
separator or with a character-string. A character-string may only be 
concatenated with a separator. The concatenation of character-strings and 
separators forms the text of a source program. 

4.2.l Separators 

A separator is a character or two contiguous characters formed according to 
the following rules: 

( 1) The punctuation character space is a separator. Anywhere a space is 
used as a separator or as part of a separator, more than one space may be used. 
All spaces immediately following the separators comma, semicolon, or period are 
considered part of that separator and are not considered to be the separator 
space. 

(2) Except when the comma is used in a PICTURE character-string, the 
punctuation characters comma and semicolon, immediately followed by a space, are 
separators that may be used anywhere the separator space is used. They may be 
used to improve program readability. 

(3) The punctuation character period, when followed by a space is a 
separator. It must be used only to indicate the end of a sentence, or as shown 
in formats. 

(4) The 
Parentheses 
delimiting 
conditions. 

punctuation 
may appear 

subscripts, 

characters 
only in 

reference 

right and left parentheses are separators. 
balanced pairs of left and right parentheses 
modifiers, arithmetic expressions, or 

IV-4 



Character-Strings 

(5) The punctuation character quotation mark is a separator. An opening 
quotation mark must be immediately preceded by a space or left parenthesis; a 
closing quotation mark, when paired with an opening quotation mark, must be 
immediately followed by one of the separators space, comma, semicolon, period, 
or right parenthesis. 

(6) Pseudo-text delimiters are separators. An opening pseudo-text delimiter 
must be immediately preceded by a space; a closing pseudo-text delimiter must be 
immediately followed by one of the separators space, comma, semicolon, or 
period. 

Pseudo-text delimiters may appear only in balanced pairs delimiting 
pseudo-text. 

(7) The punctuation character colon is a separator and is required when 
shown in the general formats. 

(8) The separator space may optionally immediately precede all separators 
except: 

a. As specified by reference format rules (see page IV-41, Reference 
Format.) 

b. The separator closing quotation mark. In this case, a preceding 
space is considered as part of the nonnumeric literal and not as a separator. 

c. The opening pseudo-text delimiter, where the preceding space is 
required. 

(9) The separator 
except the opening 
considered as part of 

space may optionally immediately follow any 
quotation mark. In this case, a following 
the nonnumeric literal and not as a separator. 

separator 
space is 

Any punctuation character which appears as part of the specification of a 
PICTURE character-string or numeric literal is not considered as a punctuation 
character, but rather as a symbol used in the specification of that PICTURE 
character-string or numeric literal. PICTURE character-strings are delimited 
only by the separators space, comma, semicolon, or period. 

The rules established for the formation of separators do not apply to the 
characters which comprise the contents of nonnumeric literals, comment-entries, 
or comment lines. 

4.2.2 Character-Strings 

A character-string is a character or a sequence of contiguous characters 
which forms a COBOL word, a literal, a PICTURE character-string, or a 
comment-entry. A character-string is delimited by separators. 

4.2.2.1 COBOL Words 

A COBOL word is a character-string of not more than 30 characters which forms 
a user-defined word, a system-name, or a reserved word. Each character of a 
COBOL word is selected from the set of letters, digits, and the hyphen. The 
hyphen may not appear as the first or last character. Each lowercase letter is 

IV-5 



User-Defined Words 

considered to be equivalent to its corresponding uppercase letter. Within a 
source program, reserved words and user-defined words form disjoint sets; 
reserved words and system-names form disjoint sets; system-names and 
user-defined words form intersecting sets. The same COBOL word may be used as a 
system-name and as a user-defined word within a source program; and the class of 
a specific occurrence of this COBOL word is determined by the context of the 
clause or phrase in which it occurs. 

4.2.2.1.1 User-Defined Words 

A user-defined word is a COBOL word that must be supplied by the user to 
satisfy the format of a clause or statement. Each character of a user-defined 
word is selected from the set of characters 'A', 'B', 'C', ••• , 'Z', 'O', .•• , 
'9', and '-', except that the '-' may not appear as the first or last character. 

The types of user-defined words are: 

1. alphabet-name 
2. cd-name 
3. class-name 
4. condition-name 
5. data-name 
6. file-name 
7. index-name 
8. level-number 
9. library-name 

10. mnemonic-name 
11. paragraph-name 
12. program-name 
13. record-name 
14. report -name 
15. routine-name 
16. section-name 
17. segment-number 
18. symbolic-character 
19. text-name 

Within a given source program, but excluding any contained program, the 
user-defined words are grouped into the following disjoint sets: 

1. alphabet-names 
2. cd-names 
3. class-names 
4. condition-names, data-names, and record-names 
5. file-names 
6. index-names 
7. library-names 
8. mnemonic-names 
9. paragraph-names 

10. program-names 
11. report-names 
12. routine-names 
13. section-names 
14. symbolic-characters 
15. text-names 

IV-6 



User-Defined Words 

All user-defined words, except segment-numbers and level-numbers, can belong 
to one and only one of these disjoint sets. Further, all user-defined words 
within a given disjoint set must be unique, except as specified in the rules for 
uniqueness of reference (see page IV-17, Uniqueness of Reference). 

With the exception of section-names, paragraph-names, segment-numbers, and 
level-numbers, all user-defined words must contain at least one alphabetic 
character. Segment-numbers and level-numbers need not be unique; a given 
specification of a segment-number or level-number may be identical to any other 
segment-number or level-number. 

4.2.2.1.1.1 Condition-Name 

A condition-name is a name which is assigned to a specific value, set of 
values, or range of values, within a complete set of values that a data item may 
assume. The data item itself is called a conditional variable. 

Condition.,..names 
paragraph within 
assigned to the on 
switches. 

may be defined in the Data 
the Environment Division 
status or off status, 

Division or in the SPECIAL-NAMES 
where a condition-name must be 

or both, of implementor-defined 

A condition-name is used in conditions as an abbreviation for the relation 
condition; this relation condition posits that the associated conditional 
variable is equal to one of the set of values to which that condition-name is 
assigned. A condition-name is also used in a SET statement, indicating that the 
associated value is to be moved to the conditional variable. 

4.2.2.1.1.2 Mnemonic-Name 

A mnemonic-name assigns a user-defined word to an implementor-name. These 
associations are established in the SPECIAL-NAMES paragraph of the Environment 
Division (see VI-13, The SPECIAL-NAMES Paragraph). 

4.2.2.1.1.3 Paragraph-Name 

A paragraph-name is a word which names a paragraph in the Procedure Division. 
Paragraph-names are equivalent if, and only if, they are composed of the same 
sequence of the same number of digits and/or characters. 

4.2.2.1.1.4 Section-Name 

A section-name is a word which names a section in the 
Section-names are equivalent if, and only if, they are 
sequence of the same number of digits and/or characters. 

4.2.2.1.1.5 Other User-Defined Names 

Procedure Division. 
composed of the same 

All other types of user-defined words are defined in the glossary beginning 
on page III-1. 

IV-7 



System-Names 

4.2.2.1.2 System-Names 

A system-name is a COBOL word which is used to communicate with the operating 
environment. Rules for the formation of a system-name are defined by the 
implementor, except that each character used in the formation of a system-name 
must be selected from the set of characters 'A', 'B', 'C', ••• , 'Z', 'O', ••• , 
'9', and '-', except that the '-' may not appear as the first or last character. 

There are three types of system-names: 

1. ·computer-name 
2. implementor-name 
3. language-name 

Within a given implementation these three types 
sets; a given system-name may belong to one 
system-names listed above are individually defined 
page III-I. 

4.2.2.1.3 Reserved Words 

of system-names 
and only one 

in the glossary 

form disjoint 
of them. The 
beginning on 

A reserved word is a COBOL word that is one of a specified list of words 
which may be used in COBOL source programs, but which must not appear in the 
programs as user-defined words or system-names. Reserved words can only be used 
as specified in the general formats. (See page IV-45, COBOL Reserved Words.) 

Reserved words satisfy the following conditions: 
c 

(1) Reserved words do not begin with the characters 'O', I 9 I ' Ix I' 

'Y', or 'Z' except for the reserved words ZERO, ZEROES, and ZEROS. 

(2) Reserved words do not contain only one alphabetic character. 

(3) Reserved words do not start with I or 2 characters followed by '-' 
except for the reserved words I-0, I-0-CONTROL, and reserved words which begin 
with 'B-' or 'DB-'. 

(4) Reserved words do not contain two or more contiguous hyphens. 

There are three types of reserved words: 

I. required words 
2. optional words 
3. special purpose words 

4.2.2.1.3.1 Required Words 

A required word is a word whose presence is required when the format in which 
the word appears is used in a source program. 

Required words are of two types: 

(1) Key words. Within each format, such words are uppercase and underlined. 

IV-8 



Literals 

(2) Special character words. These are the 
relation characters. 

arithmetic operators and 

4.2.2.1.3.2 Optional Words 

Within 
optional 
semantics 

each format, uppercase words that are not underlined are 
words and may be specified at the user's option with no effect 
of the format. 

called 
on the 

4.2.2.1.3.3 Special Purpose Words 

There are two types of special purpose words: 

1. special registers 
2. figurative constants 

4.2.2.1.3.3.1 Special Registers 

Certain~reserved words are used to name and reference special registers. 
Special registers are certain compiler-generated storage areas whose primary use 
is to store information produced in conjunction with the use of specific COBOL 
features. Unless specified otherwise in these specifications, one special 
register of each type is allocated for each program. In the general formats of 
this specification, a special register may be used, unless otherwise restricted, 
wherever data-name or identifier is specified provided that the special register 
is the same category as the data-name or identifier. If qualification is 
allowed special registers may be qualified as necessary to provide uniqueness. 
(See page IV-18, Qualification.) 

There are four special registers: 

1. DEBUG-ITEM (see page XV-1) 
2. LINAGE-COUNTER (see page VII-5) 
3. LINE-COUNTER (see page XIII-1) 
4. PAGE-COUNTER (see page XIII-1) 

4.2.2.1.3.3.2 Figurative Constants 

Certain reserved words are used to name and reference specific constant 
values. These reserved words are specified on page IV-10, Figurative Constant 
Values. 

4.2.2.2 Literals 

A literal is a character-string whose value is implied by an ordered 
characters of which the literal is composed or by specification of a 
word which references a figurative constant. Every literal belongs to 
two types: nonnumeric or numeric. 

4.2.2.2.l Nonnumeric Literals 

set of 
reserved 

one of 

A nonnumeric literal is a character-string delimited at the beginning and at 
the end by the separator quotation mark. The implementor must allow for 
nonnumeric literals of 1 through 160 characters in length. The length of a 
nonnumeric literal applies to its representation in the object program. 

IV-9 



Numeric Literals 

4.2.2.2.1.1 General Format 

"{character-!} ••• " 

4.2.2.2.1.2 Syntax Rules 

(1) Character-! may be any character in the computer character set. 

(2) If character-I is to represent the quotation mark, two contiguous 
quotation mark char~cters must be used to represent a single occurrence of that 
character. 

4.2.2.2.1.3 General Rules 

(1) The value of a nonnumeric literal in the object program is the value 
represented by character-I. 

(2) The separator quotation mark that delimits the nonnumeric literal is not 
part of the value of the nonnumeric literal. 

(3) All nonnumeric literals are of category alphanumeric. 

4.2.2.2.2 Numeric Literals 

A numeric literal is a character-string whose characters are selected from 
the digits 'O' through '9', the plus sign, the minus sign, and the decimal 
point. The implementor must allow for numeric literals of 1 through 18 digits 
in length. The rules for the formation of numeric literals are as follows: 

(1) A literal must contain at least one digit. 

(2) A literal must not contain more than one sign character. 
used, it must appear as the leftmost character of the literal. 
is unsigned, the literal is nonnegative. 

If a sign is 
If the literal 

(3) A literal must not contain more than one decimal point. The decimal 
point is treated as an assumed decimal point, and may appear anywhere within the 
literal except as the rightmost character. If the literal contains no decimal 
point, the literal is an integer. 

If a literal conforms to the 
literals, but is enclosed in quotation 
is treated as such by the compiler. 

rules for the formation of numeric 
marks, it is a nonnumeric literal and it 

(4) The value of a numeric literal is the algebraic quantity represented by 
the characters in the numeric literal. Every numeric literal is category 
numeric. (See page VI-29, The PICTURE Clause.) The size of a numeric literal 
in standard data format characters is equal to the number of digits in the 
string of characters as specified by the user. 

4.2.2.2.3 Figurative Constant Values 

Figurative constant values are generated by the compiler and referenced 
through the use of the reserved words given below. These words must not be 

IV-10 



Figurative Constants 

bounded by quotation 
plural forms of 
interchangeably. 

marks when used as figurative constants. 
figurative constants are equivalent 

The singular 
and may be 

and 
used 

The figurative constant value and the reserved words used to reference them 
are as follows: 

(I) [ALL] ZERO, [ALL] ZEROS, [ALL] ZEROES Represents the numeric value 
'O', or one or more of the character 'O' from the computer's character set. 

(2) [ALL] SPACE, [ALL] SPACES Represents one or more of the character 
space from the computer's character set. 

(3) [ALL] HIGH-VALUE, [ALL] HIGH-VALUES Except 1n 
paragraph, represents one or more of the character that has 
position in the program collating sequence. 

(4) [ALL] LOW-VALUE, [ALL] LOW-VALUES Except 1n 

the SPECIAL-NAMES 
the highest ordinal 

the SPECIAL-NAMES 
paragraph, represents one or more of the character that 
position in the program collating sequence. 

has the lowest ordinal 

(5) [ALL] QUOTE, [ALL] QUOTES Represents one or more of the character 
' " ' The word QUOTE or QUOTES cannot be used in place of a quotation mark in 
a source program to bound a nonnumeric literal. Thus QUOTE ABD QUOTE 1s 
incorrect as a way of stating the nonnumeric literal "ABD". 

(6) ALL literal Represents all or part of the string generated by 
successive concatenations of the characters compr1s1ng the literal. The literal 
must be a nonnumeric literal. The literal must not be a figurative constant. 

(7) [ALL] symbolic-character Represents one or more of the character 
specified as the value of this symbolic-character in the SYMBOLIC CHARACTERS 
clause of the SPECIAL-NAMES paragraph. (See page VI-13, The SPECIAL-NAMES 
Paragraph.) 

When a figurative constant represents a string of one or more characters, the 
length of the string is determined by the compiler from context according to the 
following rules: 

(1) When a figurative constant is specified in a VALUE clause, or when a 
figurative constant is associated with another data item (e.g., when the 
figurative constant is moved to or compared with another data item), the string 
of characters specified by the figurative constant is repeated character by 
character on the right until the size of the resultant string is greater than or 
equal to the number of character positions in the associated data item. This 
resultant string is then truncated from the right until it is equal to the 
number of character positions in the associated data item. This is done prior 
to and independent of the application of any JUSTIFIED clause that may be 
associated with the data item. 

(2) 
with 
STOP, 

When a figurative 
another data item 
STRING, or UNSTRING 

constant, other than ALL literal, 1s, not associated 
as when the figurative constant appears in a DISPLAY, 

statement, the length of the string is one character. 

IV-11 



PICTURE Character-Strings 

(3) When the figurative constant ALL literal is not associated with another 
data item, the length of the string is the length of the literal. 

A figurative constant may be used whenever 'literal' appears in a format with 
the following exceptions: 

(1) If the literal is restricted to a numeric literal, the only figurative 
constant permitted is ZERO (ZEROS, ZEROES). 

(2) Associating the figurative constant ALL literal where the length of the 
literal is greater than one with a data item that is numeric or numeric edited 
is an obsolete feature in Standard COBOL. This obsolete feature is to be 
deleted from the next revision of Standard COBOL. 

(3) When a figurative constant other than ALL literal is used, the word ALL 
is redundant and is used for readability only. 

Except in the SPECIAL-NAMES paragraph, when 
HIGH-VALUES(S) or LOW-VALUE(S) are used in the 
characters associated with each figurative constant 
collating sequence specified. (See page VI-11, The 
and page VI-13, The SPECIAL-NAMES Paragraph.) 

the figurative constants 
source program, the actual 
depend upon the program 
OBJECT-COMPUTER Paragraph, 

Each reserved word which is used to reference a figurative constant value is 
a distinct character-string with the exception of the constructs using the word 
ALL, such as ALL literal, ALL SPACES, etc., which are composed of two distinct 
character-strings. 

4.2.2.3 PICTURE Character-Strings 

A PICTURE character-string consists of certain symbols which are composed of 
the currency symbol and certain combinations of characters in the COBOL 
character set. An ~xplanation of the PICTURE character-string and the rules 
that govern its use are given under the appropriate paragraph. (See page VI-29, 
The PICTURE Clause.) 

Any punctuation character which appears as part of the specification of a 
PICTURE character-string is not considered as a punctuation character, but 
rather as a symbol used in the specification of that PICTURE character-string. 

4.2.2.4 Comment-Entries 

A comment-entry is an entry in the Identification Division that may be any 
combination of characters from the computer's character set. Comment-entry is 
an obsolete element in Standard COBOL because it is to be deleted from the next 
revision of Standard COBOL. 

IV-12 



Logical Record Concept 

4.3 CONCEPT OF COMPUTER INDEPENDENT DATA DESCRIPTION 

To make data as computer-independent as possible, the characteristics or 
properties of the data are described in relation to a standard data format 
rather than an equipment-oriented format. This standard data format is oriented 
to general data processing applications and uses the decimal system to represent 
numbers (regardless of the radix used by the computer) and all characters of the 
COBOL character set to describe nonnumeric data items. 

4.3.1 Logical Record Concept 

In order to separate the logical characteristics of data from the physical 
characteristics of the data storage media, separate clauses or phrases are used. 
The following paragraphs discuss the characteristics of files. 

4.3.1.1 Physical Aspects of a File 

The physical aspects of a file describe the data as it appears on the input 
or output media and include such features as: 

( 1) The grouping of logical records within the physical limitations of the 
file medium. 

(2) The means by which the file can be identified. 

4.3.1.2 Conceptual Characteristics of a File 

The conceptual characteristics of a file are the explicit definition of each 
logical entity within the file itself. In a COBOL program, the input or output 
statements refer to one logical record. 

It is important to distinguish between a physical record and a logical 
record. A COBOL logical record is a group of related information, uniquely 
identifiable, and treated as a unit. 

A physical record is a physical unit of information whose size and recording 
mode is convenient to a particular computer for the storage of data on an input 
or output device. The size of a physical record is hardware dependent and bears 
no direct relationship to the size of the file of information contained on a 
device. 

A logical record may be contained within a single physical unit; or several 
logical records may be contained within a single physical unit; or a logical 
record may require more than one physical unit to contain it. There are several 
source language methods available for describing the relationship of logical 
records and physical units. When a permissible relationship has been 
established, control of the accessibility of logical records as related to the 
physical unit must be provided by the interaction of the object program on the 
implementor's hardware and/or software system. In this document, references to 
records means to logical records, unless the term 'physical record' is 
specifically used. 

The concept of a logical record is not restricted to file data but is carried 
over into the definition of working storage. Thus, working storage is grouped 
intc logical records and defined by a series of record description entries. 

IV-13 



Concept of Levels 

When a logical record is transferred to or from a physical unit, any 
translation required by· the presence of a CODE-SET clause is accomplished. 
Padding characters are added or deleted as necessary. None of the clauses used 
to describe the data in the logical record have any effect on this transfer. 

4.3.1.3 Record Concepts 

The record description consists of a set of data description entries which 
describe the characteristics of a particular record. Each data description 
entry consists of a level-number followed by a data-name, if required, followed 
by a series of independent clauses, as required. 

4.3.2 Concept of Levels 

A level concept is inherent in the structure of a logical record. This 
concept arises from the need to specify subdivision of a record for the purpose 
of data reference. Once a subdivision has been specified, it may be further 
subdivided to permit more detailed data referral. 

The most basic subdivisions of a record, that is, 
subdivided, are called elementary items; consequently, 
consist of a sequence of elementary items, or the record 
elementary item. 

those not further 
a record is said to 
itself may be an 

In order to refer to a set of elementary items, the elementary items are 
combined into groups. Each group consists of a named sequence of one or more 
elementary items. Groups, in turn, may be combined into groups of two or more 
groups, etc. Thus, an elementary item may belong to more than one group. 

4.3.2.l Level-Numbers 

A system of level-numbers shows the organization of elementary items and 
group items. Since records are the most inclusive data items, level-numbers for 
records start at 01. Less inclusive data items are assigned higher (not 
necessarily successive) level-numbers not greater in value than 49. There are 
special level-numbers, 66, 77, and 88, which are exceptions to this rule (see 
below). Separate entries are written in the source program for each 
level-number used. 

A group includes all group and elementary items following it until a 
level-number less than or equal to the level-number of that group is 
encountered. All items which are immediately subordinate to a given group item 
must be described using identical level-numbers greater than the level-number 
used to describe that group item. 

Three types of entries exist for which there is no true concept of level. 
These are: 

(1) Entries that specify elementary items or groups introduced by a RENAMES 
clause. 

(2) Entries that specify noncontiguous working storage and linkage data 
items. 

(3) Entries that specify condition-names. 

IV-14 



Concept of Classes of Data 

Entries describing items by means of RENAMES clauses for the purpose of 
re-grouping data items have been assigned the special level-number 66. 

Entries that specify noncontiguous data items, which are not subdivisions of 
other items, and are not themselves subdivided, have been assigned the special 
leve ! -number 77 • 

Entries that specify condition-names, to be associated with particular values 
of a conditional variable, have been assigned the special level-number 88. 

4.3.3 Concept of Classes of Data 

There are five categories of data items. (See page VI-29, The PICTURE 
Clause.) These are grouped into three classes: alphabetic, numeric, and 
alphanumeric. For alphabetic and numeric, the classes and categories are 
synonymous. The alphanumeric class includes the categories of alphanumeric 
edited, numeric edited, and alphanumeric (without editing). Every elementary 
item belongs to one of the classes and further to one of the categories. The 
class of a group item is treated at object time as alphanumeric regardless of 
the class of elementary items subordinate to that group item. The following 
table depicts the relationship of the class and categories of data items. 

LEVEL OF ITEM CLASS CATEGORY 

Alphabetic Alphabetic 

Numeric Numeric 

Elementary Numeric edited 

Alphanumeric Alphanumeric edited 

Alphanumeric 

Alphabetic 

Numeric 

Nonelementary Alphanumeric Numeric edited 

(Group) Alphanumeric edited 

Alphanumeric 

IV-15 



Character Representation and Radix 

4.3.4 Selection of Character Representation and Radix 

The value of a numeric item may be represented in either binary or decimal 
form depending on the equipment. In addition there are several ways of 
expressing decimal. Since these representations are actually combinations of 
bits, they are commonly called binary-coded decimal forms. The selection of 
radix is generally dependent upon the arithmetic capability of the computer. If 
more than one arithmetic radix is provided, the selection is dependent upon the 
specification of the USAGE clause. The binary-coded decimal form is also used 
to represent characters and symbols that are alphanumeric items. The selection 
of the proper binary-coded alphanumeric or binary-coded decimal form is 
dependent upon the capability of the computer and its external media. 

When a computer provides more than one means of representing data, the 
standard data format must be used if not otherwise specified by the data 
description. If both the external medium and the computer are capable of 
handling more than one form of data representation, or if there is no external 
medium associated with the data, the selection is dependent on factors included 
in USAGE, PICTURE, etc., clauses. Each implementor provides a complete 
explanation of the possible forms on the computer for which COBOL is 
implemented. The method used in selecting the proper data form is also provided 
to allow the programmer to anticipate and/or control the selection. 

The size of an elementary data item or 
characters in standard data format of the 
cause a difference between this size 
representation. 

a group item is the number of 
item. Synchronization and usage may 

and that required for internal 

4.3.5 Algebraic Signs 

Algebraic signs fall into two categories: operational signs, 
associated with signed numeric data items and signed numeric 
indicate their algebraic properties; and editing signs, which appear 
edited reports to identify the sign of the item. 

which are 
literals to 
(e.g.) on 

The SIGN clause permits the programmer to state explicitly the location of 
the operational sign. This clause is optional; if it is not used, operational 
signs will be represented as defined by the implementor. 

Editing signs are inserted into a data item through the use of the sign 
control symbols of the PICTURE clause. 

4.3.6 Standard Alignment Rules 

The standard rules for positioning data within an elementary item depend on 
the category of the receiving item. These rules are: 

(1) If the receiving data item is described as numeric: 

a. The data is aligned by decimal point and is moved to the receiving 
digit positions with zero fill or truncation on either end as required. 

b. When an assumed decimal point is not explicitly specified, the data 
item is treated as if it has an assumed decimal point immediately following its 
rightmost digit and is aligned as in paragraph la. 

IV-16 



Item Alignment 

(2) If the rece1v1ng data item is a numeric edited data item, the data moved 
to the edited data item is aligned by decimal point with zero fill or truncation 
at either end as required within the receiving character positions of the data 
item, except where editing requirements cause replacement of the leading zeros. 

(3) If the receiving data item is alphanumeric (other than a numeric edited 
data item), alphanumeric edited, or alphabetic, the sending data is moved to the 
receiving character positions and aligned at the leftmost character position in 
the data item with space fill or trurtcation to the right, as required. 

If the JUSTIFIED clause is specified for the receiving item, these standard 
rules are modified. (See page VI-24, The JUSTIFIED Clause.) 

4.3.7 Item Alignment for Increased Object-Code Efficiency 

Some computer memories are organized in such a way that there are natural 
addressing boundaries in the computer memory (e.g., word boundaries, half-word 
boundaries, byte boundaries). The way in which data is stored is determined by 
the object program, and need not respect these natural boundaries. 

However, certain uses of data (e.g., in arithmetic 
subscripting) may be facilitated if the data is stored so 
these natural boundaries. Specifically, additional machine 
object program may be required for the accessing and storage 
of two or more data items appear between adjacent natural 
certain natural boundaries bifurcate a single data item. 

operations or in 
as to be aligned on 
operations in the 
of data if portions 
boundaries, or if 

Data items which are aligned on these natural boundaries in such a way as to 
avoid such additional machine operations are defined to be synchronized. 

Synchronization can be accomplished in two ways: 

(1) By use of the SYNCHRONIZED clause. 

(2) By recognizing the appropriate natural boundaries and organizing the 
data suitably without the use of the SYNCHRONIZED clause. 

Each implementor who provides for special types of alignment will specify the 
precise interpretations which are to be made. The use of such items within a 
group may affect the results of statements in which the group is used as an 
operand. Each implementor who provides for these special types of alignment 
wil 1 describe the effect of the implicit FILLER and t:he semantics of any 
statement referencing these groups. 

4.3.8 Uniqueness of Reference 

Every user-defined name in a COBOL program is assigned, by the user, to name 
a resource which is to be used in solving a data processing problem. (See page 
IV-6, User-Defined Words.) In order to use a resource, a statement in a COBOL 
program must contain a reference which uniquely identifies that resource. In 
order to ensure uniqueness of reference, a user-defined name may be qualified, 
subscripted, or reference modified as described in the following paragraphs. 

When the same name has been assigned in separate programs to two or more 
occurrences of a resource of a given type, and when qualification by itself does 

IV-17 



Qualification 

not allow the reference in one of those programs to differentiate between the 
two identically named resources, then certain conventions which limit the scope 
of names apply. These conventions ensure that the resource identified is that 
described in the program containing the reference. (See page X-4, Scope of 
Names.) 

Unless otherwise specified by the rules for a statement, any subscripting and 
reference modification are evaluated only once as the first operation of the 
execution of that statement. 

4.3.8.1 Qualification 

Every user-defined name explicitly referenced in a COBOL source program must 
be uniquely referenced because either: 

(1) No other name has the identical spelling and hyphenation. 

(2) It is unique within the context of a REDEFINES clause. (See page VI-38, 
The REDEFINES Clause.) 

(3) The name exists within a hierarchy of names such that reference to the 
name can be made unique by mentioning one or more of the higher level names in 
the hierarchy. 

These higher level names are called qualifiers and this process that 
specifies uniqueness is called qualification. Identical user-defined names may 
appear in a source program; however, uniqueness must then be established through 
qualification for each user-defined name explicitly referenced, except in the 
case of redefinition. All available qualifiers need not be specified so long as 
uniqueness is established. Reserved words naming the special registers require 
qualification to provide uniqueness of reference whenever a source program would 
result in more than one occurrence of any of these special registers. A 
paragraph-name or section-name appearing in a program may not be referenced from 
any other program. 

(4) A program is contained within a program or contains another program. 
(See page X-4, Scope of Names.) 

Regardless of the above, the same data-name must not be used as the name of 
an external record and as the name of any other external data item described in 
any program contained within or containing the program which describes that 
external data record. The same data-name must not be used as the name of an 
item possessing the global attribute and as the name of any other data item 
described in the program which describes that global data item. 

IV-18 



The general formats for qualification are: 

Format 1: 

{ data-name-1 } 
condition-name-1 

Format 2: 

I{{~;} data-name-2 } .•• 

{IN} {file-name-1} 
OF cd-name-1 

paragraph-name-1 {~~} section-name-1 

Format 3: 

text-name-1 {~;} library-name-1 

Format 4: 

LINAGE-COUNTER {~~} file-name-2 

Format 5: 

{ PAGE-COUNTER} {IN} report-name-l 
LINE-COUNTER OF 

Format 6: 

Qualification 

OF cd-name-1 [{IN} {file-name-l}]l 

data-name-J H~~} data-name-4 [{~~} report-name-2 J l 
t {~~} report-name-2 . 

IV-19 



Qualification 

The rules for qualification are as follows: 

(1) For each nonunique user-defined name that is explicitly referenced, 
uniqueness must be established through a sequence of qualifiers which precludes 
any ambiguity of reference. 

(2) A name can be qualified even though it does not need qualification; if 
there 1s more than one combination of qualifiers that ensures uniqueness, then 
any such set can be used. 

(3) IN and OF are logically equivalent. 

(4) In format 1, each qualifier must be the name associated with a level 
indicator, the name of a group item to which the item being qualified is 
subordinate, or the name of the conditional variable with which the 
condition-name being qualified is associated. Qualifiers are specified in the 
order of successively more inclusive levels in the hierarchy. 

(5) In format 1, data-name-1 or data-name-2 may be a record-name. 

(6) If explicitly referenced, a paragraph-name must not be duplicated within 
a section. When a paragraph-name is qualified by a section-name, the word 
SECTION must not appear. A paragraph-name need not be qualified when referred 
to from within the same section. A paragraph-name or section-name appearing in 
a program may not be referenced from any other program. 

(7) If more than one COBOL library is available to the compiler during 
compilation, text-name must be qualified each time it is referenced. 

(8) LINAGE-COUNTER must be qualified each time it is referenced if more than 
one file description entry containing a LINAGE clause has been specified in the 
source program. 

(9) LINE-COUNTER must be qualified each time it is referenced in the 
Procedure Division if more than one report description entry is specified in the 
source program. In the Report Section, an unqualified reference to LINE-COUNTER 
is qualified implicitly by the name of the report in whose report description 
entry the reference is made. Whenever the LINE-COUNTER of a different report is 
referenced, LINE-COUNTER must be qualified explicitly by the report-name 
associated with the different report. 

(10) PAGE-COUNTER must be qualified each time it is referenced in the 
Procedure Division if more than one report description entry is specified in the 
source program. In the Report Section, an unqualified reference to the 
PAGE-COUNTER is qualified implicitly by the name of the report in whose report 
description entry the reference is made. Whenever the PAGE-COUNTER of a 
different report is referenced, PAGE-COUNTER must be qualified explicitly by the 
report-name associated with the different report. · 

IV-20 



Subscripting 

4.3.8.2 Subscripting 

4.3.8.2.l Function 

Subscripts are used when reference is made to an individual element within a 
table of like elements that have not been assigned individual data-names. (See 
page VI-26, The OCCURS Clause.) 

4.3.8.2.2 General Format 

{ condition-name-!} 
data-name-1 

{
integer-! 

( data-name-2 [{±} integer-2] 
index-name-1 [{±} integer-3] 

4.3.8.2.3 Syntax Rules 

} . . . ) 

(I) The data description entry containing data-name-I or the data-name 
associated with condition-name-I must contain an OCCURS clause or must be 
subordinate to a data description entry which contains an OCCURS clause. 

(2) Except as defined in syntax rule 4, when a reference is made to a table 
element, the number of subscripts must equal the number of OCCURS clauses in the 
description of the table element being referenced. When more than one subscript 
is required, the subscripts are written in the order of successively less 
inclusive dimensions of the table. 

(3) Index-name-I must correspond to a data description entry in the 
hierarchy of the table being referenced which contains an INDEXED BY phrase 
specifying that index-name. 

(4) Each table element reference must be subscripted except when such 
reference appears: 

a. In a USE FOR DEBUGGING statement. 

b. As the subject of a SEARCH statement. 

c. In a REDEFINES clause. 

d. In the KEY IS phrase of an OCCURS clause. 

(5) Data-name-2 may be qualified and must be a numeric elementary item 
representing an integer. 

(6) Integer-! may be signed and, if signed, it must be positive. 

4.3.8.2.4 General Rules 

(1) The value of the subscript must be a positive integer. The lowest 
possible occurrence number represented by a subscript is 1. The first element 
of any given dimension of a table is referenced by an occurrence number of 1. 
Each successive element within that dimension of the table is referenced by 
occurrence numbers of 2, 3, •••• The highest permissible occurrence number for 

IV-21 



Reference Modification 

any given dimension of the table is the maximum number of occurrences of the 
item as specified in the associated OCCURS clause. 

(2) The value of the index referenced by index-name-1 corresponds to the 
occurrence number of an element in the associated table. This correspondence is 
defined by the implementor. 

(3) The value of th~ index referenced by index-name-! must be initialized 
before it is used as a subscript. An index may be given an initial value by 
either a PERFORM statement with the VARYING phrase, a SEARCH statement with the 
ALL phrase, or a SET statement. An index may be modified only by the PERFORM, 
SEARCH, and SET statements. 

(4) If integer-2 or integer-3 is specified, the value of the subscript is 
determined by incrementing by the value of integer-2 or integer-3 (when the 
operator + is used) or by decrementing by the value of integer-2 or integer-3 
(when the operator is used) either the occurrence number represented by the 
value of the index referenced by index-name-1 or the value of the data item 
referenced by data-name-2. 

4.3.8.3 Reference Modification 

4.3.8.3.l Function 

Reference modification defines a data item by specifying a leftmost character 
and length for the data i tern. 

4.3.8.3.2 General Format 

data-name-1 (leftmost-character-position: [length]) 

4.3.8.3.3 Syntax Rules 

(1) Data-name-1 must reference a data item whose usage is DISPLAY. 

(2) Leftmost-character-position and length must be arithmetic expressions. 

(3) Unless otherwise specified, reference modification is allowed anywhere 
an identifier referencing a data item of the class alphanumeric is permitted. 

(4) Data-name-1 may be qualified or subscripted. 

4.3.8.3.4 General Rules 

(1) Each character of a data item referenced by data-name-1 is assigned an 
ordinal number incrementing by one from the leftmost position to the rightmost 
position. The leftmost position is assigned the ordinal number one. If the 
data description entry for data-name-1 contains a SIGN IS SEPARATE clause, the 
sign position is assigned an ordinal number within that data item. 

(2) If the data item referenced by data-name-1 is described as numeric, 
numeric edited, alphabetic, or alphanumeric edited, it is operated upon for 
purposes of reference modification as if it were redefined as an alphanumeric 
data item of the same size as the data item referenced by data-name-1. 

IV-22 



Identifier 

(3) Reference modification for an operand is evaluated as follows: 

a. If subscripting is specified for the operand, the reference 
modification is evaluated immediately after evaluation of the subscripts. 

b. If the subscripting 
modification is evaluated at 
subscripts had been specified. 

is not specified for the operand, the reference 
the time subscripting would be evaluated if 

(4) Reference modification creates a unique data item which is a subset of 
the data item referenced by data-name-1. This unique data item is defined as 
follows: 

a. The evaluation of leftmost-character-position specifies the ordinal 
position of the leftmost character of the unique data item in relation to the 
leftmost character of the data item referenced by data-name-1. Evaluation of 
leftmost-character-position must result in a positive nonzero integer less than 
or equal to the number of characters in the data item referenced by data-name-1. 

b. The evaluation of length specifies the size of the data item to be 
used in the operation. The evaluation of length must result in a positive 
nonzero integer. The sum of leftmost-character-position and length minus the 
value one must be less than or equal to the number of characters in the data 
item referenced by data-name-1. If length is not specified, the unique data 
item extends from and includes the character identified by 
leftmost-character-position up to and including the rightmost character of the 
data item referenced by data-name-I. 

(5) The unique data item is considered an elementary data item without the 
JUSTIFIED clause. It has the same class and category as that defined for the 
data item referenced by data-name-I except that the categories numeric, numeric 
edited, and alphanumeric edited are considered class and category alphanumeric. 

4.3.8.4 Identifier 

An identifier is a term used to reflect a data-name that, if not unique in a 
program, must be followed by a syntactically correct combination of qualifiers, 
subscripts, or reference modifiers necessaiy for uniqueness of reference. (See 
page X-4, Scope of Names.) 

The general format for identifier is: 

data-name-1 [{~~} data-name-2] ~; file-name-1 [ {
cd-name-1 }] 

{_} report-name-1 

[({subscript} •.• )] [(leftmost-character-position: [length])] 

IV-23 



Condition-Name 

4.3.8.5 Condition-Name 

If explicitly referenced, a condition-name must be unique or be made unique 
through qualification and/or subscripting except when the scope of names 
conventions by themselves ensure uniqueness of reference. (See page X-4, Scope 
of Names.) 

If qualification is used to make a condition-name unique, the associated 
conditional variable may be used as the first qualifier. If qualification is 
used, the hierarchy of names associated with the conditional variable itself 
must be used to make the condition-name unique. 

If references to a conditional variable require subscripting, reference to 
any of its condition-names also requires the same combination of subscripting. 

The format and restrictions on the combined 
subscripting of condition-names is exactly that 
data-name-1 is replaced by condition-name-1. 

use of qualification and 
of 'identifier' except that 

In the general format of the chapters that follow, 'condition-name' refers to 
a condition-name qualified or subscripted, as necessary. 

IV-24 



Explicit and Implicit Specifications 

4.4 EXPLICIT AND IMPLICIT SPECIFICATIONS 

There are four types of explicit and implicit specifications that occur in 
COBOL source programs: 

(1) Explicit and implicit Procedure Division references 

(2) Explicit and implicit transfers of control 

(3) Explicit and implicit attributes 

(4) Explicit and implicit scope terminators 

4.4.1 Explicit and Implicit Procedure Division References 

A COBOL source program can reference data items either explicitly or 
implicitly in Procedure Division statements. An explicit reference occurs when 
the name of the referenced item is written in a Procedure Division statement or 
when the name of the referenced item is copied into the Procedure Division by 
the processing of a COPY statement. An implicit reference occurs when the item 
is referenced by a Procedure Division statement without the name of the 
referenced item being written in the source statement. An implicit reference 
also occurs, during the execution of a PERFORM statement, when the index or data 
item referenced by the index-name or identifier specified in the VARYING, AFTER, 
or UNTIL phrase is initialized, modified, or evaluated by the control mechanism 
associated with that PERFORM statement. Such an implicit reference occurs if 
and only if the data item contributes to the execution of the statement. 

4 .4 .2 Explicit and Implicit Transfers of Control 

The mechanism that controls program flow transfers control from statement to 
statement in the sequence in which they were written in the source program 
unless an explicit transfer of control overrides this sequence or there is no 
next executable statement to which control can be passed. The transfer of 
control from statemen.t to statement occurs without the writing of an explicit 
Procedure Division statement, and, therefore, is an implicit transfer of 
control. 

COBOL provides both explicit and implicit means of altering the implicit 
control transfer mechanism. 

In addition to the implicit transfer of control between consecutive 
statements, implicit transfer of control also occurs when the normal flow is 
altered without the execution of a procedure branching statement. COBOL 
provides the following types of implicit control flow alterations which override 
the statement-to-statement transfers of control: 

(1) If a paragraph is being executed under control of another COBOL 
statement (for example, PERFORM, USE, SORT, and MERGE) and the paragraph is the 
last paragraph in the range of the controlling statement, then an implied 
transfer of control occurs from the last statement in the paragraph to the 
control mechanism of the last executed controlling statement. Further, if a 
paragraph is being executed under the control of a PERFORM statement which 
causes iterative execution, and that paragraph is the first paragraph in the 
range of that PERFORM statement, an implicit transfer of control occurs between 

IV-25 



Explicit and Implicit Specifications 

the control mechanism associated with that PERFORM statement and the first 
statement in that paragraph for each iterative execution of the paragraph. 

(2) When a SORT or MERGE statement is executed, an implicit transfer of 
control occurs to any associated input or output procedures. 

(3) When any COBOL statement is executed which results in the execution of a 
declarative section, an implicit transfer of control to the declarative section 
occurs. Note that another implicit transfer of control occurs after execution 
of the declarative section, as described in paragraph 1 above. 

An explicit transfer of control consists of an alteration of the implicit 
control transfer mechanism by the execution of a procedure branching or 
conditional statement. An explicit transfer of control can be caused only by 
the execution of a procedure branching or conditional statement. The execution 
of the procedure branching statement ALTER does not in itself constitute an 
explicit transfer of control, but affects the explicit transfer of control that 
occurs when the associated GO TO statement is executed. The procedure branching 
statement EXIT PROGRAM causes an explicit transfer of control only when the 
statement is executed in a called program. 

In this document, the term 'next executable statement' is used to refer to 
the next COBOL statement to which control is transferred according to the rules 
above and the rules associated with each language element. 

There is no next executable statement when the program contains no Procedure 
Division or following: 

(1) The last statement in a declarative section when the paragraph in which 
it appears is not being executed under the control of some other COBOL 
statement. 

(2) The last statement in a declarative section when the statement is in the 
range of an active PERFORM statement executed in a different section and this 
last statement of the declarative section is not also the last statement of the 
procedure that is the exit of the active PERFORM statement. 

(3) 
is not 
program. 

The last statement in a program when the paragraph in which it appears 
being executed under the control of some other COBOL statement in that 

(4) A STOP RUN statement or EXIT PROGRAM statement that transfers control 
outside the COBOL program. 

(5) The end program header. 

When there is no next executable statement and control is not transferred 
outside the COBOL program, the program flow of control is undefined unless the 
program execution is in the nondeclarative procedures portion of a program under 
control of a CALL statement, in which case an implicit EXIT PROGRAM statement is 
executed. 

IV-26 



Scope Terminators 

4.4.3 Explicit and Implicit Attributes 

Attributes may be implicitly or explicitly specified. Any attribute which 
has been explicitly specified is called an explicit attribute. If an attribute 
has not been specified explicitly, then the attribute takes on the default 
specification. Such an attribute is known as an implicit attribute. 

For example, the usage of a data item need not be specified, in which case a 
data item's usage is DISPLAY. 

4.4.4 Explicit and Implicit Scope Terminators 

Scope terminators serve to delimit the scope of certain Procedure Division 
statements. (See page IV-39, Delimited Scope Statements.) Scope terminators 
are of two types: explicit and implicit. 

The explicit scope terminators are the following: 

END-ADD END-MULTIPLY END-SEARCH 
END-CALL END- PERFORM END-START 
END-COMPUTE END-READ END-STRING 
END-DELETE END-RE CE IVE END-SUBTRACT 
END-DIVIDE END-RETURN END-UN STRING 
END-EVALUATE END-REWRITE EtW-WRITE 
END-IF 

The implicit scope terminators are the following: 

(1) At the end of any sentence, the separator period which terminates the 
scope of all previous statements not yet terminated. 

(2) Within any statement containing another statement, the next phrase of 
the containing statement following the contained statement terminates the scope 
of any unterminated contained statement. Examples of such phrases are ELSE, 
WHEN, NOT AT END, etc. . 

IV-27 



External Switch 

4.5 EXTERNAL SWITCH 

An external switch is a hardware or software device, defined and named by the 
implementor, which is used to indicate that one of two alternate states exists. 
These alternate states are referred to as the on status and the off status of 
the associated external switch. 

be interrogated by testing 
switch. The association of a 

The status of an external switch may 
condition-names associated with that 
condition-name with an external switch and 
mnemonic-name with the implementor-name 
established in the SPECIAL-NAMES paragraph 
page VI-13, The SPECIAL-NAMES Paragraph.) 

the association of a user-specified 
that names an external switch is 

of the Environment Division. (See 

The implementor defines the scope (program, run unit, etc.) of each external 
switch and any facility external to COBOL which may be used to modify the status 
of an external switch. For example, if the scope of an external switch is the 
run unit, each implementor-name that names such an external switch refers to one 
and only one such switch, the status of which is available to each object 
program functioning within that run unit 

The status of certain switches. may be altered by the SET statement. (See 
page VI-127, The SET Statement.) 

IV-28 



Programs 

5. A COBOL SOURCE PROGRAM 

5.1 INTRODUCTION 

A COBOL source program is a syntactically correct set of COBOL statements. 

5.2 ORGANIZATION 

With the exception of COPY and REPLACE statements and the end program header, 
the statements, entries, paragraphs, and sections of a COBOL source program are 
grouped into four divisions which are sequenced in the following order: 

1. The Identification Division 
2. The Environment Division 
3. The Data Division 
4. The Procedure Division 

The end of a COBOL source program is indicated by either the end program 
header, if specified, or by the absence of additional source program lines. 

5.3 STRUCTURE 

The following gives the general format and order of presentation of the 
entries and statements which constitute a COBOL source program. 

5.3.1 General Format 

identification-division 

[environment-division] 

[data-division] 

[procedure-division] 

[end-program-header] 

IV-29 



Identification Division 

6. DIVISIONS 

6.1 IDENTIFICATION DIVISION 

6.1.1 General Description 

The Identification Division identifies the program. In addition, the user 
may include the date the program is written, the date the compilation of the 
source program is accomplished and such other information as desired under the 
paragraphs in the general format shown below. 

6.1.2 Organization 

Paragraph headers identify the type of information contained in the 
paragraph. The name of the program must be given in the first paragraph, which 
is the PROGRAM-ID paragraph. The other paragraphs are optional and may be 
included in this division at the user's choice, in order of presentation shown 
by the format below. 

6.1.3 Structure 

The following is the general format of the paragraphs in the Identification 
Division and it defines the order of presentation in the source program. 

6.1.3.1 General Format 

IDENTIFICATION DIVISION. 

PROGRA:M-ID. program-identification-entry 

[AUTHOR. [comment-entry] .•• ] 

[INSTALLATION. [comment-entry] ] 

[DATE-WRITTEN. [comment-entry] 

[DATE-COMPILED. [comment-entry] .•• ] 

[SECURITY. [comment-entry] ••. ] 

IV-30 



Environment Division 

6.2 ENVIRONMENT DIVISION 

6.2.l General Description 

The Environment Division specifies a standard method of expressing those 
aspects of a data processing problem that are dependent upon the physical 
characteristics of a specific computer. This division allows specification of 
the configuration of the compiling computer and the object computer. In 
addition, information relative to input-output control, special hardware 
characteristics, and control techniques can be given. 

6.2.2 Organization 

Two sections make up the Environment Division: the Configuration Section and 
the Input-Output Section. 

The Configuration Section deals with the characteristics of the source 
computer and the object computer. This section is divided into three 
paragraphs: the SOURCE-COMPUTER paragraph, which describes the computer 
configuration on which the source program is compiled; the OBJECT-COMPUTER 
paragraph, which describes the computer configuration on which the object 
program produced by the compiler is to be run; and the SPECIAL-NAMES paragraph, 
which provides a means for specifying the currency sign, choosing the decimal 
point, specifying symbolic-characters, relating implementor-names to 
user-specified mnemonic-names, relating alphabet-names to character sets or 
collating sequences, and relating class-names to sets of characters. 

The Input-Output Section deals with the information needed to control 
transmission and handling of data between external media and the object program. 
This section is divided into two paragraphs: the FILE-CONTROL paragraph which 
names and associates the files with external media; and the I-0-CONTROL 
paragraph which defines special control techniques to be used in the object 
program. 

6.2.3 Structure 

The following is the general format of the sections and paragraphs in the 
Environment Division, and defines the order of presentation in the source 
program. 

IV-31 



Environment Division 

6.2.3.1 General Format 

ENVIRONMENT DIVISION. 

[CONFIGURATION SECTION. 

[SOURCE-COMPUTER. [source-computer-entry]] 

[OBJECT-COMPUTER. 

[SPECIAL-NAMES. 

[object-computer-entry]] 

[special-names-entry]]] 

[INPUT-OUTPUT SECTION. 

FILE-CONTROL~ {file-control-entry} 

[I-0-CONTROL. [input-output-control-entry]]] 

IV-32 



Data Division 

6.3 DATA DIVISION 

6.3.1 Overall Approach 

The Data Division describes the data that the object program is to accept as 
input, to manipulate, to create, or to produce as output. 

6.3.2 Physical and Logical Aspects of Data Description 

6.3.2.l Data Division Organization 

The Data Division is subdivided into sections. These are the File, 
Working-Storage, Linkage, Communication, and Report Sections. 

The File Section defines the structure of data files. Each file 1s defined 
by a file description entry and one or more record description entries, or by a 
file description entry and one or more report description entries. Record 
description entries are written immediately following the file description 
entry. When the file description entry specifies a file to be used as a report 
writer output file, no record description entries are permitted for that file. 
Report description entries appear in a separate section of the Data Division, 
the Report Section. 

The Working-Storage Section describes records and subordinate data items 
which are not part of external data files but are developed and processed 
internally. It also describes data items whose values are assigned 1n the 
source program and do not change during the execution of the object program. 

The Linkage Section appears in the called program and 
that are to be referred to by the calling program and 
structure is the same as the Working-Storage Section. 

describes data items 
the called program. Its 

The Communication Section describes the data item in the source program that 
will serve as the interface betwe'en the message control system (MCS) and the 
program. 

The Report Section describes the content and format of reports that are to be 
generated. 

IV-33 



Data Division 

6.3.2.2 Data Division Structure 

The following gives the general format of the sections in the Data Division, 
and defines the order of their presentation in the source program. 

6.3.2.2.1 General Format 

DATA DIVISION. 

[FILE SECTION. 

[
file-description-entry {record-description-entry} ••• 
sor. t-merge-f ile-description-en try {record-description-entry} 
report-file-description-entry 

[WORKING-STORAGE SECTION. 

f77-levdedl-desicripition-entry J ... ]· 
Lrecor ~ escr pt on-entry 

[LINKAGE SECTION. 

[77-levdedl-des~ri~tion-entry ] ••• ]· 
recor - escription-entry 

[COMMUNICATION SECTION. 

. .. ] ... ] 

[connnunication-description-entry [record-description-entry] ••• } ••• J 

[REPORT SECTION. 

[report-description-entry {report-group-description-entry} ••• ] ••• ] 

IV-34 



Procedure Division 

6.4 PROCEDURE DIVISION 

6.4.1 General Description 

The Procedure Division may contain declarative and nondeclarative procedures. 

6.4.1.1 Declaratives 

Declarative sections must be grouped at the beginning of the Procedure 
Di vis ion preceded by the key word DECLARATIVES and fol lowed by the key words END 
DECLARATIVES. (See pages VII-50, VIII-35, IX-39, XIII-76, XIII-78, and XV-5 for 
the USE statement.) 

6.4.1.2 Procedures 

A procedure is composed of a paragraph, or a group of successive paragraphs, 
or a section, or a group of successive sections within the Procedure Division. 
If one paragraph is in a section, all paragraphs must be in sections. A 
procedure-name is a word used to refer to a paragraph or section in the source 
program in which it occurs. It consists of a paragraph-name (which may be 
qualified) or a section-name. 

A section consists of a section header followed by zero, one, or more 
successive paragraphs. A section ends immediately before the next section or at 
the end of the Procedure Division or, in the declaratives portion of the 
Procedure Division, at the key words END DECLARATIVES. 

A paragraph consists of a paragraph-name followed by a period and a space and 
by zero, one, or more successive sentences. A paragraph ends immediately before 
the next paragraph-name or section-name or at the end of the Procedure Division 
or, in the declaratives portion of the Procedure Division, at the key words END 
DECLARATIVES. A sentence consists ·of one or more statements and l.S terminated 
by the separator period. 

A statement is a syntactically valid combination of words, literals, and 
separators beginning with a COBOL verb. 

The term 'identifier' is defined as the word or words necessary to make 
unJ.que reference to a data item. 

6.4.1.3 Execution 

Execution begins with the first statement of 
excluding declaratives. Statements are then executed 
are presented for compilation, except where the rules 

IV-35 

the Procedure Division, 
in the order in which they 
indicate some other order. 



Procedure Division 

6.4.1.4 Procedure Division Structure 

6.4.1.4.1 Procedure Division Header 

The Procedure Division is identified by, and must begin with, the following 
header: 

PROCEDURE DIVISION [USING {data-name-1} • ,, ], 

6.4.1.4.2 Procedure Division Body 

The body of the Procedure Division must conform to one of the following 
formats: 

Format 1: 

[DECLARATIVES. 

{section-name SECTION [segment-number]. 

USE statement. 

[paragraph-name. 

[sentence] ••• . . . } ... 
END DECLARATIVES.] 

{section-name SECTION [segment-number]. 

[paragraph-name. 

[sentence] ••• ] • • • } •.• 

Format 2: 

{paragraph-name. 

[sentence] } ... 

IV-36 



Statements and Sentences 

6.4.2 Statements and Sentences 

There are four types of statements: imperative statements, conditional 
statements, compiler directing statements, and delimited scope statements. 

There are three types of sentences: imperative sentences, conditional 
sentences, and compiler directing sentences. 

6.4.2.l Conditional Statements and Sentences 

6.4.2.1.1 Definition of Conditional Statement 

A conditional statement specifies that the truth value of a condition is to 
be determined and that the subsequent action of the object program is dependent 
on this truth value. 

A conditional statement is one of the following: 

(1) An EVALUATE, IF, SEARCH, or RETURN statement. 

(2) A READ statement that specifies the AT END, NOT AT END, INVALID KEY, or 
NOT INVALID KEY phrase. 

(3) A WRITE statement that specifies the INVALID KEY, NOT INVALID KEY, 
END-OF-PAGE, or NOT END-OF-PAGE phrase. 

(4) A DELETE, REWRITE, or START statement that specifies the INVALID KEY or 
NOT INVALID KEY phrase. 

(5) An arithmetic statement (ADD, COMPUTE, DIVIDE, MULTIPLY, SUBTRACT) that 
specifies the ON SIZE ERROR or NOT ON SIZE ERROR phrase. 

(6) A RECEIVE statement that specifies a NO DATA or WITH DATA phrase. 

(7) A STRING or UNSTRING statement that specifies the ON OVERFLOW or NOT ON 
OVERFLOW phrase. 

(8) A CALL statement that specifies the ON OVERFLOW, ON EXCEPTION, or NOT ON 
EXCEPTION phrase. 

6.4.2.1.1.1 Definition of Conditional Phrase 

A conditional phrase specifies the action to be taken upon determination of 
the truth value of a condition resulting from the execution of a conditional 
statement. 

A conditional phrase is one of the following: 

(1) AT END or NOT AT END phrase when specified within a READ statement. 

(2) INVALID KEY or NOT INVALID KEY phrase when specified within a DELETE, 
READ, REWRITE, START, or WRITE statement. 

(3) END-OF-PAGE or NOT END-OF-PAGE phrase when specified within a WRITE 
statement. 

IV-37 



Statements and Sentences 

(4) SIZE ERROR or NOT ON SIZE ERROR phrase when specified within an ADD, 
COMPUTE, DIVIDE, MULTIPLY, or SUBTRACT statement. 

(5) NO DATA or WITH DATA phrase when specified within a RECEIVE statement. 

(6) ON OVERFLOW or NOT ON OVERFLOW phrase when specified within a STRING or 
UNSTRING statement. 

(7) ON OVERFLOW, ON EXCEPTION, or NOT ON EXCEPTION phrase when specified 
within a CALL statement. 

6.4.2.1.2 Definition of Conditional Sentence 

A conditional sentence is a conditional statement, optionally preceded by an 
imperative statement, terminated by the separator period. 

6.4.2.2 Compiler Directing Statements and Compiler Directing Sentences 

6.4.2.2.1 Definition of Compiler Directing Statement 

A compiler directing statement consists of a compiler directing verb and its 
operands. The compiler directing verbs are COPY, REPLACE, and USE (see page 
XII-2, The COPY Statement; page XII-6, The REPLACE Statement; and the USE 
Statement on pages VII-50, VIII-35, IX-39, XIII-76, XIII-78, and XV-5). A 
compiler directing statement causes the compiler to take a specific action 
during compilation. 

6.4.2.2.2 Definition of Compiler Directing Sentence 

A compiler directing sentence is a single compiler directing statement 
terminated by the separator period. 

IV-38 



Statements and Sentences 

6.4.2.3 Imperative Statements and Imperative Sentences 

6.4.2.3.1 Definition of Imperative Statement 

An imperative statement begins with an imperative verb and specifies an 
unconditional action to be .taken by the object program or is a conditional 
statement that is delimited by its explicit scope terminator (delimited scope 
statement). An imperative statement may consist of a sequence of imperative 
statements, each possibly separated from the next by a separator. The 
imperative verbs are: 

ACCEPT GENERATE RELEASE 
ADD 1 GO TO REWRITE2 

ALTER INITIALIZE SEND 
CALL7 INITIATE SET 
CANCEL INSPECT SORT 
CLOSE MERGE START2 

COMPUTE 1 MOVE STOP 
CONTINUE MULTIPLY1 STRING3 

DELETE 2 OPEN SUBTRACT1 

DISABLE PERFORM SUPPRESS 
DISPLAY PURGE TERMINATE 
DIVIDE 1 READ 5 UNSTRING 3 

ENABLE RECEIVE4 WRITE6 

EXIT 

1Without the optional ON SIZE ERROR and NOT ON SIZE ERROR phrases 
2Without the optional INVALID KEY and NOT INVALID KEY phrases 
3Without the optional ON OVERFLOW and NOT ON OVERFLOW phrases 
4Without the optional NO DATA and WITH DATA phrases 
5without the optional AT END, NOT AT END, INVALID KEY, and NOT 

INVALID KEY phrases 
6Without the optional INVALID KEY, NOT INVALID KEY, END-OF-PAGE, 

and NOT END-OF-PAGE phrases 
7Without the optional ON OVERFLOW, ON EXCEPTION, and NOT ON 

EXCEPTION phrases 

Whenever 'imperative-statement' appears in the general format of statements, 
'imperative-statement' refers to that sequence of consecutive imperative 
statements that must be ended by a period or by any phrase associated with a 
statement containing that 'imperative-statement'. 

6.4.2.3.2 Definition of Imperative Sentence 

An imperative sentence is an imperative statement term.inated by the separator 
period. 

6.4.2.4 Delimited Scope Statements 

A delimited scope statement is any statement which includes its explicit 
scope terminator. (See page IV-27, Explicit and Implicit Scope Terminators.) 

IV-39 



Scope of Statements 

6.4.3 Scope of Statements 

Scope terminators delimit the scope of certain Procedure Division statements. 
Statements which include their explicit scope terminators are termed delimited 
scope statements. (See page IV-27, Explicit and ~mplicit Scope Terminators, and 
page' IV-39, Delimited Scope Statements.) The scope of statements which are 
contained within statements (nested) may also be implicitly terminated. 

When statements are nested within other statements, a separator period which 
terminates the sentence also implicitly terminates all nested statements. 

Whenever any statement is contained within another statement, the next phrase 
of the containing statement following the contained statement terminates the 
scope of any unterminated contained statement. 

When a delimited scope statement is nested within another delimited scope 
statement with the same verb, each explicit scope terminator terminates the 
statement begun by the most recently preceding, and as yet unterminated, 
occurrence of that verb. 

When statements are nested within other statements which allow optional 
conditional phrases, any optional conditional phrase encountered is considered 
to be the next phrase of the nearest preceding unterminated statement with which 
that phrase is permitted to be associated according to the general format and 
the syntax rules for that statement, but with which no such phrase has already 
been associated. An unterminated statement is one which has not been previously 
terminated either explicitly or implicitly. (See page IV-27, Explicit and 
Implicit Scope Terminators.) 

IV-40 



Reference Format 

7. REFERENCE FORMAT 

7.1 GENERAL DESCRIPTION 

The reference format, which provides a standard method of describing COBOL 
source programs and COBOL library text, is described in terms of character 
positions in a line on an input-output medium. The meaning of lines and 
character positions is defined by the implementor. Within these definitions, 
each compiler accepts source programs written in reference format and produces 
an output listing of the source program in reference format. 

The rules for spacing given in the discussion of the reference format take 
precedence over all other rules for spacing. 

The divisions of a COBOL source program must be ordered as follows: the 
Identification Division, then the Environment Division, then the Data Division, 
then the Procedure Division. Each division must be written according to the 
rules for the reference format. 

7.2 REFERENCE FORMAT REPRESENTATION 

The reference format for a line is represented as follows: 

I 
Margin 

r I 2 5 

Sequence Number Area 

. I Margin 

6 r 7 

Indicator Area 

I . 
Margin 

\ 10 11 1 12 

Area A 

Margin L is immediately to the left of the leftmost character 
line. 

Margin c is between the 6th and 7th character positions of a 

Margin A is between the 7th and 8th character positions of a 

Margin B is between the 11th and 12th character positions of 

. I Margin 
R 

13 I 

Area B 

position of a 

line. 

line. 

a line. 

Margin R is immediately to the right of the rightmost character position of a 
line. 

The sequence number occupies six character positions (1-6), and is between 
margin L and margin C. 

The indicator area is the 7th character position of a line. 

Area A occupies character positions 8, 9, 10, and 11, and is between margin A 
and margin B. 

Area B occupies a finite number of character positions specified by the 

IV-41 



Reference Format 

implementor; it begins immediately to the right of margin B and terminates 
immediately to the left of margin R. 

7.2.1 Sequence Numbers 

The sequence number area may be used to label a source program line. The 
content of the sequence number area is defined by the user and may consist of 
any character in the computer's character set. There is no requirement that the 
content of the sequence number area appears in any particular sequence or be 
unique. 

7.2.2 Continuation of Lines 

Any sentence, entry, phrase, or clause may be continued by starting 
subsequent line(s) in area B. These subsequent lines are called the 
continuation line(s). The line being continued is called the continued line. 
Any word, literal, or PICTURE character-string may be broken in such a way that 
part of it appears on a continuation line. 

A hyphen in the indicator area of a line indicates that the first nonblank 
character in area B of the current line is the successor of the last nonblank 
character of the preceding line, excluding intervening comment lines or blank 
lines, without any intervening space. However, if the continued line contains a 
nonnumeric literal without closing quotation mark, the first nonblank character 
in area B of the continuation line must be a quotation mark, and the 
continuation starts with the character immediately after that quotation mark. 
All spaces at the end of the continued line are considered part of the literal. 
Area A of a continuation line must be blank. 

If there is no hyphen in the indicator area of a line, it is assumed that the 
first nonblank character in the line is preceded by a space. 

Both characters composing the separator '==' must be on the same line. 

7.2.3 Blank Lines 

A blank line is 
blank line can 
above.) 

one that is blank from margin C to margin R, inclusive. A 
appear anywhere in the source program. (See paragraph 7.2.2 

7.2.4 Comment Lines 

A comment line is any line with an asterisk or slant in the indicator area of 
the line. A comment line can appear as any line in a source program after the 
Identification Division header and as any line in library text of a COBOL 
library. Any combination of the characters from the computer's character set 
may be included in area A and area B of that line. The asterisk or slant and 
the characters in area A and area B will be produced on the listing but serve as 
documentation only and will not be checked syntactically. The slant in the 
indicator area causes page ejection prior to printing the comment line in the 
listing of the source program; an asterisk in the indicator area causes printing 
of the line at the next available line position in the listing. 

IV-42 



Reference Format 

7.2.5 Pseudo-Text 

may start in 
indicator area 
of the line 
apply to the 

The character-strings and separators comprising pseudo-text 
either area A or area B. If, however, there is a hyphen in the 
of a line which follows the opening pseudo-text delimiter, area A 
must be blank; and the normal rules for continuation of lines 
formation of text words. (See page IV-42, Continuation of Lines.) 

7.3 DIVISION, SECTION, PARAGRAPH FORMATS 

7.3.1 Division Header 

The division header must start in area A. 

7.3.2 Section Header 

The section header must start in area A. 

A section consists of zero, one, 
Division or Procedure Division or 
Division. 

or more paragraphs in the Environment 
zero, one, or more entries in the Data 

7.3.3 Paragraph Header, Paragraph-Name, and Paragraph 

A paragraph consists of a paragraph-name followed by the separator period and 
by zero, one, or more sentences, or a paragraph header followed by one or more 
entries. 

The paragraph header or paragraph-name starts in area A of any line following 
the first line of a division or a section. 

The first sentence or entry in a paragraph begins either on the same line as 
the paragraph header or paragraph-name or in area B of the next nonblank line 
that is not a comment line. Successive sentences or entries either begin in 
area B of the same line as the preceding sentence or entry or in area B of the 
next nonblank line that is not a comment line. 

When the sentences or entries of a paragraph require more than one line, they 
may be continued on a subsequent line or lines. (See page IV-42, Continuation 
of Lines.) 

7.4 DATA DIVISION ENTRIES 

Each Data Division entry begins with a level indicator or a level-number, 
followed by a space, followed by the name of the subject of entry, if specified, 
followed by a sequence of independent clauses describing the item. The last 
clause is always terminated by a separator period. 

There are two types of such entries: those which begin with a level 
indicator and those which begin with a level-number. 

In the Data Division, a level indicator is any of the following: FD, SD, CD, 
RD. 

IV-43 



Reference Format 

In those entries that begin with a level indicator, the level indicator 
begins in area A, followed by at least one space, and then followed with the 
name of the subject of entry and appropriate descriptive information. 

Those entries that begin with level-numbers are called data description 
entries. 

A level-number has a value taken from the set of values 01, 02, ••• , 49, 66, 
77, 88. Level-numbers in the range 01, 02, .•. , 09 may be written either as a 
single digit or as a zero followed by a significant digit. At least one space 
must separate a level-number from the word following the level-number. 

In those data description entries that begin with a level-number 01 or 77, 
the level-number begins in area A, followed by at least one space, and then 
followed with its associated record-name or item-name, if specified, and 
appropriate descriptive information. 

Data description entries may be indented. Any indentation is with respect to 
margin A. Each new data description entry may begin any number of positions to 
the right of margin A, except data description entries that begin with 
level-number 01 or 77 must begin in area A. The extent of indentation is 
determined only by the width of the physical medium. The entries on the output 
listing need be indented only if the input is indented. Indentation does not 
affect the magnitude of a level-number. 

7.5 DECLARATIVES 

The key word DECLARATIVES and the pair of key words END DECLARATIVES that 
precede and follow, respectively, the declaratives portion of the Procedure 
Division must each appear on a line by itself. Each must begin in area A and be 
followed by the separator period. 

7.6 END PROGRAM HEADER 

The end program header must start 1n area A. 

IV-44 



COBOL Reserved Words 

8. COBOL RESERVED WORDS 

ACCEPT CONFIGURATION END-DELETE I-0-CONTROL 
ACCESS CONTAINS END-DIVIDE IDENTIFICATION 
ADD CONTENT END-EVALUATE IF 
ADVANCING CONTINUE END-IF IN 
AFTER CONTROL END-MULTIPLY INDEX 
ALL CONTROLS END-OF-PAGE INDEXED 
ALPHABET CONVERTING END- PERFORM INDICATE 
ALPHABETIC COPY END-READ INITIAL 
ALPHABETIC-LOWER CORR END-RECEIVE INITIALIZE 
ALPHABETIC-UPPER CORRESPONDING END-RETURN INITIATE 
ALPHANUMERIC COUNT END- REWRITE INPUT 
ALPHANUMERIC-EDITED CURRENCY END-SEARCH INPUT-OUTPUT 
ALSO END-START INSPECT 
ALTER DATA END-STRING INSTALLATION 
ALTERNATE DATE END-SUBTRACT INTO 
AND DATE-COMPILED END-UN STRING INVALID 
ANY DATE-WRITTEN END-WRITE IS 
ARE DAY ENTER 
AREA DAY-OF-WEEK ENVIRONMENT JUST 
AREAS DE EOP JUSTIFIED 
ASCENDING DEBUG-CONTENTS EQUAL 
ASSIGN DEBUG-ITEM ERROR KEY 
AT DEBUG-LINE ESI 
AUTHOR DEBUG-NAME EVALUATE LABEL 

DEBUG-SUB-I EVERY LAST 
BEFORE DEBUG-SUB-2 EXCEPTION LEADING 
BINARY DEBUG-SUB-3 EXIT LEFT 
BLANK DEBUGGING EXTEND LENGTH 
BLOCK DECIMAL-POINT EXTERNAL LESS 
BOTTOM DECLARATIVES LIMIT 
BY DELETE FALSE LIMITS 

DELIMITED FD LINAGE 
CALL DELIMITER FILE LINAGE-COUNTER 
CANCEL DEPENDING FILE-CONTROL LINE 
CD DESCENDING FILLER LINE-COUNTER 
CF DESTINATION FINAL LINES 
CH DETAIL FIRST LINKAGE 
CHARACTER DISABLE FOOTING LOCK 
CHARACTERS DISPLAY FOR LOW-VALUE 
CLASS DIVIDE FROM LOW-VALUES 
CLOCK-UNITS DIVISION 
CLOSE DOWN GENERATE MEMORY 
COBOL DUPLICATES GIVING MERGE , 
CODE DYNAMIC GLOBAL MESSAGE 
CODE-SET GO MODE 
COLLATING EGI GREATER MODULES 
COLUMN ELSE GROUP MOVE 
COMMA EMI MULTIPLE 
COMMON ENABLE HEADING MULTIPLY 
COMMUNICATION END HIGH-VALUE 
COMP END-ADD HIGH-VALUES NATIVE 
COMPUTATIONAL END-CALL NEGATIVE 
COMPUTE END-COMPUTE I-0 NEXT 

IV-45 



COBOL Reserved Words 

NO QUOTE SELECT THRU 
NOT QUOTES SEND TIME 
NUMBER SENTENCE TIMES 
NUMERIC RANDOM SEPARATE TO 
NUMERIC-EDITED RD SEQUENCE TOP 

READ SEQUENTIAL TRAILING 
OBJECT-COMPUTER RECEIVE SET TRUE 
OCCURS RECORD SIGN TYPE 
OF RECORDS SIZE 
OFF REDEFINES SORT UNIT 
OMITTED REEL SORT-MERGE UN STRING 
ON REFERENCE SOURCE UNTIL 
OPEN REFERENCES SOURCE-COMPUTER UP 
OPTIONAL RELATIVE SPACE UPON 
OR RELEASE SPACES USAGE 
ORDER REMAINDER SPECIAL-NAMES USE 
ORGANIZATION REMOVAL STANDARD USING 
OTHER RENAMES STANDARD-! 
OUTPUT REPLACE STANDARD-2 VALUE 
OVERFLOW ·REPLACING START VALUES 

REPORT STATUS VARYING 
PACKED-DECIMAL REPORTING STOP 
PADDING REPORTS STRING WHEN 
PAGE RERUN SUB-QUEUE-1 WITH 
PAGE-COUNTER RESERVE SUB-QUEUE-2 WORDS 
PERFORM RESET SUB-QUEUE-3 WORKING-STORAGE 
PF RETURN SUBTRACT WRITE 
PH REVERSED SUM 
PIC REWIND SUPPRESS ZERO 
PICTURE REWRITE SYMBOLIC ZEROES 
PLUS RF SYNC ZEROS 
POINTER RH SYNCHRONIZED 
POSITION RIGHT + 
POSITIVE ROUNDED TABLE 
PRINTING RUN TALLYING * 
PROCEDURE TAPE I 
PROCEDURES SAME TERMINAL ** 
PROCEED SD TERMINATE > 
PROGRAM SEARCH TEST < 
PROGRAM-ID SECTION TEXT = 
PURGE SECURITY THAN >= 

SEGMENT THEN <= 
QUEUE SEGMENT-LIMIT THROUGH 

IV-46 



Composite Language Skeleton 

SECTION V: COMPOSITE LANGUAGE SKELETON 

1. GENERAL DESCRIPTION 

This section contains the composite language skeleton of Standard COBOL. It 
is intended to display complete and syntactically correct formats. 

The leftmost margin on pages V-2 through V-4 and pages V-8 
equivalent to margin A in a COBOL source program. The first 
the leftmost margin is equivalent to margin B in a COBOL source 
page IV-41 for a description of margin A and margin B.) 

through V-19 is 
indentation after 

program. (See 

On pages V-20 through V-33 the leftmost margin indicates the beginning of the 
format for a new COBOL verb. The first indentation after the leftmost margin 
indicates continuation of the format of the COBOL verb. The appearance of the 
italic letter S, R, I, or W to the left of the format for the verbs CLOSE, OPEN, 
READ, and WRITE indicates the Sequential I-0 module, Relative I-0 module, 
Indexed I-0 module, or Report Writer module in which that general format is 
used. 

The following is a summary of the formats shown on pages V-2 through V-40: 

• Page V-2: General format for Identification Division 
• Pages V-3 and V-4: General format for Environment Division 
• Pages V-5 through V-7: General formats for file control entry 
• Page V-8: General format for Data Division 
• Pages V-9 through V-12: General formats for file description entry 
• Pages V-13 and V-14: General formats for data description entry 
• Pages V-15 and V-16: General formats for communication description entry 
• Pages V-17 and V-18: General formats for report description entry 

and report group description entry 
• Page V-19: General format for Procedure Division 
• Pages V-20 through V-33: General formats for COBOL verbs 
• Page V-34: General format for COPY and REPLACE statements 
• Pages V-35 and V-36: General format for conditions 
• Page V-37: General format for qualification 
• Page V-38: Miscellaneous formats 
• Page V-39: General format for nested source programs 
• Page V-40: General format for a sequence of source programs 

V-1 



Identification Division 

GENERAL FORMAT FOR IDENTIFICATION DIVISION 

IDENTIFICATION DIVISION. 

PROGRAM-ID. program-name [rs {!COMMON I} PROGRAM] 
INITIAL ' 

[AUTHOR. [comment-entry] ••• ] 

[INSTALLATION. [comment-entry] 

[DATE-WRITTEN. [comment-entry] 

[DATE-COMPILED. [comment-entry] ••• 

[SECURITY. [comment-entry] ••• ] 

V-2 



Environment Division 

GENERAL FORMAT FOR ENVIRONMENT DIVISION 

[ENVIRONMENT DIVISION. 

[CONFIGURATION SECTION. 

[SOURCE-COMPUTER. [computer-name [WITH DEBUGGING MODE].]] 

[OBJECT-COMPUTER. [computer-name 

rMEMORY SIZE integer-1 {=CTERs}] 
L MODULES 

[PROGRAM COLLATING SEQUENCE IS alphabet-name-!] 

[SEGMENT-LIMIT IS segment-number].]] 

[SPECIAL-NAMES. [[ implementor-name-! 

IS mnemonic-name-1 [ON STATUS IS condition-name-1 [QE!' STATUS IS condition-name-2]] 

IS mnemonic-name-2 [OFF STATUS IS condition-name-2 [ON STATUS IS condition-name-1]] 

ON STATUS IS condition-name-1 [OFF STATUS IS condition-name-2] 

OFF STATUS IS condition-name-2 [ON STATUS IS condition-name-1] 

[ALPHABET alphabet-name-! IS 

STANDARD-! 
STANDARD-2 
NATIVE 
implementor-name-2 

{literal-! 
[{THROUGH} . ] } THRU literal-2 

{ALSO literal-3} ••• • •• 

[sYMBOLIC CHARACTERS {{{symbolic-character-1) .. • {!i.} {integer-!} ••• } ••• 

[IN alphabet-name-2]}] 

[CLASS class-name-1 IS {literal-4 

[CURRENCY SIGN IS literal-6] 

[DECIMAL-POINT IS COMMA] • ] ] ] 

[{THROUGH} . J } ] THRU literal-5 • , , •.• 

V-3 



Environment Division 

GENERAL FORMAT FOR ENVIRONMENT DIVISION 

[INPUT-OUTPUT SECTION. 

FILE-CONTROL. 

{file-control-entry} 

[ I-0-CONTROL • 

[[= [o• {file-name-1 }] 
implementor-name-1 EVERY 

[SAME [~RD ] AREA FOR file-name-3 
SORT-MERGE 

{ 
{ { REEL} } [END OF] UNIT OF 

integer-1 RECORDS 
integer-2 CLOCK-UNITS 
condition-name-1 

{ file-name-4} ... ] ... 

file-name-2}] .. ' 

[MULTIPLE FILE TAPE CONTAINS {file-name-5 [POSITION integer-3]} ••. ] ••.. ]]]] 

V-4 



Environment Division - File Control Entry 

GENERAL FORMAT FOR FILE CONTROL ENTRY 

SEQUENTIAL FILE: 

SELECT [OPTIONAL] file-name-1 

ASSIGN TO {i~plementor-name-1} 
literal-1 

[RESERVE integer-1 [~!s]] 
[[ORGANIZATION IS] SEQUENTIAL] 

[PADDING CHARACTER IS {data-name-l}] 
literal-2 

[ RECORD DELIMITER IS {~TANDARD-l }] 
implementor-name-2 

[ACCESS MODE IS SEQUENTIAL] 

[FILE STATUS IS data-name-2]. 

RELATIVE FILE: 

SELECT [OPTIONAL] file-name-1 

ASSIGN TO {i~plementor-name-1} 
literal-1 

[RESERVE integer-1 [~!s]] 
[ORGANIZATION IS] RELATIVE 

[
ACCESS MODE IS {S{~~ 

DYNAMIC 

[FILE STATUS IS data-name-2]. 

[RELATIVE KEY IS data-name-1]}] 

RELATIVE KEY IS data-name-1 

V-5 



Environment Division - File Control Entry 

GENERAL FORMAT FOR FILE CONTROL ~NTRY 

INDEXED FILE: 

SELECT [OPTIONAL] file-name-1 

ASSIGN TO {i~plementor-name-1} 
literal-1 

[RESERVE integer-1 [ !:!s]] 
[ORGANIZATION IS] INDEXED 

[ {
SEQUENTIAL}] 

ACCESS MODE IS RANDOM 
DYNAMIC 

RECORD KEY IS data-name-1 

[ALTERNATE RECORD KEY IS data-name-2 [WITH DUPLICATES]] ••• 

[FILE STATUS IS data-name-3]. 

SORT OR MERGE FILE: 

SELECT f ile-name-1 ASSIGN TO {i~plementor-name-1} 
literal-1 

V-6 



Environment Division - File Control Entry 

GENERAL FORMAT FOR FILE CONTROL ENTRY 

REPORT FILE: 

SELECT [OPTIONAL] file-name-1 

ASSIGN TO {i~plementor-name-1} 
literal-1 

[RESERVE integer-1 [!:!s] J 
[[ORGANIZATION IS] SEQUENTIAL]] 

[PADDING CHARACTER IS {data-name-l}] 
literal-2 

rRECORD DELIMITER IS {~TANDARD-l }] 
~ implementor-name-2 

[ACCESS MODE IS SEQUENTIAL] 

[FILE STATUS IS data-name-2]. 

V-7 



Data Division 

[DATA DIVISION. 

[FILE SECTION. 

GENERAL FORMAT FOR DATA DIVISION 

[
file-description-entry {record-description-entry} ••• 
sort-merge-file-description-entry {record-description-entry} 
report~f ile-description-entry 

[WORKING-STORAGE SECTION. 

r77-level-description-entry J ... J 
Lrecord-description-entry 

[LINKAGE SECTION. 

[ 77-level-description-entry J J 
record-description-entry ••• 

[COMMUNICATION SECTION. 

. .. ] ... ] 

[communication-description-entry [record-description-entry] ••• ] ••• ] 

[REPORT SECTlON. 

[report-description-entry {report-group-description-entry} .•• ] •.• ]] 

V-8 



Data Division - File Description Entry 

GENERAL FORMAT FOR FILE DESCRIPTION ENTRY 

SEQUENTIAL FILE: 

FD file-name-1 

[IS EXTERNAL] 

[IS GLOBAL] 

[BLOCK CONTAINS [integer-1 TO] integer-2 

CONTAINS integer-3 CHARACTERS 

{ RECORDS }] 
CHARACTERS 

RECORD IS VARYING IN SIZE [[FROM integer-4] [TO integer-SJ CHARACTERS] 

[DEPENDING ON data-name-1] 

CONTAINS integer-6 TO integer-7 CHARACTERS 

r, {RECORD IS } {STANDARD}l 
LLABEL RECORDS ARE OMITTED J 

[vALUE OF { implementor-name-1 rs {~~~:~~~-2 }} ••• J 
rATA {:gg~S 1!ru,} {data-name-3) ••• ] 

'LINAGE IS {~ata-name-4 } LINES [WITH FOOTING AT {~ata-name-S}] l integer-8 integer-9 

'LINES AT TOP {~ata-name-6}1 [LINES AT BOTTOM {~ata-name- 7}]] L - integer-10 J integer-11 

[CODE-SET IS alphabet-name-1]. 

V-9 



Data Division - File Description Entry 

GENERAL FORMAT FOR FILE DESCRIPTION ENTRY 

RELATIVE FILE: 

FD file-name-1 

[IS EXTERNAL] 

[IS GLOBAL] 

[BLOCK CONTAINS [integer-1 TO] integer-2 

CONTAINS integer-3 CHARACTERS 

{ RECORDS }l 
CHARACTERS j 

RECORD 
IS VARYING IN SIZE [[FROM integer-4] [TO integer-5] CHARACTERS] 

[DEPENDING ON data-name-1] 

CONTAINS integer-6 TO integer-7 CHARACTERS 

rLABEL {RECORD IS } { STANDARD}l L RECORDS ARE OMITTED J 
h { {data-name-2}} LVALUE OF implementor-name-1 IS literal-l 

r, {RECORD IS '} J ~ATA RECORDS ARE {data-name-3} •••. 

V-10 

... J 



Data Division - File Description Entry 

GENERAL FORMAT FOR FILE DESCRIPTION ENTRY 

INDEXED FILE: 

FD file-name-1 

[IS EXTERNAL) 

[IS GLOBAL] 

[BLOCK CONTAINS [integer-1 TO] integer-2 

CONTAINS integer-3 CHARACTERS 

{ RECORDS }] 
CHARACTERS 

RECORD IS VARYING IN SIZE [[FROM integer-4) [TO integer-5) CHARACTERS] 

[DEPENDING ON data-name-1] 

CONTAINS integer-6 TO integer-7 CHARACTERS 

[LABEL {RECORD IS } {STANDARD}] 
RECORDS ARE OMITTED 

[ { . {data-name-2}} VALUE OF implementor-name-1 IS literal-1 ... ] 
[ { RECORD IS } J DATA RECORDS ARE {data-name-3} ••.. 

V-11 



Data Division - File Description Entry 

GENERAL FORMAT FOR FILE DESCRIPTION ENTRY 

SORT-MERGE FILE: 

SD file-name-1 

CONTAINS integer-1 CHARACTERS 

RECORD IS VARYING IN SIZE [[FROM integer-2] [IQ integer-3] CHARACTERS] 

[DEPENDING ON data-name-1] 

CONTAINS integer-4 TO integer-5 CHARACTERS 

[DATA {:~g:s I!RE} {data-name-2} ••. J . 

REPORT FILE: 

FD file-name-1 

[IS EXTERNAL] 

[IS GLOBAL] 

[BLOCK CONTAINS [integer-1 TO] integer-2 

{ CONTAINS integer-3 CHARACTERS 
CONTAINS integer-4 TO integer-5 

r {RECORD IS } {STANDARD}] 
lLABEL RECORDS ARE OMITTED 

{~~~iERS}] 
CHARACTERS}] 

[vALUE OF { implementor-name-1 IS 

[CODE-SET IS alphabet-name-1] 

{d~ta-name-1}} ••. J 
literal-1 

jREPORT IS } 
lREPORTS ARE {report-name-1} 

V-12 



Data Division - Data Description Entry 

GENERAL FORMAT FOR DATA DESCRIPTION ENTRY 

FORMAT 1: 

level-number [ data -narne-1] 
FILLER 

[REDEFINES data-narne-2] 

[IS EXTERNAL] 

[IS GLOBAL] 

[{~TURE} IS ch~racter-string] 

[USAGE IS] 

BINARY 
COMPUTATIONAL 
COMP 
DISPLAY 
INDEX 
P ACKED-.DECIMAL 

fi[SIGN IS] {LEADING } [SEPARATE CHARACTER]] 
~ -- TRAILING 

OCCURS integer-2 TIMES 

[{~~~~~~~~~G} KEY IS {data-narne-3} ..• J ... 
[INDEXED BY {index-narne-1} ..• ] 

OCCURS integer-1 TO integer-2 TIMES DEPENDING ON data-narne-4 

[{ASCENDING } 
DESCENDING KEY IS {data-name-3} . . . J ... 

[INDEXED BY {index-narne-1} ... ] 

[ { SYNCHRONIZED} [LEFT J ] 
SYNC RIGHT 

[ {=IFIED} RIGHT] 

[BLANK WHEN ZERO] 

[VALUE IS literal-1]. 

V-13 



Data Division - Data Description Entry 

GENERAL FORMAT FOR DATA DESCRIPTION ENTRY 

FORMAT 2: 

66 data-name-1 RENAMES data-name-2 [{=UGH} data-name-3] 

FORMAT 3: 

88 condition-name-1 {~~~:s 1!RE} { literal-1 [{:UGH} literal-2 J } ... 

V-14 



Data Division - Communication Description Entry 

GENERAL FORMAT FOR COMMUNICATION DESCRIPTION ENTRY 

FORMAT 1: 

CD cd-name-1 

FOR [INITIAL] INPUT 

[[SYMBOLIC QUEUE IS data-name-1) 

[SYMBOLIC SUB-QUEUE-1 IS data-name-2) 

[SYMBOLIC SUB-QUEUE-2 IS data-name-3) 

[SYMBOLIC SUB-QUEUE-3 IS data-name-4) 

[MESSAGE DATE IS data-name-5) 

[MESSAGE TIME IS data-name-6) 

[SYMBOLIC SOURCE IS data-name-7) 

[TEXT LENGTH IS data-name-8) 

[END KEY IS data-name-9) 

[STATUS KEY IS data-name-10) 

[MESSAGE COUNT IS data-name-11)) 

[data-name-1, data-name-2, data-name-3, 

data-name-4, data-name-5, data-name-6, 

data-name-7, data-name-8, data-name-9, 

data-name-10, data-name-11) 

V-15 



Data Division - Communication Description Entry 

GENERAL FORMAT FOR COMMUNICATION DESCRIPTION ENTRY 

FORMAT 2: 

CD cd-name-1 FOR OUTPUT 

[DESTINATION COUNT IS data-name-1] 

[TEXT LENGTH IS data-name-2] 

[STATUS KEY IS data-name-3] 

[DESTINATION TABLE OCCURS integer-1 TIMES 

[INDEXED BY {index-name-1} ]] 

[ERROR KEY IS data-name-4] 

[SYMBOLIC DESTINATION IS data-name-5]. 

FORMAT 3: 

CD cd-name-1 

FOR [INITIAL] I-0 

[[MESSAGE DATE IS data-name-1] 

[MESSAGE TIME IS data-name-2] 

[SYMBOLIC TERMINAL IS data-name-3] 

[TEXT LENGTH IS data-name-4] 

[END KEY IS data-name-5] 

[STATUS KEY IS data-name-6]] 

[data-name-1, data-name-2, data-name-3, 

data-name-4, data-name-5, data-name-6] 

V-16 



Data Division - Report Description Entry 

GENERAL FORMAT FOR REPORT DESCRIPTION ENTRY 

RD report-name-1 

[IS GLOBAL] 

[CODE literal-1] 

r{CONTROL IS } {{data-name-1} . . • }] L CONTROLS ARE FINAL [data-name-1] •.• 

[PAGE [~~i~/~llE] integer-1 [~i~~s] [HEADING integer-2] 

[FIRST DETAIL integer-3] [LAST DETAIL integer-4] 

[FOOTING integer-5]]. 

GENERAL FORMAT FOR REPORT GROUP DESCRIPTION ENTRY 

FORMAT 1: 

01 [data-name-1] 

[ LINE NUMBER IS {integer-1 [ON NEXT PAGE]}] 
PLUS integer-2 

[ NEXT GROUP IS {~~~~g~~~!ger-4}] 
NEXT PAGE 

TYPE IS 

{~PORT HEADING} 

{;~GE HEADING} 

{ ~NTROL HEAD ING } 

{:TAIL} 

{~NTROL FOOTING} 

{~~GE FOOTING} 

{~PORT FOOTING} 

[[USAGE IS] DISPLAY]. 

{ data-name-2} 
FINAL 

{ data-name-3} 
FINAL 

V-17 



Data Division - Report Group Description Entry 

GENERAL FORMAT FOR REPORT GROUP DESCRIPTION ENTRY 

FORMAT 2: 

level-number [data-name-1] 

fLINE NUMBER IS {integer-1 [ON NEXT PAGE]}] l-- PLUS Integer-2 

[[USAGE IS] DISPLAY] . 

FORMAT 3: 

level-number [data-name-1] 

{ PICTURE} 
PIC IS character-string 

[[USAGE IS] DISPLAY] 

[ { LEADING } ] [SIGN IS] TRAILING SEPARATE CHARACTER 

[ {:IFIED} RIGHT J 
[BLANK WHEN ZERO] 

rLINE NUMBER IS { integ:r-1 [ON NEXT PAGE]}] 
~-- PLUS integer-2 

[COLUMN NUMBER IS integer-3] 

SOURCE IS identif ier-1 

VALUE IS literal-1 

{SUM {identifier-2} [UPON {data-name-2} .•• ]} .•• 

[RESET ON 

[GROUP INDICATE]. 

{ data-name-3 }] 
FINAL 

V-18 



GENERAL FORMAT FOR PROCEDURE DIVISION 

FORMAT 1: 

[PROCEDURE DIVISION [USING {data-name-1} ,,, ], 

[DECLARATIVES. 

{section-name SECTION [segment-number]. 

USE statement. 

[paragraph-name. 

[sentence] ••• ] • • . } .•• 

END DECLARATIVES.] 

{section-name SECTION [segment-number]. 

[paragraph-name. 

[sentence] ••• ] •.. } ••. ] 

FORMAT 2: 

[PROCEDURE DIVISION [USING {data-name-1} ••. ], 

{paragraph-name. 

[sentence] ••• } ••• ] 

V-19 

Procedure Division 



Verb Formats (ACCEPT - CALL) 

GENERAL FORMAT FOR COBOL VERBS 

ACCEPT identifier-1 [FROM mnemonic-name-1] 

ACCEPT identifier-2 FROM {;:OF-WEEK} 
TIME 

ACCEPT cd-name-1 MESSAGE COUNT 

ADD {i~entifier-1} 
-- literal-1 TO {identifier-2 [ROUNDED]} ... 

[ON SIZE ERROR imperative-statement-1] 

[NOT ON SIZE ERROR imperative-statement-2] 

[END-ADD] 

ADD {identifier-1} 
-- literal-1 TO {identifier-2} 

literal-2 

GIVING {identifier-3 [ROUNDED]} ... 

[ON SIZE ERROR imperative-statement-1] 

[NOT ON SIZE ERROR imperative-statement-2] 

[END-ADD] 

ADD {CORRESPONDING} identifier-1 TO identifier-2 [ROUNDED] 
- CORR 

[ON SIZE ERROR imperative-statement-1] 

[NOT ON SIZE ERROR imperative-statement-2] 

[END-ADD] 

ALTER {procedure-name-1 TO [PROCEED TO] procedure-name-2} ... 

jidentifier-1} [USING {[BY REFERENCE~ {ider;tifier-2} .•. } .•. ] 
CALL \literal-1 BY CONTENT {identifier-2} ... 

[ON OVERFLOW imperative-statement-1] 

[END-CALL] 

V-20 



Verb Formats (CALL - DISABLE) 

GENERAL FORMAT FOR COBOL VERBS 

CALL {i~entifier-1} 
-- literal-1 [USING {[BY REFERENCE] {identifier-2} ···} J 

-- BY CONTENT { identifier-2} . . . ' ' . 

[ON EXCEPTION imperative-statement-1] 

[NOT ON EXCEPTION imperative-statement-2] 

[END-CALL] 

CANCEL {i~entifier-1} 
literal-1 

;w CLOSE I file-name-1 [{~~~~} [FOR REMOVAL]] I ·. • 
WITH {NO REWIND} 

LOCK 

?I CLOSE {file-name-1 [WITH LOCK]} .•. 

COMPUTE {identifier-1 [ROUNDED]} ••. = arithmetic-expression-1 

[ON SIZE ERROR imperative-statement-1] 

[NOT ON SIZE ERROR imperative-statement-2] 

[END-COMPUTE] 

CONTINUE 

DELETE file-name-1 RECORD 

[INVALID KEY imperative-statement-1] 

[NOT INVALID KEY imperative-statement-2] 

[END-DELETE] 

{ 
INPUT [TERMINAL}} 

DISABLE l::Q TERMINAL 
OUTPUT 

cd-name-1 [wITH KEY {identifier-!}] 
literal-1 

V-21 



Verb Formats (DISPLAY - DIVIDE) 

DISPLAY {identifier-1} 
literal-1 

GENERAL FORMAT FOR COBOL VERBS 

[UPON mnemonic-name-1] [WITH NO ADVANCING] 

DIVIDE {identifier-1} INTO {identifier-2 [ROUNDED]} ... 
literal-1 

[ON SIZE ERROR imperative-statement-1] 

[NOT ON SIZE ERROR imperative-statement-2] 

[END-DIVIDE] 

DIVIDE {identifier-1} 
literal-1 INTO {identifier-2} 

literal-2 

GIVING {identifier-3 [ROUNDED]} ... 

[ON SIZE ERROR imperative-statement-1] 

[NOT ON SIZE ERROR imperative-statement-2] 

[END-DIVIDE] 

DIVIDE {identifier-1} BY 
literal-1 

{ identifier-2} 
literal-2 

GIVING {identifier-3 [ROUNDED]} ... 

[ON SIZE ERROR imperative-statement-1] 

[NOT ON SIZE ERROR imperative-statement-2] 

[END-DIVIDE] 

DIVIDE {identifier-1} 
literal-1 

INTO {il·~entiflie2r- 2} GIVING identifier-3 [ROUNDED] 
1tera -

REMAINDER identifier-4 

[ON SIZE ERROR imperative-statement-1] 

[NOT ON SIZE ERROR imperative-statement-2] 

[END-DIVIDE] 

V-22 



Verb Formats (DIVIDE - EVALUATE) 

GENERAL FORMAT FOR COBOL VERBS 

DIVIDE { identifier-!} 
literal-! {identifier-2} 

BY literal - 2 GIVING identifier-3 [ROUNDED] 

REMAINDER identifier-4 

[ON SIZE ERROR imperative-statement-!] 

[NOT ON SIZE ERROR imperative-statement-2] 

[END-DIVIDE] 

{
INPUT [TERMINAL]} 

ENABLE I::Q TERMINAL 
OUTPUT 

cd-name-1 [wITH KEY 

ENTER language-name-! 

literal-I 
{ 

identifier-1} 

EVALUATE. expression-I 
TRUE 
FALSE 

{{WHEN 

ANY 
condi tion-1 
TRUE 

[routine-name-1]. 

[ {

identifier-2}] literal-2 
ALSO ~;~~ession-2 ••• 

FALSE 

{ identifier-!}] 
literal-! 

[NOT] {
/ {identifier-3 } [{THROUGH} {identifier-4 }]} 

literal-3 · THRU literal-4 
arithmetic-expression-1 -- arithmetic-expression-2 

[ALSO 

ANY 
condition-2 
TRUE 

[NOT] { {
identifier-5 } 
literal-5 

, arithmetic-expression-3 

imperative-statement-1} 

[WHEN OTHER imperative-statement-2] 

[END-EVALUATE] 

[{THROUGH} {i~entifier-6 }]} 
THRU literal-6 
-- ari thmetic-expression-4 

V-23 



Verb Formats (EXIT - INSPECT) 

GENERAL FORMAT FOR COBOL VERBS 

EXIT PROGRAM 

GENERATE {data-name-1 } 
report-name-! 

GO TO [procedure-name-!] 

GO TO {procedure-name-!} ... DEPENDING ON identifier-! 

IF condition-! THEN N~~;t~~~~~;CE ... ELSE NEXT SENTENCE {
{ l} } {ELSE {statement-2} 

-- END-IF 

INITIALIZE {identifier-!} ... 

.•. [END-IF] J 

REPLACING I /ALPHABETIC l 
ALPHANUMERIC 
NUMERIC 
ALPHANUMERIC-EDITED 
NUMERIC-EDITED 

DATA BY {identifier-2 }l 
literal-! ··· 

INITIATE {report-name-!} ... 

IN~SPECT identif ier-1 ;ALLYING [{BEFORE} {identif ier- 4}] J J 
' CHARACTERS AFTER INITIAL literal-2 . . . , ... 

identifier-2 FOR ) {ALL } ' {identifier-3} [{BEFORE} INITIAL {i~entifier-4}] ... } l LEADING I literal-1 , AFTER literal-2 · · • 

INSPECT identifier-1 REPLACING 

!CHARACTERS BY {~~~:~~i=~r-S}[{!~~~~E} INITIAL {~~~:~~i=~r- 4 }] ! ... 
lALL '} ( {identifier-3} {identifier-5} [{BEFORE} INITIAL {i~entifier-4}] •.• } ••• 

LEADING ) literal-1 BY literal-3 AFTER literal-2 
FIRST ~ 

V-24 



Verb Formats (INSPECT - MULTIPLY) 

GENERAL FORMAT FOR COBOL VERBS 

INSPECT identifier-1 TALLYING 

~ f 
CHARACTERS [{BEFORE} INITIAL {i~entifier-4}. J , .. 

identifier-2 FOR AFTER llteral-2 

{ ALL } ~{identifier-3} l-{BEFORE} INITIAL {i~entifier-4}] ···} 
LEADING ) literal-1 AFTER literal-2 

L .. L .. 
... ~ ~ 

REPLACING 

{

CHARACTERS BY {i~entifier-5} [{'BEFORE} INITIAL {i~entifier-4}] . . . J 
- llteral-3 AFTER llteral-2 

j&nING}. ~{'i~entifier-3} BY {i~entifier-5} [{BEFCRE} INITIAL {i~entifier-4}] ... }. . . . . .. 
!FIRST ) llteral-1 - llteral-3 AFTER ~Heral-2 

INSPECT identifier-1 CONVERTING {id en tifier-6} 
literal-4 

[{BEFORE} INITIAL 
AFTER {identif ier-4}] 

literal-2 

{identifier-7} 
TO literal-5 

MERGE file-name-1 { ASCENDING } KEY 
DESCENDING {data-name-1} ... } ... 

[COLLATING SEQUENCE IS alphabet-name-1] 

USING file-name-2 {file-name-3} ... 

{
OUTPUT PROCEDURE IS procedure-name-1 

GIVING {file-name-4} ... 

[{THROUGH} J { THRU procedure-name-2 J 

{identifier-1} 
literal-1 

{ CORRESPONDING}. 
MOVE CORR 

{identifier-2} ... 

identifier-1 TO identifier-2 

{identifier-1} MULTIPLY literal-l BY {identifier-2 [ROUNDED]} ... 

[ON SIZE ERROR imperative-statement-1] 

[NOT ON SIZE ERROR imperative-statement-2] 

[END-MULTIPLY] 

V-25 



Verb Formats (MULTIPLY - PERFORM) 

GENERAL FORMAT FOR COBOL VERBS 

MULTIPLY {identifier-1} BY {identifier-2} 
literal-1 ~ literal-2 

GIVING {identifier-3 [ROUNDED]} .•. 

[ON SIZE ERROR imperative-statement-1] 

[NOT ON SIZE ERROR imperative-statement-2] 

[END-MULTIPLY] 

!INPUT {file-name-1 [::R:D REWIND]}•·· i 
S OPEN OUTPUT {file-name-2 [WITH NO REWIND]} ••• 

I-0 {file-name-3} ••. 

RI OPEN 

EXTEND {file-name-4} ••• 

{

INPUT {file-name-1} .. . 
OUTPUT {file-name-2} .. . 
I-0 {file-name-3} ... 
EXTEND {file-name-4} ... 

} ... 
W OPEN {OUTPUT {file-name-1 [WITH NO REWIND]} .•• } 

EXTEND {file-name-2} ... . .. 

PERFORM [procedure-name-1 

[imperative-statement-1 

[{THROUGH} L THRU 

END-PERFORM] 

procedure-name-2] J 

PERFORM rrocedure-name-1 [{:UGH} procedure-name-2] J 

{~dentifier-l} TIMES [imperative-statement-1 END-PERFORM] 
integer-1 --

PERFORM [procedure-name-1 [{=UGH} procedure-name-2 J J 

[WITH TEST {BEFORE}] UNTIL condition-1 -- AFTER 

[imperative-statement-1 END-PERFORM] 

V-26 



Verb Formats (PERFORM - READ) 

GENERAL FORMAT FOR COBOL VERBS 

PERFORM ~rocedure-name-1 

rWITH TEST {BEFORE}] 
~ -- AFTER 

VARYING { identifier-2} 
index-name-1 

[{THROUGH} J J THRU procedure-name-2 

{
identifier-3} 

FROM index-name-2 
literal-1 

BY {11'~entiflie2r-4} UNTIL condition-1 
- itera - --

[ { 'd 'f' 5} {identifier-6} AFTER 1 .enti ier- FROM index-name-4 
literal-3 l't 1 3 i era -

BY {11'~entiflie4r- 7} UNTIL condition-2] 
- itera - --

[imperative-statement-1 END-PERFORM] 

PURGE cd-name-1 

SRI READ file-name-1 [NEXT] RECORD [INTO identifier-1] 

[AT END imperative-statement-1] 
I 

[NOT AT END imperative-statement-2] 

[END-READ] 

R READ file-name-1 RECORD [INTO identifier-1] 

[INVALID KEY imperative-statement-3] 

[NOT INVALID KEY imperative-statement-4] 

[END-READ] 

V-27 



Verb Formats (READ - REWRITE) 

GENERAL FORMAT FOR COBOL VERBS 

I READ file-name-1 RECORD [INTO identifier-1] 

[KEY IS data-name-1] 

[INVALID KEY imperative-statement-3] 

[NOT INVALID KEY imperative-statement-4] 

[END-READ] 

RECEIVE cd-name-1 {MESSAGE} INTO . d . f. 1 SEGMENT __ 1 ent1 1er-

[NO DATA imperative-statement-1] 

[WITH DATA imperative-statement-2] 

[END-RECEIVE] 

RELEASE record-name-1 [FROM identifier-1] 

RETURN file-name-1 RECORD [INTO identifier-1] 

AT END imperative-statement-1 

[NOT AT END imperative-statement-2] 

[END-RETURN] 

S REWRITE record-name-1 [FROM identifier-1] 

RI REWRITE record-name-1 [FROM identifier-1] 

[INVALID KEY imperative-statement-1] 

[NOT INVALID KEY imperative-statement-2] 

[END-REWRITE] 

V-28 



Verb Formats (SEARCH - SET) 

GENERAL FORMAT FOR COBOL VERBS 

SEARCH identifier-1 [VARYING {~dentifier-2}] 
index-name-1 

[AT END imperative-statement-1] 

WHEN condition-1 NEXT SENTENCE ... { { imperative-statement-2 }} 

[END-SEARCH] 

SEARCH ALL identifier-1 [AT END imperative-statement-1] 

{d 
1 { IS EQUAL TO} ata-name-

WHEN IS = 
condition-name-1 

[ { 
{IS~ data-name-2 IS = 

AND 
condition-name-2 

{ imperative-statement-2} 
NEXT SENTENCE 

[END-SEARCH] 

SEND cd-name-1 FROM identifier-1 

fillliD cd-name-1 [FROM identifier-1] 

{
identifier-3 }} 
literal-1 
arithmetic-expression-1 

{
identifier-4 }}] literal-2 
arithmetic-expression-2 ... 

{
WITH identifier-2} 
WITH ESI 
WITH EMI 
WITH EGI 

[ l{identifier-3} [LINE Jll 
{!~~~~E} ADVANCING intege~-1 LINES 
~~- {mnemonic-name-1} · 

PAGE 

[REPLACING LINE] 

{index-name-1} 
identifier-1 · 

V-29 



Verb Formats (SET - STOP) 

GENERAL FORMAT FOR COBOL VERBS 

SET {index-name-3} ... {UP BY } 
DOWN BY 

{~dentifier-3} 
integer-2 

SET {{mnemonic-name-1} TO {~~F}} 

SET {condition-name-1} TO TRUE 

SORT file-name-1 { ASCENDING } KEY 
DESCENDING {data-n~me-1} . . . } ... 

[WITH DUPLICATES IN ORDER] 

[COLLATING SEQUENCE IS alphabet-name-1] 

[{THROUGH} 
THRU procedure-name-2 J} 

{
INPUT PROCEDURE IS procedure-name-1 

USING {file-name-2} ... 

{
OUTPUT PROCEDURE IS procedure-name-3 

GIVING {file-name-3} ... 

THRU procedure-name-4 [{THROUGH} J} 

START file-name-1 KEY 

IS EQUAL TO 
IS 
IS GREATER THAN 
IS > 
IS NOT LESS THAN 
IS NOT < 
IS GREATER THAN OR EQUAL TO 
IS >= 

[INVALID KEY imperative-statement-1] 

[NOT INVALID KEY imperative-statement-2] 

[END-START] 

{ RUN } 
literal-1 

V-30 

data-name-1 



Verb Formats (STRING - TERMINATE) 

GENERAL FORMAT FOR COBOL VERBS 

STRING {{identifier-1} 
literal-1 

DELIMITED BY literal-2 ... {
identifier-2}} 

SIZE 

INTO identifier-3 

[WITH POINTER identifier-4] 

[ON OVERFLOW imperative-statement-1] 

[NOT ON OVERFLOW imperative-statement-2] 

[END-STRING] 

SUBTRACT { identifier-1} 
literal-1 FROM {identifier-3 [ROUNDED]} ... 

[ON SIZE ERROR imperative-statement-1] 

[NOT ON SIZE ERROR imperative-statement-2] 

[END-SUBTRACT] 

SUBTRACT { identifier-1} 
literal-1 

FROM {i~entifier-2} 
~~ literal-2 

GIVING {identifier-3 [ROUNDED]} ... 

[ON SIZE ERROR imperative-statement-1] 

[NOT ON SIZE ERROR imperative-statement-2] 

[END-SUBTRACT] 

SUBTRACT {CORRESPONDING} identifier-1 FROM identifier-2 [ROUNDED] 
CORR 

[ON SIZE ERROR imperative-statement-1] 

[NOT ON SIZE ERROR imperative-statement-2] 

[END-SUBTRACT] 

SUPPRESS PRINTING 

TERMINATE {report-name-1} ... 

V-31 



Verb Formats (UNSTRING - USE) 

GENERAL FORMAT FOR COBOL VERBS 

UNSTRING identifier-1 

[DELIMITED BY [ALL] {identifier-2} fi 
literal-1 LOR [ALL] {i~entifier-3}] ···] 

literal-2 

INTO {identifier-4 [DELIMITER IN identifier-5] [COUNT IN identifier-6]} 

[WITH POINTER identifier-7] 

[TALLYING IN identifier-8] 

[ON OVERFLOW imperative-statement-1] 

[NOT ON OVERFLOW imperative-statement-2] 

[END-UNSTRING] 

{ EXCEPTION} 
)RI USE [GLOBAL] AFTER STANDARD ERROR I { f ile-name-1} 

INPUT 
PROCEDURE ON . OUTPUT 

I-0 
EXTEND 

{
{file-name-1} ···} 

W USE AFTER STANDARD {EXCEPTION} PROCEDURE ON OUTPUT 
ERROR EXTEND 

USE [GLOBAL] BEFORE REPORTING identifier-1 

USE FOR DEBUGGING ON lcd-name-1 
[ALL RE.FERENCES OF] 
file-name-1 
procedure-name-1 
ALL PROCEDURES 

V-32 

identif ier-1 l · .. 



GENERAL FORMAT FOR COBOL VERBS 

S WRITE record-name-1 [FROM identifier-1] 

[{BEFORE} ADVANCING 
AFTER 

l{~dentifier-2} rLINE J ll integer-1 LL INES 

{ mnemonic-name-1} 
PAGE 

r {END-OF-PAGE} . . J LAT EOP 1mperat1ve-statement-l 

[NOT AT {~OF-PAGE} imperative-statement-2] 

[END-WRITE] 

RI WRITE record-name-1 [FROM identifier-1] 

[INVALID KEY imperative-statement-1] 

[NOT INVALID KEY imperative-statement-2] 

[END-WRITE] 

V-33 

Verb Formats (WRITE) 



COPY & REPLACE Statements 

GENERAL FORMAT FOR COPY AND REPLACE STATEMENTS 

COPY text-name-1 [{~~} library-name-~ 

l{==pseudo-text-1==} {==pseudo-text-2==}l 
REPLACING i~entifier-1 BY i~entifier-2 

11teral-l ~ literal-2 
word-1 word-2 

REPLACE {==pseudo-text-1== BY ==pseudo-text-2==} ... 

REPLACE OFF 

V-34 



GENERAL FORMAT FOR CONDITIONS 

RELATION CONDITION: 

IS [NOT] GREATER THAN 
IS [NOT] > 
IS [NOT] LESS THAN 

{identifier-! } IS [NOT] < 
literal-1 IS [NOT] EQUAL TO 
arithmetic-expression-! IS [NOT] = 
index-name-1 IS GREATER THAN OR EQUAL TO 

IS >= 
IS LESS THAN OR EQUAL TO 
IS <= 

CLASS CONDITION: 

!NUMERIC l ALPHABETIC 
identifier-! IS [NOT] ALPHABETIC-LOWER 

ALPHABETIC-UPPER 
class-name-1 

CONDITION-NAME CONDITION: 

condition-name-! 

SWITCH-STATUS CONDITION: 

· condition-name-! 

SIGN CONDITION: 

{
POSITIVE} 

arithmetic-expression-I IS [NOT] NEGATIVE 
ZERO 

NEGATED CONDITION: 

NOT condition-! 

V-35 

Condition Formats 

{
identifier-2 } 
literal-2 
arithmetic-expression-2 
index-name-2 



Condition Formats 

GENERAL FORMAT FOR CONDITIONS 

COMBINED CONDITION: 

condition-1 {{:-°} condition-2} .•• 

ABBREVIATED COMBINED RELATION CONDITION: 

relation-condition {{~} {NOT] [relational-operator] object} ••• 

V-36 



Qualification 

GENERAL FORMAT FOR QUALIFICATION 

FORMAT 1: 

{ data-name-1 } 
condition-name-! · I {{~:} 

{~~} 

data-name-2} 

{ fi.le-name-1} 
cd-name-1 

OF cd-name-1 J [{IN} {file-name-l}J i··. 

FORMAT 2: 

paragraph-name-! { ~~·} section-name-! 

FORMAT 3: 

text-name-1 {~:} library-name-1 

FORMAT 4: 

LINAGE-COUNTER {:} file-name-2 

FORMAT 5: 

{ PAGE-COUNTER} {IN} . 
LINE-COUNTER OF report-name-1 

FORMAT 6: 

data-name-3 !{IN} . [{IN} ]· i •.OF •. data-na:me-4 • OF. report-name-2 .. 

{~;} report-name-2. 

V-37 



Miscellaneous Formats 

MISCELLANEOUS FORMATS 

SUBSCRIPTING: 

{ condition-name-1} 
data-name-1 

{ 
in teger-1 } 

( data-name-. 2 [{±} integer-2] ... ) 
index-name-1 [{±} integer-3] 

REFERENCE MODIFICATION: 

data-name-1 (left~ost-character-position: [length]) 

IDENTIFIER: 

data-name-1 [{~;} data-name-2] •.• [{~;} {~~~:~::!-1 }] 
~ ~ report-name-1 

[({subscript} ... ) ] [(leftmost-character-position: [length])] 

V-38 



Nested Source Programs 

GENERAL FORMAT FOR NESTED SOURCE PROGRAMS 

IDENTIFICATION DIVISION. 

PROGRAM-ID. program-name-1 [IS INITIAL PROGRAM]. 

[ENVIRONMENT DIVISION. environment-division-content] 

[DATA DIVISION. data-division-content] 

[PROCEDURE DIVISION. procedure-division-content] 

[[nested-source-program] ... 

END PROGRAM program-name-1.] 

GENERAL FORMAT FOR NESTED-SOURCE-PROGRAM 

IDENTIFICATION DIVISION. 

PROGRAM-ID. program-name-2 [rs {I ~~~~~LI} PROGRAM] 

[ENVIRONMENT DIVISION. environment-division-content] 

[DATA DIVISI-ON. data-division-content] 

[PROCEDURE DIVISION. procedure-division-content] 

[nested-source-program] ... 

END PROGRAM program-name-2. 

V""'.39 



Sequence of Source Programs 

GENERAL FORMAT FOR A SEQUENCE OF SOURCE PROGRAMS 

{IDENTIFICATION DIVISION. 

PROGRAM-ID. program-name-3 {IS INITIAL PROGRAM]. 

[ENVIRONMENT DIVISION. environment-division-content] 

{DATA DIVISION. data-division-content] 

{PROCEDURE DIVISION. procedure-division-content] 

{nested-source-program] ... 

END PROGRAM program-name-3.} 

IDENTIFICATION DIVISION. 

PROGRAM-ID. program-name-4 {IS INITIAL PROGRAM]. 

{ENVIRONMENT DIVISION. environment-division-content] 

[DATA DIVISION. data-division-content] 

{PROCEDURE DIVISION. procedure-division-content] 

[[nested-source-program] ... 

END PROGRAM program-name-4.] 

V-40 



Nucleus - Introduction 

SECTION VI: NUCLEUS MODULE 

1. INTRODUCTION TO THE NUCLEUS MODULE 

1.1 FUNCTION 

The Nucleus module provides a language capability for the internal processing 
of data within the structure of the four divisions of a program. The Nucleus 
also provides a capability for defining tables of contiguous data items and 
accessing an item relative to its pos1t1on in a table. The Nucleus provides a 
debugging capability consisting of a compile time switch and debugging lines. 

1.2 LEVEL CHARACTERISTICS 

Nucleus level 1 provides limited capabilities for the SPECIAL-NAMES paragraph 
and the data description entry. Within the Procedure Division, the Nucleus 
level 1 provides limited capabilities for the ACCEPT, ADD, ALTER, DISPLAY, 
DIVIDE, IF, MOVE, MULTIPLY) PERFORM, and SUBTRACT statements and full 
capabilities for the CONTINUE, ENTER, EXIT, GO TO, and STOP statements. Nucleus 
level 1 does not provide full COBOL capabilities for qualification, data-name 
formation, and figurative constants. Nucleus level 1 provides a capability for 
accessing items in up to three-dimensional fixed length tables. Nucleus level 1 
provides a debugging capability consisting of a compile time switch and 
debugging lines. 

Nucleus level 2 provides full capabilities for the SPECIAL-NAMES paragraph 
and the data description entry. Within the Procedure Division, the Nucleus 
level 2 provides full capabilities for the ACCEPT, ADD, ALTER, COMPUTE, DISPLAY, 
DIVIDE, EVALUATE, IF, INITIALIZE, INSPECT, MOVE, MULTIPLY, PERFORM, SEARCH, SET, 
STRING, SUBTRACT, and UNSTRING statements. Nucleus level 2 provides full 
capabilities for qualification, data-name formation, and figurative constants. 
Nucleus level 2 provides a capability for accessing items in up to 
seven-dimensional tables. 

1.3 LEVEL RESTRICTIONS ON OVERALL LANGUAGE 

1.3.1 Character Set 

The COBOL character colon (:) is not included in level 1. 
!character colon (:)-is permitted in level 2. 

1.3.2 Name Characteristics 

The COBOL 

Qualification is not included in level 1. In level 1, all user-defined words 
except level-numbers and segment-numbers must be unique if referenced. 50 
qualifiers are permitted in level 2. In level 2, user-defined words need not be 
uni ue. 

VI-1 



Nucleus - Introduction 

1.3.3 Figurative Constants 

The figurative constants that may be used 1n level 1 are: ZERO, ZEROS, 
ZEROES, SPACE, SPACES, HIGH-VALUE, HIGH-VALUES, LOW-VALUE, LOW-VALUES, QUOTE, 
and QUOTES. _fThe figurative constants that may be used in level 2 are: ZERO, 
ZEROS, ZEROES, SPACE, SPACES, HIGH-VALUE, HIGH-VALUES, LOW-VALUE, LOW-VALUES, 
QUOTE, QUOTES, symbolic-character, ALL literal, ALL figurative constant, and ALL 
symbolic-character. 

1.3.4 Subscripts 

One, two or three subscripts are permitted in level 1. One through seven 
subscripts are permitted in level 2. 

1.3.5 Reference Modification 

Reference modification is permitted in level 2 only. 

1.3.6 Reference Format 

In level 1 a word, numeric literal, or PICTURE character-string 
broken in such a way that part of it ap ears in a continuation line. 
a word, numeric literal, or PICTURE character-string can be broken in 
that part of it appears on a continuation line. 

VI-2 

cannot be 
In level 2 
such a way 



Nucleus - COBOL Source Program 

2. A COBOL SOURCE PROGRAM 

2.1 GENERAL DESCRIPTION 

A COBOL source program is a syntactically correct set of COBOL statements. 

2.2 ORGANIZATION 

With the exception of COPY and REPLACE statements land the end program header,j 
the statements, entries, paragraphs, and sections of a COBOL source program are 
grouped into four divisions which are sequenced in the following order: 

1. The Identification Division 
2. The Environment Division 
3. The Data Division 
4. The Procedure Division 

The end of a COBOL source program is indicated by I either the end program! 
!header, if specified, or byj the absence of additional source program lines. 

2. 3 STRUCTURE 

The following gives the general format and order of presentation of the 
entries and statements which constitute a COBOL source program. 

2.3.1 General Format 

identification-division 

[environment-division] 

[data-division] 

[procedure-division] 

][end-program-header] I 

2.3.2 Syntax Rules 

(1) The generic terms identification-division, environment-division, 
data-division, procedure-division, I and end-program-header! represent a COBOL 
Identification Division, a COBOL Environment Division, a COBOL Data Division, a 
COBOL Procedure Division,[and a COBOL end program header,! respectively. 

2.3.3 General Rules 

(1) The beginning of a division in a program is indicated by the appropriate 
division header. The end of a division. is indicated by one of the following: 

a. The division header of a succeeding division in that program. 

b. The end program header. 

VI-3 



Nucleus - COBOL Source Program 

c. That physical position after which no more source program lines 
occur. 

(2) All separately compiled source programs in a sequence of programs must 
be terminated by an end program header except for the last program in the 
sequence. 

VI-4 



Nucleus - End Program Header 

2.4 END PROGRAM HEADER 

2.4.1 Function 

The end program header indicates the end of the named COBOL source program. 

2.4.2 General Format 

END PROGRAM program-name. 

2.4.3 Syntax Rules 

(1) The program-name must conform to the rules for forming a user-defined 
word. 

(2) The program-name must be identical to a program-name declared in a 
preceding PROGRAM-ID paragraph. (See page VI-7, The PROGRAM-ID Paragraph.) 

2.4.4 General Rules 

(1) The end program header indicates the end of the specified COBOL source 
program. 

(2) If the next source statement after the program 
program header is a COBOL statement, it must be the 
header of a program to be compiled separately from that 
the end program header. 

VI-5 

terminated by the end 
Identification Division 
program terminated by 



Nucleus - Identification Division 

3.· IDENTIFICATION DIVISION IN THE NUCLEUS MODULE 

3.1 GENERAL DESCRIPTION 

The Identification Division identifies the program. The Identification 
Division is required in a COBOL source program. In addition, the user may 
include the date the program is written and such other information as desired 
under the paragraphs in the general format shown below. 

3.2 ORGANIZATION 

Paragraph headers identify the type of information contained in the 
paragraph. The name of the program must be given in the first paragraph, which 
is the PROGRAM-ID paragraph. The other paragraphs are optional and may be 
included in this division at the user's choice, in order of presentation shown 
by the general format below. 

The AUTHOR paragraph, INSTALLATION paragraph, DATE-WRITTEN paragraph, DATE
COMPILED paragraph, and SECURITY paragraph are obsolete elements in Standard 
COBOL because they are to be deleted from the next revision of Standard COBOL. 

3.2.1 Structure 

The following is the general format of the paragraphs in the Identification 
Division and it defines the order of presentation in the source program. 
Paragraphs 3.3 and 3.4 on the following pages define the PROGRAM-ID paragraph 
and the DATE-COMPILED paragraph. While the other paragraphs are not defined, 
each general format is formed in the same manner. 

3.2.1.1 General Format 

IDENTIFICATION DIVISION. 

PROGRAM-ID. program-name. 

[AUTHOR. [comment-entry] ••• 

[INSTALLATION. [conunent-entry] 

[DATE-WRITTEN. [comment-entry] 

I [DATE-COMPILED. [comment-entry] ] I 
[SECURITY. [comment-entry] •.• ] 

3.2.1.2 Syntax Rules 

(1) The comment-entry may be any combination of the characters from the 
computer's character set. The continuation of the comment-entry by the use of 
the hyphen in the indicator area is not permitted; however, the comment-entry 
may be contained on one or more lines. 

VI-6 



Nucleus - PROGRAM-ID 

3.3 THE PROGRAM-ID PARAGRAPH 

3.3.1 Function 

The PROGRAM-ID paragraph specifies the name by which a program is identified. 

3.3.2 General Format 

PROGRAM-ID. program-name. 

3.3.3 Syntax Rules 

(1) The program-name must conform to the rules for formation of a user
defined word. 

3.3.4 General Rules 

(1) The program-name identifies the source program, the object program, and 
all listings pertaining to a particular program. 

• 

VI-7 



Nucleus - DATE-COMPILED 

3.4 THE DATE-COMPILED PARAGRAPH 

3.4.1 Function 

The DATE-COMPILED paragraph provides the compilation date in the 
Identification Division source program listing. The DATE-COMPILED paragraph is 
an obsolete element in Standard COBOL because it is to be deleted from the next 
revision of Standard COBOL. 

3.4.2 General Format 

DATE-COMPILED. [comment-entry] 

3.4.3 Syntax Rules 

(I) The comment-entry may be any combination of the characters from the 
computer's character set. The continuation of the comment-entry by the use of 
the hyphen in the indicator area is not permitted; however, the comment-entry 
may be contained on one or more lines. 

3.4.4 General Rules 

(I) The paragraph-name DATE-COMPILED causes the current date to be inserted 
during program compilation. If a DATE-COMPILED paragraph is present, it is 
replaced during compilation with a paragraph of the form: 

DATE-COMPILED. current date. 

VI-8 



Nucleus - Configuration Section 

4. ENVIRONMENT DIVISION IN THE NUCLEUS MODULE 

4.1 GENERAL DESCRIPTION 

The Environment Division specifies a standard method of expressing those 
aspects of a data processing problem that are dependent upon the physical 
characteristics of a specific computer. The Environment Division is optional in 
a COBOL source program. 

4.2 CONFIGURATION SECTION 

The Configuration Section is located in the Environment Division of a source 
program. The Configuration Section deals with the characteristics of the source 
computer and the object computer. This section also provides a means for 
specifying the currency sign; choosing the decimal point; \specifying symbolic-I 

!characters; I relating implementor-names to user-specified mnemonic-names; 
relating alphabet-names to character sets or collating sequences; and relating 
class-names to sets of characters. The Configuration Section is optional in the 
Environment Division of a COBOL source program. 

The general format of the Configuration Section is shown below. 

CONFIGURATION SECTION. 

[SOURCE-COMPUTER. [source-computer-entry]] 

[OBJECT-COMPUTER. [object-computer-entry]] 

[SPECIAL-NAMES. [special-names entry]] 

The Configuration Section must not be stated in a program which is contained 
directly or indirectly within another program. 

The entries explicitly or implicitly stated in the Configuration Section of a 
program which contains other programs apply to each contained program. 

VI-9 



Nucleus - SOURCE-COMPUTER 

4.3 THE SOURCE-COMPUTER PARAGRAPH 

4.3.1 Function 

The SOURCE-COMPUTER paragraph provides a means of describing the computer 
upon which the program is to be compiled. 

4.3.2 General Format 

SOURCE-COMPUTER. [computer-name [WITH DEBUGGING MODE].] 

4.3.3 Syntax Rules 

(1) Computer-name is a system-name. 

4.3.4 General Rules 

(1) All clauses of the SOURCE-COMPUTER paragraph apply to the program 1n 
which they are explicitly or implicitly specified and to any program contained 
within that program. 

(2) When the SOURCE-COMPUTER paragraph is not specified and the program is 
not contained within a program including a SOURCE-COMPUTER paragraph, the 
computer on which the source program is being compiled is the source computer. 

( 3) When the SOURCE-COMPUTER paragraph is specified, but the source
computer-entry is not specified, the computer upon which the source program is 
being compiled is the source computer. 

(4) If the WITH DEBUGGING MODE clause is specified in a program, all 
debugging lines are compiled as specified in this presentation of the Nucleus 
module. (See page VI-141, Debugging in the Nucleus Module.) 

(5) If the WITH DEBUGGING MODE clause is not specified in a program and the 
program is not contained within a program including a WITH DEBUGGING MODE 
clause, any debugging lines are compiled as if they were comment lines. 

VI-10 



Nucleus - OBJECT-COMPUTER 

4.4 THE OBJECT-COMPUTER PARAGRAPH 

4 .4 .1 Function 

The OBJECT-COMPUTER paragraph provides a means of describing the computer on 
which the program is to be executed. The MEMORY SIZE clause is an obsolete 
element in Standard COBOL because it is to be deleted from the next revision of 
Standard COBOL. 

4.4.2 General Format 

OBJECT-COMPUTER. [computer-name 

[MEl<lRY SIZE integer-I {
WORDS }] 
CHARACTERS 
MODULES 

[PROGRAM COLLATING SEQUENCE IS alphabet-name-!].] 

4.4.3 Syntax Rules 

(1) Computer-name 1s a system-name. 

4.4.4 General Rules 

(1) The computer-name may provide a means for identifying equipment 
configuration, in which case the computer-name and its implied configuration are 
specified by each implementor. The configuration definition contains specific 
information concerning the memory size. 

The impl~mentor defines what is to be done if the subset specified by 
the user is less than the minimum configuration required for running the object 
program. 

(2) All clauses of the OBJECT-COMPUTER paragraph apply to the program 1n 
which they are explicitly or implicitly specified and to any program contained 
within that program. 

(3) When the OBJECT-COMPUTER paragraph is not specified and the program is 
not contained within a program including an OBJECT-COMPUTER paragraph, the 
object computer is defined by the implementor. 

(4) When the OBJECT-COMPUTER 
computer-entry 1s not specified, 
implementor. 

paragraph is 
the object 

specified, 
computer is 

but the 
defined 

object
by the 

(5) If the PROGRAM COLLATING SEQUENCE clause is specified, the program 
collating sequence is the collating sequence associated with alphabet-name-I 
specified in that clause. 

(6) If the PROGRAM COLLATING SEQUENCE clause is not specified, the program 
~ollating sequence is the native collating sequence. 

VI-11 



Nucleus - OBJECT-COMPUTER 

( 7) The 
paragraph 
that are: 

program 
is used 

collating sequence established in the OBJECT-COMPUTER 
to determine the truth value of any nonnumeric comparisons 

a. Explicitly specified 1n relation conditions. (See page VI-54, 
Relation Condition.) 

b. Explicitly specified in condition-name conditions. (See page VI-58, 
Condition-Name Condition (Conditional Variable).) 

c. Implicitly specified by the presence of a CONTROL clause 1n a report 
description entry •. (See page XIII-15, The CONTROL Clause.) 

(8) The program collating sequence established in the OBJECT-COMPUTER 
paragraph is applied to any nonnumeric merge or sort keys unless the COLLATING 
SEQUENCE phrase is specified in the respective SORT or MERGE statement. (See 
page XI-8, The MERGE Statement, and page XI-16, The SORT Statement.) 

VI-12 



Nucleus - SPECIAL-NAMES 

4.5 THE SPECIAL-NAMES PARAGRAPH 

4.5.1 Function 

The SPECIAL-NAMES paragraph provides a means for specifying the currency 
sign; choosing the decimal point; !specifying symbolic-characters;lrelating 
implementor-names to user-specified mnemonic-names; relating alphabet-names to 
character sets or collating sequences; and relating class-names to sets of 
characters. 

4.5.2 General Format 

SPECIAL-NAMES. [[implementor-name-1 

IS mnemonic-name-1 [ON STATUS IS condition-name-1 [Qlf STATUS IS condition-name-2]] 

IS mnemonic-name-2 [OFF STATUS IS condition-name-2 [ON STATUS IS condition-name-1]] 

ON STATUS IS condition-name-1 [OFF STATUS IS condition-name-2] 

OFF STATUS IS condition-name-2 [ON STATUS IS condition-name-1] 

[ALPHABET alphabet-name-1 IS 

STANDARD 1 -
STANDARD-2 
NATIVE 
implementor-name-2 

{literal-1 
> ... 

[{THROUGH} . ]} THRU literal-2 
' 

{ALSO literal-3} ... 
\ 

I' -

[SYMBOLIC CHARACTERS {{{symbolic-character-1} . . . {!~} { integer-1} ..• } ••• 

[IN alphabet-name-2] }] ..• 

[CLASS class-name-1 IS { literal-4 [g.:~.UGH} literal-5 J} ... J ... 
[CURRENCY SIGN IS literal-6] 

[DECIMAL-POINT IS COMMA].] 

4.5.3 Syntax Rules 

(1) If implementor-name-I references an external switch, the associated 
mnemonic-name may be specified only in the SET statement. 

(2) If implementor-name-I does not reference an external switch, the 
associated mnemonic-name may be specified only in the ACCEPT, DISPLAY, SEND, or 
WRITE statements. A condition-name cannot be associated with such an 
implementor-name. 

(3) If the literal phrase of the ALPHABET clause is specified, a given 
character must not be s ecified more than once in that clause. 

VI-I3 



Nucleus - SPECIAL-NAMES 

(4) The literals specified in the literal phrase of the ALPHABET clause: 

a. If numeric, must be unsigned integers and must have a value within 
the range of one through the maximum number of characters in the native 
character set. 

b. If nonnumeric and associated with a THROUGH or ALSO phrase, must 
each be one character in length. 

(5) Literal-!, literal-2, literal-3, literal-4, and literal-5 must not 
specify a symbolic-character figurative constant. 

(6) The words THRU and THROUGH are equivalent. 

(7) The same symbolic-character-! must appear only once in a SYMBOLIC 
CHARACTERS clause. 

(8) The relationship between each symbolic-character-! and the corresponding 
integer-! is by pos1t1on in the SYMBOLIC CHARACTERS clause. The first 
symbolic-character-! is paired with the first integer-1; the second symbolic
character-1 is paired with the second integer-!; and so on. 

( 9) There must be a one-to-one ·correspondence between occurrences of 
symbolic-characters-! and occurrences of integer-!. 

(10) The ordinal position specified by integer-! must exist in the native 
character set. If the IN phrase is specified, the ordinal position must exist 
in the character set named by al_I>_habet-name-2. 

(11) The literals specified in the literal-4 phrase: 

a. If numeric, must be unsigned integers and must have a value within 
the range of one through the maximum number of characters in the native 
character set. 

b. If nonnumeric and associated with a THROUGH phrase, must each be one 
character in length. 

(12) Literal-6 must not be a figurative constant. 

4.5.4 General Rules 

(1) All clauses specified in the SPECIAL-NAMES paragraph for a program also 
apply to programs contained within that program. The condition-names specified 
in the containing program's SPECIAL-NAMES paragraph may be referenced from any 
contained program. 

(2) If implementor-name-! references an external switch, the on status 
and/or off status of that switch may be associated with condition-names. The 
status of that switch may be interrogated by testing these condition-names (see 
page VI-58, Switch-Status Condition). 

(3) If implementor-name-! references an external switch, the status of that 
switch may be altered by execution of a format 3 SET statement which specifies 
as its operand the mnemonic-name associated with that switch (see page VI-127, 

VI-14 



Nucleus - SPECIAL-NAMES 

The SET Statement). The implementor defines which external switches can be 
referenced by the SET statement. 

(4) The ALPHABET clause provides a means for relating a name to a specified 
character code set and/or collating sequence. When alphabet-name-I is 
referenced in the PROGRAM COLLATING SEQUENCE clause (see page VI-11, The 
OBJECT-COMPUTER Paragraph) or the COLLATING SEQUENCE phrase of a SORT or MERGE 
statement (see page XI-8, The MERGE Statement, and page XI-16, The SORT 
Statement), the ALPHABET clause specifies a collating sequence. When alphabet
name-1 is referenced !i!L the SYMBOLIC CHARACTERS clause orl in a CODE-SET clause 
in a file description entry (see page VII-24, The CODE-SET Clause), the ALPHABET 
clause specifies a character code set. 

a. If the STANDARD-I phrase is specified, the character code set or 
collating sequence identified is that defined in American National Standard 
X3.4-1977, Code for Information Interchange. If the STANDARD-2 phrase is 
specified, the character code set identified is the International Reference 
Version of the ISO 7-bit code defined in International Standard 646, 7-Bit Coded 
Character Set for Information Processing Interchange. Each character of the 
standard character set is associated with its corresponding character of the 
native character set. The implementor defines the correspondence between the 

. characters of the standard character set and the characters of the native 
character set for which there is no correspondence otherwise specified. 

b. If the NATIVE phrase is specified, the native character code set or 
native collating sequence is used. 

c. If the implementor-name-2 phrase is specified, the character code 
set or collating sequence identified is that defined by the implementor. The 
implementor also defines the correspondence between characters of the character 
code set specified by implementor-name-2 and the characters of the native 
character code set. 

d. If the literal phrase is specified, the alphabet-name may not be 
referenced in a CODE-SET clause (see page VII-24, The CODE-SET Clause). The 
collating sequence identified is that defined according to the following rules: 

1) The value of each literal specifies: 

a) The ordinal number of a character within the native 
character set, if the literal is numeric. This value must not exceed the value 
which represents the number of characters in the native character set. 

b) The actual character within the native character set, if the 
literal is nonnumeric. If the value of the nonnumeric literal contains multiple 
characters, each character in the literal, starting with the leftmost character, 
is assigned successive ascending positions in the collating sequence being 
specified. 

2) The order in which the literals appear in the ALPHABET clause 
specifies, in ascending sequence, the ordinal number of the character within the 
collating sequence being specified. 

VI-15 



Nucleus - SPECIAL-NAMES 

3) Any characters within the native collating sequence, which are 
not explicitly specified in the literal phrase, assume a position; in the 
collating sequence being specified, greater than any of the explicitly specified 
characters. The relative order within the set of these unspecified characters 
1s unchanged from the native collating sequence. 

4) If the THROUGH phrase is specified, the set of contiguous 
characters in the native character set beginning with the character specified by 
the value of literal-1, and ending with the character specified by the value of 
literal-2, is assigned a successive ascending position in the collating sequence 
being specified. In addition, the set of contiguous characters specified by a 
given THROUGH phrase may specify characters of the native character set in 
either ascending or descending sequence. 

5) If the ALSO phrase is specified, the characters of the native 
character set specified by the value of literal-1 and literal-3 are assigned to 
the same ordinal position in the collating sequence being specified or in the 
character code set that is used to represent the data, and if alphabet-name-! is 
referenced in a SYMBOLIC CHARACTERS clause, only literal-! is used to represent 
the character in the native character set. 

(S) The character that has the highest ordinal position in the program 
collating sequence is associated with the figurative constant HIGH-VALUE, except 
when this figurative constant is specified as a literal in the SPECIAL-NAMES 
paragraph. If more than one character has the highest position in the program 
collating sequence, the last character specified is associated with the 
figurative constant HIGH-VALUE. 

(6) The character that has the lowest ordinal position in the program 
collating sequence is associated with the figurative constant LOW-VALUE, except 
when this figurative constant is specified as a literal in the SPECIAL-NAMES 
paragraph. If more than one character has the lowest position in the program 
collating sequence, the first character specified is associated with the 
figurative constant LOW-VALUE. 

(7) When specified as literals in the SPECIAL-NAMES paragraph, the 
figurative constants HIGH-VALUE and LOW-VALUE are associated with those 
characters having the highest and lowest positions, respectively, in the native 
collating sequence. 

(8) If the IN phrase is not specified, symbolic-character-! represents the 
character whose ordinal pos1t1on in the native character set is specified by 
integer-I. If the IN phrase is specified, integer-I specifies the ordinal 
position of the character that is represented in the character set named by 
alphabet-name-2. 

(9) The internal representation of symbolic-character-! is the internal 
representation of the character that is represented in the native character set. 

(10) The CLASS clause provides a means for relating a name to the specified 
set of characters listed in that clause. Class-name-1 can be referenced only in 
a class condition. The characters specified by the values of the literals in 
this clause define the exclusive set of characters of which this class-name-1 
consists. 

VI-16 



Nucleus - SPECIAL-NAMES 

The value of each literal specifies: 

a. The ordinal number of a character within the native 
if the literal is numeric. This value must not exceed 
represents the number of characters in the native character set. 

character set, 
the value which 

b. The actual character within the native character set, if the literal 
is nonnumeric. If the value of the nonnumeric literal contains multiple 
characters, each character in the literal is included in the set of characters 
identified by class-name-I. 

If the THROUGH phrase is specified, the contiguous characters in the 
native character set beginning with .the character specified by the value of 
literal-4, and ending with the character specified by the value of literal-5, 
are included in the set of characters identified by class-name-I. In addition, 
the contiguous characters specified by a given THROUGH phrase may specify 
characters of the native character set in either ascending or descending 
sequence. 

(11) Literal-6 which appears in the CURRENCY SIGN clause is used in the 
PICTURE clause to represent the currency symbol. The literal must be nonnumer1c 
and is limited to a single character. It may be any character from the 
computer's character set except one of the following: 

a. digits 0 through 9; 

b. alphabetic characters consisting of the uppercase letters A, B, C, 
D, P, R, S, V, X, Z; the lowercase letters a through z; or the space; 

c. special characters * + - ' . ' ()"=/ 

If this clause is not present, only the currency sign defined 1n the 
COBOL character set may be used as the currency symbol 1n the PICTURE clause. 

(12) The clause 
and period are 
numeric literals. 

DECIMAL-POINT IS COMMA means that the functions of comma 
exchanged in the character-string of the PICTURE clause and in 

VI-17 



Nucleus - Working-Storage Section 

5. DATA DIVISION IN THE NUCLEUS MODULE 

5.1 GENERAL DESCRIPTION 

The Data Division describes the data that is to be processed by the object 
program. The Data Division is optional in a COBOL source program. 

5.2 WORKING-STORAGE SECTION 

The Working-Storage Section is located in the Data Division of a source 
program. The Working-Storage Section describes records and subordinate data 
items which are not part of data files. 

The Working-Storage Section is composed of the section header, followed by 
record description entries and/or data description entries for noncontiguous 
data items. 

The general format of the Working-Storage Section 1s shown below. 

WORKING-STORAGE SECTION. 

f77-level-description-entry] 
Lrecord-description-entry 

5.2.l Noncontiguous Working Storage 

Items and constants in working storage which bear no hierarchical 
relationship to one another need not be grouped into records, provided they do 
not need to be further subdivided. Instead, they are classified and defined as 
noncontiguous elementary items. Each of these items is defined in a separate 
data description entry which begins with the special level-number, 77. 

The following data clauses are required in each data description entry: 

1. level-number 77 
2. data-name 
3. the PICTURE clause or the USAGE IS INDEX clause 

Other data description clauses are optional and can be used to complete the 
description of the item if necessary. 

5.2.2 Working Storage Records 

Data elements in working storage which bear a definite hierarchical 
relationship to one another must be grouped into records according to the rules 
for formation of record descriptions. Data elements in the Working-Storage 
Section which bear no hierarchical relationship to any other data item may be 
described as records which are single elementary items. All clauses which are 
used in record descriptions in the File Section can be used in record 
descriptions in the Working-Storage Section. 

VI-18 



Nucleus - Working-Storage Section 

5.2.3 Record Description Structure 

A record description consists of a set of data description entries which 
describe the characteristics of a particular record. Each data description 
entry consists of a level-number followed by the data-name or FILLER clause, if 
specified, followed by a series of independent clauses as required. A record 
description may have a hierarchical structure and therefore the clauses used 
within an entry may vary considerably, depending upon whether or not it is 
followed by subordinate entries. The structure of a record description and the 
elements allowed in a record description entry are explained on page IV-14, 
Concept of Levels, and on page VI-20, The Data Description Entry. 

5.2.4 Initial Values 

The initial value of any data item in the Working-Storage Section except an 
index data item is specified by associating the VALUE clause with the data item. 
The initial value of any index data item or any data item not associated with a 
VALUE clause is undefined. 

VI-19 



Nucleus - Data Description Entry 

5.3 THE DATA DESCRIPTION ENTRY 

5.3.1 Function 

A data description entry specifies the characteristics of a particular item 
of data. 

5.3.2 General Format 

Format 1: 

level-number [data-name-1] 
FILLER 

[REDEFINES data-name-2] 

[USAGE IS] 

[[SIGN IS] 

IS character-string] 

BINARY 
COMPUTATIONAL 
COMP 
DISPLAY 
INDEX 
PACKED-DECIMAL 

{ LEADING } [SEPARATE CHARACTER]] 
TRAILING 

OCCURS integer-2 TIMES 

[{ASCENDING } 
DESCENDING KEY IS {data-name-3} ... ] ... 

[INDEXED BY {index-name-1} ... ] 

OCCURS integer-1 TO integer-2 TIMES DEPENDING ON data-name-4 

[{ASCENDING } 
DESCENDING KEY IS {data-name-3} J ... 

[INDEXED BY {index-name-1} ... ] 

[{SYNCHRONIZED} [LEFT ] J 
SYNC RIGHT 

[{=IFIED} RIGHT] 

[BLANK WHEN ZERO] 

[VALUE IS literal-1]. 

VI-20 



Nucleus - Data Description Entry 

Format 2: 

[{ THROUGH} J 66 data-name-1 RENAMES data-name-2 THRU data-name-3 

Format 3: 

88 condition-name-1 { VALUE IS } { . [{THROUGH} VALUES ARE literal-1 THRU litera1-2] } ••. 

5.3.3 Syntax Rules 

(1) Level-number 1n format 1 may be any number from 01 through 49 or 77. 

(2) In format 1, the data-name-I or FILLER clause, if specified, must 
immediately follow the level-number. The REDEFINES clause, if specified, must 
immediately follow the data-name-I or FILLER clause if either is specified; 
otherwise, it must immediately follow the level-number. The remaining clauses 
may be written in any order. 

(3) The PICTURE clause must be specified for every elementary item except an 
index data item and the subject of the RENAMES clause, in which case use of this 
clause is prohibited. 

(4) The words THRU and THROUGH are equivalent. 

5.3.4 General Rules 

(l) The clauses SYNCHRONIZED, PICTURE, JUSTIFIED, and BLANK WHEN ZERO must 
not be specified except for an elementary data item. 

(2) Format 3 is used for each condition-name. Each condition-name requires 
a separate entry with level-number 88. Format. 3 contains the name of the 
condition and the value, values, or range of values associated with the 
condition-name. The condition-name entries for a particular conditional 
variable must immediately follow the entry describing the item with which the 
condition-name is associated. A condition-name can be associated with any data 
description entry which contains a level-number except the following: 

a. Another condition-name. 

b. A level 66 item. 

c. A group containing items with descriptions including JUSTIFIED, 
SYNCHRONIZED, or USAGE (other than USAGE IS DISPLAY). 

d. An index data item. 
------·-----

(3) Multiple level 01 entries subordinate to any given level indicator other 
than the level indicator RD for a report description entry, represent implicit 
redefinitions of the same area. 

VI-21 



Nucleus - BLANK WHEN ZERO 

5.4 THE BLANK WHEN ZERO CLAUSE 

5.4.1 Function 

The BLANK WHEN ZERO clause permits the blanking of an item when its value is 
zero. 

5.4.2 General Format 

BLANK WHEN ZERO 

5.4.3 Syntax Rules 

(1) The BLANK WHEN ZERO clause can be specified only for an elementary item 
whose PICTURE is specified as numeric or numeric edited (see page VI-29, The 
PICTURE Clause). 

(2) The numeric or numeric edited data description entry to which the BLANK 
WHEN ZERO clause applies must be described, either implicitly or explicitly, as 
USAGE IS DISPLAY. 

5.4.4 General Rules 

(1) When the BLANK WHEN ZERO clause is used, the item will contain nothing 
but spaces if the value of the item is zero. 

(2) When the BLANK WHEN ZERO clause is used for an item whose PICTURE is 
numeric, the category of the item is considered to be numeric edited. 

VI-22 



S.S THE DATA-NAME OR FILLER CLAUSE 

S.S.l Function 

A data-name specifies the name of the data item 
word FILLER may be used to specify a data 
explicitly. 

5.S.2 General Format 

[data-name-1] 
FILLER 

S.5.3 Syntax Rules 

Nucleus - Data-Name or FILLER 

being described. The key 
item which is not referenced 

(1) In the File, Working-Storage, Communication, and Linkage Sections, 
data-name-1 or the key word FILLER, if either is specified, must be the first 
word following the level-number in each data description entry. 

5.5.4 General Rules 

(1) If this clause is omitted, the data item being described is treated as 
though FILLER had been specified. 

(2) The key word FILLER may be used to name a data item. Under no 
circumstances can a FILLER item be referred to explicitly. I However, the key 
word FILLER may be used to name a conditional variable because such use does not 
require explicit reference to the data item itself, but only to the value 
contained therein. 

VI-23 



Nucleus - JUSTIFIED 

5.6 THE JUSTIFIED CLAUSE 

5.6.1 Function 

The JUSTIFIED clause permits alternate positioning of data within a receiving 
data item. 

5.6.2 General Format 

{ JUSTIFIED} RIGHT 
JUST 

5.6.3 Syntax Rules 

(1) The JUSTIFIED clause can be specified only at the elementary item level. 

(2) JUST is an abbreviation for JUSTIFIED. 

(3) The JUSTIFIED clause cannot be specified for any data item described as 
numeric or for which editing is specified. 

(4) The JUSTIFIED clause must not be specified for an index data item. 

5.6.4 General Rules 

(1) When the receiving data item is described with the JUSTIFIED clause and 
the sending data item is larger than the receiving data item, the leftmost 
characters are truncated. When the receiving data item is described with the 
JUSTIFIED clause and it is larger than the sending data item, the data is 
aligned at the rightmost character position in the data item with space fill for 
the leftmost character positions. 

(2) When the JUSTIFIED clause is omitted, the standard rules for aligning 
data within an elementary item apply (see page IV-16, Standard Alignment Rules). 

VI-24 



5.7 LEVEL-NUMBER 

5.7.1 Function 

The level-number indicates the 
hierarchical structure of a logical 
entries for working storage items, 

[RENAMES clause .I 

5.7.2 General Format 

level-number 

5.7.3 Syntax Rules 

Nucleus - Level-Number 

posit ion of a data item with in the 
record. In addition, it is used to identify 

linkage items, l condition-names, and theJ 

(1) A level-number is required as the first element in each data description 
entry. 

(2) Data description entries subordinate to a CD, FD, or SD entry must have 
level-numbers with the values 01 through, 49,166, or 88. J 

(3) Data description entries in the Working-Storage Section and Linkage 
Section must have level-numbers 01 through 49, ~ 77, Jor 88.I 

5.7.4 General Rules 

(1) The level-number 01 identifies the first entry in 
description. 

each record 

(2) Special level-numbers have been assigned to certain entries where there 
is no real concept of hierarchy: 

a. Level-number 77 is assigned to identify noncontiguous working 
storage data items, noncontiguous linkage data items, and can be used only as 
described by format 1 of the data description entry. (See page VI-20, The Data 
Description Entry.) 

b. 
used only 
VI-20, The 

c. 
associated 
format 3 of 
Entr_y_.) 

Level-number 66 is assigned to identify RENAMES entries and can be 
as described by format 2 of the data description entry. (See page 

Data Description Entry.) 

Level-number 88 is assigned to entries which define condition-names 
with a conditional variable and can be used only as described by 
the data description entry. (See page VI-20, The Data Description 

(3) Multiple level 01 entries subordinate to any given level indicator other 
than the level indicator RD for a report description entry, represent implicit 
redefinitions of the same area. 

VI-25 



Nucleus - OCCURS 

5.8 THE OCCURS CLAUSE 

5.8.1 Function 

The OCCURS clause eliminates the need for separate entries for repeated data 
items and supplies information required for the application of subscripts. 

5.8.2 General Format 

Format 1: 

OCCURS integer-2 TIMES 

[{ASCENDING } KEY IS {data-name-2} ••• J ... 
DESCENDING 

[INDEXED BY {index-name-1} ••• ] 

Format 2: 

OCCURS integer-1 TO integer-2 TIMES DEPENDING ON data-name-1 

[{ASCENDING } 
DESCENDING KEY IS {data-ruune-2) •.• J ... 

[INDEXED BY {index-name-1} ... ] 

5.8.3 Syntax Rules 

(1) The OCCURS clause must not be specified in a data description entry 
that: 

a. Has a level-number of 01, 66, 77, or 88, or 

b. Has a variable occurrence data item subordinate to it. 

(2) Data-name-1 and data-name-2 may be qualified. 

(3) The first specification of data-name-2 must be the name of ·either the 
entry containing the OCCURS clause or an entry subordinate to the entry 
containing the OCCURS clause. Subsequent specification of data-name-2 must be 
subordinate to the entry containing the OCCURS clause. 

(4) Data-name-2 must be specified without the 
required. 

subscripting normally 

(5) Where both integer-I and integer-2 are used, integer-I must be greater 
than or equal to zero and integer-2 must be greater than integer-I. 

(6) Data-name-1 must describe an integer. 

VI-26 



Nucleus - OCCURS 

(7) In format 2, the data item defined by data-name-I must not occupy a 
character position within the range of the first character position defined by 
the data description entry containing the OCCURS clause and the last character 
position defined by the record description entry containing that OCCURS clause. 

(8) If the OCCURS clause is specified in a data description entry included 
in a record description entry containing the EXTERNAL clause, data-name-I, if 
specified, must reference a data item possessing the external attribute which is 
described in the same Data Division. 

(9) If the OCCURS clause is specified in a data description entry 
subordinate to one containing the GLOBAL clause, data-name-I, if specified, must 
be a global name and must reference a data item which is described in the same 
Data Division. 

(10) A data description entry that contains format 2 of the OCCURS clause may 
only be followed, within that record description, by data description entries 
which are subordinate to it. 

(11) The data item .identified by data-name-2 must not contain an OCCURS 
clause except when data-name-2 is the subject of the entry. 

(12) There must not be any entry that contains an OCCURS clause between the 
descriptions of the data items identified by the data-names in the KEY IS phrase 
and the subject of the entry. 

(13) An INDEXED BY phrase is required 
entry subordinate to this entry, is 
index-name identified by this phrase 
allocation and format are dependent on 
be associated with any data hierarchy. 

if the subject of this entry, or an 
to be referenced by indexing. The 

is not defined elsewhere since its 
the hardware and, not being data, cannot 

(14) Index-name-I must be a unique word within the program. 

S.8.4 General Rules 

(1) Except for the OCCURS clause itself, all data description clauses 
associated with an item whose description includes an OCCURS clause apply to 
each occurrence of the item described. 

(2) The number of occurrences of the subject entry is defined as follows: 

a. In format 1, the value of integer-2 represents the exact number of 
occurrences. 

b. In format .,2, the current value of the data item referenced by 
data-name-I represents the number of occurrences. 

This format specifies that the subject of this entry has a variable 
number of occurrences. The value of integer-2 represents the maximum number of 
occurrences and the value of integer-I represents the minimum number of 
occurrences. This does not imply that the length of the subject of the entry is 
variable, but that the number of occurrences is variable. 

VI-27 



Nucleus - OCCURS 

At the time the subject of entry is referenced or any data item 
subordinate or superordinate to the subject of entry is referenced, the value of 
the data item referenced by data-name-1 must fall within the range integer-I 
through integer-2. The contents of the data items whose occurrence numbers 
exceed the value of the data item referenced by data-name-1 are undefined. 

(3) When a group data item, having subordinate to it an entry that specifies 
format 2 of the OCCURS clause, is referenced, the part of the table area used in 
the operation is determined as follows: 

a. If the data item referenced by data-name-1 is outside the group, 
only that part of the table area that is specified by the value of the data item 
referenced by data-name-1 at the start of the operation will be used. 

b. If the data item referenced by data-name-1 is included in the same 
group end the group data item is referenced as a sending item, only that part of 
the table area that is specified by the value of the data item referenced by 
data-name-1 at the start of the operation will be used in the operation. If the 
group is a receiving item, the maximum length of the group will be used. 

(4) When the KEY IS phrase is specified, the repeated data must be arranged 
1n ascending or descending order according to the values contained in 
data-name-2. The ascending or descending order is determined according to the 
rules for the comparison of operands. (See page VI-55, Comparison of Numeric 
Operands, and page VI-55, Comparison of Nonnumeric Operands.) The data-names 
are listed in their descending order of significance. 

(5) If format 2 is specified in a record description entry and the 
associated file description or sort-merge description entry contains the VARYING 
phrase of the RECORD clause, the records are variable length. If the DEPENDING 
ON phrase of the RECORD clause is not specified, the content of the data item 
referenced by data-name-1 of the OCCURS clause must be set to the number of 
occurrences to be written before the execution of any RELEASE, REWRITE, or WRITE 
statement. 

VI-28 



Nucleus - PICTURE 

5.9 THE PICTURE CLAUSE 

5.9.l Function 

The PICTURE clause describes the general characteristics and 
requirements of an elementary item. 

editing 

5.9.2 General Format 

{ PICTURE} 
PIC 

IS character-string 

5.9.3 Syntax Rules 

(1) A PICTURE clause can be specified only at the elementary item level. 

(2) A character-string consists 
characters in the COBOL character 
combinations determine the category of 

of certain allowable combinations of 
set used as symbols. The allowable 

the elementary item. 

(3) The lowercase letters corresponding 
representing the PICTURE symbols A, B, P, S, V, 
to their uppercase representations in a PICTURE 
lowercase letters are not equivalent to 
representations. 

to the uppercase letters 
X, Z, CR, and DB are equivalent 
character-string. All other 

their corresponding uppercase 

(4) The maximum number of characters allowed in the character-string is 30. 

(5) The PICTURE clause must be specified for every elementary item except an 
index data item lor the subject of the RENAMES clause. j In these cases the use of 
this clause is prohibited. 

(6) PIC is an abbreviation for PICTURE. 

(7) The asterisk when. used as the zero suppression symbol and the clause 
BLANK WHEN ZERO may not appear in the same entry. 

5.9.4 

(1) 

clause: 
edited. 

(2) 

General Rules 

There are five categories of data that can be described with a PICTURE 
alphabetic, numeric, alphanumeric, alphanumeric edited, and numeric 

To define an item as alphabetic: 

a. Its PICTURE character-string can contain only the symbol 'A'; and 

b. Its content, when represented in standard data format, must be one 
or more alphabetic characters. 

VI-29 



Nucleus - PICTURE 

(3) To define an item as numeric: 

a. Its PICTURE character-string 
'S', and 'V' • The number of digit 
PICTURE character-string must range from 

can contain only the symbols '9', 'P', 
positions that can be described by the 

1 to 18 inclusive; and 

b. If unsigned, its content when represented in standard data format 
must be one or more numeric characters; if signed, the item may also contain a 
'+', '-', or other representation of an operational sign (see page VI-42, The 
SIGN Clause). 

(4) To define an item as alphanumeric: 

a. Its PICTURE character-string is restricted to certain combinations 
of the symbols 'A', 'X', '9', and the item is treated as if the character-string 
contained all 'X's. A PICTURE character-string which contains all 'A's or all 
'9's does not define an alphanumeric item, and; 

b. Its content when represented in standard data format must be one or 
more characters in the computer's character set. 

(5) To define an item as alphanumeric edited: 

a. Its PICTURE character-string is restricted 
of the following symbols: 'A', 'X', '9', 'B', 'O', and 
least one 'A' or 'X' and must contain at least one 'B' 
(slant). 

to certain combinations 
'/'; and must contain at 
or 'O' (zero) or '/' 

b. Its content when represented in standard data format must be two or 
more characters in the computer's character set. 

(6) To define an item as numeric edited: 

a. Its PICTURE character-string is restricted to certain combinations 
of the symbols 'B', '/', 'P', 'V', 'Z', 'O', '9', ',', '.', '*', '+','-','CR', 
'DB', and the currency symbol. The allowable combinations are determined from 
the order of precedence of symbols and the editing rules; and 

1) The number of digit positions that can be represented 1n the 
PICTURE character-string must range from 1 to 18 inclusive; and 

2) The character-string must contain at least one 'O', 'B', '/', 
'Z', '*', '+', ',', '.', '-', 'CR', 'DB', or the currency symbol. 

b. The content of each of the character positions must be consistent 
with the corresponding PICTURE symbol. 

(7) The size of an elementary item, where size means the number of character 
positions occupied by the elementary item in standard data format, is determined 
by the number of allowable symbols that represent character positions. An 
unsigned nonzero integer which is enclosed in parentheses following the symbols 
'A',',', 'X', '9', 'P', 'Z', '*', 'B', '/', 'O', '+', ' ' or the currency 
symbol indicates the number of consecutive occurrences of the symbol. Note that 
the following symbols may appear only once in a given PICTURE: 'S', 'V', .', 
' CR ' , and ' DB ' • 

VI-30 



Nucleus - PICTURE 

(8) The functions of the symbols used to describe an elementary item are 
explain as follows: 

A Each 'A' in the character-string represents a character position 
which can contain only an alphabetic character and is counted in the size of the 
item. 

B 
into which 
the item. 

Each 'B' in the character-string represents a character position 
the space character will be inserted and is counted in the size of 

P Each 'P' in the character-string indicates an assumed decimal 
scaling position and is used to specify the location of an assumed decimal point 
when the point is not within the number that appears in the data item. The 
scaling position character 'P' is not counted in the size of the data item. 
Scaling position characters are counted in determining the maximum number of 
digit positions (18) in numeric edited items or numeric items. The scaling 
position character 'P' can appear only as a continuous string of 'P's in the 
leftmost or rightmost digit positions within a PICTURE character-string; since 
the scaling position character 'P' implies an assumed decimal point (to the left 
of 'P's if 'P's are leftmost PICTURE symbols and to the right if 'P's are 
rightmost PICTURE symbols), the assumed decimal point symbol 'V' is redundant as 
either the leftmost or rightmost character within such a PICTURE description. 
The symbo 1 'P' and the insert ion symbo 1 ' ' (period) cannot both occur rn the 
same PICTURE character-string. 

In certain operations that reference a data item whose PICTURE 
character-string contains the symbol 'P', the algebraic value of the data item 
is used rather than the actual character representation of the data item. This 
algebraic value assumes the decimal point in the prescribed location and zero in 
place of the digit position specified by the symbol 'P'. The size of the value 
is the number of digit positions represented by the PICTURE character-string. 
These operations are any of the following: 

a. Any operation requiring a numeric sending operand. 

b. A MOVE statement where the sending operand is numeric and its 
PICTURE character-string contains the symbol 'P'. 

c. A MOVE statement where the sending operand is numeric edited and 
its PICTURE character-string contains the symbol 'P' and the receiving operand 
is numeric or numeric edited. 

d. A comparison operation where both operands are numeric. 

In all other operations the digit positions specified with the symbol 'P' are 
ignored and are not counted in the size of the operand; 

S The 'S' is used in a character-string to indicate the presence, but 
neither the representation nor, necessarily, the position of an operational 
sign; it must be written as the leftmost character in the PICTURE. The 'S' is 
not counted in determining the size (in terms of standard data format 
characters) of the elementary item unless the entry is subject to a SIGN clause 
which specifies the optional SEPARATE CHARACTER phrase. (See page VI-42, The 
SIGN Clause.) 

VI-31 



Nucleus - PICTURE 

V The 'V' is used in a character-string to indicate the location of 
the assumed decimal point and may only appear 
'V' does not represent a character position and 
size of the elementary item. When the assumed 
the rightmost symbol in the string representing 
position, the 'V' is redundant. 

once in a character-string. The 
therefore is not counted in the 
decimal point is to the right of 

a digit position or scaling 

x Each 'X' in the character-string is used to represent a character 
position which contains any allowable character from the computer's character 
set and is counted in the size of the item. 

Z Each 'Z' in a character-string may only be used to represent 
leftmost leading numeric character positions which will be replaced by a 
character when the content of that character position is a leading zero. 
'Z' is counted in the size of the item. 

the 
space 

Each 

9 Each '9' in the character-string represents a digit position which 
contains a numeric character and is counted in the size of the item. 

0 Each 'O I (zero) in the character-string represents a character 
position into which the character zero will be inserted. The 'O' is counted in 
the size of the item. 

I Each I I I (slant) in the character-string represents a character 
position into which the slant character will be inserted. The I I I is counted in 
the size of the item. 

, Each 1 ,' (comma) in the 
position into which the character ',' 
is counted in the size of the item. 

character-string 
will be inserted. 

represents a character 
This character position 

When the symbol '.' (period) appears in the character-string it is 
an editing symbol which represents the decimal point for alignment purposes and, 
in addition, represents a character position into which the character '.' will 
be inserted. The character '.' is counted in the size of the item. For a given 
program the functions of the period and comma are exchangerl if the clause 
DECIM.AL-POINT IS COMMA is stated in the SPECIAL-NAMES paragraph. In this 
exchange the rules for the period apply to the comma and the rules for the comma 
apply to the period wherever they appear in a PICTURE clause. 

+ - CR DB These symbols are used 
When used, they represent the character 
control symbol will be placed. The symbols 
character-string and each character used in 
the size of the data item. 

as editing sign control symbols. 
position into which the editing sign 
are mutually exclusive in any one 
the symbol is counted in determining 

* Each '*' (asterisk) in the character-string represents a leading 
numeric character position into which an asterisk will be placed when the 
content of that position is a leading zero. Each '*' is counted in the size of 
the item. 

cs The currency symbol in the character-string represents a character 
position into which a currency symbol is to be placed. The currency symbol in a 
character-string is represented by either the currency sign or by the single 

VI-32 



Nucleus - PICTURE 

character specified in the CURRENCY SIGN clause in the SPECIAL-NAMES paragraph. 
The currency symbol is counted in the size of the item. 

5.9.5 Editing Rules 

(1) 

clause, 
types of 

There are two general methods of performing editing in the PICTURE 
either by insertion or by suppression and replacement. There are four 
insertion editing available. They are: 

( 2) 

upon 
which 

a. Simple insertion 
b. Special insertion 
c. Fixed insertion 
d. Floating insertion 

There are two types of suppression and replacement editing: 

a. Zero suppression and replacement with spaces 
b. Zero suppression and replacement with asterisks 

The type of editing which may be performed upon an item is dependent 
the category to which the item belongs. The following table specifies 
type of editing may be performed upon a given category: 

CATEGORY TYPE OF EDITING 

Alphabetic None 

Numeric None 

Alphanumeric None 

Alphanumeric edited Simple insertion IQ I ' I BI' and I I I 

Numeric edited All, subject to rules in rule 3 below 

(3) Floating insertion editing and editing by zero suppression and 
replacement are mutually exclusive in a PICTURE clause. Only one type of 
replacement may be used with zero suppression in a PICTURE clause. 

(4) Simple insertion editing. The ','(comma), 'B' (space), 'O' (zero), 
and 'I' (slant) are used as the insertion characters. The insertion characters 
are counted in the size of the item and represent the position in the item into 
which the character will be inserted. If the insertion character ',' (comma) is 
the last symbol in the PICTURE character-string, the PICTURE clause must be the 
last clause of the data description entry and must be immediately followed by 
the separator period. This results in the combination of ',.' appearing in the 
data description entry, or, if the DECIMAL POINT IS COMMA clause is used, in two 
consecutive periods. 

(5) Special insertion editing. The '.' (period) is used as 
character. In addition to being an insertion character it also 
decimal point for alignment purposes. The insertion character 
actual decimal point is counted in the size of the item. The use 

VI-33 

the insertion 
represents the 
used for the 
of the assumed 



Nucleus - PICTURE 

decimal point, represented by the symbol 'V' and the actual decimal point, 
represented by the insertion character, in the same PICTURE character-string is 
disallowed. If the insertion character is the last symbol in the PICTURE 
character-string, the PICTURE clause must be the last clause of that data 
description entry and must be immediately followed by the separator period. 
This results in two consecutive periods appearing in the data description entry, 
or in the combination of ',.' if the DECIMAL-POINT IS COMMA clause is used. The 
result of special insertion editing is the appearance of the insertion chacacter 
1n the item in the same position as shown in the character-string. 

(6) Fixed insertion editing. The currency symbol and the editing sign 
control symbols '+', '-', 'CR', 'DB' are the insertion characters. Only one 
currency symbol and only one of the editing sign control symbols can be used in 
a given PICTURE character-string. When the symbols 'CR' or 'DB' are used they 
represent two character positions in determining the size of the item and they 
must represent the rightmost character positions that are counted in the size of 
the item. If these character positions contain the symbols 'CR' or 'DB', the 
uppercase letters are the insertion characters. The symbol '+' or '-', when 
used, must be either the leftmost or rightmost character position to be counted 
in the size of the item. The currency symbol must be the leftmost character 
position to be counted in the size of the item except that it can be preceded by 
either a '+' or a '-' symbol. Fixed insertion editing results in the insertion 
character occupying the same character position in the edited item as it 
occupied in the PICTURE character-string. Editing sign control symbols produce 
the following results depending upon the value of the data item: 

RESULT 
EDITING SYMBOL IN 

PICTURE CHARACTER-STRING DATA ITEM DATA ITEM 
POSITIVE OR ZERO NEGATIVE 

+ + -
- s_1>_ace -
CR 2 spaces CR 
DB 2 spaces DB 

(7) Floating insertion editing. The currency symbol and editing 
control symbols '+' and '-' are the floating insertion characters and as 
are mutually exclusive in a given PICTURE character-string. 

sign 
such 

Floating insertion editing is indicated in a PICTURE character-string by 
using a string of at least two of the floating insertion characters. This 
string of floating insertion characters may contain any of the simple insertion 
characters or have simple insertion characters immediately to the right of this 
string. These simple insertion characters are part of the floating string. 
When the floating insertion character is the currency symbol, this string of 
floating insertion characters may have the fixed insertion characters 'CR' and 
'DB' immediately to the right of this string. 

The leftmost character of the floating insertion string represents the 
leftmost limit of the floating symbols in the data item. The rightmost 
character of the floating string represents the rightmost limit of the floating 
symbols in the data item. 

VI-34 



The second floating character from the 
limit of the numeric data that can be stored in 
data may replace all the characters at or to the 

Nucleus - PICTURE 

left represents the leftmost 
the data item. Nonzero numeric 
right of this limit. 

In a PICTURE character-string, there are only two ways of representing 
floating insertion editing. One way is to represent any or all of the leading 
numeric character positions on the left of the decimal point by the insertion 
character. The other way is to represent all of the numeric character positions 
in the PICTURE character-string by the insertion character. 

If the insertion character positions are only to the left of the decimal 
point in the PICTURE character-string, the result is that a single floating 
insertion character will be placed into the character position immediately 
preceding either the decimal point or the first nonzero digit in the data 
represented by the insertion symbol string, whichever is farther to the left 1n 
the PICTURE character-string. The character positions preceding the insertion 
character are replaced with spaces. 

If all numeric character positions in the PICTURE character-string are 
represented by the insertion character, at least one of the insertion characters 
must be to the left of the decimal point. 

When the floating insertion character is the editing control symbol '+' 
or '-' the character inserted depends upon the value of the data item: 

RESULT 
EDITING SYMBOL IN 

PICTURE CHARACTER-STRING DATA ITEM DATA ITEM 
POSITIVE OR ZERO NEGATIVE 

+ + -
- space -

If all numeric character pos1t1ons in the PICTURE character-string are 
represented by the insertion character, the result depends upon the value of the 
data. If the value is zero the entire data item will contain spaces. If the 
value is not zero, the result is the same as when the insertion character is 
only to the left of the decimal point. 

To avoid truncation, the minimum size of the PICTURE character-string 
for the receiving data item must be the number of characters in the sending data 
item, plus the number of nonfloating insertion characters being edited into the 
receiving data item, plus one for the floating insertion character. If 
truncation does occur, the value of the data that is used for editing 1s the 
value after truncation. (See page IV-16, Standard Alignment Rules.) 

(8) Zero suppression editing. The suppression of leading zeros in numeric 
character positions is indicated by the use of the alphabetic character 'Z' or 
the character '*' (asterisk) as suppression symbols 1n a PICTURE 
character-string. These symbols are mutually exclusive in a given PICTURE 
character-string. Each suppression symbol is counted in determining the size of 
the item. If 'Z' is used the replacement character will be the space and if the 
asterisk is used, the replacement character will be '*' 

VI-35 



Nucleus - PICTURE 

Zero suppression and replacement is indicated in a PICTURE 
character-string by using a string of one or more of the allowable symbols to 
represent leading numeric character positions which are to be replaced when the 
associated character position in the data contains a leading zero. Any of the 
simple insertion characters embedded in the string of symbols or to the 
immediate right of this string are part of the string. 

In a PICTURE character-string, there are only 
zero suppression. One way is to represent any or 
character positions to the left of the decimal point 
The other way is to represent all of the numeric 
PICTURE character-string by suppression symbols. 

two ways of representing 
all of the leading numeric 

by suppression symbols. 
character positions in the 

If the suppression symbols appear only to the left of the decimal point, 
any leading zero in the data which corresponds to a symbol in the string is 
replaced by the replacement character. Suppression terminates at the first 
nonzero digit in the data represented by the suppression symbol string or at the 
decimal point, whichever is encountered first. 

If all numeric character positions in the PICTURE character-string are 
represented by suppression symbols and the value of the data is not zero the 
result is the same as if the suppression characters were only to the left of the 
decimal point. If the value is zero and the suppression symbol is 'Z', the 
entire data item, including any editing characters, is spaces. If the value is 
zero and the suppression symbol is '*', the entire data item, including any 
insertion editing symbols except the actual decimal point, will be '*' In this 
case, the actual decimal point will appear in the data item. 

(9) The symbols '+', 
floating replacement 
character-string. 

'-', '*', 'Z', and the currency symbol, when 
characters, are mutually exclusive within 

used as 
a given 

5.9.6 Precedence Rules 

The chart on page VI-37 shows the order of precedence when using characters 
as symbols in a character-string. An 'X' at an intersection indicates that the 
symbol(s) at the top of the column may precede (but not necessarily 
immediately), in a given character-string, the symbol(s) at the left of the row. 
Arguments appearing in braces { } indicate that the symbols .are mutually 
exclusive. The currency symbol is indicated by the symbol 'cs'. 

At least one of the symbols 'A', 'X', 'Z', 
occurrences of one of the symbols '+', '-', or 
character-string. 

'9', or '*' or at least two 
'cs' must be present in a PICTURE 

Nonfloating insertion symbols '+' and '-', floating insertion symbols 'Z', 
'*' '+', '-', and 'cs', and other symbol 'P' appear twice in the PICTURE 
character precedence chart on page VI-37. The leftmost column and uppermost row 
for each symbol represents its use to the left of the decimal point position. 
The second appearance of the symbol in the chart represents its use to the right 
of the decimal point position. 

VI-36 



Nucleus - PICTURE 

First Non-floating Floating Other Symbols 
Symbol Insertion Symbols Insertion Symbols 

Second {~} {~} l/cR} {~} {:} {~} {~} A 
B 0 I 

' ~DB cs cs cs 9 x s v p p 

Symbol 

B x x x x x x x x x x x x x x x x x 

0 x x x x x x x x x x x x x x x x x 

I x x x x x x x x x x x x x x x x x 

en 
0 ' 

x x x x x x x x x x x x x x x x 
C>..C 
.5 E 
- >-~Cl) 

x x x x x x x x x x 

;;:::: c: 
{~} 'o c: ·-Ot:: z Cl> en 

{~} ..5 
x x x x x x x x x x x x x x 

{g~} x x x x x x x x x x x x x x 

cs x 

{~} x x x x x x x 

en {~} x x x x 
_g, 

x x x x x x x 

e>E 

{~} c: >-
~Cl) x x x x x x 
«S c: 
Oo 
u. "€ {~} Cl> x x x x x x x x x x en 

..5 
cs x x x x x x 

cs x x x x x x x x x x 

9 x x x x x x x x x x x x x x x 

(/) A 
0 x x x x x x 
..c 
E s >-
Cl) 
.... 
Cl> v x x x x x x x x x x x x .c. -0 p x x x x x x x x x x x x 

p x x x x x 

VI-37 



Nucleus - REDEFINES 

5.10 THE REDEFINES CLAUSE 

5.10.1 Function 

The REDEFINES clause allows the same computer storage area to be described by 
different data description entries. 

5.10.2 General Format 

level-number [ da ta-name-1] 
FILLER REDEFINES data-name-2 

NOTE: Level-number, data-name-1, 
format to improve clarity. 
FILLER are not part of the 

5.10.3 Syntax Rules 

and FILLER are shown in the above 
Level-number, data-name-1, and 

REDEFINES clause. 

(1) The REDEFINES clause, when specified, must immediately follow the 
subject of the entry •. 

(2) The level-numbers of data-name-2 and the subject of the entry must be 
identical, I but must not be 66 or 88. I 

(3) This clause must not be used in level 01 entries in the File Section. 

(4) This clause must not be used in level 01 entries in the Communication 
Section. 

cannot contain an OCCURS 
to an item whose data 
case, the reference to 
subscripted. Neither the 
variable occurrence data 

(5) The data description entry for data-name-2 
clause. J However, data-name-2 may be subordinate 
description entry contains an OCCURS clause. In this 
data-name-2 in the REDEFINES clause may not be 
original definition nor the redefinition can include a 
item. 

(6) If the data item referenced by data-name-2 is either declared to be an 
external data record or is specified with a level-number other than 01, the 
number of character positions it contains must be greater than or equal to the 
number of character positions in the data item referenced by the subject of this 
entry. If the data-name referenced by data-name-2 is specified with a 
level-number of 01 and is not declared to be an external data record, there is 
no such constraint. 

(7) Data-name-2 must not be qualified even if it is not unique since no 
ambiguity of reference exists in this case because of the required placement of 
the REDEFINES clause within the source _e_ro_g_ram. 

(8) Multiple redefinitions of the same character pos1t1ons are permitted. 
Multiple redefinitions of the same character positions must all use the 
data-name of the entry that originally defined the area. 

(9) The entries giving the new description of the character positions must 
not contain any VALUE clauses, except in condition-name entries. 

VI-38 



Nucleus - REDEFINES 

(10) No entry having a level-number numerically lower than the level-number 
of data-name-2 and the subject of the entry may occur between the data 
description entries of data-name-2 and the subject of the entry. 

(11) The entries giving the new descriptions of the character positions must 
follow the entries defining the area of data-name-2, without intervening entries 
that define new character positions. 

(12) In level 1, data-name-2 cannot be subordinate to an entry which contains 
a REDEFINES clause. In level 2, data-name-2 may be subordinate to an entry 
which contains a REDEFINES clause. 

5.10.4 General Rules 

(1) Storage allocation starts at data-name-2 and continues over a storage 
area sufficient to contain the number of character positions in the data item 
referenced by the data-name-1 or FILLER clause. 

(2) When the same character position is defined by more than one data 
description entry, the data-name associated with any of those data description 
entries can be used to reference that character position. 

VI-39 



Nucleus - RENAMES 

5 .11 THE RENAMES CLAUSE 

5 .11.1 Function 

The RENAMES clause permits alternative, possibly overlapping, groupings of 
elementary items. 

5.11.2 General Format 

66 data-name-1 RENAMES data-name-2 [{THROUGH} data-name-3 ] . 
THRU 

NOTE: Level-number 66 and data-name-1 are shown in the above 
format to improve clarity. Level-number and data-name-1 
are not part of the RENAMES clause. 

5.11.3 Syntax Rules 

(1) Any number of RENAMES entries may be written for a logical record. 

(2) All RENAMES entries referring to data items within a given logical 
record must immediately follow the last data description entry of the associated 
record description entry. 

(3) Data-name-1 cannot be used as a qualifier, and can only be qualified by 
the names of the associated level 01, FD, CD, or SD entries. Neither 
data-name-2 nor data-name-3 may have an OCCURS clause in its data description 
entry nor be subordinate to an item that has an OCCURS clause in its data 
description entry. 

(4) Data-name-2 and data-name-3 must be names of elementary items or groups 
of elementary items in the same logical record, and cannot be the same 
data-name. A 66 level entry cannot rename another 66 level entry nor can it 
rename a 77, 88, or 01 level entry. 

(5) Data-name-2 and data-name-3 may be qualified. 

(6) None of the items within the range, including data-name-2 and 
data-name-3, if specified, can be variable occurrence data items. 

(7) The words THROUGH and THRU are equivalent. 

(8) The beginning of the area described by data-name-3 must not be to the 
left of the beginning of the area described by data-name-2. The end of the area 
described by data-name-3 must be to the right of the end of the area described 
by data-name-2. Data-name-3, therefore, cannot be subordinate to data-name-2. 

VI-40 



Nucleus - RENAMES 

5.11.4 General Rules 

(1) When data-name-3 1s specified, data-name-1 1s a group item which 
includes all elementary items starting with data-name-2 (if data-name-2 is an 
elementary item) or the first elementary item in data-name-2 (if data-name-2 is 
a group item), and concluding with data-name-3 (if data-name-3 is an elementary 
item) or the last elementary item in data-name-3 (if data-name-3 1s a group 
item). 

(2) When data-name-3 is not specified, all of the data attributes of 
data-name-2 become the data attributes for data-name-I. 

VI-41 



Nucleus - SIGN 

5.12 THE SIGN CLAUSE 

5 .• 12.1 Function 

The SIGN clause specifies the position and the mode of representation of the 
operational sign when it is necessary to describe these properties explicitly. 

5.12.2 General Format 

[SIGN IS] { LEADING } [SEPARATE CHARACTER] 
TRAILING 

5.12.3 Syntax Rules 

(1) 

entry 
least 

The SIGN clause may be specified only for 
whose PICTURE contains the character 'S', 

one such numeric data description entry. 

a numeric data description 
or a group item containing at 

(2) The numeric data description entries to which the SIGN clause applies 
must be described, implicitly or explicitly, as USAGE IS DISPLAY. 

(3) If the CODE-SET clause is specified in a file description 
signed numeric data description entries associated with that file 
entry must be described with the SIGN IS SEPARATE clause. 

entry, any 
description 

5.12.4 General Rules 

(1) The optional SIGN clause, if present, specifies the position and the 
mode of representation of the operational sign for the numeric data description 
entry to which it applies, or for each numeric data description entry 
subordinate to the group to which it applies. The SIGN clause applies only to 
numeric data description entries whose PICTURE contains the character 'S'; the 
'S' indicates the presence of, but neither the representation nor, necessarily, 
the position of the operational sign. 

(2) If a SIGN 
item for which 
subordinate group 

clause is specified in a group item subordinate to a 
a SIGN clause is specified, the SIGN clause specified 
item takes precedence for that subordinate group item. 

group 
in the 

(3) If a SIGN clause is specified in an elementary numeric data description 
entry subordinate to a group item for which a SIGN clause is specified, the SIGN 
clause specified in the subordinate elementary numeric data description entry 
takes precedence for that elementary numeric data item. 

(4) A numeric data description entry whose PICTURE contains the character 
'S', but to which no optional SIGN clause applies, has an operational sign, but 
neither the representation, nor, necessarily, the position of the operational 
sign is specified by the character 'S'. In this (default) case, the implementor 
will define the position and representation of the operational sign. General 
rules 5 through 7 do not apply to such signed numeric data items. 

VI-42 



Nucleus - SIGN 

(5) If the optional SEPARATE CHARACTER phrase 1s not present, then: 

a. The operational sign will be presumed to be associated with the 
leading (or, respectively, trailing) digit position of the elementary numeric 
data item. 

b. The letter 'S' in a PICTURE character-string is not counted in 
determining the size of the item (in terms of standard data format characters). 

c. The implementor defines what constitutes valid sign(s) for data 
items. 

(6) If the optional SEPARATE CHARACTER phrase is present, then: 

a. The operational sign will be presumed to be the leading (or, 
respectively, trailing) character position of the elementary numeric data item; 
this character position is not a digit position. 

b. The letter 'S' in a PICTURE character-string is counted in 
determining the size of the item (in terms of standard data format characters). 

c. The operational signs for positive and negative are the standard 
data format characters '+' and '-', respectively. 

(7) Every 
character 'S' 
applies to such 
or comparisons, 

numeric data description entry whose PICTURE contains the 
is a signed numeric data description entry. If a SIGN clause 
an entry and conversion is necessary for purposes of computation 
conversion takes place automatically. 

VI-43 



Nucleus - SYNCHRONIZED 

5.13 THE SYNCHRONIZED CLAUSE 

5 .13 .1 Function 

The SYNCHRONIZED clause specifies the alignment of an elementary item on the 
natural boundaries of the computer memory (see page IV-17, Item Alignment for 
Increased Object-Code Efficiency). 

5.13.2 General Format 

{ SYNCHRONIZED} 
SYNC [ LEFT J 

RIGHT 

5.13.3 Syntax Rules 

(1) This clause may only appear with an elementary item. 

(2) SYNC is an abbreviation for SYNCHRONIZED. 

5.13.4 General Rules 

(1) This clause specifies that the subject data item is to be aligned in the 
computer such that no other data item occupies any of the character positions 
between the leftmost and rightmost natural boundaries delimiting this data item. 
If the number of character positions required to store this data item is less 
than the number of character positions between those natural boundaries, the 
unused character positions (or portions thereof) must not be used for any other 
data item. Such unused character positions, however, are included in: 

a. The size of any group item(s) to which the elementary item belongs; 
and 

b. The number of character positions allocated when any such group item 
is the object of a REDEFINES clause. The unused character positions are not 
included in the character positions redefined when the elementary item is the 
object of a REDEFINES clause. 

(2) SYNCHRONIZED not followed by either RIGHT or LEFT specifies 
elementary item is to be positioned between natural boundaries in such 
to effect efficient utilization of the elementary data item. The 
positioning is, however, determined by the implementor. 

that the 
a way as 
specific 

(3) SYNCHRONIZED LEFT specifies that the elementary item is to be positioned 
such that it will begin at the left character position of the natural boundary 
in which the elementary item is placed. 

(4) SYNCHRONIZED RIGHT specifies that the elementary item is to be 
positioned such that it will terminate on the right character position of the 
natural boundary in which the elementary item is placed. 

(5) Whenever a SYNCHRONIZED item is referenced in the source program, the 
original size of the item, as shown in the PICTURE clause, the USAGE cla.use, and 
the SIGN clause, is used in determining any action that depends on size, such as 
justification, truncation, or overflow. 

VI-44 



Nucleus - SYNCHRONIZED 

(6) If the data description of an item contains an operational sign and any 
form of the SYNCHRONIZED clause, the sign of the item appears in the sign 
position explicitly or implicitly specified by the SIGN clause. 

(7) When the SYNCHRONIZED clause is specified in a data description entry of 
a data item that also contains an OCCURS clause, or in a data description entry 
of a data item subordinate to a data description entry that contains an OCCURS 
clause, then: 

table 
Sb). 

a. Each occurrence of the data item is SYNCHRONIZED. 

b. Any implicit FILLER generated for other data items within that same 
are generated for each occurrence of those data items (see general rule 

(8) This clause is hardware dependent and in addition to rules 1 through 7, 
the implementor must specify how elementary items associated with this clause 
are handled regarding: 

a. The format on the external media of records or groups containing 
elementary items whose data description contains the SYNCHRONIZED clause. 

b. Any necessary generation of implicit FILLER, if the elementary item 
immediately preceding an item containing the SYNCHRONIZED clause does not 
terminate at an appropriate natural boundary. Such automatically generated 
FILLER positions are included in: 

1) The size of any group item to which the FILLER-item belongs; and 

2) The number of character positions allocated when the group item 
of which the FILLER item is a part appears as the object of a REDEFINES clause. 

(9) An implementor may, at his option, specify automatic alignment for any 
internal data formats except, within a record, data items whose usage is 
DISPLAY. However, the record itself may be synchronized. 

(10) Any rules for synchronization of the records of a data file, as this 
affects the synchronization of elementary items, will be specified by the 
implementor. 

VI-45 



Nucleus - USAGE 

5.14 THE USAGE CLAUSE 

5 .14 .1 Function 

The USAGE clause specifies the format of a data item in the computer storage. 

5.14.2 General Format 

[USAGE IS] 

BINARY 
COMPUTATIONAL 
COMP 
DISPLAY 
INDEX 
PACKED-DECIMAL 

5.14.3 Syntax Rules 

(1) The USAGE clause ma be written in any data description entry !with al 
level-number other than 66 or 88. 

(2) If the USAGE clause is written in the data description entry for a group 
item, it may also be written in the data description entry for any subordinate 
elementary item or group item, but the same usage must be specified in both 
entries. 

(3) An elementary data item whose declaration contains, or an elementary 
data item subordinate to a group item whose declaration contains, a USAGE clause 
specifying BINARY, COMPUTATIONAL, or PACKED-DECIMAL must be declared with a 
PICTURE character-string that describes a numeric item, i.e., a PICTURE 
character-string that contains only the symbols 'P', 'S', 'V', and '9'. (See 
page VI-29, The PICTURE Clause.) 

(4) COMP is an abbreviation for COMPUTATIONAL. 

(5) An 
statement, 
header, or 

index data item can be referenced explicitly 
a relation condition, the USING phrase 

the USING phrase of a CALL statement. 

only in a SEARCH or SET 
of a Procedure Division 

(6) The BLANK WHEN ZERO, JUSTIFIED, PICTURE, SYNCHRONIZED, and VALUE clauses 
must not be specified for data items whose i.isage is INDEX. 

(7) An elementary data item described with a USAGE IS INDEX clause must not 
be a conditional variable. 

5.14.4 General Rules 

(1) If the USAGE clause is written at a group level, it applies to each 
elementary item in the group. 

(2) The USAGE clause specifies the manner in which a data item is 
represented in the storage of a computer. It does not affect the use of the 
data item, although the specifications for some statements in the Procedure 
Division may restrict the USAGE clause of the operands referred to. The USAGE 
clause may affect the radix or type of character representation of the item. 

VI-46 



Nucleus - USAGE 

(3) The USAGE IS BINARY clause specifies that a radix of 2 is used to 
represent a numeric item in the storage of the computer. Each implementor 
specifies the precise effect of the USAGE IS BINARY clause upon the alignment 
and representation of the data item in the storage of the computer, including 
the representation of any algebraic sign. Sufficient computer storage must be 
allocated by the implementor to contain the maximum range of values implied by 
the associated decimal PICTURE character-string. 

(4) The USAGE IS COMPUTATIONAL clause specifies that a radix and format 
specified by the implementor is used to represent a numeric item in the storage 
of the computer. Each implementor specifies the precise effect of the USAGE IS 
COMPUTATIONAL clause upon the alignment and representation of the data item in 
the storage of the computer, including the representation of any algebraic sign, 
and upon the range of values that the data item can hold. 

(5) The USAGE IS DISPLAY clause (whether specified explicitly or implicitly) 
specifies that a standard data format is used to represent a data item in the 
storage of the computer, and that the data item is aligned on a character 
boundary. 

(6) If the USAGE clause is not specified for an elementary item, or for any 
group to which the item belongs, the usage is implicitly DISPLAY. 

(7) The USAGE IS INDEX clause specifies that a data item is an index data 
item and contains a value which must correspond to an occurrence number of a 
table element. Each implementor specifies the precise effect of the USAGE IS 
INDEX clause upon the alignment and representation of the data item in the 
storage of the computer, including the actual value assigned for any given 
occurrence number. 

(8) When a MOVE statement or an input-output s~atement that references a 
group item that contains an index data item is executed, no conversion of the 
index data item takes place. 

(9) The USAGE IS PACKED-DECIMAL clause specifies that a radix of 10 is used 
to represent a numeric item in the storage of the computer. Furthermore, this 
clause specifies that each digit position must occupy the minimum possible 
configuration in computer storage. Each implementor specifies the precise 
effect of the USAGE IS PACKED-DECIMAL clause upon the alignment and 
representation of the data item in the storage of the computer,- including the 
representation of any algebraic sign. Sufficient computer storage must be 
allocated by the implementor to contain the maximum ~ange of values implied by 
the associated decimal PICTURE character-string. 

VI-47 



Nucleus - VALUE 

5.15 THE VALUE CLAUSE 

5.15.1 Function 

The VALUE clause defines the 
Work in Section data 
condition-names. 

5.15.2 General Format 

Format 1: 

VALUE IS literal-1 

Format 2: 

{ VALUE IS , { 1 . l 2 VALUES ARE f itera -

5.15.3 Syntax Rules 

initial 
items, 

value 
and 

of Communication Section 
the values associated 

(1) The words THROUGH and THRU are equivalent. 

and 
withl 

(2) A eigned numeric literal must have associated with it a signed numeric 
PICTURE character-string. 

(3) All numeric literals in a VALUE clause of an item must have a value 
which is within the range of values indicated by the PICTURE clause, and must 
not have a value which would require truncation of nonzero digits. Nonnumeric 
literals in a VALUE clause of an item must not exceed the size indicated by the 
PICTURE clause. 

(4) The VALUE clause must not be specified in any entry which is part of the 
description or redefinition of an external data record. The VALUE clause may e 
specified for condition-name entries associated with such data description 
entries. 

5.15.4 General Rules 

(1) The VALUE clause must not conflict with other clauses in the data 
description of the item or in the data description within the hierarchy of the 
item. The following rules apply: 

a. If the category of the item is numeric, all literals in the VALUE 
clause must be numeric. If the literal defines the value of a working storage 
item, the literal is aligned in the data item according to the standard 
alignment rules (see page IV-16, Standard Alignment Rules). 

b. If the category of the item is alphabetic, alphanumeric, 
alphanumeric edited, or numeric edited, all literals in the VALUE clause must be 
nonnumeric literals. The literal is aligned in the data item as if the data 
item had been described as alphanumeric (see page IV-16, Standard Alignment 
Rules). Editing characters in the PICTURE clause are included in determining 

VI-48 



Nucleus - VALUE 

the size of the data item but have no 
(see page VI-29, The PICTURE Clause). 
must be specified in an edited form. 

effect on initialization of the data item 
Therefore, the VALUE for an edited item 

c. Initialization is not affected by any BLANK WHEN ZERO or JUSTIFIED 
clause that may be specified. 

5.15.5 Condition-Name Rules 

(1) In a condition-name entry, the VALUE clause is required. The VALUE 
clause and the condition-name itself are the only two clauses permitted in the 
entry. The characteristics of a condition-name are implicitly those of its 
conditional variable. 

(2) Format 2 can be used only in connection with condition-names (see 
IV-7, Condition-Name). Wherever the THRU phrase is used, literal-2 must be 
than literal-3. 

5.15.6 Data Description Entries Other Than Condition-Names 

page 
less 

(1) Rules governing the use of the VALUE clause differ with the respective 
sections of the Data Division: 

a. In level l, the VALUE clause cannot be used in the File Section. 
the File Section, the VALUE clause may be used only in condition-name entries; 
therefore, the initial value of the data items in the File Section is undefined. 

b. In level 1, the VALUE clause cannot be used in the Linka e Section. 
In the Linkage Section, the VALUE clause may be used only in condition-name 
entries • 

.-~~~-=c~.'---'In the Working-Storage Section and Communication Section, the VALUE 
clause must be used in condition-name entries. VALUE clauses in the 
Working-Storage and Communication Sections of a program take effect only when 
the program is placed into its initial state. If the VALUE clause is used in 
the description of the data item, the data item is initialized to the 9efined 
value. If the VALUE clause is not associated with a data item, the initial 
value of that data item is undefined. 

(2) The VALUE clause must not be stated in a data description entry that 
contains a REDEFINES clause, or in an entry that is subordinate to an entry 
containing a REDEFINES clause. T is rule does not apply to condition-name 
!entries. 

(3) If the VALUE clause is used in an entry at the group level, the 
must be a figurative constant or a nonnumeric literal, and the group 
initialized without consideration for the individual elementary or group 
contained within this group. The VALUE clause cannot be stated 
subordinate levels within this group. 

literal 
area is 

items 
at the 

(4) The 
subordinate 
(other than 

VALUE clause must not be specified for a group item containing items 
to it with descriptions including JUSTIFIED, SYNCHRONIZED or USAGE 

USAGE IS DISPLAY). 

Vl-49 



Nucleus - VALUE 

(5) If a VALUE clause is specified in a data description entry of a data 
item which is associated with a variable occurrence data item, the 
initialization of the data item behaves as if the value of the data item 
referenced by the DEPENDING ON phrase in the OCCURS clause specified for the 
variable occurrence data item is set to the maximum number of occurrences as 
specified by that OCCURS clause. A data item is associated with a variable 
occurrence data item in any of the following cases: 

a. It is a group data item which conta{ns a variable occurrence data 
item. 

b. It is a variable occurrence data item. 

c. It is a data item that is subordinate to a variable occurrence data 
item. 

If a VALUE clause is associated with the data 
DEPENDING ON phrase, that value is considered to be 
after the variable occurrence data item is initialized. 
OCCURS Clause.) 

item referenced by a 
placed in the data item 
(See page VI-26, The 

(6) A format 1 VALUE clause specified in a data description entry that 
contains an OCCURS clause or in a entry that is subordinate to an OCCURS clause 
causes every occurrence of the associated data item to be assigned the specified 
value. 

VI-50 



Nucleus - Arithmetic Expressions 

6. PROCEDURE DIVISION IN THE NUCLEUS MODULE 

6.1 GENERAL DESCRIPTION 

The Procedure Division contains procedures to be executed by the object 
program (see page IV-35). The Procedure Division is optional in a COBOL source 
program. 

The general formats of the Procedure Division in the Nucleus are shown below. 

Format 1: 

PROCEDURE DIVISION. 

{section-name SECTION. 

[paragraph-name. 

[sentence] ••• ] ••• } .•• 

Format 2: 

PROCEDURE DIVISION. 

{paragraph-name. 

[sentence] • • . } .•• 

6.2 ARITHMETIC EXPRESSIONS 

6.2.1 Definition of an Arithmetic Expression 

An arithmetic expression can be an identifier of a numeric elementary item, a 
numeric literal, the figurative constant ZERO (ZEROS, ZEROES), such identifiers, 
figurative constants, and literals separated by arithmetic operators, two 
arithmetic expressions separated by an arithmetic operator, or an arithmetic 
expression enclosed in parentheses. Any arithmetic expression may be preceded 
by a unary operator. The permissible combinations of identifiers, numeric 
literals, arithmetic operators, and parentheses are given i~ table 1, 
Combination of Symbols in Arithmetic Expressions, on page VI-53. 

Those identifiers and literals appearing in 
represent either numeric elementary items 
arithmetic may be performed. 

VI-51 

an 
or: 

arithmetic expression 
numeric literals on 

must 
which 



Nucleus - Arithmetic Expressions 

6.2.2 Arithmetic Operators 

There are five binary arithmetic operators and two unary arithmetic operators 
that may be used in arithmetic expressions. They are represented by specific 
characters that must be preceded by a space and followed by a space. 

Binary Arithmetic Operator 

+ 

* 
I 
** 

Unary Arithmetic Operator 

+ 

6.2.3 Formation and Evaluation Rules 

Meaning 

Addition 
Subtraction 
Multiplication 
Division 
Exponentiation 

Meaning 

The effect of multiplication 
by the numeric literal +l 

The effect of multiplication 
by the numeric literal -1 

(1) Parentheses may be used in arithmetic expressions to specify the order 
in which elements are to be evaluated. Expressions within parentheses are 
evaluated first, and, within nested parentheses, evaluation proceeds from the 
least inclusive set to the most inclusive set. When parentheses are not used, 
or parenthesized expressions are at the same level of inclusiveness, the 
following hierarchical order of execution is implied: 

1st - Unary plus and minus 
2nd - Exponentiation 
3rd - Multiplication and division 
4th - Addition and subtraction 

(2) Parentheses are used either to eliminate ambiguities in logic where 
consecutive operations of the same hierarchical level appear, or to modify the 
normal hierarchical sequence of execution in expressions where it is necessary 
to have some deviation from the normal precedence. When the sequence of 
execution is not specified by parentheses, the order of execution of consecutive 
operations of the same hierarchical level is from left to right. 

VI-52 



Nucleus - Arithmetic Expressions 

(3) The ways in which identifiers, literals, operators, and parentheses may 
e combined in an arithmetic expression are summarized in table 1, where: 

a. The letter 'P' indicates a permissible pair of symbols. 

b. The character '-' indicates an invalid pair. 

SECOND SYMBOL 

FIRST SYMBOL Identifier or + - * I ** Unary + or - ( ) 
Literal 

Identifier or Literal - p - - p 

+ - * I ** p - p p -

Unary + or - p - - p -

( p - p p -

) - p - - p 

Table 1. Combination of Symbols in Arithmetic Expressions 

(4) An arithmetic expression may only begin with the symbol '(', '+', '-' 
an identifier, or a literal and may only end with a ')',an identifier, or a 
literal. There must be a one-to-one correspondence between left and right 
parentheses of an arithmetic expression such that each left parenthesis is to 
the left of its corresponding right parenthesis. If the first operator in an 
arithmetic expression is a unary operator, it must be immediately preceded by a 
left parenthesis if that arithmetic expression immediately follows an identifier 
or another arithmetic expression. 

(5) The following rules apply to evaluation of exponentiation in an 
arithmetic expression: 

a. If the value of an expression to be raised 
exponent must have a value greater than zero. 
condition exists. (See page VI-67, The ON SIZE ERROR 

to a power is 
Otherwise, the 
Phrase.) 

zero, the 
size error 

b. If the evaluation yields both a positive and a negative real number, 
the value returned as the result is the positive number. 

c. If no real number exists as the result of the evaluation, the size 
error condition exists. 

(6) Arithmetic expressions allow the user to combine arithmetic operations 
without the restrictions on composite of operands and/or receiving data items. 
Each implementor will indicate the techniques used in handling arithmetic 
expressions. 

Vl-53 



Nucleus - Conditional Expressions 

6.3 CONDITIONAL EXPRESSIONS 

Conditional expressions identify conditions that are tested to enable the 
object program to select between alternate paths of control depending upon the 
truth value of the condition. A conditional expression has a truth value 
represented by either true or false. Conditional expressions are specified in 
the IEVALUATE,I IF, PERFORM, land SEARCHlstatements. There are two categories of 
conditions associated with conditional expressions: simple conditionslandl 

!complex conditions.I Each may be enclosed within any number of paired 
parentheses, in which case its category is not changed. 

6.3.1 Simple Conditions 

The simple conditions are the relation, class,lcondition-name,I switch-status, 
land signJ conditions. A simple condition has a truth value of true or false. 
The inclusion in parentheses of simple conditions does not change the simple 
condition truth value. 

6.3.1.l Relation Condition 

A relation condition causes a comparison of two operands, each of which may 
be the data item referenced by an identifier, a literal, jthe value resulting! 

lfrom an arithmetic expression,lor an index-name. A relation condition has a 
truth value of true if the relation exists between the operands. Comparison of 
two numeric operands is permitted regardless of the formats specified in their 
respective USAGE clauses. However, for all other comparisons, the'operands must 
have the same usage. If either of the operands is a group item, the nonnumeric 
comparison rules apply. 

The format for a relation condition is as follows: 

IS [NOT] GREATER THAN 
IS [NOT] > 

{ 
iden t if ier-1 } 
literal-1 
larithmetic-expression-11 
index-name-1 

IS [NOT] LESS THAN 
IS [NOT] < 
IS [NOT] EQUAL TO 
IS [NOT] 
IS GREATER THAN OR EQUAL TO 
IS >= 

literal-2 {i
identifier-2 } 

IS LESS THAN OR EQUAL TO 
IS <= 

The first operand (identifier-1, literal-I, I arithmetic-expression-I, I or 
index-name-I) is called the subject of the condition; the second operand 
(identifier-2, literal-2, farithmetic-expression-2,/ or index-name-2) is called 
the object of the condition. The relation condition must contain at least one 
reference to a variable. 

The relational operators specify the type of comparison 
relation condition. A space must precede and follow 
comprising the relational operator. When used, NOT and the 
relation character are one relational operator that defines 

VI-54 

to be made in a 
each reserved word 
next key word or 

the comparison to be 



Nucleus - Relation Condition 

executed for truth value. The following relational operators 
IS NOT GREATER THAN is equivalent to IS LESS THAN OR EQUAL TO; 
is equivalent to IS GREATER THAN OR EQUAL TO. 

are equivalent: 
IS NOT LESS THAN 

Meaning Relational Operator 

Greater than or not greater than IS [NOT] GREATER THAN 
IS [NOT] > 

Less than or not less than IS [NOT] LESS THAN 
IS [NOT] < 

Equal to or not equal to IS [NOT] EQUAL TO 
IS [NOT] = 

Greater than or equal to IS GREATER THAN OR EQUAL TO 
IS >= 

Less than or equal to IS LESS THAN QR EQ.llAL TO 
IS <= 

6.3.1.1.1 Comparison of Numeric Operands 

For operands whose class is numeric, a comparison is made with respect to the 
algebraic value of the operands. The length of the literallor arithmetic! 
lexpressionjoperands, in terms of the number of digits represented, 1s not 
significant. Zero is considered a unique value regardless of the sign. 

Comparison of these operands is permitted regardless of the manner in which 
their usage is described. Unsigned numeric operands are considered positive for 
purposes of comparison. 

6.3.1.1.2 Comparison of Nonnumeric Operands 

For nonnumeric operands, or one numeric and one nonnumeric operand, a 
comparison is made with respect to a specified collating sequence of characters. 
(See page VI-11, The OBJECT-COMPUTER Paragraph.) If one of the operands is 
specified as numeric, it must be an integer data item or an integer literal and: 

(1) If the nonnumeric operand is an elementary data item or a nonnumer1c 
literal, the numeric operand is treated as though it were moved to an elementary 
alphanumeric data item of the same size as the numeric data item (in terms of 
standard data format characters), and the content of this alphanumeric data it.em 
were then compared to the nonnumeric operand. (See page VI-103, The MOVE 
Statement, and page VI-31, The PICTURE Character 'P'.) 

(2) If the nonnumeric operand is a group item, the numeric operand is 
treated as though it were moved to a group item of the same size as the numeric 
data item (in terms of standard data format characters), and the content of this 
group item were then compared to tbe nonnumeric operand. See page VI-103, The 
MOVE Statement, and page VI-31, The PICTURE Character 'P' .) 

(3) A noninteger numeric operand cannot be compared to a nonnumeric operand. 

VI-55 



Nucleus - Class Condition 

The size of an operand is the total number of standard data format characters 
in the operand. Numeric and nonnumeric operands may be compared only when their 
usage is the same. 

There are two cases to consider: operands of equal size and operands of 
unequal size. 

(1) Operands of equal size. If the operands are of equal size, comparison 
effectively proceeds by comparing characters in corresponding character 
positions starting from the high order end and continuing until either a pair of 
unequal characters is encountered or the low order end of the operand is 
reached, whichever comes first. The operands are determined to be equal if all 
pairs of corresponding characters are equal. 

The first encountered pair of unequal characters is compared to 
determine their relative position in the collating sequence. The operand that 
contains the character that is positioned higher in the collating sequence is 
considered to be the greater operand. 

(2) Operands of unequal size. If the operands are of unequal size, 
comparison proceeds as though the shorter operand were extended on the right by 
sufficient spaces to make the operands of equal size. 

6.3.1.1.3 Comparisons Involving Index-Names and/or Index Data Items 

Relation bests may be made only between: 

(1) Two index-names. The result is the same as if the corresponding 
occurrence numbers were compared. 

(2) An index-name and a data item (other than an index data item) or 
literal. The occurrence number that corresponds to the value of the index-name 
is compared to the data item or literal. 

(3) An index data item and an index-name or another index data item. The 
actual values are compared without conversion. 

6.3.1.2 Class Condition 

The class condition determines whether an operand is numeric, alphabetic, 
alphabetic-lower, alphabetic-upper, or contains only the characters in the set 
of characters specified by the CLASS clause as defined in the SPECIAL-NAMES 
paragraph of the Environment Division. The class of an operand is determined as 
follows: 

(1) An operand is numeric if it consists entirely of the characters 0, 1, 2, 
3, , 9, with or without an operational sign. 

(2) An operand is alphabetic if it consists entirely of the uppercase 
letters A, B, C, , Z, space, or the lowercase letters a, b, c, ••• , z, 
space, or any combination of the uppercase and lowercase letters and spaces. 

(3) An operand is alphabetic-lower if it consists entirely of the lowercase 
letters a, b, c, ••• , z, and space. 

VI-56 



Nucleus - Class Condition 

(4) An operand is alphabetic-upper if it consists entirely of the uppercase 
letters A, B, C, .•• , Z, and space. 

(5) An operand is in 
the characters listed 
paragraph. 

conformance to class-name-1, if it consists entirely of 
in the definition of class-name-1 in the SPECIAL-NAMES 

The general format of the class condition is: 

l~~~iTIC l 
iden~ifier-1 IS [NOT] ALPHABETIC-LOWER 

ALPHABETIC-UPPER 
class-name-1 

The usage of the operand being tested must be described as DISPLAY. 

When used, NOT and the next key word specify one class condition that defines 
the class test to be executed for truth value; e.g., NOT NUMERIC is a truth test 
for determining that an operand is nonnumer1c. 

The NUMERIC test cannot be used with an item whose data description describes 
the item as alphabetic or as a group item composed of elementary items whose 
data description indicates the presence of operational sign(s). If the data 
description of the item being tested does not indicate the presence of an 
operational sign, the item being tested is determined to be numeric only if the 
content is numeric and an operational sign is not present. If the data 
description of the item does indicate the presence of an operational sign, the 
item being tested is determined to be numeric only if the content is numeric and 
a valid operational sign is present. Valid operational signs for data items 
described with the SIGN IS SEPARATE clause are the standard data format 
characters + and -; the implementor defines what constitutes valid sign(s) for 
data items not described with the SIGN IS SEPARATE clause. 

The ALPHABETIC test cannot be 
describes the item as numeric. 
the data item referenced by 
characters. 

used with an item 
The result of the test 
identifier-! consists 

whose data description 
is true if the content of 
entirely of alphabetic 

The ALPHABETIC-LOWER test cannot be used with an item whose data description 
describes the item as numeric. The result of the test is true if the content of 
the data item referenced by identifier-! consists entirely of the lowercase 
alphabetic characters a through z and space. 

The ALPHABETIC-UPPER test cannot be used with an item whose data description 
describes the item as numeric. The result of the test is true if the content of 
the data item referenced by identifier-! consists entirely of the uppercase 
alphabetic characters A through Z and space. 

The class-name-'l test must not be used with an 'item whose data description 
describes the item as numeric. 

VI-57 



Nucleus - Condition-Name Condition 

6.3.1.3 Condition-Name Condition (Conditional Variable) 

In a condition-name 
~hether or not its 
condition-name-I. The 
follows: 

condition, a conditional variable is tested to determine 
value is equal to one of the values associated with 
general format for the condition-name condition is as 

condition-name-! 

If condition-name-I is associated with a range or ranges of values, then the 
conditional variable is tested to determine whether or not its value falls in 
this range, including the end values. 

/ 

The rules for comparing a conditional variable with a condition-name value 
are the same as those specified for relation conditions. 

The result of the test is true if one of the values corresponding to 
condition-name-I equals the value of its associated conditional variable. 

6.3.1.4 Switch-Status Condition 

A switch-status condition determines the on or off status of an 
implementor-defined switch. The implementor-name and the on or off value 
associated with the condition must be named in the SPECIAL-NAMES paragraph of 
the Environment Division. The general format for the switch-status condition is 
as follows: 

condition-name-! 

The result of the test is true if the switch is set to the specified position 
corresponding to condition-name-I. 

6.3.1.5 Sign Condition 

The sign condition determines whether or 
arithmetic expression is less than, greater 
format for a sign condition is as follows: 

not the algebraic value of an 
than, or equal to zero. The general 

{
POSITIVE} 

arithmetic-expression-1 IS [NO.I.] NEGATIVE 
ZERO 

When used, NOT and the next key word specify one sign condition that defines 
the algebraic test to be executed for truth value; e.g., NOT ZERO is a truth 
test for a nonzero (positive or negative) value. An operand is positive, if its 
value is greater than zero, negative if its value is less than zero, and zero if 
its value is equal to zero. Arithmetic-expression-I must contain at least one 
reference to a variable. 

VI-58 



Nucleus - Complex Conditions 

6.3.2 Complex Conditions 

A complex condition is formed by combining simple conditions and/or complex 
conditions with logical connectors (logical operators 'AND' and 'OR') or by 
negating these conditions with logical negation (the logical operator 'NOT'). 
The truth value of a complex condition, whether parenthesized or not, is that 
truth value which results from the interaction of the stated logical operators 
on its constituent conditions. 

The logical operators and their meanings are: 

Logical Operator 

AND 

OR 

NOT 

Meaning 

Logical conjunction; the truth value is true if 
both of the conjoined conditions are true; false if 
one or both of the conjoined conditions is false. 

Logical inclusive OR; the truth value is true if one 
or both of the included conditions is true; false if 
both included conditions are false. 

Logical negation or reversal of truth value; the 
truth value is true if the condition is false; false 
if the condition is true. 

The logical operators must be preceded by a space and followed by a space. 

6.3.2.1 Negated Conditions 

A condition is negated by use of the logical operator 'NOT' which reverses 
the truth value of the condition to which it is applied. Thus, the truth value 
of a negated condition is true if and only if the truth value of the condition 
being negated is false; the truth value of a negated condition is false if and 
only if the truth value of the condition being negated is true. Including a 
negated condition in parentheses does not change its truth value. 

The general format for a negated condition is: 

NOT condition-I 

6.3.2.2 Combined Conditions 

A combined condition results from connecting conditions with one of the 
logical operators '-AND' or 'OR'. The general format of a combined condition is: 

d. . 1 {fAND} con 1t1on- . tOR condition-2} ••• 

VI-59 



Nucleus - Abbreviated Combined Relation Conditions 

.J.2.j Precedence of Logical Operators and the Use of Parentheses 

In the absence of the relevant parentheses in a complex condition, the 
precedence (i.e., binding power) of the logical operators determines the 
conditions to which the specified logical operators apply and implies the 
equivalent parentheses. The order of precedence is 'NOT', 'AND', 'OR'. Thus, 
specifying 'condition-1 OR NOT condition-2 AND condition-3' implies and is 
equivalent to specifying 'condition-I OR ((NOT condition-2) AND condition-3) 1 • 

Where parentheses are used in a complex condition, they determine the binding 
of conditions to logical operators. Parentheses can, therefore, be used to 
depart from the normal precedence of logical operators as specified above. 
Thus, the example complex condition above can be given a different meaning by 
specifying it as '(condition-1 OR (NOT condition-2)) AND condition-3'. (See 
page VI-61, Order of Evaluation of Conditions.) 

Table 1 indicates the ways in which conditions and logical operators may be 
combined and parenthesized. There must be a one-to-one correspondence between 
left and right parentheses such that each left parenthesis is to the left of its 
corresponding right parenthesis. 

In a In a left-to-right sequence of elements: 

Given the conditional expression: Element, when not Element, when not 
following May element May element first, may be last, may be 
element: be first? be last? immediately immediately 

preceded by only: followed by only: 

simple-condition Yes Yes OR, NOT, AND, ( OR, AND, ) 

OR or AND No No simple-condition, ) simple-condition, NOT, ( 

NOT Yes No OR, AND, ( simple-condition, ( 

( Yes No OR, NOT, AND, ( simple-condition, NOT, ( 

) No Yes simple-condition, ) OR, AND, ) 

Table 1: Combinations of Conditions, Logical Operators, and Parentheses 

Thus, the 
permissible; 
permissible. 

element pair 'OR NOT' is permissible while the pair 'NOT OR' is not 
the pair 'NOT (' is permissible while the pair 'NOT NOT' is not 

6.3.3 Abbreviated Combined Relation Conditions 

When simple or negated simple relation conditions are combined with logical 
connectives in a consecutive sequence such that a succeeding relation condition 
contains a subject or subject and relational operator that is common with the 
preceding relation condition, and no parentheses are used within such a 
consecutive sequence, any relation condition except the first may be abbreviated 
by: 

(1) The omission of the subject of the relation condition, or 

VI-60 



Nucleus - Order of Evaluation of Conditions 

(2) The omission of the subject and relational operator of the relation 
condition. 

The format for an abbreviated combined relation condition is: 

relation-condition { { :U } [NOT] [relational -opera tor] object } 

Within a sequence of relation conditions both of the above forms of 
abbreviation may be used. The effect of using such abbreviations is as if the 
last preceding stated subject were inserted in place of the omitted subject, and 
the last stated relational operator were inserted in place of the omitted 
relational operator. The result of such implied insertion must comply with the 
rules of table 1 on page VI-60. This insertion of an omitted subject and/or 
relational operator terminates once a complete simple condition is encountered 
within a complex condition. 

The interpretation applied to the use of the word NOT in an abbreviated 
combined relation condition is as follows: 

(1) If the word immediately following NOT is GREATER, ), LESS, <, EQUAL, 
then the NOT participates as part of the relational operator; otherwise, 

(2) The NOT is interpreted as a logical operator and, therefore, the implied 
insertion of subject or relational operator results in a negated relation 
condition. 

Some examples of abbreviated combined and negated 
conditions and expanded equivalents follow. 

combined relation 

Abbreviated Combined 
Relation Condition 

a > b AND NOT < c OR d 

a NOT EQUAL b OR c 

NOT a = b OR c 

NOT (a GREATER b OR < c) 

NOT (a NOT > b AND c AND NOT d) 

6.3.4 Order of Evaluation of Conditions 

Expanded Equivalent 

((a> b) AND (a NOT< c)) OR (a NOT < d) 

(a NOT EQUAL b) OR (a NOT EQUAL c) 

(NOT (a = b)) OR (a = c) 

NOT ((a GREATER b) OR (a < c)) 

NOT ((((a NOT> b) AND (a NOT) c)) 
AND (NOT (a NOT > d)))) 

Parentheses, both explicit and implicit, denote a level of inclusiveness 
within a complex condition. Two or more conditions connected by only the 
logical operator 'AND' or only the logical operator 'OR' at the same level of 
inclusiveness establish a hierarchical level within a complex condition. Thus, 
an entire complex condition may be considered to be a nested structure of 
hierarchical levels with the entire complex condition itself bein the most 

VI-61 



Nucleus - Order of Evaluation of Conditions 

inclusive hierarchical level. Within this context, the evaluation of the 
conditions within an entire complex condition begins at the left of the entire 
complex condition and proceeds according to the following rule recursively 
applied where necessary: 

(1) The constituent connected conditions within a hierarchical level are 
evaluated in order from left to right, and evaluation of that hierarchical level 
terminates as soon as a truth value for it· is determined regardless of whether 
all the constituent connected conditions within that hierarchical level have 
been evaluated. 

Values are established for arithmetic expressions if and when the conditions 
containing them are evaluated. Similarly, negated conditions are evaluated if 
and when it is necessary to evaluate the complex condition that they represent. 
(See page VI-52, Formation and Evaluation Rules.) 

Application of the above rules is shown in figures 1 through 4 located on the 
following pages. These figures are not intended to dictate implementation. 

VI-62 



Evaluate 
condition-1 

condition-1 
false 

no 

Evaluate 
condition-2 

condition-2 
false 

,no 

Evaluate 
condition-n 

condition-n 
false 

no 

.truth value 
is true 

yes 

yes 

yes 

Nucleus - Complex Conditions 

truth value 
is false 

Figure 1: Evaluation of the hierarchical level 
condition-I AND condition-2 AND ••• condition-n 

• VI-63 



Nucleus - Complex Conditions 

Evaluate 
condition-1 

condition-1 
true 

no 

Evaluate 
condition-2 

condition-2 
true 

1no 
I 

Evaluate 
condition-n 

condition-n 
true 

no 

truth value 
is false 

yes 

yes 

yes 

truth value 
is true 

Figure 2: Evaluation of the hierarchical level 
condition-! OR condition-2 OR ••• condition-n 

VI-64 • 



truth value 
is false 

yes 

yes 

Evaluate 
condition-1 

condition-1 
true 

no 

Evaluate 
condition-2 

condition-2 
false 

no 

Evaluate 
condition-3 

condition-3 
false 

no 

Nucleus - Complex Conditions 

yes 

truth value 
is true 

Figure 3: Evaluation of condition-I OR condition-2 AND condition-3 

VI-65 



Nucleu's - Complex Conditions 

Evaluate 
condition-1 

condition-1 
true 

no 

Evaluate 
NOT condition-2 

NOT condition-2 
true 

no 

truth value 
is false 

yes 

yes 
1--~~~~~~~~~~~~~~~~----t 

-yes 

yes 

Figure 4: Evaluation of 

Evaluate 
condition-3 

condition-3 
false 

no 

Evaluate 
condition-4 

condition-4 
false 

no 

truth value 
is true 

(condition-I OR NOT condition-2) AND condition-3 AND condition-4 

VI-66 



Nucleus - Options and Rules for Statements 

6.4 COMMON OPTIONS AND RULES FOR STATEMENTS 

Paragraph 6.4 and its subordinate paragraphs provide a description of the 
common options and conditions that pertain to or appear in several different 
statements. 

6.4.1 The ROUNDED Phrase 

If, after decimal point alignment, the number of places in the fractions of 
the result of an arithmetic operation is greater than the number of places 
provided for the fraction of the resultant identifier, truncation is relative to 
the size provided for the resultant identifier. When rounding is requested, the 
absolute value of the resultant identifier is increased by one in the low-order 
position whenever the most significant digit of the excess is greater than or 
equal to five. 

When the low-order integer positions in a resultant identifier are 
represented by the character P in the PICTURE for that resultant identifier, 
rounding or truncation occurs relative to the rightmost integer position for 
which storage is allocated. 

6.4.2 The ON SIZE ERROR Phrase 

The size error condition occurs under the following circumstances: 

(1) Violation 
terminates the 
(See page VI-52, 

of the rules for evaluation of exponentiation always 
arithmetic operation and always causes a size error condition. 
Formation and Evaluation Rules.) 

(2) Division by zero always terminates the arithmetic operation and always 
causes a size error condition. 

(3) If, after radix point alignment, the absolute value of a result exceeds 
the largest value that can be contained in the associated resultant identifier, 
a size error condition exists. In the case where the USAGE IS BINARY clause is 
specified for the resultant identifier, the largest value that can be contained 
in the resultant identifier is the maximum value implied by the associated 
decimal PICTURE character-string. If the ROUNDED phrase is specified, rounding 
takes place before checking for size error. 

If the ON SIZE ERROR phrase is specified and a size error condition exists 
after the execution of the arithmetic operations specified by an arithmetic 
statement, the values of the affected resultant identifiers remain unchanged 
fro~ the values they had before execution of the arithmetic statement. The 
values of resultant identifiers for which no size error condition exists are the 
same as they would have been if the size error condition had not resulted for 
any of the resultant iderttifiers. After completion of the arithmetic 
operations, control is transferred to the imperative-statement specified in the 
ON SIZE ERROR phrase and execution continues according to the rules for each 
statement specified in that imperative-statement. If a procedure branching or 
conditional statement which causes explicit transfer of control is executed, 
control is transferred in accordance with the rules for that statement; 
otherwise, upon completion of the execution of the imperative-statement 
specified in the ON SIZE ERROR phrase, control is transferred to the end of the 
arithmetic statement and the NOT ON SIZE ERROR phrase, if specified, is ignored. 

VI-67 



Nucleus - Options and Rules for Statements 

If the ON SIZE ERROR phrase is not specified and a size error condition 
exists after the execution of the arithmetic operations specified by an 
arithmetic statement, the values of the affected resultant identifiers are 
undefined. The values of resultant identifiers for which no size error 
condition exists are the same as they would have been if the size error 
condition had not resulted for any of the resultant identifiers. After 
completion of the arithmetic operations, control is transferred to the end of 
the arithmetic statement and the NOT ON SIZE ERROR phrase, if specified, is 
ignored. 

If the size error condition does not exist after the execution of the 
arithmetic operations specified by an arithmetic statement, the ON SIZE ERROR 
phrase, if specified, is ignored and control is transferred to the end of the 
arithmetic statement or to the imperative-statement specified in the NOT ON SIZE 
ERROR phrase if it is specified. In the latter case, execution continues 
according to the rules for each statement specified in that 
imperative-statement. If a procedure branching or conditional statement which 
causes explicit transfer of control is executed, control is transferred in 
accordance with the rules for that statement; otherwise, upon completion of the 
execution of the imperative-statement specified in the NOT ON SIZE ERROR phrase, 
control is transferred to the end of the arithmetic statement. 

For the ADD statement with the CORRESPONDING phrase and the SUBTRACT 
statement with the CORRESPONDING phrase, if any of the individual operations 
produces a size error condition, imperative-statement-1 in the ON SIZE ERROR 
phrase is nbt executed until all of the individual additions or subtractions are 
completed. 

6.4.3 The CORRESPONDING Phrase 

For the purpose of this discussion, Dl and D2 must each be identifiers that 
refer to group items. A pair of data items, one from Dl and one from D2 
correspond if the following conditions exist: 

(1) A data item in Dl and a data item in D2 are not designated by the key 
word FILLER and have the same data-name and the same qualifiers up to, but not 
including, Dl and D2. 

(2) At least one of the data items is an elementary data item and the 
resulting move is legal according to the move rules in the case of a MOVE 
statement with the CORRESPONDING phrase; and both of the data items are 
elementary numeric data items in the case of the ADD statement with the 
CORRESPONDING phrase or the SUBTRACT statement with the CORRESPONDING phrase. 

(3) The description of Dl and D2 must not contain level-number 66, 77, or 88 
or the USAGE IS INDEX clause. 

(4) A data item that is subordinate to Dl or D2 and contains a REDEFINES, 
RENAMES, OCCURS, or USAGE IS INDEX clause is ignored, as well as those data 
items subordinate to the data item that contains the REDEFINES, OCCURS, or USAGE 
IS INDEX clause. Neither Dl nor D2 may be referenced modified. 

(5) The name of each data item which satisfies the above conditions must be 
unique after application of the implied qualifiers. 

--~~--~~~~~~~~~~~~~~~-' 

VI-68 



Nucleus - Options and Rules for Statements 

6.4.4 The Arithmetic Statements 

The arithmetic statements are the ADD, !COMPUTE,! DIVIDE, MULTIPLY, and 
SUBTRACT statements. They have several common features. 

(1) The data descriptions of the operands need not be the same; any 
necessary conversion and decimal point alignment is supplied throughout the 
calculation. 

(2) The maximum size of each operand is 18 decimal digits. The composite of 
operands, which is a hypothetical data item resulting from the superimposition 
of specified operands in a statement aligned on their decimal points (see page 
VI-73, The ADD Statement; page VI-80, The DIVIDE Statement; page VI-107, The 
MULTIPLY Statement; and page VI-134, The SUBTRACT Statement), must not contain 
more than 18 decimal digits. 

6.4.5 Overlapping Operands 

When a sending and a receiving item in any statement share a part or all of 
their storage areas, yet are not defined by the same data description entry, the 
result of the execution of such a statement is undefined. In addition, the 
results are undefined for some statements in which sending and receiving items 
are defined by the same data description entry. These-cases are addressed in 
the general rules associated with those statements. 

6.4.6 Multiple Results in Arithmetic Statements 

The ADD, I COMPUTE, I DIVIDE, 
results. Such statements 

MULTIPLY, and SUBTRACT statements .may have multiple 
behave as though they had been written in the 

following way: 

(1) A statement whose execution accesses all data items that are part of the 
initial evaluation of the statement, performs any necessary arithmetic or 
combining of these data items and stores the result of this operation in a 
temporary location. See the individual statements for the rules indicating 
which items are part of the initial evaluation. 

(2) A sequence of statements whose execution transfers or combines the 
in this temporary location with each single resulting data item. 
statements are considered to be written in the same left-to-right sequence 
the multiple results are specified. 

VI-69 

value 
These 
that 



Nucleus - Options and Rules for Statements 

The result of the statement 

ADD a, b, c, TO c, d (c), e 

is equivalent to 

ADD a, b, c GIVING temp 
ADD temp TO c 
ADD temp TO d (c) 
ADD temp TO e 

and the result of the statement 

MULTIPLY a (i) BY i, a (i) 

1s equivalent to 

MOVE a (i) TO temp 
MULTIPLY temp BY i 
MULTIPLY temp BY a (i) 

1n both cases, 'temp' is an intermediate result item provided by the 
implementor. 

6.4.7 Incompatible Data 

Except for the class condition, when the content of a data item is referenced 
in the Procedure Division and the content of that data item is not compatible 
with the class specified for that data item by its PICTURE clause, then the 
result of such a reference is undefined. (See page VI-56, Class Condition.) 

VI-70 



Nucleus - ACCEPT 

6.5 THE ACCEPT STATEMENT 

6.5.1 Function 

The ACCEPT statement causes low volume data to be made available to the 
specified data item. 

6.5.2 General Format 

Format 1: 

ACCEPT identifier-1 Ir~ mnemonic-name-l]j 

Format 2: 

ACCEPT identif ier-2 FROM 

6.5.3 Syntax Rules 

{
DATE } DAY 
DAY-OF-WEEK 
TIME 

(1) Mnemonic-name-! in format 1 must also be specified in the SPECIAL-NAMES 
paragraph of the Environment Division and must be associated with a hardware 
device. 

6.5.4 General Rules 

FORMAT 1: 

(1) The ACCEPT statement causes the transfer of 
device. This data replaces the content of the 
identifier-I. Any conversion of data required between 
the data item referenced by identifier-! is defined by 

data from the hardware 
data item referenced by 
the hardware device and 
the implementor. 

(2) The implementor will define, for each hardware device, the size of a 
data transfer. 

(3) If a hardware device is capable of transferring data of the same size as 
the receiving data item, the transferred data is stored in the receiving data 
item. 

(4) If a hardware device is not capable of transferring data of the same 
size as the receiving data item, then: 

.--~~,--,--a~·~_I_f~th-,-e~s_i~z~e--'o_f----=-=-='--:._:_=--=--'-'-=-.::..::J"'-..:.:...:::.-=-=-"-=--=.:::..J(or of the portion of the 
receivin data item not et current! transferred data) exceeds the 
size of the transferred data, the transferred is stored ali ned to the left 

,....,.-~~~~~~~~~~~~~~~~~--""'--~~~~~~~-. 

in the receivin data item (or the portion the receivin data item not et 
~~~~~~~~~~~~~~~~~~~~ 

occupied), and additional data is requested. In level 1, only one transfer of
data is provided.

VI-71

Nucleus - ACCEPT

b. If the size of the transferred data exceeds the size of the
data item (or the ortion of the receivin data item not et occu ied

...-~~~--""--~~~~~-'

b transferred data) only the leftmost characters of the transferred data are
stored in the receiving data item l<or in the portion remaining).! The remaining
characters of the transferred data which do not fit into the receiving data item
are ignored.

(5) !If the FROM option is not given, the device that the implementor
specifies as standard is used.

FORMAT 2:

(6) The ACCEPT statement causes the information requested to be transferred
to the data item specified by identifier-2 according to the rules for the MOVE
statement. (See page VI-103, The MOVE Statement.) DATE, DAY, DAY-OF-WEEK, and
TIME are conceptual data items and, therefore, are not described in the COBOL
program.

(7) DATE is composed of the data elements year of century, month of year,
and day of month. The sequence of the data element codes is from high order to
low order (left to right), year of century, month of year, and day of month.
Therefore, December 25, 1986, would be expressed as 861225. DATE, when accessed
by a COBOL program, behaves as if it had been described in a COBOL program as an
unsigned elementary numeric integer data item six digits in length.

(8) DAY is composed of the data elements year of century and day of year.
The sequence of the data element codes is from high order to low order (left to
right) year of century, day of year. Therefore, December 25, 1986, would be
expressed as 86359. DAY, when accessed by a COBOL program, behaves as if it had
been described in a COBOL program as an unsigned elementary numeric integer data
item five digits in length.

(9) TIME is composed of the data elements hours, minutes, seconds, and
hundredths of a second. TIME is based on elapsed time after midnight on a
24-hour clock basis - thus, 2:41 p. m. would be expressed as 14410000. TIME
when accessed by a COBOL program behaves as if it had been described in a COBOL
program as an unsigned elementary numeric integer data item eight digits in
length. The minimum value of TIME is 00000000; the maximum value of TIME is
23595999. If the system does not have the facility to provide fractional parts
of a second, the value zero is returned for those parts which cannot be
determined.

(10) DAY-OF-WEEK is composed of a single data element whose content
represents the day of the week. DAY-OF-WEEK, when accessed by a COBOL program,
behaves as if it had been described in a COBOL program as an unsigned elementary
numeric integer data item one digit in length. In DAY-OF-WEEK, the value 1
represents Monday, 2 represents Tuesday, ••• , 7 represents Sunday.

VI-72

Nucleus - ADD

6.6 THE ADD STATEMENT

6.6.1 Function

The ADD statement causes two or more numeric operands to be sunnned and the
result to be stored.

6.6.2 General Format

Format 1:

ADD {identif ier-1}
-- literal-1 TO {identifier-2 [ROUNDED)} •..

[ON SIZE ERROR imperative-statement-1)

[NOT ON SIZE ERROR imperative-statement-2)

[END-ADD]

Format 2:

ADD {i~entifier-1}
-- literal-1

TO { identifier-2}
literal-2

GIVING {identifier-3 [ROUNDED)} ...

[ON SIZE ERROR imperative-statement-1)

[NOT ON SIZE ERROR imperative-statement-2]

[END-ADD]

Format 3:

ADD {CORRESPONDING} identifier-1 TO identifier-2 [ROUNDED]
- CORR

[ON SIZE ERROR imperative-statement-1]

[NOT ON SIZE ERROR imperative-statement-2]

[END-ADD]

6.6.3 Syntax Rules

(1) In formats 1 and 2, each identifier must refer to an elementary numeric
item, except that in format 2 each identifier following the word GIVING must
refer to either an elementary numeric item or an elementary numeric edited item.

I In format 3, each identifier must refer to a group item.I

VI-73

Nucleus - ADD

(2) Each literal must be a numeric literal.

(3) The composite of operands must not contain more than 18 digits (see page
VI-69, The Arithmetic Statements).

a. In format 1 the composite of operands is determined by using all o.f
the operands in a given statement.

b. In format 2 the composite of operands is determined by using all of
the operands in a given statement excluding the data items that follow the word
GIVING.

c. In format 3 the composite of operands is determined separately for
each pair of corresponding data items.

(4) CORR is an abbreviation for CORRESPONDING.

6.6.4 General Rules

(1) If format 1 is used, the values of the operands preceding the word TO
are added together and the sum is stored in a temporary data 'item. The value in
this temporary data item is added to the value of the data item referenced by
identifier-2, storing the result into the data item referenced by identifier-2,
and repeating this process for each successive occurrence of identifier-2 in the
left-to-right order in which identifier-2 is specified.

(2) If format 2 is used, the values
GIVING are added together, then the
data item referenced by identifier-3.

of the operands preceding the word
sum is stored as the new content of each

(3) If format 3 is used, data items in identifier-1 are added to and stored
in corresponding data items in identifier-2.

(4) The compiler insures that enough places are carried so as not to lose
any significant digits during execution.

(5) Additional rules and explanations relative to this statement are given
under the appropriate paragraphs. (See page IV-40, Scope of Statements; page
VI-67, The ROUNDED Phrase; page VI-67, The ON SIZE ERROR Phrase; page VI-69, The
Arithmetic Statements; page VI-69, Overlapping Operands; page VI-69, Multiple
Results in Arithmetic Statements; jpage VI-68, The CORRESPONDING Phrase.) j

VI-74

Nucleus - ALTER

6.7 THE ALTER STATEMENT

6.7.1 Function

The ALTER statement modifies a predetermined sequence of operations. The
ALTER statement is an obsolete element in Standard COBOL because it is to be
deleted from the next revision of Standard COBOL.

6.7.2 General Format

ALTER {procedure-name-I TO [PROCEED TO] procedure-name-2} G:::!::!J

6.7.3 Syntax Rules

(1) Procedure-name-! is the name of a paragraph that contains a single
sentence consisting of a GO TO statement without the DEPENDING phrase.

(2) Procedure-name-2 is the name of a paragraph or section in the Procedure
Division.

6.7.4 General Rules

(1) Execution of the ALTER statement modifies the GO TO statement in the
paragraph named procedure-name-I so that subsequent executions of the modified
GO TO statement cause transfer of control to procedure-name-2. Modified GO TO
statements in independent segments may, under some circumstances, be returned to
their initial states (see page XVI-2, Independent Segments).

(2) A GO TO statement in a section whose segment-number is greater than or
equal to 50 must not be referred to by an ALTER statement in a section with a
different segment-number.

All other uses of the ALTER statement are valid and are
if procedure-name-I is in an overlayable fixed segment.
Segmentation Module.)

VI-75

performed even
(See page XVI-1,

Nucleus - COMPUTE

6.8 THE COMPUTE STATEMENT

6.8.1 Function

The COMPUTE statement assigns to one or more data items the value of an
arithmetic expression.

6.8.2 General Format

COMPUTE {identifier-1 [ROUNDED]} ... arithmetic-expression-1

[ON SIZE ERROR imperative-statement-1]

[NOT ON SIZE ERROR imperative-statement-2]

[END-COMPUTE]

6.8.3 Syntax Rules

(1) Identifier-! must reference either an elementary numeric item or an
elementary .numeric edited item.

6.8.4 General Rules

(1) An arithmetic expression consisting of a single identifier
provides a method of setting the value of the data item
identifier-I equal to the literal or the value of the data item

or literal
referenced by

referenced by
the single identifier.

(2) If more than one identifier is specified for the result of the
operation, that is preceding = the value of the arithmetic expression is
developed, and then this value is stored as the new value of each of the data
items referenced by identifier-I.

(3) The COMPUTE statement allows the user to combine arithmetic operations
without the restrictions on composite of operands and/or receiving data items
imposed by the arithmetic statements ADD, SUBTRACT, MULTIPLY, and DIVIDE.

Thus, each implementor will indicate the techniques used in handling
arithmetic expressions.

(4) Additional rules and explanations relative to this statement are given
under the appropriate paragraphs. (See page IV-40, Scope of Statements; page
VI-67, The ROUNDED Phrase; page VI-67, The ON SIZE ERROR Phrase; page VI-69, The
Arithmetic Statements; page VI-69, Overlapping Operands; page VI-69, Multiple
Results in Arithmetic Statements.)

VI-76

6.9 THE CONTINUE STATEMENT

6.9.l Function

The CONTINUE statement is a no operation statement.
executable statement is present.

6.9.2 General Format

CONTINUE

6.9.3 Syntax Rules

Nucleus - CONTINUE

It indicates that no

(1) The CONTINUE statement may be used anywhere a conditional statement or
an imperative-statement may be used.

6.9.4 General Rules

(1) The CONTINUE statement has no effect on the execution of the program.

VI-77

Nucleus - DISPLAY

6.10 THE DISPLAY STATEMENT

6.10.1 Function

The DISPLAY statement causes low volume data to be transfer·red to an
appropriate hardware device.

6.10.2 General Format

DISPLAY { identifier-1}
literal-1 I [UPON mnemonic-name-1] [WITH NO ADVANCING]

6.10.3 Syntax Rules

(1) Mnemonic-name-I is associated with a hardware device in the
SPECIAL-NAMES paragraph in the Environment Division.

·~~~~~~~~~~~~~~~~~~~~~~~~~~~-'

(2) If literal-I is numeric, then it must be an unsigned integer.

6.10.4 General Rules

(I) The DISPLAY statement causes the content of
transferred to the hardware device in the order listed.
required between literal-I or the data item referenced by
hardware device is defined by the implementor.

each operand to be
Any conversion of data
identifier-I and the

(2) The implementor will define, for each hardware device, the size of a
data transfer.

(3) If a figurative constant is specified as one of the operands, only a
single occurrence of the figurative constant is displayed.

(4) If the hardware device is capable of receiving data of the same size as
the data item being transferred, then the data item is transferred.

(5) If a hardware device is not capable of receiving data of the same size
as the data item being transferred, then one of the following applies:

a. If the size of the data item being transferred exceeds the size of
the data that the hardware device is capable of receiving in a single transfer,
the data beginning with the leftmost character is stored aligned to the left in
the receivin hardware device and the remaining data is then transferred
accordin to eneral rules 4 and 5 until all the data has been transferred. In
level 1, only one transfer of data is provided.

b. If the size of the data item that the hardware device is capable of
receiving exceeds the size of the data being transferred, the transferred data
is stored aligned to the left in the receiving hardware device.

(6) When a DISPLAY statement contains more than one operand, the size of the
sending item is the sum of the sizes associated with the operands, and the
values of the operands are transferred in the sequence in which the operands are
encountered without modifying the positioning of the hardware device between the
successive operands:

VI-78

Nucleus - DISPLAY

(7) !If the UPON phrase is not specified,jthe implementor's standard display
device is used.

(8) If the WITH NO ADVANCING phrase is specified, then the positioning of
the hardware device will not be reset to the next line or changed in any other
way following the display of the last operand. If the hardware device is
capable of positioning to a specific character position, it will remain
positioned at the character position immediately following the last character of
the last operand displayed. If the hardware device is not capable of
positioning to a specific character position, only the vertical position, if
applicable, is affected. This may cause overprinting if the hardware device
supports overprinting.

(9) [If the WITH NO ADVANCING
operand has been transferred
hardware device will be reset to
device.

phrase is not specified,! then after the
to the hardware device, the positioning of
the leftmost position of the next line of

last
the
the

(10) If vertical positioning is not applicable on the hardware device, the
operating system will ignore the vertical positioning specified or implied.

VI-79

Nucleus - DIVIDE

6.11 THE DIVIDE STATEMENT

6 .11.1 Function

The DIVIDE statement divides one numeric data item into others and sets the
values of data items equal to the quotientland remainder.I

6.11.2 General Format

Format 1:

DIVIDE { identifier-1}
literal-1

{identifier-2 [ROUNDED]} ...

[ON SIZE ERROR imperative-statement-1]

[NOT ON SIZE ERROR imperative-statement-2]

[END..;.. DIVIDE]

Format 2:

DIVIDE {identifier-1} INTO
literal-1 -- {identifier-2}

literal-2

GIVING {identifier-3 [ROUNDED]} ..•

[ON SIZE ERROR imperative-statement-1]

(NOT ON SIZE ERROR imperative-statement-2]

[END-DIVIDE]

Format 3:

DIVIDE { identifier-1} BY {identifier-2}
literal-1 ~ literal-2

GIVING {identifier-3 [ROUNDED]} ...

[ON SIZE ERROR imperative-statement-1]

[NOT ON SIZE ERROR imperative-statement-2]

[END-DIVIDE]

VI-80

Nucleus - DIVIDE

Format 4:

DIVIDE { identifier-1}
literal-1

REMAINDER identifier-4

{ identifier-2}
literal-2

[ON SIZE ERROR imperative-statement-I]

[NOT ON SIZE ERROR imperative-statement-2]

[END-DIV IDE]

Format 5:

GIVING identifier-3 [ROUNDED]

DIVIDE { identifier-I}
literal-I {il·~entiflie2r-2 } GIVING identifier-3 [ROUNDED]

1tera -

REMAINDER identifier-4

[ON s..IZE. ERROR imperative-statement-I]

[lliIT ON SIZE ERROR imperative-statement-2)

[END-DIVIDE]

6.11.3 Syntax Rules

(I) Each identifier must refer to an elementary numeric item, except that
any identifier associated with the GIVINGlor REMAINDERlphrase must refer to
either an elementary numeric item or an elementary numeric edited item.

(2) Each literal must be a numeric literal.

(3) The composite of operands, which is the hypothetical data item resulting
from the superimposition of all receiving data items (except the REMAINDER data
item) of a given statement aligned on their decimal points, mus.t not contain
more than I8 digits.

6.11.4 General Rules

(I) When format I is used, literal-I or the value of the data item
referenced by identifier-I is stored in a temporary data item. The value in
this temporary data item is then divided into the value of the data item
referenced by identifier-2. The value of the dividend (the value of the data
item referenced by identifier-2) is replaced by this quotient; similarly, the
temporary data item is divided into each successive occurrence of identifier-2
in the left-to-right order in which identifier-2 is specified.

(2) When format 2 is used, literal-I or the value of the data item
referenced by identifier-I is divided into 1i teral-2 or the value of the data
item referenced by identifier-2 and the result is stored in each data item
referenced by identifier-3.

VI-81

Nucleus - DIVIDE

(3) When format 3 is
referenced by identifier-I
referenced by identifier-2
by identifier-3.

used, literal-I or the value of the data item
is divided by literal-2 or the value of the data item
and the result is stored in each data item referenced

(4) When format 4 is used, literal-I or the value of the data item
referenced by identifier-I is divided into literal-2 or the value of the data
item referenced by identifier-2 and the result is stored in the data item
referenced by identifier-3. The remainder is then calculated and the result is
stored in the data item referenced by identifier-4. If identifier-4 is
subscripted, the subscript is evaluated immediately before the remainder is
stored in the data item referenced by identifier-4.

(5) When format 5 is
referenced by identifier-I
referenced by identifier-2
format 4 above.

used, literal-I or the
is divided by literal-2 or
and the division operation

value of the data item
the value of the data item
continues as specified for

(6) Formats 4 and 5 are used when a remainder from the division operation is
desired, namely identifier-4. The remainder in COBOL is defined as the result
of subtracting the product of the quotient (identifier-3) and the divisor from
the dividend. If identifier-3 is defined as a numeric edited item, the quotient
used to calculate the remainder is an intermediate field which contains the
unedited quotient. If ROUNDED is specified, the quotient used to calculate the
remainder is an intermediate field which contains the quotient of the DIVIDE
statement, truncated rather than rounded. This intermediate field is defined as
a numeric field which contains the same number of digits, the same decimal point
location, and the same presence or absence of a sign as the quotient
(ident i fier-3).

(7) In formats 4 and 5, the accuracy of the REMAINDER data item
(identifier-4) is defined by the calculation described above. Appropriate
decimal alignment and truncation (not rounding) will be performed for the value
of the data item referenced by identifier-4, as needed.

(8) When the ON SIZE ERROR phrase is used in formats 4 and 5, the following
rules pertain:

a. If the size error occurs on the quotient, no remainder calculation
is meaningful. Thus, the contents of the data items referenced by both
identifier-3 and identifier-4 will remain unchanged.

b. If the size error occurs in the remainder, the content of the data
item referenced by identifier-4 remains unchanged. However, as with other
instances of multiple results of arithmetic statements, the user will have to do
his own analysis to recognize which situation has actually occurred.

(9) Additional rules and explanations relative to this statement are given
under the appropriate paragraphs. (See page IV-40, Scope of Statements; page
VI-67, The ROUNDED Phrase; page VI-67, The ON SIZE ERROR Phrase; page VI-69, The
Arithmetic Statements; page VI-69, Overlapping Operands; page VI-69, Multiple
Results in Arithmetic Statements. See also general rules 6 through 8 for a
presentation of the ROUNDED phrase and the ON SIZE ERROR phrase as they pertain
to formats 4 and 5.)

VI-82

Nucleus - ENTER

6.12 THE ENTER STATEMENT

6.12.l Function

The ENTER statement provides a means of allowing the use of more than one
language in the same program. The ENTER statement is an obsolete element in
Standard COBOL because it is to be deleted from the next revision of Standard
COBOL.

6.12.2 General Format

ENTER language-name-! [routine-name-1].

6.12.3 Syntax Rules

(1) Language-name-I may
implementor specifies may
specified by the implementor.

refer to any programming
be entered through COBOL.

language which
Language -name-I

the
1S

(2) Routine-name-I is a COBOL word and it may be referred to only in an
ENTER sentence.

(3) The sentence ENTER COBOL must follow the last other-language statement
in order to indicate to the compiler where a return to COBOL source language
takes place.

6.12.4 General Rules

(1) The other language statements are executed in the object program as if
they had been compiled into the object program following the ENTER statement.

(2) Implementors will specify, for their compilers, all details on how the
other language(s) are to be written.

(3) If the statements in the entered language cannot be written in-line,
routine-name-I is given to identify the portion of the other language coding to
be executed at this point in the procedure sequence. If the other language
statements can be written in-line, routine-name-I is not used.

VI-83

Nucleus - EVALUATE

6.13 THE EVALUATE STATEMENT

6.13 .1 Function

The EVALUATE statement describes a multi-branch, multi-join structure. It
can cause multiple conditions to be evaluated. The subsequent action of the
object program depends on the results of these evaluations.

6.13.2 General Format

{
identifier-2}] literal-2
expression-2
TRUE
FALSE

{{WHEN

.MIT
condition-1
IfilIB
FALSE

[NOT] . THROUGH literal-3 literal-4 {

1

{identifier-3 } [} {identifier-4 }]}

arithmetic-expression-1 {TIIBQ arithmetic-expression-2

[ALSO

ANY
condition-2
TRUE
FALSE

[NOT] { {
identifier-5 }
literal-5
arithmetic-expression-3

imperative-statement-1}

[WHEN OTHER imperative-statement-2]

[END-EVALUATE]

6.13.3 Syntax Rules

[{THROUGH} {identifier-6 }]}
THRU literal-6
-- arithmetic-expression-4

(1) The operands or the words TRUE and FALSE which appear before the first
WHEN phrase of the EVALUATE statement are referred to individually as selection
subjects and collectively, for all those specified, as the set of selection
subjects.

(2) The operands or the words TRUE, FALSE, and ANY which appear
phrase of an EVALUATE statement are referred to individually
objects and collectively, for all those specified in a single WHEN
the set of selection objects.

(3) The words THROUGH and THRU are equivalent.

in a WHEN
as selection

phrase, as

(4) Two operands connected by a THROUGH phrase must be of the same class.
The two operands thus connected constitute a single selection object.

VI-84

Nucleus - EVALUATE

(5) The number of selection objects within each set of selection objects
must be equal to the number of selection subjects.

(6) Each selection object within a set of selection objects must correspond
to the selection subject having the same ordinal position within the set of
selection subjects according to the following rules:

a.
selection
operand in

Identifiers, literals, or arithmet{c expressions appearing within a
object must be valid operands for comparison to the corresponding
the set of selection subjects. (See page VI-54, Relation Condition.)

b. Condition-I, condition-2, or the words TRUE or FALSE appearing as a
selection object must correspond to a conditional expression or the words TRUE
or FALSE in the set of selection subjects.

c. The word ANY may correspond to a selection subject of any type.

6.13.4 General Rules

(I) The execution of the EVALUATE statement operates as if each selection
subject and selection object were evaluated and assigned a numeric or nonnumeric
value, a range of numeric or nonnumeric values, or a truth value. These values
are determined as follows:

a. Any selection subject specified by identifier-I, identifier-2, and
any selection object specified by identifier-3, identifier-5, without either the
NOT or the THROUGH phrases, are assigned the value and class of the data item
referenced by the identifier.

b. Any selection subject specified by literal-1, literal-2, and any
selection object specified by literal-3, literal-5, without either the NOT or
the THROUGH phrases, are assigned the value and class of the specified literal.
If literal-3, literal-5, is the figurative constant ZERO, it is assigned the
class of the corresponding selection subject.

c. Any selection subject in which expression-I, expression-2, is
specified as an arithmetic expression and any selection object, without either
the NOT or the THROUGH phrases, in which arithmetic-expression-I,
arithmetic-expression-3, is specified are assigned a numeric value according to
the rules for evaluating an arithmetic expression. (See page VI-5I, Arithmetic
Expressions.)

d. Any selection subject in which expression-I, expression-2, is
specified as a conditional expression and any selection object in which
condition-I, condition-2, is specified are assigned a tr.uth value according to
the rules for evaluating conditional expressions. (See page VI-54, Conditional
Expressions.)

e. Any selection subject or any selection object specified by the words
TRUE or FALSE is assigned a truth value. The truth value 'true' is assigned to
those items specified with the word TRUE, and the truth value 'false' is
assigned to those items specified with the word FALSE.

f. Any selection object specified by the word ANY is not further
evaluated.

VI-85

Nucleus - EVALUATE

g. If the THROUGH phrase is specified for a selection object, without
the NOT phrase, the range of values includes all permissible values of the
selection subject that are greater than or equal to the first operand and less
than or equal to the second operand according to the rules for comparison. (See
page VI-54, Relation Condition.)

assigned
equal to
assigned

h. If the NOT phrase is specified for a selection object, the values
to that item are all permissible values of the selection subject not

the value, or not included in the range of values, that would have been
to the item had the NOT phrase not been specified.

(2) The execution of the EVALUATE statement then proceeds as if the values
assigned to the selection subjects and selection objects were compared to
determine if any WHEN phrase satisfies the set of selection subjects. This
comparison proceeds as follows:

a. Each selection object within the set of selection objects for the
first WHEN phrase is compared to the selection subject having the same ordinal
position within the set of selection subjects~ One of the following conditions
must be satisfied if the comparison is to be satisfied:

1) If the items being compared are assigned numeric or
values, or a range of numeric or nonnumeric values, the comparison is
if the value, or one of the range of values, assigned to the selection
equal to the value assigned to the selection subject according to the
comparison. (See page VI-54, Relation Condition.)

nonnumer1c
satisfied
object is
rules for

2) If the items being compared are assigned truth values, the
comparison is satisfied if the items are assigned the identical truth value.

3) If the selection object being compared is specified by the word
ANY, the comparison is always satisfied regardless of the value of the selection
subject.

b. If the above comparison is satisfied for every selection object
within the set of selection objects being compared, the WHEN phrase containing
that set of selection objects is selected as the one satisfying the set of
selection subjects.

c. If the above comparison is not satisfied for one or
object within the set of selection objects being compared, that
objects does not satisfy the set of selection subjects.

more selection
set of selection

d. This procedure is repeated for subsequent sets of selection objects,
in the order of their appearance in the source program, until either a WHEN
phrase satisfying the set of selection subjects is selected or until all sets of
selection objects are exhausted.

(3) After the comparison operation is completed, execution of the EVALUATE
statement proceeds as follows:

a. If a WHEN phrase is selected, execution continues with the first
imperative-statement-I following the selected WHEN phrase.

VI-86

Nucleus - EVALUATE

b. If no WHEN phrase is selected and a WHEN OTHER phrase is specified,
execution continues with imperative-statement-2.

c. The scope of execution of the EVALUATE statement is terminated when
execution reaches the end of imperative-statement-! of the selected WHEN phrase
or the end of imperative-statement-2, or when no WHEN phrase is selected and no
WHEN OTHER phrase is s_E_ecified. (See _E_age IV-40, Scope of Statements.)

VI-87

Nucleus - EXIT

6.14 THE EXIT STATEMENT

6.14.1 Function

The, EXIT statement provides a common end point for a series of procedures.

6.14.2 General Format

6.14.3 Syntax Rules

(1) The EXIT statement must appear only in a sentence by itself and comprise
the only sentence in the paragraph.

6.14.4 General Rules

(1) An EXIT statement serves only to enable the user to assign a
procedure-name to a given point in a program. Such an EXIT statement has no
other effect on the compilation or execution of the program.

VI-88

Nucleus - GO TO

6.I5 THE GO TO STATEMENT

6. I5. I Function

The GO TO statement causes control to be transferred from one part of the
Procedure Division to another. The optionality of procedure-name-I in format 1
of the GO TO statement is an obsolete element in Standard COBOL because it is to
be deleted from the next revision of Standard COBOL.

6.15.2 General Format

Format 1:

GO TO m procedure-name-1 DJ

Format 2:

GO TO {procedure-name-1} DEPENDING ON identif ier-1

6.I5.3 Syntax Rules

(I) Identifier-I must reference a numeric elementary data item which is an
integer.

(2) When a paragraph is referenced by an ALTER statement, that paragraph can
consist only of a paragraph header followed by a format 1 GO TO statement.

(3) A format 1 GO TO statement, without procedure-name-I, can only appear
a single statement paragraph.

(4) If a GO TO statement represented by format 1 appears in a consecutive
sequence of imperative statements within a sentence, it must appear as the last
statement in that sequence.

6.I5.4 General Rules

(1) When a GO TO statement represented by format 1 is executed, control is
transferred to procedure-name-I.

(2) If procedure-name-I is not specified in format 1, an ALTER statement,
referring to this GO TO statement, must be executed prior to the execution of
this GO TO statement.

(3) When a GO TO statement represented by format 2 is executed, control is
transferred to procedure-name-I, etc., depending on the value of identifier-I
being 1, 2, ••• , n. If the value of identifier-I is anything other than the
positive or unsigned integers 1, 2, ••• , n, then no transfer occurs and control
passes to the next statement in the normal sequence for execution.

VI-89

Nucleus - IF

6.16 THE IF STATEMENT

6.16.1 Function

The IF statement causes a condition (see page VI-54, Conditional Expressions)
to be evaluated. The subsequent action of the object program depends on whether
the value of the condition is true or false.

6.16.2 General Format

IF conditi -1 THEN {{statement-l}
~ on NEXT SENTENCE

6.16.3 Syntax Rules

•• ·} { fil&.E {statement-2} ...
ELSE NEXT SENTENCE
END-IF

[END-IF]}

(1) Statement-1 and lor]
a conditional statement A
further description of the rules governing statement-! given
elsewhere. (See page IV-40, Scope of Statements.)

(2) The ELSE NEXT SENTENCE phrase may be omitted if it immediately precedes
the terminal period of the sentence.

(3) If the END-IF phrase is specified, the NEXT SENTENCE phrase must not be
specified.

6.16.4 General Rules

(I) The scope of the IF statement may be terminated by any of the following:

a. An END-IF phrase at the same level of nesting.

b. A separator period.

c. If nested, by an ELSE phrase associated with an IF statement at a
hi her level of nesting.

(See page IV-40, Scope of Statements.)

(2) When an IF statement is executed, the following transfers of control
occur:

a. If the condition is true and statement-1 is specified, control is
transferred to the first statement of statement-I and execution continues
according to the rules for each statement specified in statement-I. If a
procedure branching lor conditional! statement is executed which causes an
explicit transfer of control, control is explicitly transferred in accordance
with the rules of that statement. Upon completion of the execution of
statement-I, the ELSE .phrase, if specified, is ignored and control passes to the
end of the IF statement.

VI-90

Nucleus - IF

b. If the condition is true and the NEXT SENTENCE phrase is specified
instead of statement-!, the ELSE phrase, if specified, is ignored and control
passes to the next executable sentence.

c. If the condition is false and statement-2 is specified, statement-1
or its surrogate NEXT SENTENCE is ignored, control is transferred to the first
statement of statement-2, and execution continues according to the rules for
each statement specified in statement-2. If a procedure branching lorl

!conditional statementf is executed which causes an explicit transfer of control,
control is explicitly transferred in accordance with the rules of that
statement. Upon completion of the execution of statement-2, control passes to
the end of the IF statement.

d. If the condition is false and the ELSE phrase is not specified,
statement-! is ignored and control passes to the end of the IF statement.

e. If the condition is false and the ELSE NEXT SENTENCE phrase is
specified, statement-1 is ignored and control passes to the next executable
sentence.

(3) Statement-! and/or statement-2 may contain an IF statement. In this
case, the IF statement is said to be nested. More detailed rules on nesting are
given in the appropriate paragraph. (See page IV-40, Scope of Statements.)

IF statements within IF statements may be considered as paired IF, ELSE,
and END-IF combinations, proceeding from left to right. Thus, any ELSE or
END-IF encountered is considered to apply to the immediately preceding IF that
has not been already paired with an ELSE or END-IF.

VI-91

Nucleus ~ lNITIALIZE

6.17 THE INITIALIZE STATEMENT

6.17.1 Function

The INITIALIZE statement provides the ability to set selected types of data
fields to predetermined values, e.g., numeric data to zeros or alphanumeric data
to spaces.

6.17.2 General Format

INITIALIZE {identifier-1}

!!ALPHABETIC l ALPHANUMERIC
REPLACING NUMERIC

ALPHANUMERIC~EDITEp
NUMERIC-EDlTED

6.17.3 Syntax Rules

DATA BY {identifier-2} l
literal-1 •·•

(1) Literal-1 and the data item referenced by identifier-2 represent the
sending area; the data item referenced by identifier-1 represents the receiving
area.

(2) Each category stated in the REPLACING phrase must be a permissible
category as a receiving operand in a MOVE statement where the corresponding data
item referenced by identifier-2 or literal-1 is used as the sending operand.
(See page VI-103, The MOVE Statement.)

(3) The same category cannot be repeated in a REPLACING phrase.

(4) The description of the data item referenced by identifier-! or any items
subordinate to identifier-! may not contain the DEPENDING phrase of the OCCURS
clause.

(5) An index data item may not appear as an operand of an INITIALIZE
statement.

(6) The data description entry for the data item referenced by identifier-1
must not contain a RENAMES clause.

6.17.4 General Rules

(1) The key word following the word REPLACING corresponds to a category of
data as defined elsewhere in this document. (See page IV-15, Concept of Classes
of Data.)

(2) Whether identifier-I references an elementary item or a group item, dl
operations are performed as if a series of MOVE statements had been written,
each of which has an elementary item as its receiving field, subject to the
following rul~s:

VI-92

Nucleus - INITIALIZE

If the REPLACING phrase is specified:

a. If identifier-I references a group item, any elementary item within
the data item referenced by identifier-I is initialized only if it belongs to
the category specified in the REPLACING phrase.

b.
initialized
phrase.

If identifier-1 references an
only if it belongs to the

elementary item, that item is
category specified in the REPLACING

This initialization takes place as follows:
identifier-2 or literal-1 acts as the sending
statement to the identified item.

The data item referenced by
operand in an implicit MOVE

All such elementary receiving fields, including all occurrences o·f table
items within the groupt are affected; the only e-xceptions are those fields
sped f ied in general rules 3 and 4.

(3) Index data items and elementary FILLER data items are not affected by
the execution of an INITIALIZE statentent.

(4) Any item that is subordinate to a receiving area identifier and which
contains the REDEFINES clause or any item that is s·ubordinate to such an item is
excluded from this operation. However, a rece1nng area identifie-r may its:elf -
have a REDEFINES clause or be subordinate to a data item with a RED£FINES
cl.tuse.

(5) When the statement is written whhout the REPLACING phrase, data: items
of the categories alphabetic, alphanumeric, and alphanumeric edited are set to
spaces; data if:enui of the categories numeric and numeric edited are set to
zeros. In thh ca;;e,, the operation bas if each a,ffected data item is the
receiving area in an eletnentary MOVE st.!ltement with the indicated source literal
(i.e., spa~e~ or ter~s).

(6) In all cases, the content of the data item referenced by identifier-I is
set to the indicated_ value in the order Oefr to right J of the ap~at'tHtce of
id~ntHie:t-1 in the LNITIAI..IZE statem«n,t. Within this sequence 1 where
idsntifier~! references a g.roup itemt dfected elementary items au initialized
in the se:quence of f:ht'!ir definition within the group.

(7) If identifier-I occupies the same storage area as identifier-2, the
result: or the ex:ecutfon of this statement is undefined 1 eV'en if they are defined
by the same data descriptic>n entry. (See page VI-69, Overlapping Operands.)

V1=93

Nucleus - INSPECT

6.18 THE INSPECT STATEMENT

6.18.1 Function

The INSPECT statement provides the ability to tally or replace occurrences of
single characterslor groups of characters! in a data item.

6.18.2 General Format

Format 1:

INSPECT identif ier-1 TALLYING

{
identifier-2 FOR { CHARACTERS {[{!;~~~E} INITIAL {i~~:~!~=;r-4 }] Q } JE:::J11-""'=-'1

{ ALL } {identifier-3} [{BEFORE} INITIAL {identifier-4}] L.:....:...:.
LEADING literal-1 AFTER literal-2 1:!:!3 E:!3

Format 2:

INSPECT identifier-1 REPLACING

!CHARACTERS BY {identifier-5} [{BEFORE} INITIAL {identifier-4}] l ==== - literal-3 AFTER literal-2 l:!::::::::::J

{~ING} {{identifier-3} BY {identifier-5} f{!lliflIBE.} INITIAL {identifier-4}] } fil::::J
FIRST literal-1 - literal-3 L AFTER literal-2 c:::::::J E!:!J

Format 3:

INSPECT identif ier-1 TALLYING I {CHARACTERS [{BEFORE} INITIAL {i?entifier-4}]r::::zi J l
identifier-2 FOR AFTER literal-2 {

{ ALL } {{i?entifier-3} l-{BEFORE} INITIAL {identifier-4}] 1{ '[!:!3 ~
LEADING literal-! AFTER literal-2 r::::::::Jf ~)

REPLACING .

f
CHARACTERS BY {identifier-5} [{BEFORE} {identifier-4}] l

- literal-3 AFTER INITIAL 1i teral-2 r::::::J

{ filnINg} {{identifier-3} BY {identifier-5} [{BEFORE} {identifier-4 }] } E!::!J
FIRST literal-1 - literal-3 AFTER INITIAL literal-2 r::::::::::::J G

VI-94

Nucleus - INSPECT

Format 4:

{identifier-6} {identifier-7}
INSPECT identifier-! CONVERTING literal-4 TO literal-5

[{BEFORE} INITIAL
AFTER

6.18.3 Syntax Rules

ALL FORMATS:

{identifier-4}]
literal-2

(1) Identifier-I must reference either a group item or any category of
elementary item described, implicitly or explicitly, as USAGE IS DISPLAY.

(2) Identifier-3, .•• , identifier-n must reference an elementary item
described, implicitly or explicitly, as USAGE IS DISPLAY.

(3) Each literal must be a nonnumeric literal and must not be a figurative
constant that begins with the word ALL. If literal-I, literal-2, or literaI-4
is a figurative constant, it refers to an implicit one character data item.

(4) No more than one BEFORE phrase and one AFTER phrase can be specified for
an one ALL, LEADING, CHARACTERS, FIRST, or CONVERTING phrase.

(5) In level 1' literal-I, literal-2, and literal-3, and the data items
referenced by identifier-3, identifier-4, and identifier-5 must be one character
in len th. Except as specifically noted in syntax and general rules, this
restriction on len th does not apply to level 2.

FORMATS I AND 3:

(6) Identifier-2 must reference an elementary numeric data item.

FORMATS 2 AND 3:

(7) The size of literal-3 or the data item referenced by identifier-5 must
be equal to the size of literal-I or the data item referenced by identifier-3.
When a figurative constant is used as literal-3, the size of the figurative
constant is equal to the size of literal-I or the size of the data item
referenced by identifier-3.

(8) When the CHARACTERS phrase is used, literaI-2, literal-3, or the size of
the data item referenced by identifier-4, identifier-5 must be one character in
length.

FORMAT 4:

(9) The size of literal-5 or the data item referenced by identifier-7 must
be equal to the size of literal-4 or the data item referenced by identifier-6.
When a figurative constant is used as literal-5, the size of the figurative
constant is equal to the size of literal-4 or the size of the data item
referenced by identifier-6.

VI-95

Nucleus - INSPECT

(10) The same character must not appear more than once either in literal-4 or
in the data item referenced b identifier-6.

6.18.4 General Rules

ALL FORMATS:

(1) Inspection (which includes the comparison cycle, the establishment of
boundaries for the BEFORE or AFTER phrase, and the mechanism for tallying and/or
replacing). begins at the leftmost character position of the data item referenced
by identifier-I, regardless of its class, and proceeds from left to right to the
rightmost character position as described in general rules 5 through 7.

(2) For use in the INSPECT
referenced by identifier-I,
identifier-6, or identifier-7 will

statement, the content of
identifier-3, identifier-4,
be treated as follows:

the data item
identifier-5,

a. If any of identifier-I, identifier-3, identifier-4, identifier-5,
identifier-6, or identifier-7 reference an alphabetic or alphanumeric data item,
the INSPECT statement treats the contents of each such identifier as a
character-string.

b. If any of identifier-I, identifier-3, identifier-4, identifier-5,
identifier-6, or identifier-7 reference alphanumeric edited, numeric edited, or
unsigned numeric data items, the data item is inspected as though it had been
redefined as alphanumeric (see general rule 2a) and the INSPECT statement had
been written to reference the redefined data item.

c. If any of identifier-I, identifier-3, identifier-4, identifier-5,
identifier-6, or identifier-7 reference a signed numeric data item, the data
item is inspected as though it had been moved to an unsigned numeric data item
with length equal to the length of the signed item excluding any separate sign
position, and then the rules in general rule 2b had been applied. (See page
VI-103, The MOVE Statement.) If identifier-I is a signed numeric item, the
original value of the sign is retained upon completion of the INSPECT statement.

(3) In general rules 5 through 17, all references to literal-I, literal-2,
literal-3, literal-4, or literal-5 apply equally to the content of the data item
referenced by identifier-3, identifier-4, identifier-5, identifier-6, or
identifier-7 respectively.

(4) Subscripting associated with any identifier is evaluated only once as
the first operation in the execution of the INSPECT statement.

FORMATS 1 AND 2:

(5) During inspection of the content of the
identifier-I, each properly matched occurrence
(format 1) or replaced by literal-3 (format 2).

data item referenced by
of literal-I is tallied

(6) The comparison operation to determine the occurrence of literal-I to be
tallied or to be replaced, occurs as follows:

VI-96

Nucleus - INSPECT

a. The operands of the TALLYING or REPLACING phrase are considered in
the order they are specified in the INSPECT statement from left to right. The
first literal-I is compared to an equal number of contiguous characters,
starting with the leftmost character position in the data item referenced by
identifier-I. Literal-I matches that portion of the content of the data item
referenced by identifier-I if they are equal, character for character and:

1) If neither LEADING nor FIRST is specified; or

2) If the LEADING adjective applies to literal-I and literal-I is a
leading occurrence as defined in general rules 10 and 13; or

3) If the FIRST adjective applies to literal-I and literal-I is the
first occurrence as defined in general rule 13.

b. If no match occurs in the comparison of the first literal-I, the
comparison is repeated with each successive literal-I, if any, until either a
match is found or there is no next successive literal-I. When there is no next
successive literal-I, the character position in the data item referenced by
identifier-I immediately to the right of the leftmost character pos1t1on
considered in the last comparison cycle is considered as the leftmost character
position, and the comparison cycle begins again with the first literal-I.

c. Whenever a match occurs, tallying or replacing takes place as
described in general rules 10 and 13. The character position in the data item
referenced by identifier-I immediately to the right of the rightmost character
pos1t1on that participated in the match is now considered to be the leftmost
character position of the data item referenced by identifier-I, and the
comparison cycle starts again with the first literal-I.

d. The comparison operation continues until the rightmost character
position of the data item referenced by identifier-I has participated in a match
or has been considered as the leftmost character position. When this occurs,
inspection is terminated.

e. If the CHARACTERS phrase is specified, an implied one character
operand participates in the cycle described in paragraphs 6a through 6d above as
if it had been specified by literal-I, except that no comparison to the content
of the data item referenced by identifier-I takes place. This implied character
is considered always to match the leftmost character of the content of the data
item referenced by identifier-I participating in the current comparison cycle.

(7) The comparison operation defined in general rule 6 is restricted by the
BEFORE and AFTER phrase as follows:

a. If neither the BEFORE nor AFTER phrase is specified, literal-I or
the implied operand of the CHARACTERS phrase participates in the comparison
operation as described in general rule 6. Literal-I or the implied operand of
the CHARACTERS phrase is first eligible to participate in matching at the
leftmost character position of identifier-I.

b. If the BEFORE phrase is specified, the associated literal-I or the
implied operand of the CHARACTERS phrase participates only in those comparison
cycles which involve that portion of the content of the data item referenced by
identifier-I from its leftmost character position up to, but not including, the

VI-97

Nucleus - INSPECT

first occurrence of literal-2 within the content of the data item referenced by
identifier-I. The position of this first occurrence is determined before the
first cycle of the comparison operation described in general rule 6 is begun.
If, on any comparison cycle, literal-I or the implied operand of the CHARACTERS
phrase is not eligible to participate, it ,is considered not to match the content
of the data item referenced by identifier-I. If there is no occurrence of
literal-2 within the content of the data item referenced by identifier-I, its
associated literal-I or the implied operand of the CHARACTERS phrase
participates in the comparison operation as though the BEFORE phrase had not
been specified.

c. If the AFTER phrase is specified, the associated literal-I or the
implied operand of the CHARACTERS phrase participate only in those comparison
cycles which involve that portion of the content of the data item referenced by
identifier-I from the character position immediately to the right of the
rightmost character position of the first occurrence of literal-2 within the
content of the data item referenced by identifier-I to the rightmost character
position of the data item referenced by identifier-I. This is the character
position at which literal-I or the implied operand of the CHARACTERS phrase is
first eligible to participate in matching. The position of this first
occurrence is determined before the first cycle of the comparison operation
described in general rule 6 is begun. If, on any comparison cycle, literal-I or
the implied operand of the CHARACTERS phrase is not eligible to participate, it
is consider~d not to match the content of the data item referenced by
identifier-i. If there is no occurrence of literal-2 within the content of the
data item r~ferenced by identifier-I, its associated literal-I or the implied
operand of the CHARACTERS phrase is never eligible to participate in the
comparison operation.

FORMAT 1:

(8) The required words ALL and LEADING are adjectives that apply to each
succeeding literal-I until the next adjective appears.

(9) The content of the data item referenced by identifier-2 is not
initialized by the execution of the INSPECT statement.

(IO) The rules for tallying are as follows:

a.
referenced
literal-I

If the ALL phrase is
by identifier-2 is

matched within the
identifier-I.

specified,
incremented

content of

the
by

the

content of
one for each
data item

the data item
occurrence of

referenced by

b. If the LEADING phrase is specified, the content of the data item
referenced by identifier-2 is incremented by one for the first and each
subsequent contiguous occurrence of lit€ral-I matched within the content of the
data item referenced by identifier-I, provided that the leftmost such occurrence
is at the point where comparison began in the first comparison cycle in which
literal-I was eligible to participate.

c. If the CHARACTERS phrase is specified, the content of the data item
referenced by identifier-2 is incremented by one for each character matched, in
the sense of general rule 6e, within the content of the data item referenced by
identifier-I.

VI-98

Nucleus - INSPECT

(11) If identifier-I, identifier-3, or identifier-4 occupies the same storage
area as identifier-2, the result of the execution of this statement is
undefined, even if they are defined by the same data description entry. (See
page VI-69, Overlapping Operands.)

FORMAT 2:

(12) The required words ALL, LEADING, and FIRST are adjectives that apply to
each succeeding BY phrase until the next adjective appears.

(13) The rules for replacement are as follows:

a. When the CHARACTERS phrase is specified, each character matched, in
the sense of general rule 6e, in the content of the data item referenced by
identifier-I is replaced by literal-3.

b. When the adjective ALL is specified, each occurrence of literal-I
matched in the content of the data item referenced by identifier-I is replaced
by literal-3.

c. When the adjective LEADING is specified, the first and each
successive contiguous occurrence of literal-I matched in the content of the data
item referenced by identifier-I is replaced by literal-3, provided that the
leftmost occurrence is at the point where comparison began in the first
comparison cycle in which literal-I was eligible to participate.

d. When the adjective FIRST is specified, the leftmost occurrence of
literal-I matched within the content of the data item referenced by identifier-I
is replaced by literal-3. This rule applies to each successive specification of
the FIRST phrase regardless of the value of literal-I.

(14) If identifier-3, identifier-4, or identifier-5 occupies the same storage
area as identifier~!, the result of the execution of this statement is
undefined, even if they are defined by the same data description entry. (See
page VI-69, Overlapping Operands.)

FORMAT 3:

(15) A format 3 INSPECT statement is interpreted and executed as though two
successive INSPECT statements specifying the same identifier-I had been written
with one statement being a format 1 statement with TALLYING phrases identical to
those specified in the format 3 statement, and the other statement being a
format 2 statement with REPLACING phrases identical to those specified in the
format 3 statement. The general rules given for matching and counting apply to
the format 1 statement and the general rules given for matching and replacing
apply to the format 2 statement. Subscripting associated with any identifier in
the format 2 statement is evaluated only once before · executing the format 1
statement.

FORMAT 4:

(I6)
format
with a

A format 4 INSPECT statement is interpreted and executed as though a
2 INSPECT statement specifying the same identifier-I had been written

series of ALL phrases, one for each character of literal-4. The effect
as if each of these ALL phrases referenced, as literal-I, a single character is

VI-99

Nucleus - INSPECT

of literal-4 and referenced, as literal-3, the corresponding single character of
literal-5. Correspondence between the characters of literal-4 and the
characters of literal-5 is by ordinal position within the data item.

(17) If identifier-4, identifier-6, or identifier-7 occupies the same storage
area as identifier-1, the result of the execution of this statement is
undefined, even if they are defined by the same data description entry. (See
page VI-69, Overlapping Operands.)

6.18.5 Examples

In each of the following examples of the INSPECT
assumed to be zero immediately prior to execution of the
shown for each example, except the last, are the result
successive INSPECT statements shown above them.

Example 1:

INSPECT ITEM TALLYING

COUNT-0 FOR ALL "AB", ALL "D"
COUNT-1 FOR ALL "BC"
COUNT-2 FOR LEADING "EF"
COUNT-3 FOR LEADING "B"
COUNT-4 FOR CHARACTERS;

INSPECT ITEM REPLACING

ALL "AB" BY "XY", "D" BY "X"
ALL "BC" BY "VW"
LEADING "EF" BY "TU"
LEADING "B" BY "S"
FIRST "G" BY "R"
FIRST "G" BY "P"
CHARACTERS BY '.~Z"

Initial Value

statement, COUNT-n is
statement. The results
of executing the two

Final Value
of ITEM COUNT-0 COUNT-1 COUNT-2 COUNT-3 COUNT-4 of ITEM

EFABDBCGABEFGG 3 1 1 0 5 TUXYXVWRXYZZPZ

BAB ABC 2 0 0 1 1 SXYXYZ

BBBC 0 1 0 2 0 ssvw

VI-100

Example 2:

INSPECT ITEM TALLYING

COUNT-0 FOR CHARACTERS
COUNT-I FOR ALL "A";

INSPECT ITEM REPLACING

CHARACTERS BY "Z"
ALL II A" BY "X"

Initial Value
of ITEM COUNT-0

BBB 3

ABA 3

Example 3:

INSPECT ITEM TALLYING

COUNT~l

0

0

COUNT-0 FOR ALL "AB" BEFORE "BC"
COUNT-I FOR LEADING "B" AFTER "D"

Final Value
of ITEM

zzz

zzz

COUNT-2 FOR CHARACTERS AFTER "A" BEFORE "C";

INSPECT ITEM REPLACING

ALL "AB" BY "XY" BEFORE "BC"
LEADING "B" BY "W" AFTER "D"
FIRST "E" BY "V" AFTER "D"
CHARACTERS BY "Z" AFTER "A" BEFORE "C"

Initial Value
of Item COUNT-0 COUNT-I COUNT-2

BBEABDABABBCABEE 3 0 2

ADDDDC 0 0 4

ADDDDA 0 0 5

CD DD DC 0 0 0

BDBBBDB 0 3 0

VI-101

Nucleus - INSPECT

Final Value
of ITEM

BBEXYZXYXYZCABVE

AZZZZC

AZZZZZ

CDDDDC

BDWWWDB

Nucleus - INSPECT

Example 4:

INSPECT ITEM TALLYING

COUNT-0 FOR ALL "AB" AFTER "BA" BEFORE "BC";

INSPECT ITEM REPLACING

ALL "AB" BY "XY" AFTER "BA" BEFORE "BC"

Initial Value Final Value
of ITEM COUNT-0 of ITEM

ABABABABC 1 ABABXYABC

Example 5:

INSPECT ITEM CONVERTING

"ABCD" TO "XYZX" AFTER QUOTE BEFORE "ffo".

The above INSPECT is equivalent to the following INSPECT:

INSPECT ITEM REPLACING

ALL "A" BY "X" AFTER QUOTE BEFORE "ffo"
ALL "B" BY "Y" AFTER QUOTE BEFORE "ffo"
ALL "C" BY "Z" AFTER QUOTE BEFORE "ffo"
ALL "D" BY "X" AFTER QUOTE BEFORE "ffo".

Initial Value Final Value
of ITEM of ITEM

AC"AEBDFBCDffoAB"D AC"XEYXFYZXff AB"D

VI-102

Nucleus - MOVE

6.19 THE MOVE STATEMENT

6 .19 .1 Function

The MOVE statement transfers data, in accordance with the rules of editing,
to one or more data areas.

6.19.2 General Format

Format 1:

MOVE {i~entifier-1} TO {identifier-2} .••
~~ literal-1

Format 2:

MOVE {CORRESPONDING} identifier-1 TO identifier-2
-- CORR

6.19.3 Syntax Rules

(1) Literal-1 or the data item referenced by identifier-! represents the
sending area. The data item referenced by identifier-2 represents the receiving
area,

(2) CORR is an abbreviation for CORRESPONDING.

(3) When the CORRESPONDING phrase is used, all identifiers must be group
items.

(4) An index data item must not appear as an operand of a MOVE statement.

6.19.4 .General Rules

(I) If the CORRESPONDING phrase is used, selected items within identifier-I
are moved to selected items within identifier-2, according to the rules
specified under the appropriate paragraph. (See page VI-68, The CORRESPONDING
Phrase.) The results are the same as if the user had referred to each pair of
corresponding identifiers in separate MOVE statements.

(2) Literal-I or the content of the data item referenced b identifier-I is
moved to the data item referenced b each identifier-2 in the order in which it
is specified. The rules referrin to identifier-2 also a 1 t.o the other
receivin areas. Any length evaluation or subscripting associated with
identifier-2 is evaluated immediately before the data is moved to the respective
data item.

Any subscripting associated with identifier-I is evaluated only once,
immediately before data is moved to the first of the receiving operands. The
length of the data item referenced by identifier-I is evaluated only once,
immediately before the data is moved to the first of the receiving operands.

VI-103

Nucleus - MOVE

The evaluation of the length of identifier-! or
affected by the DEPENDING ON phrase of the OCCURS clause.
OCCURS Clause.)

identifier-2 may be
(See page VI-26, The

The result of the statement

MOVE a (b) TO b, c (b)

is equivalent to:

MOVE a (b) TO temp
MOVE temp TO b
MOVE temp to c (b)

where 'temp' is an intermediate result item provided by the implementor.

(3) Any move in which the receiving operand is an elementary item and the
sending operand is either a literal or an elementary item is an elementary move.
Every elementary item belongs to one of the following categories: numeric,
alphabetic, numeric edited, alphanumeric edited. (See page VI-29, The PICTURE
Clause.) Numeric literals belong to the category numeric and nonnumeric
literals belong to the category alphanumeric. The figurative constant ZERO
(ZEROS, ZEROES), when moved to a numeric or numeric edited item, belongs to the
category numeric. In all other cases, it belongs to the category alphanumeric.
The figurative constant SPACE (SPACES) belongs to the category alphabetic. All
other figurative constants belong to the category alphanumeric.

The following rules apply to an elementary move
categories:

between these

a. The figurative constant SPACE, an alphanumeric edited data item, or
an alphabetic data item must not be moved to a numeric or numeric edited data
item.

b. A numeric literal, the figurative constant ZERO, a numeric data
item, or a numeric edited data item must not be moved to an alphabetic data
item.

c. A noninteger numeric literal or a noninteger numeric data item nu.tst
not be moved to an alphanumeric or dphal"lumeric edited data item.

d. In level 1 a numeric edited data item must not be moved to a numeric
or numeric edited data item.

e. All other elementary moves are legal and are performed according to
the rules given in general rule 4.

(4) Any necessary conversion of data from one form of internal
representation to another takes place during legal elementary moves, along with
any editing specified for, lor de-editing implied by,\ the receiving data item:

a. When an alphanumeric edited or alphanumeric item is a receiving
itemj alignment and arty necessary space filling takes plac:e as prevfously
defined. (See page IV-16, Standard Alignment Rules.) 1f the sending operand is
described as beirtg signed numeric, the operational sign is not moved; if the

V1=104

Nucleus - MOVE

operational sign occupies a separate character position, that character is not
moved and the size of the sending operand is considered to be one less than its
actual size in terms of standard data format characters. (See page VI-42, The
SIGN Clause.) If the sending operand is numeric edited, no de-editing takes
place. If the usage of the sending operand is different from that of the
receiving operand, conversion of the sending operand to the internal
representation of the receiving operand takes place. If the sending operand is
numeric and contains the PICTURE symbol 'P', all digit positions specified with
this symbol are considered to have the value zero and are counted in the size of
the sending operand.

b. When a numeric or numeric edited item is the receiving item,
alignment by decimal point and any necessary zero filling takes place as
previously defined except where. zeros are replaced because of editing
re uirements. (See . a e IV~l6 Standard Ali nment Rules.) When the sending
operand is numeric edited, de-editing is implied to establish the operand's
unedited numeric value, which may be signed; then the unedited numeric value is
moved to the receivin field.

1) When a signed numeric item is the receiving item, the sign of
the sending operand is placed in the receiving item. (See page VI-42, The SIGN
Clause.) Conversion of the representation of the sign takes place as necessary.
If the sending operand is unsigned, a positive sign is generated for the
receiving item.

2) When an unsigned
absolute value of the sending
generated for the receiving item.

numeric
operand

item is the receiving item, the
is moved and no operational sign is

3) When the sending operand is described as being alphanumeric,
data is moved as if the sending operand were described as an unsigned numeric
integer.

c. When a receiving field is described as alphabetic, justification
and any necessary space filling takes place as previously defined. (See page
IV-16, Standard Alignment Rules.)

(5) Any move that is not an elementary move is treated exactly as if it were
an alphanumeric to alphanumeric elementary move, except that there is no
conversion of data from one form of internal representation to another. In such
a move, the receiving area will be filled without consideration for the
individual elementary or group items contained within either the sending or

except as noted in the OCCURS clause. See page VI-26, The

VI-105

Nucleus - MOVE

(6) Data in the following table sunnnarizes the legality of the various types
of MOVE statements. The general rule reference indicates the rule that
prohibits the move or that describes the behavior of a legal move.

CATEGORY OF RECEIVING DATA ITEM
CATEGORY OF

SENDING NUMERIC INTEGER
OPERAND ALPHABETIC ALPHANUMERIC EDITED NUMERIC NONINTEGER

ALPHANUMERIC NUMERIC EDITED

ALPHABETIC Yes/4c Yes/4a No/3a

ALPHANUMERIC Yes/4c Yes/4a Yes/4b

ALPHANUMERIC EDITED Yes/4c Yes/4a No/3a

INTEGER No/3b Yes/4a Yes/4b
NUMERIC

NON INTEGER No/3b No/3c Yes/4b

NUMERIC EDITED No/3b Yes/4a Yes/4b

Table 1: Legality of Types of MOVE Statements

VI-106

Nucleus - MULTIPLY

6.20 THE MULTIPLY STATEMENT

6.20.I Function

The MULTIPLY statement causes numeric data items to be multiplied and sets
the values of data items equal to the results.

6.20.2 General Format

Format 1:

MULTIPLY { identifier-{} BY { 2 [NDED]} identifier- ROU ...
literal-1 ~

[ON SIZE ERROR imperative-statement-1]

[NOT ON SIZE ERROR imperative-statement-2]

[END-MULTIPLY]

Format 2:

MULTIPLY { identifier-1}
literal-1

BY {i?entifier-2}
- literal-2

GIVING {identifier-3 [ROUNDED]} ...

[ON SIZE ERROR imperative-statement-1]

[NOT ON SIZE ERROR imperative-statement-2]

[END-MULTIPLY]

6.20.3 Syntax Rules

(I) Each identifier must refer to a numeric elementary item, except that in
format 2 each identifier following the word GIVING must refer to either an
elementary numeric item or an elementary numeric edited item~

(2) Each literal must be a numeric literal.

(3) The composite of operands, which is the hypothetical data item resulting
from the superimpos1t1on of all rece1v1ng data items of .a given statement
aligned on their decimal points, must not contain more than 18 digits.

6.20.4 General Rules

(1) When format I is used, literal-I or the value of the data item
referenced by identifier-I is stored in a temporary data item. The value in
this temporary data item is then multiplied by the value of the data item
referenced by identifier-2. The value of the multiplier (the value of the data
item referenced by identifier-2) is replaced by this product; similarly, the

VI-107

Nucleus - MULTIPLY

temporary data item is multiplied by each successive occurrence of identifier-2
in the left-to-right order in which identifier-2 is specified.

(2) When format 2 is used, literal-1 or the value
referenced by identifier-! is multiplied by literal-2 or
item referenced by identifier-2 and the result is stored
referenced by each identifier-3.

of the data item
the value of the data
in the data items

(3) Additional rules and explanations relative to this statement are given
under the appropriate paragraphs. (See page IV-40, Scope of Statements; page
VI-67, The ROUNDED Phrase; page VI-67, The ON SIZE ERROR Phrase; page VI-69, The
Arithmetic Statements; page VI-69 Overlapping Operands; page VI-69, Multiple
Results in Arithmetic Statements.)

VI-108

Nucleus - PERFORM

6.21 THE PERFORM STATEMENT

6.21.1 Function

The PERFORM statement is used to transfer control explicitly to one or more
procedures and to return control implicitly whenever execution of the specified
procedure is complete. The PERFORM statement is also used to control execution
of one or more imperative statements which are within the scope of that PERFORM
statement.

6.21.2 General Format

Format 1:

PERFORM [procedure-name-1

[imperative-statement-1

Format 2:

[{THROUGH} l THRU

END-PERFORM]

procedure-name-2 J J

PERFORM [procedure-name-1 [{:UGH} procedure-name-2] J
{~dentifier-l} TIMES [imperative-statement-1 END-PERFORM]

integer-1 ·

Format 3:

PERFORM [procedure-name-1 ~=UGH} procedure-name-2]]

[WITH '.IT.'IT { =} J UNTIL condition-1

[imperative-statement-1 END-PERFORM]

VI-109

Nucleus - PERFORM

Format 4:

PERFORM [procedure-name-! fjTHROUGH}]] LlTHRU procedure-name-2

[wrm TEST {:~E}]

VARYING { identifier-2}
index-name-1 FROM

{
identifier-3}
index-name-2

BY { identifier-4}
literal-2

{identifier-5}
index-name-3

literal-1

UNTIL condition-1

{
identifier-6}

FROM index-name-4
literal-3

{identifier-7}
literal-4

UNTIL condition-2]

[imperative-statement-1 END-PERFORM]

6.21.3 Syntax Rules

(1) If procedure-name-! is omitted, imperative-statement-! and the
END-PERFORM phrase must be specified; if procedure-name-1 is specified,
imperative-statement-! and the END-PERFORM phrase must not be specified.

(2) In format 4, if procedure-name-! is omitted, the AFTER phrase must not
be specified.

(3) If neither the TEST BEFORE nor the TEST AFTER phrase 1s specified, the
TEST BEFORE phrase is assumed.

(4) Each identifier represents a numeric elementary item described in the
Data Division. In format 2, identifier-! must be described as a numeric
integer.

)

(5) Each literal represents a numeric literal.

(6) The words THROUGH and THRU are equivalent.

(7) If an index-name is specified in the VARYING or AFTER phrase, then:

a. The identifier in the associated FROM and BY phrases must reference
an integer data item.

b. The literal in the associated FROM phrase must be a positive
integer.

c. The literal in the associated BY phrase must be a nonzero integer.

VI-110

Nucleus - PERFORM

(8) If an index-name is specified in the FROM phrase, then:

a. The identifier in the associated VARYING or AFTER phrase must
reference an integer data item.

b. The identifier in the associated BY phrase must reference an integer
data item.

c. The literal in the associated BY phrase must be an integer.

(9) Literal in the BY phrase must not be zero.

(10) Condition-I, lcondition-2, ... , I may be any conditional expression. (See
page VI-54, Conditional Expressions.)

(lI) Where procedure-name-I and procedure-name-2 are both specified and
either is the name of a procedure in the declaratives portion of the Procedure
Division, both must be procedure-names in the same declarative section.

(I2) At least six AFTER phrases must be permitted in format 4 of the
statement.

6.2I.4 General Rules

PERFORM I

(I) The data items referenced by identifier-4 and identifier-7 must not have
a zero value.

(2) If an index-name is specified in the VARYING or AFTER phrase, and an
identifier is specified in the associated FROM phrase, the data item referenced
by the identifier must have a positive value.

(3) When procedure-name-I is specified, the PERFORM statement is referred to
as an out-of-line PERFORM statement; when procedure-name-I is omitted, the
PERFORM statement is referred to as an in-line PERFORM statement.

(4) The statements contained within the range of procedure-name-I (t,hrough
procedure-name-2 if specified) for an out-of-line PERFORM statement or contained
within the PERFORM statement itself for an in-line PERFORM statement are
referred to as the specified set of statements.

(5) The END-PERFORM phrase delimits the scope of the in-line PERFORM
statement. (See page IV-40, Scope of Statements.)

(6) An in-line PERFORM statement functions according to the following
general rules for an otherwise identical out-of-line PERFORM statement, with the
exception that the statements contained within the in-line PERFORM statement are
executed in place of the statements contained within the range of
procedure-name-I (through procedure-name-2 if specified). Unless specially
qualified by the word in-line or out-of-line, all the general rules which apply
to the out-of-line PERFORM statement also apply to the in-line PERFORM
statement.

(7) When the PERFORM statement is executed, control is transferred to the
first statement of the specified set of statements (except as indicated in
general rules I Ob, lOc, and lOd). This transfer of control occurs only once for

VI-llI

Nucleus - PERFORM

each execution of a PERFORM statement. For those cases where a transfer of
control to the specified set of statements does take place, an implicit transfer
of control to the end of the PERFORM statement is established as follows:

a. If procedure-name-I is a paragraph-name and procedure-name-2 is not
specified, the return is after the last statement of procedure-name-!.

b. If procedure-name-I is
specified, the return is after
procedure-name-!.

a section-name and procedure-name-2 is not
the last statement of the last paragraph in

c. If procedure-name-2 is specified and it 1s a paragraph-name, the
return is after the last statement of the paragraph.

d. If procedure-name-2 is specified and it is a section-name, the
return is after the last statement of the last paragraph in the section.

e. If an in-line PERFORM statement is specified, an execution of the
PERFORM statement is completed after the last statement contained within it has
been executed.

(8) There is no necessary relationship between procedure-name-I and
procedu're-name-2 except that a consecutive sequence of ope rat ions is to be
executed beginning at the procedure named procedure-name-! and ending with the
execution of the procedure named procedure-name-2. In particular, GO TO and
PERFORM statements may occur between procedure-name-I and the end of
procedure-name-2. If there are two or more logical paths to the return point,
then procedure-name-2 may be the name of a paragraph consisting of the EXIT
statement, to which all of these paths must lead.

(9) If control passes to the specified set of statements by means other than
a PERFORM statement, control will pass through the last statement of the set to
the next executable statement as if no PERFORM statement referenced the set.

(IO) The PERFORM statements operate as follows:

a. Format 1 is the basic
statements referenced by this
then control passes to the end of

PERFORM statement. The specified set of
type of PERFORM statement is executed once and
the PERFORM statement.

b. Format 2 is the PERFORM ••• TIMES. The specified set of statements
is performed the number of times specified by integer-I or by the initial value
of the data item referenced by identifier-! for that execution. If at the time
of the execution of a PERFORM statement, the value of the data item referenced
by identifier-I is equal to zero or is negative, control passes to the end of
the PERFORM statement. Following the execution of the specified set of
statements the specified number of times, control is transferred to the end of
the PERFORM statement.

During execution of the PERFORM statement, reference to ident\fier-1
cannot alter the number of times the specified set of statements is to be
executed from that which was indi~ated by the initial value of the data item
referenced by identifier-!.

VI-112

Nucleus - PERFORM

c. Format 3 is the PERFORM ••• UNTIL. The specified set of statements
is performed until the condition specified by the UNTIL phrase is true. When
the condition is true, control is transferred to the end of the PERFORM
statement. If the condition is true when the PERFORM statement is entered,!andl

I the TEST BEFORE phrase is specified or implied,! no transfer to procedure-name-I
takes place, and control is passed to the end of the PERFORM statement. J If the
TEST AFTER phrase is specified, the PERFORM statement functions as if the TEST
BEFORE phrase were specified except that the condition is tested after the
specified set of statements has been executed. Any subscripting or reference
modification associated with the operands specified in condition-1 is evaluated
each time the condition is tested.

d. Format 4 is the PERFORM VARYING. This variation of the PERFORM
statement is used to augment the values referenced by one or more identifiers or
index-names in an orderly fashion during the execution of a PERFORM statement.
In the following discussion, every reference to identifier as the object of the
VARYING, AFTER, and FROM (current value) phrases also refers to index-names. If
index-name-I or index-name-3 is specified, the value of the associated index at
the beginning of the PERFORM statement must be set to an occurrence number of an
element in the table. If index-name-2 or index-name-4 is specified, the value
of the data item referenced by identifier-2 or identifier-5 at the beginning of
the PERFORM statement must be equal to an occurrence number of an element in a
table associated with index-name-2 or index-name-4. Subsequent augmentation, as
described below, of index-name-I or index-name-3 must not result in the
associated index being set to a value outside the range of the table associated
with index-name-1 or index-name-3; except that, at the completion of the PERFORM
statement, the index associated with index-name-1 may contain a value that is
outside the range of the associated table by one increment or decrement value.
If identifier-2 or identifier-5 is subscripted, the subscripts are evaluated
each time the content of the data item referenced by the identifier is set or
augmented. If identifier-3, identifier-4, identifier-6, or identifier-7 is
subscripted, the subscripts are evaluated each time the content of the data item
referenced by the identifier is used in a setting or augmenting operation. Any
subscripting or reference modification associated with the operands specified in
condition-1 or condition-2 is evaluated each time the condition is tested.

Representations of the actions of several types of format 4
statements are given in figures 1 through 4 on pages VI-1I4 through
These are not intended to dictate implementation.

VI-113

PERFORM
VI-119.

Nucleus - PERFORM

1) If the TEST BEFORE phrase is specified or implied:

When the data item referenced by one identifier is varied, the
content of the data item referenced by identifier-2 is set to literal-! or the
current value of the data item referenced by identifier-3 at the point of
initial execution of the PERFORM statement; then, if the condition of the UNTIL
phrase is false, the specified set of statements is executed once. The value of
the data item referenc~d by identifier-2 is augmented by the specified increment
or decrement value (literal-2 or the value of the data item referenced by
identifier-4) and condition-! is evaluated again. The cycle continues until
this condition is true, at which point control is transferred to the end of the
PERFORM statement. If condition-! is true at the beginning of execution of the
PERFORM statement, control is transferred to the end of the PERFORM statement.

Entrance

Set identifier-2 equal to
current FROM value

True
Condition-1 t--------------- Exit

False

Execute specified set
of statements

Augment identifier-2 with
current BY value

Figure 1: The VARYING option of a PERFORM statement with
the TEST BEFORE phrase having one condition

VI-114

Nucleus - PERFORM

When the data items referenced by two identifiers are varied,
the content of the data item referenced by identifier-2 is set to literal-I or
the current value of the data item referenced by identifier-3 and then the
content of the data item referenced by identifier-5 is set to literal-3 or the
current value of the data item referenced by identifier-6. After the contents
of the data items referenced by the identifiers have been set, condition-I is
evaluated; if true, control is transferred to the end of the PERFORM statement;
if false, condition-2 is evaluated. If condition-2 is false, the specified set
of. statements is executed once, then the content of the data item referenced by
identifier-5 is augmented by literal-4 or the content of the data item
referenced by identifier-7 and condition-2 is evaluated again. This cycle of
evaluation and augmentation continues until this condition is true. When
condition-2 is true, the content of the data item referenced by identifier-2 is
augmented by literal-2 or the content of the data ·item referenced by
identifier-4, the content of the data item referenced by identifier-5 is set to
literal-3 or the current value of the data item referenced by identifier-6, and
condition-I is reevaluated. The PERFORM statement is completed if condition-I
is true; if not, the cycle continues until condition-I is true.

Entrance

l
Set identifier-2 to

current FROM value

Set identifier-5 to
its current FROM value

True
Condition-1

.
Exit

False

True
Condition-2

False

Execute specified set Augment identifier-2
of statements with current BY value

Augment identifier-5 Set identifier-5 to
~ with current BY value its current FROM value

Figure 2: The VARYING option of a PERFORM statement with
the TEST BEFORE phrase having two conditions

VI-115

Nucleus - PERFORM

At the termination of the PERFORM statement, the data item
referenced by identifier-5 contains literal-3 or the current value of the data
item referenced by identifier-6. The data item referenced by identifier-2
contains a value that exceeds the last used setting by one increment or
decrement value, unless condition-1 was true when the PERFORM statement was
entered, in which case, the data item referenced by identifier-2 contains
literal-I or the current value of the data item referenced by identifier-3.

VI-116

Nucleus - PERFORM

2) If the TEST AFTER phrase is specified:

When the data item referenced by one identifier is varied, the
content of the data item referenced by identifier-2 is set to literal-I or the
current value of the data item referenced by identifier-3 at the point of
execution of the PERFORM statement; then the specified set of statements is
executed once and condition-I of the UNTIL phrase is tested. If the condition
is false, the value of the data item referenced by identifier-2 is augmented by
the specified increment or decrement value (literal-2 or the value of the data
item referenced by identifier-4) and the specified set of statements is
executed again. The cycle continues until condition-I is tested and found to be
true, at which point control is transferred to the end of the PERFORM statement.

Entrance

l
Set identifier-2 to

current FROM value
T

Execute specified set
of statements

Condition-1
True

Exit

False

Augment identifier-2
with current BY value

Figure 3: The VARYING option of a PERFORM statement with
the TEST AFTER phrase having one condition

VI-117

Nucleus - PERFORM

When the data items referenced by two identifiers are varied,
the content of the data item referenced by identifier-2 is set to literal-I or
the current value of the data item referenced by identifier-3, then the content
of the data item referenced by identifier-5 is set to literal-3 or the current
value of the data item referenced by identifier-6, and the specified set of
statements is then executed. Condition-2 is then evaluated; if false, the
content of the data item referenced by identifier-5 is augmented by literal-4 or
the content of the data item referenced by identifier-7 and the specified set of
statements is again executed. The cycle continues until condition-2 is again
evaluated and found to be true, at which time condition-I is evaluated. If
false, the content of the data item referenced by identifier-2 is augmented by
literal-2 or the content of the data item referenced by identifier-4, the
content of the data item referenced by identifier-5 is set to literal-3 or the
current value of the data item referenced by identifier-6 and the specified set
of statements is again executed. This cycle continues until condition-1 is
again evaluated and found to be true, at which time control is transferred to
the end of the PERFORM statement.

After the completion of the PERFORM statement, each data item
varied by an AFTER or VARYING phrase contains the same value it contained at the
end of the most recent execution of the specified set of statements.

VI-Il8

Nucleus - PERFORM

Entrance

l
Set identifier-2 to

current FROM value

-.
Set identifier-5 to

current FROM value

Execute specified set
of statements

True
Condition-2

False

Augment identifier-5
with current BY value

f
True

Condition-1 Exit

False

Augment identifier-2
with current BY value

Figure 4: The VARYING option of a PERFORM statement with
the TEST AFTER phrase having two conditions

VI-119

Nucleus - PERFORM

During the execution of the specified set of statements associated
with the PERFORM statement, any change to the VARYING variable (the data item
referenced by identifier-2 and index-name-1), the BY variable (the data item
referenced by identifier-4), the AFTER variable (the data item referenced by
identifier-5 and index-name-3), or the FROM variable (the data item referenced
by identifier-3 and index-name-2) will be taken into consideration and will
affect the operation of the PERFORM statement.

When the data items referenced by two identifiers are varied, the
data item referenced by identifier-5 goes through a complete cycle (FROM, BY,
UNTIL) each time the content of the data item referenced by identifier-2 is
varied. When the contents of three or more data items referenced by identifiers
are varied, the mechanism is the same as for two identifiers except that the
data item being varied by each AFTER phrase goes through a complete cycle each
time the data item being varied by the preceding AFTER phrase is augmented.

(11) The range of a PERFORM statement consists logically of all those
statements that are executed as a result of executing the PERFORM statement
through execution of the implicit transfer of control to the end of the PERFORM
statement. The range includes all statements that are executed as the result of
a transfer of control by CALL, EXIT, GO TO, and PERFORM statements in the range
of the PERFORM statement, as well as all statements in declarative procedures
that are executed as a result of the execution of statements in the range of the
PERFORM statement. The statements in the range of a PERFORM statement need not
appear consecutively in the source program.

(12) Statements executed as the result of a transfer of control caused by
executing an EXIT PROGRAM statement are not considered to be part of the range
of the PERFORM statement when:

a. That EXIT PROGRAM statement is specified in the same program in
which the PERFORM statement is specified, and

b. The EXIT PROGRAM statement is within the range of the PERFORM
statement.

(13) Procedure-name-I and procedure-name-2 must not name sections or
paragraphs in any other program in the run unit, irrespective of whether or not
the other program contains or is contained within the program which includes the
PERFORM statement. Statements in other programs in the run unit may only be
obeyed as a result of executing a PERFORM statement, if the range of that
PERFORM statement includes CALL and EXIT PROGRAM statements. (See page X-4,
Scope of Names.)

(14) If the range of a PERFORM statement includes another PERFORM statement,
the sequence of procedures associated with the included PERFORM must itself
either be totally included in, or totally excluded from, the logical sequence
referred to by the first PERFORM. Thus, an active PERFORM statement, whose
execution point begins within the range of another active PERFORM statement,
must not allow control to pass to the exit of the other active PERFORM
statement; furthermore, two or more such active PERFORM statements may not have
a common exit. See the following illustrations for examples of legal PERFORM
constructs:

VI-120

Nucleus - PERFORM

x PERFORM a THRU m x PERFORM a THRU m

a a

d PERFORM f THRU J d PERFORM f THRU j

f h

J m

m f

j

x PERFORM a THRU m

a

f

m

j

d PERFORM f THRU J

(15) A PERFORM statement that appears in a section that 1s not in an
independent segment can have within its range, in addition to any declarative
sections whose execution is caused within that range only one of the following:

a. Sections and/or paragraphs wholly contained in one
non-independent segments.

or more

b •. Sections and/or paragraphs wholly contained in a single independent
segment.

(16) A PERFORM statement that appears in an independent segment can have
within its range, in addition to any declarative sections whose execution is
caused within that range, only one of the following:

a. Sections and/or paragraphs wholly contained 1n one
non-independent segments.

or more

b. Sections and/or paragraphs wholly contained in the same independent
segment as that PERFORM statement.

VI-121

Nucleus - SEARCH

6.22 THE SEARCH STATEMENT

6.22.1 Function

The SEARCH statement is used to search a table for a table element that
satisfie.s the specified condition and to adjust the value of the associated
index to indicate that table element.

6.22.2 General Format

Format 1:

SEARCH identifier-1 [VARYING {~dentifier-2 }]
1ndex-name-l

[AT END imperative-statement-1]

{ { imperative-statement-2}}
.WHEN condi tion-1 NEXT SENTENCE

[END-SEARCH]

Format 2:

SEARCH ALL identifier-1 [AT END imperative-statement-1]

l {IS EQ1!A!.
data-name-1 IS =

condition-name-1

TO} {identifier-3 } l literal-1
arithmetic-expression-1

l {IS
data-name-2 IS EQUAL TO} {

identifier-4 } l
literal-2
arithmetic-expression-2

condition-name-2

{ imperative-statement-2}
NEXT SENTENCE

[END-SEARCH]

VI-122

Nucleus - SEARCH

6.22.3 Syntax Rules

(I) In both formats I and 2, identifier-1 must not be subscripted or
reference modified, but its description must contain an OCCURS clause including
an INDEXED BY phrase. The description of identifier-1 in format 2 must also
contain the KEY IS phrase in its OCCURS clause.

(2) Identifier-2 must reference a data item described as USAGE IS INDEX or
as a numeric elementary data item without any positions to the right of the
assumed decimal point. Identifier-2 may not be subscripted by the first (or
only) index-name specified in the INDEXED BY phrase in the OCCURS clause
associated with identifier-I.

(3) In format 1, condition-I may be any conditional expression. (See page
VI-54, Conditional Expressions.)

(4) In format 2, all referenced condition-names must be defined as having
only a single value. The data-name associated with a condition-name must appear
in the KEY IS phrase in the OCCURS clause referenced by identifier-I. Each
data-name-I, data-name-2 may be qualified. Each data-name-I, data-name-2 must
be subscripted by the first index-name associated with identifier-I along with
other subscripts as required, and must be referenced in the KEY IS phrase in the
OCCURS clause referenced by identifier-I. Identifier-3, identifier-4, or
identifiers specified in arithmetic-expression-I, arithmetic-expression-2 must
not be referenced in the KEY IS phrase in the OCCURS clause referenced by
identifier-I or be subscripted by the first index-name associated with
identifier-I.

In format 2, when a data-name in the KEY IS phrase in the OCCURS clause
referenced by identifier-I is referenced, or when a condition-name associated
with a data-name in the KEY IS phrase in the OCCURS clause referenced by
identifier-I is referenced, all preceding data-names in the KEY IS phrase in the
OCCURS clause referenced by identifier-I or their associated condition-names
must also be referenced.

(5) If the END-SEARCH phrase is specified, the NEXT SENTENCE phrase must not
be specified.

6.22.4 General Rules

(1) The scope of a SEARCH statement may be terminated by any of the
following:

a. An END-SEARCH phrase at the same level of nesting.

b. A separator period.

c. An ELSE or END-IF phrase associated with a previous IF statement.

(See page IV-40, Scope of Statements.)

(2) If format I of the SEARCH statement is used, a serial type of search
operation takes place, starting with the current index setting.

VI-123

Nucleus - SEARCH

a. If, at the start of execution of the SEARCH statement, the
index-name associated with identifier-! contains a value that corresponds to an
occurrence number that is greater than the highest permissible occurrence number
for identifier-I, the search is terminated immediately. The number of
occurrences of identifier-!, the last of which is the highest permissible, is
discussed in the OCCURS clause. (See VI-26, The OCCURS Clause.) Then, if the
AT END phrase is specified, imperative-statement-! is executed; if the AT END
phr'ase is not specified, control passes to the end of the SEARCH statement.

b. If, at the start of execution of the SEARCH statement, the
index-name associated with identifier-! contains a value that corresponds to an
occurrence number that is not greater than the highest permissible occurrence
number for identifier-! (the number of occurrences of identifier-!, the last of
which is the highest permissible, is discussed in the OCCURS clause), the SEARCH
statement operates by evaluating the conditions in the order that they are
written, making use of the index settings, wherever specified, to determine the
occurrence of those items to be tested. If none of the conditions is satisfied,
the index-name for identifier-! is incremented to obtain reference to the next
occurrence. The process is then repeated using the new index-name settings
unless the new value of the index-name settings for identifier-! corresponds to
a table element outside the permissible range of occurrence values, in which
case the search terminates as indicated in 2a above. If one of the conditions
is satisfied upon its evaluation, the search terminates immediately, and control
passes to the imperative statement associated with that condition, if present,
or, if the NEXT SENTENCE phrase is associated with that condition, to the next
executable sentence; the index-name remains set at the occurrence which caused
the condition to be satisfied.

(3) In a format 2 SEARCH statement, the results of the SEARCH ALL operation
are predictable only when:

a. The data in the table is ordered in the same manner as described in
the KEY IS phrase of the OCCURS clause referenced by identifier-!, and

b. The contents of the key(s) referenced in the WHEN phrase are
sufficient to identify a unique table element.

(4) If format 2 of the SEARCH statement is used, a nonserial type of search
operation may take place; the initial setting of the index-name for identifier-!
is ignored and its setting is varied during the search operation in a manner
specified by the implementor, with the restriction that at no time is it set to
a value that exceeds the value which corresponds to the last element of the
table, or that is less than the value that corresponds to the first element of
the table. The length of the table is discussed in the OCCURS clause. (See
page VI-26, The OCCURS Clause.) If any of the conditions specified in the WHEN
phrase cannot be satisfied for any setting of the index within the permitted
range, control is passed to imperative-statement-! of the AT END phrase, when
specified, or to the end of the SEARCH statement when this phrase is not
specified; in either case the final setting of the index is not predictable. If
all the conditions can be satisfied, the index indicates an occurrence that
allows the conditions to be satisfied, and control passes to
imperative-statement-2, if specified, or to the next executable sentence if the
NEXT SENTENCE phrase is specified.

VI-124

Nucleus - SEARCH

(5) After execution of imperative-statement-! or imperative-statement-2,
that does not terminate with a GO TO statement, control passes to the end of the
SEARCH statement.

(6)

first
clause
remain

In format
(or only)
associated
unchanged.

2, the index-name that is used for the search operation is the
index-name specified in the INDEXED BY phrase in the OCCURS

with identifier-I. Any other index-names for identifier-I

(7) In format 1, if the VARYING phrase is not used, the index-name that is
used for the search operation is the first (or only) index-name specified in the
INDEXED BY phrase in the OCCURS clause associated with identifier-I. Any other
index-names for identifier-! remain unchanged.

(8) In format 1, if the VARYING index-name-1 phrase is specified, and if
index-name-1 appears in the INDEXED BY phrase in the OCCURS clause referenced by
identifier-!, that index-name is used for this search. If this is not the case,
or if the VARYING identifier-2 phrase is specified, the first (or only)
index-name given in the INDEXED BY phrase in the · OCCURS clause referenced by
identifier-! is used for the search. In addition, the following operations will
occur:

a. If the VARYING index-name-! phrase is used, and if index-name-I
appears in the INDEXED BY phrase in the OCCURS clause referenced by another
table entry, the occurrence number represented by index-name-I is incremented by
the same amount as, and at the same time as, the occurrence number represented
by the index-name associated with identifier-! is incremented.

b. If the VARYING identifier-2 phrase is specified, and identifier-2 is
an index data item, then the data item referenced by identifier-2 is incremented
by the same amount as, and at the same time as, the index associated with
identifier-! is incremented. If identifier-2 is not an index data item, the
data item referenced by identifier-2 is incremented by the value one at the same
time as the index referenced by the index-name associated with identifier-! is
incremented.

(9) The END-SEARCH phrase delimits the scope of the SEARCH statement. (See
page IV-40, Scope of Statements.)

(10) A representation of the action of a format 1 SEARCH statement containing
two WHEN phrases is shown in figure 1 on the next page. This figure is not
intended to dictate implementation.

VI-125

Nucleus - SEARCH

Entrance r-----.....

Index setting:
highest permissible

occurrence
number

<

condition-1

False

condition-2

False

Increment
ind~x-name for

identifier-1
(index-name-1
if applicable)

Increment
index-name-1 (for
a different table)

or identifier-2

> AT ENO*

True

True

*

imperative
statement-1

imperative
statement- 2

imperative
statement-3

**

*

Figure 1: Format 1 SEARCH statement having two WHEN phrases

* These operations are options included only when specified in the SEARCH
statement.

** Each of these control transfers is to the end of the SEARCH statement
unless the imperative-statement ends with a GO TO statement.

VI-126

Nucleus - SET

6.23 THE SET STATEMENT

6.23.1 Function

(1) The SET statement establishes reference points for table handling
operations by setting indices associated with table elements.

(2) The SET statement is also used to alter the status of external switches.

(3) The SET statement is also used to alter the value of conditional
variables.

6.23.2 General Format

Format 1:

SET {index-name-1}
~- identif ier-1

Format 2:

SET {index-name-3}

Format 3:

SET { {mnemonic-name-1}

!
Format 4:

filll'.. {condition-name-1}

6.23.3 Syntax Rules

{ UP BY } {identifier-3}
DOWN BY integer-2

TO {g~F}} · · ·

(1) All references to index-name-1, identifier-!, and index-name-3 apply
equally to all recursions thereof.

(2) Identifier-! and identifier-2 must each reference an index data item or
an elementary item described as an integer.

(3) Identifier-3 must reference an elementary numeric integer.

(4) Integer-! and integer-2 may be signed. Integer-1 must be positive.

(5) Mnemonic-name-1 must be associated with an external switch, the status
of which can be altered. The implementor defines which external switches can be
referenced by the SET statement.

(6) Condition-name-! must be associated with a conditional variable.

VI-127

Nucleus - SET

6.23.4 General Rules

FORMATS 1 AND 2:

(1) Index-names are associated with a given table by being specified in the
INDEXED BY phrase of the OCCURS clause for that table.

(2) If index-name-I is specified, the value of the index after the execution
of the SET statement must correspond to an occurrence number of an element in
the table associated with index-name-I. The value of the index associated with
an index-name after the execution of a PERFORM or SEARCH statement may be set to
an occurrence number that is outside the range of its associated table. (See
page VI-109, The PERFORM Statement, and page VI-122, The SEARCH Statement.)

If index-name-2 is specified, the value of the index before the
execution of the SET statement must correspond to an occurrence number of an
element in the table associated with index-name-1.

If index-name-3 is specified, the value of the index both before and
after the execution of the SET statement must correspond to an occurrence number
of an element in the table associated with index-name-3.

(3) In format 1, the following action occurs:

a. Index-name-I is set to a value causing it to refer to the table
element that corresponds in occurrence number to the table element referenced by
index-name-2, identifier-2, or integer-I. If identifier-2 references an index
data item, or if index-name-2 is related to the same table as index-name-I, no
conversion takes place.

b. If identifier-I references an index data item, it may be set equal
to either the content of index-name-2 or identifier-2 where identifier-2 also
references an index data item; no conversion takes place in either case.

c. If identifier-I does not reference an index data item, it may be set
only to an occurrence number that corresponds to the value of index-name-2.
Neither identifier-2 6or integer-1 can be used in this case.

d. The process is repeated for each recurrence of index-name-1 or
identifier-!, if specified. Each time, the value of index-name-2 or the data
item referenced by identifier-2 is used as it was at the beginning of the
execution of the statement. Any subscripting associated with identifier-I is
evaluated immediately before the value of the respective data item is changed.

(4) !n format 2, the content of index-name-3 is incremented (UP BY) or
decremented (DOWN BY) by a value that corresponds to the number of occurrences
represented by the value of integer-2 or the data item referenced by
identifier-3; thereafter, the process is repeated for each recurrence of
index-name-3. For each repetition the value of the data item referenced by
identifier-3 is used as it was at the beginning of the execution of the
statement.

VI-128

Nucleus - SET

(5) Data in the following table represents the validity of various
combinations in format 1 of the SET statement. The general rule
indicates the applicable general rule.

operand
reference

RECEIVING ITEM
SENDING ITEM

INTEGER DATA ITEM INDEX

Integer literal No/3c Valid/3a

Integer data item No/3c Valid/3a

Index

Index data item

Valid/3c Valid/3a

No/3c Valid/ 3a*

Table 1: Validity of Operand Combinations
in Format 1 SET Statements

* No conversion takes place

FORMAT.3:

INDEX DATA ITEM

No/3b

No/3b

Valid/3b*

Valid/3b*

(6) The status of each external switch associated with the specified
mnemonic-name-1 is modified such that the truth value resultant from evaluation
of a condition-name associated with that switch will reflect an on status if the
ON phrase is specified, or an off status if the OFF phrase is specified. (See
page VI-58, Switch~status Condition.)

FORMAT 4:

(7) The literal in the VALUE clause associated with condition-name-! is
placed in the conditional variable according to the rules of the VALUE clause
(see ,page Vl-48, The VALUE Clause). If more than one literal is specified in
the VALUE clause, the conditional variable is set to the value of the first
literal that appears in the VALUE clause.

(8) If multiple condition-names are specified, the results are the same as
if a separate SET statement had been written for each condition-name-! in the
same order as specified in the SET statement.

VI-129

Nucleus - STOP

6.24 THE STOP STATEMENT

6.24.1 Function

The STOP statement causes a
execution of the run unit. The
obsolete element in Standard COBOL
revision of Standard COBOL.

permanent or temporary suspension of the
literal variation of the STOP statement is an
because it is to be deleted from the next

6.24.2 General Format

6.24.3 Syntax Rules

(I) Literal-I must not be a figurative constant that begins with the word
ALL.

(2) If a STOP RUN statement appears in a consecutive sequence of imperative
statements within a sentence, it must appear as the last statement in that
sequence.

(3) If literal-I is numeric, then it must be an unsigned integer.

6.24.4 General Rules

(I) If the RUN phrase is specified, execution of the run unit ceases and
control is transferred to the operating system.

(2) During the execution of a STOP RUN statement, an implicit CLOSE
statement without any optional phrases is executed for each file that is in the
open mode in the run unit. Any USE procedures associated with any of these
files are not executed.

(3) If the run unit has been accessing messages, the STOP RUN statement
causes the message control system (MCS) to eliminate from the queue any message
partially received by that run unit. Any portion of a message transferred from
the run unit via a SEND statement, but not terminated by an EMI or EGI, is
purged from the system.

(4) If STOP literal-I 1S specified, the execution of the run unit is
suspended and literal-I 1S communicated to the operator. Continuation of the
execution of the run unit begins with the next executable statement when the
implementor-defined procedure governing run unit re initiation is instituted.

VI-130

Nucleus - STRING

6.25 THE STRING STATEMENT

6.25.1 Function

The STRING statement provides juxtaposition of the partial or complete
contents of one or more data items into a single data item.

6.25.2 General Format

{{identifier-!}
literal-! PELIMITED BY {

identifier-2}}
literal-2 ••.
SIZE

STRING

INTO identifier-3

[WITH POINTER identifier-4]

[ON OVERFLOW imperative~statement-1]

[NOT ON OVERFLOW imperative-statement-2]

[END-STRING]

6.25.3 Syntax Rules

(1) Literal-I or literal-2 must not be a figurative constant that begins
with the word ALL.

(2) All literals must be described as nonnumeric literals, and all
identifiers, except identifier-4, must be described implicitly or explicitly as
USAGE IS DISPLAY.

(3) Identifier-3 must not be referenced modified.

(4) Identifier-3 must not represent an edited data item and must not be
described with the JUSTIFIED clause.

(5) Identifier-4 must be described as an elementary numeric integer data
item of sufficient size to contain a value equal to I plus the size of the data
item referenced by identifier-3. The symbol 'P' may not be used in the PICTURE
character-string of identifier-4.

(6) Where identifier-I or identifier-2 is an elementary numeric data item,
it must be described as an integer without the symbol 'P' in its PICTURE
character-string.

6.25.4 General Rules

(I) Identifier-I or literal-I represents the sending item.
represents the receiving item.

Identifier-3

(2) Literal-2 or the content of the data item referenced by identifier-2
indicates the character (s) delimiting the move. If the SIZE phrase is used, the
content of the complete data item defined by identifier-I or literal-I is moved.

VI-131

Nucleus - STRING

When a figurative constant is used as the delimiter, it is a single character
nonnumeric literal.

(3) When a figurative constant is specified as literal-1 or literal-2, it
refers to an implicit one character data item whose usage is DISPLAY.

(4) When the STRING statement is executed, the transfer of data is governed
by the following rules:

a. Those characters from literal-1 or from the content of the data item
referenced by identifier-1 are transferred to the data item referenced by
identifier-3 in accordance with the rules for alphanumeric to alphanumeric
moves, except that no space filling will be provided. (See general rule 4a of
the MOVE statement on page VI-I04.)

b. If the DELIM!TED phrase is specified without the SIZE phrase, the
content of the data item referenced by identifier-1, or the value of literal-I,
is transferred to the receiving data item in the sequence specified in the
STRING statement beginning with the leftmost character and continuing from left
to right until the end of the sending data item is reached or the end of the
receiving data item is reached or until the character(s) specified by literal-2,
or by the content of the data item referenced by identifier-2, are encountered.
The character(s) specified by literal-2 or by the data item referenced by
identifier-2 are not transferred.

c. If the DELIMITED phrase is specified with the SIZE phrase, the
entire content of literal-I, or the content of the data item referenced by
identifier-I, is transferred, in the sequence specified in the STRING statement,
to the data item referenced by identifier-3 until all data has been transferred
or the end of the data item referenced by identifier-3 has been reached.

This behavior is repeated until all occurrences of literal-I or data
items referenced by identifier-I have been processed.

(5) If the POINTER phrase is specified, the data item referenced by
identifier-4 must be set to an initial value greater than zero prior to the
execution of the STRING statement.

(6) If the POINTER phrase is not specified, the following general rules
apply as if the user had specified identifier-4 referencing a data item with an
initial value of 1.

(7) When characters are transferred to the data item referenced by
identifier-3, the moves behave as though the characters were moved one at a time
from the source into the character positions of the data item referenced by
identifier-3 designated by the value of the data item referenced by identifier-4
(provided the value of the data item referenced by identifier-4 does not exceed
the length of the data item referenced by identifier-3), and then the data item
referenced by identifier-4 was increased by one prior to the move of the next
character or prior to the end of execution of the STRING statement. The value
of the data item referenced by identifier-4 is changed during execution of the
STRING statement only by the behavior specified above.

(8) At the end of execution of the STRING statement, only the portion of the
data item referenced by identifier-3 that was referenced during the execution of

VI-I32

Nucleus - STRING

the STRING statement is changed. All other portions of the data item referenced
by identifier-3 will contain data that was present before this execution of the
STRING statement.

(9) Before each move of a character to the data item referenced by
identifier-3, if the value associated with the data item referenced by
identifier-4 is either less than one or exceeds the number of character
positions in the data item referenced by identifier-3, no (further) data is
transferred to the data item referenced by identifier-3, and the NOT ON OVERFLOW
phrase, if specified, is ignored and control is transferred to the end of the
STRING statement or, if the ON OVERFLOW phrase is specified, to
imperative-statement-!. If control is transferred to imperative-statement-I,
execution continues according to the rules for each statement specified in
imperative-statement-I. If a procedure branching or conditional statement which
causes explicit transfer of control is executed, control is transferred in
accordance with the rules for that statement; otherwise, upon completion ~f the
execution of imperative-statement-!, control is transferred to the end of the
STRING statement.

(10) If, at the time of execution of a STRING statement with the NOT ON
OVERFLOW phrase, the conditions described in general rule 9 are not encountered,
after completion of the transfer of data according to the other general rules,
the ON OVERFLOW phrase, if specified, is ignored and control is transferred to
the end of the STRING statement or, if the NOT ON OVERFLOW phrase is specified,
to imperative-statement-2. If control is transferred to imperative-statement-2,
execution continues according to the rules for each statement specified in
imperative-statement-2. If a procedure branching or conditional statement which
causes explicit transfer of control is executed, control is transferred in
accordance with the rules for that statement; otherwise, upon completion of the
execution of imperative-statement-2, control is transferred to the end of the
STRING statement.

(11) The END-STRING phrase delimits the scope of the STRING statement. (See
page IV-40, Scope of Statements.)

(12) If identifier-!, or identifier-2, occupies the same storage area as
identifier-3, or identifier-4, or if identifier-3 and identifier-4 occupy the
same storage area, the result of the execution of this statement is undefined,
even if they are defined by the same data .description entry. (See page VI-69,
Overlapping Operands.)

VI-133

Nucleus - SUBTRACT

6.26 THE SUBTRACT STATEMENT

6.26.1 Function

The SUBTRACT statement is used to subtract one, or the sum of two or more,
numeric data items from one or more items, and set the values of one or more
items equal to the results.

6.26.2 General Format

Format 1:

SUBTRACT { identifier-!}
literal-1

FROM {identifier-2 [ROUNDED]} ...

[ON SIZE ERROR imperative-statement-!]

[NOT ON SIZE ERROR imperative-statement-2]

[END-SUBTRACT]

Format 2:

SUBTRACT { identifier-!}
1iteral-1

FROM {i~entifier-2}
-- literal-2

GIVING {identifier-3 [ROUNDED]} ...

[ON SIZE ERROR imperative-statement-1]

[NOT ON SIZE ERROR imperative-statement-2]

[END-SUBTRACT]

Format 3:

SUBTRACT {~ESPONDING} identifier-! FROM identifier-2 [ROUNDED]

[ON SIZE ERROR imperative-statement-!]

[N.QI ON SIZE ERROR imperative-statement-2]

[END-SUBTRACT]

VI-134

Nucleus ~ SUBTRACT

6.26.3 Syntax Rules

(1) Each identifier must refer to a numeric elementary item except that:

a. In format 2, each identifier following the word GIVING must refer to
either an elementary numeric item or an elementary numeric edited item.

b. In format 3, each identifier must refer to a group item.

(2) Each literal must be a numeric literal.

(3) The composite of operands must not contain more than 18 digits. (See
page VI-69, The Arithmetic Statements.)

a. In format 1 the composite of operands is determined by using all of
the operands in a given statement.

b. In format 2 the composite of operands i~ determined by using all of
the operands in a given statement excluding the data items that follow the word
GIVING.

c. In format 3 the composite of operands is determined separately for
each pair of corresponding data items.

(4) CORR is an abbreviation for CORRESPONDING.

6.26.4 General Rules

(1) When format 1 is used, the values of the operands preceding the word
FROM are added together and the sum is stored in a temporary data item. The
value in this temporary data item is subtracted from the value of the data item
referenced by identifier-2, storing the result into the data item referenced by
identifier-2, and repeating this process for each successive occurrence of
identifier-2 in the left-to-right order in which identifier-2 is specified.

(2) In format 2, all literals and the values of the data items referenced by
the identifiers preceding the word FROM are added together, the sum 1s
subtracted from literal-2 or the value of the data item referenced by
identifier-2 and the result of the subtraction is stored as the new content of
each data item referenced by identifier-3.

(3) If format 3 is used, data items 1n identifier-I are subtracted from
stored into corresponding data items in identifier-2.

(4) The compiler insures enough places are carried so as not to lose
significant digits during execution.

(5) Additional rules and explanations relative to this statement are given
under the appropriate paragraphs. (See page IV-40, Scope of Statements; page
VI-67, The ROUNDED Phrase; page VI-67, The ON SIZE ERROR Phrase; page VI-69, The
Arithmetic Statements; page VI-69, Overlapping Operands; page VI-69, Multiple
Results in Arithmetic Statements; jpage VI-68, The CORRESPONDING Phrase.)!

VI-135

Nucleus - UNSTRING

6.27 THE UNSTRING STATEMENT

6.27.1 Function

The UNSTRING statement causes contiguous data in a sending field to be
separated and placed into multiple receiving fields.

6.27.2 General Format

UNSTRING identifier-1

[DELIMITED BY [ALL] { i.·dentifier-2} [
literal-I OR [ALL] { identifier-3}] J

IiteraI-2 ·· ·

INTO {identifier-4 [DELIMITER IN identifier-5] [COUNT IN identifier-6]}

[WITH POINTER identifier-7]

[TALLYING IN identifier-8]

[ON OVERFLOW imperative-statement-I]

[NOT ON OVERFLOW imperative-statement-2]

[END-UNSTRING]

6.27.3 Synta~ Rules

(1) Literal-! and literal-2 must be nonnumeric literals and neither can be a
figurative constant that begins with the word ALL.

(2) Identifier-1, identifier-2,
reference data items described,
alphanumeric.

identifier-3,
implicitly or

and identifier-5 must
explicitly," as category

(3) Identifier-4 may be described as either the category alphabetic,
alphanumeric, or numeric (except that the symbol 'P' may not be used in the
PICTURE character-string), and must be described implicitly or explicitly, as
USAGE IS DISPLAY.

(4) Identifier-6 and identifier-8 must reference integer data items (except
that the symbol 'P' may not be used in the PICTURE character-string).

(5) Identifier-7 must be described as an elementary numeric integer data
item of sufficient size to contain a value equal to 1 plus the size of the data
item referenced by identifier-1. The symbol 'P' may not be used in the PICTURE
character-string of identifier-7.

(6) The DELIMITER IN phrase and the COUNT IN phrase may be specified only if
the DELIMITED BY phrase is specified.

(7) Identifier-! must not be reference modified.

VI-136

Nucleus - UNSTRING

6.27.4 General Rules

(1) All references to identifier-2 and literal-! apply equally to
identifier-3 and literal-2, respectively, and all recursions thereof.

(2) The data item referenced by identifier-! represents the sending area.

(3) The data item referenced by identifier-4 represents the data receiving
area. The data item referenced by identifier-5 represents the receiving area
for delimiters.

(4) Literal-1 or the data item referenced by identifier-2 specifies a
delimiter.

(5) The data item referenced by identifier-6 represents the count of the
number of characters within the data item referenced by identifier-! isolated by
the delimiters for the move to the data item referenced by identifier-4. This
value does not include a count of the delimiter character(s).

(6) The data item referenced by identifier-7 contains a value that indicates
a relative character position within the area referenced by identifier-!.

(7) The data item referenced by identifier-8 is a counter which is
incremented by 1 for each occurrence of the data item referenced by identifier-4
accessed during the UNSTRING operation.

(8) When a figurative constant is used as the delimiter, it stands for a
single character nonnumeric literal.

When the ALL phrase is specified, one occurrence or two or more
contiguous occurrences of literal-1 (figurative constant or not) or the content
of the data item referenced by identifier-2 are treated as if they were only one ·
occurrence, and one occurrence of literal-! or the data item referenced by
identifier-2 is moved to the receiving data item according to the rules in
general rule 13d.

(9) When any examination encounters two contiguous delimiters, the current
receiving area is space filled if it is described as alphabetic or alphanumeric,
or zero filled if it is described as numeric.

(10) Literal-I or the content of the data item referenced by identifier-2 can
contain any character in the computer's character set.

(11) Each literal-I or the data item referenced by identifier-2 represents
one delimiter. When a delimiter contains two or more characters, all of the
characters must be present in contiguous positions of the sending item, and in
the order given, to be recognized as a delimiter.

(12) When two or more delimiters are specified in the DELIMITED BY phrase, an
OR condition exists between them. Each delimiter is compared to the sending
field. If a match occurs, the character(s) in the sending field is considered
to be a single delimiter. No character(s) in the sending field can be
considered a part of more than one delimiter.

VI-137

Nucleus - UNSTRING

Each delimiter is applied to the sending field in the sequence specified
in the UNSTRING statement.

(13) When the UNSTRING statement is initiated, the current receiving area is
the data item referenced by identifier-4. Data is transferred from the data
item referenced by identifier-1 to the data item referenced by identifier-4
according to the following rules:

a. If the POINTER phrase is specified, the string of characters
referenced by identifier-1 is examined beginning with the relative character
position indicated by the content of the data item referenced by identifier-7.
If the POINTER phrase is not specified, the string of characters is examined
beginning with the leftmost character position.

b. If the DELIMITED BY phrase is specified, the examination proceeds
left to right until either a delimiter specified by literal-I or the value of
the data item referenced by identifier-2 is encountered. (See general rule 11.)
If the DELIMITED BY phrase is not specified, the number of characters examined
is equal to the size of the current receiving area. However, if the sign of the
receiving item is defined as occupying a separate character position, the number
of characters examined is one less than the size of the current receiving area.

If the end of the data item referenced by identifier-I is
encountered before the delimiting condition is met, the examination terminates
with the last character examined.

c. The characters thus examined (excluding the delimiting character(s),
if any) are treated as an elementary alphanumeric data item, and are moved into
the current receiving area according to the rules for the MOVE statement. (See
page VI-103, The MOVE Statement.)

d. If the DELIMITER IN phrase is specified the delimiting character(s)
are treated as an elementary alphanumeric data item and are moved into the data
item referenced by identifier-5 according to the rules for the MOVE statement.
(See page VI-103, The MOVE Statement.) If the delimiting condition is the end
of the data item referenced by identifier-I, then the data item referenced by
identifier-5 is space filled.

e. If the COUNT IN phrase is specified, a value equal to the number of
characters thus examined (excluding the delimiter character(s), if any) is moved
into the area referenced by identifier-6 according to the rules for an
elementary move.

f. If the DELIMITED BY phrase is specified the string of characters is
further examined beginning with the first character to the right of the
delimiter. If the DELIMITED BY phrase is not specified the string of characters
is further examined beginning with the character to the right of the last
character transferred.

g. After data is transferred to the data item referenced by
identifier-4, the current 'receiving area is the data item referenced by the next
recurrence of identifier-4. The behavior described in paragraphs 13b through
13f is repeated until either all the characters are exhausted in the data item
referenced by iJentifier-1, or until there are no more receiving areas.

VI-138

Nucleus - UNSTRING

(14) The initialization of the contents of the data items associated with the
POINTER phrase or the TALLYING phrase is the responsibility of the user.

(15) The content of the data item referenced by identifier-7 will be
incremented by one for each character examined in the data item referenced by
identifier-I. When the execution of an UNSTRING statement with a POINTER phrase
is completed, the content of the data item referenced by identifier-7 will
contain a value equal to the initial value plus the number of characters
examined in the data item referenced by identifier-I.

(16) When the execution of an UNSTRING statement with a TALLYING phrase is
completed, the content of the data item referenced by identifier-8 contains a
value equal to its value at the beginning of the execution of the statement plus
a value equal to the number of identifier-4 receiving data items accessed during
execution of the statement.

(17) Either of the following situations causes an overflow condition:

a. An UNSTRING is initiated, and the value in the data item referenced
by identifier-7 is less than 1 or greater than the size of the data item
referenced by identifier-I.

b. If, during execution of an UNSTRING statement, all receiving areas
have been acted upon, and the data item referenced by identifier-I contains
characters that have not been examined.

(18) When an overflow condition exists, the UNSTRING operation is terminated,
the NOT ON OVERFLOW phrase, if specified, is ignored and control is transferred
to the end of the UNSTRING statement or, if the ON OVERFLOW phrase is specified,
to imperative-statement-I. If control is transferred to imperative-statement-I,
execution continues according to the rules for each statement specified in
imperative-statement-I. If a procedure branching or conditional statement which
causes explicit transfer of control is executed, control is transferred in
accordance with the rules for that statement; otherwise, upon completion of the
execution of imperative-statement-I, control is transferred to the end of the
UNSTRING statement.

(19) The END-UNSTRING phrase delimits the scope of the UNSTRING statement.
(See page IV-40, Scope of Statements.)

(20) If, at the time of execution of an UNSTRING statement, the conditions
described in general rule 17 are not encountered, after completion of the
transfer of data according to the other general rules,. the ON OVERFLOW phrase,
if specified, is ignored and control is transferred to the end of the UNSTRING
statement or, if the NOT ON OVERFLOW phrase is specified, to
imperative-statement-2. If control is transferred to imperative-statement-2,
execution continues according to the rules for each statement specified in
imperative-statement-2. If a procedure branching or conditional statement which
causes explicit transfer of control is executed, control is transferred in
accordance with the rules for that statement; otherwise, upon completion of the
execution of imperative-statement-2, control is transferred to the end of the
UNSTRING statement.

VI-139

Nucleus - UNSTRING

(21) If identifier-I, identifier-2, or identifier-3, occupies the same
storage area as identifier-4, identifier-5, identifier-6, identifier-7, or
identifier-8, or if identifier-4, identifier-5, or identifier-6, occupies the
same storage area as identifier-7 or identifier-8, or if identifier-7 and
identifier-8 occupy the same storage area, the result of the execution of this
statement is undefined, even if they are defined by the same data description
entry. (See page VI-69, Overlapping Operands.)

VI-140

Nucleus - Debugging

7. DEBUGGING IN THE NUCLEUS MODULE

7.1 GENERAL DESCRIPTION

Debugging within the Nucleus module provides the user with debugging lines
and a compile time switch for debugging lines.

7.2 COMPILE TIME SWITCH

The WITH DEBUGGING MODE clause is written as part of the SOURCE-COMPUTER
paragraph (see page VI-10, The SOURCE-COMPUTER Paragraph). It serves as a
compile time switch over the debugging lines written in the separately compiled
program.

When the WITH DEBUGGING MODE clause is specified in a separately compiled
program, all debugging lines are compiled as specified in this presentation of
the Nucleus module. When the WITH DEBUGGING MODE clause is not specified, all
debugging lines are compil.ed as if they were .comment lines.

The presence or absence of the WITH DEBUGGING MODE clause is logically
determined after all COPY and REPLACE statements are processed.

7.3 DEBUGGING LINES

A debugging line is any line with a 'D' in the indicator area of the H.ne.
Any debugging line that ·consists solely of spaces from margin A t-0 margin R is
considered the same as a blank line.

The content of a debugging line must be such that a syntactically correct
program is formed with or without the debugging lines being considered a<S
comment lines.

After all COPY and REPLACE statements have been processed, .a debugging line
will be considered to have all the charactceristics of a comment line, if the
WITH DEBUGGING MODE clause is not specified in the SOURCE-COMPUTER paragraph .•

Successive debugging lines are allowed.

A debugging line is only permitted in the separately compiled program after
the OBJECT-COMPUTER paragraph"

Vl-141

Sequential I-0 - Introduction

SECTION VII: SEQUENTIAL I-0 MODULE

1. INTRODUCTION TO THE SEQUENTIAL I-0 MODULE

1.1 FUNCTION

The Sequential I-0 module provides a capability to access records of a file
in established sequence. The sequence is established as a result of writing the
records to the file.

1.2 LEVEL CHARACTERISTICS

Sequential I-0 level 1 provides limited capabilities for the file control
entry, the file description entry, and the entries in the I-0-CONTROL paragraph.
Within the Procedure Division, the Sequential I-0 level 1 provides limited
capabilities for the CLOSE, OPEN, READ, USE, and WRITE statements; full
capabilities are provided for the REWRITE statement.

Sequential I-0 level 2 provides full capabilities for the file control entry,
the file description entry, and the entries in the I-0-CONTROL paragraph.
Within the Procedure Division, the Sequential I-0 level 2 provides full
capabilities for the CLOSE, OPEN, READ, REWRITE, USE, and WRITE statements.

1.3 LANGUAGE CONCEPTS

1.3.1 Organization

Sequential files are organized so that each record, except the last, has a
unique successor record; each record, except the first, has a unique predecessor
record. The successor relationships are established by the order of execution
of WRITE statements when the file is created. Once established, successor
relationships do not changelexcept in the case where records are added to the!

lend of a file.I ·

A sequentially organized mass storage file has the same logical structure as
a file on any sequential medium; however, a sequential mass storage file may be
updated in place. When this technique is used, new records cannot be added to
the file and each replaced record must be the same size as the original record.

1.3.2 Access Mode

For sequential organization, the order of sequential access is the order in
which the records were originally written.

VII-1

Sequential I-0 - Introduction

1.3.3 Current Volume Pointer

The current volume pointer is
facilitate exact specification
file. The status of the current
READ; and WRITE statements.

1.3.4 File Position Indicator

a conceptual entity used in this document to
of the current physical volume of a sequential

volume pointer is affected by the CLOSE, OPEN,

The file position indicator is a conceptual entity used in this document to
facilitate exact specification of the next record to be accessed within a given
file during certain sequences of input-output operations. The setting of the
file position indicator is affected only by the CLOSE, OPEN, and READ
statements. The concept of a file position indicator has no meaning for a file
opened in the outputlor extendlmode.

1.3.5 I-0 Status

The t-0 status is a two-character conceptual entity whose value is set to
indicate the status of an input-output operation during the execution of a
CLOSE, OPEN, READ, REWRITE, or WRITE statement and prior to the execution of any
imperative statement associated with that input-output statement or prior to the
execution of any applicable USE AFTER STANDARD EXCEPTION procedure. The value
of the I-0 status is made available to the COBOL program through the use of the
FILE STATUS clause in the file control entry for the file.

The I-0 status also determines whether an applicable USE AFTER STANDARD
EXCEPTION procedure will be executed. If any condition other than those
contained under the heading "Successful Completion" on page VII-3 results, such
a procedure may be executed depending on rules stated elsewhere. If one of the
conditions listed under the heading "Successful Completion" on page VII-3
results, no such procedure will be executed. (See page VII-50, The USE
Statement.)

Certain classes of I-0 status values indicate critical error .conditions.
These are: any that begin with the digit 3 or 4, and any that begin with the
digit 9 that the implementor defines as critical. If the value of the I-0
status for an input-output operation indicates such an error condition, the
implementor determines what action is taken after the execution of any
applicable USE AFTER STANDARD EXCEPTION procedure, or if none applies, after
completion of the normal input-output control system error processing. ·.

I-0 status expresses one of the following conditions upon completion of the
input-output operation:

(1) Successful Completion.
executed.

The input-output statement was successfully

(2) At End. A sequential READ statement was unsuccessfully executed as a
result of an at end condition.

(3) Permanent Error. The input-output statement was unsuccessfully executed
as the result of an error that precluded further processing of the file. Any
specified exception procedures are executed. The permanent error condition
remains in effect for all subsequent input-output operations on the file unless

VII-2

Sequential I-0 - Introduction

an implementor-defined technique is invoked to correct the permanent error
condition.

(4) Logic Error. The input-output statement was unsuccessfully executed as
a result of an improper sequence of input-output operations that were performed
on the file or as a result of violating a limit defined by the user.

(5) Implementor Defined. The input-ou~put statement was unsuccessfully
executed as a result of a condition that is specified by the implementor.

The following is a list of the values placed in the I-0 status for the
previously named conditions resulting from the execution of an input-output
operation on a sequential file. If more than one value applies, the implementor
determines which of the applicable values to place in the I-0 status.

(1) Successful Completion

a. I-0 Status = 00. The input-output statement is successfully
executed and no further information is available concerning the input-output
operation.

b. I-0 Status = 04. A READ statement is successfully executed but the
length of the record being processed does not conform to the fixed file
attributes for that file.

c.
referenced
executed.

I-0 Status = 05. An OPE.N statement is successfully executed but the
optional file is not present at the time the OPEN statement is

If the O_Q_en mode is I-0 or extend,_ the file has been created.

d. I-0 Status= 07. The input-output statement is successfully
executed. However for a CLOSE statement with the NO REWIND, REEL/UNIT

I REMOVALlphrase or for an OPEN statement with the NO REWIND
referenced file is on a non-reel/unit medium.

(2) At End Condition With Unsuccessful Completion

a. I-0 Status = 10. A sequential READ statement 1s attempted and no
next logical record exists in the file because:

1) The end of the file has been reached, or

2) A sequential READ statement is attempted for the first time on
an optional input file that is not resent.

(3) Permanent Error Condition With Unsuccessful Completion

a. I-0 Status = 30. A permanent error exists and
information is available concerning the input-output operation.

no further

b. I-0 Status = 34. A permanent error exists because of a boundary
violation; an attempt is made to write beyond the externally defined boundaries
of a sequential file. The implementor specifies the manner in which these
boundaries are defined.

VII-3

Sequential I-0 - Introduction

c. I-0 Status = 35. A fermanent error exists because an OPEN
with the INPUT, I-0, lor EXTEND phrase is attempted on alnon-optionall
is not present.

statement
file that

d. I-0 Status= 37. A permanent error exists because an OPEN statement
is attempted on a file and that file will not support the open mode specified in
the OPEN statement. The possible violations are:

1) ThelEXTEND or!OUTPUT phrase is specified but the file will not
support write operations.

2) The I-0 phrase is specified but the file will not support the
input and output operations that are permitted for a sequential file when opened
in the I-0 mode.

3) The INPUT phrase is specified but the file will not support read
operations.

e. I-0 Status = 38. because an OPEN statement
is attem ted on a file

f. I-0 Status = 39. The OPEN statement is unsuccessful because a
conflict has been detected between the fixed file attributes and the attributes
specified for that file in·the program.

(4) Logic Error Condition With Unsuccessful Completion

a. I-0 Status = 41. An OPEN statement is attempted for a file in the
open mode.

b. I-0 Status = 42. A CLOSE statement is attempted for a file not in
the open mode.

c. I-0 Status = 43. For a mass storage file in the sequential access
mode, the last input-output statement executed for the associated file prior to
the execution of a REWRITE statement was not a successfully executed READ
statement.

d. I-0 Status = 44. A boundary violation exists because:

1) An attempt is made to write or rewrite a record that is larger
than the largest or smaller than the smallest record allowed by the RECORD IS
VARYING clause of the associated file-name~ or

2) An attempt is made to rewrite a record to a sequential file and
the record is not the same size as the record being replaced.

open in
because:

e. I-0 Status = 46. A sequential READ statement is attempted on a file
the input or I-0 mode and no valid next record has been established

1) The preceding READ statement was unsuccessful but did not cause
an at end condition, or

2) The preceding READ statement caused an at end condition.

VII-4

Sequential I-0 - Introduction

f. I-0 Status = 47. The execution of a READ statement is attempted on
a file not open in the input or I-0 mode.

g. I-0 Status = 48. The execution of a WRITE statement is attempted on
a file not open in the outputlor extendlmode.

h. I-0 Status = 49. The execution of a REWRITE statement is attempted
on a file not open in the I-0 mode.

(5) Implementor-Defined Condition With Unsuccessful Completion

a. I-0 Status = 9x. An implementor-defined condition exists. This
condition must not duplicate any condition specified by the I-0 status values 00
through 49. The value of x is defined by the implementor.

1.3.6 The At End Condition

The at end condition can occur as a result of the execution of a READ
statement. (See page VII-44. The READ Statement.)

1.3.7 The File Attribute Conflict Condition

The file ~ttribute conflict condition can result from the execution of an
OPEN, REWRITE, or WRITE statement. When the file attribute conflict condition
occurs, execution of the input-output statement that recognized the condition is
unsuccessful and the file is not affected. (See page VII-39, The OPEN
Statement; page VII-48, The REWRITE Statement; and page VII-52, The WRITE
Statement.)

When the file attribute conflict condition 1s recognized, these actions take
place in the following order:

(1) A value is placed in the I-0 status associated with the file-name to
indicate the file attribute conflict condition. (See page VII-2, I-0 Status.)

(2) A USE AFTER EXCEPTION procedure, if any, associated with the file-name
1s executed.

1.3.8 Special Register LINAGE-COUNTER

The reserved word LINAGE-COUNTER is a name for a line counter generated by
the presence of a LINAGE clause in a file description entry. (See page VII-27,
The LINAGE Clause.) The implicit description is that of an unsigned integer
whose size is equal to the size of integer-! or the data item referenced by
data-name-! in the LINAGE clause. LINAGE-COUNTER may be referenced only in
Procedure Division statements; however, ~nly the input-output control system may
chan_g_e the value of LINAGE-COUNTER.

VII-5

Sequential I-0 - Input-Output Section

2. ENVIRONMENT DIVISION IN THE SEQUENTIAL I-0 MODULE

2.1 INPUT-OUTPUT SECTION

The Input-Output Section is located in
program. The Input-Output Section deals
transmission and handling of data between
The Input-Output Section is optional
source program.

the Environment Division of a source
with the information needed to control
external media and the object program.
in the Environment Division of a COBOL

The general format of the Input-Output Section is shown below.

INPUT-OUTPUT SECTION.

FILE-CONTROL. {file-control-entry}

[I-0-CONTROL. [input-output-control-entry]]

VII-6

Sequential I-0 - FILE-CONTROL

2.2 THE FILE-CONTROL PARAGRAPH

2.2.l Function

The FILE-CONTROL paragraph allows specification of file-related information.

2.2.2 General Format

FILE-CONTROL. {file-control-entry}

2.3 THE FILE CONTROL ENTRY

2.3.1 Function

The file control entry declares the relevant physical attributes of a
sequential file.

2.3.2 General Format

SELECT l[OPTIONALJI file-name-1

ASSIGN TO {implementor-rtame-1}
literal-1

[RESERVE integer-1 [AREA J J
AREAS

[[ORGANIZATION IS] SEQUENTIAL]

[PADDING CHARACTER IS {~~~:~~~~~-l}]

[RECORD DELIMITER IS {~!~~!~~!r-name-2}]
[ACCESS MODE IS SEdUENTIAL]

[FILE STATUS IS data-name-2].

2.3.3 Syntax Rules

(1) The SELECT clause must be specified first in the file control entry.
The clauses which follow the SELECT clause may appear in any order.

(2) Each file-name in the Data Division must be specified only once in the
FILE-CONTROL paragraph. Each file-name specified in the SELECT clause must have
a file description entry in the Data Division of the same program.

(3) Literal-! must be a nonnumeric literal and must not be a figurative
constant. The meaning and rules for the allowable content of implementor-name-!
and the value of literal-! are defined by the implementor.

VII-7

Sequential I-0 - FILE-CONTROL

2.3.4 General Rules

(I) If the file connector referenced by file-name-1 is an external file
connector (see page X-23, The EXTERNAL Clause), all file control entries in the
run unit which reference this file connector must have:

a. The same specification for the OPTIONAL phrase.

b. A consistent specification for implementor-name-1 or literal-1 in
the ASSIGN clause. The implementor will specify the consistency rules for
implementor-name-1 or literal-1.

c. A consistent specification
DELIMITER clause. The implementor
implementor-name-2.

for
will

implementor-name-2 in the RECORD
specify the consistency rules for

d. The same value for integer-I in the RESERVE clause.

e. The same organization.

f. The same access mode.

g. The same specification for the PADDING CHARACTER clause.

(2) The OPTIONAL phrase applies only to files opened in the input, I-0, or
extend mode. Its specification is required for files that are not necessarily
present each time the object program is executed.

(3) The ASSIGN clause specifies the association of the file referenced by
file-name-I to a storage medium referenced by implementor-name-I or literal-1.

(4) The ACCESS MODE clause the FILE STATUS clause, the ORGANIZATION IS
SE UENTIAL clause the PADDING CHARACTER clause, the RECORD DELIMITER clause,
and the RESERVE clause are presented in alphabetical order on the following
pages.

VII-8

Sequential I-0 - ACCESS MODE

2.4 THE ACCESS MODE CLAUSE

2.4.1 Function

The ACCESS MODE clause specifies the order in which records are to be
accessed in the file.

2.4.2 General Format

ACCESS MODE IS SEQUENTIAL

2.4.3 General Rules

(1) If the ACCESS MODE clause is not specified, sequential access is
assumed.

(2) Records in the file are accessed in the sequence dictated by the file
organization. For sequential files this sequence is specified by
predecessor-successor record relationships established by the execution of WRITE
statements when the file is created I or extended. I

(3) If th~ associated file connector is an external file connector, every
file contro.l entry irt the run unit which is associated with that file connector
must specify the same access mode.

VII-9

Sequential I-0 - FILE STATUS

2.5 THE FILE STATUS CLAUSE

2.5.1 Function

The FILE STATUS clause specifies a data item which contains the status of an
input-output operation.

2.5.2 General Format

FILE STATUS IS data-name-1

2.5.3 Syntax Rules

(1) Data-name-1 may be qualified.

(2) Data-name-1 must be defined in the Data Division as a two-character data
item of the category alphanumeric and must not be defined in the File Section,
Report Section, or the Communication Section.

2.5.4 General Rules

(1) If the FILE STATUS clause is specified, the data item referenced by
data-name-1 is always updated to contain the value of the I-0 status whenever
the I-0 status is updated. This value indicates the status of execution of the
statement, (See page VII-2, I-0 Status.)

(2) The data item referenced by data-name-1 which is updated during the
execution of an input-output statement is the one specified in the file control
entry associated with that statement.

VII-10

Sequential I-0 - ORGANIZATION IS SEQUENTIAL

2.6 THE ORGANIZATION IS SEQUENTIAL CLAUSE

2.6.1 Function

The ORGANIZATION IS SEQUENTIAL clause specifies sequential organization as
the logical structure of a file.

2.6.2 General Format

[ORGANIZATION IS] SEQUENTIAL

2.6.3 General Rules

(1) The ORGANIZATION ts SEQUENTIAL clause specifies sequential organization
as the logical structure of a file. The file organization is established at the
time a file is created and cannot subsequently be changed.

(2) Sequential organization is a permanent logical file structure in which a
record is identified by a predecessor-successor relationship established when
the record is placed into the file.

(3) When the ORGANIZATION clause is not specified, sequential organization
is implied.

VII-11

Sequential I-0 - PADDING CHARACTER

2.7 THE PADDING CHARACTER CLAUSE

2.7.1 Function

The PADDING CHARACTER clause specifies the character which is to be used for
block padding on sequential files.

2.7.2 General Format

PADDING CHARACTER IS

2.7.3 Syntax Rules

{ data-name-1}
literal-1

(I) Literal-I must be a one-character nonnumeric literal.

(2) Data-name-I may be qualified.

(3) Data-name-I must be defined in the Data Division as a one-character data
item of the category alphanumeric and must not be defined in the Communication
Section, the File Section, or the Report Section.

2.7.4 General Rules

(1) The PADDING CHARACTER clause specifies the character which is to be used
for block padding on sequential files. During input operations, any portion of
a block which exists beyond the last logical record and consists entirely of
padding characters will be bypassed. During input operations, a logical record
which consists solely of padding characters will be ignored. During output
operations, any portion of a block which exists beyond the last logical record
will be filled entirely with padding characters.

(2) If the PADDING CHARACTER clause is not applicable to the device type to
which the file is assigned, the creation or recognition of padding characters
does not occur.

(3) Literal-I or the value of the data item referenced by data-name-I, at
the time the OPEN statement which creates the file is executed, is used as the
value of the padding character. The padding character is a fixed file
attribute.

(4) If the CODE-SET clause is specified for the
padding character specified by literal-I or the
established for the file when the file is opened.

file, conversion of the
content of data-name-I is

(5) If the PADDING CHARACTER clause is not specified, the value used for the
padding character will be defined by the implementor.

(6) If the associated file connector is an external file connector, all
PADDING CHARACTER clauses in the run unit which are associated with that file
connector must have the same specifications. If data-name-I is specified, it
must reference an external data item.

VII-12

Sequential I-0 - RECORD DELIMITER

2.8 THE RECORD DELIMITER CLAUSE

2.8.1 Function

The RECORD DELIMITER clause indicates the method of determining the length of
a variable length record on the external medium.

2.8.2 General Format

RECORD DELIMITER IS { STANDARD-1 }
implementor-name-1

2.8.3 Syntax Rules

(1) The RECORD DELIMITER clause may be specified only for variable length
records.

(2) If the STANDARD-1 phrase is specified, the external medium must be a
magnetic tape file.

2.8.4 General Rules

(I) The RECORD DELIMITER clause is used to indicate the method
determining the length of a variable length record on the external medium.
method used will not be reflected in the record area or the record size
within the program.

of
Any

used

(2) If the STANDARD-I phrase is specified, the method used for determining
the length of a variable length record is that specified in American National
Standard X3.27-1978, Magnetic Tape Labels and File Structure for Information
Interchange, and International Standard 1001 1979, Magnetic Tape Labels and File
Structure for Information Interchange.

(3) If the implementor-name-I phrase
determining the length of a variable
implementor-name~! by the implementor.

is specified, the method used for
length record is that associated with

(4) If the RECORD DELIMITER clause is not specified, the
determining the length of a variable length record is
implementor.

method used for
specified by the

(5) At the time of a successful execution of an OPEN statement, the record
delimiter is the one specified in the RECORD DELIMITER clause in the file
control entry associated with the file-name specified in the OPEN statement.

(6) If the associated file connector is an external file connector, all
RECORD DELIMITER clauses in the run unit which are associated with that file
connector must have the same specifications.

VII-13

Sequential l-0 - RESERVE

2.9 THE RESERVE CLAUSE

2.9.1 Function

The RESERVE clause allows the user to specify the number of input-output
areas allocated.

2.9.2 General Format

RESERVE integer-1 [AREA]
AREAS

2.9.3 General Rules

(1) The RESERVE clause allows the user to specify the number of input-output
areas allocated. If the RESERVE clause is specified, the number of input-output
areas allocated is equal to the value of integer-I. If the RESERVE clause is
not specified, the number of input-output areas allocated is specified by the
implementor.

VII-14

Sequential I-0 - 1-0-CONTROL

2.10 THE I-0-CONTROL PARAGRAPH

2 .10 .1 Function

The I-0-CONTROL paragraph specifies the points at which rerun 1s to be
es·tablished the memor area which is to be shared by different files, and the
location of files on a multi le file reel. The RERUN clause and the MULTIPLE
FILE TAPE clause within the I-0-CONTROL paragraph are obsolete elements in
Standard COBOL because they are to be deleted from the next revision of Standard
COBOL.

2.10.2 General Format

I-0-CONTROL.

[[{
{

[{ REEL } } END OF] UNIT OF
file-name-1 --

RERUN [QN {. 1· t 1}] EVERY integer-1 RECORDS imp emen or-name- . integer-2 CLOCK-UNITS
condition-name-1

file-name-2 }] •• •

[SAME j[~] I AREA FOR file-name-3 {file-name-4} •.•] •.•

![MULTIPLE FILE TAPE CONTAINS { file-name-5 [POSITION integer-3]} • • •] •.. 1 • }

2.10.3 Syntax Rules

(1) The order of appearance of the clauses 1s immaterial.

2.10.4 General Rules

(1) !The MULTIPLE FILE TAPE clause,! the RERUN clause, and the SAME clause are
presented in alphabetical order on the following pages.

VII-15

Sequential I-0 - MULTIPLE FILE TAPE

2.11 THE MULTIPLE FILE TAPE CLAUSE

2.11.1 Function

The MULTIPLE FILE TAPE clause specifies the location of files on a multiple
file reel. The MULTIPLE FILE TAPE clause is an obsolete element in Standard
COBOL because it is to be deleted from the next revision of Standard COBOL.

2.11.2 General Format

MULTIPLE FILE TAPE CONTAINS {file-name-1 [POSITION integer-1]} •••

2.11.3 General Rules

(1) The MULTIPLE FILE TAPE clause is required when more than one file shares
the same physical reel of tape. Regardless of the number of files on a single
reel, only those files that are used in the object program need be specified.
If all file-names have been listed in consecutive order, the POSITION phrase
need not be given. If any file in the sequence is not listed, the position
relative to the beginning of the tape must be given. Not more than one file on
the same tape reel may be open at one time.

VII-16

Sequential I-0 - RERUN

2.12 THE RERUN CLAUSE

The RERUN clause specifies the points at which rerun is to be established.
The RERUN clause is an obsolete element in Standard COBOL because it is to be
deleted from the next revision of Standard COBOL.

2.12.2 General Format

I {[END OF] {:ii} {OF file-name-2 l
RERUN [oN {file-name-l }] EVERY integer-1 RECORDsf

implementor-name-1 integer-2 CLOCK-UNITS
condition-name-1

2.12.3 Syntax Rules

(1) File""'.'name-1 must be a sequentially organized file.

(2) The END OF REEL/UNIT, phrase
sequentially organized file_. The
implementor.

may only be used if file-name-2 is. a
definition of UNIT is determined by each

(3) When either the integer-I RECORDS phrase or the integer-2 CLOCK-UNITS
phrase is specified, implementor-name-I must be given in the RERUN clause.

(4) More than one RERUN clause may be specified for a given file-name-2
subject to the following restrictions:

a. When multiple integer-I RECORDS phrases are specified, no two of
them may specify the same' file-name-2.

b. When multiple END OF REEL or END OF UNIT phrases are specified, no
two of them may specify the same file-name-2.

(5) Only one RERUN clause containing the CLOCK-UNITS phrase may be
specified.

2.12.4 General Rules

(1) The RERUN clause specifies when and where the rerun information is
recorded. Rerun information is recorded in the following ways:

a. If file-name-I is specified, the reruq information is written on
each reel or unit of an output file and the implementor specifies where, on the
reel or file, the rerun information is to be recorded.

b. If implementor-name is specified, the rerun information is written
as a separate file on a device specified by the implementor.

(2) There are seven forms of the RERUN clause, based on the several
conditions under which rerun points can be established. The implementor must
provide at least one of the specified forms of the RERUN clause.

VII-17

Sequential I-0 - RERUN

a. When either the END OF REEL or END OF UNIT phrase is used without
the ON phrase. In this case, the rerun information is written on file-name-2,
which must be an output file.

b. When either the END OF REEL or END OF UNIT phrase is used and
file-name-1 is specified in the ON phrase. In this case, the rerun information
is written on file-name-1, which must be an output file. In addition, normal
reel, or unit, closing functions for file-name-2 are performed. File-name-2 may
either be an input or an output file.

c. When either the END OF REEL or END OF UNIT
implementor-name is specified in the ON phrase. In
information is written on a separate rerun unit defined
File-name-2 may be either an input or output file.

phrase is used and
this case, the rerun

by the implementor.

d. When the integer-1 RECORDS phrase is used. In this case, the rerun
information is written on the device specified by implementor-name-1, which must
be specified in the ON phrase, whenever integer-1 records of file-name-2 have
been processed. File-name-2 may be either an input or output file with any
organization or access.

e. When the integer-2 CLOCK-UNITS phrase is used. In this case the
rerun information is writ ten on the device specified by implementor-name-1,
which must be specified 1n the ON phrase, whenever an interval of time,
calculated by an internal clock, has elapsed.

f. When the condition-name-1 phrase is used and implementor-name-1 is
specified in the ON phrase. In this case, the rerun information is written on
the device specified by implementor-name-1 whenever a switch assumes a
particular status as specified by condition-name-I. In this case, the
associated switch must be defined in the SPECIAL~NAMES paragraph of the
Configuration Section of the Environment Division. The implementor specifies
when the switch status is interrogated.

g. When the condition-name-I phrase is used and file-name-I is
specified in the ON phrase. In this case, the rerun information is written on
file-name-I, which must be an output file, whenever a switch 'assumed a
particular status as specified by condition-name-1. In this case, as 1n
paragraph f above, the associated switch must be defined in the SPECIAL-NAMES
paragraph of the Configuration Section of the Environment Division. The
implementor specifies when the switch status is interrogated.

VII-18

Sequential I-0 - SAME

2.13 THE SAME CLAUSE

2.13.1 Function

The SAME clause specifies the memory area which is to be shared by different
files.

2.13.2 General Format

SAME ![RECORD] I AREA FOR file-name-1 {file-name-2} •••

2.13.3 Syntax Rules

(1) File-name-1 and file-name-2 must be specified in the FILE-CONTROL
paragraph of the same program.

(2) File-name-1 and file-name-2 may not reference an
connector.

external file

(3) More than one SAME clause may be included in the program, subject to the
following restrictions:

a. A file-name must not appear in more than one SAME AREA clause.

b. A file-name must not appear in more than one SAME RECORD AREA
clause.

c. If one or more file-names of a SAME AREA clause appear in a SAME
RECORD AREA clause, all of the file-names in that SAME AREA clause must appear
in the SAME RECORD AREA clause. However, additional file-names not appearing in
that SAME AREA clause may also appear in that SAME RECORD AREA clause. The rule
that only one of the files mentioned in a SAME AREA clause can be open at any
given time takes precedence over the rule that all files mentioned in a SAME
RECORD AREA clause can be open at any given time.

(4) The files referenced in the SAME AREAlor SAME RECORD AREA I clause need
not all have the same organization or access.

2.13.4 General Rules

(1) The SAME AREA clause specifies that two or more files referenced by
file-name-1, file-name-2 that do not represent sort or merge files are to use
the same memory area during processing. The area being shared includes all
storage areas assigned to the files referenced by file-name-1, file-name-2;
therefore, it is not valid to have more than one of these files in the open mode
at the same time. (See syntax rule 3c above.)

VII-19

Sequential I-0 - SAME

(2) The SAME RECORD AREA clause specifies that two or more files referenced
by file-name-1, file-name-2 are to use the same memory area for processing of
the current logical record. All of these files may be in the open mode at the
same time. A logical record in the SAME RECORD AREA is considered as a logical
record of each file open in the output mode whose file-name appears in this SAME
RECORD AREA clause and of the most recently read file open in the input mode
whose file-name appears in this SAME RECORD AREA clause. This is equivalent to
an implicit redefinition of the area, i.e., records are aligned on the leftmost
character position.

VII-20

Sequential I-0 - File Section

3. DATA DIVISION IN THE SEQUENTIAL I-0 MODULE

3.1 FILE SECTION

The File Section is located in the Data Division of a source program. The
File Section defines the structure of data files. Each file is defined by a
file description entry and one or more record description entries. Record
description entries are written immediately following the file description
entry.

The general format of the File Section in the Sequential I-0 module is shown
below.

FILE SECTION.

[file-description-entry

{record-description-entry} •.•] •••

3.1.1 File Description Entry

In a COBOL program the file description entry (FD entry) represents the
highest level of organization in the File Section. The File Section header is
followed by a file description entry consisting of a level indicator (FD), a
file-name, and a series of independent clauses. The clauses of a file
description entry (FD entry) specify the size of the logical and physical
records, the presence or absence of label records, the value of
implementor-defined label items, the names of the records which comprise the
file, and finally the number of lines to be written on a logical printer page.
The entry itself is terminated by a period.

3.1.2 Record Description Structure

A record description consists of a set of data description entries which
describe the characteristics of a particular record. Each data description
entry consists of a level-number followed by the data-name or FILLER clause, if
specified, followed by a series of independent clauses as required. A record
description may have a hierarcrrical structure and therefore the clauses used
with an entry may vary considerably, depending upon whether or not it is
followed by subordinate entries. The st.ructure of a record description and the
elements allowed in a record description entry are explained on page IV-14,
Concept of Levels, and on page VI-20, The Data Description Entry. The
availability of specific clauses in the data description entry is dependent on
the level of Nucleus module supported by the implementation.

3.1.3 Initial Values

The initial value of a data item in the File Section is undefined.

VII-21

Sequential I-0 - File Description Entry

3. 2 THE FILE DESCRIPTION ENTRY

3.2.l Function

The file description entry furnishes information concerning the physical
structure, identification, and record-names pertaining to a sequential file.

3.2.2. General Format

FD f il e-name-1

[BLOCK CONTAINS l[integer-1 TOJI integer-2

CONTAINS integer-3 CHARACTERS

{RECORDS }]
CHARACTERS

RECORD IS VARYING IN SIZE [[FROM integer-4] [TO integer-5] CHARACTERS]

[DEPENDING ON data-name-1]

CONTAINS integer-6 l'.Q integer-7 CHARACTERS

r {RECORD IS } {STANDARD}]
LLABEL RECORDS ARE OMITTED

[vALUE OF { implementor-name-1 IS {'~~~:~:~~~- 2 1}} ...]
~ATA {~i~g~~S I~E} {data-name-3} .. ·]

rLINAGE IS {~ata-name-4} LINES [WITH FOOTING AT t integer-8 {~ata-name-5}] integer-9 .

[LINES AT TOP {~ata-name- 6}]
~- integer-10 J [LINES AT BOTTOM {~ata-name- 7}]]

integer-11

[CODE-SET IS alphabet-name-1].

3.2.3 Syntax Rules

(1) The level indicator FD identifies the beginning of a file description
entry and must precede file-name-1.

(2) The clauses which follow file-name-1 may appear in any order.

(3) One or more record description entries must follow the file description
entry.

3.2.4 General Rules

(1) A file description entry associates file-name-1 with a file connector.

(2) The BLOCK CONTAINS clause, the CODE-SET clause, the DATA RECORDS clause,
the LABEL RECORDS clause, !the LINAGE clause,lthe RECORD clause, and the VALUE OF
clause are presented in alphabetical order on the following pages.

vf I-22

Sequential I-0 - BLOCK CONTAINS

3.3 THE BLOCK CONTAINS CLAUSE

3.3.1 Function

The BLOCK CONTAINS clause specifies the size of a physical record.

3.3.2 General Format

BLOCK CONTAINS l[integer-1 IQ.JI integer-2

3.3.3 General Rules

{ RECORDS }
CHARACTERS

(1) This clause is required except when one or more of the following
conditions exist:

a. A physical record contains one and only one complete logical record.

b. The hardware device assigned to the file has one and only one
physical record size.

c. The number of records contained in a block is specified in the
operating environment.

(2) The size of a physical record may be stated in terms of records unless
one or more of the following situations exists, in which case the RECORDS phrase
must not be used:

a •. In mass storage files, where logical records may extend across
physical records.

b. The physical record contains padding (area not contained in a
logical record).

c. Logical records are grouped in such a manner that an inaccurate
physical record size wou.ld be implied.

(3) If the CHARACTERS phrase is specified, the physical record size is
specified in terms of the number of character positions required to store the
physical record, regardless of the types of characters used to represent the
items within the physical record.

If integer-I is not specified, inte er-2 re resents the exact
the sical record. If integer-I and integer-2 are both specified,
to the minimum and maximum size of the physical record, ~es ectivel •

size of
they refer

(5) If the associated file connector is an external file connector, all
BLOCK CONTAINS clauses in the run unit which are associated with that file
connector must have the same value for integer-I and integer-2.

VII-23

Sequential I-0 - CODE-SET

3.4 THE CODE-SET CLAUSE

3.4.1 Function

The CODE-SET clause specifies the character code convention used to represent
data on the external media.

3.4.2 General Format

CODE-SET IS alphabet-name-1

3.4.3 Syntax Rules_

(1) If the CODE-SET clause is specified for a file, all data in that file
must be described as USAGE IS DISPLAY and any signed numeric data must be
described with the SIGN IS SEPARATE clause.

(2) The alphabet-name clause referenced by the CODE-SET clause must not
specify the literal phrase.

3.4.4 General Rules -

(1) If the CODE-SET clause is specified:

a. Upon successful execution of an OPEN statement, the character set
used to represent the data on the external media is the one referenced by
alphabet-name-1 in the file description entry associated with the file-name
specified in the OPEN statement. (See page VI-13, The SPECIAL-NAMES Paragraph.)

b. It specifies the algorithm for converting the character set on the
external media from/to the native character set during the execution of an input
or output operation.

(2) If the CODE-SET clause is not specified, the native character set is
assumed for data on the external media.

(3) If the associated file connector is an external file connector, all
CODE-SET clauses in the run unit which are associated with that file connector
must have the same character set.

VII-24

Sequential I-0 - DATA RECORDS

3.5 THE DATA RECORDS CLAUSE

3.5.1 Function

The DATA RECORDS clause serves only as documentation for the names of data
records within their associated file. The DATA RECORDS clause is an obsolete
element in Standard COBOL because it is to be deleted from the next revision of
Standard COBOL.

3.5.2 General Format

DATA {RECORD IS } {data-name-1} ••.
~ RECORDS ARE

3.5.3 Syntax Rules

(1) Data-name-I 1s the name of a data record and must have an 01
level-number record description, with the same name, associated with it.

3.5.4 General Rules

(1) The µresence of more than one data-name indicates that the file contains
more than one type of data record. These records may be of differing sizes,
different formats, etc. The order in which they are listed is not significant.

(2) Conceptually, all data records within a file share the same area. This
is in no way altered by the presence of more than one type of data record within
the file.

VII-25

Sequential I-0 - LABEL RECORDS

3.6 THE LABEL RECORDS CLAUSE

3.6.1 Function

The LABEL RECORDS clause specifies whether labels are present. The LABEL
RECORDS clause is an obsolete element in Standard COBOL because it is to be
deleted from the next revision of Standard COBOL.

3.6.2 General Format

LABEL {RECORD IS } {STANDARD}
RECORDS ARE OMITTED .

3.6.3 General Rules

(1) OMITTED specifies that no explicit labels exist for the file or the
device to which the file is assigned.

(2) STANDARD specifies that labels exist for the file or the device to which
the file is assigned and the labels conform to the implementor's label
specifications.

(3) If the LABEL RECORDS clause is not specified for a file, label records
for that file must conform to the implementor's label specifications.

(4) If the file connector associated with this file description entry is an
external file connector (see page X-23, The External Clause), ·all LABEL RECORDS
clauses in the run unit which are associated with this file connector must have
the same specification.

VII-26

Sequential I-0 - LINAGE

3.7 THE LINAGE CLAUSE

3.7.1 Function

The LINAGE clause provides a means for specifying the depth of a logical page
in terms of number of lines. It also provides for specifying the size of the
top and bot tom margins on the logical page·, and the line number, within the page
body, at which the footing area begins.

3.7.2 General Format

LINAGE IS {~ata-name-1} LINES
integer-1

[LINES AT TOP {~a ta-name-3}]
integer-3

3.7.3 Syntax Rules

[wITH FOOTING AT {~ata-name-2}] integer-2

[LINES AT BOTTOM {~ata-name-4}] integer-4

(1) Data-name-1, data-name-2, data-name-3, data-name-4
elementary unsigned numeric integer data items.

must reference

(2) Data-name-1, data-name-2, data-name-3, data~name-4 may be qualified.

(3) Integer-2 must not be greater than integer-I.

(4) Integer-3, integer-4 may be zero.

3.7.4 General Rules

(I) The LINAGE clause provides a means for specifying the size of a logical
page in terms of number of lines. The logical page size is the sum of the
values referenced by each phrase except the FOOTING phrase. If the LINES AT TOP
or LINES AT BOTTOM phrases are not specified, the values of these items are
zero. If the FOOTING phrase is not specified, no end-of-page condition
independent of the page overflow condition exists.

There is not necessarily any relationship between the size of the
logical page and the size of a physical page.

(2) Integer-I or the value of the data item referenced by data-name-I
specifies the number of lines that can be written and/or spaced on the logical
page. The value must be greater than zero. That part of the logical page in
which these lines can be written and/or spaced is called the page body.

(3) Integer-2 or the value of the data item referenced by data-name-2
specifies the line number within the page body at which the footing area begins.
The value must be greater than zero and not greater than integer-I or the value
of the data item referenced by data-name-I.

The footing area comprises the area of the page body between the line
represented by integer-2 or the value of the data item referenced by data-name-2
and the line represented by integer-I or the value of the data item referenced
b_y_ data-name-Ii inclusive.

VII-27

Sequential I-0 - LINAGE

(4) Integer-3 or the value of the data item referenced by data-name-3
specifies the number of lines that comprise the top margin on the logical page.
The value may be zero.

(5) Integer-4 or the value of the data item referenced by data-name-4
specifies the number of lines that comprise the bottom margin on the logical
page. The value may be zero.

(6) Integer-1, integer-3, and integer-4, if specified, are used at the time
the file is opened by the execution of an OPEN statement with the OUTPUT phrase,
to specify the number of lines that comprise each of the indicated sections of a
logical page. Integer-2, if specified, is used at that time to define the
footing area. These values are used for all logical pages written for that file
during a given execution of the program.

(7) The values of the data items referenced by data-name-1, data-name-3, and
data-name-4, if specified, are used as follows:

a. The values of the data items, at the time an OPEN statement with the
OUTPUT phrase is executed for the file, are used to specify the number of lines
that are to comprise each of the indicated sections for the first logical page.

b. The values of the data items, at the time a WRITE statement with the
ADVANCING PAGE phrase is executed or a page overflow condition occurs are used
to specify the number of lines that are to comprise each of the indicated
sections for the next logical page. (See page VII-52, The WRITE Statement.)

(8) The value of the data item referenced by data-name-2, if specified, at
the time an OPEN statement with the OUTPUT phrase is executed for the file, is
used to define the footing area for the first logical page. At the time a WRITE
statement with the ADVANCING PAGE phrase is executed or a page overflow
condition occurs, it is used to define the footing area for the next logical
page.

(9) A LINAGE-COUNTER is generated by the presence of a LINAGE clause. The
value in the LINAGE-COUNTER at any given time represents the line number at
which the device is positioned within the current page body. The rules
governing the LINAGE-COUNTER are as follows:

a. A separate LINAGE-COUNTER is supplied for each file described in the
File Section whose file description entry contains a LINAGE clause.

b. LINAGE-COUNTER may be referenced only in Procedure Division
statements; however only the input-output control system may change the value of
LINAGE-COUNTER. Since more than one LINAGE-COUNTER may exist in a program, the
user must qualify LINAGE-COUNTER by file-name when necessary.

c. LINAGE-COUNTER is automatically modified, according to the following
rules, during the execution of a WRITE statement to an associated file:

t) When the ADVANCING PAGE phrase of the WRITE statement is
specified, the LINAGE-COUNTER is automatically reset to one. During the
resetting of LINAGE-COUNTER to the value one, the value of LINAGE-COUNTER is
implicitly incremented to exceed the value specified by integer-! or the data
item referenced by data-name-1.

VII-28

Sequential I-0 - LINAGE

2) When the ADVANCING identifier-2 or integer-I phrase of the WRITE
statement is specified, the LINAGE-COUNTER is incremented by integer-I or the
value of the data item referenced by identifier-2.

3) When the ADVANCING
specified, the LINAGE-COUNTER 1s
VII-52, The WRITE Statement.)

phrase of
incremented

the
by

WRITE statement is not
the value one. (See page

4) The value of LINAGE-COUNTER is automatically reset to one when
the device is repositioned to the first line that can be written on for each of
the succeeding logical pages. (See page VII-52, The WRITE Statement.)

d. The value of LINAGE-COUNTER is automatically set to one at the time
an OPEN statement with the OUTPUT phrase is executed for the associated file.

(10) Each logical page is contiguous to the next with no additional spacing
provided.

(11) If the file connector associated with this file description entry is an
external file. connector, all file description entries in the run unit which are
associated with this file connector must have:

a. A LINAGE clause, if any file description entry has a LINAGE clause.

b. The same corresponding values for integer-1, integer-2, integer-3,
and integer-4, if specified.

)
c. The same corresponding external data items referenced by

data-name-I, data-n?me-2, data-name-3, and data-name-4.

VII-29

Sequential I-0 - RECORD

3.8 THE RECORD CLAUSE

3.8.1 Function

The RECORD clause specifies the number of character positions in a fixed
length record, or specifies the range of character positions in a variable
length record. If the number of character positions does vary, the clause
specifies the minimum and maximum number of character positions.

3.8.2 General Format

Format 1:

RECORD CONTAINS integer-1 CHARACTERS

Format 2:

RECORD IS VARYING IN SIZE [[FROM integer-2] [TO integer-3] CHARACTERS]

[DEPENDING ON data-name-1)

Format 3:

RECORD CONTAINS integer-4 TO integer-5 CHARACTERS

3.8.3 Syntax Rules

FORMAT 1:

(1) No record description entry for the file may specify a number of
character positions greater than integer-1.

FORMAT 2:

(2) Record descriptions for the file must not describe records which contain
a lesser number of character positions than that specified by integer-2 nor
records which contain a greater number of character positions than that
specified by integer-3.

(3) Integer-3 must be greater than integer-2.

(4) Data-name-I must describe an elementary unsigned integer in the
Working-Storage or Linkage Section.

3.8.4 General Rules

ALL FORMATS:

(1) If the RECORD clause is not specified, the size of each data record is
completely defined in the record description entry.

VII-30

Sequential I-0 - RECORD

(2) If the associated file connector is an external file connector, all file
description entries in the run unit which are associated with that file
connector must specify the same values for integer-I lor integer-2 and integer-3. I
If the RECORD clause is not specified, all record description entries associated
with this file connector must be the same length.

FORMAT 1:

(3) Format I is used to specify fixed length records. Integer-I specifies
the number of character positions contained in each record in the file.

FORMAT 2:

(4) Format 2 is used to specify variable length records. Integer-2
specifies the minimum number of character positions to be contained in any
record of the file. Integer-3 specifies the maximum number of character
positions in any record of the file.

(5) The number of character positions associated with a record description
is determined by the sum of the number of character positions in all elementary
data items excluding redefinitions and renamings, plus any implicit FILLER due
to synchronization. If a table is specified:

a. The minimum number of table elements described in the record is used
in the summation above to determine the minimum number of character positions
associated with the record description.

b. The maximum number of table elements described in the record is used
in the summation above to determine the maximum number of character positions
associated with the record description.

(6) If integer-2 is not specified, the minimum number of character posit ions
to be contained in any record of the file is equal to the least number of
character positions described for a record in that file.

(7) If integer-3 is not specified, the maximum number of character positions
to be contained 1n any record of the file is equal to the greatest number of
character positions described for a record in that file.

(8) If data-name-I is specified, the number of character positions in the
record must be placed into the data item referenced by data-name-I before any
RELEASE, REWRITE, or WRITE statement is executed for the file.

(9) If data-name-1 is specified, the execution of a DELETE, RELEASE,
REWRITE, START, or WRITE statement or the unsuccessful execution of a READ or
RETURN statement does not alter the content of the data item referenced by
data-name-I.

(10) During the execution of a RELEASE,
number of character positions in the
conditions:

REWRITE, or WRITE statement, the
record is determined by the following

a. If data-name-I is specified, by the content of the data item
referenced by data-name-I.

VII-31

Sequential I-0 - RECORD

b. If data-name-I is not specified and the record does not contain a
variable occurrence data item, by the number of character positions in the
record.

c. If data-name-I is not specified and the record
variable occurrence data item, by the sum of the fixed portion
of the table described by the number of occurrences at the time
the output statement.

does contain a
and that portion
of execution of

(11) If data-name-I is specified, after the successful execution of a READ or
RETURN statement for the file, the contents of the data item referenced by
data-name-I will indicate the number of character positions in the record just
read.

(12) If the INTO phrase is specified in the READ or RETURN statement, the
number of character positions in the current record that participate as the
sending data items in the implicit MOVE statement is determined by the following
conditions:

a. If data-name-I is specified, by the content of the data item
referenced by data-name-I.

b.
moved into
specified.

FORMAT 3:

If data-name-I is not specified, by the value that would have been
the data item referenced by data-name-I had data-name-1 been

(13) When format 3 of the RECORD clause is used, integer-4 and integer-5
refer to the minimum number of characters in the smallest size data record and
the maximum number of characters in the largest size data record, respectively.
However, in this case, the size of each data record is completely defined in the
record description entry.

(14) _The size of each data record is specified in terms of the number of
character positions required to store the logical record, regardless of the
types of characters used to represent the items within the logical record. The
size of a record is determined by the sum of the number of characters in all
fixed length elementary items plus the sum of the maximum number of characters
in any variable length item subordinate to the record. This sum may be
different from the actual size of the record; see page IV-16,. Selection of
Character Representation and Radix; page VI-44, The SYNCHRONIZED Clause; page
VI-46, The USAGE Clause.

VII-32

Sequential I-0 - VALUE OF

3.9 THE VALUE OF CLAUSE

3.9.1 Function

The VALUE OF clause particularizes the description of an item in the label
records associated with a file. The VALUE OF clause is an obsolete element in
Standard COBOL because it is to be deleted from the next revision of Standard
COBOL.

3.9.2 General Format

{implementor-name-1 IS {ld~ta-name-ll}} •••
literal-I

3.9.3 Syntax Rules

(I) Data-name-1
subscripted, nor
clause.

should be qualified when necessary, but cannot be
can data-name-1 be an item described with the USAGE IS INDEX

(2) Data-name-1 must be in the Working-Storage Section.

3.9.4 General Rules

(~) For an input file, the appropriate label routine checks to see if the
value of im lementor-name-I is e ual to literal-I or the content of the data
item referenced b data-name-1, whichever has been specified.

For an output file, at the appropriate time the value of
implementor-name-I is made equal to literal-I or the content of the data item
referenced by data-name-I, whichever has been specified.

(2) If the associated file connector is an external file connector, all
VALUE OF clauses in the run unit which are associated with that file connector
must be consistent. The implementor will specify the consistency rules.

VII-33

Sequential I-0 - Procedure Division

4. PROCEDURE DIVISION IN THE SEQUENTIAL I-0 MODULE

4.1 GENERAL DESCRIPTION

The Procedure Division .contains declarative procedures when the USE statement
from the Sequential I-0 module is present in a COBOL source program. Shown
below is the general format of the Procedure Division when the USE statement is
present.

PROCEDURE DIVISION.

DECLARATIVES.

{section-name SECTION.

USE statement.

[paragraph-name.

[sentence] •.• . . . } ...
END DECLARATIVES.

{section-name SECTION.

[paragraph-name.

[sentence] •••] • • • } •.•

VII-34

Sequential 1-0 - CLOSE

4.2 THE CLOSE STATEMENT

4.2.1 Function

The CLOSE statement terminates the processing of reels/units and files I with I
!optional rewind and/or lock or removal where applicable.I

4.2.2 General Format

file-name-1

4.2.3 Syntax Rules

{ REEL} [FOR REMOVAL]
lllill'.

WITH {NO REWIND}
LOCK

(1) The files referenced 1n the CLOSE statement need not all have the same
organization or access.

4.2.4 General Rules

Except where otherwise stated in the general rules below, the terms 'reel'
and 'unit' are synonymous and completely interchangeable in the CLOSE statement.
Treatment of sequential mass storage files is logically equivalent to the
treatment of a file on t~e or analo_g_ous se~_guential media.JTreatment of a file
contained in a multiple file tape environment is logically equivalent to the
treatment of a sequential single-reel/unit file if the file is wholly contained
on one reel.

(1) A CLOSE statement may only be executed for a file in an open mode.

(2) For the purpose of showing the effect of various types of CLOSE
statements as applied to various storage media, all files are divided into the
following categories:

a. Non-reel/unit. A file whose input or output medium 1s such that the
concepts of rewind and reels/units have no meaning.

b. Sequential single-reel/unit. A sequential file that 1s entirely
contained on one reel/unit.

c. Sequential multi-reel/unit. A sequential file that 1s contained on
more than one reel/unit.

(3) The results of executing each type of CLOSE for each category of file
are summarized in table 1 on page VII-36.

VII-35

Sequential I-0 - CLOSE

File Category
CLOSE

Statement Sequential Sequential
Format Single- Multi-

Non-Reel/Unit Reel/Unit Reel/Unit

CLOSE c C,G A,C,G

CLOSE WITH LOCK C,E C,E,G A,C,E,G

CLOSE WITH NO REWIND C,H B,C A,B,C

CLOSE REEL/UNIT F F,G F,G

CLOSE REEL/UNIT F D,F,G D,F,G
FOR REMOVAL

Table 1. Relationship of Categories of Files and the Formats
of the CLOSE Statement

The definitions of the symbols in the table are given below. Where the
definition depends on whether the file is an input, output, or input-output
file, alternate definitions are given; otherwise, a definition applies to input,
output, and input-output files.

A. Effect on Previous Reels/Units

Input Files and Input-Output Files:

All reels/units in the file prior to the current reel/unit are
closed except those reels/units controlled by a prior CLOSE REEL/UNIT statement.
If the current reel/unit is not the last in the file, the reels/units in the
file following the current one are not processed.

Output Files:

All reels/units in the file prior to the current reel/unit are
closed except those reels/units controlled by a prior CLOSE REEL/UNIT statement.

B. No Rewind of Current Reel

The current reel/unit is left in its current position.

C. Close File

Input Files and Input-Output Files:

If the file is positioned at its end and label records are specified
for the file, the labels are processed according to the implementor's standard
label convention. The behavior of the CLOSE statement when label records are
specified but not present, or when label records are not specified but are
present, is undefined. Closing operations specified by the implementor are
executed. If the file is positioned at its end and label records are not
specified for the file, label processing does not take place but other closing

VII-36

Sequential I-0 - CLOSE

operations specified by the implementor are executed. If the file is positioned
other than at its end, the closing operations specified by the implementor are
executed, but there is no ending label processing.

Output Files:

If label records are specified for the file, the labels are
processed according to the implementor's standard label convention. The
behavior of the CLOSE statement when label records are specified but not
present, or when label records are not specified but are present, is undefined.
Closing operations specified by the implementor are executed. If label records
are not specified for the file, label processing does not take place but other
closing operations specified by the implementor are executed.

D. Reel/Unit Removal

The current reel or unit is rewound, when applicable, and the reel
or unit is logically removed from the run unit; however, the reel or unit may be
accessed again, in its proper order of reels or units within the file, if a
CLOSE statement without the REEL or UNIT phrase is subsequently executed for
this file followed by the execution of an OPEN statement for the file.

E. File Lock

The file is locked and cannot be opened again during this execution
of this run· unit.

F. Close Reel/Unit

Input Files and Input-Output Files:

The following operations take place:

1) If the current reel/unit is the last or only reel/unit for the
file or the reel is on a non-reel/unit medium, there is no reel/unit swap and
the current volume pointer remains unchanged.

2) If another reel/unit exists for the file, a reel/unit swap
occurs, the current volume pointer is updated to point to the next reel/unit
existing in the file, and the standard beginning reel/unit label procedure is
executed. If no data records exist for the current volume, another reel/unit
swap occurs.

Output Files (Reel/Unit Media):

The following operations take place:

1) The standard ending reel/unit label procedure is executed.

2) A reel/unit swap. The current volume pointer is updated to
point to the new reel/unit.

3) The standard beginning reel/unit label procedure is executed.

VII-37

Sequential I-0 - CLOSE

4) The next executed WRITE statement that references that file
directs the next logical data record to the next reel/unit of the file.

remains in
general rule

G.

beginning.

Output Files (Non-Reel/Unit Media):

Execution of this statement is considered successful. The file
the open mode, and no action takes place except as specified in
4.

Rewind

The current reel or analogous device is positioned at its physical

H. Optional Phrases Ignored

The CLOSE statement is executed as if none of the optional phrases
is present.

(4) The execution of the CLOSE statement causes the value of the I-0 status
associated with file-name-1 to be updated. (See page VII-2, I-0 Status.)

(5) If an optional input file is not present, no end-of-file or reel/unit
processing is performed for the file and the file position indicator and the
current volume pointer are unchanged.

(6) Following the successful execution of a CLOSE statement without the REEL
or UNIT phrase, the record area associated with a file-name-1 is no longer
available. The unsuccessful execution of such a CLOSE statement leaves the
availability of the record area undefined.

(7) Following the successful execution of a CLOSE statement without the REEL
or UNIT phrase, the file is removed from the open mode, and the file is no
longer associated with the file connector.

(8) If more than one file-name-1 is specified in a CLOSE statemen~, the
result of executing this CLOSE statement is the same as if a separate CLOSE
statement had been written for each file-name-1 in the same order as specified
in the CLOSE statement.

VII-38

Sequential I-0 - OPEN

4.3 THE OPEN STATEMENT

4.3.1 Function

The OPEN statement initiates the of files. The REVERSED phrase is
.--~===--.:::_::_:::..::..:-=-=-=-=-==-=:..:::..::.........:::..:::..:=-=...c=-=-=-=-=--==-=-..i::..=..-=--=..:::..::;..;::...;;:~>-.,;:=----"'"'"-='~~

an obsolete element in Standard it is to be deleted from the next
revision of Standard COBOL.

4.3.2 General Format

l ~ {file-name-1 [~~R~~DREWIND]
OPEN OUTPUT {file-name-2 [WI1H .NQ REWIND]

I-0 {file-name-3} •••

4.3.3 Syntax Rules

L :: l ··.
(1) The REVERSED phrase can only be used with sequential files.

(2) The EXTEND phrase must not be specified for a multiple file reel.

(3) The EXTEND phrase must only be used for files for which the LINAGE
clause has not been specified.

(4) The files referenced in the OPEN statement need not all have the same
organization or access.

4.3.4 General Rules

(1) The successful execution of an OPEN statement determines the
availability of the file and results in the file being in an open mode. The
successful execution of an OPEN statement associates the file with the file-name
through the file connector.

A file is available if it is physically present and is recognized by the
input-output control system. Table 1 on page VII-40 shows the results of
opening available and unavailable files.

VII-39

Sequential I-0 - OPEN

File is Available File is Unavailable

INPUT Normal open Open 1S unsuccessful

INPUT (optional file) Normal open Normal open; the first read
causes the at end condition

I-0 Normal open Open is unsuccessful

I-0 (optional file) Normal open Open causes the file to be
created

OUTPUT Normal open; the Open causes the file to be
file contains no created
records

EXTEND Normal open Open is unsuccessful

EXTEND (optional file) Normal open Open causes the file to be
created

Table 1. Availability of a File

(2) The successful execution of an OPEN statement makes the associated
record area available to the program. If the file connector associated with
file-name is an external file connector, there 1s only one record area
associated with the file connector for the run unit.

(3) When a file is not in an open mode, no
references the file, either explicitly or
statement with the USING or GIVING phrase,
statement with the USING or GIVING phrase.

statement may be executed which
implicitly, except for a MERGE

an OPEN statement, or a SORT

(4) An OPEN statement must be successfully executed prior to the execution
of any of the permissible input-output statements. In table 2, Permissible
Statements, 'X' at an intersection indicates that the specified statement may be
used with the open mode given at the top of the column.

Open Mode

Statement Input Output I-0 Extend

READ x x

WRITE x x

REWRITE x

Table 2: Permissible Statements

VII-40

Sequential I-0 - OPEN

(5) A file may be opened with the INPUT, OUTPUT,IEXTEND,I and I-0 phrases in
the same run unit. Following the initial execution of an OPEN statement for a
file, each subsequent OPEN statement execution for that same file must be
preceded by the execution of a CLOSE statement, without the REEL, UNIT,lor LOCKI
phrase, for that file.

(6) Execution of the OPEN statement does not obtain or release the first
data record.

(7) If label records are specified for the file, the beginning labels are
processed as follows:

a. When the INPUT phrase is specified, the execution of the OPEN
statement causes the labels to be checked in accordance with the implementor's
specified conventions for input label checking.

b. When the OUTPUT phrase is specified, the execution of the OPEN
statement causes the labels to be written in accordance with the implementor's
specified conventions for output label writing.

The behavior of the OPEN statement when label records are specified but
not present, or when label records are not specified but are present, is
undefined.

(8) If during the execution of an OPEN statement a file attribute conflict
condition occurs, the execution of the OPEN statement is unsuccessful. (See
page VII-5, The File Attribute Conflict Condition.)

(9) The NO REWIND and REVERSED phrases must only be used with:

a. Sequential single reel/unit files .•
Statement.)

(See page VII-35, The CLOSE

b. Sequential files wholly contained within a single reel of tape
within a multiple file tape environment. (See page VII-16, The MULTIPLE FILE
TAPE Clause.)

(10) The NO REWIND and REVERSED phrases will be ignored if they do not apply
to the storage medium on which the file resides.

(11) If the storage medium for the file permits rewinding, the following
rules apply:

.-~~~-a-·~ !When neither the REVERSED, the EXTEND, nor the NO REWIND phrase isl
!specified,! execution of the OPEN statement causes the file to be positioned at
its beginning. ·

b. When the NO REWIND phrase is specified, execution of the OPEN
statement does not cause the file to be repositioned; the file must be already
positioned at its beginning prior to execution of the OPEN statement.

c. When the REVERSED phrase is specified, the file is positioned at its
end by execution of the OPEN statement.

VII-41

Sequential I-0 - OPEN

(12) When the REVERSED phrase is specified, the subsequent READ statements
for the file make the data records of the file available in reversed order; that
is, starting with the last record.

(13) If a file opened with the INPUT phrase is an optional file which is not
present, the OPEN statement sets the file position indicator to indicate that an
O_J>_tional in_Jl_ut file is not ~esent.

(14) When files are opened with the INPUT or I-0 phrase, the file position
indicator is set to 1.

(15) When the EXTEND phrase is specified, the OPEN statement positions the
file immediately after the last logical record for that file. The last logical
record for a sequential file is the last record written in the file.

(16) When the EXTEND phrase
indicates label records are
includes the following steps:

is specified and the
present, the execution

LABEL RECORDS clause
of the OPEN statement

a. The beginning file labels are processed only in the case of a single
reel/unit file.

b. The beginning reel/unit labels on the last existing reel/unit are
processed as though the file was being opened with the INPUT phrase.

c. The existing ending file labels are processed as though the file is
being opened with the INPUT phrase. These labels are then deleted.

d. Processing then proceeds as though the file has been opened with the
OUTPUT phrase.

(17) The OPEN statement with the I-0 phrase must reference a file that
supports the input and output operations that are permitted for a sequential
file when opened in the I-0 mode. The execution of the OPEN statement with the
I-0 phrase places the referenced file in the open mode for both input and output
operations.

(18) When the I-0 phrase is specified and the LABEL RECORDS clause indicates
label records are present, the execution of the OPEN statement includes the
following steps:

a. The labels are checked in accordance with the implementor's
specified conventions for input-output label checking.

b. The new labels are written in accordance with the implementor's
specified conventions for input-output label writing.

(19) Treatment of a file contained in a multiple file tape environment is
logically equivalent to the treatment of a sequential file contained in a single
file tape environment.

(20) Whenever a set of files resides on a multipte file reel, and one of this
set of files is referenced in an OPEN statement, the following rules apply:

a. Not more than one of the files ma_y_ be in the o~en mode at one time.

VII-42

Sequential I-0 - OPEN

b. There is no constraint on the order in which files may be opened in
the input mode.

c. When one of the files referenced by a file-name is the subject of an
OPEN statement with the OUTPUT phrase, all files on the associated multiple file
reel whose position numbers are less than the position number of that file must
already exist on the reel at the time the OPEN statement is executed. Further,
no file on that multiple file reel whose position number is greater than the
position number of that file can exist at that time on the reel.

d. Each of the files must be a sequential file.

(21) JFor an optional file that is unavailable, the successful execution of an
OPEN statement with an EXTEND or I-0 phrase creates the file. This creation
takes place as if the following statements were executed in the order shown:

OPEN OUTPUT file-name.
CLOSE file-name.

These statements are followed by execution of the OPEN statement specified in
the source program.

The successful execution of an OPEN statement with the OUTPUT phrase
creates the file. After the successful creation of a file, that file contains
no data records.

(22) Upon successful execution of the OPEN statement, the current volume
pointer is set:

a. To point to the first or only reel/unit for an available input or
I-0 file.

b. To point to the reel/unit containing the last logical record for an
extend file.

c. To point to th¢ new reel/unit for an unavailable output, I-0, .C2!J
lextendlfile.

(23) The execution of the OPEN statement causes the value of the I-0 status
associated with file-name to be updated. (See page VII-2, I-0 Status.)

(24) If more than one file-name is specified in an OPEN statement, the result
of executing this OPEN statement is the same as if a separate OPEN statement had
been written for each file-name in the same order as specified in the OPEN
statement.

(25) The minimum and maximum record sizes for a file are established at the
time the file is created and must not subsequently be changed.

VII-43

Sequential I-0 - READ

4.4 THE READ STATEMENT

4.4.1 Function

The READ statement makes available the next logical record from a file.

4.4.2 .General Format

READ file-name-1 I [NEXT] I RECORD [INTO identifier-!]

[AT END imperative-statement-!]

[NOT AT END imperative-statement-2]

[END-READ]

4.4.3 Syntax Rules

(1) The storage area associated with identifier-I and the record area
associated with file-name-I must not be the same storage area.

(2) The AT END phrase must be specified if no applicable USE AFTER STANDARD
EXCEPTION procedure is specified for file-name-1.

4.4.4 General Rules

(1) The file referenced by file-name-1 must be open in the input or I-0 mode
at the time this statement is executed. (See page VII-39, The OPEN Statement.)

(2) The NEXT phrase is optional and has no effect on the execution of the
READ statement.

(3) The execution of the READ statement causes the value of the I-0 status
associated with file-name-1 to be updated. (See page VII-2, I-0 Status.)

(4) The setting of the file position indicator at the start of the execution
of a READ statement is used in determining the record to be made available
according to the following rules. Comparisons for records in sequential files
relate to the record number.

a. If the file position indicator indicates that no valid next record
has been established, execution of the READ statement is unsuccessful.

b. If the file position indicator indicates that an optional input file
is not present, execution proceeds as s ecified in eneral rule 10.

c. If the file position indicator was established by
statement, the first existing record in the file whose record
than or equal to the file position indicator is selected.

d. If the file position indicator was established by
statement, the first existing record in the file whose record
than the file position indicator is selected.

VII-44

a previous OPEN
number is greater

a previous R,EAD
number is greater

Sequential I-0 - READ

If a record is found which satisfies the above rules, it 1s made
available in the record area associated with file-name-1.

If no record is found which satisfies the above rules, the file position
indicator is set to indicate that no next logical record exists and execution
proceeds as specified in general rule 10.

If a record is made available, the file position indicator is set to the
record number of the record made available.

(5) Regardless of the method used to overlap access time with processing
time, the concept of the READ statement is unchanged; a record is available to
the object program prior to the execution of imperative-statement-2, if
specified, or prior to the execution of any statement following the READ
statement, if imperative-statement-2 is not specified.

(6) When the logical records of a file are described with more than one
record description, these records automatically share the same record area in
storage; this is equivalent to an implicit redefinition of the area. The
contents of any data items which lie beyond the range of the current data r.ecord
are undefined at the completion of the execution of the READ statement.

(7) The INTO phrase may be specified in a READ statement:

a. If only one record description is subordinate to
description entry, or

the file

b. If all record-names associated with file-name-1 and the data item
referenced by identifier-I describe a group item or an elementary alphanumeric
item.

(8) The result of the execution of a READ statement with the INTO phrase 1s
equivalent to the application of the following rules in the order specified:

a. The execution of the same READ statement without the INTO phrase.

b. The current record is moved from the record area to the area
specified by identifier-1 according to the rules for the MOVE statement without
the CORRESPONDING phrase. The size of the current record is determined by rules
s ecified in the RECORD clause. [I"'f"the file description entry contains a RECORD
IS VARYING clause the im lied move is a rou move. The implied MOVE statement
does not occur if the execution of the READ statement was unsuccessful. Any
subscripting associated with identifier-I is evaluated after the record has been
read and immediately before it is moved to the data item. The record is
available in both the record area and the data item referenced by identifier-I.

(9) If, during the execution of a READ statement, the end of reel/unit is
recognized or a reel/unit contains no logical records, and the logical end of
the file has not b.een reached, the following operations are executed:

VII-45

Sequential I-0 - READ

a. The standard ending reel/unit label procedure.

b. A reel/unit swap. The current volume pointer is updated to point to
the next reel/unit existing for the file.

c. The standard beginning reel/unit label procedure.

(10) If the file position indicator indicates that no next logical record
exists, \or that an optional input file is not present,lthe following occurs'in
the order specified:

a. A value, derived from the setting of the file position indicator, is
placed into the I-0 status associated with file-name-1 to indicate the at end
condition. (See page VII-2, I-0 Status.)

b. If the AT END phrase is specified in the statement causing the
condition, control is transferred to imperative-statement-1 in the AT END
phrase. Any USE AFTER STANDARD EXCEPTION procedure associated with file-name-1
is not executed.

c. If the AT END phrase is not specified, a USE AFTER STANDARD
EXCEPTION procedure must be associated with this file-name-1, and that procedure
is executed. Return from that procedure is to the next executable statement
following the end of the READ statement.

When the at end condition occurs, execution of the READ statement is
unsuccessful.

(11) If an at end condition does not occur during the execution of a READ
statement, the AT END phrase is ignored, if specified, and the following actions
occur:

a. The file position indicator is set and the I-0 status associated
with file-name-1 is updated.

b.
control is
execution of
page VII-50,

If an exception condition which is not an at end condition exists,
transferred according to rules of the USE statement following the
any USE AFTER EXCEPTION procedure applicable to file name-1. (See
The USE Statement.)

c. If no exception condition exists, the record is made available in
the record area and any implicit move resulting from the presence of an INTO
phrase is executed. Control is transferred to the end of the READ statement or
to imperati ve-stat.ement-2, if specified. In the latter case, execution
continues according to the rules for each statement specified in
imperative-statement-2. If a procedure branching or conditional statement which
causes explicit transfer of control is executed, control is transferred in
accordance with the rules for that statement; otherwise, upon completion of the
execution of imperative-statement-2, control is transferred to the end of the
READ statement.

(12) Following the unsuccessful execution of a READ statement, the content of
the associated record area is undefined and the file position indicator is set
to indicate that no valid next record has been established.

VII-46

Sequential I-0 - READ

(13) If the number of character positions in the record that is read is less
than the minimum size specified by the record des_cription entries for
file-name-I, the portion of the record area which is to be right of the last
valid character read is undefined. If the number of character positions in the
record that is read is greater than the maximum size specified by the record
description entries for file-name-I, the record is truncated on the right to the
maximum size. In either of these cases, the READ statement is successful and an
I-0 status is set indicating a record length conflict has occurred. (See page
VII-2, I-0 Status.)

(14) The END-READ phrase delimits the scope of the READ statement. (See page
IV-40, Scope of Statements.)

VII-47

Sequential I-0 - REWRITE

4.5 THE REWRITE STATEMENT

4.5.1 Function

The REWRITE statement logically replaces a record existing in a mass storage
£i le.

4.5.2 General Format

REWRITE record-name-1 [FROM identifier-1] [END-REWRITE]

4.5.3 Syntax Rules

(I) Record-name-I and identifier-I must not refer to the same storage area.

(2) Rec or d-name -1 is the name of a logical record in the File Section ·of the
Data Division and may be qualified.

4.5.4 General Rules

(1) The file referenced by the file-name associated with record-name-I must
be a mass storage file and must be open in the I-0 mode at the time of execution
of this statement. (See page VII-39, The OPEN Statement.)

(2) The last input-output statement executed for the associated file prior
to the execution of the REWRITE statement must have been a successfully executed
READ statement. The mass storage control system (MSCS) logically replaces the
record that was accessed by the READ statement.

(3) The logical record released by a successful execution of the REWRITE
statement is no lonKer available in the record areaJunless the file-name
associated with record-name-I is specified in a SAME RECORD AREA clause. The
logical record is also available to the program as a record of other files
referenced in the same SAME RECORD AREA clause as the associated output file, as
well as the file associated with record-name-I.

(4) The result of the execution of a REWRITE statement with the FROM phrase
is equivalent to the execution of the following statements in the order
specified:

a. The statement:

MOVE identifier-I TO record-name-1

according to the rules specified for the MOVE statement.

b. The same REWRITE statement without the FROM phrase.

(5) After the execution of the REWRITE statement is complete, the
information in the area referenced by identifier-1 is available, even though the
information in the area referenced by record-name-1 is not available I except asl

I specified by the SAME RECORD AREA clause.I

VII-48

Sequential I-0 - REWRITE

(6) The file position indicator is not affected by the execution of a
REWRITE statement.

(7) The execution of the REWRITE statement causes the value of
status of the file-name associated with record-name-I to be updated.
VII-2, I-0 Status.)

the I-0
(See page

(8) The execution of the REWRITE statement releases a logical record to the
operating system.

(9) The END-REWRITE phrase delimits the scope of the REWRITE statement.
(See page IV-41, Scope of Statements.)

(10) If the number of character positions specified in the record referenced
by record-name-I is not equal to the number of character positions in the record
being replaced, the execution of the REWRITE statement is unsuccessful, the
updating operation does not take place, the content of the record area is
unaffected and the I-0 status of the file associated with record-name-I is set
to a value indicating the cause of the condition. (See page VII-2, I-0 Status.)

VII-49

Sequential I-0 - USE

4.6 THE USE STATEMENT

4.6.1 Function

The USE statement specifies procedures for input-output error handling that
are in addition to the standard procedures provided by the input-output control
system.

4.6.2 General Format

USE AFTER STANDARD {EXCEPTION} PROCEDURE ON
- ERROR

4.6.3 Syntax Rules

{file-name-1} E:!::!Jl
INPUT
OUTPUT
I-0

(1) A USE statement, when present, must inunediately follow a section header
in the declaratives portion of the Procedure Division and must appear in a
sentence by itself. The remainder of the section must consist of zero, one, or
more procedural paragraphs that define the procedures to be used.

(2) The USE statement is never executed; it merely defines the conditions
calling for the execution of the USE procedures•

(3) Appearance of file-name-1 in a USE statement must not cause the
simultaneous request for execution of more than one USE procedure.

(4) The words ERROR and EXCEPTION are synonymous and may
interchangeably.

be used

(5) The files implicitly or explicitly referenced in the USE statement need
not all have the same organization or access.

(6) The INPUT, OUTPUT, I-0, land EXTEND!phrases may each be specified only
once in the declaratives portion of a given Procedure Division.

4.6.4 General Rules

(1) Declarative procedures may be included in any COBOL source program
irrespective of whether the program contains or is contained within another
program. A declarative is invoked when any of the conditions described in the
USE statement which prefaces the declarative occurs while the program is being
executed. Only a declarative within the separately compiled program that
contains the statement which caused the qualifying condition is invoked when any
of the conditions described in the USE statement which prefaces the declarative
occurs while that separately compiled program is being executed. If no
qualifying declarative exists in the separately compiled program, no declarative
is executed.

(2) Within a declarative procedure, there must be no reference to any
nondeclarative procedures.

VII-50

Sequential I-0 - USE

(3) Procedure-names associated with a USE statement may be referenced 1n a
different declarative section or in a nondeclarative procedure only with a
PERFORM statement.

(4) When file-name-1 is specified explicitly, no other USE statement applies
to file-name-I.

(5) The procedures associated with a USE statement are executed by the
input-output control system after completion of the standard input-output
exception routine upon the unsuccessful execution of an input-output operation
unless an AT END phrase takes precedence. The rules concerning when the
procedures are executed are as follows:

a. If file-name-1 is specified, the associated procedure 1s executed
when the condition described in the USE statement occurs.

b. If INPUT is specified, the associated procedure is executed when the
condition described in the USE statement occurs for any file open in the input
mode or in the process of being opened in the input mode, except those files
referenced by file-name-I in another USE statement specifying the same
condition.

c. If OUTPUT is specified, the associated procedure is executed when
the condition described 1n the USE statement occurs for any file open in the
output mode or in the process of being opened in the output mode, except those
files referenced by file-name-I in another USE statement specifying the same
condition.

d.
condition
mode or in
referenced
condition.

If I-0 is specified, the associated procedure is executed when the
described in the USE statement occurs for any file open in the I-0
the process of being opened in the I-0 mode, except those files

by file-name-I in another USE statement specifying the same

e. If EXTEND is specified, the associated procedure is executed when
the condition described 1n the USE statement occurs for any file open in the
extend mode or in the process of being opened in the extend mode, except those
files referenced by file-name-1 1n another USE statement specifying the same
condition.

(6) After execution of the USE procedure, control is transferred to the
invoking routine in the input-output control system. If the I-0 status value
does not indicate a critical input-output error, the input-output control system
returns control to the next executable statement following the input-output
statement whose execution caused the exception. If the I-0 status value does
indicate a critical error, the implementor determines what action is taken. (See
page VII-2, I-0 Status.)

(7) Within a USE procedure, there must not be the execution of any statement
that would cause the execution of a USE procedure that had previously been
invoked and had not yet returned control to the invoking routine.

VII-51

Sequential I-0 - WRITE

4.7 THE WRITE STATEMENT

4.7.1 Function

The WRITE statement releases a logical record for an output file.
also be used for vertical positioning of lines within a logical page.

4.7.2 General Format

WRITE record-name-1 [FROM identifier-1]
~ -

{ BEFORE} ADVANCING
AFTER

{lmnemonic-name-1)}
PAGE

l {~!~::~~~~r-2} [~~~~s]l

~ ' -
[{ END-OF-PAGE} . . J AT EOP 1mperat1ve-statement-l

[NOT AT {~-OF-PAGE} imperative-statement-2]

[END-WRITE]

4.7.3 Syntax Rules

(1) Rec or d -name -1 and identifier-I must not refer

(2) Record-name-I is the name of a logical record
Data Division and may be qualified.

to the same storage

in the File Section

It can

area.

of the

(3) The ADVANCING mnemonic-name-I phrase cannot be specified when writing a
record to a file which is associated with a file description entry containing a
LINAGE clause.

(4) Identifier-2 must reference an integer data item.

(5) Integer-I may be positive or zero, but must not be negative.

(6) When mnemonic-name-I is specified, the name is associated with a
particular feature specified by the implementor. Mnemonic-name-I is defined in
the SPECIAL-NAMES paragraph of the Environment Division.

(7) The phrases ADVANCING PAGE and END-OF-PAGE must
specified in a single WRITE statement.

not both be

(8) If the END-OF-PAGE or the NOT END-OF-PAGE phrase is specified, the
LINAGE clause must be specified in the file description entry for the associated
file.·

(9) The words END-OF-PAGE and EOP are equivalent.

VII-52

Sequential I-0 - WRITE

4.7.4 General Rules

(1) The file referenced by the file-name associated with record-name-I must
be open in the output lor extend! mode at the time of the execution of this
statement. (See page VII-39, The OPEN Statement.)

(2) The logical record released by the successful execution of the WRITE
statement is no longer available in the record areaJunless the file-name
associated with record-name-I is specified in a SAME RECORD AREA clause. The
logical record is also available to the program as a record of other files
referenced in the SAME RECORD AREA clause as the associated output file, as well
as the file associated with record-name-I.

(3) The result of the execution of a WRITE statement with the FROM phrase is
equivalent to the execution of the following statements in the order specified:

a. The statement:

MOVE identifier-I TO record-name-I

according to the rules specified for the MOVE statement.

b. The same WRITE statement without the FROM phrase.

(4) After the execution of the WRITE statement is complete, the information
1n the area referenced by identifier-I is available, even though the information
in the area referenced by record-name-I is not available I except as specified byl

!the SAME RECORD AREA clause.I

(5) The file position indicator is not affected by the execution of a WRITE
statement.

(6) The execution of the WRITE statement causes the value of the I-0 status
of the file-name associated with record-name-I to be updated. (See page VII-2,
I-0 Status.)

(7) The execution of the WRITE statement releases a logical record to the
operating system.

(8) The number of character positions in the record referenced by
record-name-I must not be larger than the largest or smaller than the smallest
number of ch~racter positions allowed by the RECORD IS VARYING clause associated
with the file-name associated with record-name-I. In either of these cases the
execution of the WRITE statement is unsuccessful, the WRITE operation does not
take place, the content of the record area is unaffected and the I-0 status of
the file associated with record-narne-1 is set to a value indicating the cause of
the condition. (See page VII-2, I-0 Status.)

(9) If, during the execution of a WRITE statement with the NOT END-OF-PAGE
phrase, the end-of-page condition does not occur, control is transferred to
imperative-statement-2 at the appropriate time as follows:

a. If the execution of the WRITE statement is successful, after the
record is written and after updating the I-0 status of the file-name associated
with record-narne-1.

VII-53

Sequential I-0 - WRITE

b. If the execution of
updating the I-0 status of
after executing the procedure,
EXCEPTION PROCEDURE statement
record-name-1.

the WRITE statement is unsuccessful, after
the file-name associated with record-name-1, and
if any, specified by a USE AFTER STANDARD
applicable to the file-name associated with

(10) The END-WRITE phrase delimits the scope of the WRITE statement. (See
page IV-40, Scope of Statements.)

(11) The successor
order of execution
relationship does not

relationship of a sequential file is established by the
of WRITE statements when the file is created. The
changeiexcept when records are added to the end of a file.j

(12) When a sequential file is open in the extend mode, the execution of the
WRITE statement will add records to the end of the file as though the file were
open in the output mode. If there are records in the file, the first record
written after the execution of the OPEN statement with the EXTEND phrase is the
successor of the last record in the file.

(13) When an attempt is made to write beyond the externally defined
boundaries of a sequential file, an exception condition exists and the contents
of the record area are unaffected. The following actions take place:

a. The value of the
record-name-1 is set to a
VII-2, I-0 Status.)

I-0 status of the file-name associated with
value indicating a boundary violation. (See page

b. If a USE AFTER STANDARD EXCEPTION declarative is explicitly or
implicitly specified for the file-name associated with record-name-1, that
declarative procedure will then be executed.

c. If a USE AFTER STANDARD EXCEPTION declarative is not explicitly or
implicitly specified for the file-name associated with record-name-1, the result
is undefined.

(14) If the end
boundaries of the
executed:

of reel/ unit
file have

is recognized and the externally defined
not been exceeded, the following operations are

a. The standard ending reel/unit label procedure.

b. A reel/unit swap. The current volume pointer is updated to point to
the next reel/unit existing for the file.

c. The standard beginning reel/unit label procedure.

(IS) !Both! the ADVANCING phrase land the END-OF-PAGE phrase I allow control of
the vertical positioning of each line on a representation of a printed page. If
the ADVANCING phrase is not used, automatic advancing will be provided by the
implementor to act as if the user had specified AFTER ADVANCING 1 LINE. If the
ADVANCING phrase is used, advancing is provided as follows:

a. If integer-1 or the value of the data item referenced by
identifier-2 is positive, the representation of the printed page is advanced the
number of lines equal to that value.

VII-54

Sequential I-0 - WRITE

b. If the value of the data item referenced by identifier-2 is
negative, the results are undefined.

c. If integer-1 or the value of the data item referenced by
identifier-2 is zero, no repositioning of the representation of the printed page
is performed.

d. If mnemonic-name-1 is specified, the representation of the printed
page is advanced according to the rules specified by the implementor for that
hardware device.

e. If the BEFORE phrase is used, the line is presented before the
representation of the printed page is advanced according to rules a, b, c, land dl
above.

f. If the AFTER phrase is used, the line is presented after the
representation of the printed page is advanced according to rules a, b, c, land dl
above.

g. If PAGE is specified and the LINAGE clause is
associated file description entry, the record is presented
before or after (depending on the phrase used) the device is
next logical page. The repositioning is to the first line
on the next logical page as specified in the LINAGE clause.

specified in the
on the logical page
repositioned to the
that can be written

h. If PAGE is s ecified and the LINAGE clause is not specified in the
associated file descri tion entr the record is presented on the physical page
before or after (depending on the phrase used) the device is repositioned to the
next physical page. The repositioning to the next physical page is accomplished
in accordance with an implementor-defined technique. If physical page has no
meaning in conjunction with a specific device, advancing will be provided by the
implementor to act as if the user had specified BEFORE or AFTER (depending on
the phrase used) ADVANCING 1 LINE.

(16) If the logical end of the representation of the printed page is reached
during the execution of a WRITE statement with the END-OF-PAGE phrase,
imper at ive-statement-1 specified in the END-OF-PAGE phrase is executed. The
logical end is specified in the LINAGE clause associated with record-name-I.

(17) An end-of-page condition occurs when the execution of a given WRITE
statement with the END-OF-PAGE phrase causes printing or spacing within the
footing area of a page body. This occurs when the execution of such a WRITE
statement causes the LINAGE-COUNTER to equal or exceed the value specified by
integer-2 or the data item referenced by data-name-2 of the LINAGE clause if
specified. In this case, the WRITE statement is executed and then
imperative-statement-1 in the END-OF-PAGE phrase is executed.

An automatic page overflow condition occurs when the execution of a
given WRITE statement (with or without an END-OF-PAGE phrase) cannot be fully
accommodated within the current page body.

This occurs when a WRITE statement, if executed,
LINAGE-COUNTER to exceed the value specified by integer-1
referenced by data-name-1 of the LINAGE clause. In this case,
presented on the logical page before or after (depending on the

VII-55

would cause the
or the data item

the record is
phrase used) the

Sequential I-0 - WRITE

device is repositioned to the first line that can be written on the next logical
page as specified in the LINAGE clause. Imperative-statement-1 in the
END-OF-PAGE phrase, if specified, is executed after the record is written and
the device has been repositioned.

A page overflow condition occurs when the execution of a given
statement would cause LINAGE-COUNTER to simultaneously exceed the value of
integer-2 or the data item referenced by data-name-2 of the LINAGE clause
integer-1 or the data item referenced by data-name-1 of the LINAGE clause.

VII-56

WRITE
both

and

Relative I-0 - Introduction

SECTION VIII: RELATIVE I-0 MODULE

1. INTRODUCTION TO THE RELATIVE I-0 MODULE

1.1 FUNCTION

The Relative I-0 module provides a capability to access records of a mass
storage file in either a random or sequential manner. Each record in a relative
file is uniquely identified by an integer value greater than zero which
specifies the record's logical ordinal position in the file.

1.2 LEVEL CHARACTERISTICS

Relative I-0 level 1 provides limited capabilities for the file control
entry, the file description entry, and the entries in the I-0 CONTROL paragraph.
Within the Procedure Division, the Relative I-0 level 1 provides limited
capabilities for the CLOSE, OPEN, READ, REWRITE, USE, and WRITE statements and
full capabilities for the DELETE statement.

Relative I-0 level 2
the file descriptio~
Within the Procedure
capabilities for the
statements.

1.3 LANGUAGE CONCEPTS.

1.3.1 Organization

provides full capabilities
entry, and the entries
Division, the Relative

CLOSE, DELETE, OPEN, READ,

for the file control entry,
in the I-0 CONTROL paragraph.

I-0 level 2 provides full
REWRITE, START, USE, and WRITE

A file with relative organization is a mass storage file from which any
record may be stored or retrieved by providing the value of its relative record
number.

Conceptually, a file with relative organization comprises a serial string of
areas, each capable of holding a logical record. Each of these areas is
denominated by a relative record number. Each logical record in a relative file
is identified by the relative record number of its storage area. For example,
the tenth record is the one addressed by relative record number 10 and is in the
tenth record area, whether or not reGords have been written in any of the first
through the ninth record areas.

In order to achieve more efficient access to records in a relative file, the
number of character positions reserved on the medium to store a particular
logical record may be different from the number of character positions in the
description of that record in the program.

VIII-1

Relative I-0 - Introduction

1.3.2 Access Modes

For relative organization, the order of sequential access is ascending based
on the value of the relative record number. Onl records which currently exist
in the file are made available. The START statement to establish a
startin oint for a series of subse

When a file is accessed in random mode, input-output
access the records in a programmer-specified order.
organization, the programmer specifies the desired
relative record number in a relative key data item.

statements are used to
For a file with relative
record by placing its

With dynamic access mode, the prog~ammer may change at will
accessing to random accessing, using appropriate forms
statements.

from sequential
of input-output

1.3.3 File Position Indicator

The file position indicator is a conceptual entity used in this document to
facilitate exact specification of the next record to be accessed within a given
file during certain sequences of input-output operations. The setting of the
file position indicator is affected only by the CLOSE, OPEN, READ, land STARTI
statements. The concept of a file position indicator has no meaning for a file
opened in the outputlor extendlmode.

1.3.4 I-0 Status

The I-0 status is a two-character conceptual entity whose value is set to
indicate the status of an input-output operation during the execution of a
CLOSE, DELETE, OPEN, READ, REWRITE,ISTART,lor WRITE statement and prior to the
execution of any imperative statement associated with that input-output
statement or prior to the execution of any applicable USE AFTER STANDARD
EXCEPTION procedure. The value of the I-0 status is made available to the COBOL
program through the use of the FILE STATUS clause in the file control entry for
the file.

The I-0 status also determines whether an applicable USE AFTER STANDARD
EXCEPTION procedure will be executed. If any condition other than those
contained under the heading "Successful Completion" on page VIII-3 results, such
a procedure may be executed depending on rules stated elsewhere. If one of the
conditions listed under the heading "Successful Completion" on page VIII-3
results, no such procedure wi 11 be executed. (See page VIII-35, The USE
Statement.)

Certain classes of I-0 status values indicate critical error conditions.
These are: any that begin with the digit 3 or 4, and any that begin with the
digit 9 that the implementor defines as critical. If the value of the I-0
status for an input-output operation indicates such an error condition, the
implementor determines what action is taken after the execution of any
applicable USE AFTER STANDARD EXCEPTION procedure, or if none applies, after
completion of the normal input-output control system error processing.

I-0 status expresses one of the following conditions upon completion of the
input-output operation:

VIII-2

(1) Successful Completion.
executed.

Relative I-0 - Introduction

The input-output statement was successfully

(2) At End. A sequential READ statement was unsuccessfully executed as a
result of an at end condition.

(3) Invalid Key. The input-output statement was unsuccessfully executed as
a result of an invalid key condition.

(4) Permanent Error. The input-output statement was unsuccessfully executed
as the result of an error that precluded further processing of the file. Any
specified exception procedures are executed. The permanent error condition
remains in effect for all subsequent input-output operations on the file unless
an implementor-defined technique is invoked to correct the permanent error
condition.

(5) Logic Error. The input-output statement was unsuccessfully executed as
a result of an improper sequence of input-output operations that were performed
on the file or as a result of violating a limit defined by the user.

(6) Implementor Defined. The input-output statement was unsuccessfully
executed as the result of a condition that is specified by the implementor.

The following is a list of the values placed in the I-0 status for the
previously named conditions resulting from the execution of an input-output
operation on a relative file. If more than one value applies, the implementor
determines which of the applicable values to place in the I-0 status.

(1) Successful Completion

a. I-0 Status = 00. The input-output statement is successfully
executed and no further information is available concerning the input-output
operation.

b. I-0 Status = 04.
length of the record being
attributes for that fi1e.

A READ statement is successfully executed but the
processed does not conform to the fixed file

c.
referenced
executed.

I-0 Status = 05. An OPEN statement is successfully executed but the
optional file is not present at the time the OPEN statement is

If the o~en mode is I-0 or extendL the file has been created.

(2) At End Condition With Unsuccessful Completion.

a. I-0 Status = 10. A sequential READ statement is attempted and no
next logical record exists in the file because:

1) The end of the file has been reached; or

2) A sequential READ statement is attempted for the first time on
an optional input file that is not present.

b. I-0 Status = 14. A sequential READ statement is attempted for a
relative file and the number of significant digits in the relative record number
is larger than the size of the relative key data item described for the file.

VIII-3

Relative I-0 - Introduction

(3) Invalid Key Condition With Unsuccessful Completion

a. I-0 Status = 22. An attempt is made to write a record that would
create a duplicate key in a relative file.

b. I-0 Status = 23. This condition exists because:

1) An attempt is made to randomly access a record that does not
exist in the file; or

2) A START or random READ statement is
input file that is not present.

attempted on an optional!

c. I-0 Status = 24. An attempt is made to write beyond the externally
defined boundaries of a relative file. The implementor specifies the manner in
which these boundaries are defined. Or, a sequential WRITE statement is
attempted for a relative file and the number of significant digits in the
relative record number is larger th.an the size of the relative key data item
described for the file.

(4) Permanent Error Condition With Unsuccessful Completion

a. I-0 Status = 30. A permanent error exists and
information is available concerning the input-output operation.

no further

b. I-0 Status = 35. A permanent error exists because an OPEN statement
with the INPUT, I-0, lor EXTENDiphrase is attempted on alnon-optionallfile that
is not present.

c. I-0 Status = 37. A permanent error exists because an OPEN statement
is attempted on a file and that file will not support the open mode specified in
the OPEN statement. The possible violations are:

1) The !EXTEND orlOUTPUT phrase is specified but the file will not
support write operations.

2) The I-0 phrase is specified but the file will not support the
input and output operations that are permitted for a relative file when opened
in the I-0 mode.

3) The INPUT phrase is specified but the file will not support read
operations.

d. I-0 Status = 38. A permanent error exists because an OPEN statement
is attempted on a file previously closed with lock.

e. I-0 Status = 39. The OPEN statement is unsuccessful because a
conflict has been detected between the fixed file attributes and the attributes
specified for that file in the program.

(5) Logic Error Condition With Unsuccessful Completion

a. I-0 Status = 41. An OPEN statement is attempted for a file in the
open mode.

VIII-4

Relative I-0 - Introduction

b. I-0 Status = 42. A CLOSE statement is attempted for a file not in
the open mode.

c. I-0 Status = 43. In the sequential access mode,
input-output statement executed for the file prior to the execution
or REWRITE statement was not a successfully executed READ statement.

d. I-0 Status = 44. A boundary violation exists because:

the last
of a DELETE

1) An attempt is made to write or rewrite a record that is larger
than the largest or smaller than the smallest record allowed by the RECORD IS
VARYING clause of the associated file-name.

2) In level 1 an attempt is made to rewrite a record to a relative
file and the record is not the same size as the record being replaced.

open in
because:

e. I-0 Status
the input or

46. A sequential READ statement is attempted on a file
I-0 mode and no valid next record has been established

1) The preceding START statement was unsuccessful, or

2) The preceding READ statement was unsuccessful but did not cause
an at end condition, or

3) The preceding READ statement caused an at end condition.

f. I-0 Status= 47. The execution of a READ I or START I statement is
attempted on a file not open in the input or I-0 mode.

g. I-0 Status = 48. The execution of a WRITE statement is attempted on
a file not open in the I-0, output, !or extendlmode.

h. I-0 Status = 49. The execution of a DELETE or REWRITE statement is
attempted on a file not open in the I-0 mode.

(6) Implementor-Defined Condition With Unsuccessful Completion

a. I-0 Status = 9x. An ·implementor-defined condition exists. This
condition must not duplicate any condition specified for the I-0 status values
00 through 49. The value of x is defined by the implementor.

1.3.5 The Invalid Key Condition

The invalid key condition can occur as a result of the execution of a DELETE,
READ, REWRITE, I START, I or WRITE statement. When the invalid key condition
occurs, execution of the input-output statement which recognized the condition
is unsuccessful and the file is not affected. (See page VIII-19, The DELETE
Statement; page VIII-26, The READ Statement; page VIII-30, The REWRITE
Statement; page VIII-33, The START Statement; and page VIII-37, The WRITE
Statement.)

If the invalid key condition exists after the execution of the input-output
operation specified in an input-output statement, the following actions occur in
the order sh0wn:

VIII-5

Relative I-0 - Introduction

(1)
set to
Status.)

The I-0 status of the file connector associated with the statement 1s
a value indicating the invalid key condition. (See page VIII-2, I-0

(2) If the, INVALID KEY phrase is specified in the input-output statement,
any USE AFTER EXCEPTION procedure associated with the file connector is not
executed and control is transferred to the imperative-statement specified in the
INVALID KEY phrase. Execution then continues according to the rules for each
statement specified in that imperative-statement. If a procedure branching or
conditional statement which causes explicit transfer of control is executed,
control is transferred in accordance with the rules for that statement;
otherwise, upon completion of the execution of the imperative-statement
specified in the INVALID KEY phrase, control is transferred to the end of the
input-output statement and the NOT INVALID KEY phrase, if specified, is ignored.

(3) If the INVALID KEY phrase is not specified in the input-output
statement, a USE AFTER EXCEPTION procedure must be associated with the file
connector and that procedure is executed and control is transferred according to
the rules of the USE statement. The NOT INVALID KEY phrase is ignored, if
specified. (See page VIII-35, The USE Statement.)

If the invalid key condition does not exist after the execution of the
input-output operation specified by an input-output statement, the INVALID KEY
phrase is ignored, if specified. The I-0 status of the file connector
associated with the statement is updated and the following actions occur:

(1) If an exception condition which is not an invalid key condition exists,
control is transferred according to the rules of the USE statement following the
execution of any USE AFTER EXCEPTION procedure associated with the file
connector. (See page VIII-35, The USE Statement.)

(2) If no exception condition exists, control is transferred to the end of
the input-output statement or to the imperative-statement specified in the NOT
INVALID KEY phrase if it is specified. In the latter case, execution continues
according to the rules for each statement specified 1n that
imperative-statement. If a procedure branching or conditional statement which
causes explicit transfer of control is executed, control is transferred in
accordance with the rules for that statement; otherwise, upon completion of the
execution of the imperative-statement in the NOT INVALID KEY phrase, control is
transferred to the end of the input-output statement.

1.3.6 The At End Condition

The at end condition can occur as a result of the execution of a READ
statement. (See page VIII-26, The READ Statement.)

1.3.7 The File Attribute Conflict Condition

The file attribute conflict condition can result from the execution of an
OPEN, REWRITE, or WRITE statement. When the file attribute conflict condition
occurs, execution of the input-output statement that recognized the condition is
unsuccessful and the file is not affected. (See page VIII-21, The OPEN
Statement; page VIII-30, The REWRITE Statement; and page VIII-37, The WRITE
Statement.)

VIII-6

Relative I-0 - Introduction

When the file attribute conflict condition is recognized, these actions take
place in the following order:

(1) A value is placed in the I-0 status associated with the file-name to
indicate the file attribute conflict condition. (See page VIII-2, I-0 Status.)

(2) A USE AFTER EXCEPTION procedure, if any, associated with the file-name
is executed.

VIII-7

Relative I-0 - File Control Entry

2. ENVIRONMENT DIVISION IN THE RELATIVE I-0 MODULE

2.1 INPUT-OUTPUT SECTION

Information concerning the Input-Output Section is located on page VII-6.

2.2 THE FILE-CONTROL PARAGRAPH

Information concerning the FILE-CONTROL paragraph is located on page VII-7.

2.3 THE FILE CONTROL ENTRY

2.3.1 Function

The file control entry declares the relevant physical attributes of a
relative file.

2.3.2 General Format

SELECT I [OPTIONAL] I file-name-1

ASSIGN TO { implementor-name-1}
literal-1

[RESERVE integer-1 [AREA J J
AREAS

[ORGANIZATION IS] RELATIVE

[{
SEQUENTIAL

ACCESS MODE IS { RANDOM }
jDYNAMICI

[FILE STATUS IS data-name-2].

2.3.3 Syntax Rules

[RELATIVE KEY IS data-name-1]}]

RELATIVE KEY IS data-name-1

(1) The SELECT clause must be specified first in the file control entry.
The clauses which follow the SELECT clause may appear in any order.

(2) Each file-name in the Data Division must be specified only once in the
FILE-CONTROL paragraph. Each file-name specified in the SELECT clause must have
a file description entry in the Data Division of the same program.

(3) Literal-1 must be a nonnumeric literal and must not be a figurative
constant. The meaning and rules for the allowable content of implementor-name-I
and the value of literal-1 are defined by the implementor.

2.3.4 General Rules

(1) If the file connector referenced by file-name-1 1s an external file
connector (see page X-23, The EXTERNAL Clause), all file control entries in the
run unit which reference this file connector must have:

VIII-8

Relative I-0 - File Control Entry

a. The same specification for the OPTIONAL phrase.

b. A consistent specification for implementor-name-I or literal-I in
the ASSIGN clause. The implementor will specify the consistency rules for
implementor-name-I or literal-I.

c. The same value for integer-I in the RESERVE clause.

d. The same organization.

e. The same access mode.

f. The same external data item for data-name-I in the RELATIVE KEY
phrase.

(2) The native character set 1S assumed for data on the external media.

(3) The OPTIONAL phrase applies only to files opened in the input, I-0, or
extend mode. Its specification is required for files that are not necessarily
present each time the object program is executed.

(4) The ASSIGN clause specifies the association of the file referenced by
file-name~l· to a storage medium referenced by implementor-name-I or literal-I.

(5) The ,RESERVE clause for the Relative I-0
RESERVE clause for the Sequential I-0 module.
RESERVE clause are located on _])age VII-14.

module is the same as the
Thus the specifications for the

(6) The FILE STATUS clause for the Relative I-0 module is the same as the
FILE STATUS clause for the Sequential I-0 module. Thus the specifications for
the FILE STATUS clause are located on page VII-10. The content of the data item
associated with the FILE STATUS clause of.a relative file is presented in the
paragraph entitled I-0 Status beginning on page VIII-2.

(7) The ACCESS MODE clause and the ORGANIZATION IS RELATIVE clause are
presented on the following pages.

VIII-9

Relative I-0 - ACCESS MODE

2.4 THE ACCESS MODE CLAUSE

2.4.1 Function

The ACCESS MODE clause specifies the order in which records are to be
accessed in the file.

2.4.2 General Format

{
SEQUENTIAL

ACCESS MODE IS { RANDOM t
IDYNAMiclf

2.4.3 Syntax Rules

[RELATIVE KEY IS

RELATIVE KEY IS

(1) Data-name-I may be qualified.

data-name-1]}

data-name-1

(2) Data-name-I must reference an unsigned integer data
description does not contain the PICTURE symbol 'P'.

item whose

(3) Data-name-I must not be defined in a record description entry associated
with that file-name.

(4) The ACCESS MODE IS RANDOM clause must not be specified for file-names
specified in the USING or GIVING phrase of a SORT or MERGE statement.

(5) If a relative file is referenced by a START statement, the RELATIVE KEY
phrase within the ACCESS MODE clause must be specified for that file.

2.4.4 General Rules

(1) If the ACCESS MODE clause is not specified, sequential access is
assumed.

(2) If the access mode is sequential, records in the file are accessed in
the sequence dictated by the file organization. For relative files this
sequence is the order of ascending relative record numbers of existing records
in the file.

(3) If the access mode is random, the value of the relative key data item
for relative files indicates the record to be accessed.

(4) If the access mode is dynamic, records in the file may be accessed
sequentially and/or randomly.

(5) All records stored in a relative file are uniquely identified by
relative record numbers. The relative record number of a given record specifies
the record's logical ordinal position in the file. The first logical record has
a relative record number of 1, and subsequent logical records have relative
record numbers of 2, 3, 4, •...

(6) The data item specified by data-name-I is used to communicate a relative
record number between the user and the mass storage control system (MSCS).

VIII-10

(7) The
input-output
MODE clause.

Rel.ative I-0 - ACCESS MODE

relative key data item associated with the execution of an
statement is the data item referenced by data-name-1 in the ACCESS

(8) If the associated file connector is an external file connector, every
file control entry in the run unit which is associated with that file connector
must specify the same access mode. In addition, data-name-1 must reference an
external data item and the RELATIVE KEY phrase in each associated file control
entry must reference that same external data item in each case.

VIII-11

Relative I-0 - ORGANIZATION IS RELATIVE

2.5 THE ORGANIZATION IS RELATIVE CLAUSE

2.5.1 Function

The ORGANIZATION IS RELATIVE clause specifies relative organization as the
logical structure of a file.

2.5.2 General Format

[ORGANIZATION IS] RELATIVE

2.5.3 General Rules

(1) The ORGANIZATION IS RELATIVE clause specifies relative organization as
the logical structure of a file: The file organization is established at the
time a file is created and cannot subsequently be changed.

(2) Relative organization is a permanent logical file structure in which
each record is uniquely identified by an integer value greater than zero, which
specifies the record's logical ordinal position in the file.

VIII-12

Relative I-0 - I-0-CONTROL

2.6 THE I-0-CONTROL PARAGRAPH

2 .6 .1 Function

The I-0-CONTROL paragraph specifies the points at which rerun
established and the memory area which is to be shared by different
RERUN clause within the I-0-CONTROL paragraph is an obsolete element
COBOL because it is to be deleted from the next revision of Standard

2.6.2 General Format

r..:o-CONTROL.

is to be
files. The
in Standard
COBOL.

[[BERDN Qli { f ile-name-1 }
implementor-name-1

{
integer-1 RECORDS OF file-name-2}]

EVERY integer-2 CLOCK-UNITS
condition-name-1

[SAME j[RECORD]j AREA FOR file-name-3 {file-name-4} ...] ••..]

2.6.3 General Rules

(1) The RERUN clause for the Relative I-0 module is a subset of the RERUN
clause for the Sequential I-0 module. Thus the specifications for the RERUN
clause are located on page VII-17.

(2) The SAME clause for the Relative I-0 module is the same as the SAME
clause for the Sequential I-0 module. Thus the specifications for the SAME
clause are located on page VII-19.

VIII-13

Relative I-0 - File Description Entry

3. DATA DIVISION IN THE RELATIVE I-0 MODULE

3.1 FILE SECTION

Information concerning the File Section is located on page VII-21.

3.2 THE FILE DESCRIPTION ENTRY

3.2.1 Function

The file description entry furnishes information concerning the physical
structure, identification, and record-names pertaining to a relative file.

3.2.2 General Format

FD file-name-1

[BLOCK CONTAINS l[integer-1 IQJI integer-2

CONTAINS integer-3 CHARACTERS

{RECORDS }]
CHARACTERS j

RECORD IS VARYING IN SIZE [[FROM integer-4] [TO integer-5] CHARACTERS]

[DEPENDING ON data-name-1]

CONTAINS integer-6 TO integer-7 CHARACTERS

r {RECORD IS } {STANDARD}]
LLABEL RECORDS ARE OMITTED

[vALUE OF {implementor-name-1 IS {l~~~=~:~~~- 2 1}} ... J
~ATA {::~~~S I!RE} {data-name-3} ... J .

3.2.3 Syntax Rules

(1) The level indicator FD identifies the beginning of a file description
entry and must precede file-name-1.

(2) The clauses which follow file-name-1 may appear 1n any order.

(3) One or more record description entries must follow the file description
entry.

3.2.4 General Rules

(1) A file description entry associates file-name-1 with a file connector.

(2) The BLOCK CONTAINS clause for the Relative I-0 module is the same as the
BLOCK CONTAINS clause for the Sequential I-0 module. Thus the specifications
for the BLOCK CONTAINS clause are located on page VII-23.

VIII-14

Relative I-0 - File Description Entry

(3) The DATA RECORDS clause for the Relative I-0 modules is the same as the
DATA RECORDS clause for the Sequential I-0 module. Thus the specifications for
the DATA RECORDS clause are located on page VII-25. The DATA RECORDS clause is
an obsolete element in Standard COBOL because it is to be deleted from the next
revision of Standard COBOL.

(4) The LABEL RECORDS clause for the Relative I-0 module is the same as the
LABEL RECORDS clause for the Sequential I-0 module. Thus the specifications for
the LABEL RECORDS clause are located on page VII-26. The LABEL RECORDS clause
is an obsolete element in Standard COBOL because it is to be deleted from the
next revision of Standard COBOL.

(5) The RECORD clause for the Relative I-0 module is the same as the RECORD
clause for the Sequential I-0 module. Thus the specifications for the RECORD
clause are located on page VII-30.

(6) The VALUE OF clause for the Relative I-0 module is the same as the VALUE
OF clause for the Sequential I-0 module. Thus the specifications for the VALUE
OF clause are located on page VII-33. The VALUE OF clause is an obsolete
element in Standard COBOL because it is to be deleted from the next revision of
Standard COBOL.

VIII-15

Relative I-0 - Procedure Division

4. PROCEDURE DIVISION IN THE RELATIVE I-0 MODULE

4.1 GENERAL DESCRIPTION

The Procedure Division contains declarative procedures when the USE statement
from the Relative I-0 module is present in a COBOL source program. Shown below
is the general format of the Procedure Division when the USE statement is
present.

PROCEDURE DIVISION.

DECLARATIVES.

{section-name SECTION.

USE statement.

[paragraph~name.

[sentence] ...] . . . } ...

END DECLARATIVES.

{section-name SECTION.

[paragraph-name.

[sentence] ...] ... } ...

VIII-16

Relative I-0 - CLOSE

4.2 THE CLOSE STATEMENT

4.2.1 Function

The CLOSE statement terminates the processing of fileslwith optional lock.\

4.2.2 General Format

CLOSE {file-name-1 ![WITH LOCKJI}

4.2.3 Syntax Rules

(1) The files referenced in the CLOSE statement need not all have the same
organization or access.

4.2.~ General Rules

(1) A CLOSE statement may only be executed for a file in an open mode.

(2) Relative files are classified as belonging to the category of
non-sequential single/multi-reel/unit. The results of executing each type of
CLOSE for this category of file are summarized in the following table.

CLOSE File Category '

Statement
Format Non-Sequential Single/Multi-Reel/Unit

CLOSE

CLOSE WITH LOCK

The definitions of the symbols
definition depends on whether the
file, alternate definitions are given;
output, and input-output files.

A. Close File

A

A,B

in the table are given below. Where the
file is an input, output, or input-output
otherwise, a definition applies to input,

Input Files and Input-Output Files (Sequential Access Mode):

If the file is positioned at its end and label records are specified
for the file, the labels are processed according to the implementor's standard
label convention. The behavior of the CLOSE statement when label records are
specified but not present, or when label records are not specified but are
present, is undefined. Closing operations specified by the implementor are
executed. If the file is positioned at its end and label records are not
specified for the file, label processing does not take place but other closing
operations specified by the implementor are executed. If the file is positioned
other than at its end, the closing operations specified by the implementor are
executed, but there is no ending label processing.

VIII-17

Relative I-0 - CLOSE

Input Files and Input-Output Files (Random lor Dynami cl Access Mode);
Output Files (Random, !Dynamic.! or Sequential Access Mode):

If label records are specified for the file, the labels are
processed according to the implementor's standard label convention. The
behavior of the CLOSE statement when label records are specified but not
present, or when label records are not specified but are present, is undefined.
Closing operations specified by the implementor are executed. If label records
are not specified for the file, label processing does not take place but other
closing operations specified by the implementor are executed.

B. File Lock

The file is locked and cannot be opened again during this execution
of this run unit.

(3) The execution of the CLOSE statement causes the value of the I-0 status
associated with file-name-1 to be updated. (See page VIII-2, I-0 Status.)

(4) If an optional input file is not present, no end-of-file processing is
performed for the file and the file position indicator is unchanged.

(5) Following the successful execution of a CLOSE statement, the record area
associated with file-name-1 is no longer available. The unsuccessful execution
of such a CLOSE statement leaves the availability of the record area undefined.

(6) Following the successful execution of a CLOSE statement, the file is
removed from the open mode, and the file is no longer associated with the file
connector.

(7) If more than one file-name-1 is specified in a CLOSE
result of executing this CLOSE statement is the same as if a
statement had been written for each file-name-1 in the same order
in the CLOSE statement.

VIII-18

statement, the
separate CLOSE

as specified

Relative I-0 - DELETE

4.3 THE DELETE STATEMENT

4.3.1 Function

The DELETE statement logically removes a record from a mass storage file.

4.3.2 General Format

DELETE file-name-1 RECORD

[INVALID KEY imperative-statement-1]

[NOT INVALID KEY imperative-statement-2]

[END-DELETE]

4.3.3 Syntax Rules

(1)

for a
mode.

The INVALID KEY and the NOT INVALID KEY phrases must not be specified
DELETE statement which references a file which is in sequential access

(2) The INVALID KEY phrase must be specified for a DELETE statement which
references a file which is not in sequential access mode and for which an
applicable USE AFTER STANDARD EXCEPTION procedure is not specified.

4.3.4 General Rules

(1) The file referenced by file-name-1 must be a mass storage file and
be open in the I-0 mode at the time of the execution of this statement.
page VIII-21, The OPEN Statement.)

must
(See

(2) For files in the sequential access mode, the last input-output statement
executed for file-name-1 prior to the execution of the DELETE statement must
have been a successfully executed READ statement. The mass storage control
system (MSCS) logica1'iy removes from the file the record that was accessed by
that READ statement.

(3) For a relative file in randomlor dynamiclaccess mode, the mass storage
control system (MSCS) logically removes from the file that record identified by
the content of the relative key data item associated with file-name-1. If the
file does not contain the record specified by the key, the invalid key condition
exists. (See page VIII-5, The Invalid Key Condition.)

(4) After the successful execution of a DELETE statement, the identified
record has been logically removed from the file and can no longer be accessed.

(5) The execution of a DELETE statement does not affect the content of the
record area or the content of the data item referenced by the data-name
specified in the DEPENDING ON phrase of the RECORD clause associated with
fi le-n m -1

(6) The file position indicator is not affected by the execution of a DELETE
statement.

VIII-19

Relative I-0 - DELETE

(7) The execution of the DELETE statement causes the value of the I-0 status
associated with file-name-I to be updated. (See page VIII-2, I-0 Status.)

(8) Transfer of control following the successful or
of the DELETE operation depends on the presence or
INVALID KEY and NOT INVALID KEY phrases in the DELETE
VIII-5, The Invalid Key Condition.)

unsuccessful execution
absence of the optional
statement. (See page

(9) The END-DELETE phrase delimits the scope of the DELETE statement. (See
page IV-40, Scope of Statements.)

VIII-20

4.4 THE OPEN STATEMENT

4 .4 .1 Function

The OPEN statement initiates the processing of files.

4.4.2

4.4.3

General Format

{
INPUT { file-name-1} • . . }
OUTPUT {file-name-2} .••
1-0 {file-name-3} ...

Syntax Rules

Relative I-0 - OPEN

(1) The EXTEND phrase must only be used for files in the sequential access
mode.

(2) The files referenced in the OPEN statement need not all have the same
organization or access.

4.4.4 General Rules

(1) The successful execution of an OPEN statement
availability of the file and results in the file being in
successful execution of an OPEN statement associates the file
through the file connector.

determines the
an open mode. The
with the file-name

A file is available if it is physically present and is recognized by the
input-output control system. Table 1 on page VIII-22 shows the results of
opening available and unavailable files.

VIII-21

Relative I-0 - OPEN

File is Available File is Unavailable

INPUT Normal open Open is unsuccessful

INPUT (optional file) Normal open Normal open; the first read
causes the at end condition
or the invalid key condition

I-0 Normal open Open is unsuccessful

I-0 (optional file) Normal open Open causes the file to be
created

OUTPUT Normal open; the Open causes the file to be
file contains no created
records

EXTEND -- Normal open Open is unsuccessful

EXTEND (optional file) Normal open Open causes the file to be
created

Table 1. Availability of a File

(2) The successful execution of an OPEN statement makes the associated
record area available to the program. If the file connector associated with
file-name is an external file connector, there is only one record area
associated with the file connector for the run unit.

(3) When a file is not in an open mode, no
references the file, either explicitly or
statement with the USING or GIVING phrase,
statement with the USING or GIVING phrase.

statement may be executed which
implicitly, except for a MERGE

an OPEN statement, or a SORT

(4) An OPEN statement must be successfully executed prior to the execution
of any of the permissible input-output statements. In table 2 on page VIII-23,
Permissible Statements, 'X' at an intersection indicates that the specified
statement, used in the access mode given for that row, may be used with the open
mode given at the top of the column.

VIII-22

Relative I-0 - OPEN

Open Mode
File Access Statement

Mode Input Output I-0 Extend

Sequential READ x x

WRITE x x

REWRITE x

START x x

DELETE x
-

Random READ x x

WRITE x x

REWRITE x

START

DELETE x

Dynamic READ x x

WRITE x x

REWRITE x

START x x -

DELETE x

Table 2: Permissible Statements

(5) A file may be opened with the INPUT, OUTPUT, lEXTEND,j and I-0 phrases in
the same run unit. Following the initial execution of an OPEN statement for a
file, each subseq~ent OPEN statement execution for that same file must be
preceded by the execution of a CLOS.E statement, I without the LOCK phrase, I for
that file.

(6) Execution of the OPEN statement does not obtain or release the first
data record.

(7) If label records are specified for the file, the beginning labels are
processed as follows:

a. When the INPUT phrase is specified, the execution of the OPEN
statement causes the labels to be checked in accordance with the implementor's
specified conventions for input label checking.

VIII-23

Relative I-0 - OPEN

b. When the OUTPUT phrase is specified, the execution of the OPEN
statement causes the labels to be written in accordance with the implementor's
specified conventions for output label writing.

The behavior of the OPEN statement when label records are specified but
not present, or when label records are not specified but are present, is
undefined.

(8) If during the execution of an OPEN statement a file attribute conflict
condition occurs, the execution of the OPEN statement is unsuccessful. (See
page VIII-6, The File Attribute Conflict Condition.)

(9) If a file opened with the INPUT phrase is an optional file which is not
present, the OPEN statement sets the file position indicator to indicate that an
o~tional in___e_ut file is not _E_resent.

(10) When files are opened with the INPUT or I-0 phrase, the file position
indicator is set to 1.

(11) When the EXTEND phrase is specified, the OPEN statement positions the
file immediately after the last logical record for that file. The last logical
record for a relative file is the currently existing record with the highest
relative record number.

(12) When the EXTEND phrase
indicates label records are
includes the following steps.

is specified and the
present, the execution

LABEL RECORDS clause
of the OPEN statement

a. The beginning file labels are processed only in the case of a single
reel/unit file.

b. The beginning reel/unit labels on the last existing reel/unit are
processed as though the file was being opened with the INPUT phrase.

c. The existing ending file labels are processed as though the file is
being opened with the INPUT phrase. These labels are then deleted.

d. Processing then proceeds as though the file had been opened with the
OUTPUT phrase.

(13) The OPEN statement with the I-0 phrase must referenc~ a file that
supports the input and output operations that are permitted for a relative file
when opened in the I-0 mode. The execution of the OPEN statement with the I-0
phrase places the referenced file in the open mode for both input and output
operations.

(14) When the I-0 phrase is specified and the LABEL RECORDS clause indicates
label records are present, the execution of the OPEN statement includes the
following steps.

a. The labels are checked in accordance with the implementor's specific
conventions for input-output label checking.

b. The new labels are written in accordance with the implementor's
specified conventions for input-output label writing.

VIII-24

Relative I-0 - OPEN

(15) For an optional file that is unavailable, the successful execution of an
OPEN statement with an !EXTEND orlI-0 phrase creates the file. This creation
takes place as if the following statements were executed in the order shown:

OPEN OUTPUT file-name.
CLOSE file-name.

These statements are followed by execution of the OPEN statement specified in
the source program.

The successful execution of an OPEN statement with the OUTPUT phrase
creates the file. After the successful creation of a file, that file contains
no data records.

(16) The execution of the OPEN statement causes the value of the I-0 status
associated with file-name to be updated. (See page VIII-2, I-0 Status.)

(17) If more than one file-name is specified
result of executing this OPEN statement is
statement had been written for each file-name in
the OPEN statement.

in an OPEN statement,
the same as if a separate

the same order as specified

ilie
OPEN

in

(18) The minimum and maximum record sizes for a file are established at the
time the file is created and must not subsequently be changed.

VIII-25

Relative I-0 - READ

4.5 THE READ STATEMENT

4.5.1 Function

For sequential access, the READ statement makes available the next logical
record from a file. For random access, the READ statement makes available a
specified record from a mass storage file.

4.5.2 General Format

Format 1:

REA!;> file-name-1 ![NEXTJI RECORD [INTO identifier-1]

[AT END imperative-statement-1]

[NOT AT END imperative-statement-2]

[END-READ]

Format 2:

READ file-name-1 RECORD [INTO identifier-1]

[INVALID KEY imperative-statement-3]

[NOT INVALID KEY imperative-statement-4]

[END-READ]

4.5.3 Syntax Rules

(1) The storage area associated with identifier-I and the record area
associated with file-name-1 must not be the same storage area.

(2) Format 1 must be used for all files in sequential access mode.

(3) The NEXT phrase must be specified for files in dynamic access mode when
records are to be retrieved sequentially.

(4) Format 2 is used for files in random access mode or for files in dynamic!
access mode when records are to be retrieved randomly. .

(5) The INVALID KEY phrase or the AT END phrase must be specified if no
applicable USE AFTER STANDARD EXCEPTION procedure is specified for file-name-!.

4.5.4 General Rules

(1) The file referenced by file-name-! must be open in the input or I-0 mode
at the time this statement is executed. (See page VIII-21, The OPEN Statement.)

(2) For files in sequential access mode, the NEXT phrase is optional and has
no effect on the execution of the READ statement.

VIII-26

Relative I-0 - READ

(3) The execution of the READ statement causes the value of the I-0 status
associated with file-name-I to be updated. (See page VIII-2, I-0 Status.)

(4) The setting of the file position indicator at the start of the execution
of a format 1 READ statement is used in determining the record to be made
available according to the following rules. Comparisons for records in relative
files relate to the relative key number.

a. If the file position indicator indicates that no valid next record
has been established, execution of the READ statement is unsuccessful •

...-~~~~b_.~_I_f~the file position indicator indicates lthat an optional input filel
lis not present,lexecution proceeds as specified in general rule 10.

c. If the file position indicator was established by a previous OPEN or
START statement, the first existing record in the file whose relative record
number is greater than or equal to the file position indicator is selected.

d. If the file position indicator was established by a previous READ
statement, the first existing record in the file whose relative record number is
greater than the file position indicator is selected.

If a record is found which satisfies the above rules, it is made
available in the record area associated with file-name-I unless the RELATIVE KEY
phrase is specified for file-name-I and the number of significant digits in the
relative record number of the selected record is larger than the size of the
relative key data item, in which case, the file position indicator is set to
indicate this condition and execution proceeds as specified in general rule 10.

If no record is found which satisfies the above rules, the file position
indicator is set to indicate that no next logical record exists and execution
proceeds as specified in general rule 10.

If a record is made available, the file position indicator is set to the
relative record number of the record made available.

(5) Regardless of the method used to overlap access time with processing
time, the concept of the READ statement is unchanged; a record is available to
the object program prior to the execution of imperative-statement-2 or
imperative-statement-4, if specified, or prior .to the execution of any statement
following the READ statement, if neither imperative-statement-2 nor
imperative-statement-4 is specified.

(6) When the logical records of a file are described with more than one
record description, these records automatically share the same record area in
storage; this is equivalent to an implicit redefinition of the area. The
contents of any data items which lie beyond the range of the current data record
are undefined at the completion of the execution of the READ statement.

(7) The INTO phrase may be specified in a READ statement:

a. If only one record description is subordinate to
description entry, or

VIII-27

the file

Relative I-0 - READ

b. If all record-names associated with file-name-1 and the data item
referenced by identifier-I describe a group item or an elementary alphanumeric
item.

(8) The result of the execution of a READ statement with the INTO phrase is
equivalent to the application of the following rules in the order specified:

a. The execution of the same READ statement without the INTO phrase.

b. The current record is moved from the record area to the area
specified by identifier-1 according to the rules for the MOVE statement without
the CORRESPONDING phrase. The size of the current record is determined by rules
s ecified for the RECORD clause. If the file description entry contains a
RECORD IS VARYING clause the im lied move is a rou move. The implied MOVE
statement does not occur if the execution of the READ statement was
unsuccessful. Any subscripting associated with identifier-I is evaluated after
the record has been read and immediately before it is moved to the data item.
The record is available in both the record area and the data item referenced by
identifier-I.

(9) If, at the time of the execution of a format 2 READ statement, the file
position indicator indicates that an optional input file is not present, the
invalid key condition exists and execution of the READ statement is
unsuccessful. (See page VIII-5, The Invalid Key Condition.)

(10) For a format 1 READ statement, if the file position indicator
that no next logical record exists, or that the number of significant
the relative record number is larger than the size of the relative
item, lor that an optional file is not present,! the following occurs in
specified:

indicates
digits in
key data
the order

a. A value, derived from the setting of the file position indicator, is
placed into the I-0 status associated with file-name-1 to indicate the at end
condition. (See page VIII-2, I-0 Status.)

b. If the AT END phrase is specified in the statement causing the
condition, control is transferred to imperative-statement-1 in the AT END
phrase. Any USE AFTER STANDARD EXCEPTION procedure associated with file-name-1
is not executed.

c.
EXCEPTION
executed.
following

If the AT END phrase is not specified, a
procedure must be associated with file-name-1,
Return from that procedure is to the next

the end of the READ statement.

USE AFTER STANDARD
and that procedure is
executable statement

When the at end condition occurs, execution of the READ statement is
unsuccessful.

(11) If neither an at end nor an invalid key condition occurs during the
execution of a READ statement, the AT END phrase or the INVALID KEY phrase is
ignored, if specified, and the following actions occur:

a. The file position indicator is set and the I-0 status associated
with file-name-1 is updated.

VIII-28

Relative I-0 - READ

b. If an exception condition which is not an at end or an invalid key
conditi6n exists, control is transferred according to rules of the USE statement
following the execution of any USE AFTER EXCEPTION procedure applicable to
file-name-1. (See page VIII-35, The USE Statement.)

c. If no exception condition exists, the record 1s made available in
the record area and any implicit move resulting from the presence of an INTO
phrase is executed. Control is transferred to the end of the READ statement or
to imperative-statement-2, if specified. In the latter case, execution
continues according to the rules for each statement specified in
imperative-statement-2. If a procedure branching or conditional statement which
causes explicit transfer of control is executed, control is transferred in
accordance with the rules for that statement; otherwise, upon completion of the
execution of imperative-statement-2, control is transferred to the end of the
READ statement.

(12) Following the unsuccessful execution of a READ statement, the content of
the associated record area is undefined and the file position indicator is set
to indicate that no valid next record has been established.

(13) For a relative file for which dynamic access mode is specified, a
format 1 READ statement with the NEXT phrase specified causes the next logical
record to be retrieved from that file.

(14) For a
file-name-1,
record number
according to
Statement.)

relative file, if the RELATIVE KEY phrase 1s specified for
the execution of a format 1 READ statement moves the relative
of the record made available to the relative key data item
the rules for the MOVE statement. (See page VI-103, The MOVE

(I5) For a relative file, execution of a format 2 READ statement sets the
file position indicator to the value contained in the data item referenced by
the RELATIVE KEY phrase for the file, and the record whose relative record
number equals the file position indicator is made available in the record area
associated with file-name-I. If the file does not contain such a record, the
invalid key condition exists and execution of the READ statement 1s
unsuccessful. (See page VIII-5, The Invalid Key Condition.)

(I6) If the number of character positions in the record that is read is less
than the minimum size specified by the record description entries for
file-name-1, the portion of the record area which is to the right of the last
valid character read is undefined. If the number of character positions in the
record that is read is greater than the maximum size specified by· the record
description entries for file-name-I, the record is truncated on the right to the
maximum size. In either of these cases, the READ statement is successful and an
I-0 status is set indicating a record length conflict has occurred. (See page
VIII-2, I-0 Status.)

(17) The END-READ phrase delimits the scope of the READ statement. (See page
IV-40, Scope of Statements.)

VIII-29

Relative I-0 - REWRITE

4. 6 THE REWRITE STATEMENT

4.6.1 Function

The REWRITE statement logically replaces a record existing in a mass storage
file.

4.6.2 General Format

REWRITE record-name-1 [FROM identifier-1]

[INVALID KEY imperative-statement-1]

[NOT INVALID KEY imperative-statement-2]

[END-REWRITE]

4.6.3 Syntax Rules

(1) Record-name-I and identifier-I must not refer to the same storage area.

(2) Record-name-I is the name of a logical record in the File Section of the
Data Division and may be qualified.

(3)
for a
mode.

The INVALID KEY and the NOT INVALID KEY phrases must not be specified
REWRITE statement which references a relative file in sequential access

(4) The INVALID KEY phrase must be specified in the REWRITE statement for
relative files in the random lor dynamic I access mode, and for which an
appropriate USE AFTER STANDARD EXCEPTION procedure is not specified.

4.6.4 General Rules

(1) The file referenced by the file-name associated with record-name-! must
be a mass storage file and must be open in the I-0 mode at the time of execution
of this statement. (See page VIII-21, The OPEN Statement.)

(2) For files in the sequential access mode, the last input-output statement
executed for the associated file prior to the execution of the REWRITE statement
must have been a successfully executed READ statement. The mass storage control
system (MSCS) logically replaces the record that was accessed by the READ
statement.

(3) In level 1, the
by record-name-I must
record bein re laced.
record referenced by
character positions in

number of character positions in the record referenced
be equal to the number of character positions in the

In level 2, the number of character positions in the
record-name-I may or may not be equal to the number of

the record being replaced.

(4) The logical record released by a successful execution of the REWRITE
statement is no Ion er available in the record area unless the file-name
associated with record-name-I is specified in a SAME RECORD AREA clause. The
logical record is also available to the ro ram as a record of other files

VIII-30

Relative I-0 - REWRITE

referenced in the same SAME RECORD AREA clause as the associated output file, as
well as the file associated with record-name-I.

(5) The result of the execution of a REWRITE statement with the FROM phrase
is equivalent to the execution of the following statements in the order
specified:

a. The statement:

MOVE identifier-I TO record-name-I

according to the rules specified for the MOVE statement.

b. The same REWRITE statement without the FROM phrase.

(6) After the execution of the REWRITE statement is complete, the
information in the area referenced by identifier-I is available, even though the
information in the area referenced by record-name-I is not available except asl

!specified by the SAME RECORD AREA clause. l
(7) The file position indicator is not affected by the execution of a

REWRITE statement.

(8) The execution of the REWRITE statement causes the value of
status of the file-name associated with record-name-I to be updated.
VIII-2, I-0 Status.)

the I-0
(See page

(9) The execution of the REWRITE statement releases a logical record to the
operating system.

(10) Transfer of control following the successful or
of the REWRITE operation depends on the presence or
INVALID KEY and NOT INVALID KEY phrases in the REWRITE
VIII-5, The Invalid Key Condition.)

unsuccessful execution
absence of the optional
statement. (See page

(Il) The END-REWRITE phrase delimits the scope of the REWRITE statement.
(See page IV-40, Scope of Statements.)

(I2) The number of character positions in the record referenced by
record-name-I must not be larger than the largest or smaller than the smallest
number of character positions allowed by the RECORD IS VARYING clause associated
with the file-name associated with record-name-I. In either of these cases the
execution of the REWRITE statement is unsuccessful, the updating operation does
not take place, the contents of the record area are unaffected and the I-0
status of the file associated with record-name-I is set to a value indicating
the cause of the condition. (See ~~e VIII-2, I-0 Status.~>~~~~~~~~~~-'

VIII-3I

Relative I-0 - REWRITE

(13) For a file accessed inleitherl randomlor dynamicl access mode, the mass
storage control system (MSCS) logically replaces the record specified by the
content of the relative key data of the file-name associated with record-name-I.
If the file does not contain the record specified by the key, the invalid key
condition exists. When the invalid key condition is recognized, the execution
of the REWRITE statement is unsuccessful, the updating operation does not take
place, the contents of the record area are unaffected and the I-0 status of the
file-name associated with record-name-I is set to a value indicating the cause
of the condition. (See page VIII-2, I-0 Status.)

VIII-32

Relative I-0 - START

4.7 THE START STATEMENT

4.7.1 Function

The START statement provides a basis for logical positioning within a
relative file, for subsequent sequential retrieval of records.

4.7.2 General Format

START file-name-1 KEY

IS EQUAL TO
IS =
IS GREATER THAN
IS >
IS NOT LESS THAN
IS NOT <
IS GREATER THAN OR EQUAL TO
IS >=

[INVALID KEY imperative-statement-1]

[NOT INVALID KEY imperative-statement-2]

[END-START]

4.7.3 Syntax Rules

data-name-1

(1) File-name-I must be the name of a file with a sequential or dynamic
access.

(2) Data-name-I may be qualified.

(3) The INVALID KEY phrase must be specified if no applicable USE AFTER
STANDARD EXCEPTION procedure is specified for file-name-1.

(4) Data-name-1, if specified, must be the data item specified in the
RELATIVE KEY phrase in the ACCESS MODE clause of the associated file control
entry.

4.7.4 General Rules

(1) The file referenced by file-name-1 must be open in the input or I-0 mode
at the time that the START statement is executed. (See page VIII-21, The OPEN
Statement.)

(2) If the KEY phrase is not specified, the relational operator 'IS EQUAL
TO' is implied.

(3) The execution of the START statement does not alter either the content
of the record area or the content of the data item referenced by the data-name
specified in the DEPENDING ON phrase of the RECORD clause associated with
file-name-1.

VIII-33

Relative I-0 - START

(4) The type of comparison specified by the relational operator in the KEY
phrase occurs between a key associated with a record in the file referenced by
file-name-1 and a data item as specified in general rule 10. Numeric comparison
rules apply. (See page VI-55, Comparison of Numeric Operands.)

a. The file position indicator is set to the relative record number of
the first logical record in the file whose key satisfies the comparison.

b. If the comparison is not satisfied by any record in the file, the
invalid key condition exists and the execution of the START statement is
unsuccessful.

(5) The execution of the START statement causes the value of the I-0 status
associated with file-name-1 to be updated. (See page VIII-2, I-0 Status.)

(6) If, at the time of the execution of the START statement, the file
position indicator indicates that an optional input file is not present, the
invalid key condition exists and the execution of the START statement is
unsuccessful.

(7) Transfer of control following the successful or unsuccessful execution
of the START operation depends on the presence or absence of the optional
INVALID KEY and NOT INVALID KEY phrases in the START statement. (See page
VIII-5, The Invalid Key Condition.)

(8) Following the unsuccessful execution of
position indicator is set to indicate that
established.

a START statement, the file
no valid next record has been

(9) The END-START phrase delimits the scope of the START statement. (See
page IV-40, Scope of Statements.)

(10) The comparison described in general rule 4 uses the data item referenced
by the RELATIVE KEY phrase of the ACCESS MODE· clause associated with
file-name-!.

VIII-34

Relative I-0 - USE

4.8 THE USE STATEMENT

4.8.1 Function

The USE statement specifies procedures fo~ input-output error handling that
are 1n addition to the standard procedures provided by the input-output control
system.

4.8.2 General Format

!{file-name-1} G:WJ I
INPUT

USE AFTER STANDARD {:TION} PROCEDURE ON ~PUT

!EXTEND I

4.8.3 Syntax Rules

(1) A USE statement, when present, must immediately follow a section header
1n the declaratives portion of the Procedure Division and must appear in a
sentence by itself. The remainder of the section must consist of zero, one, or
more procedural paragraphs that define the procedures to be used.

(2) The USE statement is never executed; it merely defines the conditions
calling for the execution of the USE procedures.

(3) Appearance of file-name-! in a USE statement must not cause the
simultaneous request for execution of more than one USE procedure.

(4) The words ERROR and EXCEPTION are synonymous and may
interchangeably.

be used

(5) The files implicitly or explicitly referenced in the USE statement need
not all have the same organization or access.

(6) The INPUT, OUTPUT, I-o,land EXTEND!phrases may each be specified only
once in the declaratives portion of a given Procedure Division.

4.8.4 General Rules

(1) Declarative procedures may be included in any COBOL source program
irrespective of whether the program contains or is contained within another
program. A declarative is invoked when any of the conditions described in the
USE statement which prefaces the declarative occurs while the program is being
executed. Only a declarative within the separately compiled program that
contains the statement which caused the qualifying condition is invoked when any
of the conditions described in the USE statement which prefaces the declarative
occurs while that separately compiled program is being executed. If no
qualifying declarative exists in the separately compiled program, no declarative
1s executed.

(2) Within a declarative procedure, there must be no reference to any
nondeclarative procedures.

VIII-35

Relative I-0 - USE

(3) Procedure-names associated with a USE statement may be referenced in a
different declarative section or in a nondeclarative procedure only with a
PERFORM statement.

(4) When file-name-1 is specified explicitly, no other USE statement applies
to file-name-1.

(5) The procedures associated with a USE statement are executed by the
input-output control system after completion of the standard input-output
exception routine upon the unsuccessful execution of an input-output operation
unless an AT END or INVALID KEY phrase takes precedence. The rules concerning
when the procedures are executed are as follows:

a. If file-name-1 is specified, the associated procedure is executed
when the condition described in the USE statement occurs.

b.
condition
mode or in
referenced
condition.

If INPUT is specified, the associated procedure is executed when the
described in the USE statement occurs for any file open in the input
the process of being opened in the input mode, except those files

by file-name-1 in another USE statement specifying the same

c. If OUTPUT is specified, the associated procedure is executed when
the condition described in the USE statement occurs for any file open in the
output mode or in the process of being opened in the output mode, except those
files referenced by file-name-1 in another USE statement specifying the same
condition.

d.
condition
mode or in
referenced
condition.

If I-0 is specified, the associated procedure is executed when the
described in the USE statement occurs for any file open in the I-0
the process of being opened in the I-0 mode, except those files

by file-name-1 in another USE statement specifying the same

e. If EXTEND is specified, the associated procedure is executed when
the condition described in the USE statement occurs for any file open in the
extend mode or in the process of being opened in the extend mode, except those
files referenced by file-name-1 in another USE statement specifying the same
condition.

(6) After execution of the USE procedure, control is transferred to the
invoking routine in the input-output control system. If the I-0 status value
does not indicate a critical input-output error, the input-output control system
returns control to the next executable statement following the input-output
statemen~ whose execution caused the exception. If the I-0 status value does
indicate a critical error, the implementor determines what action is taken.
(See page VIII-2, I-0 Status.)

(7) Within a USE procedure, there must not be the execution of any statement
that would cause the execution of a USE procedure that had previously been
invoked and had not yet returned control to the invoking routine.

VIII-36

Relative I-0 - WRITE

4.9 THE WRITE STATEMENT

4.9.1 Function

The WRITE statement releases a logical record for an output or input-output
file.

4.9.2 GENERAL FORMAT

WRITE record-name-1 [FROM identifier-!]

[INVALID KEY imperative-statement-!]

[NOT INVALID KEY imperative-statement-2)

[END-WRITE]

4.9.3 Syntax Rules

(1) Record-name-I and identifier-I must not refer to the same storage area.

(2) Record-name-I is the name of a logical record in the File Section of the
Data Division and may be qualified.

(3) The INVALID KEY phrase must be specified if an applicable USE AFTER
STANDARD EXCEPTION procedure is not specified for the associated file-name.

4.9.4 General Rules

(1) The
be open in
statement.

file referenced by the file-name associated
the output, I-0,lor extendlmode at the time
(See page VIII-21, The OPEN Statement.)

with record-name-I must
of the execution of this

(2) The logical record released by the successful execution of the WRITE
statement is no lon__g_er available in the record areaJunless the file-name
associated with record-name-I is specified in a SAME RECORD AREA clause. The
logical record is also available to the program as a record of other files
referenced in the same SAME RECORD AREA clause as the associated output file, as
well as the file associated with record-name-I.

(3) The result of the execution of a WRITE statement with the FROM phrase is
equivalent to the execution of the following statements in the order specified:

a. The statement

MOVE identifier-I TO record-name-I

according to the rules specified for the MOVE statement.

b. The same WRITE statement without the FROM phrase.

VIII-37

Relative I-0 - WRITE

(4) After the execution of the WRITE statement is complete, the information
in the area referenced by identifier-I is available, even though the information
in the area referenced by record-name-I is not available !except as specified by l
l the SAME RECORD AREA clause. I

(5) The file position indicator is not affected by the execution of a WRITE
statement.

(6) The execution of the WRITE statement causes the value of the I-0 status
of the file-name associated with record-name-I to be updated. (See page VIII-2,
I-0 Status.)

(7) The execution of the WRITE statement releases a logical record to the
operating system.

(8) The number of character positions in the record referenced by
record-name-I must not be larger than the largest or smaller than the smallest
number of character positions allowed by the RECORD IS VARYING clause associated
with the file-name associated with record-name-I. In either of these cases the
execution of the WRITE statement is unsuccessful, the WRITE operation does not
take place, the content of the record area is unaffected and the I-0 status of
the file associated with record-name-I is set to a value indicating the cause of
the condition. (See page VIII-2, I-0 Status.)

(9) If, during the
phrase, the invalid
imperative-statement-2

execution of a WRITE statement with the NOT INVALID KEY
key condition does not occur, control is transferred to
at the appropriate time as follows:

a. If the execution of the WRITE statement is successful, after the
record is written and after updating the I-0 status of the file-name associated
with record-name-I.

b. If the execution of the WRITE statement is unsuccessful for a reason
other than an invalid key condition, after updating the I-0 status of the
file-name associated with record-name-I, and after executing the procedure, if
any, specified by a USE AFTER STANDARD EXCEPTION PROCEDURE statement applicable
to the file-name associated with record-name-I.

(10) The END-WRITE phrase delimits the scope· of the WRITE statement.
page IV-40, Scope of Statements.)

. (See

(11) When a relative file is opened in the output mode, records may be placed
into the file by one of the following:

a. If the access mode is sequential, the WRITE statement causes a
record to be released to the mass storage control system (MSCS). The first
record has a relative record number of one, and subsequent records released have
relative record numbers of 2, 3, 4, If the RELATIVE KEY phrase is
specified for the file-name associated with record-name-I, the relative record
number of the record being released is moved into the relative key data item by
the mass storage control system (MSCS) during execution of the WRITE statement
according to the rules for the MOVE statement. (See page VI-103, The MOVE
Statement.)

VIII-38

Relative I-0 - WRITE

b. If the access mode is random lor dynamic ,I prior to the execution of
the WRITE statement the value of the relative key data item must be initialized
by the program with the relative record number to be associated with the record
in the record area. That record is then released to the mass storage control
system (MSCS) by execution of the WRITE statement.

(12) When a relative file is open in the extend mode, records are inserted
into the file. The first record released to the mass storage control system
(MSCS) has a relative record number one greater than the highest relative record
number existing in the file. Subsequent records released to the mass storage
control system (MSCS) have consecutively higher relative record numbers. If the
RELATIVE KEY phrase is specified for the file-name associated with
record-name-I, the relative record number of the record being released is moved
into the relative key data item by the mass storage control system (MSCS) during
execution of the WRITE statement according to the rules for the MOVE statement.
(See page VI-103, The MOVE Statement.)

(13) When a relative file is opened in the I-0 mode and the access mode is
random lor dynamic ,I records are to be inserted in the associated file. The value
of the relative key data item must be initialized by the program with the
relative record number to be associated with the record in the record area.
Execution of the WRITE statement then causes the content of the record area to
be released to the mass storage control system (MSCS).

(14) The invalid key condition exists under the following circumstances:

a. When the access mode is randomlor dynamic,! and the relative key data
item specifies a record which already exists in the file, or

b. When an attempt is made to write beyond the externally defined
boundaries of the file, or

c. When the number of significant digits in the relative record number
is larger than the size of the relative key data item described for the file.

(15) When the invalid key condition is recognized, the execution of the WRITE
statement is unsuccessful, the content of the record area is unaffected, and the
I-0 status of the file-name associated with record-name-I is set to a value
indicating the cause of the condition. Execution of the program proceeds
according to the rules for an invalid key condition. (See page VIII-2, I-0
Status, and page VIII-5, The Invalid Key Condition.)

VIII-39

Indexed I-0 - Introduction

SECTION IX: INDEXED I-0 MODULE

1. INTRODUCTION TO THE INDEXED I-0 MODULE

1 .1 FUNCTION

The Indexed I-0 module provides a capability to access records of
storage file in either a random or sequential manner. Each record in an
file is uniquely identified by the value of one or more keys within that

a mass
indexed
record.

1.2 LEVEL CHARACTERISTICS

Indexed I-0 level 1 provides limited capabilities for the file control entry,
the file description entry, and the entries in the I-o~coNTROL paragraph.
Within the Procedure Division, the Indexed I-0 level 1 provides limited
capabilities for the CLOSE, OPEN, READ, REWRITE, USE, and WRITE statements and
full capabilities for the DELETE statement.

Indexed I-0 level 2
the file description
Within the Procedure
capabilities for the
statements.

1.3 LANGUAGE CONCEPTS

1.3.1 Organization

provides full capabilities for the file control entry,
entry, and the entries in the I-0-CONTROL paragraph.
Division, the Indexed I-0 level 2 provides full

CLOSE, DELETE, OPEN, READ, REWRITE, START, USE, and WRITE

A file with indexed organization is a mass storage file from which any record
may be accessed by giving the value of a specified key in that record. For each
key data item defined for the records of a file, an index is maintained. Each
such index represents the set of values from the corresponding key data item 1n
each record. Each index, therefore, is a mechanism which can provide access to
any record in the file.

Each indexed file has a primary index which represents the prime record key
of each record in the file. Each record is inserted in the file, changed, or
deleted from the file based solely upon the value of its prime record key. The
prime record key of each record in the file must be unique, and it must not be
changed when updating a record. The prime record key is declared in the RECORD
KEY clause of the file control entry for the file.

Alternate record keys provide alternate means of retrieval for the records of
a file. Such keys are named in the ALTERNATE RECORD KEY clause of the file
control entry. The value of a particular alternate record key in each record
need not be unique. When these values may not be unique, the DUPLICATES phrase
is s ecified in the ALTERNATE RECORD KEY clause.

IX-1

Indexed I-0 - Introduction

1.3.2 Access Modes

For indexed organization, the order of sequential access is ascending based
on the value of the key of reference according to the collating sequence of the
file. Any of the keys associated with the file ma_y_ be established as the key of
reference during the processin_g_ of a file.J The order of retrieval from a set of
records which have duplicate key of reference values is the original order of
arrival of those records into that set. The START statement may be used to
establish a starting point within an indexed file for a series of subsequent
sequential retrievals.

When a file is accessed in random mode, input-output statements are used to
access the records in a programmer-specified order. With the indexed
organization, the programmer specifies the desired record by placing the value
of one of its record keys in a record key or an alternate record key data item.

With dynamic access mode, the programmer may change at will
accessing to random accessing, using appropriate forms
statements •

1.3.3 File Position Indicator

from sequential
of input-output

The file position indicator is a conceptual entity used in this document to
facilitate exact specification of the next record to be accessed within a given
file during certain sequences of input-output operations. The setting of the
file position indicator is affected only by the CLOSE, OPEN, READ, land START!
statements. The concept of a file position indicator has no meaning for a file
opened in the outputlor extendlmode.

1.3.4 I-0 Status

The I-0 status is a two-character conceptual entity whose value is set to
indicate the status of an input-output operation during the execution of a
CLOSE, DELETE, OPEN, READ, REWRITE,[START,lor WRITE statement and prior .to the
execution of any imperative statement associated with that input-output
statement or prior to the execution of any applicable USE AFTER STANDARD
EXCEPTION procedure. The value of the I-0 status is made available to the COBOL
program through the use of the FILE STATUS clause in the file control entry for
the file.

The I-0 status also determines whether an applicable USE AFTER STANDARD
EXCEPTION procedure will be executed. If any condition other than those
contained under the heading "Successful Completion" on page IX-3 results, such a
procedure may be executed depending on rules stated elsewhere. If one of the
conditions listed under the heading "Successful Completion" on page IX-3
results, no such procedure will be executed. (See page IX-39, The USE
Statement.)

Certain classes of I-0 status values indicate critical error conditions.
These are: any that begin with the digit 3 or 4, and any that begin with the
digit 9 that the implementor defines as critical. If the value of the I-0
status for an input-output operation indicates such an error condition, the
implementor determines what action is taken after the execution of any
applicable USE AFTER STANDARD EXCEPTION procedure, or if none applies, after
completion of the normal input-output control system error processing.

IX-2

Indexed I-0 - Introduction

I-0 status expresses one of the following conditions upon completion of the
input-output operation:

(1) Successful Completion.
executed.

The input-output statement was successfully

(2) At End. A sequential READ statement was unsuccessfully executed as a
result of an at end condition.

(3) Invalid Key. The input-output statement was unsuccessfully executed as
a result of an invalid key condition.

(4) Permanent Error. The input-output statement was unsuccessfully executed
as the result of an error that precluded further processing of the file. Any
specified exception procedures are executed. The permanent error condition
remains in effect for all subsequent input-output operations on the file unless
an implementor-defined technique is invoked to correct the permanent error
condition.

(5) Logic Error. The input-output statement was unsuccessfully executed as
a result of an improper sequence of input-output operations that were performed
on the file or as a result of violating a limit defined by the user.

(6) Implementor Defined. The input-output statement was unsuccessfully
executed as the result of a condition that is specified by the implementor.

The following is a list of the values placed in the I-0 status for the
previously named conditions resulting from the execution of an input-output
operation on an indexed file. If more than one value applies, the implementor
determines which of the applicable values to place in the I-0 status.

(1) Successful Completion

a. I-0 Status = 00. The input-output statement is successfully
executed and no further information is available concerning the input-output
operation.

b. I-0 Status = 02. The input-output
executed but a duplicate key is detected.

statement is success fully

1) For a READ statement, the key value for the current key of
reference is equal to the value of the same key in the next record within the
current key of reference.

2) For a REWRITE or WRITE statement, the record just written
created a duplicate key value for at least one alternate record key for which
duplicates are allowed.

c. I-0 Status = 04. A READ
length of the record being
attributes for that file.

statement
processed

is
does

successfully
not conform

executed but the
to the fixed file

d. I-0 Status = 05. An
referenced optional file
executed. If the O_.E..en mode

OPEN statement is successfully executed but the
is not present at the time the OPEN statement is
is I-0 or extend, the file has been created.

IX-3

Indexed I-0 - Introduction

(2) At End Condition With Unsuccessful Completion

a. I-0 Status = 10. A sequential READ statement is attempted and no
next logical record exists in the file because:

1) The end of the file has been reached; or

2) A sequential READ statement is attempted for the first
an optional input file that is not present.

(3) Invalid Key Condition With Unsuccessful Completion

time

a. I-0 Status= 21. A sequence error exists for a sequentially
accessed indexed file. The prime record key value has been changed by the
program between the successful execution of a READ statement and the execution
of the next REWRITE statement for that file, or the ascending sequence
requirements for successive record key values are violated. (See page IX-41,
The WRITE Statement.)

b.
that would

Ikey without

I-0 Status = 22. An attempt is made to write or rewrite a record
create a duplicate prime record ke or a duplicate alternate record

the DUPLICATES phrase in an indexed file.

c. I-0 Status = 23. This condition exists because:

1) An attempt is made to randomly access a record that does not
exist in the file, or

2) A START or random READ statement is
in ut file that is not resent.

attempted on an optional'

d. I-0 Status = 24. An attempt is made to write beyond the
externally-defined boundaries of an indexed file. The implementor specifies the
manner in which these boundaries are defined.

(4) Permanent Error Condition With Unsuccessful Completion

a. I-0 Status = 30. A permanent error exists and
information is available concerning the input-output operation.

no further

b. I-0 Status = 35. A permanent error exists because an OPEN statement
with the INPUT, I-0, lor EXTENDlphrase is attempted on alnon-optionalJfile that
is not present.

c. I-0 Status= 37. A permanent error exists because an OPEN statement
is attempted on a file and that file will not support the open mode specified in
the OPEN statement. The possible violations are:

l) ThelEXTEND orlOUTPUT phrase is specified but the file will not
support write operations.

2) The I-0 phrase is specified but the file will not support the
input and output operations that are permitted for an indexed file when opened
in the I-0 mode.

IX-4

Indexed I-0 - Introduction

3) The INPUT phrase is specified but the file will not support read
operations.

d. I-0 Status = 38. A permanent error exists because an OPEN statement
is attempted on a file previously closed with lock.

e. I-0 Status = 39. The OPEN statement is unsuccessful because a
conflict has been detected between the fixed file attributes and the attributes
specified for that file in the program.

(5) Logic Error Condition With Unsuccessful Completion

a. I-0 Status = 41. An OPEN statement is attempted for a file in the
open mode.

b. I-0 Status = 42. A CLOSE statement is attempted for a file not 1n
the open mode.

c. I-0 Status = 43. In the sequential access mode,
input-output statement executed for the file prior to the execution
or REWRITE statement was not a successfully executed READ statement.

d. I-0 Status = 44. A boundary violation exists because:

the last
of a DELETE

1) An attempt is made to write or rewrite a record that is larger
than the largest or smaller than the smallest record allowed for the RECORD IS
VARYING clause of the associated file-name.

2) In level 1 an attempt is made to rewrite a record to an indexed
file and the record is not the same size as the record being replaced.

open in
because:

e. I-0 Status = 46. A sequential READ statement is attempted on a file
the input or I-0 mode and no valid next record has been established

1) The preceding START statement was unsuccessful, or

2) The preceding READ statement was unsuccessful but did not cause
an at end condition, or

3) The preceding READ statement caused an at end condition.

f. I-0 Status= 47. The execution of a READ I or START I statement is
attempted on a file not open in the input or I-0 mode.

g. I-0 Status = 48. The execution of a WRITE statement is attempted on
a file not open in the I-0, output,lor extendlmode.

h. I-0 Status = 49. The execution of a DELETE or REWRITE statement is
attempted on a file not open in the I-0 mode.

IX-5

Indexed I-0 - Introduction

(6) Implementor-Defined Condition With Unsuccessful Completion

a. I-0 Status = 9x. An implementor-defined condition exists. This
condition must not duplicate any condition specified for the I-0 status values
00 through 49. The value of x is defined by the implementor.

1.3.5 The Invalid Key Condition

The invalid key condition can occur as a result of the execution of a DELETE,
READ, REWRITE, jsTART,l or WRITE statement. When the invalid key condition
occurs, execution of the input-output statement which recognized the condition
is unsuccessful and the file is not affected. (See page IX-21, The DELETE
Statement; page IX-28, The READ Statement; page IX-33, The REWRITE Statement;

lpage IX-36, The START Statement;! and page IX-41, The WRITE Statement.)

If the invalid key condition exists after the execution of the input-output
operation specified in an input-output statement, the following actions occur in
the order shown:

(1)

set to
Status.)

The I-0 status of the file connector associated with
a value indicating the invalid key condition.

the statement is
(See page IX-2, I-0

(2) If the INVALID KEY phrase is specified in the input-output statement,
any USE AFTER EXCEPTION procedure associated with the file connector is not
executed and control is transferred to the imperative-statement specified in the
INVALID KEY phrase. Execution then continues according to the rules for each
statement specified in that imperative-statement. If a procedure branching or
conditional statement which causes explicit transfer of control is executed,
control is transferred in accordance with the rules for that statement;
otherwise, upon completion of the execution of the imperative-statement
specified in the INVALID KEY phrase, control is transferred to the end of the
input-output statement and the NOT INVALID KEY phrase, if specified, is ignored.

(3) If the INVALID KEY phrase is not specified in the input-output
statement, a USE AFTER EXCEPTION procedure must be associated with the file
connector and that procedure is executed and control is transferred according to
the rules of the USE statement. The NOT INVALID KEY phrase is ignored, if
specified. (See page IX-39, The USE Statement.)

If the invalid key condition does not exist after the execution of the
input-output operation specified by an input·-output statement, the INVALID KEY
phrase is ignored, if specified. The I-0 status of the file connector
associated with the statement is updated and the following actions occur:

(1) If an exception condition which is not an invalid key condition exists,
control is transferred according to the rules of the USE statement following the
execution of any USE AFTER EXCEPTION procedure associated with the file
connector. (See page IX-39, The USE Statement.)

(2) If not exception condition exists, control is transferred to the end of
the input-output statement or to the imperative-statement specified in the NOT
INVALID KEY phrase if it is specified. In the latter case, execution continues
according to the rules for each statement specified in that
imperative-statement. If a procedure branching or cond1tional statement which

IX-6

Indexed I-0 - Introduction

causes explicit transfer of control is executed, control is transferred in
accordance with the rules for that statement; otherwise, upon completion of the
execution of the imperative-statement specified in the NOT INVALID KEY phrase,
control is transferred to the end of the input-output statement.

1.3.6 The At End Condition

The at end condition can occur as a result of the execution of a READ
statement. (See page IX-28, The READ Statement.)

1.3.7 The File Attribute Conflict Condition

The file attribute conflict condition can result from the execution of an
OPEN, REWRITE, or WRITE statement. When the file attribute conflict condition
occurs, execution of the input-output statement that recognized the condition is
unsuccessful and the file is not affected. (See page IX-23, The OPEN Statement;
page IX-33, The REWRITE Statement; an page IX-41, The WRITE Statement.)

When the file attribute conflict condition is recognized, these actions take
place in the following order:

(1) A value is placed in the I-0 status associated with the file-name to
indicate the file attribute conflict condition. (See page IX-2, I-0 Status.)

(2) A USE AFTER EXCEPTION procedure, if any, associated with the file-name
is executed.

IX-7

Indexed I-0 - File Control Entry

2. ENVIRONMENT DIVISION IN THE INDEXED I-0 MODULE

2.1 INPUT-OUTPUT SECTION

Information concerning the Input-Output Section is located on page VII-6.

2.2 THE FILE-CONTROL PARAGRAPH

Information concerning the FILE-CONTROL paragraph is located on page VII-7.

2.3 THE FILE CONTROL ENTRY

2.3.1 Function

The file control entry declares the relevant physical attributes of an
indexed file.

2.3.2 General Format

SELECT j[OPTIONALJl file-name-1

ASSIGN TO {i~plementor-name-1}
11teral-l

[RESERVE integer-1 [~~!s]]
[ORGANIZATION IS] INDEXED

[{
SEQUENTIAL}]

ACCESS MODE IS RANDOM
\DYNAMIC I

RECORD KEY IS data-name-1

[ALTERNATE RECORD KEY IS data-name-2 [WITH DUPLICATES]] ...

[FILE STATUS IS data-name-3].

2.3.3 Syntax Rules

(1) The SELECT clause must be specified first in the file control entry.
The clauses which follow the SELECT clause may appear in any order.

(2) Each file-name in the Data Division must be specified only once in the
FILE-CONTROL paragraph. Each file-name specified in the SELECT clause must have
a file description entry in the Data Division of the same program.

(3) Literal-1 must be a nonnumeric literal and must not be a figurative
constant. The meaning and rules for the allowable content of implementor-name-I
and the value of literal-I are defined by the implementor.

IX-8

Indexed I-0 - File Control Entry

2.3.4 General Rules

(1) If the file connector referenced by file-name-1 is an external file
connector (see page X-23, The EXTERNAL Clause), all file control entries in the
run unit which reference this file connector must have:

a. The same specification for the OPTIONAL phrase.

b. A consistent specification for implementor-name-! or literal-I 1n
the ASSIGN clause. The implementor will specify the consistency rules for
implementor-name-! or literal-!.

c. The same value for integer-! in the RESERVE clause.

d. The same organization.

e. The same access mode.

f. The same data description entry for data-name-1 with the same
relative location within the associated record.

g. The same data description entry for data-name-2, the same relative
location within the associated record, the same number of alternate record keys,
and the same DUPLICATES phrase.

(2) The native character set is assumed for data on the external media.

(3) For an
character set
reference used

indexed file, the collating sequence associated with the native
is assumed. This is the sequence of values of a given key of

to process the file sequentially.

(4) The OPTIONAL phrase applies only to files opened in the input, I-0, or
extend mode. Its specification is required for files that are not necessarily
present each time the object program is executed.

(5) The ASSIGN clause specifies the association of the file referenced by
file-name-1 to a storage medium referenced by implementor-name-I or literal-!.

(6) The RESERVE clause for the Indexed I-0 module is the same as the RESERVE
clause for the Sequential I-0 module. Thus the specifications for the RESERVE
clause are located on_Qa_ge VII-14.

(7) The FILE STATUS clause for the Indexed I-0 module is the same as the
FILE STATUS clause for the Sequential I-0 module. Thus the specifications for
the FILE STATUS clause are located on page VII-10. The content of the data item
associated with the FILE STATUS clause of an indexed file is presented in the
paragraph entitled I-0 Status beginning on page IX-2.

(8) The
ORGANIZATION

ACCESS MODE clause, \the ALTERNATE RECORD KEY clause, j the
IS INDEXED clause, and the RECORD KEY clause are presented on the

following pages.

IX-9

Indexed I-0 - ACCESS MODE

2.4 THE ACCESS MODE CLAUSE

2.4.1 Function

The ACCESS MODE clause specifies the order in which records are to be
accessed in the file.

2.4.2 General Format

{
SEQUENTIAL }

ACCESS MODE IS RANDOM
jDYNAMICI

2.4.3 Syntax Rules

(1) The ACCESS MODE IS RANDOM clause must not be specified for file-names
specified in the USING or GIVING phrase of a SORT or MERGE statement.

2.4.4 General Rules

(1) If the ACCESS MODE clause is not specified, sequential access is
assumed.

(2) If the access mode is sequential, records in the file are accessed in
the sequence dictated by the file organization. For indexed files this sequence
is ascending within a given key of reference according to the collating sequence
of the file.

(3) If the access mode is random, the value of a record key data item for
indexed files indicates the record to be accessed.

(4) If the access mode is dynamic, records
sequentially and/or randomly.

in the file may be accessed I
(5) If the associated file connector is an external file connector, every

file control entry in the run unit which is associated with that file connector
must specify the same access mode.

IX-10

Indexed I-0 - ALTERNATE RECORD KEY

2.5 THE ALTERNATE RECORD KEY CLAUSE

2.5.1 Function

The ALTERNATE RECORD KEY clause specifies an alternate record key access path
to the records in an indexed file.

2.5.2 General Format

ALTERNATE RECORD KEY IS data-name-1 [WITH DUPLICATES]

2.5.3 Syntax Rules

(1) Data-name-1 may be qualified.

(2) Data-name-1 must be defined as a data item of the category alphanumeric
within a record description entry associated with the file-name to which the
ALTERNATE RECORD KEY clause is subordinate.

(3) Data-name-1 must not reference a group item that contains a variable
occurrence data item.

(4) Data-name-1 must not reference an item whose leftmost character position
corresponds to the leftmost character position of the prime record key or of any
other alternate record key associated with this file.

(5) If the indexed file contains variable length records, each alternate
record key must be contained within the first x character pos1t1ons of the
record, where x equals the minimum record size specified for the file. (See
page VII-30, The RECORD Clause.)

2.5.4 General Rules

(1) An ALTERNATE RECORD KEY clause specifies an alternate record key for the
file with which this clause is associated.

(2) The data description of data-name-1 as well as its relative location
within a record must be the same as that used when the file was created. The
number of alternate record keys for the file must also be the same as that used
when the file was created.

(3) The DUPLICATES phrase specifies that the value of the associated
alternate record key may be duplicated within any of the records in the file.
If the DUPLICATES phrase is not specified, the value of the associated alternate
record key must not be duplicated among any of the records in the file.

(4) If the file has more than one record description entry, data-name-1 need
only be described in one of these record description entries. The identical
character positions referenced by data-name-1 in any one record description
entry are implicitly referenced in keys for all other record description entries
of that file.

IX-11

I~dexed I-0 - ALTERNATE RECORD KEY

(5) If the associated file connector is an external file connector, every
file control entry in the run unit which is associated with that file connector
must specify the same data description entry for data-narne-1, the same relative
location within the associated record, the same number of alternate record keys,
and the same DUPLICATES phrase.

IX-12

Indexed I-0 - ORGANIZATION IS INDEXED

2.6 THE ORGANIZATION IS INDEXED CLAUSE

2.6.1 Function

The ORGANIZATION IS INDEXED clause specifies the indexed organization as the
logical structure of a file.

2.6.2 General Format

[ORGANIZATION IS] INDEXED

2.6.3 General Rules

(1) The ORGANIZATION IS INDEXED clause specifies indexed organization as the
logical structure of a file. The file organization is established at the time a
file is created and cannot subsequently be changed.

(2) Indexed organization is a permanent logical file structure in which each
record is identified by the value of one or more keys within that record.

IX-13

Indexed I-0 - RECORD KEY

2.7 THE RECORD KEY CLAUSE

2.7.1 Function

The RECORD KEY clause specifies the prime record key access path to the
records in an indexed file.

2.7.2 General Format

RECORD KEY IS data-name-1

2.7.3 Syntax Rules

(1) Data-name-I may be qualified.

(2) Data-name-I must reference a data item of the category alphanumeric
within a record description entry associated with the file-name to which the
RECORD KEY clause is subordinate.

(3) Data-name-1 must not reference a group item that contains a variable
occurrence data item.

(4) If the indexed file contains variable length records, the prime record
key must be contained within the first x character positions of the record,
where x equals the minimum record size specified for the file. (See page
VII-30, The RECORD Clause.)

2.7.4 General Rules

(1) The RECORD KEY clause specifies the prime record key for the file with
which this clause is associated. The values of the prime record key must be
unique among records of the file.

(2) The data description of data-name-I as well as its relative location
within a record must be the same as that used when the file was created.

(3) If the file has more than one record description entry, data-name-I need
only be described in one of these record description entries. The identical
character positions referenced by data-name-I in any one record description
entry are implicitly referenced as keys for all other record description entries
of that file.

(4) If the associated file connector is an external file connector, all file
description entries in the run unit which are associated with that file
connector must specify the same data description entry for data-name-1 with the
same relative location within the associated record.

IX-14

Indexed I-0 - I-0-CONTROL

2.8 THE I-0-CONTROL PARAGRAPH

2.8.1 Function

The I-0-CONTROL paragraph specifies the points at which rerun
established and the memory area which is to be shared by different
RERUN clause within the I-0-CONTROL paragraph is an obsolete element
COBOL because it is to be deleted from the next revision of Standard

2.8.2 General Format

I-0-CONTROL.

is to be
files. The
in Standard
COBOL.

[[BllUB ON { file-name-1 } {integer-! RECORPS OF file-name-2}]
· l me t l EVERY integer-2 CLOCK-UNITS
imp e n or-name- condition-name-!

[SAME ![RECORD]\ AREA FOR file-name-3 {file-name-4} •••] ••••]

2.8.3 General Rules

(1) The RERUN clause for the 'Indexed I-0 module is a subset of the RERUN
clause for the Sequential I-0 module. Thus the specifications for the RERUN
clause are located on page VII-17.

(2) The SAME clause for the Indexed I-0 module is the same as the SAME
clause for the Sequential I-0 module. Thus the specifications for the SAME
clause are located on page VII-19.

IX-15

Indexed I-0 - File Description Entry

3. DATA DIVISION IN THE INDEXED I-0 MODULE

3.1 FILE SECTION

Information concerning the File Section is located on page VII-21.

3.2 THE FILE DESCRIPTION ENTRY

3.2.l Function

The file description entry furnishes information concerning the physical
structure, identification, and record-names pertaining to an indexed file.

3.2.2 General Format

FD file-name-1

[BLOCK CONTAINS j(integer-1 :J:QJI integer-2 {~::;;~~ERs}]
CONTAINS integer-3 CHARACTERS

RECORD IS VARYING IN SIZE [[FROM integer-4] [TO integer-SJ CHARACTERS]

[DEPENDING ON data-name-1]

CONTAINS integer-6 TO integer-7 CHARACTERS

[{ RECORD IS } {STANDARD}]
LABEL RECORDS ARE OMITTED

{ { ldata-name-21}} implementor-name-1 ISliteral-l ...]
r, {RECORD IS }] ~ATA RECORDS ARE {data-name-3}

3.2.3 Syntax Rules

(1) The level indicator FD identifies the beginning of a file description
entry and must precede file-name-1.

(2) The clauses which follow file-name-1 may appear in any order.

(3) One or more record description entries must follow the file description
entry.

3.2.4 General Rules

(1) A file description entry associates file-name-1 with a file connector.

(2) The BLOCK CONTAINS clause for the Indexed I-0 module is the same as the
BLOCK CONTAINS clause for the Sequential I-0 module. Thus the specifications
for the BLOCK CONTAINS clause are located on page VII-23.

IX-16

Indexed I-0 - File Description Entry

(3) The DATA RECORDS clause of the Indexed I-0 module is the same as the
DATA RECORDS clause for the Sequential I-0 module. Thus the specifications for
the DATA RECORDS clause are located on page VII-25. The DATA RECORDS clause is
an obsolete element in Standard COBOL because it is to be deleted from the next
revision of Standard COBOL.

(4) The LABEL RECORDS clause for the Indexed I-0 module is the same as the
LABEL RECORDS clause for the Sequential I-0 module. Thus the specifications for
the LABEL RECORDS clause are located on page VII-26. The LABEL RECORDS clause
is an obsolete element in Standard COBOL because it is to be deleted from the
next revision of Standard COBOL.

(5) The RECORD clause for the Indexed I-0 module is the same as the RECORD
clause for the Sequential I-0 module. Thus the specifications for the RECORD
clause are located on page VII-30~

(6) The VALUE OF clause for the Indexed I-0 module is the same as the VALUE
OF clause for the Sequential I-0 module. Thus the specifications for the VALUE
OF clause are located on page VII-33. The VALUE OF clause is an obsolete
element in Standard COBOL because it is to be deleted from the next revision of
Standard COBOL.

IX-17

Indexed I-0 - Procedure Division

4. PROCEDURE DIVISION IN THE INDEXED I-0 MODULE

4.1 GENERAL DESCRIPTION

The Procedure Division contains declarative procedures when the USE statement
from the Indexed I-0 module is present in a COBOL source program. Shown below
is the general format of the Procedure Division when the USE statement is
present.

PROCEDURE DIVISION.

DECLARATIVES.

{section-name SECTION.

USE statement.

[paragraph-name.

[sentence] •..] ... } ...

END DECLARATIVES.

{section-name SECTION.

[paragraph-name.

[sentence] . . .] . . . } ...

IX-18

Indexed I-0 - CLOSE

4.2 THE CLOSE STATEMENT

4.2.1 Function

The CLOSE statement terminates the processing of fileslwith optional lock.I

4.2.2 General Format

CLOSE {file-name-1 j[WITH t.Q.QK]j}

4.2.3 Syntax Rules

(1) The files referenced in the CLOSE statement need not all have the same
organization or access.

4.2.4 General Rules

(1) A CLOSE statement may only be executed for a file in an open mode.

(2) Indexed files are classified as belonging to the category of
non-sequential single/multi-reel/unit. The results of executing each type of
CLOSE for this category of file are sununarized in the following table.

CLOSE File Category
Statement

Format Non-Sequential Single/Multi-Reel/Unit

CLOSE A

CLOSE WITH LOCK A,B

The definitions of the symbols in the table are given below. Where the
definition depends on whether the file is an input, output, or inpu~-output
file, alternate definitions are given; otherwise, a definition applies to input,
output, and input-output files.

A. Close File

Input Files and Input-Output Files (Sequential Access Mode):

If the file is positioned at its end and label records are specified
for the file, the labels are processed according to the implementor's standard
label convention. The behavior of the CLOSE statement when label records are
specified but not present, or when label records are not specified but are
present, is undefined. Clos1ng operations specified by the implementor are
executed. If the file is positioned at its end and label records are not
specified for the file, label processing does not take place but other closing
operations specified by the implementor are executed. If the file is positioned
other than at its end, the closing operations specified by the implementor are
executed, but there is no ending label processing.

IX-19

Indexed I-0 - CLOSE

Input Files and Input-Output Files (Randomlor Dynamic!Access Mode);
Output Files (Random,lDynamic.I or Sequential Access Mode):

If label records are specified for the file, the labels are
processed according to the implementor's standard label convention. The
behavior of the CLOSE statement when label records are specified but. not
present, or when label records are not specif~ed but are present, is undefined.
Closing operations specified by the implementor are executed. If label records
are not specified for the file, label processing does not take place but other
closing operations specified by the implementor are executed.

B. File Lock

The file is locked and cannot be opened again during this execution
of this run unit.

(3) The execution of the CLOSE statement causes the value of the I-0 status
associated with file-name-1 to be updated. (See page IX-2, I-0 Status.)

(4) If an optional input file is not present, no end-of-file processing is
erformed for the file and the file osition indicator is unchanged.

(5) Following the successful execution of a CLOSE statement, the record area
associated with file-name-I is no longer available. The unsuccessful execution
of such a CLOSE statement leaves the availability of the record area undefined.

(6) Following the successful execution of a CLOSE statement, the file is
removed from the open mode, and the file is no longer associated with the file
connector.

(7) If more than one file-name-I is specified in a CLOSE statement, the
result of executing this CLOSE statement is the same as if a separate CLOSE
statement had been written for each file-name-I in the same order as specified
in the CLOSE statement.

IX-20

Indexed I-0 - DELETE

4.3 THE DELETE STATEMENT

4.3.1 Function

The DELETE statement logically removes a record from a mass storage file.

4.3.2 General Format

DELETE file-name-! RECORD

[INVALID KEY imperative-statement-!]

[NOT INVALID KEY imperative-statement-2]

[END-DELETE]

4.3.3 Syntax Rules

(1)
for a
mode.

The INVALID KEY and the NOT INVALID KEY phrases must not be specified
DELETE statement which references a file which is in sequential access

(2) The INVALID KEY phrase must be specified for a DELETE statement which
references a file which is not in sequential access mode and for which an
applicable USE AFTER STANDARD EXCEPTION procedure is not specified.

4.3.4 General Rules

(1) The file referenced by file-name-1 must be a mass storage file and
be open in the I-0 mode at the time of the execution of this statement.
page IX-23, The OPEN Statement.)

must
(See

(2) For files in the sequential access mode, the last input-output statement
executed for file-name-1 prior to the execution of the DELETE statement must
have been a successfully executed READ statement. The mass storage control
system (MSCS) logically removes from the file the record that was accessed by
that READ statement.

(3) For an indexed file in randomlor dynamic! access mode, the mass storage
control system (MSCS) logically removes from the file the record identified by
the content of the prime record key data item associated with file-name-1. If
the file does not contain the record specified by the key, the invalid key
condition exists. (See page IX-6, The Invalid Key Condition.)

(4) After the successful execution of a DELETE statement, the identified
record has been logically removed from the file and can no longer be accessed.

(5) The execution of a DELETE statement does not affect the content of the
record area or the content of the data item referenced by the data-name
specified in the DEPENDING ON phrase of the RECORD clause associated with
file-name-1.

(6) The file position indicator is not affected by the execution of a DELETE
statement.

IX-21

Indexed r~o - DELETE

(7) The execution of the DELETE statement causes the value of the I-0 status
associated with file-name-1 to be updated. (See page IX-2, I-0 Status.)

(8) Transfer of control following the successful or
of the DELETE operation depends on the presence or
INVALID KEY and NOT INVALID KEY phrases in the DELETE
IX-6, The Invalid Key Condition.)

unsuccessful execution
absence of the optional
statement. (See page

(9) The END-DELETE phrase delimits the scope of the DELETE statement. (See
page IV-40, Scope of Statements.)

IX-22

4.4 THE OPEN STATEMENT

4.4.1 Function

The OPEN statement initiates the processing of files.

4.4.2 General Format

{
INPUT { file-name-1} . . • }

~ OUTPUT {file-name-2} ••.
I-0 {file-name-3} •.•

!EXTEND {file-name-4} ... I

4.4.3 Syntax Rules

Indexed I-0 - OPEN

(1) The EXTEND phrase must only be used for files in the sequential access
mode.

(2) The files referenced in the OPEN statement need not all have the same
organization or access.

4.4.4 General Rules

(1) The successful execution of an OPEN statement determines the
availability of the file and results in the file being in an open mode. The
suc.cessful execution of an OPEN statement associates the file with the file-name
through the file connector.

A file is available if it is physically present and is recognized by the
input-output control system. Table 1 on page rx~24 shows the results of opening
available and unavailable files.

IX-23

Indexed I-0 - OPEN

File is Avail ab le File is Unavailable

INPUT Normal open Open is unsuccessful

INPUT (optional file) Normal open Normal open; the first read
causes the at end condition or
invalid key condition

I-0 Normal open Open is unsuccessful

I-0 (optional file) Normal open Open causes the file to be
created

OUTPUT Normal open; the Open causes the file to be
file contains no created
records

EXTEND Normal open Open is unsuccessful

EXTEND (optional file) Normal open Open causes the file to be
created

Table 1: Availability of a File

(2) The successful execution of an OPEN statement makes the associated
record area available to the program. If the file connector associated with
file-name is an external file connector, there is only one record area
associated with the file connector for the run unit.

(3) When a file is not in an open mode, no
references the file, either explicitly or
statement with the USING or GIVING phrase,
statement with the USING or GIVING phrase.

statement may be executed which
implicitly, except for a MERGE

an OPEN statement, or a SORT

(4) An OPEN statement must be successfully executed prior to the execution
of any of the permissible input-output statements. In table 2 on page IX-25,
Permissible Statements, 'X' at an intersection indicates that the specified
statement, used in the access mode given for that row, may be used with the open
mode given at the top of the column.

IX-24

Indexed I-0 - OPEN

Open Mode
File Access Statement

Mode Input Output I-0 Extend

Sequential READ x x

WRITE x x

REWRITE x

START x x

DELETE x

Random READ x x

WRITE x x

REWRITE x

START

DELETE x
-

Dynamic READ x x

WRITE x x

REWRITE x

START x x

DELETE x

Table 2: Permissible Statements

(5) A file may be opened with the INPUT, OUTPUT,IEXTEND,land I-0 phrases in
the same run unit. Following the initial execution of an OPEN statement for a
file, each subsequent OPEN statement execution for that same file must be
preceded by the execution of a CLOSE statement,lwithout the LOCK phrase,! for
that file.

(6) Execution of the OPEN statement does not obtain or release the first
data record.

(7) If label records are specified for the file, the beginning labels are
processed as follows:

a. When the INPUT phrase is specified, the execution of the OPEN
statement causes the labels to be checked in accordance with the implementor's
specified conventions for input label checking.

b. When the OUTPUT phrase is specified, the execution of the OPEN
statement causes the labels to be written in accordance with the implementor's
specified conventions for output label writing.

IX-25

Indexed I-0 - OPEN

The behavior of the OPEN statement when label records are specified but
not present, or when label records are not specified but are present, is
undefined.

(8) If during the execution of an OPEN statement a file attribute conflict
condition occurs, the execution of the OPEN statement is unsuccessful. (See
page IX-7, The File Attribute Conflict Condition.)

(9) If a file opened with the INPUT phrase is an optional file which is not
present, the OPEN statement sets the file position indicator to indicate that an
optional input file is not present.

(10) When files are opened with the INPUT or I-0 phrase, the file position
indicator is set to the characters that have the lowest ordinal position in the
collating sequence associated with the file, and the prime record key is
established as the key of reference.

(11) When the EXTEND phrase is specified, the OPEN statement positions the
file immediately after the last logical record for that file. The last logical
record for an indexed file is the currently existing record with the highest
prime key value.

(12) When the EXTEND phrase
indicates label records are
includes the following steps:

is specified and the
present, the execution

LABEL RECORDS clause
of the OPEN statement

a. The beginning file labels are processed only in the case of a single
reel/ unit file.

b. The beginning reel/unit labels on the last existing reel/unit are
processed as though the file was being opened with the INPUT phrase.

c. The existing ending file labels are processed as though the file is
being opened with the INPUT phrase. These labels are then deleted.

d. Processing then proceeds as though the file had been opened with the
OUTPUT phrase.

(13) The OPEN statement with the I-0 phrase must reference a file that
supports the input and output operations that are permitted for an indexed file
when opened in the I-0 mode. The execution of the OPEN statement with the I-0
phrase places the referenced file in the open mode for both input and output
operations.

(14) When the I-0 phrase is specified and the LABEL RECORDS clause indicates
label records are present, the execution of the OPEN statement includes the
following steps:

a. The labels are checked in accordance with the implementor's
specified convent ions for input-output label checking.

b. The new labels are written in accordance with the implementor's
specified conventions for input-output label writing.

IX-26

Indexed I-0 - OPEN

(15) For an optional file that is unavailable, the successful execution of an
OPEN statement with an !EXTEND orlI-0 phrase creates the file. This creation
takes place as if the following statements were executed in the order shown:

OPEN OUTPUT file-name.
CLOSE file-name.

These statements are followed by execution of the OPEN statement specified in
the source program.

The successful execution of an OPEN statement with the OUTPUT phrase
creates the file. After the successful creation of a file, that file contains
no data records.

(16) The execution of the OPEN statement causes the value of the I-0 status
associated with file-name to be updated. (See page IX-2, I-0 Status.)

(17) If more than one file-name is specified in an OPEN statement, the
result of executing this OPEN statement is the same as if a separate OPEN
statement had been written for each file-name in the same order as specified 1n
the OPEN statement.

(18) The minimum and maximum record sizes for a file are established at the
time the file is created and must not subsequently be changed.

IX-27

Indexed I-0 - READ

4,5 THE READ STATEMENT

4.5.1 Function

For sequential access, the READ statement makes available the next logical
record from a £i le. For random access, the READ statement makes available a
specified record from a mass storage file.

4.5.2 General Format

Format 1:

READ file-name-1 IC~JI RECORD [INTO identifier-!]

[AT END imperative-statement-!]

[NOT AT END imperative-statement-2]

[END-READ]

Format 2:

READ file-name-1 RECORD [INTO identifier-!]

!rm IS data-name-1] I
[INVALID KEY imperative-statement-3]

[NOT INVALID KEY imperative-statement-4]

[END-READ]

4.5.3 Syntax Rules

(1) The storage area associated with identifier-I and the record area
associated with file-name-1 must not be the same storage area.

(2) Data-name-1 must be the name of a data item specified as a record key
associated with file-name-1.

(3) Data-name-1 may be qualified.

(4) Format 1 must be used for all files in sequential access mode.

(5) The NEXT phrase must be specified for files in dynamic access mode, when
records are to be retrieved se uentiall •

(6) Format 2 is used for files in random access modelor for files in dynamic!
access model when records are to be retrieved randomly.

(7) The INVALID KEY phrase or the AT END phrase must be specified if no
applicable USE AFTER STANDARD EXCEPTION procedure is specified for file-name-1.

IX-28

Indexed I-0 - READ

4.5.4 General Rules

(1) The file referenced by file-name-1 must be open in the input or I-0 mode
at the time this statement is executed. (See page IX-23, The OPEN Statement.)

(2) For files in sequential access mode, the NEXT phrase is optional and has
no effect on the execution of the READ statement~

(3) The execution of the READ statement causes the value of the I-0 status
associated with file-name-1 to be updated. (See page IX-2, I-0 Status.)

(4) The setting of the file position indicator at the start of the execution
of a format 1 READ statement is used in determining the record to be made
available according to the following rules. Comparisons for records in indexed
files relate to the value of the current key of reference. For indexed files,
the comparisons are made according to the collating sequence of the file.

a. If the file position indicator indicates that no valid next record
has been established, execution of the READ statement is unsuccessful.

b. If the file position indicator indicates that an optional input file
is not present, execution proceeds as specified in general rule 10.

I START I
greater

c. If the file position indicator was established by a previous OPEN IOrJ
statement, the first existing record 1n the file whose key value is

than or equal to the file position indicator is selected.

d. If the file position indicator was established by a previous READ
statement, land the current key of reference does not allow duplicates, thelfirst
existing record in the file whose key value is greater than the file position
indicator is selected.

e. If the file pos1t1on indicator was established by a previous READ
statement, and the current key of reference does allow duplicates, the first
record in the file whose key value is either equal to the file pos1t1on
indicator and whose logical position within the set of duplicates is immediately
after the record that was made available by that previous READ statement, or
whose key value is greater than the file position indicator, is selected.

If a record is found which satisfies the above rules, it is made
available in the record area associated with file-name-I.

If no record is found which satisfies the above rules, the file position
indicator is set to indicate that no next logical record exists and execution
proceeds as specified in general rule 10.

If a record is made available, the file position indicator, is set to
the value of the current key of reference of the record made available.

(5) Regardless of the method used to overlap access time with processing
time, the concept of the READ statement is unchanged; a record is available to
the object program prior to the execution of imperative-statement-2 or
irnperative-statement-4, if specified, or prior to the execution of any statement
following the READ statement, if neither imperative-statement-2 nor
imperative-staternent-4 is specified.

IX-29

Indexed I-0 - READ

(6) When the logical records of a file are described with more than one
record description, these records automatically share the same record area in
storage, this is equivalent to an implicit redefinition of the area. The
contents of any data items which lie beyond the range of the current data record
are undefined at the completion of the execution of the READ statement.

(7) The INTO phrase may be specified in a READ statement:

a. If only one record description is subordinate to
description entry, or

the file

b. If all record-names associated with file-name-1 and the data item
referenced by identifier-1 describe a group item or an elementary alphanumeric
item.

(8) The result of the execution of a READ statement with the INTO phrase is
equivalent to the application of the following rules in the order specified:

a. The execution of the same READ statement without the INTO phrase.

b. The current record is moved from the record area to the area
specified by identifier-1 according to the rules for the MOVE statement without
the CORRESPONDING phrase. The size of the current record is determined b rules
s ecified for the RECORD clause. If the file description entry contains a
RECORD IS VARYING clause the im lied move is a rou move. The implied MOVE
statement does not occur if the execution of the READ statement was
unsuccessful. Any subscripting associated with identifier-1 is evaluated after
the record has been read and immediately before it is moved to the data item.
The record is available in both the record area and the data item referenced by
identifier-1.

(9) If, at the time of the execution of a format 2 READ statement, the file
position indicator indicates that an optional input file is not present, the
invalid key condition exists and execution of the READ statement is
unsuccessful. (See page IX-6, The Invalid Key Condition.)

(10) For a format 1 READ statement, if the file position indicator indicates
that no next logical record exists, I or that an optional input file is natl
lpresent,l the following occurs in the order specified:

a. A value, derived from the setting of the file position indicator, is
placed into the 1-0 status associated with file-name-1 to indicate the at end
condition. (See page IX-2, I-0 Status.)

b. If the AT END phrase is specified in the statement causing the
condition, control is transferred to imperative-statement-1 in the AT END
phrase. Any USE AFTER STANDARD EXCEPTION procedure associated with file-name-1
is not executed.

c.
EXCEPTION
executed.
following

If the AT END phrase is not specified, a
procedure must be associated with file-name-1,
Return from that procedure is to the next

the end of the READ statement.

IX-30

USE AFTER STANDARD
and that procedure is
executable statement

Indexed I-0 - READ

When the at end condition occurs, execution of the READ statement is
unsuccessful.

(11) If neither an at end nor an invalid key condition occurs during the
execution of a READ statement, the AT END phrase or the INVALID KEY phrase is
ignored, if specified, and the following actions occur:

a. The file position indicator is set and the I-0 status associated
with file-name-I is updated.

b. If an exception condition which is not an at end or an invalid k~y
condition exists, control is transferred according to rules of the USE statement
following the execution of any USE AFTER EXCEPTION procedure applicable to
file-name-1. (See page IX-39, The USE Statement.)

c. If no exception condition exists, the record 1s made available in
the record area and any implicit move resulting from the presence of an INTO
phrase is executed. Control is transferred to the end of the READ statement or
to imperative-statement-2, if specified. In the latter case, execution
continues according to the rules for each statement specified in
imperative-statement-2. If a procedure branching or conditional statement which
causes explicit transfer of control is executed, control is transferred in
accordance with the rules for that statement; otherwise, upon completion of the
execution of imperative-statement-2, control is transferred to the end of the
READ statement.

(12) Following the unsuccessful execution of a READ statement, the content of
the associated record area is undefined, the key of reference is undefined for
indexed files, and the file position indicator is set to ind{cate that no valid
next record has been established.

(13) For an indexed file for which dynamic access mode is specified, a
format 1 READ statement with the NEXT phrase specified causes the next logical
record to be retrieved from that file.

(14) For an indexed file being sequentially accessed, records having the same
duplicate value in an alternate record key which is the key of reference are
made available in the same order in which they are released by execution of
WRITE statements, or by execution of REWRITE statements which create such
duplicate values.

(15) For
statement,
retrieval.
also used
statements
the file.

an indexed file, if the KEY phrase is specified in a format 2 READ
data-name-1 is established as the key of reference for this
If the dynamic access mode is specified, this key of reference is
for retrievals by any subsequent executions of format 1 READ

for the file until a different key of reference is established for

(16) For an indexed file, lif the KEY phrase is not specified in a format 21
I READ statement ,I the rime record key is established as the ke of reference for
this statement. If the dynamic access mode is specified, this key of reference
is also used for retrievals by any subsequent execution of format 1 READ
statements for the file until a different key of reference is established for
the file.

IX-31

Indexed I-0 - READ

(17) For an indexed file, execution of a format 2 READ statement sets the
file position indicator to the value in the key of reference. This value is
compared with the value contained in the corresponding data item of the stored
records in the file until the first record havin an e ual value is found. In
the case of an alternate key with duplicate values, the first record found is
the first record of a sequence of duplicates which was released to the mass
stora e control s stem (MSCS). The record so found is made available in the
record area associated with file-name-I. If- no record can be so identified, the
invalid key condition exists and execution of the READ statement is
unsuccessful. (See page IX-6, The Invalid Key Condition.)

(18) If the number of character positions in the record that is read is less
than the minimum size specified by the record description entries for
file-name-1, the portion of the record area which is to the right of the last
valid character read is undefined. If the number of character positions in the
record that is read is greater than the maximum size specified by the record
description entries for file-name-1, the record is truncated on the right to the
maximum size. In either of these cases, the READ statement is successful and an
I-0 status is set indicating a record length conflict has occurred. (See page
IX-2, I-0 Status.)

(19) The END-READ phrase delimits the scope of the READ statement. (See page
IV-40, Scope of Statements.)

IX-32

Indexed I-0 - REWRITE

4.6 THE REWRITE STATEMENT

4.6.1 Function

The REWRITE statement logically replaces a record existing in a mass storage
file.

4.6.2 General Format

REWRITE record-name-1 [FROM identifier-1]

[INVALID KEY imperative-statement-1]

[NOT INVALID KEY imperative-statement-2]

[END-REWRITE]

4.6.3 Syntax Rules

(1) Record-name-I and identifier-I must not refer to the same storage area.

(2) Record-name-I is the name of a logical record in the File Section of the
Data Division and may be qualified.

(3) The INVALID KEY and the NOT INVALID KEY phrases must be specified if an
applicable USE AFTER STANDARD EXCEPTION procedure is not specified for the
associated file-name.

4.6.4 General Rules

(1) The file referenced by the file-name associated with record-name-I must
be a mass storage file and must be open in the I-0 mode at the time of execution
of this statement. (See page IX-23, The OPEN Statement.)

(2) For files in the sequential access mode, the last input-output statement
executed for the associated file prior to the execution of the REWRITE statement
must have been a successfully executed READ statement. The mass storage control
system (MSCS) logically replaces the record that was accessed by the READ
statement.

(3) In level 1, the
by record-name-I must
record bein re laced.
record referenced by
character ositions in

number of character positions in the record referenced
be e ual to the number of character positions in the

In level 2, the number of character positions in the
record-name-I may or may not be equal to the number of

the record being replaced.

(4) The logical record released by a successful execution of the REWRITE
statement is no lon_g_er available in the record areaJunless the file-name
associated with record-name-I is specified in a SAME RECORD AREA clause. The
logical record is available to the program as a record of other files referenced
in the SAME RECORD AREA clause as the associated output file, as well as the
file associated with record-name-I.

IX-33

Indexed I-0 - REWRITE

(5) The result of the execution of a REWRITE statement with the FROM phrase
is equivalent to the execution of the following statements in the order
specified:

a. The statement:

MOVE identifier-I TO record-name-I

according to the rules specified for the MOVE statement.

b. The same REWRITE statement without the FROM phrase.

(6) After the execution of the REWRITE statement is complete, the
information in the area referenced by identifier-I is available, even though the
information in the area referenced by record-name-I is not available I except asl
I specified by the SAME RECORD AREA clause.I

(7) The file position indicator is not affected by the execution of a
REWRITE statement.

(8) The execution of the REWRITE statement causes the value of
status of the file-name associated with record-name-I to be updated.
IX-2, I-0 Status.)

the I-0
(See page

(9) The execution of the REWRITE statement releases a logical record to the
operating system.

(10) Transfer of control following the successful or
of the REWRITE operation depends on the presence or
INVALID KEY and NOT INVALID KEY phrases in the REWRITE
IX-6, The Invalid Key Condition.)

unsuccessful ex.ecution
absence of the optional
statement. (See page

(11) The END-REWRITE phrase delimits the scope of the REWRITE statement.
(See page IV-40, Scope of Statements.)

(12) The number of character positions in the record referenced by
record-name-I must not be larger than the largest or smaller than the smallest
number of character positions allowed by the RECORD IS VARYING clause associated
with the file-name associated with record-name-I. In either of these cases the
execution of the REWRITE statement is unsuccessful, the updating operation does
not take place, the content of the record area is unaffected and the I-0 status
of the file associated with record-name-! is set to a value indicating the cause
of the condition. (See _p_a_g_e IX-2, I-0 Status.)

(13) For a file in the sequential access mode,
specified by the value of the prime record key.
executed the value of the prime record key of the
equal to the value of the prime record key of
file.

the record to be replaced is
When the REWRITE statement is

record to be replaced must be
the last record read from this

(14) For a file in the random !or dynamic I access mode, the record to be
replaced is specified by the prime record key.

(15) Execution of the REWRITE statement for a record which has
record key occurs as follows:

IX-34

an alternate I

Indexed I-0 - REWRITE

a. When the value of a specific alternate record key is not changed,
the order of retrieval when that key is the key of reference remains unchanged.

b. When the value of a specific alternate record key is changed, the
subsequent order of retrieval of that record may be changed when that specific
alternate record key is the key of reference. When duplicate key values are
permitted, the record is logically positioned last within the set of duplicate
records containing the same alternate record key value as the alternate record
key value that was placed in the record.

(16) The invalid key condition exists under the following circumstances:

a. When the file is open in the sequential access mode, and the value
of the prime record key of the record to be replaced is not equal to the value
of the prime record key of the last record read from the file, or

b. When the file is open in the !dynamic orlrandom access mode, and the
value of the prime record key of the record to be replaced is not equal to the
value of the prime record key of any record existing in the file, or

c. When the value of an alternate
replaced, for which duplicates are not
corresponding data item of a record already

record key of the record to be
allowed, equals the value of the

existing in the file.

(17) When the invalid key condition is recognized, the execution of the
REWRITE statement is unsuccessful, the updating operation does not take place,
the content of the record area is unaffected and the I-0 status of the file-name
associated with record-name-! is set to a value indicating the cause of the
condition. (See page IX-2, I-0 Status.)

IX-35

Indexed I-0 - START

4.7 THE START STATEMENT

4.7.1 Function

The START statement provides a basis for logical positioning within an
indexed file, for subsequent sequential retrieval of records.

4.7.2 General Format

START file-name-1 KEY

IS EQUAL TO
IS
IS GREATER THAN
IS >
IS NOT LESS THAN
IS NOT <
IS GREATER THAN OR EQUAL TO
IS >=

[INVALID KEY imperative-statement-1]

[NOT INVALID KEY imperative-statement-2]

[END-START]

4.7.3 Syntax Rules

data-name-1

(1) File-name-1 must be the name of a file with sequential or dynamic
access.

(2) Data-name-1 may be qualified.

(3) The INVALID KEY phrase must be specified if no applicable USE AFTER
STANDARD EXCEPTION procedure is specified for file-name-1.

(4) If the KEY phrase is specified, data-name-1 must reference either:

a. A data item specified as a record key associated with file-name-1
(see page IX-11, The ALTERNATE RECORD KEY Clause, and page IX-14, The RECORD KEY
Clause), or

b. Any data item of category alphanumeric whose leftmost character
position within a record of the file corresponds to the leftmost character
position of a record key associated with file-name-1 and whose length is not
greater than the length of that record key.

4.7.4 General Rules

(1) The file referenced by.file-name-1 must be open in the input or I-0 mode
at the time that the START statement is executed. (See page IX-23, The OPEN
Statement.)

(2) If the KEY phrase is not specified, the relational operator 'IS EQUAL
TO' is implied.

IX-36

Indexed I-0 - START

(3) The execution of the START statement does not alter either the content
of the record area or the content of the data item referenced by the data-name
specified in the DEPENDING ON phrase of the RECORD clause associated with
file-name-1.

(4) The type of comparison specified by the relational operator in the KEY
phrase occurs between a key associated with a record in the file referenced by
file-name-1 and a data item as specified in general rules 11 and I2. The
comparison is made on the ascending key of reference according to the collating
sequence of the file. If the operands are of unequal size, comparison proceeds
as though the longer one was truncated on the right such that its length is
equal to that of the shorter. All other nonnumeric comparison rules apply.
(See page VI-55, Comparison of Nonnumeric Operands.)

a. The file position indicator is set to the value of the key of
refe~ence in the first logical record whose key satisfies the comparison.

b. If the comparison is not satisfied by any record in the file, the
invalid key condition exists and the execution of the START statement is
unsuccessful.

(5) The execution of the START statement causes the value of the I-0 status
associated with file-name-I to be updated. (See page IX-2, I-0 Status.)

(6) If, at the time of the execution of the START statement, the file
position indicator indicates that an optional input file is not present, the
invalid key condition exists and the execution of the START statement is
unsuccessful.

(7) Trans fer
of the START
INVALID KEY and
The Invalid Key

of control following the successful or unsuccessful execution
operation depends on the presence or absence of the optional
NOT INVALID KEY phrases in the START statement. (See page IX-6,
Condition.)

(8) Following the unsuccessful execution of a START statement, the file
position indicator is set to indicate that no valid next record has been
established. Also, for indexed files, the key of reference is undefined.

(9) The END-START phrase delimits the scope of the START statement. (See
page IV-40, Scope of Statements.)

(IO) A key of reference is established as follows:

a. If the KEY phrase is not specified, the prime record key specified
for file-name-I becomes the key of reference.

b. If the KEY phrase is specified, and data-name-I is specified as a
record key for file-name-1, that record key becomes the key of reference.

c. If the KEY phrase is specified, and data-name-I is not specified as
a record key for file-name-I, the record key whose leftmost character position
corresponds to the leftmost character position of the data item specified by
data-name-1, becomes the key of reference.

IX-37

Indexed I-0 - START

This key of reference is used to establish the ordering of records for
the purpose of this START statement, see general rule 4; and, if the execution
of the START statement is successful, the key of reference is also used for
subsequent sequential READ statements. (See page IX-28, The READ Statement.)

(11) If the KEY phrase is specified, the comparison described in general rule
4 uses the data item referenced by data-name-I.

(12) If the KEY phrase is not specified, the comparison described in general
rule 4 uses the data item referenced in the RECORD KEY clause associated with
file-name-I.

IX-38

Indexed I-0 - USE

4.8 THE USE STATEMENT

4.8.1 Function

The USE statement specifies procedures for input-output error handling that
are in addition to the standard procedures provided by the input-output control
system.

4.8.2 General Format

USE AFTER STANDARD
. l i~ii~-name-1} ~l

{ EXCEPTION} PROCEDURE ON OUTPUT
ERROR I-O

l~E=xT=E~ND,.......I

4.8.3 Syntax Rules

(1) A USE statement, when present, must immediately follow a section header
in the declaratives portion of the Procedure Division and must appear in a
sentence by itself. The remainder of the section must consist of zero, one, or
more procedural paragraphs that define the procedures to be used.

(2) The USE statement is never executed; it merely defines the conditions
calling for the execution of the USE procedures.

(3) Appearance of file-name-1 in a USE statement must not cause the
simultaneous request for execution of more than one USE procedure.

(4) The words ERROR and EXCEPTION are synonymous and may
interchangeably.

be used

(5) The files implicitly or explicitly referenced in the USE statement need
not all have the same organization or access.

(6) The INPUT, OUTPUT, I-0, land EXTENDlphrases may each be specified only
once in the declaratives portion of a given Procedure Division.

4.8.4 General Rules

(1) Declarative procedures may be included in any COBOL source program
irrespective of whether the program contains or is contained within another
program. A declarative is invoked when any of the conditions described in the
USE statement which prefaces the declarative occurs while the program is being
executed. Only a declarative within the separately compiled program that
contains the statement which caused the qualifying condition is invoked when any
of the conditions described in the USE statement which prefaces the declarative
occurs while that separately compiled program is being executed. If no
qualifying declarative exists in the separately compiled program, no declarative
is executed.

(2) Within a declarative procedure, there must be no reference to any
nondeclarative procedures.

IX-39

Indexed I-0 - USE

(3) Procedure-names associated with a USE statement may be referenced in a
different declarative section or in a nondeclarative procedure only with a
PERFORM statement.

(4) When file-name-1 is specified explicitly, no other USE statement applies
to file-name-1.

(5) The procedures associated with a USE statement are executed by the
input-output control system after completion of the standard input-output
exception routine upon the unsuccessful execution of an input-output operation
unless an AT END or INVALID KEY phrase takes precedence. The rules concerning
when the procedures are executed are as follows:

a. If file-name-1 is specified, the associated procedure is executed
when the condition described in the USE statement occurs.

b. If INPUT is specified, the associated procedure is executed w~en the
condition described in the USE statement occurs for any file open in the input
mode or in the process of being opened in the input mode, except those files
referenced by file-name-1 in another USE statement specifying the same
condition.

c. If OUTPUT is specified, the associated procedure is executed when
the condition described in the USE statement occurs for any file open in the
output mode or in the process of being opened in the output mode, except those
files referenced by file-name-1 in another USE statement specifying the same
condition.

d.
condition
mode or in
referenced
condition.

If I-0 is specified, the associated procedure is executed when the
described in the USE statement occurs for any file open in the I-0
the process of being opened in the I-0 mode, except those files

by file-name-1 in another USE statement specifying the same

e. If EXTEND is specified, the associated procedure is executed when
the condition described in the USE statement occurs for any file open in the
extend mode or in the process of being opened in the extend mode, except those
files referenced by file-name~l in another USE statement specifying the same
condition.

(6) After execution of the USE procedure, control is transferred to the
invoking routine in the input-output control system. If the I-0 status value
does not indicate a critical input-output error, the input-output control system
returns control to the next executable statement following the input-output
statement whose execution caused the exception. If the I-0 status value does
indicate a critical error, the implementor determines what action is taken.
(See page IX-2, I-0 Status.)

(7) Within a USE procedure, there must not be the execution of any statement
that would cause the execution of a USE procedure that had previously been
invoked and had not yet returned control to the invoking routine.

IX-~

Indexed I-0 - WRITE

4.9 THE WRITE STATEMENT

4.9.1 Function

The WRITE statement releases a logical record for an output or input-output
file.

4.9.2 General Format

WRITE record-name-1 [FROM identifier-1]

[INVALID KEY imperative-statement-1]

[NOT INVALID KEY imperative-statement-2]

[END-WRITE]

4.9.3 Syntax Rules

(1) Record-name-I and identifier-I must not refer to the same storage area.

(2) Record-name-I is the name of a logical record in the File Section of the
Data Division and may be qualified.

(3) The INVALID KEY phrase must be specified if an applicable USE AFTER
STANDARD EXCEPTION procedure is not specified for the associated file-name.

4.9.4 General Rules

(I) The file referenced by the file-name associated with record-name-I must
be open in the output, I-0, lor extendlmode at the time of the execution of this
statement. (See page IX-23, The OPEN Statement.)

(2) The logical record released by the successful execution of the WRITE
statement is no 1011..&.er available in the record areaJunless the file-name
associated with record-name-I is specified in a SAME RECORD AREA clause. The
logical record is also available to the program as a record of other files
referenced in the same SAME RECORD AREA clause as the associated output file, as
well as the file associated with record-name-!.

--~~-~~~~~~~~~~~~~~---'

(3) The result of the execution of a WRITE statement with the FROM phrase is
equivalent to the execution of the following statements in the order specified:

a. The statement:

MOVE identifier-I TO record-narne-1

according to the rules specified for the MOVE statement.

b. The same WRITE statement without the FROM phrase.

(4) After the execution of the WRITE statement is complete, the information
in the area referenced by identifier-I is available, even though the information

IX-41

Indexed I-0 - WRITE

in the area referenced by record-name-I is not availableJexcept as specified byl
!the SAME RECORD AREA clause. I

(5) The file position indicator is not affected by the execution of a WRITE
statement.

(6) The execution of the WRITE statement causes the value of the I-0 status
of the file-name associated with record-name-I to be updated. (See page IX-2,
I-0 Status.)

(7) The execution of the WRITE statement releases a logical record to the
operating system.

(8) The number of character positions in the record referenced by
record-name-I must not be larger than the largest or smaller than the smallest
number of character positions allowed by the RECORD IS VARYING clause associated
with the file-name associated with record-name-I. In either of these cases the
execution of the WRITE statement is unsuccessful, the WRITE operation does not
take place, the content of the record area is unaffected and the I-0 status of
the file associated with record-name-I is set to a value indicating the cause of
the condition. (See page IX-2, I-0 Status.)

(9) If, during the execution of a WRITE statement with the NOT INVALID KEY
phrase, the invalid key condition does not occur, control is transferred to
imperative-statement-2 at the appropriate time as follows:

a. If the execution of the WRITE statement is successful, after the
record is written and after updating the I-0 status of the file-name associated
with record-name-I.

b. If the execution of the WRITE statement is unsuccessful for a reason
other than an invalid key condition, after updating the I-0 status of the
file-name associated with record-name-I, and after executing the procedure, if
any, specified by a USE AFTER STANDARD EXCEPTION PROCEDURE statement applicable
to the file-name associated with record-name-I.

(10) The END-WRITE phrase delimits the scope of the WRITE statement. (See
page. IV-40, Scope of Statements.)

(11) Execution of a WRITE statement causes the content of the record area to
be released. The mass storage control system (MSCS) utilizes the contents of
the record keys in such a way that subsequent access of the record may be made
based upon any of these specified record keys.

(12) The value of the prime record key must be unique within the records in
the file.

(13) The data item specified as the prime record key must be set by the
program to the desired value prior to the execution of the WRITE statement.

(14) If the file is open in the sequential access mode, records must be
released to the mass storage control system (MSCS) in ascending order of prime
record ke values accordin to the collatin se uence of the file. When the
file is open in the extend mode, the first record released to the MSCS must have

IX-42

Indexed I-0 - WRITE

a prime record key whose value is greater than the highest prime record key
value existing in the file.

(15) If the file is open in the randomlor dynamic! access mode, records may.be
released to the mass storage control system (MSCS) in any program-specified
order.

(16) When the ALTERNATE RECORD KEY clause is specified in the file control
entry for an indexed file, the value of the alternate record key may be
nonunique only if the DUPLICATES phrase is specified for that data item. In
this case the mass storage control system (MSCS) provides storage of records
such that when records are accessed sequentially, the order of retrieval of
those records is the order in which they are released to the MSCS.

(17) The invalid key condition exists under the following circumstances:

a. When the file is open in the sequential access mode, and the file
also is open in the output or extend mode, and the value of the prime record key
is not greater than the value of the prime record key of the previous record, or

b. When the file is open in-the output or I-0 mode, and the value of
the prime record key equals the value of the prime record key of a record
already existing in the file, or

c. When the file is open in the output, extend, or I-0 mode, and the
value of an alternate record key for which duplicates are not allowed equals the
value of the corresponding data item of a record already existing in the file,
or

d. When an attempt is made to write beyond the externally defined
boundaries of the file.

(18) When the invalid key condition is recognized, the execution of the WRITE
statement is unsuccessful, the content of the record area is unaffected and the
I-0 status of the file-name associated with record-name-I is set to a value
indicating the cause of the condition. Execution of the program proceeds
according to the rules for an invalid key condition. (See page IX-2, I-0
Status, and page IX-6, The Invalid Key Condition.)

IX-43

Inter-Program Communication - Introduction

SECTION X: INTER-PROGRAM COMMUNICATION MODULE

1. INTRODUCTION TO THE INTER-PROGRAM COMMUNICATION MODULE

1 .1 FUNCTION

The Inter-Program Communication module provides a facility by which a program
can communicate with one or more programs. This communication is provided by:
(a) the ability to transfer control from one program to another within a run
unit and (b) the ability to pass parameters between programs to make certain
data value available to a called ro ram. The Inter-Program Communication
module also permits communication between two programs by the sharing of data
and the sharia of files.

1.2 LEVEL CHARACTERISTICS

Inter-Program Communication level 1 provides a capability to transfer control
to one or more programs whose names are known at compile time and for the
sharing of data among such programs.

Inter-Program Communication level 2 provides the capability to transfer
control to one or more programs whose names are not known at compile time as
well as the ability to determine the availability of object time memory for the
program to which control is being passed. Inter-Program Communication level 2
also provides external attributes, global names, and nesting of source programs.

1.3 LANGUAGE CONCEPTS

1.3.1 Nested Source Programs

A COBOL source program is a syntactically correct set of COBOL statements. A
COBOL source program may contain other COBOL source programs and these contained
programs may reference some of the resources of the program within which they
are contained.

When a program, program B, is contained in another program, program A, it may
be directly contained or indirectly contained. Program B is directly contained
in program A if there is no program contained in program A that also contains
program B. Program B is indirectly contained in program A if there exists a
program contained in program A that also contains program B.

1.3.2 File Connector

A file connector is a storage area which contains information about a file
and is used as the linkage between a file-name and a physical file and between a
file-name and its associated record area.

X-1

Inter-Program Communication - Introduction

1.3.3 Global Names and Local Names

A data-name names a data item. A file-name names a file connector.
names are classified asJeither global orl local.

These

A global name may be used to refer to the object with which it is associated
either from within the program in which the global name is declared or from
within any other program which is contained in the program which declares the
global name.

A local name, however, may be used only to refer to the object with which it
is associated from within the _Qro_&!am in which the local name is declared. J Some
names are always global; other names are always local; and some other names are
either local or global depending upon specifications in the program in which the
names are dee la red.

A record-name is global if the GLOBAL clause is specified in the record
description entry by which the record-name is declared or, in the case of record
description entries in the File Section, if the GLOBAL clause is specified in
the file description entry for the file-name associated with the record
de script ion entry. A data-name is global if the GLOBAL clause is specified
either in the data description entry by which the data-name is declared or in
another entry to which that data description entry is subordinate. A
condition-name declared in a data description entry is global if that entry is
subordinate to another entry in which the GLOBAL clause is specified. However,
specific rules sometimes prohibit specification of the GLOBAL clause for certain
data description, file description, or record description entries.

A file-name is global if the GLOBAL clause is specified in the file
description entry for that file-name.

If a data-name, a file-name, or a condition-name declared in a data
description entry is not global, the name is local.

Global names are transitive across programs contained within other programs.

1.3.4 External Objects and Internal Objects

Accessible data items usually require that certain representations of data be
stored~ File connectors usually require that certain infonnation concerning
files be stored. The storage associated with a data item or a file connector
may be !external or l internal to the program in which the object is declared.

A data item or file connector is external if the storage associated with that
object is associated with the run unit rather than with any particular program
within the run unit. An external object may be referenced by any program in the
run unit which describes the object. References to an ext.ernal object from
different programs using separate descriptions of the object are always to the
same object. In a run unit, there is only one representative of an external
object.

An object is internal if the.. storage associated with that object is
associated only with the program which describes the object.

]External and l internal objects may have {either global or I local names.

X-2

Inter-Program Communication - Introduction

A data record described in the Working-Storage Section is given the external
attribute by the presence of the EXTERNAL clause in its data description entry.
Any data item described by a data description entry subordinate to an entry
describing an external record also attains the external attribute.J If a record
or data item does not have the external attribute, it is part of the internal
data of the program in which it is described.

A file connector is given the external attribute by the resence of the
EXTERNAL clause in the associated file descri tion entr • If the file connector
does not have the external attribute, it is internal to the program in which the
associated file-name is described.

The data records described subordinate to a file description entry which does
not contain the EXTERNAL clause or a sort-merge file description entry, as well
as any data items described subordinate to the data description entries for such
records, are alwa s internal to the ro ram describin the file-name. If the
EXTERNAL clause is included in the file description entry, the data records and
the data items attain the external attribute.

Data records, subordinate data items, and var1ous associated control
information described in the Linkage, Communication, and Report Sections of a
program are always considered to be internal to the program describing that
data. Special considerations apply to data described in the Linkage Section
whereby an association is made between the data records described and other data
items accessible to other programs.

1.3.5 Common Programs and Initial Programs

All programs which form part of a run unit may possess none, one, or more of
the following attributes: common and initial.

A common program is one which, despite being directly contained within
another program, may be called by any program directly or indirectly contained
in that other program. The common attribute is attained by specifying the
COMMON clause in a program's Identification Division. The COMMON clause
facilitates the writing of subprograms which are to be used by all the programs
contained within a program.

An initial program is one whose program state 1s initialized when the program
is called. Thus, whenever an initial program is called, its program state is
the same as when the program was first called in that run unit. During the
process of initializing an initial program, that program's internal data is
initialized; thus an item of the program's internal data whose description
contains a VALUE clause is initialized to that defined value, but an item whose
description does not contain a VALUE clause is initialized to an undefined
value. Files with internal file connectors associated with the program are not
in the open mode. The control mechanisms for all PERFORM statements contained
in the program are set to their initial states. The initial attribute is
attained by specifying the INITIAL clause in the program's Identification
Division.

X-3

Inter-Program Communication - Introduction

1.3.6 Sharing Data

Two programs in a run unit may reference common data 1n the following
circumstances:

(1) The data content of an external data record may be referenced from any
program provided that program has described that data record.

(2) If a program is contained within another program, both programs may
refer to data possessing the global attribute either in the containing program
or in any program which directly or indirectly contains the containing program.

(3) The mechanism whereby a parameter value is passed by reference from a
calling program to a called program establishes a common data item; the called
program, which may use a different identifier, may refer to a data item in the
calling program.

1.3.7 Sharing Files

Two programs in a run unit may reference common ·file connectors in the
following circumstances:

(1) An external file connector may be referenced from any program which
describes that file connector.

(2) If a program is contained within another program, both programs may
refer to a common file connector by referring to an associated global file-name
either in the containing program or in any program which directly or indirectly
contains the containing program.

1.3.8 Scope of Names

When programs are directly or indirectly contained within other programs,
each program may use identical user-defined words to name objects independent of
the use of these user-defined words by other programs. (See page IV-6,
User-Defined Words.) When identically named objects exist, a program's
reference to such a name, even when it is a different type of user-defined word,
is to the object which that program describes rather than to the object,
possessing the same name, described in another program.

The following types
statements and entries
declared:

of
in

user-defined
that program

words may
in which

be referenced only by
the user-defined word is

1. cd-name
2. paragraph-name
3. section-name

The following types of user-defined words may be referenced by
program, provided that the compiling system supports the associated
other system and the entities referenced are known to that system:

1. library-name
2. text-name

X-4

any COBOL
library or

Inter-Program Communication - Introduction

The following types of user-defined words when they are declared in a
Communication Section may be referenced only by statements and entries in that
program which contains that section:

1. condition-name
2. data-name
3. record-name

The following types of names, when they are declared within a Configuration
Section, may be referenced only by statements and entries either in that program
which contains a Configuration Section or in any program contained within that
program:

1. alphabet-name
2. class-name
3. condition-name
4. mnemonic-name
5. symbolic-character

Specific conventions, for declarations and references, apply to the following
types of user-defined words when the conditions listed above do not apply:

1. condition-name
2. data-name
3. file-name
4. index-name
5. program-name
6. record-name
7. report-name

1.3.8.1 Conventions for Program-Names

The program-name of a program is declared in the PROGRAM-ID paragraph of the
program's Identification Division. A program-name may be referenced only by the
CALL statement the CANCEL statement, and the end program header. r-nie1
program-names allocated to programs constituting a run unit are not necessarily
unique but, when two programs in a run unit are identically named, at least one
of those two programs must be directly or indirectly contained within another
separately compiled program which does not contain the other of those two

The following rules regulate the scope of a program-name.

(1) If the program-name is that of a program which does not possess the
common attribute and which is directly contained within another program, that
program-name may be referenced only by statements included in that containing
program.

(2) If the program-name is that of a program which does possess the common
attribute and which is directly contained within another program, that
program-name may be referenced only by statements included in that containing
program and any programs directly or indirectly contained within that containing
program, except that program possessing the common attribute and any programs
contained within it.

X-5

Inter-Program Communication - Introduction

(3) If the program-name is that of a program which is separately compiled,
that program-name may be referenced by statements included in any other program
in the run unit, except programs it directly or indirectly contains.

1.3.8.2 Conventions for Condition-Names, Data-Names, File-Names,
Record-Names, and Report-Names

When condition-names, data-names, file-names, record-names, and report-names
are declared in a source program, these names may be referenced only by that
ro ram except when one or more of the names is global and the program

other programs.
contains I

The requirements governing the uniqueness of the names allocated by a single
program to be condition-names, data-names, file-names, record-names, and
report-names are explained elsewhere in these specifications. (See page IV-6,
User-Defined Words.)

A program cannot reference any condition-name, data-name,
record-name, or report-name declared in any program it contains.

file-name,

A global name may be referenced in the program in which it is declared or in
any programs which are directly or indirectly contained within that program.

When a program, program B, is directly contained within another program,
program A, both programs may define a condition-name, a data-name, a file-name,
a record-name, or a report-name using the same user-defined word. When such a
duplicated name is referenced in program B, the following rules are used to
determine the referenced object.

(1) The set of names to be used for determination of a referenced object
consists of all names which are defined in program B and all global names which
are defined in program A and in any programs which directly or indirectly
contain program A. Using this set of names, the normal rules for qualification
and any other rules for uniqueness of reference are applied until one or more
objects is identified.

(2) If only one object is identified, it is the referenced object.

(3) If more
a name local
program B, the

than one object is identified, no more than one of
to program B. If zero or one of the objects has a

following rules apply:

them can have
name local to

a. If the name is declared in program B, the object in program B is the
referenced object.

b. Otherwise, if program A is contained within another program, the
referenced object is:

1) The object in program A if the name is declared in program A.

2) The object in the containing program if the name is not declared
in program A and is declared in the program containing program A. This rule is
applied to further containing programs until a single valid name has been found.

X-6

Inter-Program Communication - Introduction

1.3.8.3 Conventions for Index-Names

If a data item possessing either or both the external or global attributes
includes a table accessed with an index, that index also possesses
correspondingly either or both attributes. Therefore, the scope of an
index-name is identical to that of the data-name which names the table whose
index is named by that index-name and the scope of name rules for data-names
apply. Index-names cannot be qualified.

X-7

Inter-Program Communication - Nested Source Programs

2. NESTED SOURCE PROGRAMS

2.1 GENERAL DESCRIPTION

A COBOL source program is a syntactically correct set of COBOL statements. A
COBOL source program may contain other COBOL source programs and these contained
programs may reference some of the resources of the programs within which they
are contained.

2.2 ORGANIZATION

With the exception of COPY and REPLACE statements and the end program header,
the statements, entries, paragraphs, and sections of a COBOL source program are
grouped into four divisions which are sequenced in the following order:

1. The Identification Division
2. The Environment Division
3. The Data Division
4. The Procedure Division

The end of a COBOL source program is indicated by either the end program
header, if specified, or by the absence of additional source program lines.

2.3 STRUCTURE

The following gives the general format and order of presentation of the
entries and statements which constitute a COBOL source program. The generic
terms identification-division, environment-division, data-division,
procedure-division, source-program, and end-program-header represent a COBOL
Identification Division, a COBOL Environment Division, a COBOL Data Division, a
COBOL Procedure Division, a COBOL source program, and a COBOL end program
header, respectively.

2.3.1 General Format

identification-division

[environment-division]

[data-division]

[procedure-division]

[source-program] •.•

[end-program-header]

X-8

Inter-Program Communication - Nested Source Programs

2.3.2 Syntax Rules

(1) End-program-header must be present if:

a. The COBOL source program contains one or more other COBOL source
programs; or

b. The COBOL source program is contained within another COBOL source
program.

2.3.3 General Rules

(1) The beginning of a division in a program is indicated by the appropriate
division header. The end of a division is indicated by one of the following:

a. The division header of a succeeding division in that program.

b. An Identification Division header which indicates the start of
another source program.

c. The end program header.

d. That physical position after which no more source program lines
occur.

(2) A COBOL source program which is directly or indirectly contained within
another program is considered in these specifications as a separate program that
may additionally reference certain resources defined in the containing program.

(3) The object code, resulting from compiling a source program contained
within another program, is considered in these specifications to be inseparable
from the object code resulting from compiling the containing program.

X-9

Inter-Program Communication - Initial State of a Program

2.4 INITIAL STATE OF A PROGRAM

The initial state of a program is the state of a program the first time it is
called in a run unit.

2.4.1 Characteristics of a Program

(1) The program's internal data contained in the Working-Storage Section and
the Communication Section are initialized. If a VALUE clause is used in the
description of the data item, the data item is initialized to the defined value.
If a VALUE clause is not associated with a data item, the initial value of the
data item is undefined.

(2) Files with internal file connectors associated with the program are not
in the open mode.

(3) The control mechanisms for all PERFORM statements contained in the
program are set to their initial states.

(4) A GO TO statement referred to by an ALTER statement contained in the
same program is set to its initial state.

2.4.2 Programs in the Initial State

A program is in the initial state:

(1) The first time the program 1s called in a run unit.

(2) The first time the program is called after the execution of a CANCEL
statement referencing the program or a CANCEL statement referencing a program
that directly or indirectly contains the program.

--~~~-~-=-----':.---~~~~~~~~~~~~~~~~~~

(3) Every time the program is called, if it possesses the initial attribute.

(4) The first time the program is called after the execution of a CALL
statement referencing a program that possesses the initial attribute, and that
directly or indirectly contains the program.

X-10

Inter-Program Communication - End Program Header

2.5 END PROGRAM HEADER

2.5.1 Function

The end program header indicates the end of the named COBOL source program.

2.5.2 General Format

END PROGRAM program-name.

2.5.3 Syntax Rules

(1) The program-name must conform to the rules for forming a user-defined
word.

(2) The program-name must be identical to a program-name declared in a
preceding PROGRAM-ID paragraph. (See page X-12, The PROGRAM-ID Paragraph.)

(3) If a
between the
referencing,
referencing
program-name.

PROGRAM-ID paragraph declaring a specific program-name is stated
PROGRAM-ID paragraph and the end program header declaring and
respectively, another program-name, the end program header

the former program-name must precede that referencing the latter

2.5.4 General Rules

(1) The end program header must be present in every program which either
contains or is contained within another program.

(2) The end program header indicates the end of the specified COBOL source
program.

(3) If the program terminated by the end program header is contained within
another program, the next statement must either be an Identification Division
header or another end program header which terminates the containin

(4) IIf the program terminated b the end ro ram header is not contained
!within another ro ram and if the next source statement is a COBOL state~ent, it
must be the Identification Division header of a program to be compiled
separately from that program terminated by the end program header.

X-11

Inter-Program Communication - Identification Division

3. IDENTIFICATION DIVISION IN THE INTER-PROGRAM COMMUNICATION MODULE

3.1 THE PROGRAM-ID PARAGRAPH AND NESTED SOURCE PROGRAMS

3 .1.1 Function

The PROGRAM-ID paragraph specifies the name by which a program is identified
and assigns selected program attributes to that program.

3.1.2 General Format

PROGRAM-ID. program-name [IS { 1~~~~ I} PROGRAM] •

3.1.3 Syntax Rules

(1) The program-name must conform to the rules for formation of a
user-defined word.

(2) A program contained within another program must not be assigned the same
name as that of any other program contained within the separately compiled
program which contains this program.

(3) The optional COMMON clause may be used only if the program is contained
within another program.

3.1.4 General Rules

(1) The program-name identifies ·the source program, the object program, and
all listings pertaining to a particular program.

(2) The COMMON clause specifies that the program is common. A common
program is contained within another program but may be called from programs
other than that containing it. (See page X-4, Scope of Names.)

(3) The INITIAL clause specifies that the program is initial. When an
initial program is called, it and any programs contained within it are placed in
their initial state. (See page X-10, Initial State of a Program.)

X-12

Inter-Program Communication - Linkage Section

4. DATA DIVISION IN THE INTER-PROGRAM COMMUNICATION MODULE

4.1 LINKAGE SECTION

The Linkage Section is located in the Data Division of a source program. The
Linkage Section appears in the called program and describes data items that are
to be referred to by the calling program and ~he called program.

The Linkage Section in a program is meaningful if and only if
program is to function under the control of a CALL statement,
statement in the calling program contains a USING phrase.

the object
and the CALL

The Linkage Section is used for describing data that is available through the
calling program but is to be referred to in both the calling and the called
program. The mechanism by which a correspondence is established between the
data items described in the Linkage Section of a called program and data items
described in the calling program is described elsewhere in these specifications.
(See page X-25, Procedure Division Header, and page X-27, The CALL Statement.)
In the case of index-names, no such correspondence is established and
index-names in the called and calling programs always refer to separate indices.

The structure of the Linkage Section is the same as that previously described
for the Working-Storage Section, beginning with a section header, followed by
noncontiguous data items and/or record description entries.

The general format of the Linkage Section is shown below.

LINKAGE SECTION.

[77-level-description-entry]
record-description-entry

If a data item in the Linkage Section is accessed in a program which is not a
called program, the effect is undefined.

4.1.1 Noncontiguous Linkage Storage

Items in the Linkage Section that bear no hierarchical relationship to one
another need not be grouped into records and are classified and defined as
noncontiguous elementary items. Each of these items is defined in a separate
data description entry which begins with the special level-number 77.

The following data clauses are required in each data description entry:

1. level-number 77
2. data-name
3. the PICTURE clause or the USAGE IS INDEX clause

Other data description clauses are optional and can be used to complete the
description of the item if necessary.

X-13

Inter-Program Communication - Linkage Section

4.1.2 Linkage Records

Data elements in the Linkage Section which bear a definite hierarchical
relationship to one another must be grouped into records according to the rules
for formation of record descriptions. Data elements in the Linkage Section
which bear no hierarchical relationship to any other data item may be described
as records which are single elementary items.

4.1.3 Initial Values

The VALUE clause must not be specified in the Linkage Section except in
condition-name entries (level 88).

X-14

Inter-Program Communication - File Description Entry

4.2 THE FILE DESCRIPTION ENTRY IN THE INTER-PROGRAM COMMUNICATION MODULE

4.2.1 Function

Within the Inter-Program Communication module, the file description entry in
the File Section determines the internal or external attributes of a file
connector, of the associated data records, and of the associated data items.
The file description entry also determines whether a file-name is a local name
or a global name.

'4.2.2 General Format

Format 1:

FD file-name-1

[IS EXTERNAL]

[IS GLOBAL]

[BLOCK CONTAINS [integer-! TO] integer-2

CONTAINS integer-3 CHARACTERS

{ RECORDS }]
CHARACTERS

RECORD IS VARYING IN SIZE [[FROM integer-4] [TO integer-5] CHARACTERS]

[DEPENDING ON data-name-!]

CONTAINS integer-6 TO integer-7 CHARACTERS

[LABEL { RECORD IS } {STANDARD}]
RECORDS ARE OMITTED

[VALUE OF {implementor-name-1 IS {~~~:~~~-2}} ••• J
FATA {~~~S 1!ru,} {data-name-3) ••• J
[LINAGE IS {data-name-4} LINES rWITH FOOTING AT {data-name-s}l

integer-8 L integer-9 J
[LINES AT TOP {data-name-6}1 (LINES AT BOTTOM {data-name-7}]]

- integer-10 J integer-11

[CODE-SET IS alphabet-name-!).

X-15

Inter-Program Communication - File Description Entry

Format 2:

FD file-name-1

[IS EXTERNAL]

[IS GLOBAL]

[BLOCK CONTAINS [integer-1 TO] integer-2

(coNTAINS integer-3 CHARACTERS

{ RECORDS }]
CHARACTERS

)rs VARYING IN SIZE [[FROM integer-4] [TO integer-5]

RECORD) [DEPENDING ON data-name-1]

{coNTAINS integer-6 TO integer-7 CHARACTERS

{ RECORD IS } {STANDARD}]
RECORDS ARE OMITTED

[{ . {data-name-2}} VALUE OF implementor-name-! IS literal-! .. ·]
r, {RECORD IS } J [ATA RECORDS ARE {data-name-3} • • • .

X-16

CHARACTERS]

Inter-Program Communication - File Description Entry

Format 3:

FD file-name-1

[IS EXTERNAL]

[IS GLOBAL]

[BLOCK CONTAINS [integer-1 TO] integer-2

CONTAINS integer-3 CHARACTERS

{ RECORDS }J
CHARACTERS J

RECORD IS VARYING IN SIZE [[FROM integer-4] [TO·integer-5] CHARACTERS]

[DEPENDING ON data-name-1]

CONTAINS integer-6 TO integer-7 CHARACTERS

~ {RECORD IS } {STANDARD}]
rABEL RECORDS ARE OMITTED J

rALUE OF {implementor-name"l IS

[CODE-SET IS alphabet-name-1)

{ REPORT IS }
REPORTS ARE {report-name-1}

{-d~ta-name-2}} •. ·]
literal-1

X-17

Inter-Program Communication - File Description Entry

4.2.3 Syntax Rules

(1) Format 1 is the file description entry for a sequential
availability of specific clauses in this file description entry is
the level of Sequential I-0 module supported by the implementation.
VII-22 in the Sequential I-0 module.)

file. The
dependent on

(See page

(2) Format 2 is the file description entry for a relative file or an indexed
file. The availability of specific clauses in this file description entry is
dependent on the level of Relative I-0 module or Indexed I-0 module supported by
the implementation. (See page VIII-14 in the Relative I-0 module and page IX-16
in the Indexed I-0 module.)

(3) Format 3 is the file description entry
availability of the file description entry for a
whether the Report Writer module is supported by the
XIII-7 in the Report Writer module.)

4.2.4 General Rules

for a report file. The
report file is dependent on
implementation. (See page

(1) If the file description entry for a sequential file contains the LINAGE
clause and the EXTERNAL clause, the LINAGE-COUNTER data item is an external data
item. If the file description entry for a sequential file contains the LINAGE
clause and the GLOBAL clause, the special register LINAGE-COUNTER is a global
name.

(2) The EXTERNAL clause is presented on page X-23. The GLOBAL clause is
presented on page X-24. All other clauses in the file description entry are
presented in the appropriate module within these specifications.

X-18

Inter-Program Communication - Data Description Entry

4.3 THE DATA DESCRIPTION ENTRY IN THE INTER-PROGRAM COMMUNICATION MODULE

4.3.1 Function

Within the Inter-Program Communication module, a level 01 data description
entry within the Working-Storage Section or File Section determines whether the
data record and its subordinate data items have local names or global names.

Within the Inter-Program Communication module, a level 01 data
entry in the Working-Storage Section determines the internal
attribute of the data record and its subordinate data items.

X-19

description
or external

Inter-Program Communication - Data Description Entry

4.3.2 General Format

01 rdata-name-1]
LFILLER

[REDEFINES data-name-2]

[IS EXTERNAL]

[IS GLOBAL]

[{~TURE} IS character-string]

[USAGE IS]

BINARY
COMPUTATIONAL
COMP
DISPLAY
INDEX
PACKED-DECIMAL

[[SIGN IS] { LEADING } [SEPARATE CHARACTERjl
TRAILING ~

OCCURS integer-2 TIMES

[{~~~~:~~~~G} KEY IS {data-name-3} ••• J ...
[INDEXED BY {index-name-1} .••]

OCCURS integer-1 TO integer-2 TIMES DEPENDING ON data-name-4

[{ASCENDING }
DESCENDING KEY IS {data-name-3) ••• J ...

[INDEXED BY {index-name-1} •••]

[{ SYNCHRONIZED} [LEFT J]
SYNC RIGHT

[{~~~IFIED} RIGHT]

[BLANK WHEN ZERO]

[VALUE IS literal-1].

X-20

Inter-Program Communication - Data Description Entry

4.3.3 Syntax Rules

(1) The availability of specific clauses in the data description entry is
dependent on the level of the Nucleus module suppported by the implementation.
(See page VI-20 in the Nucleus module.)

(2) The EXTERNAL clause may be specified only 1n data description entries in
the Working-Storage Section whose level-number is 01.

(3) The EXTERNAL clause and the REDEFINES clause must not be specified in
the same data description entry.

(4) The GLOBAL clause may be specified only in data description entries
whose level-number is 01.

(5) Data-name-1 must be specified for any entry conta1n1ng the GLOBAL or
EXTERNAL clause, or for record descriptions associated with a file description
entr_y_ which contains the EXTERNAL or GLOBAL clause.

4.3.4 General Rules

(1) The EXTERNAL clause is presented on page X-23. The GLOBAL clause 1s
resented on a e X-24. All other clauses in the data description entry are

presented in the Nucleus module within these specifications.

x-21

Inter-Program Communication - Report Description Entry

4.4 THE REPORT DESCRIPTION ENTRY IN THE INTER-PROGRAM COMMUNICATION MODULE

4.4.1 Function

Within the Inter-Program Communication module, the report description entry
in the Report Section determines whether a report-name is a local name or a
global name.

4.4.2 General Format

RD report-name-1

[IS GLOBAL] I
[CODE literal-1]

[{CONTROL IS } {{data-name-1} •••
CONTROLS ARE FINAL [data-na.me-1]

[Mm> [ti:is 1~] integer-1 [LINE J
LINES

... } J
[HEADING integer-2]

[FIRST DETAIL integer-3] [LAST DETAIL integer-4]

[FOOTING integer-5] J .
4.4.3 Syntax Rules

(1) The availability of the report description entry is dependent on whether
the Report Writer module is supported by the implementation. (See page XIII-11
in the Report Writer module.)

4.4.4 General Rules

(1) If the report description entry contains the GLOBAL clause, the special
re isters LINE-COUNTER and PAGE-COUNTER are global names.

(2) !The GLOBAL clause is presented on page X-24.I All other clauses in the
report description entry are presented in the Report Writer module within these
specifications •

X-22

Inter-Program Communication - EXTERNAL

4.5 THE EXTERNAL CLAUSE

4.5.1 Function

The EXTERNAL clause specifies that a data item or a file connector is
external. The constitutent data items and group data items of an external data
record are available to every program in the run unit which describes that
record.

4.5.2 General Format

IS EXTERNAL

4.5.3 Syntax Rules

(1) The EXTERNAL clause may be
(see pages X-15 through X-18)
Working-Storage Section (see pages

specified only in file description
or in record description entries
X-19 through X-21).

entries
in the

(2) In the same program, the data-name specified as the subject of the entry
whose level-number is 01 that includes the EXTERNAL clause must not be the same
data-name specified for any other data description entry which includes the
EXTERNAL clause.

(3) The VALUE clause must not be used in any data description entry which
includes, or is subordinate to, an entry which includes the EXTERNAL clause.
The VALUE clause may be specified for condition-name entries associated with
such data description entries.

4.5.4 General Rules

(1) The data contained in the record named by the data-name clause is
external and may be accessed and processed by any program in the run unit which
describes and, optionally, redefines it subject to the following general rules.

(2) Within a run unit, if two or more programs describe the same external
data record, each record-name of the associated record description entries must
be the same and the records must define the same number of standard data format
characters. However, a program which describes an external record may contain a
data description entry including the REDEFINES clause which redefines the
complete external record, and this complete redefinition need not occur
identically in other programs in the run unit. (See page VI-38, The REDEFINES
Clause.)

(3) Use of the EXTERNAL clause does not imply that the associated file-name
or data-name is a global name. (See page X-24, The GLOBAL Clause.)

(4) The file connector associated with this description entry is an external
file connector.

X-23

Inter-Program Communication - GLOBAL

4.6 THE GLOBAL CLAUSE

4.6.1 Function

The GLOBAL clause specifies that a data-name, a file-name, or a report-name
is a global name. A global name is available to every program contained within
the program which declares it.

4.6.2 General Format

IS GLOBAL

4.6.3 Syntax Rules

(1) The GLOBAL clause may be specified only in data description entries
whose level-number is 01 1n the File Section or the Working-Storage Section,
file description entries, or report description entries.

(2) In the same Data Division, the data description entries for any two data
items for which the same data-name is specified must not include the GLOBAL
clause.

(3) If the SAME RECORD AREA clause is specified for several files, the
record description entries or the file description entries for these files must
not include the GLOBAL clause.

4.6.4 General Rules

(1) A data-name, file-name, or report-name described using a GLOBAL clause
is a global name. All data-names subordinate to a global name are global names.
All condition-names associated with a global name are global names.

(2) A statement in a program contained directly or indirectly within a
program which describes a global name may reference that name without describing
it again. (See page X-4, Scope of Names.)

(3) If the GLOBAL clause is used in a data description entry which contains
the REDEFINES clause, it is only the subject of that REDEFINES clause which
possesses the global attribute.

X-24

Inter-Program Communication - Procedure Division Header

5. PROCEDURE DIVISION IN THE INTER-PROGRAM COMMUNICATION MODULE

5.1 THE PROCEDURE DIVISION HEADER

The Procedure Division is identified by, and must begin with, the following
header:

PROCEDURE DIVISION [USING {data-name-1} •..].

The USING phrase is necessary only if the object program is to be invoked by
a CALL statement and that statement includes a USING phrase.

The USING phrase of the Procedure Division header identifies the names used
by the program for any parameters passed to it by a calling program. The
parameters passed to a called program are identified in the USING phrase of the
calling program's CALL statement. The correspondence between the two lists of
names is established on a positional basis.

Data-name-1 must be defined as a level 01 entry or a level 77 entry in the
Linkage Section. A particular user-defined word may not appear more than once
as data-name-1. The data description entry for data-name-1 must not contain a
REDEFINES clause. Data-name-1 may, however, be the object of a REDEFINES clause
elsewhere in the Linkage Section.

The following additional rules apply:

(1) If the reference to the corresponding data item in the CALL statement
declares the parameter to be passed by content, the value of the item is moved
when the CALL statement is executed and placed · into a system-defined storage
item possessing the attributes declared in the Linkage Section for data-name-1.
The data description of each parameter in the BY CONTENT phrase of the CALL
statement must be the same, meaning no conversion or extension or truncation, as
the data description of the corresponding parameter in the USING phrase of the
Procedure Division header. (See page X-27, The CALL Statement.)

(2) If the reference to the corresponding data item in the CALL statement
declares the parameter to be passed by reference, the object program operates as
if the data item in the called program occupies the same storage area as the
data item in the calling program. The description of the data item in the
called program must describe the same number of character positions as described
by the description of the corresponding data item in the calling program.

(3) At all times in the called program, references to data-name-1 are
resolved in accordance with the description of the item given iri the Linkage
Section of the called program.

(4) Data items defined in the Linkage Section of the called program may be
referenced within the Procedure Division of that program if, and only if, they
satisfy one of the following conditions:

a. They are operands of the USING phrase of the Procedure Division
header.

X-25

Inter-Program Communication - Procedure Division Header

b. They are subordinate to operands of the USING phrase of the
Procedure Division header.

c. They are defined with a REDEFINES or RENAMES clause, the object of
which satisfies the above conditions.

d. They are items subordinate to any item which satisfies the condition
in rule 4c.

e. They are condition-names or index-names associated with data items
that satisfy any of the above four conditions.

In level 1 at least five data-names must be permitted in the USING phrase of
the Procedure Division header and in the USING phrase of the CALL statement.

X-26

Inter-Program Communication - CALL

5.2 THE CALL STATEMENT

5.2.1 Function

The CALL statement causes control to be transferred from one object program
to another, within the run unit.

5.2.2 General Format

Format 1:

CALL {lidentifier;...11} [USING ·{ [BY REFERENCE] {identifier-2} ••• } J
-- literal-I --. BY CONTENT {identifier-2} • • • • • •

![ON OVERFLOW imperative-statement-111

[END-CALL]

Format 2:

CALL {lidentifier-11} [USING { [BY REFERENCE {identifier-2} .• ·} J
-- literal-! · BY CONTENT {identifier-2 • . . . •.

[ON EXCEPTION imperative-statement-!]

[NQI ON EXCEPTION imperative-statement-2]

[END-CALL]

5.2.3 Syntax Rules

(1) Literal-I must be a nonnumeric literal.

(2) Identifier-I must be defined as an alphanumeric data item such that its
value can be a pro ram-name.

(3) Each of the operands in tqe USING phrase must have been defined as a
data item in the File Section, Working-Storage Section, Communication Section,
or Linkage Section, and must be a level 01 data item, a level 77 data item, or
an elementary data item.

5.2.4 General Rules

(1) Literal-liar the content of the data item referenced by identifier-I I is
the name of the called program. The program in Which the CALL statement appears
is the calling program. If the program being called is a COBOL program,
literal-I lor the content of the data item referenced by identifier-II must
contain the program-name contained in the PROGRAM-ID paragraph of the called
program. If the program being called is not a COBOL program, the rules for
formation of the program-name are defined by the implementor.

(2) If, when a CALL statement is executed, the program specified by the CALL
statement is made available for execution, control is transferred to the called

X-27

Inter-Program Communication - CALL

program. After control is returned from the called program,lthe ON OVERFLOW orl
ON EXCEPTION phrase, if specified, is ignored andLcontrol is transferred to the
end of the CALL statement]or, if the NOT ON EXCEPTION phrase is specified, to
imperative-statement-2. If control is transferred to imperative-statement-2,
execution continues according to the rules for each statement specified in
imperative-statement-2. If a procedure branching or conditional statement which
causes explicit transfer of control is executed, control is transferred 1n
accordance with the rules for that statement; otherwise, upon completion of the
execution of imperative-statement-2, control is transferred to the end of the
CALL statement.

(3) If it is determined, when a CALL statement is executed, that the program
specified by the CALL statement cannot be made available for execution at that
time, one of the two actions listed below will occur. The object time resources
which must be checked in order to determine the availability of the called
program for execution are defined by the implementor.

a. If the ON OVERFLOW or ON EXCEPTION phrase is specified in the CALL
statement, control is transferred to imperative-statement-1. Execution then
continues according to the rules for each statement specified in
imperative-statement-1. If a procedure branching or cond'itional state1,11ent which
causes explicit transfer of control is executed, control is transferred in
accordance with the rules for that statement; otherwise, upon completion of the
execution of imperative-statement-1, control is transferred to the end of the
CALL statement and the NOT ON EXCEPTION phrase, if specified, is ignored.

b. !If the ON OVERFLOW or ON EXCEPTION phrase is not specified in
[C_A_L_L~~s-t_a_t_e~ment, the NOT ON EXCEPTION phrase if s ecified is i nored.
other effects of the CALL statement are defined by the implementor.

(4) Two or more programs in the run unit may have the same
the reference in a CALL statement to such a program-name is
the scope of names conventions for program-names. (See page
for Program-Names.)

program-name, andl
resolved by using
X-5, Conventions

For example, when only two programs in the run unit have the same name
as that specified in a CALL statment:

a. One of those two programs must also be contained directly or
indirectly either within the separately compiled program which includes that
CALL statement or within the separately compiled program which itself directly
or indirectly contains the program which includes that CALL statement, and

b. The other of those two programs must be a different separately
compiled program.

the
CALL

The mechanism used in this example is as follows:

a. If one of the two programs having the same name as that specified in
CALL statement is directly contained within the program which includes that
statement, that program is called.

b. If one of the two programs having the same name as that specified in
the CALL statement possesses the common attribute and is directly contained
within another program which directly or indirectly contains the program which

x 2a

Inter-Program Communication - CALL

includes the CALL statement, that common program is called unless the calling
program is contained within that common program.

c. Otherwise, the separately compiled program is called.

(5) If the called ro ram does not possess the initial attribute it and
.--~~~~~~~~~~~--'

each program directly or indirectly contained within it, is in its initial state
i--~~~~~~~~~~~~

the first time it is called within a run unit and the first time it is called
after a CANCEL to the called ro ram.

On all other entries into the called ro ram, the state of the program
and each pro ram direct! or indirect! contained within it remains unchanged
from its state when last exited.

(6) If the called program possesses the initial attribute, it and each
program directly or indirectly contained within it, is placed into its initial
state every time the called program is called within a run unit.

(7)

not in
Initial

Files associated with a called program's internal file
the open mode when the program is in an initial state.

State of a Program.)

connectors are
(See page X-10,

On all other entries into the called program, the states and positioning
of all such files is the same as when the called program was last exited.

(8) The process of calling a program or exiting from a called program does
not alter the status or positioning of a file associated with any external file
connector.

(9) If the program being called is a COBOL program, the USING phrase is
included in the CALL statement only if there is a USING phrase in the Procedure
Division header of the called program, in which case the number of operands in
each USING phrase must be identical. If the program being called is other than
a COBOL program, the use of the USING phrase is defined by the implementor.

(10) The sequence of appearance of the data-names in the USING phrase of the
CALL statement and in the corresponding USING phrase in the called program's
Procedure Division header determines the correspondence between the data-names
used by the calling and called programs. This correspondence is positional and
not by name equivalence; the first data-name in one USING phrase corresponds to
the first data-name in the other, the second to the second, etc.

(11) The values of the parameters referenced in the USING phrase of the CALL
statement are made available to the called program at the time the CALL
statement is executed.

(12) Both the BY CONTENT and BY REFERENCE phrases are transitive across the
parameters which follow them until another BY CONTENT or BY REFERENCE phrase is

nc untered. If neither the BY CONTENT nor the BY REFERENCE phrase is specified
prior to the first parameter, the BY REFERENCE phrase is assumed.

(13) If the BY REFERENCE phrase is l either specified or l implied for a
parameter, the object program operates as if the corresponding data item in the
called program occupies the same storage area as the data item in the calling
program. The description of the data item in the called program must describe

X-29

Inter-Program Communication - CALL

the same number of character positions as described by the description of the
corresponding data item in the calling program.

(14) If the BY CONTENT phrase is specified or implied for a parameter, the
called program cannot change the value of this parameter as referenced in the
CALL statement's USING phrase, though the ·called program may change the value of
the data item referenced by the coresponding data-name in the called program's
Procedure Division header. The data description of each parameter in the BY
CONTENT phrase of the CALL statement must be the same, meaning no conversion or
extension or truncation, as the data description of the cdrresponding parameter
in the USING phrase of the Procedure Division header. (See page X-25, The
Procedure Division Header.) .

(15) Called programs may contain CALL statements. However, a called program
must not execute a CALL statement that directly or indirectly calls the calling
program. If a CALL statement is executed within the range of a declarative,
that CALL statement cannot directly or indirectly reference any called program
to which control has been transferred and which has not completed execution.

(16) The END-CALL phrase delimits the scope of the CALL statement. (See page
IV-40, Scope of Statements.)

X-30

Inter-Program Communication - CANCEL

5.3 THE CANCEL STATEMENT

5.3.1 Function

The CANCEL statement ensures that the next time the referenced program is
called it will be in its initial state.

5.3.2

CANCEL

5.3.3

(1)

(2)

5.3.4

General Format

{ identif ier-1}
literal-1

Syntax Rules

Literal-1 must be a nonnumeric literal.

Identifier-I must reference an alphanumeric data item.

General Rules

(1) Literal-1 or the content of the data item referenced by identifier-I
identifies the program to be cancelled.

(2) Subsequent to the execution of an explicit or implicit CANCEL statement,
the program referred to therein ceases to have any logical relationship to the
run unit in which the CANCEL statement appears. If the program referenced by a
successfully executed explicit or implicit CANCEL statement in a run unit is
subsequently called in that run unit, that program is in its initial state.
(See page X-10, Initial State of a Program.)

(3) A program named in a CANCEL statement in another program must be
callable by that other program. (See page X-4, Scope of Names, and page X-27,
The CALL Statement.)

(4) When an explicit or implicit CANCEL statement is executed, all programs
contained within the program referenced by the CANCEL statement are also
cancelled. The result is the same as if a valid CANCEL statement were executed
for each contained program in the reverse order in which the programs appear in
the separately compiled program.

(5) A program named 1n the CANCEL statement must not refer directly or
indirectly to any program that has been called and has not yet executed an EXIT
PROGRAM statement.

(6) A logical relationship to a cancelled program is established only by
execution of a subsequent CALL statement naming that program.

(7) A called program is cancelled either by being referred to as the operand
of a CANCEL statement, by the termination of the run unit of which the program
is a member, or by execution of an EXIT PROGRAM statement in a called program
that possesses the initial attribute.

(8) No action is taken when an explicit or implicit CANCEL statment is
executed naming a program that has not been called in this run unit or has been

X-31

Inter-Program Communication - CANCEL

called and is at present cancelled. Control is transferred to the next
executable statement following the explicit CANCEL statement.

(9) The contents of data items in external data records described by a
program are not changed when that program is cancelled.

(10) During execution of an explicit or implicit CANCEL statement, an
implicit CLOSE statement without any optional phrases is executed for each file
in the open mode that is associated with an internal file connector in the
program named in the explicit CANCEL statement. Any USE procedures associated
with any of these files are not executed.

X-32

Inter-Program Communication - EXIT PROGRAM

5.4 THE EXIT PROGRAM STATEMENT

5.4.1 Function

The EXIT PROGRAM statement marks the logical end of a called program.

5.4.2 General Format

EXIT PROGRAM

5.4.3 Syntax Rules

(1) If an EXIT PROGRAM statement appears in a consecutive sequence of
imperative statements within a sentence, it must appear as the last statement in
that sequence.

(2) The EXIT PROGRAM statement must not appear in a declarative procedure in
which the GLOBAL phrase is specified.

5.4.4 General Rules

(1) If the EXIT PROGRAM statement is executed in a program which is not
under the control of a calling program, the EXIT PROGRAM statement causes
execution of the program to continue with the next executable statement.

(2) The execution of an EXIT PROGRAM statement in a called program which
does not possess the initial attribute causes execution to continue with the
next executable statement following the CALL statement in the calling prdgram.
The program state of the calling program is not altered and is identical to that
which existed at the time it executed the CALL statement except that the
contents of data items and the contents of data files shared between the calling
and called program may have been changed. The program state of the called
program is not altered except that the ends of the ranges of all PERFORM
statements executed by that called program are considered to have been reached.

(3) Besides the actions specified in general rule 2, the execution of an
EXIT PROGRAM statement in a called program which possesses the initial attribute
is equivalent also to executing a CANCEL statement referencing that program.
(See page X-31, The CANCEL Statement.)

X-33

Inter-Program Communication - USE

5.5 THE USE STATEMENT

S.S.! Function

Within the Inter-Program Communication module, the USE statement determines
whether the associated declarative procedures are invoked during the execution
of any program contained within the program which includes the USE statement.

5.5.2 General Format

INPUT l{file-name-1} ···1
USE [GLOBAL] AFTER STANDARD {~TION} PROCEDURE ON ~UT

EXTEND

5.5.3 Syntax Rules

(1) The availability of the multiple file-names and the EXTEND phrase is
dependent on the level of Sequential I-0 module, Relative I-0 module, or Indexed
I-0 module supported by the implementation. (See page VII-50 in the Sequential
I-0 module, page VIII-35 in the Relative I-0 module, and page IX-39 in the
Indexed I-0 module.)

5.5.4 General Rules

(1) Special precedence rules are followed when programs are contained within
other programs. In applying these rules, only the first qualifying declarative
will be selected for execution. The declarative which is selected for execution
must satisfy the rules for execution of that declarative. The order of
precedence for selecting a declarative is:

a. The declarative within the program that contains the statement which
caused the qualifying condition.

b. The declarative in which the GLOBAL phrase is specified and which is
within the program directly containing the program which was last examined for
qualifying declarative.

c. Any declarative selected by applying rule lb to each more inclusive
containing program until rule lb is applied to the outermost program. If n
qualifying declarative is found, none is executed.

X-34

Inter-Program Communication - USE BEFORE REPORTING

5.6 THE USE BEFORE REPORTING STATEMENT

5.6.1 Function

Within the Inter-Program Communication module, the USE BEFORE REPORTING
statement determines whether the associated declarative procedures are invoked
during the execution of any program contained within the program which includes
the USE BEFORE REPORTING statement.

5.6.2 General Format

USE [GLOBAL] BEFORE REPORTING identifier-!

5.6.3 Syntax Rules

(1) The availability of .the USE BEFORE REPORTING statement is dependent on
whether the Report Writer module is supported by the implementation. (See page
XIII-78 in the Report Writer module.)

5.6.4 General Rules

(1) Special precedence rules are followed when programs are contained within
other programs. In applying these rules, only the first qualifying declarative
will be selected for execution. The declarative which is selected for execution
must satisfy the rules for execution of that declarative. The order of
precedence for selecting a declarative is:

a. The declarative within the program that contains the statement which
caused the qualifying condition.

b. The declarative in which the GLOBAL phrase is specified and which is
within the program directly containing the program which was last examined for a
qualifying declarative.

c. Any declarative selected by applying rule lb to each more inclusive
containing program until rule lb is applied to the outermost program. If no
qualifying declarative is found, none is executed.

X-35

Sort-Merge - Introduction

SECTION XI: SORT-MERGE MODULE

1. INTRODUCTION OF THE SORT-MERGE MODULE

1.1 FUNCTION

The Sort-Merge module provides the capability to order one or more files of
records, or to combine two or more identically ordered files of records,
according to a set of user-specified keys contained within each record.
Optionally, a user may apply some special processing to each of the individual
records by input or output procedures. This special processing may be applied
before and/or after the records are ordered by the SORT or after the records
have been combined by the MERGE.

1.2 LANGUAGE CONCEPTS

1.2.1 Sort File

A sort file is a collection of records to be sorted by a SORT statement.
The sort file has no label procedures which the programmer can control and the
rules for blocking and for allocation of internal storage are peculiar to the
SORT statement. The RELEASE and RETURN statements imply nothing with respect to
buffer areas, blocks, or reels. A sort file, then, may be considered as an
internal file which is created (RELEASE statement) from the input file,
processed (SORT statement), and then made available (RETURN statement) to the
output file.

A sort file 1s named by a file control entry and is described by a sort-merge
file description entry. A sort file is referred to by the RELEASE, RETURN, and
SORT statements.

1.2.2 Merge File

A merge file is a collection of records to be merged by a MERGE statement.
The merge file has no label procedures which the programmer can control and the
rules for blocking and for allocation of internal storage are peculiar to the
MERGE statement. The RETURN statement implies nothing with respect to buffer
areas, blocks, or reels. A merge file, then, may be considered as an internal
file which is created from input files by combining them (MERGE statement) as
the file is made available (RETURN statement) to the output file.

A merge file is named by
sort-merge file description
and MERGE statements.

a file
entry.

control entry and is described by a
A merge file is referred to by the RETURN

XI-1

Sort-Merge - File Control Entry

2. ENVIRONMENT DIVISION IN THE SORT-MERGE MODULE

2.1 INPUT-OUTPUT SECTION

Information concerning the Input-Output Section is located on page VII-6.

2.2 THE FILE-CONTROL PARAGRAPH

Information concerning the FILE-CONTROL paragraph is located on page VII-7.

2.3 THE FILE CONTROL ENTRY

2.3.1 Function

The file control entry declares the relevant physical attributes of a sort or
merge file.

2.3.2 General Format

SELECT file-name-1 ASSIGN TO

2.3.3 Syntax Rules

{ implementor-name-1}
literal-1

(1) Each sort or merge file described in the Data Division must be specified
only once in the FILE-CONTROL paragraph. Each sort or merge file specified in
the SELECT clause must have a sort-merge file description entry in the Data
Division of the same program.

(2) Since file-name-1 represents a sort or merge file, only the ASSIGN
clause is permitted to follow file-name-1 in the FILE-CONTROL paragraph.

2.3.4 General Rules

(1) The ASSIGN clause specifies the association of the file referenced by
file-name-1 to a storage medium referenced by implementor-name-I or literal-1.

XI-2

Sort-Merge - I-0-CONTROL

2.4 THE I-0-CONTROL PARAGRAPH

2.4.1 Function

The I-0-CONTROL paragraph specifies the memory area which is to be shared by
different files including sort or merge files.

2.4.2 General Format

I-0-CONTROL.

[l (RECORD }
SAME J SORT -- l SORT-MERGE

2.4.3 Syntax Rules

AREA FOR file-name-1 {file-name-2) ••.] J

(1) The availability of the RECORD option of the SAME clause is dependent on
the level of Sequential I-0 module supported by the implementation.

2.4.4 General Rules

(1) The SAME RECORD/SORT/SORT-MERGE AREA clause for the Sort-Merge module is
presented on the next page.

XI-3

Sort-Merge - SAME RECORD/SORT/SORT-MERGE AREA

2.5 THE SAME RECORD/SORT/SORT-MERGE AREA CLAUSE

2.5.1 Function

The SAME RECORD/SORT/SORT-MERGE AREA clause specifies the memory area which
is to be shared by different files at least one of which is a sort or merge
file.

2.5.2 General Format

SORT . AREA FOR {
RECORD }

file-name-1 {file-name-2} .••
SORT-MERGE

2.5.3 Syntax Rules

(1) Each file-name specified in the SAME RECORD/SORT/SORT-MERGE AREA clause
must be specified in the FILE-CONTROL paragraph of the same program.

(2) File-name-1 and file-name-2 may not reference an
connector.

external file

(3) SORT and SORT-MERGE are equivalent.

(4) A file-name that represents a sort or merge file must not appear in the
SAME clause unless the SORT, SORT-MERGE, or RECORD phrase is used.

(5) More than one SAME clause may be included in the program, subject to the
following restrictions:

a. A file-name must not appear in more than one SAME RECORD AREA
clause.

b. A file-name that represents a sort or merge file must not appear in
more than one SAME SORT AREA or SAME SORT-MERGE AREA clause.

c. If a file-name that
in a SAME clause (see page
SORT-MERGE AREA clauses, all of
named in that SAME SORT AREA or

does not represent a sort or merge file appears
VII-19) and one or more SAME SORT AREA or SAME

the files named in that SAME clause must be
SAME SORT-MERGE AREA clause(s).

(6) The files referenced in the SAME RECORD/SORT/SORT-MERGE AREA clause need
not all have the same organization or access.

2.5.4 General Rules

(1) The SAME RECORD AREA clause specifies that two or more files referenced
by file-name-1, file-name-2 are to use the same memory area for processing of
the current logical record. All of these files may be in the open mode at the
same time. A logical record in the SAME RECORD AREA is considered as a logical
record of each file open in the output mode whose file-name appears in this SAME
RECORD AREA clause and of the most recently read file open in the input mode
whose file-name appears in this SAME RECORD AREA clause. This is equivalent to

XI-4

Sort-Merge - SAME RECORD/SORT/SORT-MERGE AREA

an implicit redefinition of the area, i.e., records are aligned on the leftmost
character position.

(2) If the SAME SORT AREA or SAME SORT-MERGE AREA clause is used, at least
one of the file-names must represent a sort or merge file. This clause
specifies that storage is shared as follows:

a. The SAME SORT AREA or SAME SORT-MERGE AREA clause specifies a memory
area which will be made available for use in sorting or merging each sort or
merge file named. Thus any memory area allocated for the sorting or merging of
a sort or merge file is available for reuse in sorting or merging any of the
other sort or merge files.

b. In addition, storage areas assigned to files that do not represent
sort or merge files may be allocated as needed for sorting or merging the sort
or merge files named in the SAME SORT AREA or SAME SORT-MERGE AREA clause. The
extent of such allocation will be specified by the implementor.

c. Files other than sort or merge files do not share the same storage
area with each other. For these files to share the same storage area with each
other, the program must contain a SAME AREA or SAME RECORD AREA clause
specifying file-names associated with these files.

sort
with

d. During the execution of a SORT or MERGE statement that refers to a
or merge file named in this clause, any non sort or merge files associated

file-names named in this clause must not be in the open mode.

XI-5

Sort-Merge - File Section

3. DATA DIVISION IN THE SORT-MERGE MODULE

3.1 FILE SECTION

The File Section is located in the Data Division of a source program. The
File Section defines the structure of sort files and merge files. Each sort
file or merge file is defined by a sort-merge file description entry and one or
more record description entries. Record description entries are written
immediately following the sort-merge file description entry.

The general format of the File Section in the Sort-Merge module 1s shown
below.

FILE SECTION.

[sort-merge-file-description-entry

{record-description-entry} •••] •••

3.1.1 Sort-Merge File Description Entry

In a COBOL program, the sort-merge file description entry (SD entry)
represents the highest level of organization in the File Section. The File
Section header is followed by a sort-merge file description entry consisting of
a level indicator (SD), a file-name, and a series of independent clauses. The
clauses of a sort-merge file description entry (SD entry) specify the size and
the names of the data records associated with a sort file or a merge file.
There are no label procedures which the user can control, and the rules for
blocking and internal storage are peculiar to the SORT and MERGE statements.
The sort-merge file description entry is terminated by a period.

3.1.2 Record Description Structure

A record description consists of a set of data description entries which
describe the characteristics of a particular record. Each data description
entry consists of a level-number followed by the data-name or FILLER clause, if
specified, followed by a series of independent clauses as required. A record
description may have a hierarchical structure and therefore the clauses used
with an entry may vary considerably, depending upon whether or not it is
followed by subordinate entries. The structure of a record description and the
elements allowed in a record description entry are explained on page IV-14,
Concept of Levels, and on page VI-20, The Data Description Entry. The
availability of specific clauses in the data description entry is dependent on
the level of Nucleus module supported by the implementation.

3.1.3 Initial Values

The initial value of data items in the File Section is undefined.

XI-6

Sort-Merge - Sort-Merge File Description Entry

3.2 THE SORT-MERGE FILE DESCRIPTION ENTRY

3.2.1 Function

The sort-merge file description entry furnishes information concerning the
physical structure and record-names pertaining to a sort or merge file.

3.2.2 General Format

SD file-name-1

CONTAINS integer-I CHARACTERS

RECORD
IS VARYING IN SIZE [[FROM integer-2] [TO integer-3] CHARACTERS]

[DEPENDING ON data-name-1]

CONTAINS integer-4 TO integer-5 CHARACTERS

[{ RECORD IS }
DATA RECORDS ARE {data-nrune-2) •••]

3.2.3 Syntax Rules

(1) The level indicator SD identifies the beginning of the sort-merge file
description entry and must precede file-name-I.

(2) The clauses which follow file-name-1 are optional, and their order of
appearance is immaterial.

(3) One or more record description entries must follow the sort-merge file
description entry; however, no input-output statements may be executed for this
sort or merge file.

(4) The availability of the VARYING phrase in the RECORD clause is dependent
on the level of Sequential I-0 module supported by the implementation.

3.2.4 General Rules

(1) The DATA RECORDS clause for the Sort-Merge module is the same as the
DATA RECORDS clause for the Sequential I-0 module. Thus the specifications for
the DATA RECORDS clause are located on page VII-25. The DATA RECORDS clause is
an obsolete element in Standard COBOL because it is to be deleted from the next
revision of Standard COBOL.

(2) The RECORD clause for the Sort-Merge module is the same as the RECORD
clause for the Sequential I-0 module. Thus the specifications for the RECORD
clause are located on page VII-30.

XI-7

Sort-Merge - MERGE

4. PROCEDURE DIVISION IN THE SORT-MERGE MODULE

4.1 THE MERGE STATEMENT

4.1.1 Function

The MERGE statement combines two or more identically sequenced files on a set
of specified keys, and during the process makes records available, in merged
order, to an output procedure or to an output file.

4.1.2 General Format

{ { ASCENDING }
MERGE f ile-name-1 ON DESCENDING KEY

[COLLATING SEQUENCE IS alphabet-name-1]

USING file-name-2 {file-name-3} ••.

{
OUTPUT PROCEDURE IS procedure-name-1

GIVING {file-name-4} ••.

4.1.3 Syntax Rules

{ da ta-name-1} .•• } ...

THRU procedure-name-2 [{ THROUGH} J}

(1) A MERGE statement may appear anywhere in the Procedure Division except
in the declaratives portion.

(2) File-name-I must be described in a sort-merge file description entry in
the Data Division.

(3) If the file referenced by file-name-1 contains variable length records,
the size of the records contained in the files referenced by file-name-2 and
file-name-3 must not be less than the smallest record nor greater than the
largest record described for file-name-I. If the file referenced by file-name-1
contains fixed length records, the size of the records contained in the file
referenced by file-name-2 and file-name-3 must not be greater than the largest
record described for file-name-1.

(4) Data-name-I is a key data-name.
following rules:

Key data-names are subject to the

a. The data items identified by key data-names must be described in
records associated with file-name-I.

b. Key data-names may be qualified.

c. The data items identified by key data-names must not be group items
that contain variable occurrence data items.

XI-8

Sort-Merge - MERGE

d. If file-name-1 has more than one record description, the data
identified by key data-names need be described in only one of the
descriptions. The same character positions referenced by a key data-name
record description entry are taken as the key 1n all records of the file.

items
record
1n one

e. None of the data items identified by key data-names can be described
by an entry that either contains an OCCURS clause or is subordinate to an entry
that contains an OCCURS clause.

f. If the file referenced by file-name-1 contains variable length
records, all the data items identified by key data-names must be contained
within the first x character positions of the record, where x equals the minimum
record size specified for the file referenced by file-name-1.

(5) File-name-2, file-name-3, and file-name-4 must be described in a file
description entry, not in a sort-merge description entry, in the Data Division.

(6) No two files specified in any one MERGE statement may reside on the same
multiple file reel.

(7) File-names must not be repeated within the MERGE statement.

(8) No pair of file-names in a MERGE statement may be specified in the same
SAME AREA, SAME SORT AREA, or SAME SORT-MERGE AREA clause. The only file-names
in a MERGE statement that can be specified in the same SAME RECORD AREA clause
are those associated with the GIVING phrase. (See page VII-19, The SAME Clause,
and page XI-4, The SAME RECORD/SORT/SORT-MERGE AREA Clause.)

(9) The words THRU and THROUGH are equivalent.

(10) If file-name-4 references an indexed file, the first specification of
data-name-I must be associated with an ASCENDING phrase and the data item
referenced by that data-name-I must occupy the same character positions in its
record as the data item associated with the prime record key for that file.

(11) If the GIVING phrase is specified and the file referenced by fite-name-4
contains variable length records, the size of the records contained in the file
referenced by file-name-1 must not be less than the smallest record nor greater
than the largest record described for file-name-4. If the file referenced by
file-name-4 contains fixed length records, the size of the records contained in
the file referenced by file~name-1 must not be greater than the largest record
described for file-name-4.

4.1.4 General Rules

(1) The MERGE statement merges all records contained on the files referenced
by file-name-2 and file-name-3.

(2) If the file referenced by
records, any record in the file
containing fewer character positions
the right beginning with the first
in the record when that record
file-name-1.

file-name-I contains only fixed length
referenced by file-name-2 or file-name-3

than that fixed length is space filled on
character position after the last character
is released to the file referenced by

XI-9

Sort-Merge - MERGE

(3) The data-names following the word KEY are listed from left to right in
the MERGE statement in order of decreasing significance without regard to how
they are divided into KEY phrases. The leftmost data-name is the major key, the
next data-name is the next more significant key, etc.

a. When the ASCENDING phrase is specified, the merged sequence will be
from the lowest value of the contents of the data items identified by the key
data-names to the highest value, according to the rules for comparison of
operands in a relation condition.

b. When the DESCENDING phrase is specified,
from the highest value of the contents of the data
data-names to the lowest value, according to the
operands in a relation condition.

the merged sequence will be
items identified by the key
rules for comparison of

(4) When, according to the rules for the comparison of operands in a
relation condition, the contents of all the key data items of one data record
are equal to the contents of the corresponding key data items of one or more
other data records, the order of return of these records:

a. Follows the order of the associated input files as specified in the
MERGE statement.

b. Is such that all records associated with one input file are returned
prior to the return of records from another input file.

(5) The collating sequence that applies to the comparison of the nonnumeric
key data items specified is determined at the beginning of the execution of the
MERGE statement in the following order of precedence:

a. First, the collating sequence established by the COLLATING SEQUENCE
phrase, if specified, in that MERGE statement.

b. Second, the collating sequence established as the program collating
sequence.

(6) The results of the merge operation are undefined unless the records in
the files referenced by file-name-2 and file-name-3 are ordered as described 1n
the ASCENDING or DESCENDING KEY phrases associated with the MERGE statement.

(7) All the records in the files referenced by file-name-2 and file-name-3
are transferred to the file referenced by file-name-1. At the start of
execution of the MERGE statement, the files referenced by file-name-2 and
file-name-3 must not be in the open mode. For each of the files referenced by
file-name-2 and file-name-3 the execution of the MERGE statement causes the
following actions to be taken:

a. The processing of the file is initiated. The initiation is
performed as if an OPEN statement with the INPUT phrase had been executed. If
an output procedure is specified, this initiation is performed before control
passes to the output procedure.

b. The logical records are obtained and released to the merge
operation. Each record is obtained as if a READ statement with the NEXT and the
AT END phrases had been executed.

XI-10

Sort-Merge - MERGE

c. The processing of the file is terminated. The termination is
performed as if a CLOSE statement without optional phrases had been executed.
If an output procedure is specified, this termination is not performed until
after control passes the last statement in the output procedure.

These implicit functions are performed such that any associated USE
AFTER EXCEPTION/ERROR procedures are executed.

(8) The output procedure may consist of any procedure needed to select,
modify, or copy the records that are made available one at a time by the RETURN
statement in merged order from the file referenced by file-name-I. The range
includes all statements that are executed as the result of a transfer of control
by CALL, EXIT, GO TO, and PERFORM statements in the range of the output
procedure, as well as all statements in declarative procedures that are executed
as a result of the execution of statements in the range of the output procedure.
The range of the output procedure must not cause the e~ecution of any MERGE,
RELEASE, or SORT statement. (See page IV-25, Explicit and Implicit
Specifications.)

(9) If an output procedure is specified, control passes to it during
execution of the MERGE statement. The compiler inserts a return mechanism at
the end of the last statement in the output procedure. When control passes the
last statement in the output procedure, the return mechanism provides for
termination of the merge, and then passes control to the next executable
statement after the MERGE statement. Before entering the output procedure, the
merge procedure reaches a point at which it can select the next record in merged
order when requested. The RETURN statements in the output procedure are the
requests for the next record.

(10) During the execution of the output procedure, no statement may be
executed manipulating the file referenced by or accessing the record area
associated with, file-name-2 or file-name-3. During the execution of any USE
AFTER EXCEPTION procedure implicitly invoked while executing the MERGE
statement, no statement may be executed manipulating the file referenced by, or
accessing the record area associated with, file-name-2, file-name-3, or
file-name-4.

(11) If the GIVING phrase is specified, all the merged records are written on
the file referenced by file-name-4 as the implied output procedure for the MERGE
statement. At the start of execution of the MERGE statement, the file
referenced by file-name-4 must not be in the open mode. For each of the files
referenced by file-name-4, the execution of the MERGE statement causes the
following actions to be taken:

a. The processing of the file is initiated. The initiation is
performed as if an OPEN statement with the OUTPUT phrase had been executed.

b. The merged logical records are returned and written onto the file.
Each record is written as if a WRITE statement without any optional phrases had
been executed.

For a relative file, the relative key data item for the first record
returned contains the value 'l'; for the second record returned, the value '2',
etc. After execution of the MERGE statement, the content of the relative key
data item indicates the last record returned to the file.

XI-11

Sort-Merge - MERGE

c. The processing of the file is terminated. The termination is
performed as if a CLOSE statement without optional phrases had been executed.

These implicit functions are performed such that any associated USE
AFTER EXCEPTION/ERROR procedures are executed; however, the execution of such a
USE procedure must not cause the execution of any statement manipulating the
file referenced by, or accessing the record area associated with, file-name-4.
On the first attempt to write beyond the externally defined boundaries of the
file, any USE AFTER STANDARD EXCEPTION/ERROR procedure specified for the file is
executed; if control is returned from that USE procedure or if no such USE
procedure is specified, the processing of the file is terminated as in paragraph
11 c above.

(12) If the file referenced by
records, any record in the file
character positions than that fixed
beginning with the first character
record when that record is returned to

file-name-4 contains only fixed length
referenced by file-name-1 containing fewer

length is space filled on the right
position after the last character in the

the file referenced by file-name-4.

(13) Segmentation, as defined in Section XVI, can be applied to programs
containing the MERGE statement. However, the following restrictions apply:

a. If the MERGE statement appears in a section that
independent segment, then any output procedure referenced
statement must appear:

1) Totally within non-independent segments, or

2) Wholly contained in a single independent segment.

is
by

not
that

in an
MERGE

b. If a MERGE statement appears in an independent segment, then any
output procedure referenced by that MERGE statement must be contained:

1) Totally within non-independent segments, or

2) Wholly within the same independent segment as that MERGE
statement.

XI-12

Sort-Merge - RELEASE

4.2 THE RELEASE STATEMENT

4.2.1 Function

The RELEASE statement transfers records to the initial phase of a sort
operation.

4.2.2 General Format

RELEASE record-name-1 [FROM identifier-I]

4.2.3 Syntax Rules

(1) Record-name-1 must be the name of a logical record 1n a sort-merge file
description entry and it may be qualified.

(2) A RELEASE statement may be used only within the range of an input
procedure associated with a SORT statement for the file-name whose sort-merge
file description entry contains record-name-1.

(3) Record-name-1 and identifier-I must not refer to the same storage area.

4.2.4 General Rules

(1) The execution of a RELEASE statement causes the record named by
record-name-1 to be released to the initial phase of a sort operation.

(2) The logical record released by the execution of the RELEASE statement is
no longer available in the record area unless the sort-merge file-name
associated with record-name-1 is specified in a SAME RECORD AREA clause. The
logical record is also available to the program as a record of other files
referenced in the same SAME RECORD AREA clause as the associated output file, as
well as the file associated with record-name~!.

(3) The result of the execution of a RELEASE statement with the FROM phrase
is equivalent to the execution of the following statements in the order
specified:

a. The statement:

MOVE identifier-I TO record-name-I
I

according to the rules specified for the MOVE statement.

b. The same RELEASE statement without the FROM phrase.

(4) After the execution of the RELEASE statement is complete, the
information in the area referenced by identifier-I is available, even though the
information in the area referenced by record-name-I is not available except as
specified by the SAME. RECORD AREA clause.

XI-13

Sort-Merge - RETURN

4.3 THE RETURN STATEMENT

4.3.1 Function

The RETURN statement obtains either sorted records from the final phase of a
sort operation or merged records during a merge operation.

4.3.2 General Format

RETURN file-name-1 RECORD [INTO identifier-!]

AT END imperative-statement-!

[NOT AT END imperative-statement-2]

[END-RETURN]

4.3.3 Syntax Rules

(I) The storage area associated with identifier-I and the record area
associated with file-name-I must not be the same storage area.

(2) File-name-I must be described by a sort-merge file description entry in
the Data Division.

(3) A RETURN statement may only be used within the range of an output
procedure associated with a SORT or MERGE statement for file-name-1.

4.3.4 General Rules

(I) When the logical records in a file are described with more than one
record description, these records automatically share the same storage area;
this is equivalent to an implicit redefinition of the area. The contents of any
data items which lie beyond the range of the current data record are undefined
at the completion of the execution of the RETURN statement.

(2) The execution of the RETURN statement causes the next existing record in
the file referenced by file-name-I, as determined by the keys listed in the SORT
or MERGE statement, to be made available in the record area associated with
file-name-1. If no next logical record exists in the file referenced by
file-name-1, the at end condition exists and control is transferred to
imperative-statement-I of the AT END phrase. Execution continues according to
the rules for each statement specified in imperative-statement-I. If a
procedure branching or conditional statement which causes explicit transfer of
control is executed, control is transferred according to the rules for that
statement; otherwise, upon completion of the execution of
imperative-statement-!, control is transferred to the end of the RETURN
statement and the NOT AT END phrase is ignored, if specified. When the at end
condition occurs, execution of the RETURN statement is unsuccessful and the
contents of the record area associated with file-name-I are undefined. After
the execution of imperative-statement-I in the AT END phrase, no RETURN
statement may be executed as part of the current output procedure.

XI-14

Sort-Merge - RETURN

(3) If an at end condition does not occur during the execution of a RETURN
statement, then after the record is made available and after executing any
implicit move resulting from the presence of an INTO phrase, control is
transferred to imperative-statement-2, if specified; otherwise, control is
transferred to the end of the RETURN statement.

(4) The END-RETURN phrase delimits the scope of the RETURN statement. (See
page IV-40, Scope of Statements.)

(5) The INTO phrase may be specified in a RETURN statement:

a. If only one record description is subordinate to the sort-merge file
description entry, or

b. If all record-names associated with file-name-1 and the data item
referenced by identifier-! describe a group item or an elementary alphanumeric
item.

(6) The result of the execution of a RETURN statement with the INTO phrase
is equivalent to the application of the following rules in the order specified:

a. The execution of the same RETURN statement without the INTO phrase.

b. The current record is moved from the record area to the area
specified by identifier-! according to the rules for the MOVE statement without
the CORRESPONDING phrase. The size of the current record is determined by rules
specified for the RECORD clause. If the file description entry contains a
RECORD IS VARYING clause, the implied move is a group move. The implied MOVE
statement does not occur if the execution of the RETURN statement was
unsuccessful. Any subscripting associated with identifier-! is evaluated after
the record has been read and immediately before it is moved to the data item.
The record is available in both the record area and the data item referenced by
identifier-!.

XI-15

Sort-Merge - SORT

4.4 THE SORT STATEMENT

4.4.1 Function

The SORT statement creates a sort file by executing an input procedure or by
transferring records from another file, sorts the records in the sort file on a
set of specified keys; and, in the final phase of the sort operation, makes
available each record from the sort file, in sorted order, to an output
procedure or to an output file.

4.4.2 General Format

{ { ASCENDING }
SORT file-name-1 ON DESCENDING KEY {data-name-1} •.• } •••

[WITH DUPLICATES IN ORDER]

[COLLATING SEQUENCE IS alphabet-name-1]

{
INPUT PROCEDURE IS procedure-name-1

USING {file-name-2} .••

{
OUTPUT PROCEDURE IS procedure-name-3

GIVING {file-name-3} •••

4.4.3 Syntax Rules

[{ THROUGH}
THRU procedure-name-2J}

THRU procedure-name-~ [{THROUGH} 1}

(1) A SORT statement may appear anywhere in the Procedure Division except in
the declarative portion.

(2) File-name-1 must be described in a sort-merge file description entry in
the Data Division.

(3) If the USING phrase is specified and the file referenced by file-name-1
contains variable length records, the size of the records contained in the file
referenced by file-name-2 must not be less than the smallest record nor larger
than the largest record described for file-name-1. If the file referenced by
file-name-1 contains fixed length records, the size of the records contained in
the file referenced by file-name-2 must not be larger than the largest record
described for the file referenced by file-name-1.

(4) Data-name-1 is a key data-name.
following rules:

Key data-names are subject to the

a. The data items identified by key data-names must be described in
records associated with file-name-1.

b. Key data-names may be qualified.

c. The data items identified by key data-names must not be group items
that contain variable occurrence data items.

XI-16

Sort-Merge - SORT

d. If file-name-1 has more than one record description, then
items identified by key data-names need be described in only one of
descriptions. The same character positions which are referenced
data-name in one record description entry are taken as the key in all
the file.

the data
the record
by a key
records of

e. None of the data items identified by key data-names can be described
by an entry which either contains an OCCURS clause or is subordinate to an entry
which contains an OCCURS clause.

f. If the file referenced by file-name-1 contains variable length
records, all the data items identified by key data-names must be contained
within the first x character positions of the record, where x equals the minimum
record size specified for the file referenced by file-name-!.

(5) The words THRU and THROUGH are equivalent.

(6) File-name-2 and file-name-3 must be described in a file description
entry, not in a sort-merge file description entry, in the Data Division.

(7) The files referenced by file-name-2 and file-name-3 may reside on the
same multiple file reel.

(8) If file-name-3 references an indexed file, the first specification of
data-name-1 must be associated with an ASCENDING phrase and the data item
referenced by that data-name-! must occupy the same character positions in its
record as the data item associated with the prime record key for that file.

(9) No pair of file-names in the same SORT statement may be specified in the
same SAME SORT AREA or SAME SORT-MERGE AREA clause. File-names associated with
the GIVING phrase may not be specified in the same SAME clause. (See page
VII-19, The SAME Clause, and page XI-4, The SAME RECORD/SORT/SORT-MERGE AREA
Clause.)

(10) If the GIVING phrase is specified and the file referenced by file-name-3
contains variable length records, the size of the records contained in the file
referenced by file-name-1 must not be less than the smallest record nor larger
than the largest record described for file-name-3. If the file referenced by
file.-name-3 contains fixed length records, the size of the records contained in
the file referenced by file-name-1 must not be larger than the largest record
described for the file referenced by file-name-3.

4.4.4 General Rules

(1) If the file referenced by
records, any record in the file
character positions than that fixed
beginning with the first character
record when that record is released to

file-name-1 contains only fixed length
referenced by file-name-2 containing fewer

length is space filled on the right
position after the last character in the

the file referenced by file-name-1.

(2) The data-names following the word KEY are listed from left to right in
the SORT statement in order of decreasing significance without regard to how
they are divided into KEY phrases. The leftmost data-name is the major key, the
next .data-name is' the next most significant key, etc.

XI-17

Sort-Merge - SORT

a. When the ASCENDING phrase is specified, the sorted sequence will be
from the lowest value of the contents of the data items identified by the key
data-names to the highest value, according to the rules for comparison of
operands in a relation condition.

b. When the DESCENDING phrase is specified,
from the highest value of the contents of the data
data-names to the lowest value, according to the
operands in a relation condition.

the sorted sequence will be
items identified by the key
rules for comparison of

(3) If the DUPLICATES phrase is specified and the contents of all the key
data items associated with one data record are equal to the contents of the
corresponding key data items associated with one or more other data records,
then the order of return of these records is:

a. The order of the associated input files as specified in the SORT
statement. Within a given input file the order is that in which the records are
accessed from that file.

b. The order in which these records are released by an input procedure,
when an input procedure is specified.

(4) If the DUPLICATES phrase is not specified and the
key data items associated with one data record are equal
corresponding key data items associated with one or more
then the order of return of these records is undefined.

contents of all the
to the contents of the
other data records,

(5) The collating sequence that applies to the comparison of the nonnumeric
key data items specified is determined at the beginning of the execution of the
SORT statement in the following order of precedence:

a. First, the collating sequence established by the COLLATING SEQUENCE
phrase, if specified, in the SORT statement.

b. Second, the collating sequence established as the program collating
sequence.

(6) The execution of the SORT statement consists of three distinct phases as
follows:

a. Records are made available to the file referenced by file-name-I.
This is achieved either by the execution of RELEASE statements in the input
procedure or by the implicit execution of READ statements for file-name-2. When
this phase commences, the file referenced by file-name-2 must not be in the open
mode. When this phase terminates, the file referenced by file-name-2 is not in
the open mode.

b. The file referenced by file-name-I is sequenced. No processing of
the files referenced by file-name-2 and file-name-3 takes place during this
phase.

c. The records of the file referenced by file-name-I are made available
in sorted order. The sorted records are either written to the file referenced
by file-name-3 or, by the execution of a RETURN statement, are made available
for processing by the output procedure. When this phase commences, the file

XI-18

Sort-Merge - SORT

referenced by file-name-3 must not be in the open mode. When this phase
terminates, the file referenced by file-name-3 is not in the open mode.

(7) The input procedure may consist of any procedure needed to select,
modify, or copy the records that are made available one at a time by the RELEASE
statement to the file referenced by file-name-I. The range includes all
statements that are executed as the result of a transfer of control by CALL,
EXIT, GO TO, and PERFORM statements in the range of the input procedure, as well
as all statements in declarative procedures that are executed as a result of the
execution of statements in the range of the input procedure. The range of the
input procedure must not cause the execution of any MERGE, RETURN, or SORT
statement. (See page IV-25, Explicit and Implicit Specifications.)

(8) If an input procedure is specified, control is passed to the input
procedure before the file referenced by file-name-1 is sequenced by the SORT
statement. The compiler inserts a return mechanism at the end of the last
statement in the input procedure and when control passes the last statement in
the input procedure, the records that have been released to the file referenced
by file-name-I are sorted.

(9) If the USING phrase is specified, all the records in the file(s)
referenced by file-name-2 are transferred to the file refe'renced by file-name-1.
For each of the files referenced by file-name-2 the execution of the SORT
statement causes the following actions to be taken:

a. The processing of the file 1s initiated. The initiation is
performed as if an OPEN statement with the INPUT phrase had been executed.

b. The logical records are obtained and released to the sort operation.
Each record is obtained as if a READ statement with the NEXT and the AT END
phrases had been executed.

For a relative file, the content of the relative key data item is
undefined after the execution of the SORT statement if file-name-2 is not
referenced in the GIVING phrase.

c. The processing of the
performed as if a CLOSE statement
This termination is performed before
sequenced by the SORT statement.

file is terminated. The termination is
without optional phrases had been executed.

the file referenced by file-name-I is

These implicit functions are performed such that any associated USE
AFTER EXCEPTION/ERROR procedures are executed; however, the execution of such a
USE procedure must not cause the execution of any statement manipulating the
file referenced by, or accessing the record area associated with, file-name-2.

(10) The output procedure may consist of any procedure needed to select,
modify, or copy the records that are made available one at a time by the RETURN
statement in sorted order from the file referenced by file-name-1. The range
includes all statements that are executed as the result of a transfer of control
by CALL, EXIT, GO TO, and PERFORM statements in the range of the output
procedure, as well as all statements in declarative procedures that are executed
as a result of the execution of statements in the range of the output procedure.
The range of the output procedure must not cause the execution of any MERGE,

XI-19

Sort-Merge - SORT

RELEASE, or SORT statement.
Specifications.)

(See page IV-25, Explicit and Implicit

(11) If an output procedure is specified, control passes to it after the file
referenced by file-name-1 has been sequenced by the SORT statement. The
compiler inserts a return mechanism at the end of the last statement in the
output procedure and when control passes the last statement in the output
procedure, the return mechanism provides for termination of the sort and then
passes control to the next executable statement after the SORT statement.
Before entering the output procedure, the sort procedure reaches a point at
which it can select the next record in sorted order when requested. The RETURN
statements in the output procedure are the requests for the next record.

(12) If the GIVING phrase is specified, all the sorted records are written on
the file referenced by file-name-3 as the implied output procedure for the SORT
statement. For each of the files referenced by file-name-3, the execution of
the SORT statement causes the following actions to be taken:

a. The
performed as
This initiation

processing
if an OPEN
is performed

of the file, is initiated. The initiation is
statement with the OUTPUT phrase had been executed.
after the execution of any input procedure.

b. The sorted logical records are returned and written onto the file.
The records are written as if a WRITE statement without any optional phrases had
been execution.

For a relative file, the relative key data item for the first record
returned contains the value 'l'; for the second record returned, the value '2',
etc. After execution of the SORT statement, the content of the relative key
data item indicates the last record returned to the file.

c. The processing of the file is terminated. The termination is
performed as if a CLOSE statement without optional phrases had been executed.

These implicit functions are performed such that any associated USE
AFTER EXCEPTION/ERROR procedures are executed; however, the execution of such a
USE procedure must not cause the execution of any statement manipulating the
file referenced by, or accessing the record area associated with, file-name-3.
On the first attempt to write beyond the externally defined boundaries of the
file, any USE AFTER STANDARD EXCEPTION/ERROR procedure specified for the file is
executed; if control is returned from that USE procedure or if no such USE
procedure is specified, the processing of the file is terminated as in paragraph
12c above.

(13) If the file referenced by
records, any record in the file
character positions than that fixed
beginning with the first character
record when that record is returned to

file-name-3 contains only fixed length
referenced by file-name-1 containing fewer

length is space filled on the right
position after the last character in the

the file referenced by file-name-3.

XI-20

Sort-Merge - SORT

(14) Segmentation as defined in Section XVI can be applied to programs
containing the SORT statement. However, the following restrictions apply:

a. If a SORT
independent segment,
by that SORT statement

statement appears in a section that is not in an
then any input procedures or output procedures referenced
must appear:

1) Totally within non-independent segments, or

2) Wholly contained in a single independent segment.

b. If a SORT statement appears in an independent segment, then any
input procedures or output procedures referenced by that SORT statement must be
contained:

1) Totally within non-independent segments, or

2) Wholly within the same independent segment as that SORT
statement.

XI-21

Source Text Manipulation - Introduction

SECTION XII: SOURCE TEXT MANIPULATION MODULE

1. INTRODUCTION TO THE SOURCE TEXT MANIPULATION MODULE

1.1 FUNCTION

The Source Text Manipulation module contains the COPY statement I and the I
!REPLACE statement.I Each of these statements can function either independent of
the other or in conjunction with the other to provide an extensive capability to
insert land replaceJsource program text as part of the compilation of the source
program.

COBOL libraries contain texts which are available to the compiler at compile
time. The effect of the interpretation of the COPY statement is to generate,
from a library text, text which is treated by the compiler as part of the source
program.

Similarly, COBOL source programs can be written in a programmer defined
notation which, at compile time, can be expanded into syntactically correct
phrases, clauses, and statements. jThe effect of the 1nterpretation of the
REPLACE statement is to substitute new text for text appearing in the source
program and have the substituted text treated by the compiler as part of the
source program.

1.2 LEVEL CHARACTERISTICS

Source Text Manipulation level 1 provides the facility for copying text from
a single library into the source program. Text is copied from the library
without change.

Source Text Manipulation level 2 provides the additional capability of
replacing all occurrences of a given literal, identifier, word, or group of
words in the library text, with alternate text, during the copying process.
Level 2 also provides for the availability of more than one COBOL library at
compile time and the substitution of new text for text appearing in the source
program.

xrr..:1

Source Text Manipulation - COPY

2. THE COPY STATEMENT

2 .1 Function

The COPY statement incorporates text into a COBOL source program.

2.2 General Format

COPY text-name-1 [{'~!} library-name-! J

[
REPLACING l {~~~:~~~~:~~~t- l==} BY

literal-1
word-1

{
~=pse~d~-text-2== J l l 1dent1f1er-2
literal-2 • • •
word-2

2.3 Syntax Rules

(I) If more than one COBOL library is available during compilation,
~----'

text-name-I must be qualified by library-name-1 identifying the COBOL library in
which the text associated with text-name-I resides.

Within one COBOL library, each text-name must be unique.

(2) The COPY statement must be preceded by a space and terminated by the
separator period.

(3) Pseudo-text-I must contain one or more text words.

(4) Pseudo-text-2 may contain zero, one, or more text words.

(5) Character-strings within pseudo-text-1 and
continued. (See page IV-43, Pseudo-Text.)

pseudo-text-2

(6) Word-I or word-2 may be any single COBOL word except 'COPY'.

may be

(7) A COPY statement may be specified in the source program anywhere a
character-string or a separator, other than the closing quotation mark, may
occur except that a COPY statement must not occur within a COPY statement.

(8) The im lementor must allow a length from I through 322 characters for a
text word within seudo-text and within library text.

(9) Pseudo-text-I must not consist entirely of a separator comma or a
separator semicolon.

(IO) If the word COPY a.ppears in a comment-entry or 1n the place where a
comment-entry may appear, it is considered part of the comment-entry.

XII-2

Source Text Manipulation - COPY

2.4 General Rules

(1) The compilation of a source program containing COPY statements is
logically equivalent to processing all COPY statements prior to the processing
of the resultant source program.

(2) The effect of processing a COPY statement is that the library text
associated with text-name-I is copied into the source program, logically
replacing the entire COPY statement, beginning with the reserved word COPY and
ending with the punctuation character period, inclusive.

(3) IIf the REPLACING phrase is not specified,lthe library text is copied
unchanged.

If the REPLACING phrase is specified the library text is copied and each
properly matched occurrence of pseudo-text-I, identifier-I, word-I, and
literal-I in the library text is replaced by the corresponding pseudo-text-2,
identifier-2, word-2, or literal-2.

(4) For purposes of
treated as pseudo-text
respectively.

matching,
containing

identifier-I, word-I, and literal-I are
only identifier-I, word-I, or literal-I,

(5) The comparison operation to determine text replacement occurs in the
following manner:

a. The leftmost library text word which is not a separator comma or a
separator semicolon is the first text word used for comparison. Any text word
or space preceding this text word is copied into the source program. Starting
with the first text word for comparison and first pseudo-text-I, identifier-I,
word-1, or literal-I that was specified in the REPLACING phrase, the entire
REPLACING phrase operand that precedes the reserved word BY is compared to an
equivalent number of contiguous library text words.

b. Pseudo-text-I, identifier-I, word-I, or literal-I match the library
text if, and only if, the ordered sequence of text words that forms
pseudo-text-I, identifier-I, word-1, or literal-I is equal, character for
character, to the ordered sequence of library text words. For purposes of
matching, each occurrence of a separator comma, semicolon, or space in
pseudo-text-I or in the library text is considered to be a s~ngle space. Each
sequence of one or more space separators is considered to be a single space.

c. If no match occurs, the comparison is repeated with each next
successive pseudo-text-I, identifier-I, word-1, or literal-I, if any, in the
REPLACING phrase until either a match is found or there is no next successive
REPLACING operand.

d. When all the REPLACING phrase operands have been compared and no
match has occurred, the leftmost library text word is copied into the source
program. The next successive library text word is then considered as the
leftmost library text word, and the comparison cycle starts again with the first
pseudo-text-I, identifier-I, word-1, or literal-I specified in the REPLACING

..E_hrase.

XII-3

Source Text Manipulation - COPY

e. Whenever a match occurs between pseudo-text-1, identifier-I, word-1,
or literal-1 and the library- text, the corresponding pseudo-text-2,
identifier-2, word-2, or literal-2 is placed into the source program. The
library text word immediately following the rightmost text word that
participated in the match is then considered as the leftmost text word. The
comparison cycle starts again with the first pseudo-text-1, identifier-I,
word-1, or literal-1 specified in the REPLACING phrase.

f. The comparison operation continues until the rightmost text word 1n
the library text has either participated in a match or been considered as a
leftmost library text word and participated in a complete comparison cycle.

(6) Comment lines or blank lines occurring in the library text and in
pseudo-text-I are ignored for purposes of matching; and the sequence of text
words in the library text, if any, and in pseudo-text-1 is determined by the
rules for reference format. (See page IV-41, Reference Format Representation.)
Comment lines or blank lines appearing in pseudo-text-2 are copied into the
resultant program unchanged whenever pseudo-text-2 is placed into the source
program as a result of text replacement. J Comment lines or blank lines a_E_E_earin_g_
in librar text are co ied into the resultant source ro ram unchan ed with the
following exception: a comment line or blank line in library text is not copied
if that comment line or blank line appears within the sequence of text words
that match seudo-text-1.

(7) Debu lines are ermitted within librar text and pseudo-text. Text
~~-'--'--~~---'"'-'"'-~,,,_~~~~~-L-~~~~~~~~~~~~'--~~

words within a debugging line participate in the matching rules as if the 'D'
did not appear in .the indicator area. A debugging line is specified within
pseudo-text if the debugging line begins in the source program after
the opening pseudo-text-delimiter but before the matching closing
seudo-text-delimiter.

(8) The syntactic correctness of the library text cannot be independently
determined. Except for COPYland REPLACElstatements, the syntactic correctness
of the entire COBOL source program cannot be determined until all COPY landl

JREPLACEJstatements have been completely processed.

(9) Each text word copied from the librarylbut not replacedlis copied so as
to start in the same area of the line in the resultant program as it begins in
the line within the librar_y_. J However, if a text word copied from the library
begins in area A but follows another text word, which also begins in area A of
the same line, and if replacement of a preceding text word in the line by
replacement text of greater length occurs, the following text word begins in
area B if it cannot begin in area A. Each text word in pseudo-text-2 that is to
be placed into the resultant program begins in the same area of the resultant
program as it appears in pseudo-text-2. Each identifier-2, literal-2, and
word-2 that is to be placed into the resultant program begins in the same area
of the resultant program as the leftmost library text word that participated in
the match would a_QQ_ear if it had not been re_l'_laced.

Library text must conform to the rules for COBOL reference format.

If additional lines are introduced into the source program as a result
of a COPY statement, each text word introduced appears on a debugging line if
the COPY statement begins on a debugging line or if the text word being
introduced appears on a debugging line 1n library text. I When a text word!

XII-4

Source Text Manipulation - COPY

in the preceding cases, only those text words that are specified on debugging
lines where the debugging line is within pseudo-text-2 appear on debugging lines
in the resultant program. If any literal specified as literal-2 or within
pseudo-text-2 or library text is of too great length to be accommodated on a
single line without continuation to another line in the resultant program and
the literal 1s not being placed on a debugging line, additional continuation
lines are introduced which contain the remainder of the literal. If replacement
requires that the continued literal be continued on a debugging line, the
program is in error.

(10) For purposes of compilation, text words after replacement are placed in
the source program according to the rules for reference format. (See page
IV-41, Reference Format.) When copying text words of pseudo-text-2 into the
source program, additional spaces may be introduced only between text words
where there already exists a space (including the assumed space between source
lines).

(11) If additional lines are introduced into the source program as a result
of the processing of COPY statements, the indicator area of the introduced line
contains the same character as the line on which the text being replaced begins,
unless that line contains a hyphen, in which case the introduced line contains a
space. In the case where a literal is continued onto an introduced line which
is not a debu__g_g_i~ linei a 1'!.Y.E_hen is _E_laced in the indicator area.

XII-5

Source Text Manipulation - REPLACE

3. THE REPLACE STATEMENT

3.1 Function

The REPLACE statement is used to replace source program text.

3.2 General Format

Format 1:

REPLACE {==pseudo-text-1== BY ==pseudo-text-2==} •••

Format 2:

REPLACE OFF

3.3 Syntax Rules

(1) A REPLACE statement may occur anywhere in the source program where a
character-string may occur. It must be preceded by a separator period except
when it is the first statement in a separately compiled program.

(2) A REPLACE statement must be terminated by a separator period.

(3) Pseudo-text-I must contain one or more text words.

(4) Pseudo-text-2 may contain zero, one, or more text words.

(5) Character-strings within pseudo-text-I and
continued. (See page IV-43, Pseudo-Text.)

pseudo-text-2 may be

(6) The implementor must allow a length from 1 through 322 characters for a
text word within pseudo-text.

(7) Pseudo-text-1 must not consist entirely of a separator comma or a
separator semicolon.

(8) If the word REPLACE appears in a comment-entry or in the place where a
comment-entry may appear, it is considered part of the comment-entry.

3.4 General Rules

(1) The format 1 REPLACE statement specifies the text of the source program
to be replaced by the corresponding text. Each matched occurrence of
pseudo-text-I in the source program is replaced by the corresponding
pseudo-text-2.

(2) The format 2 REPLACE statement specifies that any text replacement
currently in effect is discontinued.

(3) A given occurrence of the REPLACE statement is in effect from the point
at which it is specified until the next occurrence of the statement or the end
of the separately compiled program, respectively.

XII-6

Source Text Manipulation - REPLACE

(4) Any REPLACE statements contained in a source program are processed after
the processing of any COPY statements contained in a source program.

(5) The text produced as a result of the processing of a REPLACE statement
must not contain a REPLACE statement.

(6) The comparison operation to determine text replacement occurs in the
following manner:

a. Starting with the leftmost source program text word and the first
pseudo-text-1, pseudo-text-1 is compared to an equivalent number of contiguous
source program text words.

b. Pseudo-text-I matches the source program text if, and only if, the
ordered sequence of text words that forms pseudo-text-1 is equal, character for
character, to the ordered sequence of source program text words. For purposes
of matching, each occurrence of a separator comma, semicolon, or space in
pseudo-text-1 or in the source program text is considered to be a single space.
Each sequence of one or more space separators is considered to be a single
space.

c. If no match occurs, the comparison is repeated with each next
successive occurrence of pseudo-text-1, until either a match is found or there
is no next successive occurrence of pseudo-text-!.

d. When all occurrences of pseudo-text-I have been
match has occurred, the next successive source program
considered as the leftmost source program text word, and the

.starts again with the first occurrence of pseudo-text-1.

compared and no
text word is then
comparison cycle

e. Whenever a match occurs between pseudo-text-1 and the source program
text, the corresponding pseudo-text-2 replaces the matched text in the source
program. The source program text word immediately following the rightmost text
word that participated in the match is then considered as the leftmost source
program text word. The comparison cycle starts again with the first occurrence
of pseudo-text-!.

f. The comparison operation continues until the rightmost text word in
the source program text which is within the scope of the REPLACE statement has
either participated in a match or been considered as a leftmost source program
text word and participated in a complete comparison cycle.

(7) Comment lines or blank lines occurring in the source program text and in
pseudo-text-I are ignored for purposes of matching; and the sequence of text
words in the source program text and in pseudo-text-I is determined by the rules
for reference format. (See page IV-41, Reference Format Representation.)
Comment lines or blank lines in pseudo-text-2 are placed into the resultant
program unchanged whenever pseudo-text-2 is placed into the source program as a
result of text replacement. A comment line or blank line in source program text
is not replaced if that comment line or blank line appears within the sequence
of text words that match pseudo-text-!.

(8) Debugging lines are permitted in
debugging line participate in the matching
the indicator area.

XII-7

pseudo-text. Text words within a
rules as if the 'D' did not appear in

Source Text Manipulation - REPLACE

(9) Except for COPY and REPLACE statements, the syntactic correctness of the
source program text cannot be determined until after all COPY and REPLACE
statements have been completely processed.

(10) Text words inserted into the source program as a result of processing a
REPLACE statement are placed in the source program according to the rules for
reference format. (See page IV-41, Reference Format.) When inserting text
words of pseudo-text-2 into · the source program, additional spaces may be
introduced only between text words where there already exists a space (including
the assumed space between source lines).

(11) If additional lines are introduced into the source program as a result
of the processing of REPLACE statements, the indicator area of the introduced
lines contains the same character as the line on which the text being replaced
begins, unless that line contains a hyphen, in which case the introduced line
contains a space.

If any literal within pseudo-text-2 is of a length
accommodated on a single line without continuation to
resultant program and the literal is not being placed on
additional continuation lines are introduced which contain
literal. If replacement requires the continued literal to
debugging line, the program is in error.

XII-8

too great
another line
a debugging

the remainder
be continued

to be
in the
line,

of the
on a

Report Writer - Introduction

SECTION XIII: REPORT WRITER MODULE

1. INTRODUCTION TO THE REPORT WRITER MODULE

1.1 FUNCTION

The Report Writer module
specifying the physical
specification of the detailed

provides a facility for producing reports by
appearance of a report rather than requiring
procedure necessary to produce that report.

A hierarchy of levels is used in defining the logical organization of a
report. Each report is divided into report groups, which in turn are divided
into sequences of items. Such a hierarchical structure permits explicit
reference to a report group with implicit reference to other levels in the
hierarchy. A report group contains one or more items to be presented on zero,
one, or more lines.

1.2 LANGUAGE CONCEPTS

1.2.l Report File

A report file is an output file having sequential
file has a file description entry containing a REPORT
report file consists of records that are written under
writer control system (RWCS).

organization. A report
clause. The content of a
control of the report

A report file is named by a file control entry and is described by a file
description entry containing a REPORT clause. A report file is referred to and
accessed by the OPEN, GENERATE, INITIATE, SUPPRESS, TERMINATE, USE AFTER
STANDARD EXCEPTION PROCEDURE, USE BEFORE REPORTING, and CLOSE statements.

1.2.2 Special Register PAGE-COUNTER

The reserved word PAGE-COUNTER is a name for a page counter that is generated
for each report description entry in the Report Section of the Data Division.
The implicit description is that of an unsigned integer that must be capable of
representing a range of values from 1 through 999999. The usage is defined by
the implementor. The value in PAGE-COUNTER is maintained by the report writer
control system (RWCS) and is used by the program to number the pages of a
report. PAGE-COUNTER may be referenced only in the SOURCE clause of the Report
Section and in Procedure Division statements. (See page XIII-12, PAGE-COUNTER
Rules.)

1.2.3 Special Register LINE-COUNTER

The reserved word LINE-COUNTER is a name for a line counter that is generated
for each report description entry in the Report Section of the Data Division.
The implicit description is that of an unsigned integer that must be capable of

XIII-1

Report Writer - Introduction

representing a range of values from 0 through 999999. The usage is defined by
the implementor. The value in LINE-COUNTER is maintained by the report writer
control system (RWCS), and is used to determine the vertical positioning of a
report. LINE-COUNTER may be referenced only in the SOURCE clause of the Report
Section and in Procedure Division statements; however, only the report writer
control system (RWCS) may change the value of LINE-COUNTER. (See page XIII-13,
LINE-COUNTER Rules.)

1.2.4 Subscripting

In the Report Section, neither a sum counter nor the special registers
LINE-COUNTER and PAGE-COUNTER can be used as a subscript.

XIII-2

Report Writer - File Control Entry

2. ENVIRONMENT DIVISION IN THE REPORT WRITER MODULE

2.1 INPUT-OUTPUT SECTION

Information concerning the Input-Output Section is located on page VII-6.

2.2 THE FILE-CONTROL PARAGRAPH

Information concerning the FILE-CONTROL paragraph is located on page .VII-7.

2.3 THE FILE CONTROL ENTRY

2.3.1 Function

The file control entry declares the relevant physical attributes of a report
file.

2.3.2 General Format

SELECT [OPTIONAL] file-name-1

ASSIGN TO { implementor-name-1}
literal-1

[RESERVE integer-1 [!:!s] J
[[ORGANIZATION IS] SEOUtNTIAL]

[PADDING CHARACTER IS {d~ta-name-l}]
literal-2

rRECORD DELIMITER IS {~TANDARD-l }] L implementor-name-2

[ACCESS MODE IS SEQUENTIAL]

[FILE STATUS.IS data-name-~].

2.3.3 Syntax Rules

(1) The SELECT clause must be specified first in the file control entry.
The clauses which follow the SELECT clause may appear in any order.

(2) Each report file described in the Data Division must be specified only
once in the FILE-CONTROL paragraph. Each report file specified in the SELECT
clause must have a file description entry containing a REPORT clause in the Data
Division of the same program.

(3) Literal-I must be a nonnumeric literal and must not be a figurative
constant. The meaning and rules for the allowable content of implementor-name-I
and the value of literal-I are defined by the implementor.

XIII-3

Report Writer - File Contr_ol Entry

(4) The availability of specific clauses in the file control entry for a
report file is dependent on the level of Sequential I-0 module supported by the
implementation. (See page VII-7 in the Sequential I-0 module.)

2.3.4 General Rules

(1) If the file connector referenced by file-name-I is an external file
connector (see page X-23, The EXTERNAL Clause), all file control entries in the
run unit which reference this file connector must have:

a. The same specification for the OPTIONAL phrase.

b. A consistent specification
the ASSIGN clause. The implementor
implementor-name-! or literal-I.

c. A consistent specification
DELIMITER clause. The implementor
implementor-naine-2.

for implementor-name-I or literal-I in
will specify the consistency rules for

for
will

implementor-name-2 in the RECORD
specify the consistency rules for

d. The same value of integer-I in the RESERVE clause.

e. The same organization.

f. The same access mode.

g. The same specification for the PADDING CHARACTER claus·e.

(2) The OPTIONAL phrase applies only to a report file opened in the extend
mode. Its specification is required for a report file that is not necessarily
present each time the object program is executed.

(3) The ASSIGN clause specifies the association of the report file
referenced by file-name-I to a storage medium reference by implementor-name-I or
literal-I.

(4) A report file has sequential organization. Thus all clauses within the
file control entry for a report file shown in the .general format on page XIII-3
are present within the Sequential I-0 module beginning on page VII-7.

XIII-4

Report Writer - I-0-CONTROL

2.4 THE I-0-CONTROL PARAGRAPH

2.4.1 Function

The I-0-CONTROL paragraph specifies the memory area which is to be shared by
different files and the location of files on a multiple file reel.

2.4.2 General Format

I-0-CONTROL.

[[~AREA FOR file-name-1 {file-name-2} ...] ..•

[MULTIPLE FILE TAPE CONTAINS {file-name-3 [POSITION integer-1]} ...] J

2.4.3 Syntax Rules

(1) The order of appearance of the clauses is immaterial.

(2) A file-name that represents a report file can appear in a MULTIPLE FILE
TAPE clause or in a SAME clause for which the RECORD phrase is not specified.

(3) The availability of specific clauses in the I-0-CONTROL paragraph for a
report file is dependent on the level of Sequential I-0 module supported by the
implementation. (See page VII-15 in the Sequential I-0 module.)

2.4.4 General Rules

(1) The MULTIPLE FILE TAPE clause is presented on page VII-16 in the
Sequential I-0 module.

(2) The SAME clause is presented on page VII-19 in the Sequential I-0
module.

XIII-5

Report Writer - File Section

3. DATA DIVISION IN THE REPORT WRITER MODULE

3.1 FILE SECTION

The File Section is located in the Data Division of a source program. The
File Section defines the structure of report files. Each report file is defined
by a file description entry having a REPORT clause. A file description entry
for a report file is not followed by record description entries.

The general format of the File Section in the Report Writer module is shown
below.

FILE SECTION.

[report-file-description~entry]

In a COBOL program, the file description entry (FD entry) represents the
highest level of organization in the File Section. The File Section header is
followed by a file description entry consisting of a level indicator (FD), a
file-name, and a series of independent clauses. For a report file, the file
description entry must contain the REPORT clause specifying the names of the
reports to be written onto the report file. No record description entries may
follow the file description entry for a report file.

XIII-6

Report Writer - File Description Entry

3.2 THE FILE DESCRIPTION ENTRY

3.2.1 Function

The file description entry furnishes information concerning the physical
structure, identification, and report-names pertaining to a report file.

3.2.2 General Format

FD file-name-1

[BLOCK CONTAINS [integer-1 TO] integer-2 {~~~~ERs}]
rRECORD {CONTAINS integer-3 CHARACTERS }] t CONTAINS integer-4 TO integer-5 CHARACTERS

~LABEL {:~~:S !!RE} {~~~~:°}]
[VALUE OF {implementor-name-1 IS {data-name-1}} J

literal-1 ••·•

[CODE-SET IS alphabet-name-1]

{ REPORT IS }
REPORTS ARE {report-name-1}

3.2.3 Syntax Rules

(1) The level indicator FD identifies the beginning of the file description
entry for a report file and must precede the file-name of the report file.

(2) The clauses which follow file-name-1 may appear in any order.

(3) File-name-1 may only reference a sequential file.

(4) No record description entries may follow the file description entry for
a report file.

(5) The subject of a file description entry that specifies a REPORT clause
may be referenced in the Procedure Division only by the USE statement, the CLOSE
statement, or the OPEN statement with the OUTPUT or EXTEND phrase.

(6) The availability of specific clauses in this file description entry is
dependent on the level of Sequential I-0 module supported by the implementation.
(See page VII-22 in the Sequential I-0 module.)

3.2.4 General Rules

(1) A file description entry associates file-name-1 with a file connector.

(2) The report writer logical record structure of the file associated with

XIII-7

Report Writer - File Description Entry

file-name-1 is defined by the implementor.

(3) With the exception of the REPORT clause, all clauses within the file
description entry for a report file shown on page XIII-7 are presented within
the Sequential I-0 module beginning on page VII-22.

(4) The REPORT clause is presented on page XIII-9.

XIII-8

Report Writer - REPORT

3.3 THE REPORT CLAUSE

3.3.1 Function

The REPORT clause specifies the names of reports that comprise a report file.

3.3.2 General Format

{ REPORT IS }
REPORTS ARE {report-name-1} •••

3.3.3 Syntax Rules

(1) Each report-name specified in a REPORT clause must be the subject of a
report description entry in the Report Section of the same program. The order
of appearance of the report-names is not significant.

(2) A report-name must appear in only one REPORT clause.

(3) The subject of a file description entry that specifies a REPORT clause
may be referenced in the Procedure Division only by the USE statement, the CLOSE
statement, or the OPEN statement with the OUTPUT or EXTEND phrase.

3.3.4 General Rules

(1) The presence of more than one report-name in a REPORT clause indicates
that the file contains more than one report.

(2) After execution of an INITIATE statement and before the
TERMINATE statement for the same report file, the report
control of the report writer control system (RWCS). While a
under the control of the RWCS, no input-output statement may
references that report file.

execution of a
file is under the
report file is

be executed which

(3) If the associated file connector 1s an external file connector, every
file description entry in the run unit which is associated with that file
connector must describe it as a report file.

XIII-9

Report Writer - Report Section

3.4 REPORT SECTION

The Report Section is located in the Data Division of a source program. The
Report Section describes the reports to be written onto report files. The
description of each report must begin with a report description entry (RD entry)
and be followed by one or more report group description entries.

The general format of the Report Section is shown below.

REPORT SECTION.

[report-description-entry

{report-group-description-entry} •.•] •.•

3.4.1 Report Description Entry

In addition to naming the report, the report description entry (RD entry)
defines the format of each page of the report by specifying the vertical
boundaries of the region within which each type of report group may be printed.
The report description entry also specifies the control data items. When the
report is produced, changes in the values of the control data items causes the
detail information of the report to be processed in groups called control
groups.

Each report named in the REPORT clause of a file description entry in the
File Section must be the subject of a report description entry in the Report
Section. Furthermore each report in the Report Section must be named in one and
only one file description entry.

3.4.2 Report Group Description Entry

The report groups that will comprise the report are described following the
report description entry. The description of each report group begins with a
report group description entry; that is an entry that has a 01 level-number and
a TYPE clause. Subordinate to the report group description entry, there may
appear group and elementary entries that further describe the characteristics of
the report group.

XIII-10

Report Writer - Report Description Entry

3.5 THE REPORT DESCRIPTION ENTRY

3.5.1 Function

The report description entry names a report, specifies any identifying
characters to be prefixed to each print line in the report, and describes the
physical structure and organization of that report.

3.5.2 General Format

RD report-name-1

[CODE literal-1)

[{CONTROL IS } {{data-name-1} • • • }]
CONTROLS ARE FINAL [data-name-1) •.•

rPAGE [LIMIT IS J r-- LIMITS ARE
integer-1 [LINE J

LINES
[HEADING integer-2)

[FIRST DETAIL integer-3) [LAST DETAIL integer-4]

[FOOTING integer-SJ J .

3.5.3 Syntax Rules

(I) Report-name-I must appear in one and only one REPORT clause.

(2) The order of appearance of the clauses following report-name-I is
immaterial.

(3) Report-name-I is the highest permissible qualifier that may be specified
for LINE-COUNTER, PAGE-COUNTER, and all data-names defined within the Report
Section.

3.5.4 General Rules

(1) The CODE clause, the CONTROL clause, and the PAGE clause are presented
in alphabetical order beginning on page XIII-14.

XIII-11

Report Writer - PAGE-COUNTER Rules

3.5.5 PAGE-COUNTER Rules

(1) PAGE-COUNTER is the reserved word used to reference a special
that is automatically created for each report specified in the Report
(See page IV-9, Special Registers, and page XIII-!, Special
PAGE-COUNTER.)

register
Section.
Register

(2) In the Report Section, a reference to PAGE-COUNTER can only appear in a
SOURCE clause. In the Procedure Division, PAGE-COUNTER may be used in any
context in which a data item with an integer value can appear.

(3) If more than one PAGE-COUNTER exists in a program, PAGE-COUNTER must be
qualified by a report-name whenever it is referenced in the Procedure Division.

In the Report Section an unqualified reference to PAGE-COUNTER 1s
qualified implicitly by the name of the report in whose report description entry
the reference is made. Whenever the PAGE-COUNTER of a different report is
referenced, PAGE-COUNTER must be explicitly qualified by the report-name
associated with the different report.

(4) Execution of the INITIATE statement causes the report writer control
system to set the PAGE-COUNTER of the referenced report to one.

(5) PAGE-COUNTER is automatically incremented by one each time the report
writer control system executes a page advance.

(6) PAGE-COUNTER may be altered by Procedure Division statements.

XIII-12

Report Writer - LINE-COUNTER Rules

3.5.6 LINE-COUNTER Rules

(1) LINE-COUNTER is the reserved word used to reference a special
that 1s automatically created for each report specified in the Report
(See page IV-9, Special Registers, and page XIII-1, Special
LINE-COUNTER.)

register
Section.
Register

(2) In the Report Section a reference to LINE-COUNTER can only appear in a
SOURCE clause. In the Procedure Division, LINE-COUNTER may be used 1n any
context in which a data item with an integral value may appear. However, only
the report writer control system can change the content of LINE-COUNTER.

(3) If more than one LINE-COUNTER exists in a program, LINE-COUNTER must be
qualified by a report-name whenever it is referenced in the Procedure Division.

In the Report Section an unqualified reference to LINE-COUNTER is
qualified implicitly by the name of the report in whose report description entry
the reference is made. Whenever the LINE-COUNTER of a different report is
referenced, LINE-COUNTER must be explicitly qualified by the report-name
associated with the different report.

(4) Execution of an INITIATE statement causes the report writer control
system to set the LINE-COUNTER of the referenced report to zero. The report
writer control system also automatically resets LINE-COUNTER to zero each time
it executes a page advance.

(5) The value of LINE-COUNTER is not affected by the processing of
nonprintable report groups nor by the processing of a printable report group
whose printing is suppressed by means of the SUPPRESS statement.

(6) At the time each print line is presented, the value of LINE-COUNTER
represents the line number on which the print line is presented. The value of
LINE-COUNTER after the presentation of a report group is governed by the
presentation rules for the report group. (See page XIII-24, Presentation Rules
Tables.)

XIII-13

Report Writer - CODE

3.6 THE CODE CLAUSE

3.6.1 Function

The CODE clause specifies a two-character literal that identifies each print
line as belonging to a specific report.

3.6.2 General Format

CODE literal-1

3.6.3 Syntax Rules

(1) Literal-I must be a two-character nonnumeric literal.

(2) If the CODE clause is specified for any report in a file, it must be
specified for all reports in that file.

3.6.4 General Rules

(1) When the CODE clause is specified, literal-I is automatically placed in
the first two character positions of each report writer logical record.

(2) The positions occupied by literal-1 are not included in the description
of the print line, but are included in the logical record size.

XIII-14

Report Writer - CONTROL

3.7 THE CONTROL CLAUSE

·3.7.1 Function

The CONTROL clause establishes the levels of the control hierarchy for the
report._

3.7.2 General Format

{ CONTROL IS } { { da ta-name-1} . . . }
CONTROLS ARE FINAL [data-name-1] ...

3.7.3 Syntax Rules

(1) Data-name-I must not be defined in the Report Section. Data-name-1 may
be qualified.

(2) Each recurrence of data-name-1 must identify a different data item.

(3) Data-name-1 must not have subordinate to it a variable occurrence data
item.

3.7.4 General Rules

(1) Data-name-1 and the word FINAL specify the levels of the control
hierarchy. FINAL, if specified, is the highest control, data-name-1 is the
major control, the next recurrence of data-name-1 is an intermeqiate control,
etc. The last recurrence of data-name-1 is the minor control.

(2) The execution of the chronologically first GENERATE statement for a
given report causes the report writer control system (RWCS) to save the values
of all control data items associated with that report. On subsequent executions
of all GENERATE statements for that report, control data items are tested by the
RWCS for a change of value. A change of value in any control data item causes a
control break to occur. This control break is associated with the highest level
for which a change of value is noted. (See page XIII-66, The GENERATE
Statement.)

(3) The report writer control system (RWCS) tests for a control break by
comparing the content of each control data item with the prior content of each
control data item that was saved when the previous GENERATE statement for the
same report was executed. The RWCS applies the inequality relation test as
follows:

a. If the control data item is a numeric data item, the relation test
is for the comparison of two numeric operands.

b. If the control data item is an index data item, the relation test is
for the comparison of two index data items.

c. If the control data item is a data item other than as describ~d in
3a and 3b above, the relation test is for the comparison of two nonnumeric
operands.

XIII-15

Report Writer - CONTROL

The inequality relation test is further explained 1n the appropriate
paragraph. (See page VI-54, Relation Condition.)

(4) FINAL is used when the most inclusive control group in the report is not
associated with a control data-name.

XIII-16

Report Writer - PAGE

3.8 THE PAGE CLAUSE

3.8.1 Function

The PAGE clause defines the length of a page and the vertical subdivisions
within which report groups are presented.

3.8.2 General Format

[LIMIT IS]
LIMITS ARE integer-1 [LINE]

LINES [HEADING integer-2)

[FIRST DETAIL integer-3] [LAST DETAIL integer-4]

[FOOTING integer-5]

3.8.3 Syntax Rules

(1) The HEADING, FIRST DETAIL, LAST DETAIL, and FOOTING phrases may be
written in any order.

(2) Integer-1 must not exceed three significant digits in length.

(3) Integer-2 must be greater than or equal to one.

(4) Integer-3 must be greater than or equal to integer-2.

(5) Integer-4 must be greater than or equal to integer-3.

(6) Integer-5 must be greater than or equal to integer-4.

(7) Integer-I must be greater than or equal to integer-5.

(8) The following rules indicate the vertical subdivision of
which each type of report group may appear when the PAGE clause
(See page XIII-19, Page Regions.)

the page 1n
is specified.

a. A report heading report group that is to be presented on a page by
itself, if defined, must be defined such that it can be presented in the
vertical subdivision of the page that extends from the line number 'specified by
integer-2 to the line number specified by integer-I, inclusive.

A report heading report group that is not to be presented on a page
by itself, if defined, must be defined such that it can be presented in. the
vertical subdivision of the page that extends from the line number specified by
integer-2 to the line number specified by integer-3 minus 1, inclusive.

it can
the line
minus 1,

b. A page heading report group, if defined, must
be presented in the vertical subdivision of the
number specified by integer-2 to the line number
inclusive.

be defined such that
page that extends from
specified by integer-3

c. A control heading or detail report group, if defined, must be
defined such that it can be presented in the vertical subdivision of the page

XIII-17

Report Writer - PAGE

that extends from the line number specified by integer-3 to the line number
specified by integer-4, inclusive.

d. A control footing report group, if defined, must be defined such
that it can be presented in the vertical subdivision of the page that extends
from the line number specified by integer-3 to the line
integer-5, inclusive.

e. A page footing report group, if defined, must
it can be presented in the vertical subdivision of the
the line number specified by integer-5 plus 1 to the line
integer-I, inclusive.

number specified by

be defined such that
page that extends from

number specified by

f. A report footing report group that is to be presented on a page by
itself, if defined, must be defined such that it can be presented in the
vertical subdivision of the page that extends from the line number specified by
integer-2 to the line number specified by integer-I, inclusive.

A report footing report group that is not to be presented on a page
by itself, if defined, must be defined such that it can be presented in the
vertical subdivision of the page that extends from the line number specified by
integer-5 plus 1 to the line number specified by integer-I, inclusive.

(9) All report groups must be described such that they can be presented on
one page. The report writer control system (RWCS) never splits a multi-line
report group across page boundaries.

3.8.4 General Rules

(1) The vertical format of a report page is established using the integer
values specified in the PAGE clause.

a. Integer-1 defines the size of a report page by specifying the number
of lines available on each page.

b. HEADING integer-2 defines the first line number on which a report
heading or page heading report group may be presented.

c. FIRST DETAIL integer-3 defines the first line number on which a body
group may be presented. Report heading (without NEXT GROUP NEXT PAGE) and page
heading report groups may not be presented on or beyond the line number
specified by integer-3.

d. LAST DETAIL integer~4 defines the last line number on which a
control heading or detail report group may be presented.

e. FOOTING integer-5 defines the
footing report group may be presented.
NEXT PAGE) and page footing report groups
by integer-5.

last line number on which a
Report footing (without LINE
must follow the line number

XIII-18

control
integer-I
specified

Report Writer - PAGE

(2) If the PAGE clause is specified the following implicit values are
assumed for any omitted phrases:

a, If the HEADING phrase is omitted, a value of one is assumed for
integer-2.

b. If the FIRST DETAIL phrase is omitted, a value equal to integer-2 is
given to integer-3.

c. If the LAST DETAIL and the FOOTING phrases are both omitted, the
value of integer-I is given to both integer-4 and integer-5.

d. If the FOOTING phrase is specified and the LAST DETAIL phrase is
omitted, the value of integer-5 is given to integer-4.

e. If the LAST DETAIL phrase is specified and the FOOTING phrase is
omitted, the value of integer-4 is given to integer-5.

(3) If the PAGE clause is omitted, the report consists of a single page of
indefinite length.

(4) The presentation rules for each type of report group are specified in
the appropriate paragraph. (See page XIII-24, Presentation Rules Tables.)

3.8.5 Page Regions

Table 1 below describes the page regions established by the PAGE clause.

Report Groups That May be First Line Number Last Line Number
Present.ed in the Region of the Region of the Region

Report heading described with
NEXT GROUP NEXT PAGE

integer-2 integer-I
Report footing described with
LINE integer-I NEXT PAGE

Report heading not described
with NEXT GROUP NEXT PAGE

integer-2 integer-3 minus 1
Page heading

Control heading
integer-3 integer-4

Detail

Control footing integer-3 integer-5

Page footing
integer-5 pl us 1 integer-I

Report footing not described
with LINE integer-I NEXT PAGE

Table 1: Page Regions

XIII-19

Report Writer - Report Group Description Entry

3.9 THE REPORT GROUP DESCRIPTION ENTRY

3.9.1 Function

The report group description entry specifies the characteristics of a report
group and of the individual items within a report group.

3.9.2 General Format

Format 1:

01 [data-name-1]

[{ integer-1 [ON NEXT PAGE]}]
LINE NUMBER IS PLUS integer-2

[NEXT GROUP IS { ;~~~g~~~~ger-4 }]
NEXT PAGE

{~PORT HEADING}

{:~GE HEADING}

{~NTROL HEADING} {:~~~name-2}

TYPE IS {:TAIL}

{~NTROL FOOTING}

{:~GE FOOTING}

·{:PORT FOOTING}

[[USAGE IS] DISPLAY] •

Format 2:

level-number [data-name-1]

{ data-name-3}
FINAL

rLINE NUMBER IS {integ7r-l [ON NEXT PAGE]}]
~-- PLUS integer-2

[[USAGE IS] DISPLAY].

XIII-20

Report Writer - Report Group Description Entry

Format 3:

level-number [data-name-1]

{ PICTURE} PIC IS character-string

[[USAGE IS] DISPLAY]

rl[GN] {LEADING } SEPARATE CHARACTER] L ~ IS TRAILING

[{ =IFIED} RIGHT J
[BLANK WHEN ZERO]

[LINE NUMBER IS { integer-1 [ON NEXT PAGEJ}l
PLUS integer-2 J

[COLUMN NUMBER IS integer-3]

SOURCE IS identifier-!

VALUE IS literal-1

{SUM {identifier-2} [UPON {data-name-2} •••]} •••

[RESET ON

[GROUP INDICATE].

3.9.3 Syntax Rules

{ data-name-3}]
FINAL

(1) The report group description entry can appear only in the Report
Section.

(2) Except for the data-name clause, which when present must immediately
follow the level-number, the clauses may be written in any sequence.

(3) In format 2 the level-number may be any integer from 02 to 48 inclusive.
In format 3 the. level-number may be any integer from 02 to 49 inclusive.

(4) A description of a report group may consist of one, two, or three
hierarchic levelsi

a. The first entry that describes a report group must be a format 1
entry.

b. Both format 2 and format 3 entries may be immediately subordinate to
a format 1 entry.

XIII-21

Report Writer - Report Group Description Entry

c. At least one format 3 entry must be immediately subordinate to a
format 2 entry.

d. Format 3 entries must define elementary data items.

(5) In a format 1 entry, data-name-I is required only when:

a. A detail report group is referenced by a GENERATE statement.

b. A detail report group is referenced by the UPON phrase of a SUM
clause.

c. A report group 1s referenced in a USE BEFORE REPORTING sentence.

d. The name of a control footing report group is used to qualify a
reference to a sum counter.

If specified, data-name-1 may be referenced only by a GENERATE
statement, the UPON phrase of a SUM clause, a USE BEFORE REPORTING sentence, or
as a sum counter qualifier.

(6) A format 2 entry must contain at least one optional clause.

(7) In a format 2 entry, data-name-I is optional. If present it may be used
only to qualify a sum counter reference.

(8) In the Report Section, the USAGE clause 1s used only to declare the
usage of printable items.

a. If the USAGE clause appears in a format 3 entry, that entry must
define a printable item.

b. If the USAGE clause appears in a format I or format 2 entry, at
least one subordinate entry must define a printable item.

(9) An entry that contains a LINE NUMBER clause must not have a subordinate
entry that also contains a LINE NUMBER clause.

(IO) In format 3:

a. A GROUP INDICATE clause may appear only in a type detail report
group.

b. A SUM clause may appear only in a type control footing report group.

c. An entry that contains a COLUMN NUMBER clause but no LINE NUMBER
clause must be subordinate to an entry that contains a LINE NUMBER clause.

d. Data-name-1 is optional but may be specified in any entry.
Data-name-I may be referenced only if the entry defines a sum counter.

e. An entry that contains a VALUE clause must also have a COLUMN NUMBER
clause.

XIII-22

Report Writer - Report Group Description Entry

(11) Table 1 below shows all permissible clause combinations for a format 3
entry. The table is read from left to right along the selected row.

An 'M' indicates that the presence of the clause is mandatory.

A 'P' indicates that the presence of the clause is permitted, but not
required.

A blank indicates that the clause is not permitted.

BLANK
PIC COLUMN SOURCE SUM VALUE JUST WHEN GROUP USAGE SIGN LINE

ZERO INDICATE

M M p p

M M M p p p p

M p M p p p p p

M p M p p p p p

M M M p p p p p

Table 1: Permissible Clause Combinations in Format 3 Entries

3.9.4 General Rules

(1) Format 1 is the report group entry. The report group is defined by the
contents of this entry and all of its subordinate entries.

(2) The BLANK WHEN ZERO clause, the JUSTIFIED clause, and the PICTURE clause
for the Report Writer module are the same as the BLANK WHEN ZERO clause, the
JUSTIFIED clause, and the PICTURE clause in the Nucleus module. Thus the
specifications for these clauses are located on pages VI-22, VI-24, and VI-29,
respectively. The other clauses of the report group description entry are
presented in alphabetical order beginning on page XIII-42.

XIII-23

Report Writer - Presentation Rules Tables

3.10 PRESENTATION RULES TABLES

3.10.l Description

The tables and rules on the following pages specify:

(1) The permissible combinations of LINE NUMBER and NEXT GROUP clauses for
each type of report group.

(2) The requirements that are placed on the use of these clauses, and

(3) The interpretation that the report writer control system (RWCS) gives to
these clauses.

3.10.2 Organization

There is an individual presentation rules table for each of the following
types of report groups: report heading, page heading, page footing, report
footing. In addition, detail report groups, control heading report groups, and
control footing report groups are treated jointly in the body group presentation
rules table. (See page XIII-32, The Body Group Presentation Rules.)

Columns 1 and 2 of a presentation rules table list all of the permissible
combinations of LINE NUMBER and NEXT GROUP clauses for the designated report
group type. Consequently, for the purpose of identifying the set of
presentation rules that apply to a particular combination of LINE NUMBER and
NEXT GROUP clauses, a presentation rules table is read from left to right, along
the selected row.

The applicable rules columns of a presentation rules table are partitioned
into two parts. The first part specifies the rules that apply if the report
description contains a PAGE clause, and the second part specifies the rules that
apply if the PAGE clause is omitted. The purpose of the rules named in the
applicable rules columns is discussed below:

(1) Upper limit rules and lower limit rules:

These rules specify the vertical subdivisions of the page within which
the specified report group may be represented.

In the absence of a PAGE clause the printed report is not considered to
be partitioned into vertical subdivisions. Consequently, within the tables no
upper limit rule or lower limit rule is specified for a report description in
which the PAGE clause is omitted.

(2) Fit test rules:

The fit test rules are applicable only to body groups, and hence fit
test rules are specified only within the body group presentation rules table.
At object time the report writer control system (RWCS) applies the fit test
rules to determine whether the designated body group can be presented on the
page to which the report is currently positioned.

However, even for body groups there are no fit test rules when the PAGE
clause is omitted from the report description entry.

XIII-24

Report Writer - Presentation Rules Tables

(3) First print line position rules:

The first print line position rules specify where on the report medium
the report writer control system (RWCS) shall present the first print line of
the given report group.

The presentation rules tables do not specify where on the report medium
the report writer control system (RWCS) shall present the second and subsequent
print lines (if any) of a report group. Certain general rules determine where
the second and subsequent print lines of a report group shall be presented.
Refer to the LINE NUMBER clause general rules for this information. (See page
XIII-46, The LINE NUMBER Clause.)

(4) Next group rules:

The next group rules relate to the proper use of the NEXT GROUP clause.

(5) Final LINE-COUNTER setting rules:

The terminal values that the report writer control system (RWCS) places
in LINE-COUNTER after presenting report groups are specified by the final
LINE-COUNTER setting rules.

3.10.3 LINE NUMBER Clause Notation

Column 1 of the presentation rules table uses a shorthand notation to
describe the sequence of LINE NUMBER clauses that may appear in the description
of a report group. The meaning of the abbreviations used in column 1 is as
follows:

(1) The letter 'A' represents one or more absolute LINE NUMBER clauses, none
of which has the NEXT PAGE phrase, that appear in consecutive order within the
sequence of LINE NUMBER clauses in the report group description entry.

(2) The letter 'R' represents one or more relative LINE NUMBER clauses that
appear in consecutive order within the sequence of LINE NUMBER clauses in the
report group description entry.

(3) The letters 'NP' represent one or more absolute LINE NUMBER clauses that
appear in consecutive order within the sequence of LINE NUMBER clauses in the
report group description entry with the phrase NEXT PAGE appearing in the first
and only in the first LINE NUMBER clause.

When two abbreviations appear together, they refer to a sequence of LINE
NUMBER clauses that consists of the two specified consecutive sequences. For
example 'AR' refers to a report group description entry within which the 'A'
sequence (defined in rule 1 above) is immediately followed by the 'R' sequence
(defined in rule 2 above.)

XIII-25

Report Writer - Presentation Rules Tables

3.10.4 LINE NUMBER Clause Sequence Substitutions

Where 'AR' is shown to be a permissible sequence in the presentation rules
table, 'A' is also permissible and the same presentation rules are applicable.

Where 'NP R' is shown to be a permissible sequence in the presentation rules
table, 'NP' is also permissible and the same presentation rules are applicable.

3.10.5 Saved Next Group Integer Description

Saved next group integer is a data item that is addressable only by the
report writer control system (RWCS). When an absolute NEXT GROUP clause
specifies a vertical positioning value which cannot be accommodated on the
current page, the RWCS stores that value in saved next group integer. After
page advance processing, the RW~S positions the next body group using the value
stored in saved next group integer.

XIII-26

Report Writer - Report Heading Group Presentation Rules

3.10.6 Report Heading Group Presentation Rules

Table 1 on page XIII-28
permissible combinations
heading report group. The
follows:

(1) Upper limit rule:

points to the appropriate presentation rules for all
of LINE NUMBER and NEXT GROUP clauses in a report
report heading group presentation rules are as

The first line number on which the report heading report group can be
presented is the line number specified by the HEADING phrase of the PAGE clause.

(2) Lower limit rules:

a. The last line number on which the report heading report group can be
presented is the line number that is obtained by subtracting 1 from the value of
integer-3 of the FIRST DETAIL phrase of the PAGE clause.

b. The last line number on which the report heading report group can be
presented is the line number specified by integer-! of the PAGE clause.

(3) First print line position rules:

a. The first print line of the report heading report group is presented
on the line number specified by the integer of its LINE NUMBER clause.

b. The first print line of the report heading report group is presented
on the line number obtained by adding the integer of the.first LINE NUMBER
clause and the value obtained by subtracting 1 from the value of integer-2 of
the HEADING phrase of the PAGE clause.

c. The report heading report group 1s not presented.

d. The first print line of the report heading report group is presented
on the line number obtained by adding the content of its LI~E-COUNTER (in this
case, zero) to the integer of the first LINE NUMBER clause.

(4) Next group rules:

a. The NEXT GROUP integer must be greater than the line number on which
the final print line of the report heading report group is presented. In
addition, the NEXT GROUP integer must be less than the line number specified by
the value of integer-3 of the FIRST DETAIL phrase of the PAGE clause.

b. The sum of the NEXT GROUP integer and the line number on which the
final print line of the report heading report group is presented must be less
than the value of integer-3 of the FIRST DETAIL phrase of the PAGE clause.

c. NEXT GROUP NEXT PAGE signifies that the report heading report group
1s to be presented entirely by itself on the first page of the report. The
report writer control system (RWCS) processes no other report group while
positioned to the first page of the report.

XIII-27

:><
H
H
H
I

N
00

Sequence of
LINE NUMBER

clauses*

AR

AR

AR

AR

R

R

R

R

Applicable Rules ***

If the PAGE clause is specified. If the PAGE clause

** is omitted.

First Final First
NEXT GROUP Upper Lower Print Next LINE- Print

clause Limit Limit Line Group COUNTER Line
Position Setting Position

Absolute 1 2a 3a 4a Sa Illegal

Relative 1 2a 3a 4b Sb Illegal

NEXT PAGE 1 2b 3a 4c Sc Illegal

1 2a 3a Sd Illegal

Absolute 1 2a 3b 4a Sa Illegal

Relative 1 2a 3b 4b Sb 3d

NEXT PAGE 1 2b 3b 4c Sc Illegal

1 2a 3b Sd 3d

3c Se 3c

* See page XIII-ZS, LINE NUMBER Clause Notation, for a description of the
abbreviations used in column 1.

** A blank entry in column 1 or column 2 indicates that the named clause is
totally absent from the report group description entry.

Final
LINE-
COUNTER
Setting

Combination +

Combination +

b" . + Com ination

Combination +

Combination ++

Sb

b" . ++ Com ination

Sd

Se

*** A blank entry in an applicable rules column indicates the absence of the
named rule for the given combination of LINE NUMBER and NEXT GROUP clauses.

+ See page XIII-46, The LINE NUMBER Clause.

+t See page XIII-48, The NEXT GROUP Clause.

~
(1)

'"O
0
'i
rt

~
'i ,..,.
(1)

1-'l 'i
lb
C"
I-'
(1) ~

(1)
I-' '"O

0
'i ,..,.

~ ::i::
'"O (1)
0 lb
'i Q.. ,..,.

:I
::i:: (IQ
(1)

lb G")
Q.. 'i
I-'• 0
:I c::

(IQ '"O

G") "'d
'i 'i
0 (1)

c:: Cll
'"O (1)

:I
"'d ,..,.
'i lb
(1) ,..,.
Cll
(1) 0
:I :I ,..,.
lb ~
rt c:: I-'
0 (I)

:I Cll

~ c::
I-'
(1)
Cll

1-'l
lb
C"
I-'
(I)

Report Writer - Report Heading Group Presentation Rules

(5) Final LINE-COUNTER setting rules:

a. After the report heading report group is presented, the report
writer control system (RWCS) places the NEXT GROUP integer into LINE-COUNTER as
the final LINE-COUNTER setting.

b. After the report heading report group is presented, the report
writer control system (RWCS) places the sum of the NEXT GROUP integer and the
line number on which the final print line of the report heading report group was
presented into LINE-COUNTER as the final LINE-COUNTER setting.

c. After the report heading report
writer control system (RWCS) places zero
LINE-COUNTER setting.

group
into

is presented,
LINE-COUNTER as

the report
the final

d. After the report heading report group is presented, the final
LINE-COUNTER setting is the line number on which the final print line of the
report heading report group was presented.

e. LINE-COUNTER is unaffected by the processing of a nonprintable
report group.

XIII-29

Report Writer - Page Heading Group Presentation Rules

3.10.7 Page Heading Group Presentation Rules

Table 2 shown below points to the appropriate presentation rules for all
permissible combinations of LINE NUMBER and NEXT GROUP. clauses in a page heading
report group.

Applicable Rules ***
**

If the PAGE clause is specified ****

Sequence of Final
LINE NUMBER NEXT GROUP Upper Lower First Print Next LINE-COUNTER

clauses* clause Limit Limit Line Position Group Setting

AR 1 2 3a 4a

R 1 2 3b 4a

3c 4b

Table 2: Page Heading Group Presentation Rules Table

* See page XIII-25, LINE NUMBER Clause Notation, for a description
of' the abbreviations used in column 1.

** A blank entry in column 1 or column 2 indicates that the named
clause is totally absent from the report group description entry.

*** A blank entry in an applicable rules column indicates the absence
of the named rule for the given combination of LINE NUMBER and
NEXT GROUP clauses.

**** If the PAGE clause is omitted from the report description entry,
then a page heading report group may not be defined. (See page
XIII-55, The TYPE Clause.)

The page heading group presentation rules are as follows:

(1) Upper limit rule:

If a report heading report group has been presented on the page on which
the page heading report group is to be presented, then the first line number on
which the page heading report group can be presented 1s one greater than the
final LINE-COUNTER setting established by the report heading.

Otherwise the first line number on which the page heading report group
can be presented is the line number specified by the HEADING phrase of the PAGE
clause.

XIII-30

Report Writer - Page Heading Group Presentation Rules

(2) Lower limit rule:

The last line number on which the page heading report group can be
presented is the line number that is obtained by subtracting one from the value
of integer-3 of the FIRST DETAIL phrase of the PAGE clause.

(3) First print line position rules:

a. The first print line of the page heading report group is presented
on the line number specified by the integer of its LINE NUMBER clause.

b. If a report heading report group has been presented on the page on
which the page heading report group is to be presented, then the sum of the
final LINE-COUNTER setting established by the report heading report group and
the integer of the first LINE NUMBER clause of the page heading report group
defines the line number on which the first print line of the page heading report
group is presented.

Otherwise the sum of the integer of the first LINE NUMBER clause of
the page heading report group and the value obtained by subtracting one from the
value of integer-2 of the HEADING phrase of the PAGE clause defines the line
number on which the first print line of the page heading report group is
presented.

c. The page heading report group 1s not presented.

(4) Final LINE-COUNTER setting rules:

a. The final LINE-COUNTER setting is the line number on which the final
print line of the page heading report group was presented.

b. LINE-COUNTER is unaffected by the processing of a nonprintable
report group.

XIII-31

Report Writer - Body Group Presentation Rules

3.10.8 Body Group Presentation Rules

Table 3 on page XIII-33 points to the appropriate presentation rules for all
permissible combinations of LINE NUMBER and NEXT GROUP clauses in control
heading, detail, and control footing report groups. The body group presentation
rules are as follows:

(1) Upper limit rule:

The first line number on which a body group can be presented is the line
number specified by the FIRST DETAIL phrase of the PAGE clause.

(2) Lower limit rules:

The last line number on which a control heading report group or detail
report group can be presented is the line number specified by the LAST DETAIL
phrase of the PAGE clause.

The last line number on which a control footing report group can be
presented is the line number specified by the FOOTING phrase of the PAGE clause.

(3) Fit test rules:

absolute
to which

a. If the value in LINE-COUNTER is less than the integer of
LINE NUMBER clause, then the body group shall be presented

the report is currently positioned.

the first
on the page

Otherwise the report writer control system (RWCS) executes page
advance processing. After the page heading report group (if defined) has been
processed, the RWCS determines whether the saved next group integer location was
set when the final body group was presented on the preceding page. (See final
LINE-COUNTER setting rule 6a on page XIII-35.) If saved next group integer was
not so set, the body group shall be presented on the page to which the report is
currently positioned. If saved next group integer was so set, the RWCS moves
the saved next group integer into LINE-COUNTER, resets saved next group integer
to zero, and reapplies fit test rule 3a.

b. If a body group has been presented on the page to which the report
is currently positioned, the RWCS computes a trial sum in a work location. The
trial sum is computed by adding the content of LINE-COUNTER to the integers of
all LINE NUMBER clauses of the report group. If the trial sum is not greater
than the body group's lower limit integer, then the report group is presented on
the current page. If the trial sum exceeds the body group's lower limit
integer, then the RWCS executes page advance processing. After the page heading
report group (if defined) has been processed, the RWCS reapplies fit test rule
3b.

If no body group has yet been presented on the page to which the
report is currently positioned, the RWCS determines whether the saved next group
integer location was set when the final body group was presented on the
preceding page. (See final LINE-COUNTER setting rule 6a on page XIII-35.)

If saved next group integer was not so set, the body group shall be
presented on the page to which the report is currently positioned.

XIII-32

Sequence of
LINE NUMBER

clauses*

AR

AR

AR

AR

R

R

R

R

NP R

NP R

NP R

NP R

Applicable Rules ***

** If the PAGE clause
If the PAGE clause is specified. is omitted.

First Final First
NEXT GROUP Upper Lower Fit Print Next LINE- Print

clause Limit Limit Test Line Group COUNTER Line
Position Setting Position

Absolute 1 2 3a 4a 5 6a Illegal

Relative 1 2 3a 4a 6b Illegal

NEXT PAGE 1 2 3a 4a 6c Illegal

1 2 3a 4a 6d Illegal

Absolute 1 2 3b 4b 5 6a Illegal

Relative 1 2 3b 4b 6b 4d

NEXT PAGE 1 2 3b 4b 6c Illegal

1 2 3b 4b 6d 4d

Absolute 1 2 3c 4a 5 6a Illegal

Relative 1 2 3c 4a 6b Illegal

NEXT PAGE 1 2 3c 4a 6c Illegal

1 2 3c 4a 6d Illegal

4c 6e 4c

* See page XIII-25, LINE NUMBER Clause Notation, for a description of the
abbreviations used in column 1.

** A blank entry in column 1 or column 2 indicates that the named clause is
totally absent from the report group description entry.

*** A blank entry in an applicable rules column indicates the absence of the
named rule for the given combination of LINE NUMBER and NEXT GROUP clauses.

+ See page XIII-46, The LINE NUMBER Clause.

++ See page XIII-48, The NEXT GROUP Clause.

Final
LINE-
COUNTER
Setting

Combination +

Combination +

Combination +

Combination +

c b. . ++ om 1nat1on

6f

Combination ++

6d
c b. . + om 1nat1on
c b. . + om 1nat1on

Combination +

Combination +

6e

i-;
lb
o"
I-'
(I)

w

b:j
0
p.
'<
(j) ~ 11
0 "C
~ 0

"C 11
l'"t

"ti
11 ~ (I)
Cll to'•
(I) M'
J:I (I)
l'"t 11
lb
l'"t I
to'•
0 ~
::s 0

p.
J;il:l '<
~
I-' (j)
(I) 11
Cll 0

~
"C

"ti
11
(I)
Cll
(I)

::s
l'"t
lb
M' ,....
0
::s

~
......
(I)
Cll

Report Writer - Body Group Presentation Rules

If saved next group integer was so set, the report writer control
system (RWCS) moves the saved next group integer into LINE-COUNTER, resets saved
next group integer to zero, and computes a trial .sum in a work location.

The trial sum is computed by adding the content of LINE-COUNTER to
the integer one and the integers of all but the first LINE NUMBER clause of the
body group. If the trial sum is not greater than the body group's lower limit
integer, then the body group is presented on the current page. If the trial sum
exceeds the body group's lower limit integer, then the RWCS executes page
advance processing. After the page heading report group (if defined) has been
processed, the RWCS presents the body group on that page.

c. If a body group has been presented on the page to which the report
is currently positioned, the report writer control system (RWCS) executes page
advance processing. After the page heading report group (if defined) has been
processed, the RWCS reapplies fit test rule 3c.

If no body group has yet been presented on the page to which the
report is currently positioned, the RWCS determines whether the saved next group
integer location was set when the final body group was presented on the
preceding page. (See final LINE-COUNTER setting rule 6a on page XIII-35.) If
saved next group integer was not so set, the body group shall be presented on
the page to which the. report is currently positioned. If saved next group
integer was so set, the RWCS moves the saved next group integer into
LINE-COUNTER and resets saved next group integer to zero. If then the value in
LINE-COUNTER is less than the integer of the first absolute LINE NUMBER clause,
the body group shall be presented on the page to which the report is currently
positioned. Otherwise the RWCS executes page advance processing. After the
page heading report group (if defined) has been processed, the RWCS presents the
body group on that page.

(4) First print line position rules:

a. The first print line of the body group is presented on the line
number specified by the integer of its LINE NUMBER clause.

b. If the value in LINE-COUNTER is equal to or greater than the line
number specified by the FIRST DETAIL phrase of the PAGE clause, and if no body
group has previously been presented on the page to which the report is currently
positioned, then the first print line of the current body group is presented on
the line immediately following the line indicated by the value contained in
LINE-COUNTER.

If the value in LINE-COUNTER is equal to or greater than the line
number specified by the FIRST DETAIL phrase of the PAGE clause, and if a body
group has previously been presented on the page to which the report is currently
positioned, then the first print line of the current page group is presented on
the line that is obtained by adding the content of LINE-COUNTER and the integer
of the first LINE NUMBER clause of the current body group.

If the value in LINE-COUNTER is less than the line number specified
by the FIRST DETAIL phrase of the PAGE clause, then the first printer line of
the body group is presented on the line specified by the FIRST DETAIL phrase.

c. The body group is not presented.

XIII-34

Report Writer - Body Group Presentation Rules

d. The sum of the content of LINE-COUNTER and the integer of the first
LINE NUMBER clause defines the line number on which the first print line is
presented.

(5) Next group rule:

The integer of the absolute NEXT GROUP clause must specify a line number
that is not less than that specified in the FIRST DETAIL phrase of the PAGE
clause, and that is not greater than that specified in the FOOTING phrase of the
PAGE clause.

(6) Final LINE-COUNTER setting rules:

a. If the body group that has just been presented is a control footing
report group and if the control footing report group is. not associated with the
highest level at which the report writer control system (RWCS) detected a
control break, then the final LINE-COUNTER setting is the line number on which
the final print line of the control footing report group was presented.

For all other cases the RWCS makes a comparison of the line number
on which the final print line of the body group was presented and the integer of
the NEXT GROUP clause. If the former is less than the latter, then the RWCS
places the NEXT GROUP integer into LINE-COUNTER as the final LINE-COUNTER
setting. If the former is equal to or greater than the latter, then the RWCS
places the line number specified by the FOOTING phrase of the PAGE clause into
LINE-COUNTER as the final LINE-COUNTER setting; in addition the RWCS places the
NEXT GROUP integer into the saved next group integer location.

b. If the body group that has just been presented is a control footing
report group, and if the control footing report group is not associated with the
highest level at which the report writer control system (RWCS) detected a
control break, then the final LINE-COUNTER setting is the line number on which
the final print line of the control footing report group was presented.

For all other cases the RWCS computes a trial sum in a work
location. The trial sum is computed by adding the integer of the NEXT GROUP
clause to the line number on which the final print line of the body group was
presented. If the sum is less than the line number specified by the FOOTING
phrase of the PAGE clause, then the RWCS places that sum into LINE-COUNTER as
the final LINE-COUNTER setting. If the sum is equal to or greater than the line
number specified by the FOOTING phrase of the PAGE clause, then the RWCS places
the line number specified by the FOOTING phrase of the PAGE clause into
LINE-COUNTER as the final LINE-COUNTER setting.

c. If the body group that has just been presented is a control footing
report group, and if the control footing report group is not associated with the
highest level at which the report writer control system (RWCS) detected a
control break, then the final LINE-COUNTER setting is the line number on which
the final print line of the control footing report group was presented.

For all other cases the RWCS places the line number specified by the
FOOTING phrase of the PAGE clause into LINE-COUNTER as the final LINE-COUNTER
setting.

XIII-35

Report Writer - Body Group Presentation Rules

d. The final LINE-COUNTER setting is the line number on which the final
print line of the body group was presented.

e. LINE-COUNTER is unaffected by the processing of a nonprintable body
group.

f. If the body group that has just been presented is a control footing
report group, and if the control footing report group is not associated with the
highest level at which the report writer control system (RWCS) detected a
control break, then the final LINE-COUNTER setting is the line number on which
the final print line of the control footing report group was presented.

For all other cases the RWCS places the sum of the line number on
which the final print line was presented and the NEXT GROUP integer into
LINE-COUNTER as the final LINE-COUNTER setting.

XIII-36

Report Writer - Page Footing Presentation Rules

3.10.9 Page Footing Presentation Rules

Table 4 shown below points to the appropriate presentation rules for all
permissible combinations of LINE NUMBER and NEXT GROUP clauses in a page footing
report group.

Applicable Rules ***
**

If the PAGE clause is specified ****

Sequence of Final
LINE NUMBER NEXT GROUP Upper Lower First Print Next LINE-COUNTER

clauses* clause Limit Limit Line Position Group Setting

AR Absolute 1 2 3a 4a Sa

AR Relative 1 2 3a 4b Sb

AR 1 2 3a Sc

3b Sd

Table 4: Page Footing Presentation Rules Table

* See page XIII-2S, LINE NUMBER Clause Notation, for a description
of the abbreviations used in column 1.

** A blank entry in column 1 or column 2 indicates that the named
clause is totally absent from the report group description entry.

*** A blank entry in an applicable rules column indicates the absence
of the named rule for the given combination of LINE NUMBER and
NEXT GROUP clauses.

**** If the PAGE clause is omitted from the report description entry,
then a page footing report group may not be defined. (See page
XIII-SS, The TYPE Clause.)

The page footing presentation rules are as follows:

(1) Upper limit rule:

The first line number on which the page
presented is the line number obtained by adding
the FOOTING phrase of the PAGE clause.

(2) Lower limit rule:

footing report group can be
one to the value of integer-S of

The last line number on which the page footing report group can be
presented is the line number specified by integer-I of the PAGE clause.

XIII-37

Report Writer - Page Footing Presentation Rules

(3) First print line position rules:

a. The first print line of the page footing report group is presented
on the line specified by the integer of its LINE NUMBER clause.

b. The page footing report group is not presented.

(4) Next group rules:

a. The NEXT GROUP integer must be greater than
the final print line of the page footing report
addition, the NEXT GROUP integer must not be greater
specified by integer-1 of the PAGE clause.

the line number on which
group is presented. In
than the line number

b. The sum of the NEXT GROUP integer and the line number on which the
final print line of the page footing report group is presented must not be
greater than the line number specified by integer-I of the PAGE clause.

(5) Final LINE-COUNTER setting rules:

a. After the page footing report group is presented, the report writer
control system (RWCS) places the NEXT GROUP integer into LINE-COUNTER as the
final LINE-COUNTER setting.

b. After the page footing report group is presented, the RWCS places
the sum of the NEXT GROUP integer and the line number on which the final print
line of the page footing report group was presented into LINE-COUNTER as the
final LINE-COUNTER setting.

c. After the page footing report group is presented, the final
LINE-COUNTER setting is the line number on which the final print line of the
page footing report group was presented.

d. LINE-COUNTER is unaffected by the processing of a nonprintable
report group.

XIII-38

Report Writer - Report Footing Presentation Rules

3.10.10 Report Footing Presentation Rules

Table 5 on page XIII-40
permissible combinations
footing report group. The

(1) Upper limit rules:

points to the appropriate presentation rules for all
of LINE NUMBER and NEXT GROUP clause in a report
report footing presentation rules are as follows:

a. If a page footing report group has been presented on the page to
which the report is currently positioned, then the first line number on which
the report footing report group can be presented is one greater than the final
LINE-COUNTER setting established by the page footing report group.

group
value

Otherwise the
can be presented

of integer-5 of the

first line number on which the report footing report
is the last line number obtained by adding one and the
PAGE clause.

b. The first line number on which the report footing report group can
be presented, is the line number specified by the HEADING phrase of the PAGE
clause.

(2) Lower limit rule:

The last line number on which the report footing report group can be
presented is the line number specified by integer-I of the PAGE clause.

(3) First print line position rules:

a. The first print line of the report footing report group is presented
on the line specified by the int,eger of its LINE NUMBER clause.

b. If a page footing report group has been presented on the page to
which the report is currently positioned, then the sum of the final LINE-COUNTER
setting established by the page footing report group and the integer of the
first LINE NUMBER clause of the report footing report group defines the line
number on which the first print line of the report footing report group is
presented. Otherwise the sum of the integer of the first LINE NUMBER clause of
the report footing report group, and the line number specified by the value of
integer-5 of the FOOTING phrase of the PAGE clause defines the line number on
which the first print line of the report footing report group is presented.

c. The NEXT PAGE phrase in the first absolute LINE NUMBER clause
directs that the report footing report group is presented on a page on which no
other report group has been presented. The first print line of the report
footing report group is presented on the line number specified by the integer of
its LiNE NUMBER clause.

d. The sum of the content of LINE-COUNTER and the integer of the first
LINE NUMBER clause defines th~ line number on which the first print line is
presented.

e. The report footing report group is not presented.

XIII-39

:>::
H
H
H
I

-'='" 0

Sequence of
LINE NUMBER

clauses*

AR

R

NP R

Applicable Rules ***

** If the PAGE clause is specified.
If the PAGE clause

is

First Final First
NEXT GROUP Upper Lower Print Next LINE- Print

clause Limit Limit Line Group COUNTER Line
Position Setting Position

la 2 3a 4a Illegal

la 2 3b 4a 3d

lb 2 3c 4a Illegal

3e 4b 3e

* See page XIII-25, LINE NUMBER Clause Notation, for a description of the
abbreviations used in column 1.

** A blank entry in column 1 or column 2 indicates that the named clause is
totally absent from the report group description entry.

omitted.

Final
LINE-
COUNTER
Setting

Combination +

4a

Combination +

4b

*** A blank entry in an applicable rules column indicates the absence of the
named rule for the given combination of LINE NUMBER and NEXT GROUP clauses.

+ See page XIII-46, The LINE NUMBER Clause.

~
n>
'ti
0
'1
rt

~
'1
rt
n>
'1

~
n>

1-j 'ti
II> 0
C" '1
...... rt
n>

"Zj
V1 0

0
rt

~ ::s
n> (IQ
'ti
0 "ti
'1 '1
rt n>

C1l
"Zj n>
0 ::s
0 rt
rt II> rt
::s

(IQ 0
::s

"ti
'1 ~ n>
C1l
n> n>
::s C1l
rt
II>
rt
0
::s
~
i::
n>
C1l

Report Writer - Report Footing Presentation Rules

(4) Final LINE-COUNTER setting rules:

a. The final LINE-COUNTER setting is the line number on which the final
print line of the report footing report group is presented.

b. LINE-COUNTER is unaffected by the processing of a nonprintable
report group.

XIII-41

Report Writer - COLUMN NUMBER

3.11 THE COLUMN NUMBER CLAUSE

3 .11.1 Function

The COLUMN NUMBER clause identifies a printable item and specifies the
position of the item on a print line.

3.11.2 General Format

COLUMN NUMBER IS integer-1

3.11.3 Syntax Rules

(1) The COLUMN NUMBER clause can be specified only at the elementary level
within a report group. The COLUMN NUMBER clause, if present, must appear in or
be subordinate to an entry that contains a LINE NUMBER clause.

(2) Within a given print line, the printable items must be defined in
ascending column number order such that each printable item defined occupies a
unique sequence of contiguous character positions.

3.11.4 General Rules

(1) The COLUMN NUMBER clause indicates that the object of a SOURCE clause or
the object of a VALUE clause or the sum counter defined by a SUM clause is to be
presented on the print line. The absence of a COLUMN NUMBER clause indicates
that the entry is not to be presented on a print line.

(2) Integer-1 specifies the column number of the leftmost character position
of the printable item.

(3) The report writer control system (RWCS) ,supplies space characters for
all positions of a print line that are not occupied by printable items.

(4) The leftmost position of the print line is considered to be column
number 1.

XIII-42

Report Writer - Data-Name

3.12 THE DATA-NAME CLAUSE

3 .12 .1 Function

A data-name specifies the name of the data item being described.

3.12.2 General Format

data-name-1

3.12.3 Syntax Rules

(1) In the Report Section data-name-I need not appear in a data description
entry.

3.12.4 General Rules

(1) In the Report Section, data-name-I must be given in the following cases:

a. When data-name-I represents a report group to be referred to by a
GENERATE or a USE statement in the Procedure Division.

b. When reference is to be made to the sum counter in the Procedure
Division or Report Section.

c. When a detail report group is referenced in the UPON phrase of the
SUM clause.

d. When data-name-I is required to provide sum counter qualification.

XIII-43

Report Writer - GROUP INDICATE
I

3.13 THE GROUP INDICATE CLAUSE

3.13.1 Function

The GROUP INDICATE clause specifies that the associated printable item is
presented only on the first occurrence of its report group after a control break
or page advance.

3.13.2 General Format

GROUP INDICATE

3.13.3 Syntax Rules

(1) The GROUP INDICATE clause must only be specified in a detail report
group entry that defines a printable item.

3.13.4 General Rules

(1) If a GROUP INDICATE clause is specified, it causes the SOURCE or VALUE
clause to be ignored and spaces supplied, except:

a. On the first presentation of the detail report group in the report,
or

b. On the first presentation of the detail report group after every
page advance, or

c. On the first presentation of the detail report group after every
control break.

(2) If the report description entry specifies neither a PAGE clause nor a
CONTROL clause, then a GROUP INDICATE printable item is presented the first time
its detail is presented after the INITIATE statement is executed. Thereafter
spaces are supplied for indicated items with SOURCE or VALUE clauses.

XIII-44

Report Writer - Level-Number

3.14 LEVEL-NUMBER

3.14.1 Function

The level-number indicates the position of a data item
hierarchical structure of a report group.

3.14.2 General Format

level-number

3.14.3 Syntax Rules

within the

(1) A level-number is required as the first element in each data description
entry.

(2) Data description entries subordinate to an RD entry
level-numbers 01 through 49 only.

3.14.4 General Rules

must

(1) The level-number 01 identifies the, first entry in a report group.

have

(2) Multiple level 01 entries subordinate to a report description entry
having the level indicator RD do not represent implicit redefinitions of the
same area.

·•

XIII-45

Report Writer - LINE NUMBER

3.15 THE LINE NUMBER CLAUSE

3.15.1 Function

The LINE NUMBER clause specifies vertical positioning information for its
report group.

3.15.2 General Format

LINE NUMBER IS { integer-1 [ON NEXT PAGE]}
PLUS integer-2

3.15.3 Syntax Rules

(1) Integer-I and integer-2 must not exceed three significant digits in
length.

Neither integer-I nor integer-2 may be specified in such a way as to
cause any line of a report group to be presented outside the vertical
subdivision of the page designated for that report group type, as defined by the
PAGE clause. (See page XIII-17, The PAGE Clause.)

Integer-2 may be zero.

(2) Within a given report group description entry, an entry that contains a
LINE NUMBER clause must not conta1n a subordinate entry that also contains a
LINE NUMBER clause.

·•·
(3) Within a given report group description entry, all absolute LINE NUMBER

clauses must precede all relative LINE NUMBER clauses.

(4) Within a given report group description entry, successive absolute LINE
NUMBER clauses must specify integers that are in ascending order. The integers
need not be consecutive.

(5) If the PAGE clause is omitted from a given report description entry,
only relative LINE NUMBER clauses may be specified in any report group
description entry within that report.

(6) Within a given report group description entry a NEXT PAGE phrase may
appear only once and, if present, must be in the first LINE NUMBER clause in
that report group description entry. ·

(7) A LINE NUMBER clause with the NEXT PAGE phrase may appear only in the
description of body groups and in a report footing report group.

(8) Every entry that defines a printable item (see page XIII-42, The COLUMN
NUMBER Clause) must either contain a LINE NUMBER clause, or be subordinate to an
entry that contains a LINE NUMBER clause.

(9) The first LINE NUMBER clause specified within a PAGE FOOTING report
group must be an absolute LINE NUMBER clause.

XIII-46

Report Writer - LINE NUMBER

3.15.4 General Rules

(1) A LINE NUMBER clause must be specified to establish each print line of a
report group.

(2) The report writer control system (RWCS) effects the vertical positioning
specified by a LINE NUMBER clause, before presenting the print line established
by that LINE NUMBER clause.

(3) Integer-I specifies an absolute line number. An absolute line number
specifies the line number on which the print line is presented.

(4) Integer-2 specifies a relative line number. If a relative LINE NUMBER
clause is not the first LINE NUMBER clause in the report group description
entry, then the line number on which its print line is presented is determined
by calculating the sum of the line number on which the previous print line of
the report group was presented and integer-2 of the relative LINE NUMBER clause.
If integer-2 is zero, the line will be printed on the same line as the previous
print line.

If a relative LINE NUMBER clause is the first LINE NUMBER clause in the
report group description entry, then the line number on which its print line is
presented is determined by specified rules. (See page XIII-24, Presentation
Rules Tables.)

(5) The NEXT PAGE phrase specifies that the report group is to be presented
beginning on the indicated line number on a new page. (See page XIII-24,
Presentation Rules Tables.)

XIII-47

'
Report Writer - NEXT GROUP

3.16 THE NEXT GROUP CLAUSE

3 .16. I Function

The NEXT GROUP clause specifies information for vertical positioning of a
page following the presentation of the last line of a report group.

3.16.2 General Format

{
integer-1 }

NEXT GROUP IS PLUS integer-2
NEXT PAGE

3.16.3 Syntax Rules

(1) A report group entry must not contain a NEXT GROUP clause unless the
description of that report group contains at least one LINE NUMBER clause.

(2) Integer-I and integer-2 must not exceed three significant digits in
length.

(3) If the PAGE clause is omitted from the report description entry only a
relative NEXT GROUP clause may be specified in any report group description
entry within that report.

(4) The NEXT PAGE phrase of the NEXT GROUP clause must not be specified in a
page footing report group.

(5) The NEXT GROUP clause must not be specified 1n a report footing report
group or 1n a page heading report group.

3.16.4 General Rules

(1) Any positioning of the page specified by the NEXT GROUP clause takes
place after the presentation of the report group in which the clause appears.
(See page XIII-24, Presentation Rules Tables.)

(2) The report writer control system uses the vertical pos1t1oning
information supplied by the NEXT GROUP clause along with information from the
TYPE and PAGE clauses, and the value in LINE-COUNTER, to determine a new value
for LINE-COUNTER. (See page XIII-24, Presentation Rules Tables.)

(3) The NEXT GROUP clause is ignored by the report writer control system
when it is specified on a control footing report group that is at a level other
than the highest level at which a control break is detected.

(4) The NEXT GROUP clause of a body group refers to the next body group to
be presented, and therefore can affect the location at which the next body group
is presented. The NEXT GROUP clause of a report heading report group can affect
the location at which the page heading report group is presented. The NEXT
GROUP clause of a page footing report group can affect the location at which the
report.footing report group is presented. (See page XIII-24, Presentation Rules
Tables.)

XIII-48

Report Writer - SIGN

3.17 THE SIGN CLAUSE

3.17.1 Function

The SIGN clause specifies the position and the mode of representation of the
operational sign when it is necessary to describe these properties explicitly.

3.17.2 General Format

[SIGN {LEAf)ING } -- IS] TRAILING SEPARATE CHARACTER

3.17.3 Syntax Rules

(1) The SIGN clause may be specified only for a numeric data description
entry whose PICTURE contains the character 'S'.

(2) The numeric data description entries to which the SIGN clause applies
must be described, implicitly or explicitly, as USAGE IS DISPLAY.

(3) When the SIGN clause is included in a report group description entry,
the SEPARATE CHARACTER phrase must be specified.

3.17.4 General Rules

(1) The optional SIGN clause, if present, specifies the position and the
mode of representation of the operational sign for the numeric data description
entry to which it applies. The SIGN clause applies only to numeric data
description entries whose PICTURE contains the character 'S'; the 'S' indicates
the presence of, but neither the representation nor, necessarily, the position
of the operational sign.

(2) A numeric data description entry whose PICTURE contains the character
'S', but to which no optional SIGN clause applies, has an operational sign, but
neither the representation nor, necessarily, the position of the operational
sign is specified by the character 'S'. In this (default) case, the implementor
will define the position and representation of the operational sign. General
rule 3 does not apply to such signed numeric data items.

(3) Since a SIGN clause in a report group description entry must specify the
SEPARATE CHARACTER phrase, then:

a. The operational sign will be presumed to be the leading (or,
respectively, trailing) character position of the elementary numeric data item;
this character position is not a digit position.

b. The letter 'S' in a PICTURE character-string is counted in
determining the size of the item (in terms of standard data format characters.)

c. The operational signs for positive and negative are the standard
data format characters '+' and '-', respectively.

XIII-49

Report Writer - SIGN

(4) Every
character 'S'
applies to such
or comparisons,

numeric data description entry whose PICTURE contains the
is a signed numeric data description entry. If a SIGN clause
an entry and conversion is necessary for purposes of computation
conversion takes place automatically.

XIII-SO

Report Writer - SOURCE

3.I8 THE SOURCE CLAUSE

3.I8.I Function

The SOURCE clause identifies the sending data item that is moved to an
associated printable item defined within a report group description entry.

3.18.2 General Format

SOURCE IS identifier-1

3.I8.3 Syntax Rules

(I) Identifier-I may be defined in any section of the Data Division. If
identifier-1 is a Report Section item it must be a:

a. PAGE-COUNTER, or

b. LINE-COUNTER, or

c. Sum counter that is part of the report within which the SOURCE
clause appears.

(2) Identifier-1 specifies the sending data item of the implicit MOVE
statement that the report writer control system executes to move the content of
the data item referenced by identifier-I to the printable item. Identifier-1
must be defined such that it conforms to the rules for sending items in the MOVE
statements. (See page VI-103, The MOVE Statement.)

3.18.4 General Rules

(I) The report
group just prior
Clause.) It is at
SOURCE clauses are

writer control system formats the print lines of a report
to presenting the report group. (See page XIII-55, The TYPE

this time that the implicit MOVE statements specified by
executed by the report writer control system.

XIII-51

Report Writer - SUM

3.19 THE SUM CLAUSE

3.19.1 Function

The SUM clause establishes a sum counter and names the data items to be
summed.

3.19.2 General Format

{SUM {identifier-1} .. . [UPON {data-name-1} ...]} ...

rRESET ON {data-name-2 }] l-- FINAL

3.19.3 Syntax Rules

(1) The data item that is the subject of the report group description entry
in which the SUM clause appears must not be defined as alphabetic. Identifier-I
must reference a numeric data item. If identifier-1 is defined in the Report
Section, identifier-I must reference a sum counter.

If the UPON phrase is omitted, any identifiers in the associated SUM
clause which are themselves sum counters must be defined either in the same
report group that contains this SUM clause or in a report group which is at a
lower level in the control hierarchy of this report.

If the UPON phrase is specified, any identifiers in the associated SUM
clause must not be sum counters.

(2) Data-name-I must be the name of a detail report group described 1n the
same report as the control footing report group in which the SUM clause appears.
Data-name-I may be qualified by a report-name.

(3) A SUM clause can appear only in the description of a control footing
report group.

(4) Data-name-2 must be one of the data-names specified in the CONTROL
clause for this report. Data-name-2 must not be a lower level control than the
associated control for the report group in which the RESET phrase appears.

FINAL, if specified in the RESET phrase, must also appear in the CONTROL
clause for this report.

(5) The highest permissible qualifier of a sum counter 1s the report-name.

3.19.4 General Rules

(1) The SUM clause establishes a sum counter. The sum
compiler-generated numeric data item with an operational sign.
decimal point location of the sum counter depend on the category
item specified by the report group description entry in which the
specified. They are determined as follows:

XIII-52

counter is a
The size and

of the data
SUM clause is

Report Writer - SUM

a. If the associated data item is numeric, the size and decimal point
location of the sum counter are the same as those of that data item.

b. If the associated data item is numeric edited, the size of the sum
counter is the number of digit positions of that data item and the decimal point
location is the same as that of the associated data item.

c. If the associated data item is alphanumeric or alphanumeric edited,
the size of the sum counter is the size of that data item, excluding any editing
characters, or 18 characters, whichever is smaller, and the sum counter 1S an
integer.

into the sum
This addition

VI-69, The

(2) At object time, the report writer control system adds
counter the value in each data item referenced by identifier-I.
is consistent with the rules for arithmetic statements. (See page
Arithmetic Statements; and page VI-69, Overlapping Operands.)

(3) Only one sum counter exists for an elementary report entry regardless of
the number of SUM clauses specified in the elementary report entry.

(4) If the elementary report entry for a printable item contains a SUM
clause, the sum counter serves as a source data item. The report writer control
system moves the data contained in the sum counter, according to the rules of
the MOVE statement, to the printable item for presentation.

(5) If a data-name appears as the subject of an elementary report entry that
contains a SUM clause, the data-name is the name of the sum counter; the
data-name is not the name of the printable item that the entry may also define.

(6) It is permissible for Procedure Division statements to alter the
contents of sum counters.

(7) Addition of the values of the data items referenced by identifiers into
sum counters is performed by the report writer control system during the
execution of GENERATE and TERMINATE statements. There are three categories of
sum counter incrementing called subtotalling, crossfooting, and rolling forward.
Subtotalling is accomplished only during execution of GENERATE statements and
after any control break processing but before processing of the detail report
group. (See page XIII-66, The GENERATE Statement.) Crossfooting and rolling
forward are accomplished during the processing of control footing report groups.
(See page XIII-55, The TYPE Clause.)

(8) The UPON phrase provides the capability to accomplish
subtotalling for the detail report groups named in the phrase.

selective

(9) The report writer control system adds each individual addend into the
sum counter at a time that depends upon the characteristics of the addend.

a. When the addend is a sum counter defined in the same control footing
report group, then the accumulation of that addend into the sum counter is
termed crossfooting.

Crossfooting occurs when a control break takes place and at the time
the control footing report group is processed.

XIII-53

Report Writer - SUM

Crossfooting is performed according to the sequence in which sum
counters are defined within the control footing report group. That is, all
crossfooting into the first sum counter defined in the control footing report
group is completed, and then all crossfooting into the second sum counter
defined in the control footing report group is completed. This procedure is
repeated until all crossfooting operations are completed.

When one of the addends is the sum counter defined by the data
description entry in which that SUM clause appears, the initial value of that
sum counter at the time of summation is used in the summing operation.

b. When the addend is a sum counter defined in a lower level control
footing report group, then the accumulation of that addend into the sum counter
is termed rolling forward. A sum counter in a lower level control footing
report group is rolled forward when a control break occurs and at the time that
the lower level control footing report group is processed.

c. When the addend is not a sum counter the accumulation into a sum
counter of such an addend is called subtotalling. If the SUM clause contains
the UPON phrase, the addends are subtotalled when a GENERATE statement for the
designated detail report group is executed. If the SUM clause does not contain
the UPON phrase, the addends which are not sum counters are subtotalled when any
GENERATE data-name statement is executed for the report in which the SUM clause
appears.

(10) If two or more of the identifiers specify the same addend, then the
addend is added into the sum counter as many times as the addend is referenced
in the SUM clause. It is permissible for two or more of the data-names to
specify the same detail report group. When a GENERATE data-name statement for
such a detail report group is given, the incrementing occurs repeatedly, as many
times as data-name appears in the UPON phrase.

(11) The subtotalling
executed is discussed
GENERATE Statement.)

that occurs when a GENERATE report-name statement is
in the appropriate paragraph. (See page XIII-66, The

(12) In the absence of an explicit RESET phrase, the report writer control
system will set a sum counter to zero at the time that the report writer control
system is processing the control footing report group within which the sum
counter is defined. If an explicit RESET phrase is specified, then the report
writer control system will set the sum counter to zero at the time that the
report writer control system is processing the designated level of the control
hierarchy. (See page XIII-55, The TYPE Clause.)

Sum counters are initially set to zero by the report writer control
system during the execution of the INITIATE statement for the report containing
the sum counter.

XIII-54

Report Writer - TYPE

3.20 THE TYPE CLAUSE

3.20.1 Function

The TYPE clause specifies the particular type of report group that 1s
described by this entry and indicates the time at which the report group is to
be processed by the report writer control system.

3.20.2 General Format

TYPE IS

3.20.3

(1)

{:PORT HEADING}

{ PAGE HEADING}
PH .

{~NTROL HEADING}

{:TAIL}

{ ~NTROL FOOTING}

{:~GE FOOTING}

{~PORT FOOTING}

Syntax Rules

RH 1S an abbreviation
PH 1S an abbreviation
CH 1S an abbreviation
DE is an abbreviation
CF 1S an abbreviation
PF is an abbreviation
RF 1S an abbreviation

{ data-name-1}
FINAL

{ data-name-2}
FINAL

for REPORT HEADING.
for PAGE HEADING.
for CONTROL HEADING.
for DETAIL.
for CONTROL FOOTING.
for PAGE FOOTING.
for REPORT FOOTING.

(2) Report groups specified by REPORT HEADING, PAGE HEADING, CONTROL HEADING
FINAL, CONTROL FOOTING FINAL, PAGE FOOTING, and REPORT FOOTING may each appear
no more than once in the description of a report.

(3) Page heading and page footing report groups may be specified only if a
PAGE clause is specified in the corresponding report description entry.

(4) Data-name-I, data-name-2, and FINAL, if present, must be specified 1n
the CONTROL clause of the corresponding report description entry. At most, one
control heading report group and one control footing report group can be
specified for each data-name or FINAL in the CONTROL clause of the report
description entry. However, neither a control heading report group nor a
control ·footing report group is required for a data-name or FINAL specified in
the CONTROL clause of the report description entry.

XIII-55

Report Writer - TYPE

(5) In control footing, page heading, page footing, and report footing
report groups, SOURCE clauses and associated USE statements must not reference
any of the following:

a. Group data items containing a control data item.

b. Data items subordinate to a control data item.

c. A redefinition or renaming of any part of a control data item.

In page heading and page footing report groups, SOURCE clauses and USE
statements must not reference control data-names.

(6) When a GENERATE report-name statement is specified in the Procedure
Division, the corresponding report description entry must include no more than
one detail report group. If no GENERATE data-name statements are specified for
such a report, a detail report group is not required.

(7) The description of a report must include at least one body group.

3.20.4 General Rules

(1) Detail report groups are processed by the report writer control system
as a direct result of GENERATE statements. If a report group is other than TYPE
DETAIL, its processing is an automatic report writer control system function.

(2) The REPORT HEADING phrase specifies a report group that is processed by
the report writer control system only once, per report, as the first report
group of that report. The report heading report group is processed during the
execution of the chronologically first GENERATE statement for that report.

(3) The PAGE HEADING phrase specifies a report group that is processed by
the report writer control system as the first report group on each page of that
report except under the following conditions:

a. A page heading report group is not processed on a page that is to
contain only a report heading report group or only a report footing report
group.

b. A page heading report group is processed as the second report
on a page when it is preceded by a report heading report group thac is not
presented on a page by itself.

(See page XIII-24, Presentation Rules Tables.)

group
to be

(4) The CONTROL HEADING phrase specifies a report group that is processed by
the report writer control system at the beginning of a control group for a
designated control data-name or, in the case of FINAL, is processed during the
execution of the chronologically first GENERATE statement for that report.
During the execution of any GENERATE statement at which the report writer
control system detects a control break, any control heading report groups
associated with the highest control level of the break and lower levels are
processed.

XIII-56

(5) The DETAIL phrase specifies a report group that
report writer control system when a corresponding
executed.

Report Writer - TYPE

is processed by
GENERATE statement

the
is

(6) The CONTROL FOOTING phrase specifies a report group that is processed by
the report writer control system at the end of a control group for a designated
control data-name.

In the case of FINAL, the control footing report group is processed only
once per report as the last body group of that report. During the execution of
any GENERATE statement in which the report writer control system detects a
control break, any control footing report group associated with the highest
level of the control break or more minor levels is presented. All control
footing report groups are presented during the execution of the TERMINATE
statement if there has been at least one GENERATE statement executed for the
report. (See page XIII-75, The TERMINATE Statement.)

(7) The PAGE FOOTING phrase specifies a report group that is processed by
the report writer control system as the last report group on each page except
under the following conditions:

a. A page footing report group 1s not processed on a page that is to
contain only a report heading report group or only a report footing report
group.

b. A page footing report group is processed as the second to last
report group on a page when it is followed by a report footing report group that
is not to be processed on a page by itself.

(See page XIII-24, Presentation Rules Tables.)

(8) The REPORT FOOTING phrase specifies a report group that is processed by
the report writer control system only once per report and as the last report
group of that report. The report footing report group is processed during the
execution of a corresponding TERMINATE statement, if there has been at least one
GENERATE statement executed for that report. (See page XIII-75, The TERMINATE
Statement.)

(9) The sequence of steps that the report writer control system executes
when it processes a report heading, page heading, control heading, page footing,
or report footing report group is described below.

a. If there is a USE BEFORE REPORTING procedure that references the
data-name of the report group, the USE procedure is executed.

b. If a SUPPRESS statement has been executed or if the report group is
not printable, there is no further processing to be _done for the report group.

c. If a SUPPRESS statement has not been executed and the report group
is printable, the report writer control system formats the print lines and
presents the report group according to the presentation rules for that type of
report group. (See page XIII-24, Presentation Rules Tables.)

XIII-57

Report Writer - TYPE

(10) The sequence of steps that the report writer control system executes
when it processes a control footing report group is described below:

The GENERATE rules specify that when a control break occurs, the report
writer control system produces the control footing report groups beginning at
the minor level, and proceeding upwards, through the level at which the highest
control break was sensed. In this regard, it should be noted that even though
no control footing report group has been defined for a given control data-name,
the report writer control system will still have to execute the step described
in paragraph lOf below if a RESET phrase within the report description specifies
that control data-name.

a. Sum counters are crossfooted, i.e., all sum counters defined in this
report group that are operands of SUM clauses in the same report group are added
to their sum counters. (See page XIII-52, The SUM Clause.)

b. Sum counters are rolled forward, i.e., all sum counters defined in
the report group that are operands of SUM clauses in higher level control
footing report groups are added to the higher level sum counters. (See page
XIII-52, The SUM Clause.)

c. If there is a USE BEFORE REPORTING procedure that references the
data-name of the report group the USE procedure is executed.

d. If a SUPPRESS statement has been executed or if the report group is
not printable, the report writer control system next executes the step described
in paragraph lOf below.

e. If a. SUPPRESS statement has not been executed and the report group
is printable, the report writer control system formats the print lines and
presents the report group according to the presentation rules for control
footing report groups.

f.
are to be
the control

Then the report writer control system resets those sum counters that
reset when the report writer control system processes this level in

hierarchy. (See page XIII-52, The SUM Clause.)

(11) The detail report group processing that the report writer control system
executes in response to a GENERATE data-name statement is described in
paragraphs lla through lle on the next page.

When the description of a report includes exactly one detail report
group, the detail-related processing that the report writer control system
executes in response to a GENERATE report-name statement is described in
paragraphs lla through lle on the next page. These steps are performed as
though a GENERATE data-name statement were being executed.

When the description of a report includes no detail report groups, the
detail-related processing that the report writer control system executes in
response to a GENERATE report-name statement is described in paragraph lla.
This step is performed as though the description of the report included exactly
one detail report group, and a GENERATE data-name statement were being executed.

XIII-58

Report Writer - TYPE

a. The report writer control system performs any subtotalling that has
been designated for the detail report group. (See page XIII-52, The SUM
Clause.)

b. If there is a USE BEFORE REPORTING procedure that refers to the
data-name of the report group, the USE procedure is executed.

c. If a SUPPRESS statement has been executed or if the report group 1s
not printable there is no further processing done for the report group.

d. If the detail report group is being processed as a consequence of a
GENERATE report-name statement, there is no further processing done for the
report group.

e. If neither llc nor lld above applies,
system formats the print lines and presents the
presentation rules for detail report groups. (See
Rules Tables.)

the
report

page

report writer control
group according to the
XIII-24, Presentation

(12) When the report writer control system is processing a control heading,
control footing, or detail report group, as described in general rules 9, 10,
and 11, the report writer control system may have to interrupt the processing of
that body group after determining that the body group is to be presented, and
execute a page advance (and process page footing and page heading report groups)
before actually presenting the body group.

(13) During control break processing, the values of control data items that
the report writer control system used to detect a given control break are
referred to as prior values.

a. During control -break processing of
any references to control data items 1n
associated with that control footing report
values.

a control footing report
a USE procedure or SOURCE
group are supplied with

group,
clause
prior

b. When a TERMINATE statement is executed, the report writer control
system makes the prior control· data item values available to SOURCE clause or
USE procedure references in control footing and report footing report groups as
though a control break had been detected in the highest control data-name.

c. All other data item references within report groups and their USE
procedures access the curr~nt values that are contained within the data items at
the time the report group is processed.

XIII-59

Report Writer - USAGE

3.21 THE USAGE CLAUSE

3.21.1 Function

The USAGE clause specifies the format of a data item in the computer storage.

3.21.2 General Format

[USAGE IS) DISPLAY

3.21.3 Syntax Rules

(1) The USAGE clause may be written in any data description entry.

(2) If the USAGE clause is written in the data description entry for a group
item, it may also be written in the data description entry for a subordinate
elementary item or group item.

(3) The USAGE clause for a report group item can specify only USAGE IS
DISPLAY.

3.21.4 General Rules

(1) If the USAGE clause is written at a group level, it applies to each
elementary item in the group.

(2) The USAGE clause specifies the manner in which a data item is
represented in the storage of a computer. It does not affect the use of the
data item, although the specifications for some statements in the Procedure
Division may restrict the USAGE clause of the operands referred to. The USAGE
clause may affect the radix or type of character representation of the item.

(3) The USAGE IS DISPLAY clause indicates that the format of the data is a
standard data format.

(4) If the USAGE clause is not specified for an elementary item, or for any
group to which the item belongs, the usage is implicitly DISPLAY.

XIII-60

Report Writer - VALUE

3.22 THE VALUE CLAUSE

3.22.1 Function

The VALUE clause defines the value of Report Section printable items.

3.22.2 General Format

VALUE IS literal-I

3.22.3 Syntax Rules

(1) A signed numeric literal must have associated with it a signed numeric
PICTURE character-string.

(2) A numeric literal in a VALUE clause of an item must have a value which
is within the range of values indicated by the PICTURE clause, and must not have
a value which would require truncation of nonzero digits. A nonnumeric literal
in a VALUE clause of an item must not exceed the size indicated by the PICTURE
clause.

3.22.4 General Rules

(1) The VALUE clause must not
description of the item or in the
item. The following rules apply:

conflict with other clauses in the data
data description within the hierarchy of the

a. If the category of the item is numeric, literal-I in the VALUE
clause must be numeric.

b. If the category of the item is alphabetic, alphanumeric,
alphanumeric edited, or numeric edited, literal-I in the VALUE clause must be a
nonnumeric literal. The literal is aligned in the data item as if the data item
had been described as alphanumeric (see page IV-16, Standard Alignment Rules).
Editing characters in the PICTURE clause are included in determining the size of
the data item but have no effect on initialization of the data item (see page
VI-29, The PICTURE Clause). Therefore, the value for an edited item must be
specified in an edited form.

c. Initialization is not affected by any BLANK WHEN ZERO or JUSTIFIED
clause that may be specified.

(2) In the Report Sectiont if the elementary report entry containing the
VALUE clause does not contain a GROUP INDICATE clause, then the printable item
will assume the specified value each time its report group is printed. However,
when the GROUP INDICATE clause is also present, the specified value will be
presented only when certain object time conditions exist (see page XIII-44, The
GROUP INDICATE Clause).

XIII-61

Report Writer - Procedure Division

4. PROCEDURE DIVISION IN THE REPORT WRITER MODULE

4.1 GENERAL DESCRIPTION

The Procedure Division contains declarative procedures when the USE BEFORE
REPORTING statement from the Report Writer module is present in a COBOL source
program. Shown below is the general format of the Procedure Division when the
USE BEFORE REPORTING statement and/or USE AFTER STANDARD EXCEPTION PROCEDURE are
present.

PROCEDURE DIVISION.

DECLARATIVES.

{section-name SECTION.

USE {AFTER STANDARD EXCEPTION PROCEDURE} statement.
BEFORE REPORTING

[paragraph-name.

[sentence] •••] • • • } •••

END DECLARATIVES.

{section-name SECTION.

[paragraph-name.

[sentence] • • •] • • • } •••

XIII-62

Report Writer - CLOSE

4.2 THE CLOSE STATEMENT

4.2.1 Function

The CLOSE statement terminates the processing of reel/units and files with
optional rewind and/or lock or removal where applicable.

4.2.2 General Format

f il e-name-1

4.2.3 Syntax Rules

{ REEL} [FOR REMOVAL]
UNIT

WITH { NO REWIND}
LOCK

(1) The files referenced in the CLOSE statement need not all have the same
organization or access.

(2) The availability of the phrases within the CLOSE statement is dependent
on the level of Sequential I-0 module supported by the implementation. (See
page VII-35 in the Sequential I-0 module.)

4.2.4 General Rules

Except where otherwise stated in the general rules below, the terms 'reel'
and 'unit' are synonymous and completely interchangeable in the CLOSE statement.
Treatment of sequential mass storage files is logically equivalent to the
treatment of a file on tape or analogous sequential media. Treatment of a file
contained in a multiple file tape environment is logically equivalent to the
treatment of a sequential single-reel/unit file if the file is wholly contained
on one reel.

(1) A CLOSE statement may only be executed for a file in an open mode •.

(2) For the purpose of showing the effect of various types of CLOSE
statements as applied to various storage media, all report files are divided
into the following categories:

a. Non-reel/unit. A file whose output medium is such that the concepts
of rewind and reels/units have no meaning.

b. Sequential single-reel/unit. A sequential file that is entirely
contained on one reel/unit.

c. Sequential multi-reel/unit. A sequential file that is contained on
more than one reel/unit.

(3) The results of executing each type of CLOSE for each category of file
are sunnnarized in table 1 on page XIII-64.

XIII-63

Report Writer - CLOSE

File Category
CLOSE

Statement Sequential Sequential
Format Single- Multi-

Non-Reel/Unit Reel/Unit Reel/Unit

CLOSE c C,G A,C,G

CLOSE WITH LOCK C,E C,E,G A,C,E,G

CLOSE WITH NO REWIND C,H B,C A,B,C

CLOSE REEL/UNIT F F,G F,G

CLOSE REEL/UNIT F D,F,G D,F,G
FOR REMOVAL

Table 1: Relationship of Categories of Files and the Formats
of the CLOSE Statements

The definitions of the symbols in the table are given below.

A. Effect on Previous Reels/Units for an Output Report File:

are closed
statement.

All reels/units in the report file prior to
except those reels/units controlled by

B. No Rewind of Current Reel

the current reel/unit
a prior CLOSE REEL/UNIT

The current reel/unit is left in its current position.

C. Close Output Report File:

If label records are specified for the report file, the labels are
processed according to the implementor's standard label convention. The
behavior of the CLOSE statement when label records are specified but not
present, or when label records are not specified but are present, is undefined.
Closing operations specified by the implementor are executed. If label records
are not specified for the report file, label processing does not take place but
other closing operations specified by the implementor are executed.

D. Reel/Unit Removal

The current reel or unit is rewound, when applicable, and the reel
or unit is logically removed from the run unit; however, the reel or unit may be
accessed again, in its proper order of reels or units within the report file, if
a CLOSE statement without the REEL or UNIT phrase is subsequently executed for
this report file followed by the execution of an OPEN statement for the report
file.

XIII-64

Report Writer - CLOSE

E. File Lock

The report file is locked and cannot be opened again during this
execution of this run unit.

F. Close Reel/Unit

Output Report File (Reel/Unit Media):

The following operations take place:

1) The standard ending reel/unit label procedure is executed.

2) A reel/unit swap. The current volume pointer is updated to
point to the new reel/unit.

3) The standard beginning reel/unit label procedure is executed.

4) The next executed write operation that references that file
directs the next logical data record to the next reel/unit of the file.

Output Report File (Non-Reel/Unit Media):

Execution of this statement is considered successful. The file
remains in the open mode, and no action takes place except as specified in
general rule 4.

G. Rewind

The current reel or analogous device is positioned at its physical
beginning.

H. Optional Phrases Ignored

The CLOSE statement is executed as if none of the optional phrases
is present.

(4) The execution of the CLOSE statement causes the value of the I-0 status
associated with file-name-1 to be updated. (See page VII-2, I-0 Status.)

(5) All reports associated with a report file that have been initiated must
be ended with the execution of a TERMINATE statement before a CLOSE statement is
executed for that report file.

(6) Following the successful execution of a CLOSE statement without the REEL
or UNIT phrase, the report file is removed from the open mode, and the report
file is no longer associated with the file connector.

(7) If more than one file-name-1 is specified in a CLOSE statement, the
result of executing this CLOSE statement is the same as if a separate CLOSE
statement had been written for each file-name-1 in the same order as specified
in the CLOSE statement.

XIII-65

Report Writer - GENERATE

4.3 THE GENERATE STATEMENT

4.3.1 Function

The GENERATE statement directs the report writer control system to produce a
report in accordance with the report description specified in the Report Section
of the Data Division.

4.3.2. General Format

GENERATE { data-name-1 }
report-name-1

4.3.3 Syntax Rules

(1) Data-name-1 must name a type detail report group and may be ·qualified by
a report-name.

(2) Report-name-! may be used only if the referenced report description
contains:

a. A CONTROL clause, and

b. Not more than one detail report group, and

c. At least one body group.

4.3.4 General Rules

(I) In response to a GENERATE report-name-I statement, the report writer
control system performs sunnnary processing. If all of the GENERATE statements
that are executed for a report are of the form GENERATE report-name-1, then the
report that is produced is called a sunnnary report. A sunnnary report is one in
which no detail report group is presented.

(2) In response to a GENERATE data-name-1 statement, the report writer
control system performs detail processing that includes certain processing that
is specific for the detail report group designated by the GENERATE statement.
Normally, the execution of a GENERATE data-name-I statement causes the report
writer control system to present the designated detail report group.

(3) During the execution of the chronologically first GENERATE statement for
a given report, the report writer control system saves the values within the
control data items. During the execution of the second and subsequent GENERATE
statements for the same report, and until a control break is detected, the
report writer control system utilizes this set of control values to determine
whether a control break has occurred. When a control break occurs, the report
writer control system saves the new set of control values, which it thereafter
uses to sense for a control break until another control break occurs.

(4) During report presentation, an automatic function of the report writer
control system is to process page heading and page footing report groups, if
defined, when the report writer control system must advance the report to a new

XIII-66

Report Writer - GENERATE

page for the purpose of presenting a body group.
Presentation Rules Tables.)

(See page XIII-24,

(5) When the chronologically first GENERATE statement for a given report is
executed, the report writer control system processes, in order, the report
groups that are named below, provided that such report groups are defined within
the report description. The report writer control system also processes page
heading and page footing report groups as described in general rule 4. The
actions taken by the report writer control system when it processes each type of
report group are explained under the appropriate paragraph. (See page XIII-55,
The TYPE Clause.)

a. The report heading report group is processed.

b. The page heading report group is processed.

c. ALL control heading report groups are processed from major to minor.

d. If a GENERATE data-name-I statement is being executed, the
processing for the designated detail report group is performed. If a GENERATE
report-name-I statement is being executed, certain of the steps that are
involved in the processing of a detail report group are performed. (See page
XIII-55, The TYPE Clause.)

(6) When a GENERATE statement other than the chronologically first is
executed for a given report, the report writer control system performs the steps
enumerated below, as applicable. The report writer control system also
processes page heading and page footing report groups as described in general
rule 4. The actions taken by the report writer control system when it processes
each type of report group are explained under the appropriate paragraph. (See
page XIII-55, The TYPE Clause.)

a. Sense for control break. The rules for determining the equality of
control data items are the same as those specified for relation conditions. If
a control break has occurred then:

I) Enable the control footing USE procedures and control footing
SOURCE clauses to access the control data item values that the report writer
control system used to detect a given control break. (See page XIII-55, The
TYPE Clause.)

major.
highest

minor.
highest

2)
Only

level

3)
Only

level

Process the control footing report groups in the order minor to
control footing report groups that are not more major than the

at which a control break occurred are processed.

Process the control heading report groups in the order major to
the control heading report groups that are not more major than the
at which a control break occurred are processed.

b. If a GENERATE data-name-I statement is being executed, the
processing for the designated detail report group is performed. If a GENERATE
report-name-I statement is being executed, certain of the steps that are
involved in the processing of a detail report group are performed. (See page
XIII-55, The TYPE Clause.)

XIII-67

Report Writer - GENERATE

(7) GENERATE statements for a report can be executed only after an INITIATE
statement for the report has been executed and before a TERMINATE statement for
the report has been executed.

XIII-68

Report Writer - INITIATE

4.4 THE INITIATE STATEMENT

4.4.1 Function

The INITIATE statement causes the report writer control system to begin the
processing of a report.

4.4.2 General Format

INITIATE {report-n~me-1}

4.4.3 Syntax Rules

(1) Report-name-1 must be defined by a report description entry in the
Report Section of the Data Division.

4.4.4 General Rules

(1) The INITIATE statement performs the following initialization functions
for each named report:

(2)
report
phrase
of the

a. All sum counters are set to zero.

b. LINE-COUNTER is set to zero.

c. PAGE-COUNTER is set to one.

The INITIATE statement does not place the file associated with the
in the open mode; therefore, an OPEN statement with either the OUTPUT

or the EXTEND phrase for the file must be executed prior to the execution
INITIATE statement.

(3) A subsequent INITIATE statement for report-name-I must not be executed
unless an intervening TERMINATE statement has been executed for report-name-1.

(4) If more than one report-name is specified in an INITIATE statement, the
result of executing this , INITIATE statement is the same as if a separate
INITIATE statement had been written for each report-name in the same order as
specified in the INITIATE statement.

XIII-69

Report Writer - OPEN

4.5 THE OPEN STATEMENT

4.5.1 Function

The OPEN statement initiates the processing of report files.

4.5.2 General Format

OPEN {OUTPUT {file-name-1 [
0

W
0

I
0

TH NO REWIND]} •.• } • •.
EXTEND {file-name-2}

4.5.3 Syntax Rules

(1) The OPEN statement for a report file must contain only the OUTPUT phrase
or the EXTEND phrase.

(2) The availability of the phrases within the OPEN statement is dependent
on the level of the Sequential I-0 module supported by the implementation. (See
page VII-39 in the Sequential I-0 module.)

4.5.4 General Rules

(1) The successful execution of an OPEN statement
availability of the file and results in the file being in
successful execution of an OPEN statement associates the file
through the file connector.

determines the
an open mode. The
with the file-name

A file is available if it is physically present and is recognized by the
input-output control system. Table 1 shows the results of opening available and
unavailable files.

File is Available File is Unavailable

OUTPUT Normal open; the Open causes the file to be
file contains no created
records

EXTEND Normal open Open is unsuccessful

EXTEND (optional file) Normal open Open causes the file to be
created

Table 1. Availability of a File

(2) When a file is not in an open mode, no statement may be executed which
references the file, either explicitly or implicitly, except for an OPEN
statement.

(3) The OPEN statement for a report file must be executed prior to the
execution of an INITIATE statement for any reports contained in the file.

(4) A report file may be opened with the OUTPUT and EXTEND phrases in the
same run unit. Following the initial execution of an OPEN statement for a

XIII-70

Report Writer - OPEN

report file, each subsequent OPEN statement execution for that same report file
must be preceded by the execution of a CLOSEV statement, without the REEL, UNIT,
or LOCK phrase, for that file.

(5) If label records are specified for the file, the beginning labels are
processed as follows:

a. When the OUTPUT phrase is specified, the execution of the OPEN
statement causes the labels to be written in accordance with the implementor's
specified conventions for output label writing.

The behavior of the OPEN statement when label records are specified but
not present, or when label records are not specified but are present, is
undefined.

(6) If during the execution of an OPEN statement a file attribute conflict
condition occurs, the execution of the OPEN statement is unsuccessful. (See
page VII-5, The File Attribute Conflict Condition.)

(7) The NO REWIND phrase must only be used with:

a. Sequential single reel/unit files. (See page XIII-63, The CLOSE
Statement.)

b. Sequential files wholly contained within a single reel of tape
within a multiple file tape environment. (See page VII-16, The MULTIPLE FILE
TAPE Clause.)

(8) The NO REWIND phrase will be ignored if it does not apply to the storage
medium on which the file resides.

(9) If the storage medium for the file permits rewinding, the fo•llowing
rules apply:

a.
execution
beginning.

b.
statement
positioned

When neither the EXTEND nor the
of the OPEN statement causes

NO
the

REWIND phrase is specified,
file to be positioned at its

When the NO REWIND phrase is specified, execution of the OPEN
does not cause the file to be repositioned; the file must be already
at its beginning prior to execution of the OPEN statement.

(10) When the EXTEND phrase is specified, the OPEN statement positions the
file immediately after the last logical record for that file. The last logical
record for a sequential file is the last record written in the file.

(11) When the EXTEND phrase
indicates label records are
includes the following steps:

is specified and the
present, the execution

LABEL RECORDS clause
of the OPEN statement

a. The beginning file labels are processed only in the case of a single
reel/unit file.

b. The beginning reel/unit labels on the last existing reel/unit are
processed as though the file was being opened with the INPUT phrase.

XIII-71

Report Writer - OPEN

c. The existing ending file labels are processed as though the file is
being opened with the INPUT phrase. These labels are then deleted.

d. Processing then proceeds as though the file had been opened with the
OUTPUT phrase.

(12) Treatment of a file contained in a multiple file tape environment is
logically equivalent to the treatment of a sequential file contained in a single
file tape environment.

(13) Whenever a set of files resides on a multiple file reel, and one of this
set of files is referenced in an OPEN statement, the following rules apply:

a. Not more than one of the files may be in the open mode at one time.

b. When one of the files referenced by a file-name is the subject of an
OPEN statement with the OUTPUT phrase, all files on the associated multiple file
reel whose position numbers are less than the position number of that file must
already exist on the reel at the time the OPEN statement is executed. Further,
no file on that multiple file reel whose position number is greater than the
position number of that file can exist at that time on the reel.

c. Each of the files must be a sequential file.

(14) For an optional file that is unavailable, the successful execution of an
OPEN statement with an EXTEND phrase creates the file. This creation takes
place as if the following statements were executed in the order shown:

OPEN OUTPUT file-name.
CLOSE file-name.

These statements are followed by execution of the OPEN statement specified 1n
the source program.

The successful execution of an OPEN statement with the OUTPUT phrase
creates the file. After the successful creation of a file, that file contains
no data records.

(15) Upon successful execution of the OPEN statement, the current volume
pointer is set:

a. To point to the reel/unit containing the last logical record for an
extend file.

b. To point to the new reel/unit for an unavailable output or extend
file.

(16) The execution of the OPEN statement causes the value of the I-0 status
associated with file-name to be updated. (See page VII-2, I-0 Status.)

(17) If more than one file-name is specified in an OPEN statement, the result
of executing this OPEN statement is the same as if a separate OPEN statement had
been written for each file-name in the same order as specified in the OPEN
statement.

XIII-72

Report Writer - OPEN

(18) The minimum and maximum record sizes for a file are established at the
time the file is created and must not subsequently be changed.

XIII-73

Report Writer - SUPPRESS

4.6 THE SUPPRESS STATEMENT

4.6.1 Function

The SUPPRESS statement causes the report writer control system to inhibit the
presentation of a report group.

4.6.2 General Format

SUPPRESS PRINTING

4.6.3 Syntax Rules

(1) The SUPPRESS statement may only appear in a USE BEFORE REPORTING
procedure.

4.6.4 General Rules

(1) The SUPPRESS statement inhibits presentation only for the report group
named in the USE procedure within which the SUPPRESS statement appears.

(2) The SUPPRESS statement must be executed each time the presentation of
the report group is to be inhibited.

(3) When the SUPPRESS statement is executed, the report writer control
system is instructed to inhibit the processing of the following report group
functions:

a. The presentation of the print lines of the report group.

b. The processing of all LINE clauses in the report group.

c. The processing of the NEXT GROUP clause in the report group.

d. The adjustment of LINE-COUNTER.

XIII-74

Report Writer - TERMINATE

4.7 THE TERMINATE STATEMENT

4.7.1 Function

The TERMINATE statement causes the report writer control system to complete
the processing of the specified reports.

4.7.2 General Format

TERMINATE {report-name-1}

4.7.3 Syntax Rules

(1) Report-name-1 must be defined by a report description entry in the
Report Section of the Data Division.

4.7.4 General Rules

(1) The TERMINATE statement causes the report writer control system to
produce all the control footing report groups beginning with the minor control
footing report group. Then the report footing report group is produced. The
report writer control system makes the prior set of control data item values
available to the control footing and report footing. SOURCE clauses and USE
procedures, as though a control break has been sensed in the most major control
data-name.

(2) If no GENERATE statements have been executed for a report
interval between the execution of an INITIATE statement and
statement, for that report, the TERMINATE statement does not cause
writer control system to produce any report groups or pe~form any of
processing.

during the
a TERMINATE
the report
the related

(3) During report presentation, an automatic function of the report writer
control system is to process page heading and page footing report groups, if
defined, when the report writer control system must advance the report to a new
page for the purpose of presenting a body group. (See page XIII-24,
Presentation Rules Tables.)

(4) The TERMINATE statement cannot be executed for a report unless the
TERMINATE statement was chronologically preceded by an INITIATE statement for
that report and for which no TERMINATE statement has yet been executed.

(5) If more than one report-name is specified in a TERMINATE statement; the
result of executing this TERMINATE statement is the same as if a separate
TERMINATE statement had been written for each report-name in the same order as
specified in the TERMINATE statement.

(6) The TERMINATE statement does not close the file with which the report is
associated; a CLOSE statement for the file must be executed. Every report that
is in an initiated condition must be terminated before a CLOSE statement is
executed for the associated file.

XIII-75

Report Writer - USE AFTER STANDARD EXCEPTION PROCEDURE

4.8 THE USE AFTER STANDARD EXCEPTION PROCEDURE STATEMENT

4.8.1 Function

The USE AFTER STANDARD EXCEPTION PROCEDURE statement specifies procedures for
input-output error handling that are in addition to the standard procedures
provided by the input-output control system.

4.8.2 General Format

USE AFTER STANDARD {EXCEPTION}
- ERROR

4.8.3 Syntax Rules

{
{file-name-1} ••• }

PROCEDURE ON OUTPUT
EXTEND

(1) A USE statement, (when present, must immediately follow a section header
in the declaratives portion of the Procedure Division and must appear in a
sentence by itself. The remainder of the section must consist of zero, one, or
more procedural paragraphs that define the procedures to be used.

(2) The USE statement is never executed; it merely defines the conditions
calling for the execution of the USE procedures.

(3) Appearance of file-name-1 in a USE statement must not cause the
simultaneous request for execution of more than one USE procedure.

(4) The words ERROR and EXCEPTION are synonymous and may
interchangeably.

be used

(5) The files implicitly or explicitly referenced in the USE statement need
not all have the same organization or access.

(6) The OUTPUT and EXTEND phrases may each be specified only once in the
declaratives portion of a given Procedure Division.

4.8.4 General Rules

(1) Declarative procedures may be included in any COBOL source program
irrespective of whether the program contains or is contained within another
program. A declarative is invoked when any of the conditions described in the
USE statement which prefaces the declarative occurs while the program is being
executed. Only a declarative within the separately compiled program that
contains the statement which caused the qualifying condition is invoked when any
of the conditions described in the USE statement which prefaces the declarative
occurs while that separately compiled program is being executed. If no
qualifying declarative exists in the separately compiled program, no declarative
is executed.

(2) Within a declarative procedure, there must be no reference to any
nondeclarative procedures.

XIII-76

Report Writer - USE AFTER STANDARD EXCEPTION PROCEDURE

(3) Procedure-names associated with a USE statement may be referenced in a
different declarative section or in a nondeclarative procedure only with a
PERFORM statement.

(4) When file-name-1 is specified explicitly, no other USE statement applies
to file-name-1.

(5) The procedures associated with a USE statement are executed by the
input-output control system after completion of the standard input-output
exception routine upon the unsuccessful execution of an input-output operation
unless an AT END phrase takes precedence. The rules concerning when the
procedures are executed are as follows:

a. If file-name-1 is specified, the associated procedure is executed
when the condition described in the USE statement occurs.

b. If OUTPUT is specified, the associated procedure is executed when
the condition described in the USE statement occurs for any file open in the
output mode or in the process of being opened in the output mode, except those
files referenced by file-name-1 in another USE statement specifying the same
condition.

c. If EXTEND is specified, the associated procedure is executed when
the condition described in the USE statement occurs for any file open in the
extend mode or in the process of being opened in the extend mode, except those
files referenced by file-name-1 in another USE statement specifying the same
condition.

(6) After execution of the USE procedure, control is transferred to the
invoking routine in the input-output control system. If the I-0 status value
does not indicate a critical input-output error, the input-output control system
returns control to the next executable statement following the input-output
statement whose execution caused the exception. If the I-0 status value does
indicate a critical error, the implementor determines what action is taken.
(See page VII-2, I-0 Status.)

(7) Within a USE procedure, there must not be the execution of any statement
that would cause the execution of a USE procedure that had previously been
invoked and had not yet returned control to the invoking routine.

XIII-77

Report Writer - USE BEFORE REPORTING

4.9 THE USE BEFORE REPORTING STATEMENT

4.9.1 Function

The USE BEFORE REPORTING statement specifies Procedure Division statements
that are executed just before a report group named in the Report Section of the
Data Division is presented.

4.9.2 General Format

USE BEFORE REPORTING identifier-I

4.9.3 Syntax Rules

(1) A USE BEFORE REPORTING statement, when present, must immediately follow
a section header in the declaratives portion of the Procedure Division and must
appear in a sentence by itself. The remainder of the section must consist of
zero, one, or more procedural paragraphs that define the procedures to be used.

(2) Identifier-I must reference a report group. Identifier-I must not
appear in more than one USE BEFORE REPORTING statement.

(3) The GENERATE, INITIATE, or TERMINATE statements must not appear in a
paragraph within a USE BEFORE REPORTING procedure. A PERFORM statement in a USE
BEFORE REPORTING procedure must not have GENERATE, INITIATE, or TERMINATE
statements in its range.

(4) A USE BEFORE REPORTING procedure must not alter the value of any control
data item.

(5) The USE BEFORE REPORTING statement itself is never executed; it merely
defines the conditions calling for the execution of the USE procedures.

4.9.4 General Rules

(1) Declarative procedures may be included in any COBOL source program
irrespective of whether the program contains or is contained within another
program. A declarative is invoked just before the named report group is
produced during the execution of the program. The report group is named by
identifier-1 in the USE BEFORE REPORTING statement which prefaces the
declaratives.

(2) Within a declarative procedure, there must be no reference to any
nondeclarative procedures.

(3) Procedure-names associated with a USE BEFORE REPORTING statement may be
referenced in a different declarative section or in a nondeclarative procedure
only with a PERFORM statement.

(4) In the USE BEFORE REPORTING statement, the designated procedures are
executed by the report writer control system (RWCS) just before the named report
group is produced. (See page XIII-55, The TYPE Clause.)

XIII-78

Report Writer - USE BEFORE REPORTING

(5) Within a USE procedure, there must not be the execution of any statement
that would cause the execution of a USE procedure that had previously been
invoked and had not yet returned control to the invoking routine.

XIII-79

Communication - Introduction

SECTION XIV: COMMUNICATION MODULE

1. INTRODUCTION TO THE COMMUNICATION MODULE

1.1 FUNCTION

The Communication module provides the ability to access, process, and create
messages or portions thereof. It provides the ability to communicate through a
message control system (MCS) with communication devices.

1.2 LEVEL CHARACTERISTICS

Communication level 1 provides limited capabilities for the communication
description entry. Within the Procedure Division, Communication level 1
provides limited capabilities for the RECEIVE and SEND statements and full
capabilities for the ACCEPT MESSAGE COUNT statement.

Communication level 2 provides full capabilities for the communication
description entry. Within the Procedure Division, Communication level 2
provides full capabilities for the ACCEPT MESSAGE COUNT, DISABLE, ENABLE, PURGE,
RECEIVE, and SEND statements.

XIV-1

Com~unication - Communication Section

2. DATA DIVISION IN THE COMMUNICATION MODULE

2.1 COMMUNICATION SECTION

The Communication Section is located in the Data Division of a source
program. The Communication Section describes the data item in the source
program that will serve as the interface between the message control system
(MCS) and the program. This MCS interface area is defined by a communication
description entry. The communication description entry is followed by none,
one, or more record description entries.

The general format of the Communication Section is shown below:

COMMUNICATION SECTION.

[communication-description-entry

[record-description-entry] •••]

2.1.1 Communication Description Entry

In a COBOL program the communication description entry (CD entry) represents
the highest level of organization in the Communication Section. The
Communication Section header is followed by a communication description entry
consisting of a level indicator_.(CD), a cd-name, and a series of independent
clauses. The entry itself is terminated by a period.

For an input communication description entry the clauses specify the queue,
lsub-queues,j message date, message time, symbolic source, text length, end key,
status key, and message count. For an output communication description entry
the clauses specify the destination count, text length, status key, error keys,
and symbolic destinations. For an input-output communication description entry
the clauses specify the message date, message time, symbolic terminal, text
length, end key, and status key.

2.1.2 Record Description Structure

The record area associated with a communication description entry
implicitly redefined by user-specified record description entries
immediately following the communication description entry.

~y ~

written

A record description consists of a set of data description entries which
describe the characteristics of a particular record. Each data description
entry consists of a level-number followed by the data-name or FILLER clause, if
specified, followed by a series of independent clauses as required. A record
description may have a hierarchical structure and therefore the clauses used
with an entry may vary considerably, depending upon whether or not it is
followed by subordinate entries. The structure of a record description and the
elements allowed in a record description entry are explained on page IV-14,
Concept of Levels, and on page VI-20, The Data Description Entry. The
availability of specific clauses in the data description entry is dependent on
the level of Nucleus module supported by the implementation.

XIV-2

Communication - CD Entry

2.2 THE COMMUNICATION DESCRIPTION ENTRY

2.2.1 Function

The communication description entry specifies the interface area between the
message control system (MCS) and a COBOL program.

2.2.2 General Format

Format 1:

CD cd-name-1

FOR i[INITIAL]i INPUT

[[SYMBOLIC ill!film_ IS data-name-1]

[SYMBOLIC SUB-OUEUE-1 IS data-name-2]

[SYMBOLIC SUB-OUEUE-2 IS data-name-3]

[SYMBOLIC SUB-OUEUE-3 IS data-name-4]

[MESSAGE DATE IS data-name-5]

[MESSAGE TIME IS data-name-6]

[SYMBOLIC SOURCE IS data-name-7]

[TEXT LENGTH IS data-name-8]

[END KEY IS data-name-9]

[STATUS KEY IS data-name-10]

[MESSAGE COUNT IS data-name-11]]

[data-name-1, data-name-2, data-name-3,

data-name-4, data-name-5, data-name-6,

data-name-7, data-name-8, data-name-9,

data-name-10, data-name-11]

XIV-3

Communication - CD Entry

Format 2:

CD cd-name-1 FOR OUTPUT

[DESTINATION COUNT IS data-name-1]

[TEXT LENGTH IS data-name-2]

[STATUS KEY IS data-name-3]

[DESTINAtION TABLE OCCURS integer-1 TIMES

[INDEXED BY {index-name-1}]]

[ERROR KEY IS data-name-4]

[SYMBOLIC DESTINATION IS data-name-5].

Format 3:

CD cd-name-1

[[MESSAGE DATE IS data-name-1]

[MESSAGE TIME IS data-name-2]

[SYMBOLIC TERMINAL IS data-name-3]

FOR ICINITIAL]j I-0
[TEXT LENGTH IS data-name-4]

[END KEY IS data-name-5]

[STATUS KEY IS data-name-6]]

[data-name-1, data-name-2, data-name-3,

data-name-4, data-name-5, data-name-6]

2.2.3 Syntax Rules

ALL FORMATS:

(1) A CD entry must appear only in the Communication Section.

FORMATS 1 AND 3:

(2) Within a single program, the INITIAL clause may be specified in only one
CD entry. The INITIAL clause must not be used in a program that specifies the
USING phrase of the Procedure Division header. (See page X-25, The Procedure
Division Header.)

XIV-4

Communication - CD Entry

(3) !Except for the INITIAL clause,I the optional clauses may be written in
any order.

(4) If neither option for specifying the interface area is used, a level 01
data description entry must follow the CD entry. Either option may be followed
by a level 01 data description entry.

FORMAT I:

(5) Record description entries following an input CD entry implicitly
redefine the record area established by the input CD entry and must describe a
record of exactly 87 standard data format characters. Multiple redefinitions of
this record are permitted; however, only the first redefinition may contain
VALUE clauses. The message control system (MCS) always references the record
according to the data description defined in general rule 2. (See page VI-48,
The VALUE Clause.)

(6) Data-name-I, data-name-2, data-name-3, data-name-4, data-name-5,
data-name-6, data-name-7, data-name-8, data-name-9, data-name-10, and
data-name-Il must be unique within the CD entry. Within this series any
data-name may be replaced by the reserved word FILLER.

FORMAT 2:

(7) The optional clauses may be written in any order.

(8) If none of the optional clauses of the CD entry is specified, a level 01
data description entry must follow the CD entry.

(9) Record description entries subordinate to an output CD entry implicitly
redefine the record area established by the output CD entry. Multiple
redefinitions of this record are permitted; however, only the first redefinition
may contain VALUE clauses. The MCS always references the record according to
the data description defined in general rule 16. (See page VI-48, The VALUE
Clause.)

(10) Data-name-I, data-name-2, data-name-3, data-name-4, and data-name-5 must
be unique within a CD entry.

(11) I If the DESTINATION TABLE OCCURS clause is not specified, I one error key
and one symbolic destination area are assumed. In this case, subscripting is
not permitted when referencing these data items.

(I2) If the DESTINATION TABLE OCCURS clause is specified, data-name-4 and
data-name-5 may be referenced only by subscripting.

In level I, the. value of the data item referenced by data-name-1 must be
In level 2, there is no restriction on the value of the data item referenced

by data-name-I.

FORMAT 3:

(14) Record description entries following an input-output CD entry implicitly
redefine the record area established by the input-output CD entry and must
describe a record of exactly 33 standard data format characters. Multiple

· XIV-5

Communication - CD Entry

redefinitions of this record are permitted; however, only the first redefinition
may contain VALUE clauses. The MCS always references the record according to
the data description defined in general rule 24. (See page VI-48, The VALUE
Clause.)

(15) Data-name-1, data-name-2, data-name-3, data-name-4, data-name-5, and
data-name-6 must be unique within the CD entry. Within this series, any
data-name may be replaced by the reserved word FILLER.

2.2.4 General Rules

FORMAT 1:

(1) The input CD information constitutes the communication between the
message control system (MCS) and the program about the message being handled.
This information does not come from the terminal as part of the message.

(2) For each input CD entry, a record area of 87 contiguous character
positions is allocated. This record area is defined to the MCS as follows:

a. The SYMBOLIC QUEUE clause defines data-name-1 as the name of an
elementary alphanumeric data item of 12 characters occupying positions 1 through
12 in the record.

b. The SYMBOLIC SUB-QUEUE-I clause defines data-name-2 as the name of
an elementary alphanumeric data item of 12 characters occupying positions 13
through 24 in the record.

c. The SYMBOLIC SUB-QUEUE-2 clause defines data-name-3 as the name of
an elementary alphanumeric data item of 12 characters occupying positions 25
through 36 in the record.

d. The SYMBOLIC SUB-QUEUE-3 ciause defines data-name-4 as the name of
an elementary alphanumeric data item of 12 characters occupying positions 37
through 48 in the record.

~~~~~-~~~~~~~~~~~~~~ 

e. The MESSAGE DATE clause defines data-name-5 as the name of a data 
item whose implicit description is that of an integer of 6 digits, without an 
operational sign, occupying character positions 49 through 54 in the record. 

f. The MESSAGE TIME clause defines data-name-6 as the name of a data 
item whose implicit description is that of an integer of 8 digits, without an 
operational sign, occupying character positions 55 through 62 in the record. 

g. The SYMBOLIC SOURCE clause defines data-name-7 as the name of an 
elementary alphanumeric data item of 12 characters occupying positions 63 
through 74 in the record. 

h. The TEXT LENGTH clause defines data-name-8 as the name of an 
elementary data item whose implicit description is that of an integer of 4 
digits, without an operational sign, occupying character positions 75 through 78 
in the record. 

i. The END KEY clause defines data-name-9 as the name of an elementary 
alphanumeric data item of 1 character occupying position 79 in the record. 

XIV-6 



Communication - CD Entry 

j. The STATUS KEY clause defines data-name-10 as the name of an 
elementary alphanumeric data item of 2 characters occupying positions 80 and 81 
in the record. 

k. The MESSAGE COUNT clause defines data-name-11 as the name of an 
elementary data item whose implicit description is that of an integer of 6 
digits, without an operational sign, occupying character positions 82 through 87 
in the record. 

The second option may be used to replace the above clauses by a series 
of data-names which, taken in order, correspond to the data-names defined by 
these clauses. 

Use of either option results in a record whose implicit description is 
equivalent to the following: 

IMPLICIT DESCRIPTION COMMENT 

01 data-name-0. 
02 data-name-1 PICTURE X(l2). SYMBOLIC QUEUE 
02 data-name-2 PICTURE X(l2). SYMBOLIC SUB-QUEUE-1 
02 data-name-3 PICTURE X(l2). SYMBOLIC SUB-QUEUE-2 
02 data-name-4 PICTURE X(l2). SYMBOLIC SUB-QUEUE-3 
02 data-name-5 PICTURE 9(6). MESSAGE DATE 
02 data-name-6 PICTURE 9(8). MESSAGE TIME 
02 data-name-7 PICTURE X(l2). SYMBOLIC SOURCE 
02 data-name-8 PICTURE 9(4). TEXT LENGTH 
02 data-name-9 PICTURE x. END KEY 
02 data-name 10 PICTURE xx. STATUS KEY 
02 data-name-11 PICTURE 9(6). MESSAGE COUNT 

NOTE: In the above, the information under 'COMMENT' is for 
clarification and is not part of the data description. 

(3) The contents of the data items referenced by data-name-2, data-name-3, 
and data-name-4,lwhen not being usedlmust contain spaces. 

(4) The data items referenced by data-name-1, data-name-2, data-name-3, and 
~name-41 contain symbolic names designating queues, sub-queues, ••• 
respectively. These symbolic names must follow the rules for the formation of 
system-names, and must have been previously defined to the message control 
system (MCS). 

(5) A RECEIVE statement causes the serial return of the next message or al 
!portion of a message! from the queue as specified by the entries in the CD. 

At the time of execution of a RECEIVE statement, the input CD area must 
contain, in the content of data-name-1, the name of a symbolic queue. The data 
items specified by data-name-2' data-name-3' and data-name-4 r may l contain 
symbolic sub-queue names or1 spaces. J When a given level of the queue structure 
is specified all higher levels must also be.specified. If less than all the 
levels of the queue hierarchy are specified, the MCS determines the next message 
or portion of a message to be accessed within the queue and/or sub-queue 
~ecified in the input CD. 

XIV-7 



Communication - CD Entry 

After the execution of a RECEIVE statement, the contents of the data 
items referenced by data-name-1 through data-name-4 will contain the symbolic 
names of all the levels of the queue structure. 

(6) Whenever a program is scheduled by the message control system (MCS) to 
process a message, that program establishes a run unit and the symbolic names of 
the queue structure that demanded this activity will be placed in the data items 
referenced by data-name-1 through data-name-4 of the CD associated with the 
INITIAL clause as applicable. In all other cases, the contents of the data 
items referenced by data-name-1 through data-name-4 of the CD associated with 
the INITIAL clause are initialized to spaces. 

The symbolic names are inserted or the initialization to spaces is 
completed prior to the execution of the first Procedure Division statement. 

The execution of a subsequent RECEIVE statement naming the same contents 
of the data items referenced by data-name-1 through data-name-4 will return the 
actual message that caused the program to be scheduled. Only at that time will 
the remainder of the CD be updated. 

( 7) If the MCS at tempts to schedule a program lacking an INITIAL clause, the 
results are undefined. 

(8) During the execution of a RECEIVE statement, the MCS provides, in the 
data item referenced by data-name-5, the date on which it recognized that the 
message was complete in the form 'YYMMDD' (year, month, day). The content of 
the data item referenced by data-name-5 is not updated by the MCS other than as 
part of the execution of a RECEIVE statement. 

(9) During the execution of a RECEIVE statement, the MCS provides, in the 
data item referenced by data-name-6, the time at which it recognized that the 
message was complete in the form 'HHMMSSTT' (hours, minutes, seconds, hundredths 
of a second). The content of the data item referenced by data-name-6 is not 
updated by the MCS other than as part of the execution of a RECEIVE statement. 

(10) During the exec~tion of a RECEIVE statement, the MCS provides, in the 
data item .referenced·' by data-name-7, the symbolic name of the communication 
terminal that is the source of the message being transferred. This symbolic 
name must follow the rules for the formation of system-names. However, if the 
symbolic name of the communication terminal is not known to the MCS, the content 
of the data item referenced by data-name-7 will contain spaces. 

(11) The MCS indicates via the content of the data 
data-name-8 the number of character positions filled 
execution .of the RECEIVE statement. (See page XIV-23, The 

item referenced by 
as a result of the 

RECEIVE Statement.) 

(12) The content 
the MCS as part 
following rules: 

of the data item referenced by data-name-9 is set only by 
of the execution of a RECEIVE statement according to the 

a. When the RECEIVE MESSAGE phrase is specified, then: 

I) If an end of group has been detected, the content of the data 
item referenced by data-name-9 is set to 3; 

XIV-8 



Communication - CD Entry 

2) If an end of message has been detected, the content of the data 
item referenced by data-name-9 is set to 2; 

3) If less than a message 1S transferred, the content of the data 
item referenced by data-name-9 is set to 0. 

b. When the RECEIVE SEGMENT phrase is specified, then: 

1) If an end of group has been detected, the content of the data 
item referenced by data-name-9 is set to 3; 

2) If an end of message has been detected, the content of the data 
item referenced by data-name-9 is set to 2; 

3) If an end of segment has been detected, the content of the data 
item referenced by data-name-9 is set to l · ' 

4) If less than a message segment is transferred, the content of 
the data item referenced b_y data-name-9 is set to O. 

c. When more than one of the above conditions is satisfied 
simultaneously, the rule first satisfied in the order listed determines the 
content of the data item referenced by data-name-9. 

(13) 
status 

I ENABLE 

The content of the data item referenced by data-name-10 
condition of the previously executed RECEIVE, ACCEPT 

INPUT, or DISABLE INPUT!statement. 

indicates the 
MES SAGE COUNT , 

The actual association between the content of the data item referenced 
by data-name-10 and the status condition itself 1s defined in table 1 on page 
XIV-15. 

(14) The content of the data item referenced by data-name-11 indicates the 
number of messages that exist in a queue, I sub-queue-I, •• •I . The MCS updates 
the content of the data item referenced by data-name-11 only as part of the 
execution of an ACCEPT MESSAGE COUNT statement. 

FORMAT 2: 

(15) The nature of the output CD information is such that it is not sent to 
the terminal, but constitutes the communication between the program and the MCS 
about the message being handled. 

(16) In level 1 a record area of 23 contiguous character pos1t1ons is 
allocated for each output CD. In level 2 a record area of contiguous character 
positions is allocated for each out ut CD according to the following formula: 
(10 1 us (13 times inte er-1)). The implicit description Of this record, area 
is: 

a. The DESTINATION 
data item whose implicit 
operational sign, occupying 

COUNT clause defines data-name-1 as the name of a 
description is that of an integer, without an 

character posit ions 1 through 4 in the record. 

b. The TEXT LENGTH clause defines data-name-2 as the name of an 
elementary data item whose implicit description is that of an integer of 4 

XIV-9 



Communication - CD Entry 

digits, without an operational sign, occupying character positions 5 through 8 
in the record. 

c. 
alphanumeric 
record. 

The STATUS KEY clause defines 
data item of 2 characters 

data-name-3 to be an elementary 
occupying positions 9 and 10 in the 

d. Character positions 11 through 23land every set of 13 characters I 
~lt_h_e_r_e_a_f_t_e_r~lwill form table items of the following description: 

1) The ERROR KEY clause defines data-name-4 as the name of an 
elementary alphanumeric data item of 1 character. 

2) The SYMBOLIC DESTINATION clause defines data-name-5 as the name 
of an elementary alphanumeric data item of 12 characters. 

Use of the above clauses results in a record whose implicit description 
is equivalent to the following: 

IMPLICIT DESCRIPTION 

01 data-name-0. 
02 data·-name-1 PICTURE 9(4). 
02 data-name-2 PICTURE 9(4). 
02 data-name-3 PICTURE XX. 
02 data-name \OCCURS integer-1 TIMES.I 

03 data-name-4 PICTURE X. 
03 data-name-5 PICTURE X(l2). 

COMMENT 

DESTINATION COUNT 
TEXT LENGTH 
STATUS KEY 
DESTINATION TABLE 
ERROR KEY 
SYMBOLIC DESTINATION 

NOTE: In the above, the information under 'COMMENT' is for 
clarification and is not part of the data description. 

(17) During the execution of a SEND,iPURGE, ENABLE OUTPUT, or DISABLE OUTPUTJ 
statement, the content of the data item referenced by data-name-1 will indicate 
to the MCS the number of symbolic destinations that are to be used from the area 
referenced by data-name-5. 

The MCS finds the first symbolic destination name in the first 
occurrence of the area referenced by data-name-5, J the second symbolic 
destination name in the second occurrence of the area referenced by 
data-name-5, ••• , up to and including the occurrence of the area referenced by 
data-name-5 indicated b_y_ the content of data-name-1. 

If during the execution of a SEND, I PURGE, ENABLE OUTPUT, or DISABLEJ 
loUTPUTJstatement the value of the data item referenced by data-name-I is outside 
the range of I !through integer-I ,I an error condition is indicated, no action is 
taken for any destination, and the execution of the SEND, !PURGE, ENABLE OUTPUT, I 

lor DISABLE OUTPUTlstatement is t~rminated. 

(18) It is the responsibility of the user to insure that the value of the 
data item referenced by data-name-1 is valid at the time of execution of the 
SEND, JPURGE, ENABLE OUTPUT, or DISABLE OUTPUT! statement. 

(I9) As part of the execution of a SEND statement, the MCS will interpret the 
content of the data item referenced by data-name-2 to be the user's indication 

XIV-IO 



Communication - CD Entry 

of the number of leftmost character positions of the data item 
referenced by the identifier in the associated SEND statement from which data is 
to be transferred. (See page XIV-26, The SEND Statement.) 

(20) !Each occurrence of\ the data item referenced by data-name-5 contains a 
symbolic destination name previously known to the MCS. These symbolic 
destination names must follow the rules for the formation of system-names. 

(21) The content of the data item referenced by data-name-3, indicates the 
status condition of the previously executed SEND,IPURGE, ENABLE OUTPUT, orl 

!DISABLE OUTPUTlstatement. 

The actual association between the content of the data item referenced 
by data-name-3 and the status condition itself is defined in the table on page 
XIV-15. 

(22) If, during execution of alDISABLE OUTPUT, ENABLE OUTPUT, PURGE, or SEND 
statement, the MCS determines an error has occurred, the content of the data 
item referenced by data-name-3 and the content of each occurrence of 
data-name-4, up to and includin the occurrence s ecified b the content of 
ldata-name-1,I are updated. 

The actual association between the content of the data item referenced 
by data-name-4 and the error condition itself is defined in the table on page 
XIV-16. 

FORMAT 3: 

(23) The input-output CD information constitutes the 
the MCS and the program about the message being handled. 
not come from the terminal as part of the message. 

communication between 
This information does 

(24) For each input-output CD, a record area of 33 contiguous character 
positions is allocated. This record area is defined to the MCS as follows: 

a. The MESSAGE DATE clause defines data-name-I as the name of a data 
item whose implicit description is that of an integer of 6 digits, without an 
operational sign, occupying character positions 1 through 6 in the record. 

b. The MESSAGE TIME clause defines data-name-2 as the name of a data 
item whose implicit description is that of an integer of 8 digits, without an 
operational sign, occupying character positions 7 through 14 in the record. 

c. The SYMBOLIC TERMINAL clause defines data-name-3 as the name of an 
elementary alphanumeric data item of 12 characters occupying positions 15 
through 26 in the record. 

d. The TEXT LENGTH clause defines data-name-4 as the name of an 
elementary data item whose implicit description is that of an integer of 4 
digits, without an operational sign, occupying character positions 27 through 30 
in the record. 

e. The END KEY clause defines data-name-5 as the name of an elementary 
alphanumeric data item of 1 character occupying position 31 in the record. 

XIV-11 



Communication - CD Entry 

f. The STATUS KEY clause defines data-name-6 as the name of an 
elementary alphanumeric data item of 2 characters occupying positions 32 and 33 
in the record. 

The second option may be used to replace the above clauses by a series 
of data-names which, taken in order, correspond to the data-names defined by 
these clauses. 

Use of either option results in a record whose implicit description is 
equivalent to the following: 

IMPLICIT DESCRIPTION COMMENT 

01 data-name -0. 
02 data -name -1 PICTURE 9(6). 
02 data-name-2 PICTURE 9(8). 
02 data-name-3 PICTURE x(l2). 

MESSAGE DATE 
MESSAGE TIME 
SYMBOLIC TERMINAL 
TEXT LENGTH 02 data-name-4 PICTURE 

02 data-name-5 PICTURE 
02 data-name-6 PICTURE 

NOTE: In the above, 
clarification 

9(4). 
x. 
xx. 

the 
and 

information 
is not part 

END KEY 
STATUS KEY 

under 'COMMENT' is for 
of the data description. 

(25) When a program is scheduled by the MCS to process a message, the first 
RECEIVE statement referencing the input-output CD with the INITIAL clause 
returns the actual messa_g_e that caused the program to be scheduled. 

(26) Data-name-1 has the format 'YYMMDD' (year, month, day). Its content 
represents the date on which the MCS recognizes that the message is complete. 

The content of the data item referenced by data-name-1 is updated only 
by the MCS as part of the execution of a RECEIVE statement. 

(27) Data-name-2 has the format 'HHMMSSTT' (hours, minutes, seconds, 
hundredths of a secq,nd) and its content represents the time at which the MCS 
recognizes that the message is complete. 

The content of the data item referenced by data-name-2 is updated only 
by the MCS as part of the execution of the RECEIVE statement. 

( 28) 
program 
terminal 
in the 
with the 
for the 

Whenever a program is scheduled by the MCS to process a message, that 
establishes a run unit and the symbolic name of the communication 
that is the source of the message that invoked this program is placed 
data item referenced by data-name-3 of the input-output CD associated 
INITIAL clause as applicable. This symbolic name must follow the rules 

formation of system-names. 

In all other cases, the 
data-name-3 of the input-output 
initialized to spaces. 

content of the 
CD associated 

data item referenced by 
with the INITIAL clause is 

The symbolic name is inserted, or the initialization to spaces is 
completed, prior to the execution of the first Procedure Division statement. 

XIV-12 



Communication - CD Entry 

(29) If the MCS attempts to schedule a program lacking an INITIAL clause, the 
results are undefined. 

(30) When the INITIAL clause is specified for an input-output CD and the 
program is scheduled by the MCS, the content of the data item referenced by 
data-name-3 must not be changed by the program. If this content is changed, the 
execution of any statement referencing cd-name-1 is unsuccessful, and the data 
item referenced by data-name-6 is set to indicate unknown source or destination, 
as applicable. (See table on page XIV-15.) 

(31) For an input-output CD without the INITIAL clause, or for an 
in ut-output CD with the INITIAL clause when the program is not scheduled by the 
MCS, the program must specify the symbolic name of the source or destination in 
data-name-3 prior to the execution of the first statement referencing cd-name-1. 

After executing the first statement referencing cd-name-1, the content 
of the data item referenced by data-name-3 must not be changed by the program. 
If this content is changed, the execution of any statement referencing cd~name-1 
is unsuccessful, and the data item referenced by data-name-6 is set to indicate 
unknown source or destination, as applicable. (See table on page XIV-15.) 

(32) The MCS indicates, through the content of the data item referenced by 
data-name-4, the number of character positions filled as a result of the 
execution of the RECEIVE statement. (See page XIV-23, The RECEIVE Statement.) 

As part of the execution of a SEND statement, the MCS interprets the 
content of the data item referenced by data-name-4 as the user's indication of 
the number of leftmost character positions of the data item referenced by the 
associated SEND identifier from which data is transferred. (See page XIV-26, 
The SEND Statement.) 

(33) The content of the data item referenced by data-name-5 is set only by 
the MCS as part of the execution of a RECEIVE statement according to the 
following rules: 

a. When the RECEIVE MESSAGE phrase is specified: 

1) If an end of group has been detected, the content of the data 
item referenced by data-name-5 is set to 3; 

2) If an end of message has been detected, the content of the data 
item referenced by data-name-5 is set to 2; 

3) If less than a message is transferred, the content of the data 
item referenced by data-name-5 is set to O. 

b. When the RECEIVE SEGMENT phrase is specified: 

1) If an end of group has been detected, the content of the data 
item referenced by data-name-5 is set to 3; 

2) If an end of message has been detected, the content of the data 
· item referenced b_y_ data-name-5 is set to 2; 

XIV-13 



Communication - CD Entry 

3) If an end of segment has been detected, the content of the data 
item referenced by data-name-5 is set to l; 

4) If less than a message segment is transferred, the content of 
the data item referenced by data-name-5 is set to O. 

c. When more than one of the conditions is satisfied simultaneously, 
the rule first satisfied in the order listed determines the content of the data 
item referenced by data~name-5. 

(34) The content of the data item referenced by data-name-6 indicates the 
status condition of the previously executed !DISABLE, ENABLE, PURGE,I RECEIVE, or 
SEND statement. 

The actual association between the content of the data item referenced 
by data-name-6 and the status condition itself 1s defined i~ table 1 on page 
XIV-15. 

2.2.5 Communication Status Key Conditions 

Table 1 on page XIV-15 indicates the possible contents of the data items 
referenced by data-name-10 for format 1, by data-name-3 for format 2, and by 
data-name-6 for format 3 at the completion of each statement shown. An 'X' on a 
line in a statement column indicates that the associated status ke value shown 
for that line is ossible for that statement. The s mbol indicates a level 2 
element that is not available in level 1. 

XIV-14 



Communication - Communication Status Key Conditions 

"' "' ~ ~ z H 

~ ~ 
"C H ~ 
tJ § ~ H 
I H 

.µ 0 0 
::l u 0 I Q) 
p. I H "' ::l 
.µ "C ~ H "' "' ........ H r-1 
::l tJ ~ "' ........ H H H p rd 
0 I H H p p p p... :> 
I .µ Ul p p p... p... p... H 

.µ ::l Ul p... p... H z z p :>. 
::l p. 

~ z z p H H 0 Q) 
p. .µ H H 0 ::..:: 

~ i::: ;:l ~ ~ ~ 
:> •n 0 "' H ~ ~ ~ ,_:i ,_:i ,_:i Cll 
H ~ p... ,_:i ,_:i ,_:i 

~ ~ ~ ;:l 
~ A 

~ 
c.!) ~ i:i:l ~ ~ 

.µ 
u ~ IZ u ~ u:i u:i u:i rd 
ga p u z H H H .µ 

Ul u:i p... < ~ ~ ~ A A A u:i 

x x x x x x x x x x x 00 No error detected. Action completed. 

x x 10 One or more destinations disabled. 
Action completed. (See page XIV-16, 
Error Key Values.) 

x 10 Destination disabled. No action taken. 

x x x x x x 15 Symbolic source, or one or more queues 
or destinations already disabled/enabled. 2 
(See page XIV-16, Error Key Values.) 

x x x x x 20 One or more destinations unknown. Action 
completed for known destinations. (See 
page XIV-16, Error Key Value.s.) 

x x x x 20 One or more queues or subqueues unknown. 
No action taken. 

x x x 21 Symbolic source is unknown. No action 
taken. 

x x x x 30 Destination count invalid. No action 
taken. 

x x x x x x 40 Password invalid. No enabling/disabling 
action taken. 

x x 50 Text length exceeds size of identifier-1. 

x x 60 Portion requested to be sent has text 
length of zero or identifier-1 absent. 
No action taken. 

x 65 Output queue capacity exceeded. (See 
page XIV-16, Error Key Values.) 

x 70 One or more destinations do not have 
portions associated with them. Action 
completed for other destinations.2 

x x x x x x 80 A combination of at least two status key 
conditions 10, 15, and 20 have occurred. 
(See page XIV-16, Error Key Values.) 

9x Implementor-defined status 

Table 1: Communication Status Key Conditions 

XIV-15 



Communication - Error Key Values 

2.2.6 Error Key Values 

Table 2 below indicates the possible content of the data item referenced by 
data-name-4 for format 2 at the completion of each statement shown. An 'X' on a 
line in a statement column indicates that the associated error ke value shown 
for that line is ossible for that statement. The s mbol 2 indicates a level 2 
element that is not available in level 1. 

N Q) 
N E-! ;:l 

E-! :::::> .-I 
:::::> ~ ca 
p., l> 
E-! :::::> 
:::::> 0 :>-. 
0 Q) 

i::.:I ::.::: 
N i::.:I ,_::i 

i::.:I ,_::i 
~ """ A 

~ ~ 
0 z tf.l 

""" i::.:I H 

""" tf.l p., i::.:I A i::.:I 

x x x x 0 No error. 

x x x x 1 Symbolic destination unknown. 

x x 2 Symbolic destination disabled. 

x 4 No partial message with referenced symbolic 
destination.2 

x x 5 Symbolic destination already enabled/disabled. 2 

x 6 Output queue capacity exceeded. 

7-9 Reserved for future use. 

A-Z Implementor-defined condition. 

Table 2: Error Key Values 

XIV-16 



Communication - ACCEPT MESSAGE COUNT 

3. PROCEDURE DIVISION IN THE COMMUNICATION MODULE 

3.I THE ACCEPT MESSAGE COUNT STATEMENT 

3.I.I Function 

The ACCEPT MESSAGE COUNT statement causes the number of complete messages in 
a queue to be made available. 

3.I.2 General Format 

ACCEPT cd-name-1 MESSAGE COUNT 

3.1.3 Syntax Rules 

(1) Cd-name-1 must reference an input CD. 

3.1.4 General Rules 

(I) The ACCEPT MESSAGE COUNT statement causes the message count data item 
specified for cd-name-I to be updated to indicate the number of complete 
messages that exist in the queue structure designated by the contents of the 
data items specified by data-name-1 (SYMBOLIC QUEUE) I through data-name-41 

!(SYMBOLIC SUB-QUEUE-3)\ of the area referenced by cd-name-I. 

(2) Upon execution of the ACCEPT MESSAGE COUNT statement, the content of the 
area specified by a communication description entry must contain at least the 
name of the symbolic queue to be tested. Testing the condition causes the 
content of the data items referenced by data-name-IO (STATUS KEY) and 
data-name-II (MESSAGE COUNT) of the area associated with the communication 
description entry to be appropriately updated. (See page XIV-3, The 
Communication Description Entry.) 

XIV-17 



Communication - DISABLE 

3.2 THE DISABLE STATEMENT 

3.2.l Function 

The DISABLE statement notifies the message control system (MCS) to inhibit 
data transfer between specified output queues and destinations for output or 
between specified sources and input queues for input or between the program and 
one specified source or destination for input-output. The WITH KEY phrase is an 
obsolete element in Standard COBOL because it is to be deleted from the next 
revision of Standard COBOL. 

3.2.2 General Format 

{ 
INPUT [TERMINAL]} 

DISABLE I-0 TERMINAL 
OUTPUT 

3.2.3 Syntax Rules 

cd-name-1 [ WITH KEY {i~entifier-1}] 
-- literal-1 

(1) Cd-name-1 must reference an input CD when the INPUT phrase is specified. 

(2) Cd-name-I must reference an input-output CD when the I-0 TERMINAL phrase 
is specified. 

(3) Cd-name-I must reference an output CD when the OUTPUT phrase is 
specified. 

(4) Literal-I or the content of the data item referenced by identifier-I 
must be defined as alphanumeric. 

3.2.4 General Rules 

(1) The DISABLE statement provides a logical disconnection between the MCS 
and the specified sources or destinations. When this logical disconnection is 
already in existence, or is to be handled by some other means external to this 
program, the DISABLE statement is not required in this program. No action is 
taken when a DISABLE statement is executed which specifies a source or 
destination which is already disconnected, except that the value in the status 
key data item indicates this condition. The logical path for the transfer of 
data between the COBOL programs and the MCS is not affected by the DISABLE 
statement. 

(2) The MCS will insure that the execution of a DISABLE statement will cause 
the logical disconnection at the earliest time the source or destination is 
inactive. The execution of the DISABLE statement will never cause the remaining 
portion of the message to be terminated during transmission to or from a 
terminal. 

(3) When the INPUT phrase without the optional word TERMINAL is specified, 
the logical paths between the queue and sub-queues specified by the contents of 
data-name-1 (SYMBOLIC QUEUE) through data-name-4 (SYMBOLIC SUB-QUEUE-3) of the 
area referenced by cd-name-1 and all the associated enabled sources are 
deactivated. 

XIV-18 



Communication - DISABLE 

(4) When the INPUT phrase with the optional word TERMINAL is specified, the 
logical paths between the source (as defined by the content of the data item 
referenced by data-name-7 (SYMBOLIC SOURCE) and all of its associated queues, and 
sub-queues are deactivated. 

(5) When the I-0 
source (as defined 
(SYMBOLIC TERMINAL)) 

TERMINAL phrase is specified, the logical path between the 
by the content of the data item referenced by data-name-3 

and the program is deactivated. 

(6) When the OUTPUT phrase is specified, the logical paths are deactivated 
for all destinations specified by the content of each occurrence of data-name-5 
up to and including the occurrence specified by the content of data-name-1 of 
the area referenced by cd-name-1. 

(7) Literal-I or the content of the data item referenced by identifier-I 
will be matched with a password built into the system. The DISABLE statement 
will be honored only if literal-I or the content of the data item referenced by 
identifier-I match the system password. When literal-I or the content of the 
data item referenced by identifier-I do not match the system password, the value 
of the STATUS KEY item in the area referenced by cd-name-1 is updated. 

The message control system must be capable of handling a password of 
from one to ten characters inclusive. 

XIV-19 



Communication - ENABLE 

3.3 THE ENABLE STATEMENT 

3.3.l Function 

The ENABLE statement notifies the message control system (MCS) to allow data 
transfer between specified output queues and destinations for output or between 
specified sources and input queues for input or between the program and one 
specified source or destination for input-output. The WITH KEY phrase is an 
obsolete element in Standard COBOL because it is to be deleted from the next 
revision of Standard COBOL. 

3.3.2 General Format 

{ 
INPUT [TERMINAL]} 

ENABLE I-0 TERMINAL 
OUTPUT 

3.3.3 Syntax Rules 

cd-name-1 { id en tif ier-1}] 
literal-! 

(1) Cd-name-1 must reference an input CD when the INPUT phrase is specified. 

(2) Cd-name-1 must reference an input-output CD when the I-0 TERMINAL phrase 
is specified. 

(3) Cd-name-1 must reference an output CD when the OUTPUT phrase is 
specified. 

(4) Literal-I or the content of the data item referenced by identifier-I 
must be defined as alphanumeric. 

3.3.4 General Rules 

(1) The ENABLE statement provides a logical connection between the MCS and 
the specified sources or destinations. When this logical connection is already 
in existence, or is to he handled by some other means external to this program, 
the ENABLE statement is not required in this program. No action is taken when 
an ENABLE statement is executed which specifies a source or destination which is 
already connected, except that the value in the status key data item indicates 
this condition. The logical path for the transfer of data between the COBOL 
programs and the MCS is not affected by the ENABLE statement. 

(2) When the INPUT phrase without the optional word TERMINAL is specified, 
the logical paths between the queue and sub-queues specified by the contents of 
data-name-1 (SYMBOLIC QUEUE) through data-name-4 (SYMBOLIC SUB-QUEUE-3) of the 
area referenced by cd-name-1 and all the associated sources are activated. 

(3) When the INPUT phrase with the optional word TERMINAL is specified, the 
logical paths between the source (as defined by the content of the data item 
referenced by data-name-7 (SYMBOLIC SOURCE)) and all of its associated queues 
and sub-queues are activated. 

(4) When the I-0 TERMINAL phrase is specified, the logical path between the 
source (as defined by the content of the data item referenced by data-name-3 
(SYMBOLIC TERMINAL)) and the _Q_ro_g_ram is activated. 

XIV-20 



Communication - ENABLE 

(5) When the OUTPUT phrase is specified, the logical paths are activated for 
all destinations specified by the content of each occurrence of data-name-5 up 
to and including the occurrence specified by the content of data-name-I of the 
area referenced by cd-name-1. 

(6) Literal-! or the content of the data item referenced by identifier-! 
will be matched with a password built into the system. The ENABLE statement 
will be honored only if literal-I or the content of the data item referenced by 
identifier-I match the system password. When literal-! or the content of the 
data item referenced by identifier-I do not match the system password, the value 
of the STATUS KEY item in the area referenced by cd-name-1 is updated. 

The message control system must be capable of handling a password of 
from one to ten characters inclusive. 

XIV-21 



Communication - PURGE 

3.4 THE PURGE STATEMENT 

3 .4.1 Function 

The PURGE statement eliminates from the message control system (MCS) a 
partial message which has been released by one or more SEND statements. 

3.4.2 General Format 

PURGE cd-name-1 

3.4.3 Syntax Rules 

(1) Cd-name-1 must reference an output CD or input-output CD. 

3.4.4 General Rules 

(1) Execution of a PURGE statement causes the MCS to eliminate any partial 
message awaiting transmission to the destinations specified in the CD referenced 
by cd-name-1. 

(2) Any message that has associated with it an EMI or EGI is not affected by 
the execution of a PURGE statement. 

(3) The content of the status key data item and the content of the error key 
data item (if applicable) of the area referenced by cd-name-1 are updated by the 
MCS. (See page XIV-3, The Communication Description Entry.) 

XIV-22 



Communication - RECEIVE 

3.5 THE RECEIVE STATEMENT 

3.5.1 Function 

The RECEIVE statement makes available a message or a message segment! and 
information about that data. 

3.5.2 General Format 

{ MESSAGE} RECEIVE cd-name-1 I SEGMENT I INTO identifier-! 

[NO DATA imperative-statement-!] 

[WITH DATA imperative-statement-2] 

[END-RECEIVE] 

3.5.3 Syntax Rules 

(1) Cd-name-! must reference an input CD or input-output CD. 

3.5.4 General Rules 

(1) If cd-name-1 references an input CD, the contents of the data items 
specified by data-name-I (SYMBOLIC QUEUE) I through data-name-4 (SYMBOLIC! 

ISUB--QUEUE-3)f of the area referenced by cd-name-1 designate the queue structure 
containing the message. (See page XIV-3, The Communication Description Entry.) 

(2) If cd-name-1 references an input-output 
specified by data-name-3 (SYMBOLIC TERMINAL) of 
designates the source of the message. (See 
Description Entry.) 

CD, the content of the data item 
the area referenced by cd-name-1 
page XIV-3, The Communication 

( 3) The 
transferred 
identifier-! 

message,lmessage segment, or portion of a 
to the receiving character positions 
aligned to the left without space fill. 

message or segtllent I is 
of the area referenced by 

(4) When, during the execution of a RECEIVE statement, the MCS makes data 
available in the data item referenced by identifier-I, the NO DATA phrase, if 
specified, is ignored and control is transferred to the end of the RECEIVE 
statement or, if the WITH DATA phrase is specified, to imperative-statement-2. 
If control is transferred to imperative~statement-2, execution continues 
according to the rules for each statement specified in imperative-statement-2. 
If a procedure branching or conditional statement which causes explicit transfer 
of control is executed, control is transferred in accordance with the rules for 
that statement; otherwise, upon completion of the execution of 
imperative-statement-2, control is transferred to the end of the RECEIVE 
statement. 

(5) When, during the execution of a RECEIVE statement, the MCS does not make 
data available in the data item referenced by identifier-I, one of the three 
actions listed below will occur. The conditions under which data is not made 
available are defined by the implementor. 

XIV-23 



Communication - RECEIVE 

a. If the NO DATA phrase is specified in the RECEIVE statement, the 
RECEIVE operation is terminated with the indication that action is complete and 
control is transferred to imperative-statement-I. Execution then continues 
according to the rules for each statement specified in imperative-statement-I. 
If a procedure branching or conditional statement which causes explicit transfer 
of control is executed, control is transferred in accordance with the rules for 
that statement; otherwise, upon completion of the execution of 
imperative-statement-I, control is transferred to the end of the RECEIVE 
statement and the WITH DATA phrase, if specified, is ignored. 

b. If the NO D~TA phrase is not specified 
execution of the object program is suspended until 
data item referenced by identifier-I. 

in the RECEIVE statement, 
data is made available in the 

c. If one or more queues lor subqueuesl are unknown to the MCS, the 
appropriate status key code is stored and control is then transferred as if data 
had been made available. (See table on page XIV-15.) 

(6) The data items identified by cd-name-1 are appropriately updated by the 
message control system (MCS) at each execution of a RECEIVE statement. (See 
page XIV-3, The Communication Description Entry.) 

(7) A single execution of a RECEIVE statement never returns to the data item 
referenced b_y_ identifier-I more than a single message (when the MESSAGE phrase 
is usedJJor a single segment (when the SEGMENT phrase is used). However, the 
MCS does not pass any portion of a message to the object program until the 
entire message is available to the MCS, even if the SEGMENT phrase of the 
RECEIVE statement is S_I>_ecified. 

(8) When the MESSAGE phrase is used, end of segment indicators are ignored, 
and the following rules apply to the data transfer: 

a. If a message is the same size as the area referenced by 
identifier-I, the message is stored in the area referenced by identifier-I. 

b. If a message size is less than the area referenced by identifier-I, 
the message is aligned to the leftmost character position of the area referenced 
by identifier-I and the contents of the character positions not occupied by 
characters of the message are not changed. 

c. If a message size is greater than the area referenced by 
identifier-I, the message fills the area referenced by identifier-I left to 
right starting with the leftmost character of the message. In level 1, the 
disposition of the remainder of the messa_g_e is undefined. J In level 2, further 
RECEIVE statements which reference the same queue, sub-queue, ••• , must be 
executed to transfer the remainder of the message into the area referenced by 
identifier-I. The remainder of the message, for the purposes of applying rules 
Bai Bbi and Bci is treated as a new messa_g_e. 

d. If an end of group indicator is associated with the text accessed by 
the RECEIVE statement, the existence of an end of message indicator is implied. 

XIV-24 



Communication - RECEIVE 

(9) When the SEGMENT phrase is used, the following rules apply: 

a. If a segment is the same size as the area referenced by 
identifier-I, the segment is stored in the area referenced by identifier-I. 

b. If the segment size is less ~~ the area referenced by 
identifier-I, the segment 1S aligned to the leftmost character position of the 
area referenced by identifier-I and the contents of character positions not 
occupied by characters of the segment are not changed. 

c. If a segment size is greater than the area referenced by 
identifier-I, the segment fills the area referenced by identifier-I left to 
right starting with the leftmost character of the segment. Further RECEIVE 
statements which reference the same queue, sub-queue, ••• , must be executed to 
transfer the remainder of the segment into the area referenced by identifier-I. 
The remainder of the segment, for the purposes of applying rules 9a, 9b, and 9c, 
is treated as a new segment. 

d. If an end of message indicator or 
associated with the text accessed by the RECEIVE 
end of segment indicator is implied. 

end of group indicator is 
statement, the existence of an 

(10) Once the execution of a RECEIVE statement has returned a portion of a 
message, only subsequent execution of RECEIVE statements in that run unit can 
cause the remaining portion of the message to be returned. 

(11) The END-RECEIVE phrase delimits the scope of the RECEIVE statement. 
(See page IV-40, Scope of Statements.) 

XIV-25 



Communication - SEND 

3.6 THE SEND STATEMENT 

3.6.1 Function 

The SEND statement causes a message, a message segment, or a portion of a 
I message or segment! to be released to one or more output queues maintained by the 

message control system (MCS). 

3.6.2 General Format 

Format 1: 

SEND cd-name-1 FROM identifier-! 

Format 2: 

SEND cd-name-1 

{ BEFORE} ADVANCING 
AFTER 

I [REPLACING LINE] I 

3.6.3 Syntax Rules 

(1) Cd-name-1 must reference an output CD or input-output CD. 

(2) Identifier-2 must reference a one-character 
o erational sign. 

(3) Identifier-3 must reference an integer data item. 

integer without an 

(4) When the mnemonic-name phrase is used, the name is identified with a 
particular feature specified by the implementor. The mnemonic-name is defined 
in the SPECIAL-NAMES _l)_ara_g_ra_ph in the Environment Division. 

(5) Integer-1 or the value of the data item referenced by identifier-3 may 
be zero. 

3.6.4 General Rules 

ALL FORMATS: 

(1) When a receiving communication device (printer, display screen, card 
punch, etc.) is oriented to a fixed line size: 

XIV-26 



Communication - SEND 

a. Each messageJor message segmentlbegins at the leftmost character 
position of the physical line. 

b. A message I or message segment! that is smaller than the physical line 
size is released so as to appear space filled to the right. 

c. Excess characters of a message I or message segment! are not truncated. 
Characters are packed to a size equal to that of the physical line and then 
transmitted to the output device. The process continues on the next line with 
the excess characters. 

(2) When a receiving communication device (paper tape punch, another 
computer, etc.) is oriented to handle variable length messages, each messagelorl 

I message segment! will begin on the next available character position of the 
communication device. 

(3) As part of the execution of a SEND statement, the MCS will interpret the 
content of the text length data item of the area referenced by cd-name-I to be 
the user's indication of the number of leftmost character positions of the data 
item referenced by identifier-I from which data is to be transferred. (See page 
XIV-3, The Communication Description Entry.) 

If the content of the text length data item of the area referenced by 
cd-name-I is zero, no characters of the data item referenced by identifier-I are 
transferred. 

If the content of the text length data item of the area referenced by 
cd-name-I is outside the range of zero through the size of the data item 
referenced by identifier-I inclusive, an error is indicated by the value of the 
status key data item of the area referenced by cd-name-I, and no data is 
transferred. (See table on page XIV-I5.) 

(4) As part of the execution of a SEND statement, the content of the status 
key data item of the area referenced by cd-name-I is updated by the MCS. (See 
XIV-3, The Communication Description Entry. 

(5) The effect of having special control characters within the content of 
the data item referenced by identifier-! is undefined. 

(6) A single execution of a SEND statement represented by format I releases 
~---~ 

only a single portion of a message segment or a single portion of a message to 
the MCS. 

A single execution of a SEND statement 
to the MCS more than a sin le 

represented by format 2 never 
releases 
indicated 
specified 

b the content of the data item 
EMI, or EGL 

sin le message segment as 
identifier-2 or by the 

However, the MCS will not transmit any portion of a message to a 
communication device until the entire message has been released to the MCS. 

(7) During the execution of the run unit, the 
message which is not terminated by an EMI 
eliminated by the execution of a PURGE statement 

XIV-27 

disposition of a portion of a 
or EGI or which has not been 
is undefined. However, the 



Communication - SEND 

message does not logically exist for the MCS and hence cannot be sent to a 
destination. 

(8) Once the execution of a SEND statement has released a portion of a 
message to the MCS, only subsequent execution of SEND statements in the same run 
unit can cause the remaining portion of the message to be released. 

FORMAT 2: 

(9) The·content of the data item referenced by identifier-2 indicates that 
the content of the data item referenced by identifier-1, when specified, is to 
have an associated end of segment indicator, end of message indicator, end of 
group indicator, or no indicator (which implies a portion of a message or a 
portion of a segment). If identifier-1 is not specified, only the indicator is 
transmitted to the MCS. 

If the content of then the content of 
the data item data item referenced 
referenced by by identifier-1 has which means 
identifier-2 is an associated 

0 no indicator portion of message or 
of a segment 

-

1 end of segment end of current segment 
indicator (ES!) 

2 end of message end of current message 
indicator (EMI) 

3 end of group end of current group 
indicator (EGI) of messages 

Any character other than 1, 2, or 3 will be interpreted as 0. 

If the content of the data item referenced by identifier-2 is other than 
1, 2, or 3, and identifier-1 is not specified, then an error is indicated by the 
value in the status key data item of the area referenced by cd-name-1, and no 
data is transferred. 

(10) The WITH EGI phrase indicates to the MCS that the group of messages is 
complete. 

The WITH EMI phrase indicates to the MCS that the message is complete. 

The WITH ESI phrase indicates to the MCS that the message segment is 
complete. 

The MCS will reco nize these indications and establish whatever is 
necessary to maintain segment, message, or group control. 

XIV-28 



Communication - SEND 

(11) The hierarchy of ending indicators is EGI EMI and ESI. An EGI 
not be preceded by an\ESI orlEMI. An EMI need not be receded b.__a_n~E-S-I-.~~~___, 

need 

(12) The ADVANCING phrase allows control of the vertical positioning of each 
message or message segment on a communication device where vertical positioning 
is applicable. If vertical positioning is not applicable on the device, the MCS 
will ignore the vertical positioning specified or implied. 

(13) If identifier-2 is specified and the 
by identifier-2 is zero, the ADVANCING 
s~ecified, are i_g_nored by the MCS. 

content of the data item referenced 
phrase and the REPLACING phrase, if 

(14) On a device where vertical positioning is applicable and the ADVANCING 
phrase is not specified, automatic advancing will be provided by the implementor 
to act as if the user had specified AFTER ADVANCING 1 LINE. 

(15) If the ADVANCING phrase is implicitly or explicitly specified and 
vertical positioning is applicable, the following rules apply: 

a. If integer-! or 
the communication device 
lines equal to integer-! 
identifier-3. 

identifier-3 is specified, characters tran~mitted to 
are repositioned vertically downward the number of 
or the value of the data item referenced by 

b. If the value of the data item referenced by identifier-3 is 
negative, the results are undefined. 

c. If mnemonic-name-! is specified, characters transmitted to the 
communication device are positioned according to the rules specified by the 
implementor for that communication device. 

d. If the BEFORE phrase is used, the message j or message segment I is 
represented on the communication device before vertical repositioning according 
to general rules 15aland 15clabove. 

e. If the AFTER phrase is used, 
represented on the communication device 
general rules 15aland 15clabove. 

the message I or message segment I is 
after vertical positioning according to 

f. If PAGE is specified, characters transmitted to the communication 
device are represented on the device before or after (depending upon the phrase 
used) the device is repositioned to the next (new) page. If PAGE is specified 
but page has no meaning in conjunction with a specific device, then advancing is 
provided by the implementor to act as if the user had specified BEFORE or AFTER 
(depending upon the phrase used) ADVANCING 1 LINE. 

(16) When a receiving communication device is a character-imaging device on 
which it is possible to present two or more characters at the same position and 
the device permits the choice of either the second or subsequent characters 
appearing superimposed on characters already displayed at that position or each 
character appearing in the place of the characters previously transmitted to 
that line: 

a. If the REPLACING phrase is specified, the characters transmitted by 
the SEND statement replace all characters which may have previously been 

XIV-29 



Communication - SEND 

transmitted to the same line beginning with the leftmost character position of 
the line. 

b. I If the REPLACING phrase is not specified,\the characters transmitted 
by the SEND statement appear superimposed upon the characters which may have 
previously been transmitted to the same line beginning with the leftmost 
character position of the line. 

(17) When a receivin communication device does not support the re lacement 
of characters, regardless of whether or not the REPLACING phrase is specified, 
the characters transmitted by the SEND statement appear superimposed upon the 
characters which may have previously been transmitted to the same line, 
beginning with the leftmost character position of the line. 

(18) When a receiving communication device does not support the 
superimposition of two or more characters at the same position, !regardless ofl 

!whether or not the REPLACING phrase is specified, I the characters transmitted by 
the SEND statement replace all characters which may have previously been 
transmitted to the same line beginning with the leftmost character position of 
the line. 

XIV-30 



Debug - Introduction 

SECTION XV: DEBUG MODULE 

1. INTRODUCTION TO THE DEBUG MODULE 

1.1 FUNCTION 

The Debug module provides a means by which the user can describe his 
debugging algorithm including tpe conditions under which data items or 
procedures are to be monitored during the execution of the object program. · 

The decisions of what to monitor and what information to display on the 
output device are explicitly in the domain of the user. The COBOL facility 
simply provides a convenient access to pertinent information. 

The Debug module is an obsolete element in Standard COBOL because it is to be 
deleted from the next revision of Standard COBOL. 

1.2 LEVEL CHARACTERISTICS 

Debug level 1 provides a basic debugging capability including the ability to 
specify selective procedure monitoring. 

/Debug level 2 provides the full COBOL debugging facility. 

1.3 LANGUAGE CONCEPTS 

1.3.1 Debug Features 

The features of the COBOL language that support the Debug module are: 

a. A compile time switch -- WITH DEBUGGING MODE clause. 

b. An object time switch. 

c. A USE FOR DEBUGGING statement. 

d. A special register -- DEBUG-ITEM. 

1.3 .2 Special Register DEBUG-ITEM 

The reserved word DEBUG-ITEM is the name for a special register generated 
automatically by the implementor's code that supports the debugging facility. 
Only one DEBUG-ITEM is allocated per program. The names of the subordinate data 
items in DEBUG-ITEM are also reserved words. 

XV-1 



Debug - Introduction 

1.3.3 Compile Time Switch 

The WITH DEBUGGING MODE clause is written as part of the SOURCE-COMPUTER 
paragraph. It serves as a compile time switch over the debugging statements 
written in the program. 

When the WITH DEBUGGING MODE clause is specified in a program, all debugging 
sections are compiled as specified in this section of the document. When the 
WITH DEBUGGING MODE clause is not specified, all debugging sections are compiled 
as if they were comment lines. 

1.3.4 Object Time Switch 

An object time switch dynamically activates the debugging code inserted by 
the compiler. This switch cannot be addressed in the program; it is controlled 
outside the COBOL environment. If the switch is on, all the effects of the 
debugging language written in the source program are permitted. If the switch 
is off, all the effects described in the USE FOR DEBUGGING statement on page 
XV-5 are inhibited. Recompilation of the source program is not required to 
provide or take away this facility. 

The object time switch has no effect on the execution of the object program 
if the WITH DEBUGGING MODE clause was not specified in the source program at 
compile time. 

XV-2 



Debug - WITH DEBUGGING MODE 

2. ENVIRONMENT DIVISION IN THE DEBUG MODULE 

2.1 THE WITH DEBUGGING MODE CLAUSE 

2.1.1 Function 

The WITH DEBUGGING MODE clause indicates that all debugging sections are to 
be compiled. If this clause 1s not specified, all debugging sections are 
compiled as if they were comment lines. 

2.1.2 General Format 

SOURCE-COMPUTER. [computer-name [WITH DEBUGGING MODE].] 

2.1.3 General Rules 

(1) If the WITH DEBUGGING MODE clause is specified in the SOURCE-COMPUTER 
paragraph of the Configuration Section of a program, all USE FOR DEBUGGING 
statements are compiled. 

(2) If the WITH DEBUGGING MODE clause is not specified in the 
SOURCE-COMPUTER paragraph of the Configuration Section of a program, any USE FOR 
DEBUGGING statements and all associated debugging sections are compiled as if 
they were comment lines. 

XV-3 



Debug - Procedure Division 

3. PROCEDURE DIVISION IN THE DEBUG MODULE 

3.1 GENERAL DESCRIPTION 

The Procedure Division contains declarative procedures when the USE FOR 
DEBUGGING statement from the Debug module is present in a COBOL source program. 
Shown below is the general format of the Procedure Division when the USE FOR 
DEBUGGING statement is present. 

PROCEDURE DIVISION. 

DECLARATIVES. 

{section-name SECTION. 

USE FOR DEBUGGING statement. 

[paragraph-name. 

[sentence] • • • ] • • • } ••. 

END DECLA.RATIVES. 

{section-name SECTION. 

[paragraph-name. 

[sentence] •.• ] .•• } ••• 

XV-4 



Debug - USE FOR DEBUGGING 

3.2 THE USE FOR DEBUGGING STATEMENT 

3.2.1 Function 

The USE FOR DEBUGGING statement identifies the user items that are to be 
monitored by the associated debugging section. 

3.2.2 General Format 

USE FOR DEBUGGING ON 

3.2.3 Syntax Rules 

( cd-name-1 
) [ALL REFERENCES OF] 

~ 
file-name-1 
procedure-name-1 
ALL PROCEDURES 

identifier-1 l ... 
(1) Debugging section(s), if specified, must appear together immediately 

after the DECLARATIVES header. 

(2) Except in the USE FOR DEBUGGING statement itself, there must be no 
reference to any non-declarative procedure within the debugging section. 

(3) Statements appearing outside of the set of debugging sections must not 
reference procedure-names defined within the set of debugging sections. 

(4) Except for the USE FOR DEBUGGING statement itself, statements appearing 
within a given debugging section may reference procedure-names defined within a 
different USE procedure only with a PERFORM statement. 

(5) Procedure-names defined within debugging sections must not appear within 
USE FOR DEBUGGING statements. 

(6) Any given !identifier, cd-n:ame, file-name, orl procedure-name may' appear 
in only one USE FOR DEBUGGING statement and may appear only once in that 
statement. 

(7) The ALL PROCEDURES phrase can appear only once in a program. 

(8) When the ALL PROCEDURES phrase is specified, procedure-name-I must not 
be specified in any USE FOR DEBUGGING statement. 

(9) Identifier-I must not reference any data item defined in the Report 
Sec ti on ex·cept sum counters. 

(10) If the data description entry of the data item referenced by 
identifier-I contains an OCCURS clause or is subordinate to a data description 
entry that contains an OCCURS clause, identifier-1 must be specified without the 
subscripting or indexing normally required. 

(11) References to the special register DEBUG-ITEM are restricted to 
references from within a debugging section. 

(12) Identifier-1 must not be reference modified. 

XV-5 



Debug - USE FOR DEBUGGING 

3.2.4 General Rules 

(I) Automatic execution of a debugging section is not caused by a statement 
appearing in a debugging section. 

(2) When file-name-1 is specified 1n a USE FOR DEBUGGING statement, that 
debugging section is executed: 

a. After the execution of any OPEN or CLOSE statement that references 
file-name-I, and 

b. After the execution of any READ statement (after any other specified 
USE procedure) not resulting in the execution of an associated AT END or INVALID 
KEY imperative statement, and 

c. After the execution of any DELETE or START statement that references 
file-name-I. 

(3) When procedure-name-I is specified in a USE FOR DEBUGGING statement that 
debugging section is executed: 

a. Immediately before each execution of the named procedure; 

b. Immediately after the execution of an ALTER statement 
references procedure-name-I. 

which 

(4) The ALL PROCEDURES phrase causes the effects described in general rule 3 
to occur for every procedure-name in the program, except those appearing within 
a debugging section. 

(5) When the ALL REFERENCES OF identifier-I phrase is specified, that 
debugging section is executed for every statement that explicitly references 
identifier-I at each of the following times: 

a. In the case of a WRITE or REWRITE statement immediately before the 
execution of that WRITE or REWRITE statement and after the execution of any 
implicit move resulting from the presence of the FROM phrase. 

b. In the case of a GO 
immediately before control is 
debugging section associated with 
transferred. 

TO statement with a DEPENDING ON phrase, 
transferred and prior to the execution of any 
the procedure-name to which control is to be 

c. In the case of a PERFORM statement in which a VARYING, AFTER, or 
UNTIL phrase references identifier-I, immediately after each initialization, 
modification, or evaluation of the content of the data item referenced by 
identifier-I. 

d. In the case of any other COBOL statement, immediately after 
execution of that statement. 

If identifier-I is specified in a phrase that is not executed or 
evaluated, the associated debugging section is not executed. 

~~~~~~~~~~~~~~~~~~ 

XV-6

Debug - USE FOR DEBUGGING

(6) When identifier-I is specified without the ALL REFERENCES OF phrase,
that debugging section is executed at each of the following times:

a. In the case of a WRITE or REWRITE statement
references identifier-I, immediately before the execution
REWRITE statement and after the execution of any implicit move
the presence of the FROM phrase.

that explicitly
of that WRITE or
resulting from

b. In the case of a PERFORM statement in which a VARYING, AFTER, or
UNTIL phrase references identifier-I, immediately after each initialization,
modification, or evaluation of the content of the data item referenced by
identifier-I.

c. Immediately after the execution of any other COBOL statement that
explicitly references and causes the content of the data item referenced by
identifier-I to be changed.

If identifier-I is specified in a phrase that is not executed or
evaluated, the associated debugging section is not executed.

(7) The associated debugging section is not executed for a specific operand
more than once as a result of the execution of a single statement, regardless of
the number of times that operand is explicitly specified. In the case of a
PERFORM statement which causes iterative execution of a referenced procedure,
the associated debugging section is executed once for each iteration.

Within an imperative statement, each individual occurrence of an
imperative verb identifies a separate statement for the purpose of debugging.

(8) When cd-name-I is specified in a USE FOR DEBUGGING statement, that
debugging section is executed:

a. After the execution of any ENABLE, DISABLE, and SEND statement that
references cd-name-I,

b. After the execution of a RECEIVE statement referencing cd-name-I
that does not result in the execution of the NO DATA imperative-statement, and

c. After the execution of an ACCEPT MESSAGE COUNT statement that
references cd-name-I.

(9) A reference to lidentifier-1, cd-name-1, file-name-1, orl procedure-name-!
as a qualifier does not constitute reference to that item for the debugging
described in the ~eneral rules above.

XV-7

Debug - USE FOR DEBUGGING

(10) Associated with each execution of a debugging section is the special
register DEBUG-ITEM, which provides information about the conditions that caused
the execution of a debugging section. DEBUG-ITEM has the following implicit
de script ion:

01 DEBUG-ITEM.
02 DEBUG-LINE PICTURE IS X(6).
02 FILLER PICTURE IS x VALUE IS SPACE.
02 DEBUG-NAME PICTURE IS X(30).
02 FILLER PICTURE IS x VALUE IS SPACE.
02 DEBUG-SUB-I PICTURE IS S9999 SIGN IS LEADING SEPARATE CHARACTER.
02 FILLER PICTURE IS X VALUE IS SPACE.
02 DEBUG-SUB-2 PICTURE IS S9999 SIGN IS LEADING SEPARATE CHARACTER.
02 FILLER PICTURE IS x VALUE IS SPACE.
02 DEBUG-SUB-3 PICTURE IS S9999 SIGN IS LEADING SEPARATE CHARACTER.
02 FILLER PICTURE IS x VALUE IS SPACE.
02 DEBUG-CONTENTS PICTURE IS X(n).

(11) Prior to each execution of a debugging section, the content of the data
item referenced by DEBUG-ITEM is space filled. The contents of data items
subordinate to DEBUG-ITEM are then updated, according to the following general
rules, immed,iately before control is passed to that debugging section. The
content of any data item not specified in the following general rules remains
spaces.

Updating is accomplished in accordance with the rules for the MOVE
statement, the sole exception being the move to DEBUG-CONTENTS when the move is
treated exactly as if it was an alphanumeric to alphanumeric elementary move
with no conversion of data from one form of internal representation to another.

(12) The content of DEBUG-LINE ls the
identifying a particular source statement.

implementor-defined means of

(13) DEBUG-NAME contains the first 30 characters of the name that caused the
debugging section to be executed.

All qualifiers of the name are separated in DEBUG-NAME by the word 'IN'
or 'OF'. Subscripts/indices, if any, are not entered into DEBUG-NAME.

(14) If the reference to a data item that causes the debugging section to be
executed is subscripted or indexed, the occurrence number of each level lS
entered in DEBUG-SUB-I, DEBUG-SUB-2, DEBUG-SUB-3 respectively as necessary.

(15) DEBUG-CONTENTS is a data item that is large enough to contain the data
required by the following general rules.

(16) If the first execution of the first nondeclarative procedure in the
program causes the debugging section to be executed, the following conditions
exist:

a. DEBUG-LINE identifies the first statement of that procedure.

b. DEBUG-NAME contains the name of that procedure.

c. DEBUG-CONTENTS contains 'START PROGRAM'.

XV-8

Debug - USE FOR DEBUGGING

(17) If a reference to procedure-name-! in an ALTER statement causes the
debugging section to be executed, the following conditions exist:

a. DEBUG-LINE identifies
procedure-name-!.

the ALTER statement that references

b. DEBUG-NAME contains procedure-name-!.

c. DEBUG-CONTENTS contains the applicable procedure-name associated
with the TO phrase of the ALTER statement.

(18) If the transfer of control associated with the execution of a GO TO
statement causes the debugging section to be executed, the following conditions
exist:

a. DEBUG-LINE identifies the GO TO statement whose execution transfers
control to procedure-name-!.

b. DEBUG-NAME contains procedure-name-!.

(19) If reference to procedure-name-! in the INPUT or OUTPUT phrase of a SORT
or MERGE statement causes the debugging section to be executed, the following
conditions exist:

a. DEBUG-LINE identifies the SORT or MERGE statement that references
procedure-name-!.

b. DEBUG-NAME contains procedure-name-1.

c. DEBUG-CONTENTS contains:

1) If the reference to procedure-name-! 1S in the INPUT phrase of a
SORT statement, 'SORT INPUT'.

2) If the reference to procedure-name-! 1S in the OUTPUT phrase of
a SORT statement, 'SORT OUTPUT'.

3) If the reference to procedure-name-! is 1n the OUTPUT phrase of
a MERGE statement, 'MERGE OUTPUT'.

(20) If the transfer of control from the control mechanism associated with a
PERFORM statement caused the debugging section associated with procedure-name-I
to be executed, the following conditions exist:

a. DEBUG-LINE identifies the PERFORM
procedure-name-I.

b. DEBUG-NAME contains procedure-name-!.

c. DEBUG-CONTENTS contains 'PERFORM LOOP'.

XV-9

statement that references

Debug - USE FOR DEBUGGING

(21) If procedure-name-I is a USE procedure that is to be executed, the
following conditions exist:

a. DEBUG-LINE identifies the statement that causes execution of the USE
procedure.

b. DEBUG-NAME contains procedure-name-I.

c. DEBUG-CONTENTS contains 'USE PROCEDURE'.

(22) If an implicit transfer of control from the previous sequential
paragraph to procedure-name-I causes the debugging section to be executed, the
following conditions exist:

a. DEBUG-LINE identifies the previous statement.

b. DEBUG-NAME contains procedure-name-I.

c. DEBUG-CONTENTS contains 'FALL THROUGH'.

(23) If reference to file-name-I or cd-name-1 causes the debugging section to
be executed, then:

a. DEBUG-LINE identifies the
file-name-I or cd-name-1.

source statement that

b._ DEBUG-NAME contains the name of file-name-I or cd-name-1.

c. For READ, DEBUG-CONTENTS contains the entire record read.

references

d. For all other references to file-name-I, DEBUG-CONTENTS contains
spaces.

e. For any reference to cd-name-1, DEBUG-CONTENTS contains the content
of the area associated with the cd-name.

(24) If a reference to identifier-I causes the debugging section to be
executed, then:

a. DEBUG-LINE identifies the
identifier-I.

source statement

b. DEBUG-NAME contains the name of identifier-I, and

that references

c. DEBUG-CONTENTS contains the content of the data item referenced by
identifier-I at the time that control passes to the debugging section (see
general rules 5 and 6).

XV-10

Segmentation - Introduction

SECTION XVI: SEGMENTATION MODULE

1. INTRODUCTION TO THE SEGMENTATION MODULE

1.1 FUNCTION

The Segmentation module provides a means by which the user may communicate
with the compiler to specify object program overlay requirements.

The Segmentation module is an obsolete element in Standard COBOL because it
1s to be deleted from the next revision of Standard COBOL.

1.2 LEVEL CHARACTERISTICS

Segmentation level 1 provides a facility for specifying permanent and
independent segments (see paragraph 1.4.1 below). All sections with the same
segment-number must be contiguous in the source program. All segments specified
as permanent segments must be contiguous in the source program.

Segmentation level 2 provides the
different segment-numbers and allows
contain segments that may be overlaid

1.3 SCOPE

COBOL segmentation deals only with
the Procedure Division and the
determining segmentation requirements

1.4 ORGANIZATION

1.4.1 Program Segments

facility for intermixing sections with
the fixed portion of the source program to
(see paragraph 1.4.1 below).

segmentation of procedures.
Environment Division are
for an object program.

As such, only
considered in

Although it is not mandatory, the Procedure Division for a source program is
usually written as a consecutive group of sections, each of which is composed of
a series of closely related operations that are designed to collectively perform
a particular function. However, when segmentation is used, the entire Procedure
Division must be in sections. In addition, each section must be classified as
belonging either to the fixed portion or to one of the independent segments of
the object program. Segmentation in no way affects the need for qualification
of procedure-names to insure uniqueness.

1.4.2 Fixed Portion

The fixed portion is defined as that part of the object program which 1s
logically treated as if it were always in memory. This portion of the program
is com osed of two types of segments: fixed permanent segments I and fixed I
overla able segments.

XVI-1

Segmentation - Introduction

A fixed permanent segment is a segment in the fixed portion which cannot be
overlaid by any other part of the _1>_rog_ram. J A fixed overlayable segment is a
segment in the fixed portion which, although logically treated as if it were
always in memory, can be overlaid by another segment to optimize memory
utilization. Variation of the number of fixed permanent segments in the fixed
portion can be accomplished by using a special facility called the SEGMENT-LIMIT
clause (see page XVI-5, The SEGMENT-LIMIT Clause). Such a segment, if called
for by the program, is always made available in its last used state.

1.4.3 Independent Segments

An independent segment is defined as part of the object program which can
overlay, and can be overlaid by,leither a fixed overlayable segment orlanother
independent segment. An independent segment is in its initial state whenever
control is transferred (either implicitly or explicitly) to that segment for the
first time during the execution of a program. On subsequent transfers of
control to the segment, an independent segment is also in its initial state
when:

(1) Control is transferred to that segment as a result
transfer of control between consecutive statements from
different segment-number.

(2) Control is transferred to that segment as
transfer of control between a SORT or MERGE
different segment-number, and an associated input
independent segment.

the result
statement,
or output

of the implicit
a segment with a

of the implicit
in a segment with a
procedure in that

(3) Control is transferred explicitly to that segment from a segment with a
different segment-number (with the exception noted in paragraph 2 below).

On subsequent transfer of control to the segment, an independent segment is
in its last-used state when:

(1) Control is transferred implicitly to that segment from a segment with a
different segment-number (except as noted in paragraphs 1 and 2 above).

(2) Control is transferred explicitly to that segment as the result of the
execution of an EXIT PROGRAM statement.

See paragraph 4.4.2, Explicit and Implicit Transfers of Control, page IV-25.

1.5 SEGMENTATION CLASSIFICATION

Sections which are to be segmented are classified, using a system of
segment-numbers (see page XVI-7, Segment-Numbers) and the following criteria:

(1) Logic Requirements - Sections which must be available for reference at
all times, or which are referred to very frequently, are normally classified as
belonging to one of the permanent segments; sections which are used less
frequentg; are normally classified as belonging !either to one of the overlayable

!fixed se~ents orlto one of the independent segments, depending on logic
requirements.

XVI-2

Segmentation - Introduction

(2) Frequency of Use - Generally, the more frequently a section is referred
to, the lower its segment-number, the less frequently it is referred to, the
higher its segment-number.

(3) Relationship to Other Sections - Sections which frequently communicate
with one another should be given the same segment-numbers.

1.6 SEGMENTATION CONTROL

The logical sequence of the program is the same as the physical sequence
except for specific transfers of control. If any reordering of the object
program is required to handle the flow from segment to segment, according to the
rules for segment-numbers on page XVI-7, the implementor must provide control
transfers to maintain the logical flow specified in the source program. The
implementor must also provide all controls necessary for a segment to operate
whenever the segment is used. Control may be transferred within a source
program to any paragraph in a section; that is, it is not mandatory to transfer
control to the beginning of a section.

XVI-3

Segmentation - OBJECT-COMPUTER

2. ENVIRONMENT DIVISION IN THE SEGMENTATION MODULE

2.1 CONFIGURATION SECTION

Information concerning the Configuration Section is located on page VI-9.

2.2 THE OBJECT-COMPUTER PARAGRAPH

2.2.l Function

The OBJECT-COMPUTER paragraph provides a means of describing the computer on
which the program is to be executed.

2.2.2 General Format

OBJECT-COMPUTER. [computer-name

rMEMORY SIZE integer-1 {~CTERs}] L MODULES

[PROGRAM COLLATING SEQUENCE IS .alphabet-name-1]

[SEGMENT-LIMIT IS segment-number].]

2.2.3 Syntax Rules

(1) Computer-name is a system-name.

2.2.4 General Rules

(1) All clauses of the OBJECT-COMPUTER paragraph apply to the program in
which they are explicitly or implicitly specified and to any program contained
within that program.

(2)

PROGRAM
VI-11.

(3)

General rules concerning computer-name, the MEMORY SIZE clause, and the
COLLATING SEQUENCE clause are presented in the Nucleus module on page

The SEGMENT-LIMIT clause is presented on page XVI-5.

XVI-4

Segmentation - SEGMENT-LIMIT

2.3 THE SEGMENT-LIMIT CLAUSE

2.3.1 Function

Ideally, all program segments having segment-numbers ranging from 0 through
49 should be specified as permanent segments. However, when insufficient memory
is available to contain all permanent segments plus the largest overlayable
segment, it becomes necessary to decrease the number of permanent segments. The
SEGMENT-LIMIT feature provides the user with a means by which he can reduce the
number of permanent segments in his program, while still retaining the logical
properties of fixed portion segments (segment-numbers 0 through 49).

2.3.2 General Format

SEGMENT-LIMIT IS segment-number

2.3.3 Syntax Rules

(1) Segment-number must be an integer ranging in value from 1 through 49.

2.3.4 General Rules

(1) When the SEGMENT-LIMIT clause is specified, only those segments having
segment-numbers from 0 up to, but not including, the segment-number designated
as the segment-limit, are considered as permanent segments of the object
program.

(2) Those segments having segment-numbers from the segment-limit through 49
are considered as overlayable fixed segments.

(3) When the
segment-numbers
object program.

SEGMENT-LIMIT clause is omitted, all segments having
from 0 through 49 are considered as permanent segments of the

XVI-5

Segmentation - Procedure Division

3. PROCEDURE DIVISION IN THE SEGMENTATION MODULE

3.1 GENERAL DESCRIPTION

The Procedure Division contains sections with segment-numbers when the
Segmentation module is used in a COBOL source program. Shown below is the
general format of the Procedure Division when sections and segment-numbers are
present.

PROCEDURE DIVISION.

[DECLARATIVES.

{section-name SECTION [segment-number].

USE statement.

[paragraph-name.

[sentence] .•. . . . } ...
END DECLARATIV~S.]

{section-name SECTION [segment-number].

[paragraph-name.

[sentence] ...] ... } ...

XVI-6

Segmentation - Segment-Numbers

3.2 SEGMENT-NUMBERS

3.2.1 Function

Section classification is accomplished by means of a system of
segment-numbers. The segment-number is included in the section header within
the Procedure Division.

3.2.2 General Format

section-name SECTION [segment-number].

3.2.3 Syntax Rules

(1) The segment-number must be an integer ranging in value from 0 through
99.

(2) If the segment-number is omitted from the section
segment-number is assumed to be 0.

header, ilie

(3) Sections in the declaratives must contain segment-numbers less than 50.

3.2.4 General Rules

(1) All sections which have the same segment-number constitute a program
segment. In level 1 all sections which have the same segment-number must be
to ether in the source ro ram. In level 2 sections with the same
segment-numbers need not be physically contiguous in the source program.

(2) Segments with segment-number 0 through 49 belong to the fixed portion of
the object program. In level 1 all sections with segment-number 0 through 49
must be together in the source program.

(3) Segments with segment-number 50 through 99 are independent segments.

XVI-7

Segmentation - Restrictions

3.3 RESTRICTIONS ON PROGRAM FLOW

When segmentation is used, the following restrictions are placed on the
ALTER, PERFORM, MERGE, and SORT statements.

3.3.1 The ALTER Statement

A GO TO statement in a section whose
to 50 must not be referred to by
different segment-number.

segment-number is greater than or equal
an ALTER statement in a section with a

All other uses of the ALTER statement are valid and are performed even if the
GO TO to which the ALTER refers is in a fixed overlayable segment.

3.3.2 The PERFORM Statement

A PERFORM statement that appears in a section that is not in an independent
segment can have within its range, in addition to any declarative sections whose
execution is caused within that range, only one of the following:

(1) Sections and/or paragraphs
non-independent segments.

wholly contained ln one or more

(2) Sections and/or paragraphs wholly contained in a single independent
segment.

A PERFORM statement that appears in an independent segment can have within
its range, in addition to any declarative sections whose execution is caused
within that range, only one of the following:

(1) Sections and/or paragraphs
non-independent segments.

wholly contained ln one or more

(2) Sections and/or paragraphs wholly contained in the same independent
segment as that PERFORM statement.

3.3.3 The MERGE Statement

If the MERGE statement appears in a section that is not in an independent
segment, then any output procedure referenced by that MERGE statement must
appear:

(1) Totally within non-independent segments, or

(2) Wholly contained in a single independent segment.

If a MERGE statement appears in an independent segment, then any output
procedure referenced by that MERGE statement must be contained:

(1) Totally within non-independent segments, or

(2) Wholly within· the same independent segment as that MERGE statement.

XVI-8

Segmentation - Restrictions

3.3.4 The SORT Statement

If a SORT statement appears in a section that is not an independent segment,
then any input procedures or output procedures referenced by that SORT statement
must appear:

(1) Totally within non-independent segments, or .
(2) Wholly contained in a single independent segment.

If a SORT statement
procedures or output
contained:

appears 1n
procedures

an independent segment, then any input
referenced by that SORT statement must be

(1) Totally within non-independent segments, or

(2) Wholly within the same independent segment as that SORT statement.

XVI-9

History of COBOL

SECTION XVII: APPENDICES

APPENDIX A: THE HISTORY OF COBOL

1. THE DEVELOPMENT OF COBOL

1.1 ORGANIZATION OF COBOL EFFORT

On May 28 and 29, 1959, a meeting was held for the purpose of considering
both the desirability and the feasibility of establishing a common language for
programming of computers in business data processing applications. This meeting
was attended by representatives from users, both in private industry and in
government, computer manufacturers, and other interested parties. It was agreed
that the language must be open-ended and capable of accepting change and
amendment, that it should be problem-oriented and machine-independent, and that
it should use simple English or pseudo~English and avoid symbolism as far as
possible. The conference on DAta SYstems Languages (CODASYL) developed out of
this meeting.

The original COBOL specifications resulted from the work of a committee of
CODASYL. By September 1959 this committee had specified a framework upon which
an effective common business language could be built. The name COBOL which
suggests a COnunon Business Oriented Language was adopted for these
specifications. The final report of this committee was accepted by the
Executive Committee of CODASYL and published in April 1960. The document was
titled: "COBOL - A Report to the Conference on Data Systems Languages,
including Initial Specifications for a Common Business Oriented Language (COBOL)
for Programming Electronic Digital Computers". The language described in this
report has since become known as COBOL-60.

1.2 THE COBOL MAINTENANCE COMMITTEE

The Executive Committee of CODASYL recognized that the task of defining the
COBOL language was a continuing one and that the COBOL language had to be
maintained and improved. To this end, the COBOL Maintenance Committee was
created in February 1960. The COBOL Maintenance Committee was charged with the
task of answering questions arising from users and implementors of the language
and making definitive modifications, including additions, clarifications, and
changes to the COBOL language.

In order to devote concentrated attention to publishing a revised and updated
COBOL specification, the Executive Committee of CODASYL created a Special Task
Group. This Special Task Group completed its task in early 1961 and published
the COBOL-61 document in mid-1961.

XVII-1

History of COBOL

The next official COBOL
Maintenance Committee and
mid-1963.

1.3 THE COBOL COMMITTEE

publication was also the product of the COBOL
was called COBOL-61 Extended which was published in

In January 1964 the COBOL Maintenance Committee was reorganized into the
COBOL Committee consisting of three subcommittees: the Language Subcommittee,
the Evaluation Subcommittee, and the Publication Subcommittee.

The Language Subcommittee's function was much the same as was that of the
former COBOL Maintenance Committee, namely, the maintenance and further
development of COBOL. In addition it carried on liaison with the United States
of America Standards Institute (USASI) and the International Organization for
Standardization (ISO) in their work concerning the standardization of the COBOL
language.

The third official COBOL publication was the product of the COBOL Committee
and was called COBOL, Edition 1965.

1.4 THE PROGRAMMING LANGUAGE COMMITTEE

In July 1968 the CODASYL Executive Committee adopted a revised constitution
which elevated the former COBOL Language Subcommittee to full committee status
having the name of the Programming Language Committee (PLC).

The purpose and objectives of the Programming Language Committee included and
extended those of the former COBOL Language Subcommittee. The objectives were
to make possible: compatible, uniform, source programs and object results, with
continued reduction in the number of changes necessary for conversion or
interchange of source programs and data. The Programming Language Committee
concentrated its efforts in the area of tools, techniques, and ideas aimed at
the programmer.

The Programming Language Committee produced five official COBOL pubiications
which were entitled: CODASYL COBOL Journal of Development 1968, CODASYL COBOL
Journal of Development 1969, CODASYL COBOL Journal of Development 1970, CODASYL
COBOL Journal of Development 1973, and CODASYL COBOL Journal of Development
1976.

1.5 THE CODASYL COBOL COMMITTEE

In May 1977 the CODASYL Executive Committee approved the redesignation of the
CODASYL Programming Language Committee as the CODASYL COBOL Committee. This
redesignation was made to represent the responsibility of the committee more
accurately.

The CODASYL COBOL Committee produced two official COBOL publications that
were called the CODASYL COBOL Journal of Development 1978 and CODASYL COBOL
Journal of Development 1981.

XVII-2

History of COBOL

2. THE EVOLUTION OF CODASYL COBOL

2 • 1 COBOL-60

COBOL-60, the first version of the language published, proved that the
concept of a common business oriented language was indeed practical.

2.2 COBOL-61

COBOL-61, the second official version of COBOL, was not completely compatible
with COBOL-60. The changes were in areas such as organization of the Procedure
Division rather than the addition of any major functions. The avowed goal of
CODASYL in terms of successive versions of the language was to make changes of
an evolutionary rather than revolutionary nature. This version was generally
implemented and was the basis for many COBOL compilers.

2.3 COBOL-61 EXTENDED

This version of COBOL was generally compatible with COBOL-61. The term
'generally' must be used, not because of any basic changes in the philosophy or
organization of the language, but because certain arithmetic extensions and
general clarifications did make the syntax for certain statements and entries
different from those in COBOL-61.

COBOL-61 Extended, then, was generally COBOL-61 with the following major
additions and modifications:

(1) The addition of the sort feature.

(2) The addition of the report writer option.

(3) The modification of the arithmetics to include multiple receiving fields
and to add the CORRESPONDING option to the ADD and SUBTRACT statements.

2.4 COBOL, EDITION 1965

This version of COBOL included COBOL-61 Extended plus certain additions and
modifications.

The major changes incorporated in COBOL, Edition 1965, were:

(1) The inclusion of a series of options to provide for the reading,
writing, and processing of mass storage files.

(2) The addition of the table handling feature which includes indexing and
search options.

(3) The modification of the specifications to delete the requirement for
specific error diagnostic messages.

(4) The deletion of the terms "required" and "elective".

XVII-3

History of COBOL

2.5 CODASYL COBOL JOURNAL OF DEVELOPMENT 1968

This version of COBOL, published in the CODASYL COBOL Journal of Development
1968, was based on COBOL, Edition 1965, with certain additions and deletions.

The major changes incorporated in the COBOL specifications within the CODASYL
COBOL Journal of Development 1968 were:

(1) The inclusion of inter-program communication and the concept of a run
unit.

(2) The elimination of redundant editing clauses and certain data clauses
more succinctly expressed by the PICTURE clause.

(3) An improved COPY specification for all divisions except the
Identification Division and the elimination of the INCLUDE statement.

(4) The inclusion of a hardware independent means of specifying and testing
for page overflow conditions.

(5) The elimination of type 4 abbreviations.

(6) The elimination of the DEFINE statement.

(7) The inclusion of the REMAINDER phrase in the DIVIDE statement.

(8) The deletion of NOTE and REMARKS in favor of a general comment
capability for all divisions.

(9) The inclusion of the SUSPEND statement as additional
controlling graphic display devices.

(10) The inclusion of additional abbreviations.

2.6 CODASYL COBOL JOURNAL OF DEVELOPMENT 1969

means of

This version of COBOL, published in the CODASYL COBOL Journal of Development
1969, was based on the COBOL specifications in the CODASYL COBOL Journal of
Development 1968 with certain additions and deletions.

The major changes incorporated in the COBOL specifications within the CODASYL
COBOL Journal of Development 1969 were:

(1) The deletion of the EXAMINE statement and the inclusion of a more
powerful statement, INSPECT, in its place.

(2) The inclusion of a communication facility to permit input and output
with communication devices.

(3) The inclusion of the STRING and UNSTRING statements to facilitate
character string manipulation.

(4) Deletion of the CONSTANT SECTION of the Data Division.

(5) The inclusion of a compile time page ejection facility.

XVII-4

History of COBOL

(6) The inclusion of a facility to access the system's date and time.

(7) The inclusion of the SIGN clause.

2.7 CODASYL COBOL JOURNAL OF DEVELOPMENT 1970

This version of COBOL, published in the CODASYL COBOL Journal of Development
1970, was based on the COBOL specifications in the CODASYL COBOL Journal of
Development 1969 with certain additions, deletions, and modifications.

The major changes incorporated in the COBOL specifications within the CODASYL
COBOL Journal of Development 1970 were:

(1) The deletion of the RANGE clause.

(2) The inclusion of the INITIALIZE statement.

(3) The inclusion of a debugging facility.

(4) The inclusion of a merge facility.

(5) A complete revision of the report writer function.

2.8 CODASYL COBOL JOURNAL OF DEVELOPMENT 1973

This version of COBOL, published in the CODASYL COBOL Journal of Development
1973, was based on the COBOL specifications in the CODASYL COBOL Journal of
Development 1970 with certain additions, deletions, and modifications.

The major changes incorporated in the COBOL specifications within the CODASYL
COBOL Journal of Development 1973 were:

(1) A revision and extension to the mass storage facility.

(2) A clarification and extension to the COBOL library facility.

(3) An enhancement of the INSPECT statement.

(4) A revision to the file control entry for a sort or merge file which
included the deletion of format 3.

(5) A revision to the RERUN facility.

(6) The removal of the restriction on 77 level-numbers that they must
precede 01 level numbers.

(7) The inclusion of a page advancing feature as part of the WRITE
statement.

(8) An enhancement of the LINAGE clause to permit specification of margins.

XVII-5

History of COBOL

2.9 CODASYL COBOL JOURNAL OF DEVELOPMENT 1976

This version of COBOL, published in the CODASYL COBOL Journal of Development
1976, was based on the COBOL specifications in the CODASYL COBOL Journal of
Development 1973 with certain additions, deletions, and modifications.

The major changes incorporated in the COBOL specifications within the CODASYL
COBOL Journal of Development 1976 were:

(1) The inclusion of a data base facility which interfaces with the CODASYL
Data Description Language Journal of Development.

(2) The inclusion of collating sequence and character set declarations.

(3) The inc 1 us ion of a boolean (bit) manipulation facility.

(4) The inclusion of a de-editing facility.

(5) The inclusion of a reference modification facility.

(6) The inclusion of extensions to the file processing capabilities in the
Environment and Data Divisions.

(7) The inclusion of the DELETE FILE statement.

(8) The inclusion of the PURGE statement.

(9) The inclusion of a variable length record facility.

(10) The removal of random processing specifications.

(11) The removal of the ALTER statement.

(12) The removal of all numeric paragraph-names and section-names.

(13) The removal of the OPEN REVERSED faci 1 ity.

(14) The removal of level-number 77.

(15) Realignment of clauses between the Environment and Data Divisions.

(16) An option to omit the FILLER clause.

(17) An enhancement to the table handling facility to allow specification of
tables having more than three dimensions.

(18) An enbancement to the DISPLAY statement to allow NO ADVANCING.

(19) An enhancement to the INSPECT statement to simplify data transformation.

(20) The extension of the SORT and MERGE statements to permit multiple file
specifications in the GIVING phrase.

(21) The ext ens ion of the SORT and MERGE statements to relative and indexed
files.

XVII-6

History of COBOL

(22) The extension of the use of OPTIONAL to all file organizations.

2.10 CODASYL COBOL JOURNAL OF DEVELOPMENT 1978

This version of COBOL, published in the CODASYL COBOL Journal of Development
1978, was based on the COBOL specifications in the CODASYL COBOL Journal of
Development 1976 with certain additions, deletions, and modifications.

The major changes incorporated in the COBOL specifications within the CODASYL
COBOL Journal of Development 1978 are:

(1) The
positionally
alphabet.

inclusion of
relate them

a
to

facility to
the native

specify
character

symbolic-characters and
set or the user~defined

(2) The inclusion of an inter-program communication facility to permit
communication between constituent programs in a run unit.

(3) The inclusion of a global and external specification for data items.

(4) The inclusion of additional facilities to support structured
programming, including implicit and explicit terminators to delimit the scope of
statements and the CONTINUE statement.

(5) The inclusion of a multi-branch, multi-join structure, the EVALUATE
statement, to cause multiple conditions to be evaluated.

(6) The inclusion of an in~line PERFORM statement capability.

(7) The inclusion of a data base locking facility to maintain data base
integrity.

(8) The inclusion of a facility to specify overprinting and character
substitution on a receiving communication device or output device.

(9) The inclusion of the current volume pointer to facilitate exact
specification of the current physical volume of a sequential file.

(10) The inclusion of a facility for record selection by defined record keys.

(11) The inclusion of the ROLLBACK statement.

(12) The inclusion of the REPLACE statement.

(13) The inclusion of a facility in the SET statement to assign a value to a
condition-name.

(14) The inclusion of numeric paragraph-names and section-names.

(15) The inclusion of a facility for transaction oriented communication.

(16) The inclusion of facility to control input-output in separately compiled
programs.

XVII-7

History of COBOL

(17) The modification of specifications for data base keys, record keys, and
realms.

(18) The modification of currency indicators for use in maintaining position
during update of a data base.

(19) Modifications to facilitate the compatibility between
subschema facilities and the CODASYL Data Description Language.

the

(20) The expansion and clarification of data base status indicators.

(21) The deletion of comment-entries.

2.11 CODASYL COBOL JOURNAL OF DEVELOPMENT 1981

COBOL

This version of COBOL, published in the CODASYL COBOL Journal of Development
1981, was based on the COBOL specifications in the CODASYL COBOL Journal of
Development 1978 with certain additions, deletions, and modifications.

The major changes incorporated in the COBOL specifications within the CODASYL
COBOL Journal of Development 1981 are:

(1) The inclusion of a floating point data representation, including
literals and editing pictures.

(2) The inclusion of two new usages called BINARY and PACKED-DECIMAL.

(3) A change in the ADVANCING phrase of the WRITE statement to al low
positioning anywhere on a logical page.

(4) A change in the REDEFINES clause to allow the redefining item to be
either larger or smaller than the item it redefines.

(5) A change to subscripting to allow arithmetic expressions as subscripts
and to allow index-names to be used along with arithmetic expressions.

(6) The deletion of the DATA RECORDS clause.

(7) The inclusion of a RECONNECT statement to modify set membership.

(8) The deletion of the ENTER statement and a change to the CALL statement
to allow languages other than COBOL to be called.

(9) A change to the use of comma and semicolon to allow them to be used
anywhere a space can appear.

(10) The semantics for lowercase letters were defined.

(11) The deletion of the CORRESPONDING option.

(12) The inclusion of an EXIT PROGRAM statement.

(13) A change to the COLUMN clause in the report writer.

XVII-8

History of COBOL

(14) The inclusion of a PRESENT WHEN clause in the report writer for
selective printing.

(15) A change to the continuation of nonnumer1c literals which removed the
hyphen in the indicator area and added a continuation mark ("-) at the end of
the line containing the literal to be continued.

(16) A change to the reference format to allow a free format representation.

(17) The inclusion of intrinsic functions such as sine and cosine.

(18) The deletion of all label processing.

(19) The deletion of the debug facility (except for debugging lines).

(20) The inclusion of a facility to allow the specification of initial values
for table items.

(21) The inclusion of a FETCH statement.

(22) A change to the SORT and MERGE statements which removed all restrictions
on transfers of control into and out of input or output procedures.

(23) The inclusion of realm segment locking to enhance data base concurrency.

(24) The deletion of the access control mechanism from the data base
facility.

(25) The elimination of the requirement for a paragraph-name after a
section-name or at the beginning of a program.

(26) The deletion of key-names from the data base facility.

(27) A change to the intermediate data item to expand it to 20 digits.

(28) The expansion and addition of various file status codes.

2.12 CODASYL COBOL JOURNAL OF DEVELOPMENT 1984

This version of COBOL, published in the CODASYL COBOL Journal of Development
1984, was based on the COBOL specifications in the CODASYL COBOL Journal of
Development 1981 with certain additions, deletions, and modifications.

The major changes incorporated in the COBOL specifications within the CODASYL
COBOL Journal of Development 1984 are:

(1) The inclusion of a FALSE phrase in the SET statement.

(2) The deletion of the literal phrase from the STOP statement.

(3) The deletion of the SYNCHRONIZED clause.

(4) The inclusion of the WHEN-COMPILED function to return time and date of
compilation; the DATE-COMPILED entry was deleted.

XVII-9

History of COBOL

(5) The change of boolean operators from AND, EXOR, NOT, and OR to B-AND,
B-EXOR, B-NOT, and B-OR.

(6) The inclusion of the NUMVAL, NUMVAL-C, and NUMVAL-F functions.

(7) The revision of the rules for evaluation of arithmetic expressions to
enhance compatibility and portability.

(8) The inclusion of the VALIDATE facility.

(9) The inclusion of the ARITHMETIC clause in the OBJECT-COMPUTER paragraph
to allow the selection of standard or native arithmetic.

(10) The deletion of the restrictions on the use of explicit scope delimiters
and the NOT phrases of conditional statements.

(11) The inclusion of the LESS THAN operator in the START statement.

(12) The inclusion of the COLLATING SEQUENCE clause in the file control entry
of an indexed file and the deletion of the CODE-SET clause for indexed files.

(13) The revision of the rules for the READ statement to disallow executing a
READ statement after an at end condition is encountered.

(14) The inclusion of the relational operators B-LESS, CONTAINS, and IS
CONTAINED IN for boolean items.

(15) The inclusion of in-line comments.

(16) The inclusion of a CLASS clause in the SPECIAL-NAMES paragraph and a
class test for a user-defined class.

(17) The inclusion of a WITH STATUS phrase and a WITH ERROR STATUS phrase in
the STOP statement.

(18) The restoration of the integer-I TO integer-2 phrase in the RECORD
CONTAINS clause; also the inclusion of explicit rules on the implementor-defined
aspects of this clause and the absence of a RECORD clause.

(19) The revision of the rules for computing the remainder in the DIVIDE
statement.

(20) The deletion of the RERUN clause.

(21) The deletion and rev1s1on of several I-0 status values.

XVII-10

History of COBOL

3. THE STANDARDIZATION OF COBOL

3.1 INITIAL STANDARDIZATION EFFORT

American
Processing,
and Business
established
programming
"Processor
standard.

National Standards Committee on Computers and Information
X3, was established in 1960 under the sponsorship of the Computer
Equipment Manufacturers Association. The X3 Committee in turn
the X3.4 Subcommittee to pursue standards in the area of common

languages. Subsequently, Working Group X3.4.4 with the title
Specification and COBOL Standards" was established to pursue a COBOL

In December 1962 invitations to an organizational meeting of X3.4.4 were sent
to manufacturers and user groups who might be interested in participating in the
establishment of a COBOL standard. The first meeting of X3.4.4 was held on
January 15-16, 1963, in New York City. This meeting established the objective
of the X3.4.4 Working Group to be the production of a document which defined the
American standard for COBOL. It was agreed that this standard language was to
be based upon the specifications contained in the COBOL publication of CODASYL.
To accomplish its work, X3.4.4 was divided into subgroups. One of these
subgroups was X3.4.4.4 which was responsible for standard language
specifications •

3.2 USA STANDARD COBOL 1968

On August 30, 1966, X3.4.4 completed its work and approved the content and
format for a proposed USA Standard COBOL. The proposed USA Standard COBOL was
composed of a Nucleus and eight functional processing modules: Table Handling,
Sequential Access, Random Access, Random Processing, Sort, Report Writer,
Segmentation, and Library. The Nucleus and each of the eight modules were
divided into two or three levels. In all cases, the lower levels were subsets
of the higher levels within the same module. The minimum proposed standard was
defined as the low level of the Nucleus plus the low level of the Table Handling
and Sequential Access modules. The highest levels of the Nucleus and the eight
modules were defined as the full proposed USA Standard COBOL.

The X3 Committee authorized publication of the proposed USA Standard COBOL
for public review and comment from the data processing community. In April 196 7
the proposed USA Standard COBOL was published as COBOL Information Bulletin 4F9
by the Association for Computing Machinery, Special Interest Committee on
Programming Languages (SICPLAN) in the SICPLAN Notices.

X3 also authorized that concurrent with publication of the proposed USA
Standard COBOL, a letter ballot be taken of the membership of the X3 Committee
on the acceptability of the proposed USA Standard COBOL as a USA Standard. The
ballots and comments received with the ballots indicated that the X3 members
were in favor of the proposed USA Standard COBOL. X3 voted to move the Random
Processing module from the body of the proposed USA Standard COBOL to an
appendix and to forward the proposed standard on to the Information Processing
Systems Standards Board of the USA Standards Institute (USASI). (NOTE: In
August 1966 the American Standards Association (ASA) became the USA Standards
Institute (USASI); then in the fall of 1969 the USA Standards Institute (USASI)
became the American National Standards Institute (ANSI).)

XVII-11

History of COBOL

The USA Standard COBOL proposed by X3 was approved by the Information
Processing Systems Standards Board of the USA Standards Institute (USASI) on
August 23, 1968, as a USA Standard. The specifications of this USA Standard
COBOL were published in the USA Standards Institute document X3.23-1968.

3.3 AMERICAN NATIONAL STANDARD COBOL 1974

The American National Standards Technical Committee X3J4 evolved from the
X3.4.4 Working Group and its subordinate working groups which included X3.4.4.4.
X3J4 was charged with the responsibility for the maintenance of the American
National Standard COBOL X3.23-1968 (formerly called the USA Standard COBOL
X3.23-1968). This maintenance responsibility also included the revision of the
specifications contained in American National Standard COBOL X3.23-1968.

In 1969 X3J4 began the task of preparing a revision of the COBOL standard
with the development of criteria against which each candidate for inclusion in
the proposed revision was to be matched. In June 1972, X3J4 completed its work
and approved the content and format for a draft proposed revision of American
National Standard COBOL X3.23-1968. This draft proposed revision was composed
of a Nucleus and eleven functional processing modules: Table Handling,
Sequential I-0, Relative I-0, Indexed I-0, Sort-Merge, Report Writer,
Segmentation, Library, Debug, Inter-Program Communication, and Communication.
Each module contains two or three levels with nine modules having a null set as
the lowest level. In all cases, lower levels are subsets of the higher levels
within the same module. The minimum proposed standard was defined as the low
level of the Nucleus plus the low level of the Table Handling and Sequential I-0
modules. The full proposed standard was defined as the highest levels of the
Nucleus and the eleven processing modules.

The X3 Committee authorized publication of the draft proposed revision of
American National Standard COBOL X3.23-1968 for public review and comment from
the data processing community. In August 1972 the draft proposed revised X3.23
American National Standard COBOL was published by the X3 Secretariat which is
the Computer and Business Equipment Manufacturers Association.

X3 also ·authorized a letter ballot be taken of the membership of the X3
Committee on the acceptability of the draft proposed revision of American
National Standard COBOL X3.23-1968 as an American National Standard. The
ballots and comments received with the ballots indicated that the X3 members
were in favor of the draft proposed revised X3. 23 American National Standard
COBOL. X3 voted to forward the proposed revised X3.23 American National
Standard COBOL to the Standards Review Board of the American National Standards
Institute.

The revised X3.23 American National Standard COBOL proposed by X3 was
approved by the Standards Review Board of the American National Standards
Institute (ANSI) on May 10, 1974, as an American National Standard. The
specifications of this American National Standard were published in the American
National Standards Institute document X3.23-1974.

3.4 AMERICAN NATIONAL STANDARD COBOL 1985

The American National Standards Technical Committee X3J4 was charged with the
responsibility for the maintenance of the American National Standard COBOL
X3.23-1974. Thus X3J4 developed and put into effect procedures to ·handle

XVII-12

History of COBOL

requests for information and requests for interpretation of the specifications
contained in American National Standard COBOL X3.23-1974. X3J4 published
information on the specifications contained in American National Standard COBOL
X3.23-1974 in COBOL Information Bulletins 17, 18, 19, and 20. These COBOL
Information Bulletins were published by the X3 Secretariat which is the Computer
and Business Equipment Manufacturers Association.

The maintenance responsibility of X3J4 also included the rev1s1on of the
specifications contained in American National Standard COBOL X3.23-1974. In
1977 X3J4 began the task of preparing a revision of American National Standard
COBOL X3.23-1974. In June 1981 X3J4 approved the content and format for a draft
proposed revision of American National Standard COBOL X3.23-1974. In subsequent
years, X3J4 held three public review and comment periods in which comments were
received from the data processing community on the content of the draft proposed
rev1s1on of American National Standard COBOL X3.23-1974. X3J4 reviewed and
responded to all comments received during these three public review periods.

In April 1985 X3J4 approved the final version of the draft proposed X3.23
American National Standard COBOL and forwarded the document to the X3 committee
for processing. The X3 committee then voted in favor of the acceptability of
the draft proposed revision of American National Standard COBOL X3.23-1974 as an
American National Standard. This X3 vote also forwarded the proposed revised
X3.23 American National Standard COBOL to the Board of Standards Review of the
American National Standards Institute.

The revised X3.23 American National Standard COBOL proposed by X3 was
approved by' the Board of Standards Review of the American National Standards
Institute (ANSI) in September 1985 as an American National Standard. The
specifications of this American National Standard are published in the American
National Standards Institute document X3.23-1985.

XVII-13

History of COBOL

4. INTERNATIONAL STANDARDIZATION OF COBOL

4.1 ISO RECOMMENDATION R-1989-1972 FOR COBOL

Throughout the COBOL standardization activity of the X3J4 (formerly X3.4.4)
Committee, close liaison was maintained with the various international groups.
As a result, American National Standard COBOL X3.23-1968 complied with the ISO
(International Organization for Standardization) recommendation for COBOL.

The ISO recommendation for the COBOL programming language was drawn up by the
Technical Committee ISO/TC 97, Computers and Information Processing, the
Secretariat of which is held by the American National Standards Institute
(ANSI). As a result of a six-year development period, the ISO recommendation
reflected the requirements of the international data processing community. The
primary objective was to reflect a language rich enough to allow description of
a wide variety of data processing problems and to reflect accurately the
requirements of the member bodies of the International Organization for
Standardization (ISO). Great care was also taken to ensure as far as possible
identical interpretation with respect to the national COBOL standards known to
be under development.

The draft ISO Recommendation for COBOL was circulated to all the ISO member
bodies for inquiry in July 1970. The draft was approved, subject to a few
modifications of an editorial nature, by all but one of the ISO member bodies.
The draft ISO Recommendation for COBOL was then submitted to the ISO Council,
which accepted it as an ISO Recommendation in 1972. The resulting ISO
Recommendation was called ISO Recommendation R-1989-1972 for COBOL.

4.2 ISO STANDARD 1989-1978 FOR COBOL

During X3J4's work on the revision of American National Standard COBOL
X3.23-1968, close and continuous liaison was maintained with the international
COBOL community. This culminated in February 1972 with a meeting of
representatives of X3J4, European Computer Manufacturers Association Technical
Committee 6 (ECMA TC 6), and several ISO (International Organization for
Standardization) member organizations to review the proposed changes and to
resolve any differences of opinion that existed concerning the technical content
of the proposed revision.

The draft revision of ISO Standard 1989 for COBOL was circulated to all the
ISO member bodies for inquiry. This revised ISO Standard 1989 was accepted by
the ISO Council in 1978. The resulting ISO Standard was called ISO Standard
1989-1978 for COBOL.

XVII-14

History of COBOL

4.3 ISO STANDARD 1989-1985 FOR COBOL

During X3J4's work on the revision of American National Standard COBOL
X3.23-1974, close and continuous liaison was maintained with the international
COBOL community through ISO/TC 97/SC 5 COBOL Experts Group (CEG). The draft
proposed revision of American National Standard COBOL X3.23-1974 was presented
to ISO/TC 97/SC 5 in October 1981 as a proposed revision of ISO 1989-1978,
Programming Language - COBOL. ISO/TC 97/SC 5 unanimously approved a resolution
to send the proposed revision of ISO 1989-1978 COBOL to the central secretariat
for registration as a draft proposal and for circulation to SC 5 primary members
for a comment period closing February 13, 1982.

The draft revision of ISO Standard 1989 for COBOL was cir~ulated to all the
ISO member bodies for inquiry. This revised ISO Standard 1989 was accepted by
the ISO Council in 1985. The resulting ISO Standard was called ISO Standard
1989-1985 for COBOL.

XVII-15

Second and Third Standard Differences

APPENDIX B: DIFFERENCES BETWEEN SECOND AND THIRD STANDARD COBOL

1. SUMMARY OF DIFFERENCES BETWEEN SECOND AND THIRD STANDARD COBOL

This first portion of Appendix B contains a surmnary of all elements in second
Standard COBOL and in third Standard COBOL. These elements are organized
according to the COBOL divisions.

The column titled "2ND STD" specifies elements of second Standard COBOL. The
column titled "3RD STD" specifies elements of third Standard COBOL.

The letter N in a column indicates the absence of the specified element. The
presence of an element is specified by a three-character module abbreviation as
shown in the following table.

Abbreviation

NUC
TBL
SEQ
REL
INX
IPC
SRT
STM
LIB
RPW
COM
DEB
SEG

Meaning

Nucleus
Table Handling
Sequential I-0
Relative I-0
Indexed I-0
Inter-Program Communication
Sort-Merge
Source Text Manipulation
Library
Report Writer
Communication
Debug
Segmentation

The level of an element within the module is indicated by the number
preceding the three-character abbreviation of the module. For example, 2 NUC
indicates that the element is a level 2 element within the Nucleus module and
1 INX indicates that the element is a level 1 element within the Indexed I-0
module. The letter Z follows the three-character abbreviation of the module if
the element is an obsolete element in third Standard COBOL that is to be deleted
from the next revision of Standard COBOL.

XVII-16

Language Concepts Difference Sununary

ELEMENT

LANGUAGE CONCEPTS
Character Set

SUMMARY OF DIFFERENCES IN LANGUAGE CONCEPTS

Characters used in words 0-9 A-Z - (hyphen)
Characters used in
Characters used in

punc tu at ion 11 () space •••••••••••••••••••
punctuation (comma) (semicolon) ••••••••

Characters used in punctuation (colon)
Characters used in
Characters used in

punctuation =
editing B + Z * $ 0 CR DB /

Characters used in arithmetic operations + *I**
Characters used in relation conditions = > < ..••.•............
Characters used in relation conditions >= <= .••••....•.••....•
Characters used in subscripting + - •••••••••••••••••••••••••••
Double character substitution allowed •••••••••••••••••••••••••••
Single character substitution allpwed •••••••••••••••••••••••••••
Single character substitution must be made for

missing COBOL characters
Separators

11 () space
(comma) (semicolon) ..
(colon)

A space which is part of a separator may be one or more
space characters .. .

Character-Strings
COBOL words

Maximum Of 30 characters•........•...............•........
System-names and user-defined words must be disjoint sets ••••••
System-names and user-defined words form intersecting sets
User-defined words

Alphabet -name .. .
Cd -name •••..........••..•.......•..••.•..........•.......•.•..
Class-name ..
Condition-name ..
Data-name ... ··
Must begin with alphabetic character •••••••••••••••••••••••••
Need not begin with alphabetic character •••••••••••••••••••••

File-name ...

Index-name
Level-number
Library-name
Mnemonic-name
Paragraph-name
Program-name

.. ~

XVII-17

2ND
STD

1 NUC
1 NUC
2 NUC
N
2 LIB
1 NUC
2 NUC
2 NUC
N
2 TBL
1 NUC
N

1 NUC

1 NUC
2 NUC
N
2 LIB

N

1 NUC
1 NUC
N

1 NUC
l COM
N
2 NUC
1 NUC
1 NUC
2 NUC
1 SEQ
1 REL
1 INX
1 SRT
1 RPW
1 TBL
1 NUC
2 LIB
1 NUC
1 NUC
1 NUC

3RD
STD

1 NUC
1 NUC
1 NUC
2 NUC
2 STM
1 NUC
2 NUC
1 NUC
1 NUC
1 NUC
1 NUC Z
1 NUC

N

1 NUC
1 NUC
2 NUC
2 STM

1 NUC

1 NUC
N
1 NUC

1 NUC
1 COM
1 NUC
2 NUC
1 NUC
N
1 NUC
1 SEQ
1 REL
1 INX
1 SRT
1 RPW
1 NUC
1 NUC
2 STM
1 NUC
1 NUC
1 NUC

Language Concepts Difference Sununary

SUMMARY OF DIFFERENCES IN LANGUAGE CONCEPTS

ELEMENT

User-defined words (continued)
Record-name

Report -name
Routine-name
Section-name
Segment-number
Symbolic-character
Text-name

System-names
Computer-name ••••••
Implementor-name
Language-name ••.•••

Reserved words
Required words •••••••••

Key words
Special character words
Arithmetic operators + * I
Arithmetic operators used in
Arithmetic operators used in
Relation characters = > <
Relation characters >= <=

**
subscripting + - ••••••••
indexing + - ••••••

Opt iona 1 words ..•.•.•..•••..••...•.
Connectives •••••••••••
Special purpose words
Figurative constants

ZERO, SPACE, HIGH-VALUE, LOW-VALUE,
ALL option

ZEROS, ZEROES, SPACES, HIGH-VALUE,
ALL option

Symbolic-character
ALL option

ALL literal
Special registers

LINAGE-COUNTER
LINE-COUNTER
PAGE-COUNTER
DEBUG-ITEM

Literals

QUOTE

LOW-VALUES, QUOTES

Numeric literals: 1
Nonnumeric literals:

through 18 digits ••••••••••••••
I through 120 characters

Nonnumeric literals:
Nonnumeric literals:

1 through 160 characters
Length applies to representation in

object program
PICTURE character-strings •••••
Com.ment-entries ••.•••......•••.....•.....•.....•......•.

XVII-18

...... '.

2ND
STD

1 SEQ
1 REL
1 INX
1 SRT
1 RPW
1 NUC
1 NUC
1 SEG
N
1 LIB

I NUC
1 NUC
1 NUC

1 NUC
1 NUC

2 NUC
N
2 TBL
2 NUC
N
1 NUC
2 NUC

1 NUC
N
2 NUC
N
N
N
2 NUC

2 SEQ
1 RPW
1 RPW
1 DEB

1 NUC
1 NUC
N

N
1 NUC
I NUC

3RD
STD

1 SEQ
1 REL
1 INX
1 SRT
1 RPW
1 NUC Z
1 NUC
1 SEG Z
2 NUC
1 STM

1 NUC
1 NUC
1 NUC Z

1 NUC
1 NUC

2 NUC
1 NUC

NUC I
1
1
1
N

NUC
NUC
NUC

1 NUC
2 NUC
1 NUC
2 NUC
2 NUC
2 NUC
2 NUC

2 SEQ
1 RPW
1 RPW
1 DEB Z

I
N
1

I
1
1

NUC

NUC

NUC
NUC
NUC z

Language Concepts Difference Summary

SUMMARY OF DIFFERENCES IN LANGUAGE CONCEPTS

ELEMENT

Uniqueness of Reference
Uniqueness of reference required at time
Uniqueness of reference required at time
Qualification

of reference ••••.••
of specification

No qualification permitted ••••••••••••
Qualification permitted ····~········
At least 5 levels of qualifiers must be permitted
50 qualifiers ••••••••••••••••••

Subscripting (data-name/literal)
3 levels
7 levels

Subscripting (index-name)
3 levels
7 levels

Relative subscripting
Relative indexing
Reference modification

Reference Format
Sequence
Must be

number
digits

May be any character
Continuation of lines

1n computer character set

Continuation of
Continuation of
Continuation of

nonnumeric literal •••••••••••
COBOL word, numeric literal
PICTURE character-string

Intervening
Intervening

Blank lines
Comment lines

comment lines allowed
blank lines allowed

Asterisk(*) comment line ••••••
Slant (/) comment;,· line

Debugging line with D in indicator

Source Program Structure
Identification Division required
Environment Division optional
Data Division optional •••••••

area

Procedure Division optional ••••••
End program header ••••••••••••••
Nested source programs •••••••

XVII-19

.........

N

2ND
STD

2 NUC

1 NUC
2 NUC
2 NUC
N
1 TBL
1 TBL
N
1 TBL
1 TBL
N
N
1 TBL
N

1 NUC
1 NUC
N

1 NUC
2 NUC
N
N
N
1 NUC

1 NUC
1 NUC
1 DEB

1 NUC
N
N
N
N
N

3RD
STD

1 NUC
N

1 NUC
2 NUC
N
2 NUC
1 NUC
1 NUC
2 NUC
1 NUC
1 NUC
2 NUC
1 NUC

NUC
2 NUC
1

1 NUC
N
1 NUC

1 NUC
1 NUC
2 NUC
1 NUC
1 NUC
1 NUC

1 NUC
1 NUC
1 NUC

1 NUC
1 NUC
1 NUC
1 NUC
2 NUC
2 IPC

Identification Division Difference Suilllllary

SUMMARY OF DIFFERENCES IN IDENTIFICATION DIVISION

ELEMENT

IDENTIFICATION DIVISION
PROGRAM-ID paragrap~ .. .

Program-name
Identifies source program and listings •••••••••••...••••••••••.
Identifies object program

COMMON clause •••
INITIAL clause

AUTHOR paragraph
INSTALLATION paragraph
DATE-WRITTEN paragraph
DATE-COMPILED paragraph
SECURITY paragraph

XVII-20

2ND
STD

1 NUC
1 NUC
1 NUC
N
N
N
1 NUC
1 NUC
1 NUC
2 NUC
1 NUC

1
1
1
1
2
2
1
1
1
2
1

3RD
STD

NUC
NUC
NUC
NUC
IPC
IPC
NUC
NUC
NUC
NUC
NUC

z
z
z
z
z

Environment Division Difference Summary

SUMMARY OF DIFFERENCES IN ENVIRONMENT DIVISION

ELEMENT

ENVIRONMENT DIVISION
Environment Division 1s
Environment Division is

Configuration Section
Configuration Section is
Configuration Section is

required .•
optional ••

required ••
optional ••

SOURCE-COMPUTER paragraph ••••••.••••
SOURCE-COMPUTER paragraph is required •.
SOURCE-COMPUTER paragraph 1s optional.
Empty paragraph may be specified •.••••
Computer-name
WITH DEBUGGING MODE clause
WITH DEBUGGING MODE clause

for debugging
for debugging

OBJECT-COMPUTER paragraph •.•••••.••.••.•
OBJECT-COMPUTER paragraph is required ••
OBJECT-COMPUTER paragraph is optional ••
Empty paragraph may be specified ••
Computer-name
MEMORY SIZE clause •.•.••••..•••..•
PROGRAM COLLATING SEQUENCE clause ••••
SEGMENT-LIMIT clause •••

SPECIAL-NAMES paragraph
ALPHABET clause •••••

STANDARD-1
STANDARD-2

opt ion ••
opt ion ••

NATIVE option .•.••.
Implementor-name option ••••••••
Literal option ••••••....•••.•.••

CLASS clause ••••.•••..•
CURRENCY SIGN clause •.•
Literal can be figurative constant ••

DECIMAL-POINT clause •.•••
Implementor-name clause ••

IS mnemonic-name option •.

lines •.
sections ••

.......

....

If implementor-name is switch, condition-name must
be specified

If implementor-name is switch, condition-name may
be specified

ON STATUS IS condition-name
OFF STATUS IS condition-name

opt ion ••
opt ion ••

SYMBOLIC CHARACTERS clause

Input-Output Sec ti on ••

XVII-21

2ND
STD

1 NUC
N
1 NUC
1 NUC
N
1 NUC
1 NUC
N
N
1 NUC
1 DEB
1 DEB
1 NUC
1 NUC
N
N
1 NUC
1 NUC
1 NUC
2 SEG
1 NUC
1 NUC
1 NUC
N
1 NUC
1 NUC
2 NUC
N
1 NUC
1 NUC
1 NUC
1 NUC
1 NUC

1 NUC

N
1 NUC
1 NUC
N

1
1
1
1
1

SEQ
REL
INX
SRT
RPW

N

3RD
STD

1 NUC
1 NUC
N
1 NUC
1 NUC
N
1 NUC
1 NUC
1 NUC
1 NUC
1 DEB Z
1 NUC
N
1 NUC
1 NUC
1 NUC
1 NUC Z
1 NUC
2
1
1
1
1
1
1

SEG Z
NUC
NUC
NUC
NUC
NUC
NUC

2 NUC
1 NUC
1 NUC
N
1 NUC
1 NUC
1 NUC

N

1
1
1

NUC
NUC
NUC

2 NUC

1
1
1
1
1

SEQ
REL
INX
SRT
RPW

Environment Division Difference Summary

SUMMARY OF DIFFERENCES IN ENVIRONMENT DIVISION

ELEMENT

FILE-CONTROL paragraph

File control entry

SELECT clause .. ,

OPTIONAL phrase

Input file

I-0 file ..

Extend file

File-name references a file connector

ACCESS MODE clause
SEQUENTIAL

RANDOM

DYNAMIC

RELATIVE KEY phrase
ALTERNATE RECORD KEY clause

WITH DUPLICATES phrase

XVII-22

2ND 3RD
STD STD

1 SEQ 1 SEQ
1 REL 1 REL
1 INX 1 INX
1 SRT 1 SRT
1 RPW 1 RPW
1 SEQ 1 SEQ
1 REL 1 REL
1 INX 1 INX
1 SRT 1 SRT
1 RPW 1 RPW
1 SEQ 1 SEQ
1 REL 1 REL
1 INX 1 INX
1 SRT 1 SRT
1 RPW 1 RPW
2 SEQ 2 SEQ

2 REL
2 INX
1 RPW

2 SEQ 2 SEQ
2 REL
2 INX

N 2 SEQ
2 REL
2 INX

N 2 SEQ
2 REL
2 INX
1 RPW

N 1 SEQ
1 REL
1 INX
1 SRT
1 RPW

1 SEQ 1 SEQ
1 REL 1 REL
1 INX 1 INX
1 RPW 1 RPW
1 REL 1 REL
1 INX 1 INX
2 REL 2 REL
2 INX 2 INX
1 REL 1 REL
2 INX 2 INX
2 INX 2 INX

Environment Division Difference Sunnnary

SUMMARY OF DIFFERENCES IN ENVIRONMENT DIVISION

ELEMENT

File control entry (continued)
ASSIGN clause•..................

Implementor-name•.•...•........

Literal

FILE STATUS clause•.•..••..•............•...........•.

ORGANIZATION clause
SEQUENTIAL •••

RELATIVE •••
INDEXED •••••••.••••••••••••••••••••••••••••.••••.••••••••••••••

PADDING CHARACTER clause ••

RECORD DELIMITER clause •••

RECORD KEY clause •••
RESERVE AREA clause •••

I -0-CONTROL paragraph •••

Order of clauses is immaterial

MULTIPLE FILE TAPE clause •••••••••••••••••••••••••••••••••••••••

RE RUN c 1 a us e ••••••••••••••

XVII-23

2ND 3RD
STD

1 SEQ
1 REL
1 INX
1 SRT
1 RPW
1 SEQ
1 REL
1 INX
1 SRT
1 RPW
N

1 SEQ
1 REL
1 INX
1 RPW

1 SEQ
1 RPW
1 REL
1 INX
N

N

1 INX
2 SEQ
2 REL
2 INX
1 RPW
2 SEQ
2 REL
2 INX
2 SRT

N

2 SEQ

1 SEQ
1 REL
1 INX

STD

1 SEQ
1 REL
1 INX
1 SRT
1 RPW
1 SEQ
1 REL
1 INX
1 SRT
1 RPW
1 SEQ
1 REL
1 INX
1 SRT
1 RPW
1 SEQ
1 REL
1 INX
1 RPW

1 SEQ
1 RPW
1 REL
1 INX
2 SEQ
1 RPW
2 SEQ
1 RPW
1 INX
2 SEQ
2 REL
2 INX
1 RPW
1 SEQ
1 REL
1 INX
1 SRT
1 RPW
1 SEQ
1 REL
1 INX
1 SRT
1 RPW
2 SEQ Z
1 RPW Z
1 SEQ Z
1 REL Z
1 INX Z

Environment Division Difference Sununary

SUMMARY OF DIFFERENCES IN ENVIRONMENT DIVISION

2ND 3RD
ELEMENT STD STD

I-0-CONTROL paragraph (continued)
SAME AREA c 1 aus e 1 SEQ 1 SEQ

1 REL 1 REL
1 INX 1 INX
1 RPW 1 RPW

SAME RECORD AREA c la use ••• 2 SEQ 2 SEQ
2 REL 2 REL
2 INX 2 INX
2 SRT 1 SRT

SAME SORT/SORT-MERGE AREA clause •••••••••••••••••••••••••••••••• 2 SRT 1 SRT

XVII-24

Data Division Difference Sununary

SUMMARY OF DIFFERENCES IN DATA DIVISION

ELEMENT

DATA DIVISION
Data Division is required •••••••••••••••••••••••••••••••••••••••
Data Division is optional •••••••••••••••••••••••••••••••••••••••

File Section

File description entry •••••••••••••••••••••••••••.•••••••••••••••

FD level indicator

BLOCK CONTAINS clause
Integer RECORDS/CHARACTERS

Integer-1 TO integer-2 RECORDS/CHARACTERS ••••••••••••••••••••••

CODE-SET clause ••••••••••••••.•••••••••••••.••••.•••••••••••••••

DATA RECORDS clause ••••••••••••••••• ~ •••••••••••••••••••••••••••

EXTERNAL clause •••
GLOBAL clause
LABEL RECORDS c 1 a use ••

LINAGE clause .•••...•••.•.•..•••••••••••.•••••••••••...•••.•..•.
FOOTING phrase •••
TOP phrase ••••••••••••••••••••••••••.•••••••••.•••••.••••••••••
BOTTOM phrase •••••••••••••••.••••••.•••.•••••••••••••••••••••••

RECORD clause
Integer -1 CHARACTERS •••

VARYING IN SIZE phrase •••

XVII-25

2ND
STD

1 NUC
N
1 SEQ
1 REL
1 INX
1 SRT
1 RPW
1 SEQ
1 REL
1 INX
1 RPW
1 SEQ
1 REL
1 INX
1 RPW

1 SEQ
1 REL
1 INX
1 RPW
2 SEQ
2 REL
2 INX
1 RPW
1 SEQ
1 RPW
1 SEQ
1 REL
1 INX
N
N
1 SEQ.
1 REL
1 INX
1 RPW
2 SEQ
2 SEQ
2 SEQ
2 SEQ

1 SEQ
1 REL
1 INX
1 RPW
N

N

3RD
STD

1 NUC
1 SEQ
1 REL
1 INX
1 SRT
1 RPW
1 SEQ
1 REL
1 INX
1 RPW
1 SEQ
1 REL
1 INX
1 RPW

1 SEQ
1 REL
1 INX
1 RPW
2 SEQ
2 REL
2 INX
1 RPW
1 SEQ
1 RPW
1 SEQ
1 REL
1 INX
2 IPC
2 IPC
1 SEQ
1 REL
1 INX
1 RPW
2 SEQ
2 SEQ
2 SEQ
2 SEQ

1 SEQ
1 REL
1 INX
1 RPW
2 SEQ
2 REL
2 INX

z
z
z

z
z
z
z

Data Division Difference Surmnary

SUMMARY OF DIFFERENCES IN DATA DIVISION

ELEMENT

RECORD clause (continued)
Integer-4 TO integer-5 CHARACTERS

REPORT clause •••
VALUE OF clause

Implementor-name IS literal

Implementor-name IS literal series

Implementor-name IS data-name ••••••••••••••••••••••••••••••••••

Implementor-name IS data-name series

Sort-merge file description entry •••••••••••••••••••••••••••••••••
SD level indicator
DATA RECORDS clause •••
RECORD clause

Int e ger-1 CHARACTERS •...•....•..•..•••.•............•.•••••..•.
VARYING IN SIZE phrase
Integer-4 TO integer-5

...
CHARACTERS ••••••••••••••••••••••••••••••

~R=e=c=o=r=d-=d=e=s=c=r=i~p=t=i=o=n--=en"'-=tr~y,,__=in""--F~il=e~=Se=c=t=1=·o==n ••••••••••••••••••••••••••

Working-Storage Sect ion .. .
Record description entry •••
77 level description entry •••••••••••••••••••••••••••••••••••••••

Linkage Section .. .
Record description entry ~
77 level description entry •••••••••••••••••••••••••••••••••••••••

XVII-26

2ND
STD

1 SEQ
1 REL
1 INX
I RPW
1 RPW

1 SEQ
1 REL
1 INX
1 RPW
1 SEQ
1 REL
1 INX
1 RPW
2 SEQ
2 REL
2 INX
1 RPW
2 SEQ
2 REL
2 INX
1 RPW

1 SRT
1 SRT
1 SRT

1 SRT
N
1 SRT,

1 SEQ
I REL
1 INX
1 SRT

1 NUC
1 NUC
I NUC

1 IPC
1 IPC
1 IPC

3RD
STD

1 SEQ
I REL
1 INX
1 RPW
1 RPW

1 SEQ z
I REL z
I INX z
1 RPW z
I SEQ z
I REL z
I INX Z
1 RPW Z
2 SEQ Z
2 REL z
2 INX z
1 RPW z
2 SEQ z
2 REL z
2 INX z
1 RPW z

1 SRT
1 SRT
1 SRT 2

1 SRT
1 SRT
1 SRT

I SEQ
1 REL
1 INX
1 SRT

1 NUC
1 NUC
1 NUC

1 IPC
I IPC
1 IPC

Data Division Difference Summary

SUMMARY OF DIFFERENCES IN DATA DIVISION

ELEMENT

Communication Section •••••••••••
Communication description entry

CD level indicator ••••••
FOR INPUT clause

INITIAL
END KEY
MESSAGE
MESSAGE

phrase
clause
COUNT clause
DATE clause

clause MESSAGE TIME
SYMBOLIC QUEUE clause

SOURCE clause
SUB-QUEUE-1 clause
SUB-QUEUE-2 clause
SUB-QUEUE-3 clause

SYMBOLIC
SYMBOLIC
SYMBOLIC
SYMBOLIC
STATUS KEY clause
TEXT LENGTH clause

series Data-name
FOR OUTPUT clause

DESTINATION COUNT clause
Must be one
Must be one or greater

DESTINATION TABLE clause
INDEXED BY clause

ERROR KEY clause
SYMBOLIC DESTINATION clause
STATUS KEY clause
TEXT LENGTH clause

FOR I-0 clause
INITIAL phrase
END KEY clause
MESSAGE DATE clause
MESSAGE TIME clause
STATUS KEY clause
SYMBOLIC TERMINAL clause
TEXT LENGTH clause ••••••
Data-name series ••••••••

Record description entry

Report Section •••••••••••
Report description entry

RD level indicator
CODE clause
CONTROL clause
GLOBAL clause
PAGE clause

Report group description entry

.......

XVII-27

2ND
STD

1 COM
1 COM
1 COM
1 COM
2 COM
1 COM
1 COM
1 COM
1 COM
1 COM
1 COM
1 COM
1 COM
1 COM
1 COM
1 COM
1 COM
1 COM
1 COM
1 COM
2 COM
1 COM
1 COM
1 COM
1 COM
1 COM
1 COM
N
N
N
N
N
N
N
N
N
1 COM

1 RPW
1 RPW
1 RPW
1 RPW
1 RPW
N
1 RPW
1 RPW

3RD
STD

1 COM
1
1
1

COM
COM
COM

2 COM
1 COM
1
1
1
1
1
2
2
2
1
1
2
1
1
1

COM
COM
COM
COM
COM
COM
COM
COM
COM
COM
COM
COM
COM
COM

2 COM
2 COM
2 COM
1 COM
1 COM
1 COM
1 COM
1 COM
2 COM
1 COM
1 COM
1 COM
1 COM
1 COM
1 COM
2 COM
1 COM

1 RPW
1 RPW
1 RPW
1 RPW
1 RPW
2 IPC
1 RPW
1 RPW

Data Division Difference Sunnnary

SUMMARY OF DIFFERENCES IN DATA DIVISION

ELEMENT
2ND
STD

The following clauses appear in record description entry, data description
entry, 77 level description entry, or report group description entry:

BLANK WHEN ZERO clause

COLUMN NUMBER clause
Data-name clause

EXTERNAL clause
FILLER clause

FILLER clause is
Elementary item
Group item

GLOBAL clause
JUSTIFIED clause

optional

Level-number clause
OI through IO; level-number must be 2 digits
OI through 49; level-number may be I or 2 digits

66
77
88

LINE NUMBER clause
NEXT GROUP clause
OCCURS clause

Integer TIMES
ASCENDING/DESCENDING KEY phrase
INDEXED BY phrase ••.••••••..•..
Integer-I TO integer-2 TIMES DEPENDING ON phrase
Integer-I may be zero
DEPENDING ON data-name must be positive integer

PICTURE clause

Character-string has a maximum of 30 characters

Data characters X 9 A

Operational symbols s v p

Nonfloating insertion characters B + - $ 0 CR DB /

B allowed in alphabetic item

Replacement or floating insertion characters $ + - z *

Currency sign substitution

Decimal point substitution

XVII-28

I NUC
I RPW
I RPW
I NUC
I RPW
N
I NUC
N
I NUC
N
N
1 NUC
I RPW

NUC 1
1
2
I
2
I

NUC
NUC
RPW
NUC
NUC

2 NUC
I RPW
I RPW
I TBL
I TBL
2 TBL
I TBL
2 TBL
N
2 TBL
I NUC
I
1
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

RPW
NUC
RPW
NUC
RPW
NUC
RPW
NUC
RPW
NUC
RPW
NUC
RPW
NUC
RPW
NUC
RPW

3RD
STD

I NUC
I RPW
I RPW
1 NUC
I RPW
2 IPC
I NUC
I NUC
I NUC
I NUC
2 IPC
I NUC
I RPW
I NUC
N
I NUC
I RPW
2 NUC
I NUC
2 NUC
I RPW
I RPW
1 NUC
1 NUC
2 NUC
1 NUC
2 NUC
2 NUC
2 NUC
1
I
1
1
1
1
1
1
1
1
N
N

NUC
RPW
NUC
RPW
NUC
RPW
NUC
RPW
NUC
RPW

I NUC
1 RPW
1 NUC
I RPW
1 NUC
I RPW

Data Division Difference Sumnary

SUMMARY OF DIFFERENCES IN DATA DIVISION

ELEMENT

REDEFINES clause
May not be nested
May be nested
Redefining of 01 levels may be greater than size

of original area
Redefining of non-01 levels must be equal to size

of original area
Redefining of non-01 levels must be less than or

equal to size of original area
RENAMES clause •••••••••••••••
SIGN clause

SOURCE clause
SUM clause
SYNCHRONIZED clause
TYPE clause
USAGE clause

BINARY
COMPUTATIONAL
DISPLAY ... -~
INDEX •••..••••
PACKED-DECIMAL

VALUE clause

Literal

Literal series
Literal-I THROUGH literal-2
Literal range series ••.••••••••••••

XVII-29

2ND
STD

1 NUC
1 NUC
2 NUC

1 NUC

1 NUC

N
2 NUC
1 NUC
N
1 RPW
1 RPW
1 NUC
1 RPW
1 NUC
1 RPW
N
1 NUC
1 NUC
1 RPW
1 TBL
N
1 NUC
1 RPW
1 NUC
1 RPW
2 NUC
2 NUC
2 NUC

3RD
STD

1 NUC
1 NUC
2 NUC

1 NUC

N

1 NUC
2 NUC
1 NUC
1 RPW
1 RPW
1 RPW
1 NUC
1 RPW
1 NUC
1 RPW
1 NUC
1 NUC
1 NUC
1 RPW
1 NUC
1 NUC
1 NUC
1 RPW
1 NUC
1 RPW
2 NUC
2 NUC
2 NUC

Procedure Division Difference Sununary

SUMMARY OF DIFFERENCES IN PROCEDURE DIVISION

ELEMENT

PROCEDURE DIVISION
Procedure Division is required
Procedure Division is optional

Procedure Division header
USING phrase •.•.•••••••••.•

At least 5 operands permitted
No minimum on number of operands

Declarative procedures
permitted

DECLARATIVES

END DECLARATIVES

Arithmetic expressions •••.•.
Binary arithmetic operators
Unary arithmetic operators

Conditional expressions
Simple condition

+ - * I **
+ -

Relation condition
Relational operators

{NOT] GREATER THAN
[NOT] >
[NOT]
[NOT]

LESS THAN
<

[NOT] EQUAL TO
[NOT] =
GREATER THAN OR EQUAL TO
>=
LESS THAN OR EQUAL TO
<=

Comparison of numeric operands
Comparison of nonnumeric operands
Operands must be of equal size
Operands may be of unequal size

Comparison of index-names and/or index data items

XVII-30

2ND
STD

1 NUC
N
1 NUC
1 IPC
N
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

IPC
SEQ
REL
INX
RPW
DEB
SEQ
REL
INX
RPW
DEB
SEQ
REL
INX
RPW

1 DEB
2 NUC
2 NUC
2
1
1
1
1
1
2
1
2
1
2
N
N
N
N

NUC
NUC
NUC
NUC
NUC
NUC
NUC
NUC
NUC
NUC
NUC

1 NUC
1 NUC
1 NUC
2 NUC
1 TBL

N

3RD
STD

1 NUC
1 NUC
1 IPC
1 IPC
2 IPC
1 SEQ
1 REL
1 INX
1 RPW
1 DEB 2
1 SEQ
1 REL
1 INX
1 RPW
l DEB 2
1 SEQ
1 REL
1 INX
1 RPW
l DEB
2 NUC
2 NUC
2 NUC
1 NUC
1 NUC
1 NUC
l NUC
1 NUC
1 NUC
1 NUC
1 NUC
1 NUC
1 NUC
l NUC
1 NUC
1 NUC
1 NUC
1 NUC
1 NUC
N
I NUC
1 NUC

Procedure Division Difference Summary

SUMMARY OF DIFFERENCES IN PROCEDURE DIVISION

ELEMENT

Conditional expression (continued)
Simple condition
Class condition

NUMERIC
ALPHABE'I'IC

(continued)

alphabetic characters) (uppercase
ALPHABETIC (uppercase
ALPHABETIC-LOWER
ALPHABETIC-UPPER

and lowercase alphabetic characters)

Class-name
Condition-name condition
Sign condition ••••••••••••••••••••••••••••
Switch-status condition •••••••

Complex condition •••••••
Logical operators AND
Negated condition ••••••
Combined condition
Parenthesized conditions

OR NOT

Abbreviated combined relation conditions
Arithmetic statements •••••••••••••••••••
Arithmetic operands limited to 18 digits
Composite of operands limited to 18 digits

ACCEPT statement
Identifier
Only one transfer of data •••••••••••••••
No restriction on number of transfers of data
FROM mnemonic-name phrase
FROM DATE/DAY/TIME phrase
FROM DAY-OF-WEEK phrase

ACCEPT MESSAGE COUNT statement
ADD statement ••••••
Identifier/literal
Identifier/literal series

identifier ••••••••••••••••

......... ~ .

...

. ... ,• .
TO
TO identifier series •••••••••
TO identifier/literal GIVING identifier •••••••••••
TO identifier/literal GIVING identifier series
GIVING identifier ••••••••••••••••••
GIVING identifier series
ROUNDED phrase
ON SIZE ERROR phrase
NOT ON SIZE ERROR phrase ••••••
END-ADD phr a·se •••••••••.•••••••
CORRESPONDING phrase •••••••••••••••

ALTER statement
Only one procedure-name •••••••••••••
Procedure-name series •••••••••••••••

XVII-31

2ND
STD

1 NUC
1 NUC
1 NUC
N
N
N
N
2 NUC
2 NUC
1 NUC
2 NUC
2 NUC
2 NUC
2 NUC
2 NUC
2 NUC
1 NUC
1 NUC
1 NUC
1 NUC
1 NUC
1 NUC
2 NUC
2 NUC
2 NUC
N
1
1
1
1
1
2
N
N

COM
NUC
NUC
NUC
NUC
NUC

I NUC
2 NUC
I NUC
1 NUC.
N
N
2 NUC
1 NUC
1 NUC
2 NUC

1
1
N
1
1
1
1
2
2
1
2
2
2
2
1
2
1
1
1
I
I
I
2
2
2
2
1
1
1
I
1
I
1
1
1
1
I
I
1
I
2
1
1
2

3RD
STD

NUC
NUC

NUC
NUC
NUC
NUC
NUC
NUC
NUC
NUC
NUC
NUC
NUC
NUC
NUC
NUC
NUC
NUC
NUC
NUC
NUC
NUC
NUC
NUC
NUC
COM
NUC
NUC
NUC
NUC
NUC
NUC
NUC
NUC
NUC
NUC
NUC
NUC
NUC
NUC
NUC
NUC
NUC

z
z
z

Procedure Division Difference Summary

SUMMARY OF DIFFERENCES IN PROCEDURE DIVISION

ELEMENT

CALL statement
Literal
Identifier
USING phrase
Identifier
At least 5 operands permitted
No minimum on number of operands
Elementary item other than 01

BY REFERENCE phrase
BY CONTENT phrase

ON OVERFLOW phrase
ON EXCEPTION phrase
NOT ON EXCEPTION phrase
END-CALL phrase

CANCEL statement
Literal
Identifier

CLOSE statement

File-name

File-name series

REEL/UNIT phrase

FOR REMOVAL phrase

WITH NO REWIND phrase

WITH LOCK phrase

COMPUTE statement
Arithmetic expression
Identifier series
ROUNDED phrase
ON SIZE ERROR phrase
NOT ON SIZE ERROR phrase
END-COMPUTE phrase

CONTINUE statement

permitted

XVII-32

2ND
STD

1 IPC
1 IPC
2 IPC
1 IPC
1 IPC
N
1 IPC
N
N
N
2 IPC
N
N
N
2
2
2
1
1
1
1
1
1
1
1
2
1
1
1
1
1
2
1
2
1
2
1
1

IPC
IPC
IPC
SEQ
REL
INX
RPW
SEQ
REL
INX
RPW
SEQ
REL
INX
RPW
SEQ
RPW
SEQ
RPW
SEQ
RPW
SEQ
REL
INX

1 RPW
2 NUC
2 NUC
2
2
2
N
N
N

NUC
NUC
NUC

3RD
STD

1 IPC
1 IPC
2 IPC
1 IPC
1 IPC
1 IPC
2 IPC
1 IPC
2 IPC
2 IPC
2 IPC
2 IPC
2 IPC
1 IPC
2 IPC
2 IPC
2 IPC
1 SEQ
1 REL
1 INX
1 RPW
1 SEQ
1 REL
1 INX
1 RPW
1 SEQ
1 REL
1 INX
1 RPW
1 SEQ
1 RPW
2 SEQ
1 RPW
2 SEQ
1 RPW
2 SEQ
2 REL
2 INX
1 RPW
2 NUC
2 NUC
2 NUC
2 NUC
2 NUC
2 NUC
2 NUC
1 NUC

Procedure Division Difference Sunnnary

SUMMARY OF DIFFERENCES IN PROCEDURE DIVISION

ELEMENT

DELETE statement

INVALID KEY phrase

NOT INVALID KEY phrase •.••.•...•••••..••••••.••...•..•.••...•.••

END-DELETE phrase

DISABLE
INPUT

statement
phrase

TERMINAL phrase
I-0 TERMINAL phrase
OUTPUT phrase ••••••••
KEY phrase

DISPLAY statement
Only one transfer of data
No restriction on number
Identifier/ 1 i teral
Ident if ier:-/1 iteral
UPON mnemonic-name

series
phrase

WITH NO ADVANCING phrase
DIVIDE statement ••••••

BY identifier/literal
INTO identifier •••••••
INTO identifier series
GIVING identifier
GIVING identifier series
ROUNDED phrase
REMAINDER phrase
ON SIZE ERROR phrase
NOT ON SIZE ERROR phrase
END-DIVIDE phrase

ENABLE
INPUT

statement
phrase

TERMINAL phrase
I-0 TERMINAL phrase
OUTPUT phrase
KEY phrase

ENTER statement
EVALUATE statement
Identifier/literal
Arithmetic expression
Conditional expression
TRUE/FALSE

ALSO phrase
WHEN phrase

ALSO phrase ••••••
WHEN OTHER phrase
END-EVALUATE phrase

of transfers of data

XVII-33

2ND
STD

1 REL
1 INX
1 REL
1 INX
N

N

1
1

COM
COM

2 COM
N
1 COM
1 COM
1 NUC
1 NUC
2 NUC
1 NUC
1 NUC
2 NUC
N
1 NUC
1 NUC
1 NUC
2 NUC
1 NUC
2 NUC
1 NUC
2 NUC
1 NUC
N
N
1 COM
1 COM
2 COM
N
1 COM
1 COM
1 NUC
N
N
N
N
N
N
N
N
N
N

3RD
STD

1 REL
1 INX
1 REL
1 INX
1 REL
1 INX
1 REL
1 INX
2 COM
2 COM
2 COM
2 COM
2 COM
2 COM Z
1 NUC
1
2
1
1
2

NUC
NUC
NUC
NUC
NUC

2 NUC
1 NUC
1 NUC
1 NUC
1 NUC
1 NUC
1
1
2
1
1
1

NUC
NUC
NUC
NUC
NUC
NUC

2 COM
2 COM
2 COM
2 COM
2 COM
2 COM Z
1 NUC Z
2 NUC
2 NUC
2 NUC
2 NUC
2 NUC
2 NUC
2 NUC
2 NUC
2 NUC
2 NUC

Procedure Division Difference Summary

SUMMARY OF DIFFERENCES IN PROCEDURE DIVISION

2ND 3RD

=EL=E=M=E=N=T'--~~~~~~~~~~~~~~--~~~~~~~~~~~--=S=T=D~~STD

EXIT
EXIT

statement
PROGRAM statement

GENERATE statement
Data-name
Report-name

GO TO statement
Procedure-name is required
Procedure-name is optional
DEPENDING ON phrase

IF statement • • • • • • • • • •••••
Only imperative statements •••••••
Imperative and/or conditional statements
Nested IF statements ••••••••••••••
THEN opt :!J)•.':.<il word •••••••••••••
NEXT SEifrP~i~CR phrase
ELSE phrase
END-IF phrase

INITIALIZE statement
Identifier
REPLACING

series
phrase

REPLACING series
INITIATE statement
INSPECT statement .•..••
Only single character data item
Multi-character data item ••••••
TALLYING phrase

BEFORE/AFTER phrase •••••••••
BEFORE/AFTER phrase series
ALL/LEADING identifier/literal series

TALLYING phrase series
REPLACING phrase ••••••

BEFORE/AFTER phrase
BEFORE/AFTER phrase series •••••••••••••.
ALL/LEADING/FIRST identifier/literal series

REPLACING phrase series •••••••
TALLYING and REPLACING phrases
CONVERTING phrase

MERGE statement •••••••••••••••••
ASCENDING/DESCENDING KEY phrase
COLLATING SEQUENCE phrase
USING phrase •••••••••••
OUTPUT PROCEDURE phrase ••••••

Section-name
Procedure-name

GIVING phrase
GIVING phrase series
USING/GIVING file
USING/GIVING file

must be
may be

sequential
sequential,

file
relative, or indexed

XVII-34

1
1
1
1

NUC
IPC
RPW
RPW

1 RPW
1 NUC
1 NUC
2 NUC
1
1
1
2
2
N

NUC
NUC
NUC
NUC
NUC

1 NUC
1 NUC
N
N
N
N
N
1 RPW
1 NUC
1 NUC
2 NUC
1 NUC
1 NUC
N
N
2 NUC
1 NUC
1 NUC
N
2 NUC
N
1 NUC
N
2 SRT
2 SRT
2 SRT
2 SRT
2 SRT
2 SRT
N
2 SRT
N
2 SRT
N

1 NUC
1
1
1
1
1
1
2
1
1

IPC
RPW
RPW
RPW
NUC
NUC
NUC Z
NUC
NUC

1 NUC
2 NUC

NUC 1
1 NUC
1 NUC

NUC 1
1 NUC
2 NUC
2 NUC
2 NUC
2 NUC
1 RPW
1 NUC
1 NUC
2 NUC
1 NUC
1 NUC
2 NUC
2 NUC
2 NUC

NUC 1
1 NUC
2
2

NUC
NUC

2 NUC
1 NUC

NUC 2
1 SRT
1 SRT
1 SRT
1 SRT
1 SRT
N
1 SRT
1 SRT
1 SRT
N
1 SRT

Procedure Division Difference SuIImlary

SUMMARY OF DIFFERENCES IN PROCEDURE DIVISION

ELEMENT

MOVE statement
TO identifier
TO identifier series
CORRESPONDING phrase
De-editing of numeric edited items

MULTIPLY statement
BY identifier •••••••
BY identifier series

identifier
identifier series

GIVING
GIVING
ROUNDED phrase •••••••••••••••••
ON SIZE ERROR phrase
NOT ON SIZE ERROR phrase
END-MULTIPLY phrase

OPEN statement ••••••••••••••

File-name

File-name series

INPUT phrase

WITH NO REWIND phrase
REVERSED phrase ••••••

OUTPUT phrase '·'·

WITH NO REWIND phrase

I:-0 phrase

EXTEND phrase • • • ••••••••••••.••••••••••• · ••••••••••••••••••••••••

INPUT, OUTPUT, I-0 series

EXTEND series

XVII-35

2ND
STD

1 NUC
1 NUC
1 NUC
2 NUC
N
1 NUC
1 NUC
2 NUC
1 NUC
2 NUC
1 NUC
1 NUC
N
N
1
1
1
1
1
1
1
1
2
1
1
1
1
1
1

SEQ
REL
INX
RPW
SEQ
REL
INX
RPW
SEQ
REL
INX
RPW
SEQ
REL
INX

2 SEQ
2 SEQ
1 SEQ
1 REL
1 INX
1 RPW

SEQ
RPW
SEQ

2
1
1
1 REL
1 INX
2 SEQ

2 SEQ
1 REL
2 INX
2 SEQ

3RD
STD

1 NUC
1 NUC
1 NUC
2 NUC
2 NUC
1 NUC
1 NUC
1 NUC
1 NUC
1 NUC
1 NUC
1 NUC
1 NUC
1
1
1
1
1
1
1
1
1
1
1
1

NUC
SEQ
REL
INX
RPW
SEQ
REL
INX
RPW
SEQ
REL
INX

1 RPW
1 SEQ
1 REL
1 INX
2 SEQ
2 SEQ Z
1 SEQ
1 REL
1 INX
1 RPW
2 SEQ
1 RPW
1 SEQ
1 REL
1 INX
2 SEQ
2 REL
2 INX
1 RPW
1 SEQ
1 REL
1 INX
2 SEQ
2 REL
2 INX

Procedure Division Difference Summary

SUMMARY OF DIFFERENCES IN PROCEDURE DIVISION

ELEMENT

PERFORM statement
Procedure-name is required
Procedure-name is optional ••••••
THROUGH procedure-name phrase
Imperative-statement option
END-PERFORM phrase •••••••••
TIMES phrase
UNTIL phrase

TEST BEFORE/AFTER phrase
VARYING phrase ••••••••••••••••

TEST BEFORE/AFTER phrase ••••••
AFTER phrase •••••••••••••••••

Maximum of two AFTER phrases
At least 6 AFTER phrases permitted ••••••••••••••••••

Identifier-2 augmented before identifier-5 set
Identifier-5 set before identifier-2 augmented

PURGE statement
READ statement

NEXT phrase ..

INTO phrase

AT END phrase

NOT AT END phrase

KEY phrase ••••••••
INVALID KEY phrase

NOT INVALID KEY phrase

END-READ phrase

RECEIVE statement
MESSAGE phrase
SEGMENT phrase
INTO phrase
NO DATA phrase
WITH DATA phrase
END-RECEIVE phrase

RELEASE statement

....

FROM phrase ••••••••••••••••
......

XVII-36

2ND 3RD
STD STD

1 NUC 1 NUC
1 NUC N
N 1 NUC
1 NUC 1 NUC
N 1 NUC
N 1 NUC
1 NUC 1 NUC
2 NUC 1 NUC
N 2 NUC
2 NUC 2 NUC
N 2 NUC
2 NUC 2 NUC
2 NUC N
N 2 NUC
N 2 NUC
2 NUC N
N 2 COM
1 SEQ 1 SEQ
1 REL 1 REL
1 INX 1 INX
2 REL 2 REL
2 INX 2 INX

2 SEQ
1 SEQ 1 SEQ
1 REL 1 REL
1 INX 1 INX
1 SEQ 1 SEQ
1 REL 1 REL
1 INX 1 INX
N 1 SEQ

1 REL
1 INX

2 INX 2 INX
1 REL 1 REL
1 INX 1 INX
N 1 REL

1 INX
N 1 SEQ

1 REL
1 INX

1 COM 1 COM
1 COM 1 COM
2 COM 2 COM
1 COM 1 COM
1 COM 1 COM
N 1 COM
N 1 COM
1 SRT 1 SRT
1 SRT 1 SRT

Procedure Division Difference Summary

SUMMARY OF DIFFERENCES IN PROCEDURE DIVISION

ELEMENT

RETURN statement
INTO phrase
AT END phrase
NOT AT END phrase
END-RETURN phrase

REWRITE statement

FROM phrase

INVALID KEY phrase

NOT INVALID KEY phrase

END-REWRITE phrase

SEARCH statement
VARYING phrase
AT END phrase
WHEN phrase
WHEN phrase series
END-SEARCH phrase

SEARCH ALL statement
AT END phrase
WHEN phrase
END-SEARCH phrase

SEND statement ••••••
FROM
FROM

identifier
identifier

phrase
phrase
phrase

(portion of a message)
(complete message)

WITH identifier
WITH ESI
WITH EMI

phrase
phrase

WITH EGI phrase
BEFORE/AFTER ADVANCING phrase

Integer LINE/LINES
Identifier LINE/LINES
Mnemonic-name
PAGE •••••••••

REPLACING LINE phrase
SET statement ••••••••••••
Index-name/identifier TO
Index-name UP BY/DOWN BY
Mnemonic-name TO ON/OFF
Condition-name TO TRUE

XVII-37

2ND
STD

1 SRT
1 SRT
1 SRT
N
N
1 SEQ
1 REL
1 INX
1 SEQ
1 REL
1 INX
1 REL
1 INX
N

N

2 TBL
2 TBL
2 TBL
2 TBL
2 TBL
N
2 TBL
2 TBL
2 TBL
N
1 COM
2 COM
1 COM
2 COM

COM
COM

2
1
1 COM
1 COM
1 COM
1 COM
1 COM
1 COM
N
1 TBL
1 TBL
1 TBL
N
N

3RD
STD

1 SRT
1 SRT
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2

SRT
SRT
SRT
SEQ
REL
INX
SEQ
REL
INX
REL
INX
REL
INX
SEQ
REL
INX
NUC

t NUC
2 NUC

NUC 2
2 NUC
2 NUC
2 NUC
2 NUC
2 NUC
2 NUC
1 COM
2 COM
1 COM
2 COM
2 COM

COM 1
1
1
1
1

COM
COM
COM
COM

2 COM
1 COM
2 COM
1
1
1
1
2

NUC
NUC
NUC
NUC
NUC

Procedure Division Difference Sunnnary

SUMMARY OF DIFFERENCES IN PROCEDURE DIVISION

ELEMENT

SORT statement ••••.•••••••••••••
ASCENDING/DESCENDING KEY phrase
DUPLICATES phrase ••••••••
COLLATING SEQUENCE phrase
INPUT PROCEDURE phrase

Section-name
Procedure-name

USING phrase •••••
File-name series

OUTPUT PROCEDURE phrase
Section-name
Procedure-name

GIVING phrase
File-name series

USING/ GIVING
USING/GIVING

file must be sequential
file may be sequential,

START statement

KEY phrase

EQUAL TO

=

GREATER THAN

>
NOT LESS THAN

NOT <

GREATER THAN OR EQUAL TO

>=

INVALID KEY phrase

file
relative, or indexed

NOT INVALID KEY phrase ..
END-START phrase

STOP statement
RUN
Literal

XVII-38

2ND
STD

1 SRT
1 SRT
N
2 SRT
1 SRT
1 SRT
N
1 SRT
2 SRT
1 SRT
1 SRT
N
1 SRT
N
1 SRT
N
2 REL
2 INX

REL 2
2
2
2

INX
REL
INX

2 REL
2 INX
2 REL
2 INX
2 REL
2 INX
2 REL
2 INX

REL 2
2 INX
N

N

2 REL
2 INX
N

N

1 NUC
1 NUC
1 NUC

3RD
STD

1 SRT
1 SRT
1 SRT
1 SRT
1 SRT
N
1 SRT
1 SRT
1 SRT
1 SRT
N
1 SRT
1 SRT
1 SRT
N
1 SRT
2 REL
2 INX
2 REL
2
2
2

INX
REL
INX

2 REL
2 INX
2 REL
2 INX
2 REL
2 INX
2 REL
2 INX
2 REL
2 INX
2 REL
2 INX
2 REL
2 INX
2 REL
2 INX
2 REL
2 INX
2 REL
2 INX
1 NUC
1 NUC
1 NUC Z

Procedure Division Difference Sunnnary

SUMMARY OF DIFFERENCES IN PROCEDURE DIVISION

ELEMENT

STRING statement
DELIMITED BY series
WITH POINTER phrase
ON OVERFLOW phrase
NOT ON OVERFLOW phrase
END-STRING phrase

SUBTRACT statement
Identifier/literal ••••••
Identifier/literal series
FROM identifier
FROM identifier series
GIVING identifier
GIVING identifier series
ROUNDED phrase
ON SIZE ERROR phrase
NOT ON SIZE ERROR phrase
END-SUBTRACT phrase
CORRESPONDING phrase

SUPPRESS statement
TERMINATE statement
UNSTRING statement

DELIMITED BY phrase
DELIMITER IN phrase
COUNT IN phrase ••••••••
WITH POINTER phrase
TALLYING phrase
ON OVERFLOW phrase
NOT ON OVERFLOW phrase
END-UNSTRING phrase

USE statement

.....

EXCEPTION/ERROR PROCEDURE phrase

GLOBAL phrase
ON file-name

ON file-name series

. '·

..........

... ~ ..

................................

.....

XVII-39

2ND
STD

2 NUC
2 NUC
2 NUC
2 NUC
N
N
1
1

NUC
NUC

J NUC
1 NUC
2 NUC
1 NUC

NUC 2
1
1
N
N

NUC
NUC

2 NUC
1 RPW
1 RPW
2 NUC
2 NUC
2 NUC
2 NUC
2 NUC
2 NUC
2 NUC
N
N
1
1
1
1
1
1
1
1
1
N
1
1

SEQ
REL
INX
RPW
DEB
SEQ
REL
INX
RPW

SEQ
REL

1 INX
1 RPW
2 SEQ
2 REL
2 INX
1 RPW

3RD
STD

2 NUC
2 NUC
2 NUC
2 NUC
2 NUC
2 NUC
1 NUC
1 NUC
1 NUC
1 NUC
1 NUC
1 NUC
1 NUC
1 NUC
1 NUC
1 NUC
1 NUC
2
1
1

NUC
RPW
RPW

2 NUC
2 NUC
2
2
2

NUC
NUC
NUC

2 NUC
2 NUC
2 NUC
2 NUC
1 SEQ
1 REL
1 INX
1 RPW
1
1
1
1
1
2
1
1
1
1
2
2
2
1

DEB Z
SEQ
REL
INX
RPW
IPC
SEQ
REL
INX
RPW
SEQ
REL
INX
RPW

Procedure Division Difference Summary

SUMMARY OF DIFFERENCES IN PROCEDURE DIVISION

ELEMENT

USE statement (continued)
EXCEPTION/ERROR PROCEDURE

ON INPUT

ON OUTPUT

ON I-0

ON EXTEND

BEFORE REPORTING phrase
GLOBAL phrase •••••••••

FOR DEBUGGING phrase
Procedure-name
ALL PROCEDURES

phrase

ALL REFERENCES OF identifier-I
Cd-name
File-name

WRITE statement

FROM phrase

BEFORE/ AFTER ADVANCING phrase
Integer LINE/LINES
Identifier LINE/LINES
Mnemonic -name
PAGE •••••••••

AT END-OF-PAGE/EOP phrase
NOT AT END-OF-PAGE/EOP phrase

(continued)

............. • .
INVALID KEY phrase •••••••••••••••

NOT INVALID KEY phrase ~
END-WRITE phrase

XVII-40

2ND
STD

1 SEQ
1 REL
1 INX
1 SEQ
1 REL
1 INX
1 RPW
1 SEQ
1 REL
1 INX
2 SEQ

1 RPW
N
1 DEB
1 DEB
1 DEB
2 DEB
2 DEB

DEB
SEQ
REL

2
1
1
1
1
1
1
1
1

INX
SEQ
REL
INX
SEQ
SEQ

2 SEQ
2 SEQ
1 SEQ
2 SEQ
N
1 REL
1 INX

N

3RD
STD

1
1
1
1
1
1
1
1
1

SEQ
REL
INX
SEQ
REL
INX
RPW
SEQ
REL

1 INX
2 SEQ
2 REL
2 INX
1 RPW
1
2
1
1

RPW
IPC
DEB Z
DEB Z

1 DEB Z
2 DEB Z
2
2
1
1
I
1
I
I
1
1
1
2
1
2
2
1
1
1
1
I
I
1

DEB Z
DEB Z
SEQ
REL
INX
SEQ
REL
INX
SEQ
SEQ
SEQ
SEQ
SEQ
SEQ
SEQ
REL
INX
REL
INX
SEQ
REL
INX

Additional Difference Summary

ADDITIONAL SUMMARY OF DIFFERENCES

ELEMENT

SEGMENTATION
Segment-numbers 0 through 49 for permanent segments
Segment-numbers 50 through 99 for independent segments
All sections with the same segment-number must be

together 1n the source program
Sections with the same segment-number need not be

physically contiguous in the source program

SOURCE TEXT MANIPULATION
COPY statement

OF/IN library-name phrase
REPLACING phrase
Pseudo-text ...
Identifier
Literal .. .
Word ••

RE PLACE 1? t.a t eme n t ...
Pseudo-te.xt BY pseudo-text
OFF ..

XVII-41

2ND
STD

1 SEG
1 SEG

I SEG

2 SEG

I LIB
2 LIB
2 LIB
2 LIB
2 LIB
2 LIB
2 LIB
N
N
N

1
1

1

2

1
2
2
2
2
2
2
2
2
2

3RD
STD

SEG
SEG

SEG

SEG

STM
STM
STM
STM
STM
STM
STM
STM
STM
STM

z
z

z

z

Substantive Changes (Not Affecting)

2. SUBSTANTIVE CHANGES

2.1 SUBSTANTIVE CHANGES NOT AFFECTING EXISTING PROGRAMS

The following is a list of the changes of substance included in third
Standard COBOL that are new features not impacting existing programs; for
example, a new verb or an additional capability for an old verb.

(1) Lowercase letters (1 NUC). When the computer character set includes
lowercase letters, they may be used in character-strings. Except when used in
nonnumeric literals, each is equivalent to the corresponding uppercase letter.

(2) Colon (:)character (2 NUC). The COBOL character set has been expanded
to include the colon (:) character that is used in reference modification.

(3) Punctuation characters (1 NUC). The separators comma, semicolon, and
space are interchangeable within a source program.

(4) User-defined words and system-names (1 NUC). The same COBOL word may be
used as a system-name and as a user-defined word within a source program; the
context in which a COBOL word occurs determines what it is.

(5) Symbolic-characters (2 NUC). A symbolic-character is a user-defined
word that specifies a user-defined figurative constant.

(6) Nonnumeric literal (1 NUC). A nonnumeric literal has an upper limit of
160 characters in length. The upper limit was 120 characters in second Standard
COBOL.

(7) Figurative constant ZERO (2 NUC).
allowed in arithmetic expressions.

The figurative constant ZERO is

(8) Uniqueness of reference (1 NUC). A user-defined word need not be unique
or be capable of being made unique unless referenced.

(9) Qualification (2 NUC). An implementor must provide the capability to
handle 50 levels of qualification. Five levels of qualification were required
in second Standard COBOL.

(10) Subscripting (2 NUC). A table may have up to seven dimensions.
three dimensions were allowed in second Standard COBOL.

Up to

(11) Relative subscripting (1 NUC).
to be followed by the operator + or -

Relative subscripting allows a subscript
which is followed by an integer.

(12) Mixing subscripts and indexes (1 NUC). Indexes and data-name subscripts
may both be written in a single set of subscripts used to reference an
individual occurrence of a multi-dimensional table.

(13) Reference modification (2 NUC). Reference modification is a new method
of referencing data by specifying a leftmost character and length for the data
item.

XVII-42

Substantive Changes (Not Affecting)

(14) Sequence number (1 NUC). The sequence number may contain any character
in the computer's character set. In second Standard COBOL the sequence number
contained only digits.

(15) Data Division reference format (1 NUC). The word following a level
indicator, level-number 01, or level-number 77 on the same line may begin in
area A.

(16) End program header (2 NUC). The end program header indicates the end of
the named COBOL source program; the end program header may be followed by a
COBOL program that is to be compiled separately in the same invocation of the
compiler.

(17) Nested source programs (2 IPC). Programs can be contained 1n other
programs.

(18) INITIAL clause in PROGRAM-ID paragraph (2 IPC). The INITIAL clause
specifies a program whose state is initialized, whenever the program is called,
to the same state as when that program was first called in the run unit.

(19) COMMON clause in the PROGRAM-ID paragraph (2 IPC). The COMMON
specifies a program that, despite being directly contained within
program, may be called from any program directly or indirectly contained
other program.

clause
another
in that

(20) Environment Division (1 NUC). The Environment· Division is optional.
Within the Environment Division, the Configuration Section is optional. The
SOURCE-COMPUTER paragraph, the OBJECT-COMPUTER paragraph, as well as the entries
within the SOURCE-COMPUTER paragraph, OBJECT-COMPUTER paragraph, SPECIAL-NAMES
paragraph, and I-0-CONTROL paragraph are also optional.

(21) SPECIAL-NAMES paragraph (1 NUC).
condition-name need not be specified.

If implementor-name is a switch,

(22) SPECIAL-NAMES paragraph (1 NUC). The reserved word IS has been made
optional in the SPECIAL-NAMES paragraph to be consistent with the use of IS
throughout the COBOL specifications.

(23) STANDARD-2 option (1 NUC). The STANDARD-2 option within
clause of the SPECIAL-NAMES paragraph allows the specification of
character set for a character code set or collating sequence.

the ALPHABET
the ISO 7-bit

(24) ASSIGN clause (1 SEQ, 1 REL, 1 INX, 1 SRT, 1 RPW). A nonnumeric literal
may be specified in the ASSIGN clause.

(25) OPTIONAL phrase (2 SEQ, 2 REL, 2 INX). The OPTIONAL phrase within the
file control entry applies to sequential files, relative files, and indexed
files opened in the input, I-0, or extend mode. In second Standard COBOL the
OPTIONAL phrase within the file control entry applied to sequential files opened
in the input mode.

(26) ORGANIZATION clause (1 SEQ, l REL, 1 INX). Within the ORGANIZATION
clause of the file control entry the words ORGANIZATION IS have been made
optional.

XVII-43

Substantive Changes (Not Affecting)

(27) PADDING CHARACTER clause (2 SEQ, 1 RPW). The PADDING CHARACTER clause
in the file control entry specifies the character which is to be used for block
padding on sequential files.

(28) RECORD DELIMITER clause (2 SEQ, 1 RPW). The RECORD DELIMITER clause in
the file control entry indicates the method of determining the length of a
variable length record on the external medium.

(29) I-0-CONTROL paragraph (1 SEQ, 1 REL, 1 INX, 1 RPW).
clauses is immaterial in the I-0-CONTROL paragraph.

The order of

(30) Data Division (1 NUC). The Data Division is optional.

(31) BLOCK CONTAINS clause (1 SEQ, 1 REL, 1 INX). Omission of the BLOCK
CONTAINS clause is permitted if the number of records contained in a block is
specified by the operating environment. In second Standard COBOL the absence of
the BLOCK CONTAINS clause denoted the standard physical record size designated
by the implementor.

(32) CODE-SET clause (1 SEQ, 1 RPW). The CODE-SET clause may be specified
for all files with sequential organization. In second Standard COBOL the
CODE-SET clause was restricted to non-mass storage files.

(33) LABEL RECORDS clause (1 SEQ, 1 REL, 1 INX, 1 RPW). The LABEL RECORDS
clause 1S optional; if not specified, then the clause LABEL RECORDS ARE
STANDARD is assumed.

(34) LINAGE clause {2 SEQ). Data-names within the LINAGE clause may be
qualified.

(35) EXTERNAL clause (2 IPC). The EXTERNAL clause specifies that a data item
or a file connector is external and may be accessed and processed by any program
in the run unit.

(36) GLOBAL clause (2 IPC). The GLOBAL clause specifies that a data-name or
a file-name is a global name that is available to every program contained within
the program which declares it.

(37) FILLER clause (1 NUC). The use of the word FILLER is optional for
description entries. The word FILLER can appear in a data description
containing a REDEFINES clause. The word FILLER may be used 1n a
description entry of a group item.

data
entry
data

(38) OCCURS clause (2 NUC). The data item specified in the DEPENDING ON
phrase may have a zero value. Thus the minimum number of occurrences may be
zero.

(39) PICTURE character-string (2 NUC, 1 RPW). A PICTURE character-string may
be continued between coding lines.

(40) PICTURE clause (1 NUC). The insertion character ' ' (period) or ','
(comma) may be used as the last character of a PICTURE character-string,
provided it is immediately followed by the separator period terminating the data
description entry.

XVII-44

Substantive Changes (Not Affecting)

(41) RECORD clause (2 SEQ, 2 REL, 2 INX, 1 SRT). The VARYING phrase of the
RECORD clause is used to specify variable length records. The DEPENDING phrase
associated with the VARYING phrase specifies a data item containing the number
of character positions in a record.

(42) REDEFINES clause (1 NUC). The size of the item associated with the
REDEFINES clause may be less than or equal to the size of the redefined item.
In second Standard COBOL, the two items had to have the same number of character
positions.

(43) SIGN clause (1 NUC). Multiple SIGN clauses may be specified in the
hierarchy of a data description entry; the specification at the subordinate
level takes precedence over the specification at the containing group level.

(44) SIGN clause (1 RPW). The SIGN clause 1s allowed in a report group
description entry.

(45) USAGE clause (1 NUC). BINARY and PACKED-DECIMAL are two new features of
the USAGE clause.

(46) VALUE clause (1 NUC). The VALUE clause may be specified in a data
description entry that contains an OCCURS clause. The VALUE clause may be
specified in a data description entry that is subordinate to an entry containing
an OCCURS clause. In second Standard COBOL the VALUE clause was not permitted
in a data description entry containing an OCCURS clause or in a data description
entry subordinate to an entry containing an OCCURS clause.

(47) Communication description entry (1 COM). The order of clauses in the
communication description entry is immaterial.

(48) FOR I-0 phrase in communication description entry (1 COM). The FOR I-0
phrase in a communication description entry provides for both input and output
functions by one CD entry.

(49) LINE NUMBER clause (1 RPW). The integer 0 may be specified as the
relative line number in the PLUS phrase of the LINE NUMBER clause.

(50) Procedure Division (1 NUC). The Procedure Division is optional.

(51) Procedure Division header (1 IPC). A Linkage Section item which
redefines, or is subordinate to one which redefines, an item appearing in the
Procedure Division header may be referenced in the Procedure Division.

(52) Scope terminators (1 NUC, 1 SEQ, 1 REL, 1 INX, 2 IPC, 1 SRT, 1 COM).
Scope terminators serve to delimit the scope of certain procedural statements.
The scope terminators include: END-ADD, END-CALL, END-COMPUTE, END-DELETE,
END-DIVIDE, END-EVALUATE, END-IF, END-MULTIPLY, END-PERFORM, END-READ,
END-RECEIVE, END-RETURN, END-REWRITE, END-SEARCH, END-START, END-STRING,
END-SUBTRACT, END-UNSTRING, END-WRITE.

(53) Relational operators (1 NUC). The relational operator IS GREATER THAN
OR EQUAL TO (>=) is equivalent to the relational operator IS NOT LESS THAN.
The relational operator IS LESS THAN OR EQUAL TO (<=) 1s equivalent to the
relational operator IS NOT GREATER THAN.

XVII-45

Substantive Changes (Not Affecting)

(54) Class condition (1 NUC). Class-name is associated with a set of
characters specified by the user in the CLASS clause within the SPECIAL-NAMES
paragraph.

(55) DAY-OF-WEEK phrase of ACCEPT statement (2 NUC). The DAY-OF-WEEK phrase
of the ACCEPT statement provides access to an integer representing the day of
week; for example, 1 represents Monday, 2 represents Tuesday, and 7 represents
Sunday.

(56) ADD statement (1 NUC). The word TO is an optional word in the format:
ADD identifier/literal TO identifier/literal GIVING identifier.

(57) NOT ON SIZE ERROR phrase of ADD statement (1 NUC). The NOT ON SIZE
ERROR phrase provides the programmer with the capability to specify procedures
to be executed when a size error condition does not exist for the ADD statement.

(58) CALL statement (2 IPC). The BY CONTENT phrase indicates that the called
program cannot change the value of a parameter in the CALL statement's USING
phrase, but the called program may change the value of the corresponding data
item in the called program's Procedure Division header. The BY REFERENCE phrase
causes the parameter in the CALL statement's USING phrase to be treated the same
as specified in second Standard COBOL.

(59) CALL statement (1 IPC). The parameters passed in a CALL statement can
be other than an 01 or 77 level data item. The parameters passed in a CALL
statement may be subscripted and/or reference modified.

(60) ON EXCEPTION and NOT ON EXCEPTION phrases of CALL statement (2 IPC).
The ON EXCEPTION phrase of the CALL statement is equivalent to the ON OVERFLOW
phrase of the CALL statement. The NOT ON EXCEPTION phrase provides the
programmer with the capability to specify procedures to be executed when the
program specified by the CALL statement has been made available for execution.

(61) REEL/UNIT phrase of the CLOSE statement (1 SEQ, 1 RPW). The REEL/UNIT
phrase of the CLOSE statement can be applied to a single reel/unit f~le and is
specifically permitted for a report file.

(62) FOR REMOVAL phrase of the CLOSE statement (2 SEQ, 1 RPW). The FOR
REMOVAL phrase of the CLOSE statement is allowed for a sequential single
reel/unit file.

(63) NOT ON SIZE ERROR phrase of COMPUTE statement (2 NUC). The NOT ON SIZE
ERROR phrase provides the programmer with the capability to specify procedures
to be executed when a size error condition does not exist for the COMPUTE
statement.

(64) CONTINUE statement (1 NUC). The CONTINUE statement indicates that there
is no executable statement present and causes an implicit transfer of control to
the next executable statement.

(65) NOT INVALID KEY phrase
INVALID KEY phrase provides
procedures to be executed when
DELETE statement.

of DELETE statement (1 REL, 1 INX). The NOT
the programmer with the capability to specify

an invalid key condition does not exist for the

XVII-46

Substantive Changes (Not Affecting)

(66) DISPLAY statement (1 NUC). The figurative constant ALL literal is
permitted in the DISPLAY statement. In second Standard COBOL, the figurative
constant ALL literal was not permitted in the DISPLAY statement.

(67) NOT ON SIZE ERROR phrase of DIVIDE statement (1 NUC). The NOT ON SIZE
ERROR phrase provides the programmer with the capability to specify procedures
to be executed when a size error condition does not exist for the DIVIDE
statement.

(68) WITH NO ADVANCING phrase of the DISPLAY statement (2 NUC). The WITH NO
ADVANCING· phrase of the DISPLAY statement provides interaction with a hardware
device having vertical positioning.

(69) EVALUATE statement (2 NUC). The EVALUATE statement describes a
multi-branch, multi-join structure in which multiple conditions are evaluated to
determine the subsequent action of the object program.

(70) EXIT PROGRAM statement (1 IPC). The EXIT PROGRAM statement need not be
the only statement in a paragraph.

(71) GO TO DEPENDING statement (1 NUC). The number of procedure-names
required in a GO TO DEPENDING statement has been reduced to one.

(72) IF statement (1 NUC). The optional word THEN has been added to the
general format of the IF statement.

(73) INITIALIZE statement (2 NUC). The INITIALIZE statement provides the
ability to set selected types of data fields to predetermined values.

(74) INSPECT statement (2 NUC). Multiple occurrences of the BEFORE/AFTER
phrase allow the TALLYING/REPLACING operation to be initiated after the
beginning of the inspection of the data begins and/or terminated before the end
of the inspection of the data ends.

(75) INSPECT statement (2 NUC). The ALL/LEADING adjective can be distributed
over multiple occurrences of identifier/literal and there can be multiple
occurrences of the REP.:i.ACING CHARACTERS phrase.

(76) INSPECT CONVERTING statement (2 NUC). The CONVERTING phrase provides a
new variation for the INSPECT statement.

(77) MERGE statement (1 SRT). Multiple file-names are allowed in the GIVING
phrase of the MERGE statement. A file named in a MERGE statement may contain
variable length records. A file named in either the USING or GIVING phrase of a
MERGE statement can be a relative file or an indexed file.

(78) MOVE statement (2 NUC). A numeric edited data item may be moved to a
numeric or numeric edited data item; thus de-editing takes place.

(79) NOT ON SIZE ERROR phrase of MULTIPLY statement (1 NUC). The NOT ON SIZE
ERROR phrase provides the programmer with the capability to specify procedures
to be executed when an on size error condition does not exist for the MULTIPLY
statement.

XVII-47

Substantive Changes (Not Affecting)

(80) EXTEND phrase of the OPEN statement (2 REL, 2 INX). The EXTEND phrase
of the OPEN statement can be used with a relative file or an indexed file.

(81) PURGE statement (2 COM). The PURGE statement causes the message control
system (MCS) to eliminate any partial message that has been released by one or
more SEND statements.

(82) PERFORM statement (1 NUC). Procedure-name may be omitted resulting in
an in-line PERFORM of the imperative statements preceding the END-PERFORM phrase
terminating the PERFORM statement.

(83) PERFORM statement (2 NUC). The TEST AFTER phrase causes the
to be tested after the specified set of statements has been executed.
BEFORE phrase causes the condition to be tested before the specified
statements is executed.

condition
The TEST
set of

(84) PERFORM statement (2 NUC). At least six AFTER phrases must be permitted
in the VARYING phrase of the PERFORM statement. A maximum of two AFTER phrases
existed in second Standard COBOL.

(85) READ statement (2 SEQ, 2 REL, 2 INX). Variable length records are
allowed when the READ statement has an INTO phrase. The NEXT phrase is allowed
in a READ statement referencing a file with sequential organization.

(86) NOT AT END phrase of READ statement (1 SEQ, 1 REL, 1 INX). The NOT AT
END phrase provides the programmer with the capability to specify procedures to
be executed when the at end condition does not exist for the READ statement.

(87) NOT INVALID KEY phrase of READ statement (1 REL, 1 INX). The NOT
INVALID KEY phrase provides the programmer with the capability to specify
procedures to be executed when an invalid key condition does not exist for the
READ statement.

(88) WITH DATA phrase of RECEIVE statement (1 COM). The WITH DATA phrase
provides the programmer with the capability to specify procedures to be executed
when the MCS makes data available during execution of a RECEIVE statement.

(89) REPLACE statement (2 STM). The REPLACE statement causes each occurrence
of specified text in the source program to be replaced by the corresponding text
specified in the REPLACE statement.

(90) RETURN statement (1 SRT). Variable length records are allowed when the
RETURN statement has an INTO phrase.

(91) NOT AT END phrase of RETURN statement (1 SRT). The NOT AT END phrase
provides the programmer with the capability to specify procedures to be executed
when an at end condition does not exist for the RETURN statement.

(92) REWRITE statement (2 REL, 2 INX). A record of a different length can
replace a record within either a relative or indexed file.

(93) NOT INVALID KEY phrase
INVALID KEY phrase provides
procedures to be executed when
REWRITE statement.

of REWRITE statement (1 REL, 1 INX). The NOT
the programmer with the capability to specify

an invalid key condition does not exist for the

XVII-48

Substantive Changes (Not Affecting)

(94) SEND statement (2 COM). The REPLACING LINE phrase is a new feature of
the SEND statement.

(95) SET statement (1 NUC). Index-names and identifiers may now be mixed in
a series of operands preceding the word TO in a SET statement. Two new
variations of the SET statement permit the setting of an external switch to be
changed and permit the value of a conditional variable to be changed.

(96) SORT statement (1 SRT). Multiple file-names are allowed in the GIVING
phrase of the SORT statement. A file named in a SORT statement may contain
variable length records. A file named in either the USING or GIVING phrase of a
SORT statement can be a relative file or an indexed file. The files named in
the USING and GIVING phrases can reside on the same physical reel. If the
DUPLICATES phrase is specified, records whose key values are identical remain in
the same order as they were when they were input to the sort process after the
sort process is completed.

(97) SORT and MERGE statements (1 SRT). The input and output procedures of a
SORT or MERGE statement may contain explicit transfers of control to points
outside the input or output procedure. The remainder of the Procedure Division
may contain transfers of control to points inside the input or output procedure.
A paragraph-name may be specified in the INPUT PROCEDURE phrase or the OUTPUT
PROCEDURE phrase.

(98) NOT INVALID KEY phrase
INVALID KEY phrase provides
procedures to be executed when
START statement.

of START statement (2 REL, 2 INX). The NOT
the programmer with the capability to specify

an invalid key condition does not exist for the

(99) STRING statement (2 NUC). The identifier 1n the INTO phrase of the
STRING statement may be a group item.

(100) NOT ON OVERFLOW phrase of STRING statement (2 NUC). The NOT ON OVERFLOW
phrase provides the programmer with the capability to specify procedures to be
executed when an overflow condition does not exist for the STRING statement.

(101) NOT ON SIZE ERROR phrase of the SUBTRACT statement (1 NUC). The NOT ON
SIZE ERROR phrase provides the programmer with the capability to specify
procedures to be executed when a size error condition does not exist for the
SUBTRACT statement.

(102) NOT ON OVERFLOW phrase of UNSTRING statement (2 NUC). The
OVERFLOW phrase provides the programmer with the capability to
procedures to be executed when an overflow condition does not exist
UNSTRING statement.

NOT ON
specify

for the

(103) USE statement (1 SEQ, 1 REL, 1 INX). A USE AFTER EXCEPTION/ERROR
declarative statement specifying the name of a file takes precedence over a
declarative statement specifying the open mode of the file.

(104) USE statement (2 IPC). The GLOBAL phrase specifies that the associated
declarative procedures are invoked during the execution of any program contained
within the program which includes the USE statement.

XVII-49

Substantive Changes (Not Affecting)

(105) USE BEFORE REPORTING statement (2 !PC). The GLOBAL phrase specifies
that the associated declarative procedures are invoked during the execution of
any program contained within the program which includes the USE BEFORE REPORTING
statement.

(106) NOT END-OF-PAGE phrase of WRITE statement (1 SEQ). The NOT END-OF-PAGE
phrase provides the programmer with the capability to specify procedures to be
executed when an end-of-page condition does not exist for the WRITE statement.

(107) NOT INVALID KEY phrase of WRITE statement (1 REL. 1 INX). The NOT
INVALID KEY phrase provides the programmer with the capability to specify
procedures to be executed when an invalid key condition does not exist for the
WRITE statement.

XVII-50

Substantive Changes (Potentially Affecting)

2.2 SUBSTANTIVE CHANGES POTENTIALLY AFFECTING EXISTING PROGRAMS

This section contains a list of the changes of substance included in third
Standard COBOL that are new features or changes that could impact existing
programs; for example, the addition of a rule for a previously undefined
situation or the change of a rule for an existing verb. Associated with each
item in this list is a justification for the presence of that change in third
Standard COBOL. See the preface to this document for the definition of the
terms "first Standard COBOL", "second Standard COBOL", and "third Standard
COBOL" as they are used in this section.

The general philosophy in developing third Standard COBOL was that
clarifications of unclear or ambiguous rules should be made in the interest of
portability of programs and of ease of development of new programs. The
addition of new features has also been done with the intent of making new
programs easier and less costly to develop. The changes have been made with the
intent of impacting existing programs as little as possible. The long term
savings in program portability and development should outweigh the short term
costs of conversion of existing programs.

It should be noted that this section contains a list of changes having the
potential to impact existing programs. In those cases where second Standard
COBOL was unclear, the clarification has been made in accordance with a de facto
industry standard, if one existed. In any case, a clarification does not cause
an incompatibility between standards; it only causes the possibility of an
incompatibility between any particular implementation and third Standard COBOL.
The justifications included in the following list address primarily the effects
of the changes on COBOL programs which follow the rules of second Standard
COBOL. The effects of the changes are not always known for programs that: (1)
violate the rules of second Standard COBOL, or (2) use features for which the
rules were not well defined in second Standard COBOL and thus were dependent on
a particular implementor's extension or interpretation of the rules.

When a change has been made as a result of a request for an interpretation of
second Standard COBOL, the justification contains a reference to the X3J4
document containing th~,·interpretation generated by the X3J4 COBOL Technical
Committee of the American National Standards Institute. The interpretation
documents generated by X3J4 were published in COBOL Information Bulletins 18,
20, and 21. These bulletins are available from: CBEMA, Suite 500, 311 First
Street NW, Washington, D. C. 20001, USA.

(1) Length of ALL literal (2 NUC). When the figurative constant ALL
literal is not associated with another data item, the length of the string is
the length of the literal.

Justification:

The rules in second Standard COBOL for the size of the figurative
constant ALL literal differ depending on where the figurative constant has
been used in the program. As reflected in the X3J4 interpretation document
B-142, when the figurative constant ALL literal is used in the SPECIAL-NAMES
paragraph, its length is one, and its value is the leftmost character of the
literal. Consider the following example:

XVII-51

Substantive Changes (Potentially Affecting)

IDENTIFICATION DIVISION.
PROGRAM-ID. EXAMPLE.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
OBJECT-COMPUTER.

PROGRAM COLLATING SEQUENCE IS COL-SEQ.
SPECIAL-NAMES.

COL-SEQ IS ALL "0123456789".
DATA DIVIS ION.
01 FIELD! PIC X(80).
PROCEDURE DIVISION.
START-PROGRAM.

IF FIELD! = ALL "ABCDEF"
DISPLAY "TEXT IS TRUE".

In the above example, when the figurative constant ALL literal is used
in the alphabet-name clause of the SPECIAL-NAMES paragraph, only the first
character of the literal is used regardless of the number of characters
specified in the literal (see X3J4 interpretation document B-142). In the other
instance of IF FIELDl =ALL "ABCDEF", the size of the literal is considered to
be all of the characters specified in the literal.

This inconsistency in the rule for the size of ALL literal causes
misleading behavior of the program. The new rules in third Standard COBOL
eliminate the inconsistency between program specification and behavior. In
particular, the rules in third Standard COBOL indicate that in the case of the
alphabet-name clause with the figurative constant AtL literal, the length of
the string is the length of the literal.

The X3J4 COBOL Technical Committee believes that the usefulness of the
rules in second Standard COBOL is limited to esoteric or misleading programming
practices, and that, therefore, the change would impact few, if any, programs.

(2) Alphabet-name clause (1 NUC). The key word ALPHABET must precede
alphabet-name within the alphabet-name clause of the SPECIAL-NAMES paragraph.

Justification:

Implementor-names are system-names; alphabet-names and mnemonic-names
are user-defined words. In third Standard COBOL, system-names and user-defined
words form intersecting sets and therefore can be the same word. The following
clause is permitted:

SPECIAL-NAMES. WORD-1 IS WORD-2.

In third Standard COBOL, if WORD-I is both an implementor-name and an
alphabet-name and WORD-2 was-both a mnemonic-name and an implementor-name, then
it would not be possible to distinguish whether the implementor-name clause or
alphabet-name clause was intended in the above clause. The introduction of the
key word ALPHABET in the alphabet-name clause resolves this ambiguity.

XVII-52

Substantive Changes (Potentially Affecting)

This problem did not exist in second Standard COBOL because system-names
and user-defined words formed disjoint sets; therefore, the above construct was
not permitted. Thus the key word ALPHABET was not present in the alphabet-name
clause of the SPECIAL-NAMES paragraph within second Standard COBOL.

Allowing system-names and user-defined words to intersect makes it
easier to move a program from implementation to implementation; system-names no
longer need to be changed. To modify an existing program, the key word ALPHABET
must be inserted in front of the alphabet-name clause.

(3) Collating sequence (1 INX). The collating sequence used to access an
indexed file is the collating sequence associated with the native character set
that was in effect for the file at the time the file was created.

Justification:

In second Standard COBOL, rules did not state which
is used for the retrieving and storing of records when
file. Two different interpretations were possible:

ct.• The native collating sequence

collating sequence
accessing an indexed

b. The collating sequence specified by the PROGRAM COLLATING
SEQUENCE clause.

The new rule in third Standard COBOL explicitly specifies that the
native collating sequence will be used for the retrieving and storing of records
when accessing an indexed file. Most implementations known by the X3J4 COBOL
Technical Committee use the native collating sequence for the retrieving and
storing of records when accessing an indexed file.

(4) CURRENCY SIGN clause (1 NUC). The literal specified within the CURRENCY
SIGN clause may not be a figurative constant.

Justification:

In second Standard COBOL, the use of a figurative constant in the
CURRENCY SIGN clause was allowed, but no rules were specified for the meaning of
the use of HIGH-VALUE, LOW-VALUE, or ALL literal in this context. X3J4
interpretation documents B-123 and B-142 addressed these issues.

Rules could have been added to third Standard COBOL to clarify the
meaning of the various cases, but the utility seemed marginal. Thus use of a
figurative constant in the CURRENCY SIGN clause was disallowed in third Standard
COBOL. The X3J4 COBOL Technical Committee believes that few, if any, existing
programs will be affected by this change.

XVII-53

Substantive Changes (Potentially Affecting)

(5) RELATIVE KEY phrase (1 REL). The relative key data item specified in
the RELATIVE KEY phrase must not contain the PICTURE symbol 'P'.

Justification:

In second Standard COBOL, a relative key is allowed to have the PICTURE
symbol 'P' in the PICTURE character-string (see X3J4 interpretation document
B-144). If a relative key were so described, not all of the records in the file
would be accessible to the program. For example, an item with PICTURE 9P can
have only the values 00, 10, 20, 30, 40, 50, 60, 70, 80, and 90. This means
that only records with these relative numbers could be accessed. Use of such a
key description is probably an error and can be diagnosed as such according to
third Standard COBOL. It is unlikely that any programs exist which use the
PICTURE symbol 'P' in the description of a relative key data item.

(6) LINAGE clause (2 SEQ). Files for which the LINAGE clause has been
specified must not be opened in the extend mode.

Justification:

The behavior of a file having an associated LINAGE clause that is opened
in the extend mode is not well specified in second Standard COBOL. For example,
the value of LINAGE-COUNTER when an OPEN statement is executed is specified in
second Standard COBOL as being set to one. However, values are not specified in
second Standard COBOL for a file having an associated LINAGE clause that is
being opened in the extend mode.

The utility of the extend mode for the opening of a file having an
associated LINAGE clause is a function of the technique used to implement such
files. Some implementors have chosen to implement the extend mode for the
opening of a file having an associated LINAGE clause. Other implementors have
chosen to disallow the extend mode for the opening of a file having an
associated LINAGE clause.

Third Standard COBOL specifies that the EXTEND phrase must only be used
for files for which the LINAGE clause has not been specified. It is expected
that vendors who have implemented OPEN EXTEND for a file having the LINAGE
clause will continue to support this function.
Independent of what any one vendor has done or may do, the X3J4 COBOL Technical
Committee expects that few programs will be affected.

(7) FOOTING phrase (2 SEQ). If the FOOTING phrase is not specified, no
end-of-page condition independent of the page overflow condition exists.

Justification:

In second Standard COBOL, the specifications for the existence of the
footing area are contradictory between the LINAGE clause and the WRITE
statement. Some existing implementations provide a one line footing area while
other implementations provide no footing area when the FOOTING phrase is not
specified. There is no way to resolve the ambiguity without impact on some
existing implementations. The solution in third Standard COBOL reflects the
intuition that if no footing area is specified, then none is wanted. Thus if no

XVII-54

Substantive Changes (Potentially Affecting)

FOOTING phrase is specified in the LINAGE clause, then no footing area exists
and no end-of-page condition occurs. This change will only affect programs
which specify no FOOTING phrase in the LINAGE clause for a file, use a WRITE
statement with the END-OF-PAGE phrase for that file, and use an existing
implementation that provides a footing area.

(8) OCCURS clause (2 NUC). When a receiving item is a variable length data
item and contains the object of the DEPENDING ON phrase, the maximum length of
the item will be used.

Justification:

In second Standard COBOL, the length was computed based on the value of
the item in the DEPENDING ON phrase prior to the execution of the statement.
Using the second Standard COBOL rules with a MOVE statement (or a READ INTO
statement) could have resulted in loss of data if the value of the DEPENDING ON
data item was not set to indicate the length of the sending data before the MOVE
statement was executed.

FD
01

INPUT-FILE.
A.

PIC 99.
02 A-TABLE.

03 A-ODO
03 A-ITEM OCCURS 1 TO 10 TIMES DEPENDING ON A-ODO.

WORKING-STORAGE SECTION.
01 B.

02 B-TABLE.
03 B-ODO PIC 99.
03 B-ITEM OCCURS 1 TO 10 TIMES DEPENDING ON B-ODO.

Suppose in the above program fragment, A-ODO is set to 10 and B-ODO 1s
set to 5. Under second Standard COBOL, in order to move all occurrences of
A-ITEM to B-TABLE, one would first move A-ODO to B-ODO. Thus, the following
sequences of COBOL statements are equivalent:

Under second Standard COBOL:

MOVE A-ODO TO B-ODO.
MOVE A TO B.

READ INPUT-FILE
MOVE A-ODO TO B-ODO.
MOVE A TO B.

Under third Standard COBOL:

MOVE A TO B.

READ INPUT-FILE INTO B.

Some implementations allow as an extension to second Standard COBOL that
other data may follow the variable length table in a record; this feature was
allowed in the first Standard COBOL. In the following example, A-TRAILER and
B-TRAILER are, in some implementations, dynamically allocated during program
execution according to the values of A-ODO and B-ODO respectively.

XVII-55

Substantive Changes (Potentially Affecting)

FD INPUT-FILE.
01 A.

02 A-TABLE.
03 A-ODO PIC 99.
03 A-ITEM OCCURS 1 TO 10 TIMES DEPENDING ON A-ODO.

02 A-TRAILER PIC XX.

WORKING-STORAGE SECTION.
01 B.

02 B-TABLE.
03 B-ODO PIC 99.
03 B-ITEM OCCURS 1 TO 10 TIMES DEPENDING ON B-ODO.

02 B-TRAILER PIC XX.

If the value of A-ODO is 10 and the value of B-ODO is 5, then under
second Standard COBOL, a move of A-TABLE to B-TABLE would move only five
occurrences of A-ITEM, and B-TRAILER would not be changed. But under third
Standard COBOL, occurrences 6 to 10 of A-ITEM would be moved as well, and
B-TRAILER would be overlaid.

If the value of A-ODO is 5 and the value
second Standard COBOL, a move of A-TABLE
occurrences of A-ITEM, and B-TRAILER would not
Standard COBOL, occurrences 6 to 10 of B-ITEM
B-TRAILER would be overlaid.

of B-ODO is 5, then under
to B-TABLE would move only five
be changed. But under third
would be filled with spaces, and

Programs which conform to second Standard COBOL will not be affected by
this change in third Standard COBOL.

To change an existing program
affected data records so that there
length data item in a record.

which is affected, restructure the
are no data items following a variable

(9) PICTURE symbol 'P' (1 NUC). When a data item described by a PICTURE
containing the character 'P' is referenced, the digit positions specified by 'P'
will be considered to contain zeros in the following operations: (1) Any
operation requiring a numeric sending· operand; (2) A MOVE statement where the
sending operand is numeric and its PICTURE character-string contains the symbol
'P'; (3) A MOVE statement where the sending operand is numeric edited and its
PICTURE character-string contains the symbol 'P' and the receiving operand is
numeric or numeric edited; (4) A comparison operation where both operands are
numeric.

Justification:

In second Standard COBOL, digit positions described by a 'P' were
considered to contain zeros when used in an operation involving conversion of
data from one form of internal representation to another. Second Standard COBOL
did not specify what happened in operations not involving data conversion, or
when conversion was required. Third Standard COBoi specifies when the digit
positions described by 'P' will be considered to contain zeros.

This clarification agrees with current implementations for the common
uses of PICTURE character 'P' in numeric contexts and gives consistent results

XVII-56

Substantive Changes (Potentially Affecting)

for numeric and alphanumeric moves where the sending item is numeric. For
example, moving a data item with PICTURE 9P VALUE IS 10 to data items
with PICTURE 99 and PICTURE XX will result in the receiving fields
containing 10 in both cases. For more obscure cases where a numeric item is not
required, as when the item is compared to an alphanumeric item, the character
value will be used. Thus an item with PICTURE 9P and VALUE IS 10 will
compare equal to an item with PICTURE XX and VALUE IS "l " (digit 1 followed
by a space).

The X3J4 COBOL Technical Committee believes that few programs will be
affected by this change in third Standard COBOL.

(10) Procedure Division header (1 IPC). A data item appearing in the USING
phrase of the Procedure Division header must not have a REDEFINES clause in its
data description entry.

Justification:

In second Standard COBOL, an item which was described with a REDEFINES
clause could be specified in the USING phrase of the Procedure Division header.
Thus the following example was legal:

LINKAGE SECTION.
01 A PIC X(lO).
01 B REDEFINES A PIC 9(10).

PROCEDURE DIVISION USING A, B.

If the calling program specified two different parameters, the results
were undefined. Allowing an item with a REDEFINES clause to be specified in the
USING phrase of the Procedure Division header could allow programming errors to
remain undetected causing incorrect results and does not provide any additional
function.

In most cases, a program which specified a redefining item in the USING
phrase of the Procedure Division header can be converted by substituting the
redefined it em.

(11) Exponentiation (2 NUC). The following special cases of exponentiation
are defined in third Standard COBOL:

a. If an expression having a zero value is raised to a negative or
zero power, the size error condition exists.

b. If the evaluation of the exponentiation yields both a positive
and a negative real number, the positive number is returned.

c. If no real number exists as the result of the evaluation, the
size error condition exists.

Justification:

Since second Standard COBOL did not state what would happen in these
special cases of exponentiation, implementors were free to choose how to handle

XVII-57

Substantive Changes (Potentially Affecting)

them. This change is the resolution of an undefined situation
promote program portability. Since two of these cases produce
and the third is consistent with most implementations, the
Committee expects that few existing programs will be affected.

and will help
error conditions

X3J4 Technical

(12) Order of execution for a conditional expression (2 NUC). Two or more
conditions connected by only the logical operator AND or only the logical
operator OR within a hierarchical level are evaluated in order from left to
right, and evaluation of that hierarchical level terminates as soon as a truth
value for it is determined regardless of whether all the constituent connected
conditions within that hierarchical level have been evaluated.

Justification:

Since the order of evaluation of a conditional expression is defined by
the implementor in second Standard COBOL (see X3J4 interpretation document
B-115), the same program could produce defined results on some implementations
and undefined results on others, even though the same data is used for input.
By specifying the order of evaluation, program portability will be enhanced.

This change will allow a program to safely test that a subscript is
within range immediately before using it as a subscript in the same statement;
for example: IF INDEX-A IS LESS THAN 5 AND TABLE-A (INDEX-A) IS EQUAL TO 25.
The change may affect the execution of debugging declaratives in some compilers
for the ALL REFERENCES phrase. The change will have no other effects on
existing programs.

(13) Class condition (1 NUC). The ALPHABETIC test is true for uppercase
letters, lowercase letters, and the space character. The ALPHABETIC-UPPER test
is true for uppercase letters and the space character. The ALPHABETIC-LOWER
test is true for lowercase letters and the space character.

Justification:

When COBOL was originally designed, the alphabetic characters accepted
in most character sets were only the uppercase characters. Thus in second
Standard COBOL, the ALPHABETIC test was true for uppercase letters and the space
character. Today, however, character sets include both uppercase and lowercase
alphabetic characters. In keeping with the change in technology, the ALPHABETIC
test now follows the logical meaning of the term and accepts all alphabetic
characters -- both uppercase and lowercase.

For the subclasses of alphabetic characters, two additional tests
been provided. In particular, changing ALPHABETIC to the new
ALPHABETIC-UPPER in third Standard COBOL conforming source program will
that program to continue to execute as under second Standard COBOL.

have
test

allow

Some implementors have already made. this change to their
implementations. Thus, this change will impact any source program which used
the ALPHABETIC class test: (1) on an implementation which permitted only
uppercase letters and the space character, and (2) where that source program

XVII-58

Substantive Changes (Potentially Affecting)

must not permit lowercase letters to be accepted. Many source programs use the
ALPHABETIC class test; however, the change from ALPHABETIC to ALPHABETIC-UPPER
can be reliably accomplished by an automated source code conversion program.

(14) CANCEL statement (2 IPC). The CANCEL statement closes all open files.

Justification:

In second Standard COBOL, the status of files left in the open mode when
the program was cancelled is not defined. The change in third Standard COBOL
produces a predictable result for processing this statement. The only programs
that will potentially be affected are those that cancelled programs and expected
files associated with the cancelled programs to remain open after execution of
the CANCEL statement. (See X3J4 interpretation document B-118.)

(15) CLOSE statement (2 SEQ). The NO REWIND phrase cannot be specified in a
CLOSE statement having the REEL/UNIT phrase.

Justification:

In second Standard COBOL, the rules for the NO REWIND phrase and the
REEL/UNIT phrase were sometimes in conflict. The conflict is that the rules for
the NO REWIND phrase specify that the reel/unit is left in its current position,
whereas the rules for the REEL/UNIT phrase specify that a reel/unit swap must
take place.

This change in third Standard COBOL will affect very few programs
because a CLOSE statement containing both the NO REWIND phrase and the REEL/UNIT
phrase could not be processed properly in second Standard COBOL.

(16) COPY statement (1 STM). If the word COPY appears in a comment-entry or
in the place where a comment-entry may appear, it is considered part of the
comment-entry.

Justification:

In second Standard COBOL, the appearance of the word COPY in a
comment-entry was an undefined situation. The specification of this situation
within third Standard COBOL will enhance program portability.

(17) COPY statement (1 STM). After all COPY statements have been processed,
a debugging line will be considered to have all the characteristics of a comment
line, if the WITH DEBUGGING MODE clause is not specified in the SOURCE-COMPUTER
paragraph.

Justification:

Second Standard COBOL did not address the situation of a COPY statement,
or a portion of a COPY statement, appearing on a debugging line. Consider the
following COPY statement:

XVII-59

Substantive Changes (Potentially Affecting)

COPY XYZ
D REPLACING 1 BY 2.

If the program is compiled without the WITH DEBUGGING MODE clause,
second Standard COBOL does not define whether or not the REPLACING phrase is
executed. Under the rules of third Standard COBOL, the REPLACING phrase is
executed.

chose
second
then no

An incompatibility exists if an implementor of second
to treat the debugging line as a comment line. If an
Standard COBOL chose not to treat the debugging line as a
incompatibility exists.

Standard COBOL
implementor of
comment line,

With this change in third Standard COBOL, there is one defined way to
handle this situation, thereby increasing the degree of program portability.
This change was made as a result of a request for an interpretation of second
Standard COBOL (see X3J4 interpretation document B-174). The X3J4 COBOL
Technical Committee estimates that few, if any, programs will be affected by
this change.

(18) COPY statement (2 STM). Pseudo-text-I must not consist entirely of a
separator comma or a separator semicolon.

Justification:

Second Standard COBOL allowed pseudo-text-I in a COPY statement to
consist entirely of a separator comma or a separator semicolon but did not
specify under what conditions replacement took place. Any attempt to define the
semantics in this situation would have caused a potential incompatibility.

Since there is no apparent utility in allowing replacement of single
commas or semicolons, the facility was removed from third Standard COBOL rather
than given a necessarily incompatible definition. The X3J4 Technical Committee
believes that few existing programs should be affected by this change.

(19) DISPLAY statement (1 NUC). After the last operand has been transferred
to the hardware device, the positioning of the hardware device will be reset to
the leftmost position of the next line of the device.

Justification:

In second Standard COBOL, the positioning of the hardware device after
the last operand was undefined. The new rule in third Standard COBOL is
necessary for a complete specification of the NO ADVANCING phrase. Most
implementations already function according to the new rule.

XVII-60

Substantive Changes (Potentially Affecting)

(20) DIVIDE statement (2 NUC). Any subscripts for identifier-4 in the
REMAINDER phrase are evaluated after the result of the DIVIDE operation is
stored in identifier-3 of the GIVING phrase.

Justification:

In second Standard COBOL, the point at which any subscript in the
REMAINDER phrase is determined during the processing of the DIVIDE statement is
undefined (see X3J4 interpretation document B-159).

The only way that this change can affect existing programs is if:
(1) the quotient is used as a subscript for the remainder, and (2) the subscript
evaluation in the second Standard COBOL implementation does not already evaluate
the subscript in the same manner as defined in third Standard COBOL. For
example:

01 DD PIC 99 VALUE IS 50.
01 DR PIC 99 VALUE IS 2.
01 QU PIC 99.
01 REMAIN.

02 RM PIC 99 OCCURS 100 TIMES.

PROCEDURE DIVISION.
DIVIDE DD BY DR GIVING QU REMAINDER RM (QU).

Because of the nature of the statement in which the possible
incompatibility may occur, the X3J4 COBOL Technical Committee believes that few,
if any, programs will be affected.

(21) EXIT PROGRAM statement (1 IPC). When there is no next executable
statement in a called program, an implicit EXIT PROGRAM statement is executed.

Justification:

This situation was undefined in second Standard COBOL. Defining this
situation in third Standard COBOL makes programs more transportable. Only
programs which depend on some other implementation action when the EXIT PROGRAM
statement was omitted will be affected by this change.

(22) EXIT PROGRAM statement (1 IPC). The following new rule appears for the
EXIT PROGRAM statement: 11 ••• the ends of the ranges of all PERFORM statements
executed by the called program are considered to have been reached. 11 This
situation is undefined in second Standard COBOL.

Justification:

In second Standard COBOL, general rule 3 of the CALL statement states:
"On all other entries into the called program, the state of the program remains
unchanged from its state .when last exited. This includes all data fields, the
status and positioning of all files, and all alterable switch settings." It is
not clear whether or not a PERFORM activation is considered part of the state of

XVII-61

Substantive Changes (Potentially Affecting)

the program. The ambiguity is resolved in third Standard COBOL by the addition
of the rule that the program state is not altered except that the ranges of all
PERFORM statements will be considered reached.

A potential incompatibility exists if an implementor of second
COBOL chose not to consider the ends of PERFORM ranges complete.
implementor of second Standard COBOL chose to consider the ends of
ranges complete, then no incompatibility exists.

Standard
If the

PERFORM

With this change in third Standard COBOL, there is one defined way to
handle this situation, thereby increasing the degree of program portability.
This change was made as a result of a request for an interpretation of second
Standard COBOL (see X3J4 interpretation document B-170), The X3J4 COBOL
Technical Committee believes that few existing programs will be affected by this
change.

(23) INSPECT statement (2 NUC). The order of execution for evaluating
subscripts in the INSPECT statement is specified. Subscripting associated with
any identifier is evaluated only once as the first operation in the execution of
the INSPECT statement.

Justification:

The order of execution for evaluating subscripts in the INSPECT
statement was undefined in second Standard COBOL. An incompatibility exists if
an implementbr of second Standard COBOL chose to evaluate subscripts in the
INSPECT statement other than only once as the first operation.

This change in third Standard COBOL defines the order of execution for
evaluating subscripts in the INSPECT statement. Thus a statement such
as INSPECT X TALLYING I FOR ALL A (I) which is unclear under second Standard
COBOL becomes defined under third Standard COBOL. The definition of this
situation within third Standard COBOL will increase the degree of program
portability. The X3J4 COBOL Technical Committee believes that few existing
programs are affected by this change.

(24) MERGE statement (1 SRT). No two files in a MERGE statement may be
specified in the SAME AREA or SAME SORT-MERGE AREA clause. The only files in a
MERGE statement that can be specified in the SAME RECORD AREA clause are those
associated with the GIVING phrase.

Justification:

This rule is a clarification of the interaction of the SAME clause and
the MERGE statement. This rule was not present in second Standard COBOL. If
this rule, although not stated, had been violated in second Standard COBOL, the
MERGE statement would probably not have performed properly.

Consider the following rule from the MERGE statement in third Standard
COBOL: "No pair of file-names in a MERGE statement may be specified in the SAME
AREA or SAME SORT""'.MERGE AREA clause." With respect to the SAME AREA clause, the
MERGE statement may require that both files be open at the same time; however,
the SAME AREA clause does not permit two files specified in the SAME clause to

XVII-62

Substantive Changes (Potentially Affecting)

be open at the same time. With respect to the SAME SORT-MERGE AREA clause, the
MERGE statement may require the storage area allocated for one of the files, but
that file may also be required to be open; the rules of the SAME SORT-MERGE AREA
clause would not allow that file to be open.

With respect to the rule stating "The only files in a MERGE statement
that can be specified in the SAME RECORD AREA clause are those associated with
the GIVING phrase", a standard merge algorith~ requires one record from each
merge file to be available at the same time. Since the MERGE statement is
defined in terms of standard COBOL I/O, the merge files could not then share the
record area. The only known way in second Standard COBOL that the MERGE
statement could work properly was by ignoring the SAME RECORD AREA clause.

This new rule adds syntactic restrictions against situations which are
likely to be troublesome. Therefore, these situations probably appear in few
existing programs.

(25) PERFORM statement (2 NUC). The order of initialization of multiple
VARYING identifiers in the PERFORM statement is specified.

Justification:

The order of initialization of multiple VARYING identifiers in the
PERFORM statement was undefined in second Standard COBOL. In second Standard
COBOL, general rule 6d of the PERFORM statement stated in part: " ••• when two
identifiers are varied, identifier-2 and identifier-5 are set ••• ". Third
Standard COBOL states: " ••• identi.fier-2 then identifier-5 are set", thus
specifying an order of initialization.

In the case
the other, and
incompatibility may

where the setting of one identifier
the implementor chose to set

result. An example is as follows:

MOVE 2 TO X.

determines the value
identifier-5 first,

of
an

PERFORM PARAl VARYING X FROM 1 BY 1 UNTIL X = 3
AFTER. Y FROM X BY 1 UNTIL Y = 3.

If Y is set first, it will be set to 2; if Xis set first, Y will be set to 1.
In third Standard COBOL, Xis set first, thus Y will be set to 1.

This change is the resolution of an ambiguity
program portability. The chance of an incompatibility
must have set identifier-5 first, which is possible
VARYING variable must depend on the other.

XVII-63

and will help promote
is small; the implementor
but unlikely, and one

Substantive Changes (Potentially Affecting)
(

(26) PERFORM statement (2 NUC). Within the VARYING ••• AFTER phrase of the
PERFORM statement, identifier-2 is augmented before identifier-5 is set. In
second Standard COBOL, identifier-5 was set before identi.fier-2 was augmented.

Justification:

In second Standard COBOL, general rule 6d of the PERFORM statement
stated that when varying two variables, at the intermediate stage when the inner
condition is true, the inner variable (identifier-5) was set to its current FROM
value before the outer variable was augmented with its current BY value. In
third Standard COBOL, identifier-2 is augmented before identifier-5 is set.

This change creates an incompatibility when there is a dependence
between identifier-2 and identifier-5. Consider the following example:

PERFORM PARA3 VARYING X FROM 1 BY 1 UNTIL X IS GREATER THAN 3
AFTER Y FROM X BY 1 UNTIL Y IS GREATER THAN 3.

Under second Standard COBOL, PARA3 will be executed 8 times with the following
values:

X:
Y:

1
1

1
2

1
3

2
1

2
2

2
3

3
2

3
3

Under third Standard COBOL, PARA3 will be executed 6 times with the following
values:

example:

X:
Y:

1
1

1
2

1
3

2
2

2
3

3
3

One would expect the above example to perform the same as the following

PERFORM PARA2 VARYING X FROM 1 BY 1 UNTIL X IS GREATER THAN 3.

PARA2.
PERFORM PARA3 VARYING Y FROM X BY 1 UNTIL Y IS GREATER THAN 3.

Under second Standard COBOL, PARA3 will be executed 8 times as shown above.
Under third Standard COBOL, PARA3 will be executed 6 times as shown above.

The X3J4 COBOL Technical Committee believes that few existing programs
will be affected by this change. The situation where one VARYING variable
depends on another is useful for processing half of a matrix along the diagonal;
the rules in third Standard COBOL specify this function properly while the rules
in second Standard COBOL did not specify this function properly.

XVII-64

Substantive Changes (Potentially Affecting)

(27) PERFORM statement (2 NUC). The order of execution for evaluating
subscripts in the PERFORM VARYING statement is specified. This situation was
undefined in second Standard COBOL.

Justification:

In third Standard COBOL, subscripts in a PERFORM VARYING statement are
evaluated as follows:

a. For the VARYING identifier(s), subscripting is evaluated each
time the identifier is set or augmented.

b. For the FROM and BY identifier(s), subscripting is evaluated
each time the identifier is used in a setting or augmenting operation.

c. For any identifiers included in an UNTIL condition, subscripting
is evaluated each time the condition is tested.

Second Standard COBOL did not state when subscripts were evaluated in
the PERFORM cycle. Therefore, implementors were free to choose when to evaluate
subscripts. This change in third Standard COBOL causes incompatibilities only
if a program:

a. uses subscripted identifiers in a PERFORM VARYING statement, and

b. changes the value(s) of the subscript(s) while the PERFORM
statement is active, and

c. runs on an implementation which chose to evaluate
other than as defined in the new rules in third Standard COBOL.

This change in third Standard COBOL is the resolution of an
and will help promote program portability. The X3J4 COBOL Technical
believes that few existing programs will be affected by this change.

subscripts

ambiguity
Committee

(28) READ statement (1 SEQ, 1 REL, 1 INX). The INTO phrase cannot be
specified: (a) unless all records associated with the file and the data item
specified in the INTO phrase are group items or elementary alphanumeric items,
or (b) unless only one record description is subordinate to the file description
entry.

Justification:

In second Standard COBOL, the semantics for the move of the record to
the identifier specified in the INTO phrase of the READ statement are not
supplied. For a file with multiple elementary records, there is no statement as
to whether any conversion of data takes place or whether a group move is
performed. There have been two requests for interpretation resulting in X3J4
interpretation documents B-14 and B-134 that instigated this change. Thus, in
the following example:

XVII-65

Substantive Changes (Potentially Affecting)

FD
01
01
01

FILEA
RECA
RECB
RECC

PIC S9(18).
PIC 9(9)V9(9).
PIC X(l8).

WORKING-STORAGE SECTION.
01 A PIC S9(10)V9(8).

PROCEDURE DIVISION.
READ FILEA INTO A.

the move of the record to A is undefined in second Standard COBOL. Therefore,
various implementations may produce different results. The new rules in third
Standard COBOL disallow the ambiguous situation above. Programs affected by
this change are those performing a READ INTO statement on a file describing
multiple elementary records that include at least one numeric record.

The X3J4 COBOL Technical Committee believes that few, if any, programs
will be affected by this change.

(29) RECEIVE statement (2 COM). If a message size is greater than the area
referenced, the message fills the area referenced left to right starting with
the leftmost character of the message. Further RECEIVE statements which
reference the same queue, sub-queue, ••• , must be executed to transfer the
remainder of the message into the area referenced.

Justification:

In second Standard COBOL, if a portion of a message is received and a
subsequent RECEIVE statement referring to a less specific queue structure is
used, the implementor defines whether or not the remain1ng portion of the
message is transferred. (See X3J4 interpretation document B-156.)

In third Standard COBOL, it is made clear that subsequent RECEIVE
statements referring to the fully qualified queue structure must be ex~cuted in
order to receive the remainder of the message.

The X3J4 COBOL Technical Committee believes that few, if any, programs
will be affected by this change.

(30) RETURN statement (1 SRT). The INTO phrase cannot be specified:
(a) unless all records associated with the file and the data item specified in
the INTO phrase are group items, or elementary alphanumeric items, or (b) unless
only one record description is subordinate to the sort-merge file description
entry.

Justification:

In second Standard COBOL, the semantics for the move of the record to
the identifier specified in the INTO phrase of the RETURN statement are not
supplied. For a file with multiple elementary records, there is no statement as
to whether any conversion of data takes place or whether a group move is
performed. There have been two requests for interpretation resulting in X3J4

XVII-66

Substantive Changes (Potentially Affecting)

interpretation documents B-14 and B-134 that instigated this change. Thus, in
the following example:

SD
01
01
01

FILE A
RECA
RECB
RECC

PIC S9(18).
PIC 9(9)V9(9).
PIC X(18).

WORKING-STORAGE SECTION.
01 A PIC S9(10)V9(8).

PROCEDURE DIVISION.
RETURN FILEA INTO A.

the move of the record to A is undefined in second Standard COBOL. Therefore,
various implementations may produce different results. The new rules in third
Standard COBOL disallow the ambiguous situation above. Programs affected by
this change are those performing a RETURN INTO statement on a file describing
multiple elementary records that include at least one numeric record.

The X3J4 COBOL Technical Committee believes that few, if any, programs
will be affected by this change.

(31) STOP RUN statement (1 NUC). The STOP RUN statement closes all files.

at run
led to

Justification:

In second Standard COBOL, the state of files rema1n1ng in the open mode
completion was not specified. In some cases, this situation could have

errors.

In third Standard COBOL, the STOP RUN statement closes all open files.
Many implementations already do this and few, if any, programs will be affected
by this change.

(32) STOP RUN statement (1 NUC). If the run unit has been accessing
messages, the STOP RUN statement causes the message control system (MCS) to
eliminate from the queue any message partially received by that run unit.

Justification:

In second Standard COBOL, it is undefined what happens to partially
received messages when a run unit executes a STOP RUN statement. There are
three possible alternatives that could have been implemented under second
Standard COBOL; they are:

a. The MCS makes partially received messages unavailable to any
subsequent run units, either by: (1) ignoring them, or (2) purging them from
the queues immediately or eventually as part of general queue maintenance.
Programs using this type of implementation would not be affected by the changed
specification.

XVII-67

Substantive Changes (Potentially Affecting)

b. The MCS restores the entire message, including the "received"
part, to the input queue for processing by some subsequent run unit.
Presumably, this would be done on the assumption that if a program does a STOP
RUN statement without finishing processing an input message, the program has
probably aborted and its transaction will probably have to be restarted.
Programs using this type of implementation would be affected by the changed
specification.

c. The MCS leaves in the input queues the fragments of messages
that have been partially received, and these fragments are made available to
subsequent run units. It is unlikely that any programs are dependent upon such
an implementation, as the potential for errors in processing would be very
great.

The X3J4 COBOL Technical Committee believes that most implementations
have taken the first alternative, and that therefore few programs are likely to
be affected by this change.

(33) STRING statement (2 NUC). The order of execution for evaluating
subscripts in the STRING statement is specified.

Justification:

In second Standard COBOL, the order of evaluation of subscripts is not
specified; thus it is defined by the implementor. In particular, the relative
order of subscript evaluation and pointer modification is undefined (see X3J4
interpretation document B-130).

Consider the following example:

01 A PIC X(lOOO).
01 B PIC XXX.
01 PTR REDEFINES B PIC 999.
01 cc.

02 C PIC 9(4) OCCURS 100 TIMES.

PROCEDURE DIVISION.
MOVE 1 TO PTR.
STRING A DELIMITED BY SPACE INTO B POINTER C (PTR).

In second Standard COBOL, it is undefined whether C (PTR) is evaluated
either (a) once, or (b) before or after storing into Bon every iteration. The
new rules in third Standard COBOL state that C (PTR) is evaluated once,
immediately before the execution of the STRING statement.

In order for a program to be affected by this change, the identifier in
the INTO phrase of the STRING statement has to overlap the subscript of the
delimiter or the identifier in the WITH POINTER phrase. Such programming is
obscure and the X3J4 COBOL Technical Committee believes that few, if any,
programs will be affected by this change.

XVII-68

Substantive Changes (Potentially Affecting)

(34) UNSTRING statement (2 NUC). In the UNSTRING statement, any subscripting
associated with the DELIMITED BY identifier, the INTO identifier, the DELIMITER
IN identifier, or the COUNT IN identifier is evaluated once, immediately before
the examination of the sending fields for the delimiter.

Justification:

Consider the following example:

01 A PIC X(30).
01 BB.

02 PTR PIC 99.
01 cc.

02 C PIC XX OCCURS 10 TIMES.
01 D PIC XX.
01 E PIC X(30).

PROCEDURE DIVISION.
UNSTRING A DELIMITED BY C (PTR) INTO BB, E

WITH POINTER PTR.

According to the rules in second Standard COBOL, the delimiter C (PTR)
would be re-evaluated before moving the second string to E. Whereas, under the
new rules in third Standard COBOL, C (PTR) is evaluated once before examining
the sending field. Thus, the delimiters never change during the entire unstring
process.

Although second Standard COBOL stated that any subscripting associated
with the delimiters is evaluated immediately before the transfer of data into
the respective data item, this is not possible because the delimiter must be
known before examining the sending field, and so cannot be evaluated immediately
before the move. Therefore, this change in the stated rules allows evaluation
of the delimiters at the appropriate time, as is the way some implementations
currently process the UNSTRING statement.

In order for a program to be affected by this change, the identifier in
the INTO phrase of the UNSTRING statement must overlap the subscript of the
delimiter. Such programming is obscure and the X3J4 Technical Committee
believes that few, if any, programs will be affected by this change.

(35) WRITE statement (2 SEQ). The phrases ADVANCING PAGE and END-OF-PAGE
must not both be specified in a single WRITE statement.

Justification:

In second Standard COBOL, it is possible to specify both of these
phrases within one WRITE statement. However, no rules are provided to identify
their order of processing. Consequently, processing is defined by the
implementor.

Both the ADVANCING PAGE and END-OF-PAGE phrases allow control of the
vertical positioning of the printed page. Advancing a page by means of the
ADVANCING PAGE phrase is done in accordance with a technique defined by the
implementor. Whereas, advancing a page by means of the END-OF-PAGE phrase is a

XVII-69

Substantive Changes (Potentially Affecting)

user-controlled technique. Thus, the decision was made to separate these
diverse techniques.

Although these phrases were allowed together in second Standard COBOL,
few implementations could handle them. Thus there will be minimal impact on
existing programs.

(36) File position indicator (1 SEQ, 1 REL, 1 INX). The concept of a current
record pointer 1n second Standard COBOL has been changed to a file position
indicator.

Justification:

In third Standard COBOL, the rules based on the file position indicator
are straightforward and easy to understand. However, for combinations of update
and READ NEXT statements, the current record pointer rules in second Standard
COBOL were complex and did not always give rise to the result intuitively
expected. The current record pointer rules were also poorly defined in certain
cases when the record pointed to became inaccessible.

The only two cases where this change in concepts may affect programs are
described in the next two items (item 37 and item 38). These only occur in very
unusual sequences of operations on files in the dynamic access mode.

(37) File position indicator (2 REL, 2 INX). For a relative or indexed file
in the dynamic access made, execution of an OPEN I-0 statement followed by one
or more WRITE statements and then a READ NEXT statement wil'l cause the READ
statement to access the first record in the file at the time of execution of the
READ statement.

Justification:

In second Standard COBOL, this sequence caused the READ statement to
access the first record at the time of execution of the OPEN statement. If one
of the WRITE statements inserted a record with a key or relative record number
lower than that of any records previously existing in the file, a different
record would be accessed by the READ statement.

It is considered to be more logical that on execution of the first READ
NEXT statement following the OPEN statement, the record accessed should be the
first record in the file at the time the READ statement is executed.

The semantics in third Standard COBOL bring the situation following an
OPEN statement into line with that following a READ statement. In the latter
case, if a WRITE statement inserts a record with a key such that it immediately
follows the last record read, a succeeding READ NEXT statement obtains the
inserted record.

The semantics in second Standard COBOL are particularly awkward when, in
addition to the insertions, the initial first record is deleted between the OPEN
statement and the READ NEXT statement.

XVII-70

Substantive Changes (Potentially Affecting)

(38) File position indicator (2 INX). If an alternate key is the key of
reference and the alternate key is changed by a REWRITE statement to a value
between the current value and the next value in the file, a subsequent READ NEXT
statement will obtain the same record.

Justification:

In second Standard COBOL, the subsequent READ statement would obtain the
record with the next value for that alternate key prior to the REWRITE
statement.

It is logically consistent that the subsequent READ statement obtains
the "same" record, since that record at that moment is the first existing record
in the file whose key value is greater than that of the record made available by
the last READ statement. In essence, it is not the "same" record as accessed by
the previous READ statement, since the alternate key value and possibly other
values have changed.

Second Standard COBOL semantics for this situation were the subject of a
request for clarification that resulted in the X3J4 interpretation document B-6.

(39) Reserved words (1 NUC). The following reserved words have been added:

ALPHABET END-DIVIDE EXTERNAL
ALPHABETIC-LOWER END-EVALUATE FALSE
ALPHABETIC-UPPER END-IF GLOBAL
ALPHANUMERIC END-MULTIPLY INITIALIZE
ALPHANUMERIC-EDITED END-PERFORM NUMERIC-EDITED
ANY END-READ ORDER
BINARY END-RECEIVE OTHER
CLASS END-RETURN PACKED-DECIMAL
COMMON END-REWRITE PADDING
CONTENT END-SEARCH PURGE
CONTINUE END-START REFERENCE
CONVERTING END-STRING REPLACE
DAY-OF-WEEK END-SUBTRACT STANDARD-2
END-ADD END-UN STRING TEST
END-CALL END-WRITE THEN
END-COMPUTE EVALUATE TRUE
END-DELETE

Justification:

In each case, the benefits to be derived from the additional facility
provided through the addition of each reserved word were deemed to outweigh the
inconvenience caused by removing this word from the realm of user~defined words.
It is the intention that use of the new REPLACE statement will mitigate the
inconvenience to existing programs which may use any of the new reserved words
as user-defined words.

There have been some questions regarding the necessity of any reserved
words. Reserved words help allow production of efficient COBOL compilers, by
making syntactic analysis of the source program easier. Syntactic recognition

XVII-71

Substantive Changes (Potentially Affecting)

of COBOL would be difficult without reserved words. Consider the following
program fragment: ADD A TO B C CONTINUE

Assuming no reserved words, it is not possible to determine if
is a receiving field for the ADD, or if it is the CONTINUE statement.
matter, it is not possible to determine if TO is a receiving field
statement is syntactically incorrect.

CONTINUE
For that
and the

If the COBOL syntax had statement terminators which were required, the
above example could be written as ADD A TO B C; CONTINUE where it is clear
that CONTINUE is not part of the ADD statement. However, the COBOL syntax does
not have statement terminators; to require them would add a rather large
incompatibility.

Another possible solution would be to have the compiler check every
reserved word to see if it is used as a user-defined word before parsing a
statement. However, this would be very costly in terms of compiler complexity
and compilation speed.

Adding a few reserved words for a new facility is a much less serious
incompatibility than the incompatibility introduced by removing all reserved
words from COBOL.

Also, reserved words continue to be used in newer languages. For
example, Pascal and Ada, both developed after COBOL, also use reserved words.

(40) I-0 status (1 SEQ, 1 REL, 1 INX).
added.

Justification:

New I-0 status values have been

Second Standard COBOL specified only a few I-0 status code conditions.
As a result, the user could not distinguish among many different exceptional
conditions which he might wish to treat in a variety of ways, and/or each
implementor specified a different set of implementor-defined status codes which
covered a variety of situations in a variety of ways. Also, second Standard
COBOL left the results of many I-0 situations undefined; that is: second
Standard COBOL stated that certain criteria were to be met, but not what
happened when they were not met; hence, execution of the object program becomes
undefined.

The intention in third Standard COBOL is to define status codes for
these undefined I-0 situations. Thus the user can check for these error
conditions in a standard way and take corrective action for specific error
conditions where appropriate.

In general, the additions may impact programs:

a. If they test for specific implementor-defined status values to
detect conditions now defined.

XVII-72

Substantive Changes (Potentially Affecting)

b. If they rely on a successful completion status for any of the
conditions now defined. (In the case of new I-0 status values 04, 05, and 07,
this only affects programs which examine both character positions of the I-0
status to check for successful completion.)

abnormal
arise.

c. If they rely on some implementor dependent action such as
termination of the program when any of the newly defined conditions

This change may have a substantial impact on those programs which check
specific I-0 status values.

It should be noted that the first Standard COBOL did not provide any
status codes.

The individual I-0 status values affected are described in the following
paragraphs:

a. I-0 status = 04. A READ statement is successfully executed but
the length of the record processed does not conform to the fixed file attributes
for the file.

Justification:

Second Standard COBOL does not define the consequences if a READ
statement accesses a record containing more or fewer characters than the maximum
and minimum, respectively, specified for that file. Thus, the result of reading
such a record is undefined. The new I-0 status value of 04 alerts the user to
this situation.

Since third Standard COBOL prevents an attempt to write or
rewrite a record that is too large or too small, this situation cannot occur for
records written by a program on an implementation of third Standard COBOL.

b. I-0 status = 05. An OPEN statement is successfully executed but
the referenced optional file is not present at the time the OPEN statement is
executed.

Justification:

According to second Standard COBOL, the absence of an optional
file is not signaled to the program until the first READ statement for this
file. The new I-0 status value of 05 makes the information specific and
available at the time the file is referenced by an OPEN statement, allowing the
program to take more discerning action with respect to this condition.

The only programs that may be affected are those that use the
level 2 OPTIONAL phrase in the Sequential I-0 module and examine both characters
of the I-0 status data item to check for successful completion of the OPEN INPUT
statement.

XVII-73

Substantive Changes (Potentially Affecting)

c. I-0 status = 07. The input-output statement is successfully
executed. However, for a CLOSE statement with the NO REWIND, REEL/UNIT, or FOR
REMOVAL phrase or for an OPEN statement with the NO REWIND phrase, the
referenced file is on a non-reel/unit medium.

Jus ti ficat ion:

According to second Standard COBOL, an OPEN statement with the
NO REWIND phrase can only be used with sequential single reel/unit files, and a
CLOSE statement with the NO REWIND, REEL/UNIT, or FOR REMOVAL phrase is illegal
for a non-reel/unit file. However, with mass storage files, these instances of
OPEN and CLOSE can be considered successful in essence, if the anomaly of the NO
REWIND, REEL/UNIT, or FOR REMOVAL phrase is overlooked. The new I-0 status
value of 07 makes successful completion possible, while preserving the
information for the user in case he wishes to ·take specific action.

d. I-0 status = 14. A sequential READ statement is attempted for a
relative file and the number of significant digits in the relative record number
is larger than the size of the relative key data item described for the file.

Justification:

Second Standard COBOL states that successful execution of a
format 1 READ statement referencing a relative file updates the content of the
relative key data item (if specified) to contain the relative record number of
the record made available. Second Standard COBOL does not define the result if
the number of significant digits of the relative record number is larger than
the relative key data item. The new I-0 status value of 14 defines the result.

e. I-0 status = 24. An attempt is made to write
externally defined boundaries of a relative or indexed file; or
WRITE statement is attempted for a relative file and the number of
digits in the relative record number is larger than the size of the
data item described for the file.

Justification:

beyond the
a sequential
significant

relative key

In second Standard COBOL, the I-0 status value of 24 covers only
an attempt to write beyond the externally defined boundaries of a relative or
indexed file. In third Standard COBOL, the I-0 status value of 24 also includes
a sequential WRITE statement for a relative file where the number of significant
digits in the relative record number is larger than the size of the relative key
data item described for the file.

Second Standard COBOL states that on successful execution of a
WRITE statement referencing a relative file, the relative record number of the
record released will be placed in the relative key data item (if specified). It
does not define the result if the number of significant digits of the relative
record number is larger than the relative key data .item.

maximum
affected

Only programs which sequentially write more records than the
value allowed by the PICTURE of the relative key data item may be
by this change.

XVII-74

Substantive Changes (Potentially Affecting)

f. I-0 status = 35. An OPEN statement with the INPUT phrase 1s
attempted on a non-optional file that is not present.

Justification:

Second Standard COBOL requires that the OPTIONAL phrase must be
specified for input files that are not necessarily present each time the object
program is executed. It does not specify what happens when a file which is not
declared as optional is absent. The new I-0 status value of 35 allows the user
to test for this condition.

g. I-0 status = 37. An OPEN statement is attempted on a file which
is required to be a mass storage file but is not.

Justification:

This new I-0 status value will be returned if either: (1) an
OPEN I-0 .statement is attempted for a non-mass storage file, or (2) an OPEN
statement is attempted for a non-mass storage file which is declared in the
program to be a relative or indexed file.

Second Standard COBOL does not specify what happens in these
circumstances. The new I-0 status value of 37 permits the user to test for this
error condition.

Some implementors have provided extensions to use OPEN I-0
statements to access terminals. Such extensions may be precluded by the new I-0
status value of 37.

h. I-0 status= 38. An OPEN statement 1s attempted on a file
previously closed with lock.

Justification:

Second Standard COBOL specifies that an implementation should
ensure that a file closed with lock cannot be opened again during the current
execution of the run unit, but does not specify what happens if an attempt is
made to reopen the file. The new I-0 status value of 38 permits the user to
test for this condition.

1. I-0 status = 39. An OPEN statement is unsuccessful because a
conflict has been detected between the fixed file attributes and the attributes
specified for that file in the program.

Justification:

Fixed file attributes are attributes of a file which are fixed
at the time the file is created and which cannot be changed throughout the
lifetime of the file. They are the organization, the code set, the minimum and
maximum logical record size, the record type (fixed or variable), the blocking
factor, the padding character, and the record delimiter. For indexed files

XVII-75

Substantive Changes (Potentially Affecting)

only, additional fixed file attributes are the prime record key, the alternate
record keys, and the collating sequence of the keys.

Second Standard COBOL specifies that the file organization is
established at the time a file is created and subsequently cannot be changed.
It also specifies for an OPEN INPUT, OPEN I-0, or OPEN EXTEND statement that the
file description of the file, which includes the CODE-SET, RECORD, and BLOCK
CONTAINS clauses, must be equivalent to that used when the file was created.
The ability to specify a padding character and a record delimiter are new
facilities not available in second Standard COBOL. For indexed files, second
Standard COBOL specifies that the data descriptions and relative locations
within a record of the record key and alternate record key data items, and the
number of alternate record keys, must be the same as when the file was created.
Second Standard COBOL does not provide the ability to influence the collating
sequence used for the keys of an indexed file.

Second Standard COBOL does not specify what happens if the fixed
file attributes conflict with the attributes specified for a file in the
program. The new I-0 status value of 39 allows the user to test for this
condition.

The new I-0 status value of 39 may affect programs that depend
on implementations which have not previously enforced some of these checks.

J• I-0 status= 41. An OPEN statement 1s attempted for a file in
the open mode.

Justification:

Second Standard COBOL does not allow an OPEN statement to refer
to a file in open mode, but does not define the consequence of such a reference.
The new 1-0 status value of 41 permits the user to test for the condition.

k. 1-0 status = 42. A CLOSE statement is attempted for a file not
in the open mode.

Justification:

Second Standard COBOL does not allow a CLOSE statement to refer
to a file which is not in the open mode, but does not define what happened if
the file is not in the open mode. The new 1-0 status value of 42 permits the
user to test for this condition.

1. 1-0 status = 43. For a mass storage file 1n the sequential
access mode, the last input-output statement executed for the associated file
prior to the execution of a DELETE or REWRITE statement was not a successfully
executed READ statement.

XVII-76

Substantive Changes (Potentially Affecting)

Justification:

Second Standard COBOL specifies that for a file in sequential
access mode, the last input-output statement executed for the file prior to the
execution of a DELETE or REWRITE statement must have been a successfully
executed READ statement, but it does not specify what happens if the requirement
is not satisfied. The new I-0 status value of 43 allows the user to test for
this condition.

m. I-0 status = 44. A boundary violation exists because an attempt
is made to rewrite a record to either: (1) a sequential file, (2) a relative
file in level 1 of the Relative I-0 module, or (3) an indexed file in level 1 of
the Indexed I-0 module, and the record is not the same size as the record being
replaced.

Justification:

Second Standard COBOL specifies for a REWRITE statement that the
number of character positions in the new record must be equal to the number of
character positions in the record being replaced, but it does not specify what
happens if this requirement is not satisfied.

The new I-0 status value of 44 allows the user to test for these
conditions.

n. I-0 status = 46. A sequential READ statement is attempted on a
file opened in the input or I-0 mode and no valid next record has been
established because either: (1) the preceding START statement was unsuccessful,
(2) the preceding READ statement was unsuccessful but did not cause an at end
condition, or (3) the preceding READ statement caused an at end condition.

Justification:

Second Standard COBOL specifies that in these circumstances
execution of the READ statement was illegal or its execution was unsuccessful,
but did not specify a status code to indicate the situation. The new I-0 status
value of 46 allows the user to test for this condition. I-0 status 46 can occur
only if no corrective action is taken following the previous READ or START
statement.

o. I-0 status = 47. The execution of a READ or START statement is
attempted on a file not opened in the input or I-0 mode.

Justification:

Second Standard COBOL requires that the file must be opened in
the input or I-0 mode at the time a READ or START statement is executed, but
does not specify what happens if the requirement is not met. The new I-0 status
value of 47 allows the user to test for this condition.

XVII-77

Substantive Changes (Potentially Affecting)

P•
attempted on
mode, or (2) a
mode.

I-0 status = 48. The execution of a WRITE statement is
either: (1) a sequential file not opened in the output or extend
relative or indexed file not opened in the I-0, output, or extend

Justification:

Second Standard COBOL requires that tqe. file be opened in one of
the modes specified, but does not specify what happens if the requirement is not
met. The new I-0 status of 48 allows the user to test for this condition.

This change restricts an extension to second Standard COBOL
provided by some implementors to permit a WRITE statement on a sequential file
opened in the I-0 mode.

q. I-0 status = 49. The execution of a DELETE or REWRITE statement
is attempted on a file not opened in the I-0 mode.

Justification:

Second Standard COBOL requires that the file be opened in the
I-0 mode, but does not specify what happens if the requirement is not met. The
new I-0 status value of 49 allows the user to test for this condition.

(41) Communication status key (1 COM). New communication stat.us key values
have been added.

Justification:

Second Standard COBOL leaves the results of some communication
situations undefined. Third Standard COBOL defines new communication status key
values for these situations so that the user can check for these error
conditions in a standard way and thus take corrective action if appropriate.

These new communication status key values only affect existing programs
which rely on some other action taking place when the newly defined exception
conditions occur.

The individual communication status key values added are described
below.

a. Communication status key = 15. Symbolic source, or one or more
queues or destinations already disabled/enabled.

Justification:

If, at the time a DISABLE or ENABLE statement is executed, the
source or a queue or a destination referenced is already disabled or enabled
respectively, the second Standard COBOL specifications imply that a
communication status key value of 00 should be expected. The new communication
status key value of 15 provides this information to the user.

XVII-78

Substantive Changes (Potentially Affecting)

b. Communication status key= 21. Symbolic source is unknown.

Justification:

In second Standard COBOL, the user has to compare the symbolic
source data item with spaces to determine whether the symbolic name of the
source terminal is known to the message control system (MCS) on a RECEIVE
statement. Second Standard COBOL does not specify what happens if the symbolic
source in an input CD referenced in an ENABLE or DISABLE statement is unknown.
The new communication status key value of 21 provides this information.

c. Communication status key= 65. Output queue capacity exceeded.

Justification:

Second Standard COBOL does not specify what h~ppens if the
capacity of the output queue is exceeded on a SEND statement. This situation is
now defined to give the new communication status key value of 65.

d. Communication status key = 70. One or more destinations do not
have portions associated with them.

Justification:

This communication status key value is only returned by the new
PURGE statement. Thus it cannot occur in programs written according to second
Standard COBOL.

e. Communication status key = 80. A combination of at least two
status key conditions 10, 15, and 20 has occurred.

Justification:

If the multiple destination facility in level 2 is used and one
of the destinations is disabled while a second destination is unknown, second
Standard COBOL does not specify whether communication status key value 10 or 20
should be returned by a SEND statement. The new communication status key value
of 80 is now defined to be returned in this situation. The new communication
status key value of 80 is also returned in the case of an ENABLE or DISABLE
statement where new communication status key condition 15 and communication
status key condition 20 both apply.

f. Communication status key= 9x. Implementor-defined status.

Justification:

This new range of communication status key values allows the
implementor to define a variety of different error conditions. This provides
the user with a facility to test for implementor-defined error conditions,
similar to the second Standard COBOL facility for testing I-0 status values for
implementor-defined I-0 errors.

XVII-79

Substantive Changes (Potentially Affecting)

(42) Communication error key (1 COM). New communication error key values
have been added. These new communication error key values are described below.

a. Communication error key value 2. Symbolic destination disabled.

Justification:

A SEND statement was executed and the destination to which this
error key applies is disabled. In second Standard COBOL, this condition was not
distinguishable by the user.

b. Communication error key value = 5.
enabled/disabled.

Symbolic destination already

Justification:

An ENABLE or DISABLE statement was executed and the destination to
which this communication error key value applies was already enabled/disabled.
In second Standard COBOL, this condition was not distinguishable by the user.

c. Communication error key value = 6. Output queue capacity exceeded.

Justification:

A SEND statement was executed and the MCS was not able to enqueue
the message, message segment, or portion of the message or message segment
because the output queue for the destination to which this communication error
key value applies was full. In second Standard COBOL, this condition was not
distinguishable by the user.

d. Communication error key value = A through z.
condition.

Justification:

The MCS has detected an implementor-defined
covered by an existing communication error key value. In
the implementor could not provide such information to the

XVII-80

Implementor-defined

error condition not
second Standard COBOL,
user,

Obsolete Element List

APPENDIX C: LANGUAGE ELEMENT LISTS

1. OBSOLETE LANGUAGE ELEMENT LIST

The purpose of the obsolete language element category is to limit the impact
of deleting features that are seen as obsolete or improperly specified. It is
felt by X3J4 that, although the elements in this category are obsolete, their
abrupt removal from Standard COBOL would be a disservice to COBOL users.
Features placed in the obsolete element category have the following
characteristics:

• Language elements to be deleted from Standard COBOL will first be
identified as obsolete language elements prior to being deleted.

• Obsolete language elements will be neither enhanced, modified, nor
maint4ined.

• The interaction between obsolete language elements and other language
elements is undefined unless otherwise specified in Standard COBOL.

• Obsolete language elements will be deleted from the next revision of
Standard COBOL.

• A conforming implementation of Standard COBOL is required to support
obsolete language elements of the subset and levels of optional modules
for which support is claimed.

The following is a list of the obsolete language elements in
COBOL. Associated with each obsolete language element in
justification for placing that element into the obsolete element

(1) Double character substitution (1 NUC). When a character
fewer than 51 characters, double characters must be substituted
characters. This feature has been placed in the obsolete element

Justification:

third Standard
this list is a

category.

set contains
for the single
category.

These specifications are a carry-over from the
could not provide the complete COBOL character set.
of characters available in hardware no longer exists.

time when most hardware
This limitation on number

XVII-81

Obsolete Element List

(2)
constant
when the
obsolet:~

All literal and numeric or numeric edited item (2 NUC). The figurative
ALL literal, when associated with a numeric or numeric edited item and

length of the literal is greater than one, has been placed in the
element category.

Justification:

The reason for making this element obsolete is that the results of
movirrg an ALL literal to a numeric data item are often unexpected. For example,
according to the interpretation contained in X3J4 interpretation document B-23
the statements

01 A PIC 99V99.

MOVE ALL "99" TO A.
MOVE ALL "123" TO A.

give values of 99.00 and 31.00 respectively.

(3) AUTHOR, INSTALLATION, DATE-WRITTEN, DATE-COMPILED, and SECURITY
paragraphs (1 NUC). The AUTHOR, INSTALLATION, DATE-WRITTEN, DATE-COMPILED, and
SECURITY paragraphs in the Identification Division have been placed in the
obsolete element category.

Justification:

The purpose of the AUTHOR, INSTALLATION, DATE-WRITTEN, DATE-COMPILED,
and SECURITY paragraphs can be achieved through the use of comment lines within
the Identification Division since these paragraphs have no effect on the
operating of a COBOL program.

The goal of cleaning up and regularizing the COBOL language has been
achieved by declaring many implementor-defined elements as obsolete. The format
of the DATE-COMPILED and SECURITY paragraphs are examples of comment-entry
paragraphs which are defined by the implementor.

The interaction of the COPY statement with the comment-entries in the
AUTHOR, INSTALLATION, DATE-WRITTEN, DATE-COMPILED, and SECURITY paragraphs is
often ambiguous, i.e. the presence of the word COPY in a comment-entry versus
the use of the COPY statement in a comment-entry.

(4) MEMORY SIZE clause (1 NUC). The MEMORY SIZE clause of the
OBJECT-COMPUTER paragraph has been placed in the obsolete element category.

Justification:

This anachronistic feature of the language is a carry-over from the time
when many systems required a specification of memory size allocation to load the
run unit. Memory capacity for a family of main frame models often ranged from
BK to 64K maximum. COBOL programs used the MEMORY SIZE clause to generate
objects for specific models.

XVII-82

Obsolete Element List

This feature is considered to be a function more appropriately
controlled by the host operating system in today's computing environment. In
second Standard COBOL, the MEMORY SIZE clause was optional. Thus, there are no
standard conforming COBOL implementations that require the use of the MEMORY
SIZE clause to specify the object computer memory size.

(5) RERUN clause (1 SEQ, 1 REL, 1 INX). The RERUN clause of the I-0-CONTROL
paragraph has been placed in the obsolete element category.

Justification:

Seven forms of the RERUN clause are provided. The implementor is
required to support at least one form of the RERUN clause.

This feature is considered to be a function more appropriately
controlled by the host operating system in today's computing environment.

The RERUN clause provides only one-half ~f a
facility. That is, the syntax and semantics for restart
to the variety in forms of the RERUN clause, there is
program using this clause would be transportable.

complete rerun/restart
are not specified. Due

no guarantee that a

(6) MULTIPLE FILE TAPE clause (2 SEQ, 1 RPW). The MULTIPLE FILE TAPE clause
in the I-0-CONTROL paragraph of the Environment Division has been placed in the
obsolete element category.

Justification:

The MULTIPLE FILE TAPE clause should be a function of the operating
system and not the individual COBOL program. Therefore, the MULTIPLE FILE TAPE
clause has been placed in the obsolete element category.

(7) LABEL RECORDS cl a.use (1 SEQ, 1 REL, 1 INX, 1 RPW). The LABEL RECORDS
clause in the file description entry has been placed in the obsolete element
category and has been made an optional clause.

Justification:

The LABEL RECORDS clause has
obsolete element category. Specifying
a function of the operating system and
program.

been made an optional clause in the
the presence of file labels is considered
as such does not belong in the COBOL

(8) VALUE OF clause (1 SEQ, 1 REL, 1 INX, 1 RPW). The VALUE OF clause in
the file description entry has been placed in the obsolete element category.

Justification:

Describing file label items is considered a function of the operating
system and does not belong in the COBOL program. Thus the VALUE OF clause has
been placed in the obsolete element category.

XVII-83

Obsolete Element List

(9) DATA RECORDS clause (1 SEQ, 1 REL, 1 INX). The DATA RECORDS clause of
the file description entry has been placed in the obsolete element category.

Justification:

The DATA RECORDS clause is redundant and may
document at ion.

cause misleading

(IO·) ALTER statement (1 NUC). The ALTER statement has been placed in the
obsolete element category.

Justification:

The use of the ALTER statement in a program results in a program which
may be difficult to understand and maintain. The ALTER statement provides no
unique function since the GO TO DEPENDING statement can serve the same purpose.

(11) KEY phrase of the DISABLE statement (2 COM). The KEY phrase of the
DISABLE statement has been placed in the obsolete element category and has been
made an optional phrase.

Justification:

The KEY phrase of the DISABLE statement is used as a password
for access to the DISABLE statement. However the rules for determining
value in the KEY phrase matches the system password are not specified,

.resulting in a situation defined by the implementor. Thus the function
by the KEY phrase is not portable.

facility
when the

thereby
provided

(12) KEY phrase of the ENABLE statement (2 COM). The KEY phrase of the
ENABLE statement has been placed in the obsolete element category and has been
made an optional phrase.

Justification:

The KEY phrase of the ENABLE statement is used as a password
for access to the ENABLE statement. However the rules for determining
value in the KEY phrase matches the system password are not specified,
resulting in a situation defined by the implementor. Thus the function
by the KEY phrase is not portable.

facility
when .the

thereby
provided

(13) ENTER statement (1 NUC). The ENTER statement has been placed 1n the
obsolete element category.

Justification:

The ENTER statement was a precursor of the CALL statement and the
calling of external subprograms. The ENTER statement provides no portability
because it is optional and is defined by the implementor; thus the ENTER
statement is not a good candidate for standardization.

XVII-84

Obsolete Element List

(14) The optionality of procedure-name-! in GO TO statement (2 NUC). The
optionality of procedure-name-! in the GO TO statement has been placed in the
obsolete element category. ·

Justification:

The optionality of procedure-name-1 in the GO TO statement is dependent
upon the ALTER statement. If procedure-name-1 is not specified in format 1 of
the GO TO statement, then an ALTER statement referring to that GO TO statement
must be executed prior to the execution of the GO TO statement. Since the ALTER
statement has been placed in the obsolete element category, the optionality of
procedure-name-! in the GO TO statement has also been placed in the obsolete
element category.

(15) REVERSED phrase of the OPEN statement (2 SEQ). The REVERSED phrase of
the OPEN statement has been placed in the obsolete element category.

Justification:

A sequential file may be opened for input to be read in reversed order.
The necessary hardware to perform this function is not very widely available.
Hence, this is an infrequently implemented feature and not a good candidate for
standardization. Since this feature is on the hardware dependent list, it is an
optional feature which may or may not be implemented.

(16) STOP literal statement (1 NUC). The literal variation of the STOP
statement has been placed in the obsolete element category.

Justification:

General rule 4 of the STOP statement reads: "If STOP literal-I 1S

specified, the execution of the run unit 1S suspended and literal-! 1S

communicated to the operator. Continuation of the execution of the run unit
begins with the next executable statement when the implementor-defined procedure
governing run unit reinitiation is instituted."

The function of the STOP literal statement is substantially defined by
the implementor and thus programs using it are not portable.

(17) Segmentation module. The Segmentation module has been placed in the
obsolete element category.

Justification:

In the current state of the art, the function provided by the
Segmentation module is provided at the operating system level, external to the
COBOL source code. Thus the feature remains in third Standard COBOL as an
obsolete element to be deleted in the next revision.

Making the Segmentation module optional allows existing implementations
to continue offering the feature for compatibility reasons, without forcing new
implementations to provide a capability grounded in obsolete technology.

XVII-85

Obsolete Element List

(18) Debug module. The Debug module has been placed in the obsolete element
category.

Justification:

In the current state of the art, the function provided by the Debug
module is frequently provided through an interactive debug facility which does
not require COBOL source statements. Thus, the feature remains in third
Standard COBOL as an obsolete element to be deleted in the next revision.

Making the Debug module optional allows existing
continue offering the feature for compatibility reasons,
implementations to provide a capability grounded in obsolete

XVII-86

implementations to
without forcing new
technology.

Implementor-Defined Element List

2. IMPLEMENTOR-DEFINED LANGUAGE ELEMENT LIST

The following is a list of the COBOL language elements within third Standard
COBOL that depend on implementor definition to complete the specification of the
syntax or rules for the elements.

(1) System-name. Rules for the formation of a system-name are defined by
the implementor. (See 4.2.2.1.2 on page IV-8.)

(2) Data representation. The selection of radix is generally dependent upon
the arithmetic capability of the computer. (See 4.3.4 on page IV-16.)

(3) Algebraic sign. If the SIGN clause is not used, operational signs will
be represented as defined by the implementor. (See 4.3.5 on page IV-16.)

(4) Data item alignment. Each implementor who provides for special types of
alignment will describe the effect of the implicit FILLER and the semantics of
any statement referencing these groups. (See 4.3.7 on page IV-17.)

(5) External switch. An external switch is a hardware or software device,
defined and named by the implementor. (See 4.5 on page IV-28.)

(6) External switch. The implementor defines
etc.) of each external switch and any facility
used to modify the status of an external switch.

the scope (program, run unit,
external to COBOL which may be
(See 4.5 on page IV-28.)

(7) Area B. Area B occupies a finite number of character positions
specified by the implementor. (See 7.2 on page IV-41.)

(8) CQm1,2uter-n9me in SOURCE-COMPUTER paragraph. Computer-name is
system-name; thus the formation of a computer-name is defined by
implementor. (See 4.3.3, syntax rule l ; on page VI-10.)

(9) Computer-name in OBJECT-COMPUTER paragraph. Computer-name is
system-name; thus the formation of a computer-name is defined by
implementor. (See 4.4.3, syntax rule 1, on page VI-11.)

(10) MEMORY SIZE clause.
subset specified by the user
running the object program.

The implementor defines what is to be done if
is less than the minimum configuration required
(See 4.4.4, general rule 1, on page VI-11.)

a
the

a
the

the
for

(11) Program collating sequence. If the PROGRAM COLLATING SEQUENCE clause is
not specified, the program collating sequence is the native collating sequence.
(See 4.4.4, general rule 6, on page VI-11.)

(12) Implementor-name in SPECIAL-NAMES
system-name; thus the formation of an
implementor. (See 4.5.2 on page VI-13.)

paragraph. Implementor-name is a
implementor-name is defined by the

(13) STANDARP-1 in ALPHABET clause. The implementor defines the
correspondence between the characters of the standard character set and the
characters of the native character set for which there is no correspondence
otherwise specified. (See 4.5.4, general rule 4a, page VI-15.)

XVII-87

Implementor-Defined Element List

(14) Implementor-name in ALPHABET clause. If the implementor-name-2 phrase
is specified, the character code set or collating sequence identified is that
defined by the implementor. The implementor also defines the correspondence
between characters of the character code set specified by implementor-name-2 and
the characters of the native character code set. (See 4.5.4, general rule 4c,
on page VI-15.)

(15) RERUN clause. The implementor
specified forms of the RERUN clause.
VII-17.)

must
(See

provide at least one of the
2.12.4, general rule 2, on page

(16) RECORD clause. Where no RECORD clause is specified in
description entry for a file, or where the RECORD clause specifies a
character positions, it is implementor defined whether fixed length or
length records are obtained. (See 2.1.4.3, on page II-3.)

the file
range of
variable

(17) INDEXED BY phrase. The index-name identified by the INDEXED BY phrase
is not defined elsewhere since its allocation and format are dependent on the
hardware and, not being data, cannot be associated with any data hierarchy.
(See 5.8.3, syntax rule 13, on page VI-27.)

(18) SIGN clause. If a numeric data description entry whose PICTURE contains
the character 'S' has no optional SIGN clause, the implementor will define the
position and representation of the operational sign. (See 5.12.4, general rule
4, on page VI-42.)

(19) SIGN clause. If the optional SEPARATE CHARACTER phrase is not present,
the implementor defines what constitutes valid sign(s) for data items. (See
5.12.4, general rule Sc, on page VI-43.)

(20) SYNCHRONIZED clause. SYNCHRONIZED not followed by either RIGHT or LEFT
specifies that the elementary item is to be positioned
boundaries in such a way as to effect efficient utilization of
data item. The specific positioning is, however, determined by
(See 5.13.4, general rule 2, on page VI-44.)

between natural
the elementary

the implementor.

(21) SYNCHRONIZED clause. The implementor must specify how elementary items
associated with the SYNCHRONIZED clause are handled regarding: (a) The format
on the external media of records or groups containing elementary items whose
data description contains the SYNCHRONIZED clause; (b) Any necessary generation
of implicit FILLER, if the elementary item immediately preceding an item
containing the SYNCHRONIZED clause does not terminate at an appropriate natural
boundary. (See 5.13.4, general rule 8, on page VI-45.)

(22) SYNCHRONIZED clause. An implementor may, at his option, specify
automatic alignment for any internal data formats except, within a record, data
items whose usage is DISPLAY. However, the record itself may be synchronized.
(See 5.13.4, general rule 9, on page VI-45.)

(23) USAGE IS BINARY clause. Each implementor specifies the precise effect
of the USAGE IS BINARY clause upon the alignment and representation of the data
item in the storage of the computer, including the representation of any
algebraic sign. Sufficient computer storage must be allocated by the
implementor to contain the maximum range of values implied by the associated
decimal PICTURE character-string. (See 5.14.4, general rule 3, on page VI-47.)

XVII-88

Implementor-Defined Element List

(24) USAGE IS COMPUTATIONAL clause. Each implementor specifies the precise
effect of the USAGE IS COMPUTATIONAL clause upon the alignment and
representation of the data item in the storage of the computer, including the
representation of any algebraic sign, and upon the range of values that the data
item can hold. (See 5.14.4, general rule 4, on page VI-47.)

(25) USAGE IS INDEX clause. Each implementor specifies the precise
the USAGE IS INDEX clause upon the alignment and representation of the
in the storage of the computer, including the actual value assigned
given occurrence number. (See 5.14.4, general rule 7, on page VI-47.)

effect of
data item

for any

(26) USAGE IS PACKED-DECIMAL clause. Each implementor specifies the precise
effect of the USAGE IS PACKED-DECIMAL clause upon the alignment and
representation of the data item in the storage of the computer, including the
representation of any algebraic sign. Sufficient computer storage must be
allocated by the implementor to contain the maximum range of values implied by
the associated decimal PICTURE character-string. (See 5.14.4, general rule 9,
on page VI-47.)

(27) Arithmetic expression. Ea:ch implementor will indicate the techniques
used in handling arithmetic expressions. (See 6.2.3, rule 6, on page VI-53.)

(28) ACCEPT statement. Mnemonic-name in the ACCEPT statement must be
associated with a hardware device. (See 6.5.3, syntax rule 1, on page VI-71.)

(29) ACCEPT statement. Any conversion of data required between the
device and the data item referenced by identifier-1 is defined
implementor. (See 6.5.4, general rule 1, on page VI-71.)

hardware
by the

(30)
device,
VI-71.)

ACCEPT statement.
the size of a

The
data

implementor
transfer.

will define, for each hardware
(See 6.5.4, general rule 2, on page

(31) ACCEPT statement. If the FROM option is not given, the device that the
implementor specifies as standard is used. (See 6.5.4, general rule 5, on page
VI-72.)

(32) ADD statement. The compiler ensures that enough places are carried so
as not to lose any significant digits during execution. (See 6.6.4, general
rule 4, on page VI-74.)

(33) COMPUTE statement. Each implementor will indicate the techniques used
in handling arithmetic expressions. (See 6.8.4, general rule 3, on page VI-76.)

(34) DISPLAY statement. Mnemonic-name in the DISPLAY statement is associated
with a hardware device. (See 6.10.3, syntax rule 1, on page VI-78.)

(35) DISPLAY statement. Any conversion of data required between literal-1 or
the data item referenced by identifier-1 and the hardware device is defined by
the implementor. (See 6.10.4, general rule 1, on page VI-78.)

(36) DISPLAY statement. The
device, the size of a data
VI-78.)

implementor will define, for each hardware
transfer. (See 6.10.4, general rule 2, on page

XVII-89

Implementor-Defined Element List

(37) D=I=S=P~L=A=Y~~s~t=a=t=e=m=e=n=t. If the UPON phrase is not specified, the
implementor's standard display device is used. (See 6.10.4, general rule 7, on
page VI-79.)

(38) ENTER statement. Language-name-I 1s specified by the implementor. (See
6.12.3, syntax rule 1, on page VI-83.)

(39) SEARCH ALL statement. The initial setting of the index-name for
identifier-I is ignored and its setting is varied during the search operation in
a manner specified by the implementor. (See 6.22.4, general rule 4, on page
VI-124.)

(40) SET statement. The implementor defines which external switches can be
referenced by the SET statement. (See 6.23.3, syntax rule 5, on page VI-127.)

(41) STOP literal statement. Continuation of the execution of the run unit
begins with the next executable statement when the implementor-defined procedure
governing run unit reinitiation is instituted. (See 6.24.4, general rule 4, on
page VI-130.)

(42) SUBTRACT statement. The compiler insures enough places are carried so
as not to lose significant digits during execution. (See 6.26.4, general rule
4, on page VI-135.)

(43) I-0 status. If the value of the I-0 status for an input-output
operation indicates a critical error condition, the implementor determines what
action is taken after the execution of any applicable USE AFTER STANDARD
EXCEPTION procedure, or if none applies, after completion of the normal
input-output control system error processing. (See 1.3.5 on page VII-2; 1.3.4
on page VIII-2; 1.3.4 on page IX-2.)

(44) I-0 status. The permanent error condition remains in effect for all
subsequent input-output operations on the file unless an implementor-defined
technique is invoked to correct the permanent error condition. (See 1.3.5, item
3, on page VII-2; 1.3.4, item 4, on page VIII-3; 1.3.4, item 4, on page IX-3.)

(45)
which
VII-3;

I-0 status. If more than one value applies, the implementor determines
of the applicable values to place in the I-0 status. (See 1.3.5 on page
1.3.4 on page VIII-3; 1.3.4 on page IX-3.)

(46) I-0 status 24. An attempt is made to write beyond the externally
defined boundaries of a relative or indexed file. The implementor specifies the
manner in which these boundaries are defined. (See 1.3.4 on page VIII-4; 1.3.4
on page IX-4.)

(47) I-0 status 34. An attempt is made to write beyond the externally
defined boundaries of a sequential file. The implementor specifies the manner
in which these boundaries are defined. (See 1.3.5 on page VII-3.)

(48) I-0 status 9x. An I-0
implementor-defined condition exists.
implementor. (See 1.3.5 on page VII-5;
IX-6.)

status value of 9x
The value of x is

1.3.4 on page VIII-5;

XVII-90

indicates an
defined by the
1.3.4 on page

Implementor-Defined Element List

(49) ASSIGN clause. The meaning and rules for the allowable content of
implementor-name-1 and the value of literal-1 are defined by the implementor.
(See 2.3.3, syntax rule 3, on page VII-7; 2.3.3, syntax rule 3, on page VIII-8;
2.3.3, syntax rule 3, on page IX-8; 2.3.3, syntax rule 3, on page XIII-3.)

(50) ASSIGN clause.
implementor-name-1 or
2.3.4, general rule lb,
2.3.4, general rule lb,

The implementor will specify the consistency
literal-1. (See 2.3.4, general rule lb, on
on page VIII-9; 2.3.4, general rule lb, on
on page XIII-4).

rules for
page VII-8;
page IX-9;

(51) ASSIGN clause.
file and a storage
2.3.4, general rule 3,
2.3.4, general rule 5,

The implementor will specify the association between a
medium implied by each implementor-name or literal. (See
on page VII-8; 2.3.4, general rule 4, on page VIII-9;
on page IX-9; 2.3.4, general rule 3, on page XIII-4.)

(52) PADDING CHARACTER clause. If the PADDING CHARACTER clause is not
specified, the value used for the padding character will be defined by the
implementor. (See 2.7.4, general rule 5, on page VII-12.)

(53) Implementor-name in RECORD DELIMITER clause. Implementor-name is a
system-name; thus the formation of an implementor-name is defined by the
implementor. (See 2.8.2 on page VII-13.)

(54) RECORD DELIMITER clause. The implementor will specify the consistency
rules for implementor-name in the RECORD DELIMITER clause. (See 2.3.4, general
rule le, on page VII-8.)

(55) RECORD DELIMITER clause. If the implementor-name-1 phrase is specified,
the method used for determining the length of a variable length record is that
associated with implementor-name-1 by the implementor. (See 2.8.4, general rule
3, on page VII-13.)

(56) RESERVE clause. If the RESERVE clause 1s not specified, the
input-output areas allocated is specified by the implementor.
general rule 1, on page VII-14.)

number of
(See 2.9.3,

(57) LABEL RECORDS clause. STANDARD specifies that labels exist for the file
or the device to which the file is assigned and the labels conform to the
implementor's label specifications. (See 3.6.3, general rule 2, on page
VII-26.)

(58) LABEL RECORDS clause. If the LABEL RECORDS clause is not specified for
a file, label records for that file must conform to the implementor's label
specifications. (See 3.6.3, general rule 3, on page VII-26.)

(59) VALUE OF clause.
of an implementor-name
VII-33.)

Implementor-name is a system-name; thus the formation
1s defined by the implementor. (See 3.9.2 on page

(60) CLOSE statement. Labels are processed according to the implementor's
standard label convention. Closing operations specified by the implementor are
executed. (See 4.2.4, general rule 3C, on page VII-36; 4.2.4, general rule 2A,
on page VIII-17; 4.2.4, general rule 2A, on page IX-19, 4.2.4, general rule
3C, on page XIII-64.)

XVII-91

Implementor-Defined Element List

(61) OPEN statement. The labels are checked or written in accordance with
the implementor's specified conventions for input or output label handling.
(See 4.3.4, general rule 7, on page VII-41; 4.4.4, general rule 7, on page
VIII-23; 4.4.4, general rule 7, on page IX-25; 4.4.4, general rule 14, on page
IX-26; 4.5.4, general rule Sa, on page XIII-71.)

(62) WRITE statement. When mnemonic-name-I is specified, the name is
associated with a particular feature specified by the implementor. (See 4.7.3,
syntax rule 6, on page VII-52.)

(63) WRITE statement. If mnemonic-name-! is specified, the representation of
the printed page is advanced according to the rules specified by the implementor
for that hardware device. (See 4.7.4, general rule 15d, on page VII-55.)

(64) WRITE statement. If PAGE is specified and the LINAGE clause is not
specified in the associated file description entry, repositioning to the next
physical page is accomplished in accordance with an implementor-defined
technique. (See 4.7.4, general rule 15h, on page VII-55.)

(65) Reel. The dimensions of a reel are defined by the implementor. (See
page III-19.)

(66) Unit. The dimensions of a unit are defined by the implementor. (See
page III-25.)

(67) Volume. The dimensions of a volume are defined by the implementor.
(See page III-26.)

(68) CALL statement. If the program being called is not a COBOL program, the
rules for formation of the program-name are defined by the implementor. (See
5.2.4, general rule 1 on page X-27.)

(69) CALL statement. The object time resources which must be checked in
order to determine the availability of the called program for execution are
defined by the implementor. (See 5.2.4, general rule 3, on page X-28.)

(70) CALL statement. If the program specified by the CALL statement cannot
be made available for execution and the ON OVERFLOW/EXCEPTION phrase is not
specified, all other effects of the CALL statement are defined by the
implementor. (See 5.2.4, general rule 3, on page X-28.)

(71) CALL statement. If the program being called is other than a COBOL
program, the use of the USING phrase is defined by the implementor. (See 5.2.4,
general rule 9, on page X-29.)

(72) SAME SORT/SORT MERGE AREA clause. The extent of allocation of non-sort
files or non-merge files will be specified by the implementor. (See 2.5.4,
general rule 2b, on page XI-5.)

(73) Record structure for report file. The report writer logical record
structure of the file associated with file-name-1 is defined by the implementor.
(See 3.2.4, general rule 2, on page XIII-7.)

XVII-92

Implementor-Defined Element List

(74) Symbolic name. The symbolic name of a communication
follow the rules for the formation of system-names; thus the
symbolic name is defined by the implementor. (See 2.2.4, general
page XIV-8.)

terminal must
format ion of a
rule 10, on

(75) Communication status key 9x. A communication status key value of 9x
indicates an implementor-defined condition exists. The value of xis defined by
the implementor. (See 2.2.5, on page XIV-15.)

(76)
through
XIV-16.)

Communication error key. The communication error
Z indicate an implementor-defined condition.

(77) KEY Ehrase of DISABLE statement. Password is built
(See 3.2.4, general rule 7, on page XIV-19).

(78) KEY ~hrase of ENABLE statement. Password is built
(See 3.3.4, general rule 6, on page XIV-21.)

key
(See

values
2.2.6

into the

into the

from A
on page

system.

system.

(79) SEND statement. When the mnemonic-name
identified with a particular feature specified
syntax rule 4, on page XIV-26.)

phrase is used,
by the implementor.

the name is
(See 3.6.3,

(80) SEND ·Statement. If mnemonic-name-! is specified, characters transmitted
to the communication device are positioned according to the rules specified by
the implementor for that communication device. (See 3.6.4, general rule 15c, on
page XIV-29.)

XVII-93

Hardware Dependent Element List

3. HARDWARE DEPENDENT LANGUAGE ELEMENT LIST

The following is a list of the COBOL language elements within third Standard
COBOL that depend on specific types of hardware components.

(1) Double character substitution is dependent upon the character set
available with the computer. (1 NUC)

(2) The USAGE IS BINARY clause 1s dependent upon the
suitable computer architecture for the binary data format.

avai la bi li ty
(1 NUC)

of a

(3) The USAGE IS PACKED-DECIMAL clause is dependent upon the availability of
a suitable computer architecture for the packed decimal data format. (1 NUC)

(4) If positioning is not applicable on the hardware device, the operating
system will ignore the positioning specified or implied by the DISPLAY
statement. (1 NUC)

(5) The
characters
SEQ, 1 RPW)

PADDING CHARACTER clause is dependent upon whether padding
are applicable to the device type to which the file is assigned. (2

(6) The STANDARD-1 phrase of the RECORD DELIMITER clause 1s dependent upon a
reel type of device. (2 SEQ, 1 RPW)

(7) The MULTIPLE FILE TAPE clause 1s dependent upon a reel type of device.
(2 SEQ, 1 RPW)

(8) The CODE-SET clause is dependent upon a device capable of supporting the
specified code. (1 SEQ, 1 RPW)

(9) The REEL/UNIT phrase of the CLOSE statement is dependent upon a reel or
mass storage type of device. (1 SEQ, 1 RPW)

(10) The FOR REMOVAL phrase of the CLOSE statement is dependent upon ~ reel
or mass storage type of device. (2 SEQ, 1 RPW)

(11) The WITH NO REWIND phrase of the CLOSE statement is dependent upon a
reel or mass storage type of device. (2 SEQ, 1 RPW)

(12) The DELETE statement is dependent upon a mass storage device. (1 REL, 1
INX)

(13) The I-0 phrase of the OPEN statement is dependent upon a mass storage
type of device. (1 SEQ, 1 REL, 1 INX)

(14) The REVERSED phrase of the OPEN statement is dependent upon a reel or
mass storage type of device having the capability of making records available in
the reversed order. (2 SEQ)

(15) The WITH NO REWIND phrase of the OPEN statement 1s dependent upon a reel
or mass storage type of device. (2 SEQ, 1 RPW)

XVII-94

Hardware Dependent Element List

(16) The EXTEND phrase of the OPEN statement is dependent upon a reel or mass
storage type of device. (2 SEQ, 2 REL, 2 INX, 1 RPW)

(17) The REWRITE statement is dependent upon a mass storage type of device.
(1 SEQ, 1 REL, 1 INX)

(18) The I-0 phrase of the USE statement is dependent upon a mass storage
type of device. (1 SEQ, 1 REL, 1 INX)

(19) The BEFORE/AFTER ADVANCING phrase of the WRITE
upon a device capable of vertical positioning or
mnemonic-name. (1 SEQ)

(20) The BEFORE/AFTER ADVANCING phrase of the SEND
upon a device capable of vertical positioning or
mnemonic-name. (1 COM)

XVII-95

statement is dependent
of an action based on

statement is dependent
of an action based on

Undefined Element List

4. UNDEFINED LANGUAGE ELEMENT LIST

The following is a list of the COBOL language elements within third Standard
COBOL that are explicitly undefined.

(1) Explicit and implicit transfers of control. When there is no next
executable statement and control is not transferred outside the COBOL program,
the program flow of control is undefined unless the program execution is in the
nondeclarative procedures portion of a program under control of a CALL
statement, in which case an implicit EXIT PROGRAM statement is executed. (See
4.4.2 on page IV-25.)

(2) Initial values of data items. The initial value of any index data item
or any data item not associated with a VALUE clause is undefined. (See 5.2.4 on
page VI-19.)

(3) DEPENDING ON phrase of OCCURS clause. The contents of data items whose
occurrence numbers exceed the value of the data item referenced by data-name-I
are undefined. (See 5.8.4, general rule 2b, page VI-28.)

(4) VALUE clause in the File Section. The initial value of the data items
in the File Section is undefined. (See 5.15.6, rule la, page VI-49.)

(5) VALUE clause in the Working-Storage Section and Communication Section.
If the VALUE clause is not associated with a data item in the Working-Storage
Section or Communication Section, the initial value of that data item is
undefined. (See 5.15.6, rule le, page VI-49.)

(6) ON SIZE ERROR phrase. If the ON SIZE ERROR phrase is not specified and
a size error condition exists after the execution of the arithmetic operations
specified by an arithmetic statement, the values of the affected resultant
identifiers are undefined. (See 6.4.2 on page VI-68.)

(7) Overlapping operands. When a sending and a receiving item in any
statement share a part or all of their storage areas, yet are not defined by the
same data description entry, the result of the execution of such a statement is
undefined. (See 6.4.5 on page VI-69.)

(8) Incompatible data. Except for the class condition, when the content of
a data item is referenced in the Procedure Division and the content of that data
item is not compatible with the class specified for that data item by its
PICTURE clause, then the result of such a reference is undefined. (See 6.4.7 on
page VI-70.)

(9) SEARCH ALL statement. In a SEARCH ALL statement, the results of the
SEARCH ALL operation are predictable only when: (a) The data in the table is
ordered in the same manner as described in the KEY IS phrase of the OCCURS
clause referenced by identifier-I, and (b) The contents of the key(s) referenced
in the WHEN phrase are sufficient to identify a unique table element. (See
6.22.4, general rule 3, on page VI-124.)

(10) SEARCH ALL statement. If any of the conditions specified in the WHEN
phrase cannot be satisfied for any setting of the index within the permitted
range, control is passed to imperative-statement-I of the AT END phrase, when

XVII-96

specified, or to the end of the SEARCH
specified; in either case the final setting of
(See 6.22.4, general rule 4, on page VI-124.)

Undefined Element List

statement when this phrase is not
the index is not predictable.

(11) CLOSE statement. The behavior of the CLOSE statement when label records
are specified but not present, or when label records are not specified but are
present, is undefined. (See 4.2.4, general rule 3C, on page VII-36; 4.2.4,
general rule 2A, on pages VIII-17 and VIII-18; 4.2.4, general rule 2A, on pages
IX-19 and IX-20; 4.2.4, general rule 3C, on page XIII-64.)

(12) CLOSE statement. The unsuccessful execution of the CLOSE statement
without the REEL or UNIT phrase leaves the availability of the record area
undefined. (See 4.2.4, general rule 6, on page VII-38; 4.2.4, general rule 5,
on page VIII-18; 4.2.4, general rule 5, on page IX-20.)

(13) OPEN statement. The behavior of the OPEN statement when label records
are specified but not present, or when label records are not specified but are
present, is undefined. (See 4.3.4, general rule 7, on page VII-41; 4.4.4,
general rule 7, on page VIII-24; 4.4.4, general rule 7, on page IX-26; 4.5.4,
general rule 5, on page XIII-71.)

(14) READ statement. The contents of any data items which lie beyond the
range of the current data record are undefined at the completion of the
execution of the READ statement. (See 4.4.4, general rule 6, on page VII-45;
4.5.4, genera} rule 6, on page VIII-27; 4.5.4, general rule 6, on page IX-30.)

(15) READ statement. Following the unsuccessful execution of the READ
statement, the content of the associated record area is undefined; for indexed
files, the key of reference is also undefined. (See 4.4.4, general rule 12, on
page VII-46; 4.5.4, general rule 12, on page VIII-29; 4.5.4, general rule 12,
on page IX-31.)

(16) START statement. Following the unsuccessful execution of the START
statement for a given indexed file, the key of reference for that file is
undefined. (See 4.7.4, general rule 8, on page IX-37.)

(17) WRITE statement (sequential file). If a USE AFTER STANDARD EXCEPTION
declarative is not explicitly or implicitly specified for the file-name
associated with record-name-I, the result is undefined when an attempt is made
to write beyond the externally defined boundaries of a sequential file. (See
4.7.4, general rule 13c, on page VII-54.)

(18) ADVANCING phrase of WRITE statement. If the value of the data item
referenced by identifier-2 is negative, the results are undefined when the
ADVANCING phrase is used. (See 4.7.4, general rule 15b, on page VII-55.)

(19) CALL statement for program not written in COBOL. The CALL statement may
be used to call a program which is not written in COBOL, but the return
mechanism and inter-program data communication are not specified in this
document. (See 6.4.1 on page II-23.)

(20) Linkage Section.
program which is not
page X-13.)

If a data item in the Linkage Section is accessed in a
a called program, the effect is undefined. (See 4.1 on

XVII-97

Undefined Element List

(21) MERGE statement. The results of the merge operation are undefined
unless the records in the files referenced by file-name-2 and file-name-3 are
ordered as described in the ASCENDING or DESCENDING KEY clauses associated with
the MERGE statement. (See 4.1.4, general rule 6, on page XI-10.)

(22) RETURN statement. When the at end condition occurs, execution of the
RETURN statement is unsuccessful and the contents of the record area associated
with file-name-I are undefined. (See 4.3.4, general rule 2, on page XI-14.)

(23) SORT statement. If the DUPLICATES phrase 1s not specified and the
contents of all the key data items associated with one data record are equal to
the contents of the corresponding key data items associated with one or more
other data records, then the order of return of these records is undefined.
(See 4.4.4, general rule 4, on page XI-18.)

(24) SORT statement. For a relative file, the content of the relative key
data item is undefined after the execution of the SORT statement if file-name-2
is not referenced in the GIVING phrase. (See 4.4.4, general rule 9b, on page
XI-19.)

(25) Communication description entry. If the MCS attempts to
program lacking an INITIAL clause, the results are undefined.
general rule 7, on page XIV-8.)

schedule a
(See 2.2.4,

(26) SEND statement. The effect of having special control characters within
the content of the data item referenced by identifier-I is undefined. (See
3.6.4, general rule 5, on page XIV-27.)

(27) SEND statement. During the execution of the run unit, the disposition
of a portion of a message which is not terminated by an EMI or EGI or which has
not been eliminated by the execution of a PURGE statement is undefined. (See
3.6.4, general rule 7, on page XIV-27.)

(28) SEND statement. If the value of the data
identifier-3 is negative, the results are undefined.
lSb, on page XIV-29.)

XVII-98

item referenced by
(See 3.6.4, general rule

'A' PICTURE symbol, VI-31
Abbreviated combined relation conditions, VI-60
ACCEPT MESSAGE COUNT statement, XIV-17

USE FOR DEBUGGING statement, XV-7
ACCEPT statement, VI-71

Imperative statement, IV-39
Mnemonic-name, VI-13
SPECIAL-NAMES paragraph, VI-13

ACCESS MODE clause
DYNAMIC, VIII-8, VIII-10, IX-8, IX-10
RANDOM, VIII-8, VIII-10, IX-8, IX-10
SEQUENTIAL, VII-7, VII-9, VIII-8, VIII-10, IX-8,

IX-10, XIII-3
Access modes, VII-1, VIII-2, IX-2
Accessing data and files, II-19
ADD statement, VI-73

Composite of operands, VI-69
COMPUTE statement, VI-76
Conditional statement, IV-37
CORRESPONDING (CORR), VI-68
Data conversion, VI-69
Decimal alignment, VI-69
Imperative statement, IV-39
Maximum operand size, VI-69
Multiple results, VI-69

ADD CORRESPONDING (ADD CORR) statement, VI-68,
VI-73

Additional language elements, I-7
ADVANCING phrase

SEND statement, XIV-26
WRITE statement, VII-52

AFTER phrase
INSPECT statement, VI-94
PERFORM statement, VI-109, VI-110
SEND statement, XIV-26
WRITE statement, VII-52

Algebraic sign, IV-16
Alignment of data, IV-16

Synchronization, IV-17
ALL

Figurative constant, IV-11
INSPECT statement, VI-94
SEARCH statement, VI-122
UNSTRING, VI-136
USE FOR DEBUGGING statement, XV-5

ALL literal, IV-11
INSPECT statement, VI-95
STOP statement, VI-130
STRING statement, VI-131
UNSTRING statement, VI-136

ALL PROCEDURES phrase, XV-5
ALL REFERENCES OF phrase, XV-5
ALPHABET clause, VI-13
Alphabet-name, III-I, IV-6, VI-13

CODE-SET clause, VII-24
MERGE statement, XI-8
SORT statement, XI-16

XVIII-I

ALPHABETIC
Class condition,.VI-57
INITIALIZE statement, VI-92

Alphabetic category, IV-15, VI-29, VI-48,
VI-104

Alphabetic class, IV-15, VI-56
Alphabetic data item, VI-29
ALPHABETIC-LOWER, VI-57
ALPHABETIC-UPPER, VI-57
ALPHANUMERIC, VI-92

Index

Alphanumeric category, IV-15, VI-29, VI-48,
VI-104

Alphanumeric character, III-I
Alphanumeric class, IV-15
Alphanumeric data item, VI-30
ALPHANUMERIC-EDITED, VI-92
Alphanumeric edited category, IV-15, VI-29,

VI-48, VI-104
Alphanumeric edited data item, VI-30
ALSO phrase

ALPHABET clause, VI-13
EVALUATE statement, VI-84

ALTER statement, VI-75
GO TO statement, VI-89
Imperative statement, IV-39
Initial state of program, X-10
Segmentation, XVI-8
Transfer of control, IV-26
USE FOR DEBUGGING statement, XV-6

ALTERNATE RECORD KEY clause, IX-8, IX-11
AND

Abbreviated combined relation condition,
VI-61

Combined condition, VI-59
Evaluation order, VI-61
Logical operator, VI-59
SEARCH statement, VI-122

ANY, VI-84
Area A, IV-41
Area B, IV-41
Arithmetic expression, VI-51

COMPUTE statement, VI-76
EVALUATE statement, VI-84
Relation condition, VI-54
SEARCH statement, VI-122
Sign condition, VI-58

Arithmetic operator, IV-9, VI-52
Arithmetic statement, III-2, VI-69
ASCENDING KEY phrase

MERGE statement, XI-8
OCCURS clause, VI-26
SORT statement, XI-16

ASSIGN clause
Indexed I-0 module, IX-8
Relative I-0 module, VIII-8
Report Writer module, XIII-3
Sequential I-0 module, VII-7
Sort-Merge module, XI-2

Index

Asterisk (*) comment line, IV-42
Asterisk (*) PICTURE symbol, VI-32, VI-35
At end condition, VII-5, VIII-6, IX-7

READ statement, VII-46, VIII-28, IX-30
RETURN statement, XI-14

AT END phrase
READ statement, VII-44, VIII-26, IX-28
RETURN statement, XI-14
SEARCH statement, VI-122

AT END-OF-PAGE phrase, VII-52
AUTHOR paragraph, VI-6

'B' PICTURE symbol, VI-31, VI-33
BEFORE phrase

INSPECT statement, VI-94
PERFORM statement, VI-109, VI-110
SEND statement, XIV-26
WRITE statement, VII-52

BINARY, VI-46
Binary arithmetic operators, VI-52
Blank line, IV-42
BLANK WHEN ZERO clause, VI-22

PICTURE clause, VI-29
Report group description entry, XIII-21
USAGE IS INDEX clause, VI-46
VALUE clause, VI-49

BLOCK CONTAINS clause
Indexed I-0 module, IX-16
Relative I-0 module, VIII-14
Report Writer module, XIII-7
Sequential I-0 module, VII-22, VII-23

Body group presentation rules, XIII-32
Braces, IV-2
Brackets, IV-2
BY

COPY statement, XII-2
DIVIDE statement, VI-80
INITIALIZE statement, VI-92
INSPECT statement, VI-94
MULTIPLY statement, VI-107
PERFORM statement, VI-110

BY CONTENT phrase, X-27
BY REFERENCE phrase, X-27

CALL statement, X-27
CANCEL statement, X-31
Conditional statement, IV-37
EXIT PROGRAM statement, X-33
Imperative statement, IV-~9
Linkage Section, X-13
PERFORM statement, VI-120
Procedure Division header, X-25
Transfer of Control, II-23, IV-26

Called program, III-2, X-27
Calling program, III-2, X-27
CANCEL statement, X-31

CALL statement, X-29
EXIT PROGRAM statement, X-33
Imperative statement, IV-39

Category of data, IV-15
Editing, VI-33
MOVE statement, VI-104
Nonnumeric literal, IV-10
Numeric literal, IV-10
PICTURE clause, VI-29
VALUE clause, VI-48

CD entry, XIV-3
CD level indicator, III-13, XIV-3, XIV-4

Reference format, IV-43
Cd-name, III-3, IV-6, XIV-3, XIV-4, XV-5
CF, XIII-55

CH, XIII-55
Character, IV-4

Alphabetic, III-1
Alphanumeric, III-1
Editing, III-8
Numeric, III-15
Punctuation, III-18, IV-4
Relation, III-19
Special, III-23

Character representation, IV-16
Character set, IV-4

Restriction, VI-1
Character-string, IV-5
Character substitution, I-8, IV-4
CHARACTERS

BLOCK CONTAINS clause, VII-23
INSPECT statement, VI-94
MEMORY.SIZE clause, VI-11
RECORD clause, VII-30

Choice indicators, IV-2
CLASS clause, VI-13, VI-16, VI-56
Class condition, VI-56
Class-name, III-3, IV-6, VI-13, VI-16, VI-57
Class of data, IV-15
Clause, III-3
CLOCK-UNITS phrase, VII-17, VII-18
CLOSE statement

Imperative statement, IV-39
Indexed r-o module, IX-19
Relative I-0 module, VIII-17
Report Writer module, XIII-63
Sequential I-0 module, VII-35
STOP statement, VI-130

COBOL character set, III-3, IV-4
COBOL development, XVII-1
COBOL Journal of Development, XVII-2
COBOL library, XII-2
COBOL reserved words, IV-45
COBOL source program, IV-29, VI-3
COBOL standardization, XVII-11
COBOL word, IV-5
CODASYL, XVII-I
CODASYL COBOL Committee, XVII-2
CODE clause, XIII-11, XIII-14
CODE-SET clause

Report Writer module, XIII-7
Sequential I-0 module, VII-22, VII-24

COLLATING SEQUENCE phrase
ALPHABET clause, VI-15
MERGE statement, XI-8
SORT statement, XI-16

Colon, IV-5
Restriction, VI-1

COLUMN NUMBER clause, XIII-21, XIII-42
.Combined condition, VI-59

XVIII-2

Comma
DECIMAL-POINT IS COMMA clause, VI-13, VI-17
Interchangeable with semicolon, IV-2
PICTURE symbol, VI-32, VI-33
Separator, IV-4

Comment-entry, IV-12, VI-6
DATE-COMPILED paragraph, VI-8

Comment line, IV-42
Library text, XII-4, XII-7

COMMON clause, X-12
Common program, II-22, X-3, X-12
Communication concepts, II-28
Communication description entry, III-4, IV-34,

XIV-2, XIV-3
Communication module, XIV-1

Element summary, I-36

Communication Section, IV-33, XIV-2
Communication status key conditions, XIV-14
Compile time switch, VI-141, XV-2
Compiler directing sentence, IV-38
Compiler directing statement, IV-38
Complex condition, VI-59
Composite language skeleton, V-1
COMPUTATIONAL (COMP), VI-46
COMPUTE statement, VI-76

Composite of operands, VI-69
Conditional statement, IV-37
Data conversion, VI-69
Decimal alignment, VI-69
Imperative statement, IV-39
Maximum operand size, VI-69
Multiple results, VI-69

Computer-name, IV-8, VI-10, VI-11
Concepts, II-1
Condition, VI-54

Abbreviated combined relation condition,
VI-60

Class condition, VI-56
Combined condition, VI-59
Complex condition, VI-59
Condition-name condition, VI-58
EVALUATE statement, VI-84
Evaluation rules, VI-61
IF statement, VI-90
Negated condition, VI-59
PERFORM UNTIL statement, VI-109, VI-110
Relation condition, VI-54
SEARCH statement, VI-122
Sign conditi·dn, VI-58
Simple condition, VI-54
Switch-status condition, VI-58

Condition-name, IV-6, IV-7, IV-24
Condition-name condition, VI-58
Conventions, X-6
Level-number 88, IV-14
Qualified, IV-19
RERUN clause, VII-17, VII-18
SEARCH statement, VI-122
SET statement, VI-127
SPECIAL-NAMES paragraph, VI-13
Subscripted, IV-21
Switch-status condition, VI-58
Uniqueness, IV-24
VALUE clause, VI-49

Condition-name condition, VI-58
Condition-name data description entry, VI-21,

VI-25, VI-49
Conditional expression, VI-54

EVALUATE statement, VI-85
PERFORM statement, VI-111
SEARCH statement, VI-123

Conditional phrase, IV-37
Conditional sentence, IV-38
Conditional statement, IV-37
Conditional variable, III-6, VI-58, VI-127

FILLER, VI-23
Configuration Section, IV-31

Nucleus , VI-9
Conforming implementation, I-6
Conforming source program, I-9
Contained programs, X-1, X-8
Continuation line, IV-42
Continuation of lines, IV-42

Comment-entries, VI-6, VI-8
CONTINUE statement, VI-77
Continued line, IV-42
CONTROL clause, XIII-11, XIII-15

XVIII-3

Control break
CONTROL clause, XIII-15
GENERATE statement, XIII-66
GROUP INDICATE clause, XIII-44
TYPE clause, XIII-56

CONTROL FOOTING (CF), XIII-55
CONTROL HEADING (CH), XIII-55
CONVERTING, VI-95
COPY statement, XII-2

Compiler directing statement, IV-38
CORRESPONDING (CORR) phrase, VI-68

ADD statement, VI-73
MOVE statement, VI-103
ON SIZE ERROR phrase, VI-68
SUBTRACT statement, VI-134

COUNT IN phrase, VI-136
CR PICTURE symbol, VI-32, VI-34
Currency PICTURE symbol, VI-32, VI-34
Currency sign, III-6, VI-17, VI-34
CURRENCY SIGN clause, VI-13, VI-17, VI-34
Currency symbol, III-6, VI-17, VI-33
Current volume pointer, II-5, VII-2

Index

Data description entry, III-7, VI-20
Inter-Program Communication module, X-19
Working-Storage Section, VI-18

Data Division, IV-33
Communication module, XIV-2
Elemen~ sunnnary, I-48
Indexed I-0 module, IX-16
Inter-Program Communication module, X-13
Nucleus, VI-18
Reference format, IV-43
Relative I-0 module, VIII-14
Report Writer module, XIII-6
Sequential I-0 module, VII-21
Sort-Merge module, XI-6

Data Division entries, IV-43
Data-name, III-7, IV-6, VI-23, XIII-20,

XIII-43
Conventions, X-6
Identifier, IV-23
Qualified, IV-19
Subscripted, IV-21

DATA BY phrase, VI-92
DATA RECORDS clause

Indexed I-0 module, IX-16
Relative I-0 module, VIII-14
Sequential I-0 module, VII-22, VII-25
Sort-Merge module, XI.-7

DATE, VI-72
DATE-COMPILED paragraph, VI-8
DATE-WRITTEN paragraph, VI-6
DAY, VI-72
DAY-OF-WEEK, VI-72
DB PICTURE symbol, VI-32, VI-34
DE, XIH-55
DEBUG-CONTENTS, XV-8
DEBUG-ITEM, IV-9, XV-1, XV-8
DEBUG-LINE, XV-8
Debug module, XV-1

Element sunnnary, I-38
DEBUG-NAME, XV-8
DEBUG-SUB-I, XV-8
DEBUG-SUB-2, XV-8
DEBUG-SUB-3, XV-8
Debugging line, VI-141

Library text, XII-4, XII-7
DEBUGGING MODE clause, VI-10, XV-2, XV-3
Debugging section, XV-5

Index

Decimal point
Actual, VI-32
Alignment, IV-16
Assumed, VI-32

DECIMAL POINT IS COMMA clause,. VI-13, VI-17,
VI-33

Declarative sentence, III-7
Declaratives, IV-35

Reference format, IV-44
USE BEFORE REPORTING statement, XIII-78
USE FOR DEBUGGING statement, XV-5
USE statement, VII-50, VIII-35, IX-39

Declarative procedures
Debug module, XV-4
Indexed I-0 module, IX-18
PERFORM statement, VI-121
Relative I-0 module, VIII-16
Report Writer module, XIII-62
Sequential I-0 module, VII-34
USE BEFORE REPORTING statement, XIII-78
USE FOR DEBUGGING statement, XV-5
USE statement, VII-50, VIII-35, IX-39

De-editing, VI-104
Definitions, III-1
DELETE statement

Indexed I-0 module, IX-21
Relative 1-0 module, VIII-19

DELIMITED BY phrase
STRING statement, VI-131
UNSTRING statement, VI-136

Delimited scope statement, IV-39
DELIMITER IN phrase, VI-136
Delimiters

Character-string, IV-5
Pseudo-text, III-18, IV-5

DEPENDING phrase
GO TO statement, VI-89
OCCURS clause, VI-26
RECORD clause, VII-30

DESCENDING KEY phrase
MERGE statement, XI-8
OCCURS clause, VI-26
SORT statement, XI-16

DESTINATION COUNT clause, XIV-4
DESTINATION TABLE OCCURS clause, XIV-4
DETAIL (DE), XIII-55
Development of COBOL, XVII-1
Differences between current standard & draft

proposed revision, XVII-16
DISABLE statement, XIV-18
DISPLAY in USAGE clause, VI-46
DISPLAY statement, VI-78

Figurative constant, IV-11
Imperative statement, IV-39
Mnemonic-name, VI-13

DIVIDE statement, VI-80
Composite of operands, VI-69
COMPUTE statement, VI-76
Conditional statement, IV-37
Data conversion, VI-69
Decimal alignment, VI-69
Imperative statement, IV-39
Maximum operand size, VI-69
Multiple results, VI-69

Division, III-8, IV-30
Division header, III-8, IV-43
Double character substitution, IV-4
DOWN BY,. VI-127
DUPLICATES phrase

ALTERNATE RECORD KEY clause, IX-8, IX-11
SORT statement, XI-16

Dynamic access, 11-4, VIII-2, IX-2

Editing, VI-104
Editing characters, III-8
Editing rules, VI-33
Editing sign, IV-16, VI-32
Editing sign control symbols, VI-32
EGI, XIV-26
Element summary by COBOL division, I-40
Element summary by module, I-10
Elementary item, IV-14

MOVE statement, VI-104
Noncontiguous, VI-18
PICTURE clause, VI-29

Elementary move, VI-104
Ellipsis, IV-2
ELSE clause, VI-90
EMI, XIV-26
ENABLE statement, XIV-20
END-ADD phrase, VI-73
END-CALL phrase, X-27
END-COMPUTE phrase, VI-76
END DECLARATIVES, IV-35, IV-44
END-DELETE phrase, VIII-19, IX-21
END-DIVIDE phrase, VI-80
END-EVALUATE phrase, VI-84
END-IF phrase, VI-90
END KEY clause, XIV-3, XIV-4
END-MULTIPLY phrase, VI-107
End of COBOL source program, IV-29, VI-3
End of group indicator (EGI), XIV-26
End of message indicator (EMI), XIV-26
END-OF-PAGE phrase, VII-52
END OF REEL/UNIT phrase, VII-15, VII-17
End of segment indicator (ESI), XIV-26
END-PERFORM phrase, VI-109, VI-110
END PROGRAM, VI-5
End pr·ogram header

Inter-Program Communication module, X-8
X-11

Nucleus , VI-5
Reference format, IV-44

END-READ phrase, VII-44, VIII-26, IX-28
END-RECEIVE phrase, XIV-23
END-RETURN phrase, XI-14
END-REWRITE phrase, VIII-30, IX-33
END-SEARCH phrase, VI-122
END-START phrase, VIII-33, IX-36
END-STRING phrase, VI-131
END-SUBTRACT phrase, VI-134
END-WRITE phrase, VII-52, VIII-37, IX-41
ENTER COBOL, VI-83
ENTER statement, I-9,VI-83
Entry, III-8
Environment Division, IV-31

Debug module, XV-3
Element summary, I-45
Indexed I-0 module, IX-8
Nucleus, VI-9
Relative I-0 module, VIII-8
Report Writer module, XIII-3
Segmentation module, XVI-4
Sequential I-0 module, VII-6
Sort-Merge module, XI-2

EQUAL TO relation, VI-54, VI-122, VIII-33,
IX-36

EOP phrase, VII-52
ERROR KEY clause, XIV-4
Error key values, XIV-16

XVIII-4

ERROR PROCEDURES, VII-50, VIII-35, IX-39,
X-34, XIII-76

ESI, XIV-26
EVALUATE statement, VI-84

Conditional expression, VI-S4
Exception declarative, II-7
Exception handling, II-6
EXCEPTION PROCEDURE, VII-SO, VIII-3S, IX-39,

X-34, XIII-76
Execution, IV-3S
EXIT statement, VI-88

Imperative statement, IV-39
PERFORM statement, VI-120

EXIT PROGRAM statement, X-33
CANCEL statement, X-31
PERFORM statement, VI-120
Transfer of control, IV-26

Explicit specifications, IV-2S
Exponentiation, VI-S2
EXTEND phrase

OPEN statement, VII-39, VIII-21, IX-23, XIII-70
USE statement, VII-SO, VIII-3S, IX-39, XIII-76

Extension language elements, I-8
EXTERNAL clause, X-23

OCCURS clause, VI-27
External objects, X-2
External switch, IV-28, VI-13, VI-lS, VI-127
Externally provided functions, I-7

FALSE, VI-84
FD level indicator, III-13

Indexed I-0 module, IX-16
Inter-Program Communication module, X-lS
Relative I-0 module, VIII-14
Report Writer module, XIII-7
Sequential I-0 module, VII-22

Figurative constant, IV-9, IV-10
DISPLAY statement, VI-78
INSPECT statement, VI-9S
MOVE statement, VI-104
Restriction, VI-2
STOP statement, VI-130
STRING statement, VI-131
UNSTRING statement, VI-136

File, II-1
Attributes, II-1
Conceptual characteristics, IV-13
Physical aspects, IV-13

File attribute conflict condition, VII-S,
VIII-6, IX-7

File connector, III-9
File control entry, VII-8, VIII-8, IX-9
OPEN statement, VII-40, VIII-22, IX-24

File control entry, III-9, IV-32
Indexed I~o module, IX-8
Relative I-0 module, VIII-8
Report writer module, XIII-3
Sequential I-0 module, VII-7
Sort-Merge module, XI-2

FILE-CONTROL paragraph, III-9, IV-31
Indexed 1-0 module, IX-8
Relative I-0 module, VIII-8
Report Writer module, XIII-3
Sequential I-0 module, VII-7
Sort-Merge module, XI-2

File description entry, III-10, IV-34
Indexed I-0 module, IX-16
Inter-Program Communication module, X-lS
Relative I-0 module, VIII-14
Report Writer module, XIII-6, XIII-7
Sequential I-0 module, VII-21, VII-22

File-name, III-10, IV-6, VII-7, VIII-8, IX-8,
XI-7, XIII-3

XVIII-5

File-name conventions, X-6
File operations, II-S

Index

File position indicator, II-S, VII-2, VIII-2,
IX-2

File processing, II-3
File Section, IV-33

Indexed I-0 module, IX-16
Relative I-0 module, Vlll-14
Report Writer module, XIII-6
Sequential I-0 module, VII-21
Sort-Merge module, XI-6
VALUE clause, VI-49

FILE STATUS clause
Indexed I-0 module, IX-8
Relative I-0 module, VIII-8
Report Writer module, XIII-3
Sequential I-0 module, VII-7, VII-10

FILLER, VI-23
CORRESPONDING, VI-68
SYNCHRONIZED, VI-4S

FINAL
CONTROL clause, XIII-lS
SUM clause, XIII-52
TYPE clause, XIII-SS

FIRST, VI-94
FIRST DETAIL, XIII-17
Fixed insertion editing, VI-34
Fixed length records, II-3, VII-31
Fixed overlayable segments, XVI-1
Fixed permanent segments, XVI-2
Floating insertion editing, VI-34
FOOTING, VII-27, XIII-17
FOR, VI-94
FOR REMOVAL phrase, VII-3S, XIII-63
Format punctuation, IV-2
FROM phrase

ACCEPT statement, VI-71
PERFORM VARYING statement, Vl-110
RELEASE statement, XI-13
REWRITE statement, VII-48, VIII-30, IX-33
SEND statement, XIV-26
SUBTRACT statement, VI-134
WRITE statement, VII-S2, VIII-37, IX-41

General format, IV-1
General rules, IV-3
GENERATE statement, XIII-66

Imperative statement, IV-39
Generic terms, IV-1
GIVING phrase

ADD statement, Vl-73
DIVIDE statement, VI-80
MERGE statement, XI-8
MULTIPLY statement, VI-107
SORT statement, XI-16
SUBTRACT statement, VI-134

GLOBAL clause, X-24, X-34, X-3S
OCCURS clause, VI-27

Global names, X-2
Glossary of COBOL terms, III-1
GO TO statement, VI-89

Imperative statement, IV-39
Initial state of program, X-10
PERFORM statement, VI-120
SEARCH statement, VI-126

GREATER THAN relation, VI-S4, VIII-33, IX-36
Group, IV-14
GROUP INDICATE clause, XIII-21, XIII-44

Hardware dependent language element list, XVII-94
Hardware dependent language elements, I-8

Index

HEADING phrase, XIII-17
High subset, I-6
HIGH-VALUE/HIGH-VALUES, IV-11

SPECIAL-NAMES paragraph, VI-16
History of COBOL, XVII-1
Hyphen (-) continuation line, IV-42

Identification Division, IV-30
Element summary, I-44
Inter-Program Communication module, X-12
Nucleus, VI-6

Identifier, IV-23, IV-35
IF statement, VI-90

Conditional expression, VI-54
Conditional statement, IV-37
Imperative statement, IV-39
SEARCH statement, VI-123

Imperative sentence, IV-39
Imperative statement, IV-39
Implementation of Standard COBOL, I-6
Implementor-defined language element list,

XVII-87
Implementor-defined record types, II-3
Implementor-defined specifications, I-7
Implementor-name, IV-8

ALPHABET clause, VI-13
ASSIGN clause, VII-7, VIII-8, IX-8, XI-2,

XIII-3
RECORD DELIMITER clause, VII-13
RERUN clause, VII-17
SPECIAL-NAMES paragraph, VI-13
VALUE OF clause, VII-33

Implicit specifications, IV-25
Implied relational operator, VI-61
Implied subject, VI-61
IN, IV-19, IV-20, XII-2
Incompatible data, VI-70
Indentation, IV-44
Independent segments, XVI-2
Index, III-11, IV-21, IV-22
INDEX in USAGE clause, VI-46
Index data item, VI-47

Condition-name, VI-21
CONTROL clause, XIII-15
Initial value, VI-19
INITIALIZE statement, VI-92
MOVE statement, VI-103
PICTURE clause, VI-29
Relation condition, VI-56
SEARCH statement, VI-123
SET statement, VI-127

Index-name, III-Il, IV-6, IV-21
Conventions, X-7
OCCURS clause, VI-26
PERFORM statement, VI-110
Relation condition, VI-56
SEARCH statement, VI-122
SET statement, VI-I27

INDEXED BY phrase, VI-26, VI-27, XIV-4
Indexed file, IX-I
Indexed I-0 module, IX-!

Element summary, I-25
Indexed organization, II-2, IX-I, IX-13
Indicator area, IV-41
INITIAL clause, X-12
INITIAL phrase

Communication description entry, XIV-3,
XIV-4

INSPECT statement, VI-94
Initial program, II-22, X-3
Initial state of program, X-10

XVIII-6

Initial values
File Section, VII-2I, XI-6
Linkage Section, X-I4
Working-Storage Section, VI-19

INITIALIZE statement, VI-92
INITIATE statement, XIII-69

Imperative statement, IV-39
In-line PERFORM statement, VI-lil
Input-Output Section, IV-31

Indexed I-0 module, IX-8
Relative I-0 module, VIII-8
Report Writer module, XIII-3
Sequential I-0 module, VII-6
Sort-Merge module, XI-2

Input-output statement, III-12
INPUT phrase

Communication description entry, XIV-3
DISABLE statement, XIV-18
ENABLE statement, XIV-20
OPEN statement, VII-39, VIII-21, IX-23
USE statement, VII-50, VIII-35, IX-39

INPUT PROCEDURE phrase, XI-16
INSPECT statement, VI-94

Imperative statement, IV-39
INSTALLATION paragraph, VI-6
Integer, III-12
Inter-program communication concepts, II-22
Inter-Program Communication module, X-1

Element summary, I-28
Intermediate subset, I-6
International standardizat~on of COBOL, XVII-14
International Organization for

Standardization (ISO), XVII-14
Internal objects, X-2
INTO

DIVIDE statement, VI-80
READ statement, VII-44, VIiI-26, IX-28
RECEIVE statement, XIV-23
RETURN statement, XI-14
STRING statement, VI-131
UNSTRING statement, VI-136

Intra-program communication, II-26
INVALID KEY condition, VIII-5, IX-6

DELETE statement, VIII-19, IX-21
READ statement, VIII-26, IX-28
REWRITE statement, VIII-30, IX-33
START statement, VIII-33, IX-36
WRITE statement, VIII-37, IX-4I

I-0-CONTROL paragraph, III-10
Indexed I-0 module, IX-15
Relative I-0 module, VIII-13
Report Writer module, XIII-5
Sequential I-0 module, V~I-I5
Sort-Merge module, XI-3

I-0 phrase
Communication description entry, XIV-4
OPEN statement, VII-39, VIII-21, IX-23
USE statement, VII-50, VIII-35, IX-39

I-0 status, II-7
FILE STATUS clause, VII-10
Indexed I-0 module, IX-2
Relative I-0 module, VIII-2
Sequential I-0 module, VII-2

I-0 TERMINAL phrase, XIV-18, XIV-20

JUSTIFIED (JUST) clause, VI-24
Condition-name, VI-21
Figurative constant, IV-11
Report group des~ription entry, XIII-21
Standard alignment, IV-17
STRING statement, VI-131
USAGE IS INDEX clause, VI-46
VALUE clause, VI-49

KEY data-names
MERGE statement, XI-8
SORT statement, XI-16

KEY phrase
DISABLE statement, XIV-18
ENABLE statement, XIV-20
MERGE statement, XI-8
OCCURS clause, VI-26
READ statement, IX-Z8
SEARCH statement, VI-123
SORT statement, XI~l6
START statement, VIII-33, IX-36

Key word, IV-1, IV-8

LABEL RECORDS clause
Indexed I-0 module, IX-16
Relative I-0 module, VIII-14
Report Writer module, XIII-7
Sequential I-0 module, VII-22, VII-26

Language concepts, IV-4
Element summary, I-41
Language-name, III-13, IV-8, VI-83

Language structute, IV-4
LAST DETAIL phrase, XIII-17
LEADING

INSPECT statement, VI-94
SIGN clause, VI-42

LEFT, VI-44
LESS THAN relation, VI-54, VIII-33, IX-36
Level concept, IV-14
Level indicator, IV-43
Level-number, III-13, IV-6, IV-7, IV-14,

VI-21, VI-25
Data description entry, VI-20
Not at ion, IV-2
Reference format, IV-44
Report group description entry, XIII-20,

XIII-45
Leveling of module elements, I-1
Library, XII-2
Library-name, III-13, IV-6, XII-2
Library text, III-13, XII-2
LIMIT/LIMITS, XIII-17
LINAGE clause, VII-27, X-15
Linage concepts, II-5
LINAGE-COUNTER, VII-5, VII-28, VII-55

Qualified, IV-19, IV-20
Special register IV-9

LINE-COUNTER, XIII-1, XIII-13
Qualified, IV-19, IV-20
Special register, IV-9

LINE/LINES
PAGE clause, XIII-17
SEND statement, XIV-26
WRITE statement, VII-52

LINE NUMBER clause, XIII-20, XIII-21, XIII-46
LINES AT BOTTOM phrase, VII-27
LINES AT TOP phrase, VII-27
Linkage Section, IV-33, X-13

VALUE clause, VI-49
List of elements by COBOL division, I-40
List of elements by module, I-10

XVIII-7

Literal, IV-9
ALPHABET clause, VI-13, VI-15
CURRENCY SIGN clause, VI-13, VI-17
STOP statement, VI-130

Local names, X-2

Index

LOCK phrase, VII-35, VIII-17, IX-19, XIII-63
Logical operator, VI-59

Precedence, VI-60.
Logical record, II-2, IV-13, VII-23
LOW-VALUE/LOW-VALUES, IV-11

SPECIAL-NAMES paragraph, VI-16
Lowercase letters, IV-5, VI-29, VI-56

MCS, II-28
MEMORY SIZE clause, VI-11
Merge file, XI-1
MERGE statement, XI-8

Imperative statement, IV-39
Segmentation, XVI-8
Transfer of control, IV-26

Merging, II-6
Message concepts, II-32
Message control system, II-28

STOP statement, VI-130
MESSAGE COUNT clause, XIV-3
MESSAGE DATE clause, XIV-3, XIV-4
MESSAGE phrase, XIV-23
MESSAGE TIME clause, XIV-3, XIV-4
Minimum subset, I-6
Minus (-) PICTURE symbol, VI-32, VI-34, VI-35
Mnemonic-name, IV-6, IV-7

ACCEPT statement, VI-71
DISPLAY statement, VI-78
SEND statement, XIV-26
SET statement, VI-127
SPECIAL-NAMES paragraph, VI-13
WRITE statement, VII-52

Module abbreviations, I-4
Module chart, I-5
Module concept, I-1
MODULES, VI -11
MOVE statement, VI-103

CORRESPONDING (CORR), VI-68
Imperative statement, IV-39
Index data item, VI-47

MOVE CORRESPONDING (MOVE CORR) statement, VI-103
MULTIPLE FILE TAPE clause, VII-15, VII-16, XIII-5
Multiple results in arithmetics, VI-69
MULTIPLY statement, VI-107

Composite of operands, VI-69
COMPUTE statement, VI-76
Conditional statement, lV-37
Data conversion, VI-69
Decimal alignment, VI-69
Imperative statement, IV-39
Maximum operand size, VI-69
Multiple results, VI-69

NATIVE phrase, VI-13, VI-15
Native character set, III-14, VI-15
Native collating sequence, III-14, VI-15
NEGATIVE, VI-58
Negated condition, VI-59
Nested source programs, X-1, X-8
Nested statements, IV-40
NEXT phrase

Indexed I-0 module, IX-28
Relative I-0 module, VIII-26
Sequential I-0 module, VII-44

NEXT GROUP clause, XIII-20, XIII-48

Index

NEXT PAGE phrase
LINE NUMBER clause, XIII-46
NEXT GROUP clause, XIII-48

NEXT SENTENCE phrase
IF statement, VI-90
SEARCH statement, VI-122

NO DATA phrase, XIV-23
NO REWIND phrase, VII-35, VII-39, XIII-63,

XIII-70
Noncontiguous elementary item, VI-18, X-13

Level-number 77, VI-25
Nonnumeric comparison, VI-55
Nonnumeric literal, IV-9

NOT
Continuation, IV-42

EVALUATE statement, VI-84
Logical operator, VI-59
Relational operator, VI-55

NOT AT END-OF-PAGE phrase, VII-52
NOT AT EOP phrase, VII-52
NOT AT END phrase

Implicit scope terminator, IV-27
READ statement, VII-44
RETURN statement, XI-14

NOT INVALID KEY phrase
pELETE statement, VIII-19, IX-2i
READ statement, VIII-26, IX-28
REWRITE statement, VIII-30, IX-33
START statement, VIII-33, IX-36
WRITE $tatement, VIII-37, IX-41

NOT ON EXCEPTION phrase, X-27
NOT ON OVERFLOW phrase

STRING statement, VI-131
UNSTRING statement, VI-136

NOT ON SIZE ERROR phrase
ADD statement, VI-73
COMPUTE statement, VI-76
DIVIDE statement, VI-80
MULTIPLY statement, VI-107
SUBTRACT statement, VI-134

Notation rules, IV-1
Nucleus, VI-1

Element summary, I-11
NUMERIC

Class condition, VI-57
INITIALIZE statement, VI-92

Numeric category, IV-15, VI-29, VI-48, VI-104
Numeric character, III-15
Numeric class, IV-15, VI-56
Numeric comparison, VI-.S5
Numeric data item, VI-30
NUMERIC-EDITED, VI-92
Numeric edited category, IV-15, VI-29, VI-48,

VI-104
Numeric edited data item, VI-30
Numeric literal, IV-10, VI-104

OBJECT-COMPUTER paragraph, VI-11, XVI-4
Object time switch, XV-2
Obsolete language element, I-7
Obsolete language element list, XVII-81
Occurrence number, IV-21, VI-124, VI-128
OCCURS clause, VI-26

CORRESPONDING phrase, VI-68
INITIALIZE statement, VI-92
MOVE statement, VI-104
REDEFINES clause, VI-38
RENAMES clause, VI-40
SEARCH statement, VI-123
SET statement, VI-128
SYNCHRONIZED clause, VI-45
VALUE clause, VI-50

XVIII-8

OF, IV-19, IV-20, XII-2
OFF, VI-127
OFF STATUS phrase, VI-13
ON, VI-127
ON EXCEPTION phrase, X-27
ON OVERFLOW phrase

CALL statement, X-27
STRING statement, VI-131
UNSTRING statement, VI-136

ON phrase, VII-17, VIII-13, IX-15
ON SIZE ERROR phrase, VI-67

ADD statement, VI-73
COMPUTE statement, VI-76
DIVIDE statement, VI-80
MULTIPLY statement, VI-107
SUBTRACT statement, VI-134

Open mode, II-4, VII-39, VIII-21, IX-23,
XII I-70

OPEN statement
Imperative statement, IV-39
Indexed I-0 module, IX-23
Relative I-0 module, VIII-21
Report Writer module, XIII-70
Sequential I-0 module, VII-39

Operational sign, IV-16
Operator

Arithmetic, IV-9, VI-52
Logical, VI-59
Relational, VI-54, VI-55

Optional modules, I-6
OPTIONAL phrase

Indexed I-0 module, IX-8
Relative I-0 module, VIII-8
Sequential I-0 module, VII-7

Optional word, IV-9
OR phrase, VI-136
OR

Abbreviated combined relation condition,
VI-61

Combined condition, VI-59
Evaluation order, VI-61
Logical operator, VI-59

ORGANIZATION IS INDEXED clause, IX-13
ORGANIZATION IS RELATIVE clause, VIII-12
ORGANIZATION IS SEQUENTIAL clause, VII-11, XIII-3
OTHER, VI-84
Out-of-line PERFORM statement, VI-111
OUTPUT phrase

Communication description entry,' XIV-4
DISABLE statement, XIV-18
ENABLE statement, .XIV-20
OPEN statement, VII-39, VIII-21, IX-23,

XIII-70
USE statement, VII-50, VIII-35, IX-39

OUTPUT PROCEDURE phrase, XI-8, XI-16
Overall language consideration, IV-1
OVERFLOW phrase

CALL statement, X-27
STRING statement, VI-131
UNSTRING statement, VI-136

Overlapping operands, VI-69

'P' PICTURE symbol, VI-31
USAGE clause, VI-46

PACKED-DECIMAL, VI-46
PADDING CHARACTER clause, VII-7, VII-12, XIII-3
PAGE

SEND st·atement~ XIV-26
WRITE statement, VII-52

PAGE clause, XIII-11, XIII-17

PAGE-COUNTER, XIII-1, XIII-12
Qualified, IV-19, IV-20
Special register, IV-9

PAGE FOOTING (PF), XIII-55
Page footing presentation rules, XIII-37
PAGE HEADING (PH), XIII-55
Page heading group presentation rules, XIII-30
Paragraph, IV-35, IV-43
Paragraph header, III-17, IV-43
faragraph-name, IV-6, IV-7, IV-35

Qualified, IV-19
Reference format, IV-43

Parentheses
Arithmetic expression, VI-53
Condition, VI-60
PICTURE clause, VI-30
Separators, IV-4
Subscripting, IV-21

PERFORM statement, VI-109
Conditional expression, VI-54
Imperative statement, IV-39
Segmentation, XVI-8
SET statement, VI-128
Transfer of control, IV-26

Period, IV-3
DECIMAL-POINT IS COMMA clause, VI-17
PICTURE symbol; VI-32, VI-33
Separator, IV-4

PF, XIII-55
PH, XIII-55
Phrase, III-17
Physical record, IV-13, VII-23
PICTURE character-string, IV-12
PICTURE (PIC) clause, VI-29

BLANK WHEN ZERO clause, VI-22
CURRENCY SIGN clause, VI-17
DECIMAL POINT IS COMMA clause, VI-17
Linkage Section, X-13
Report group description entry, XIII-21
SIGN clause, VI-42
STRING statement, VI-131
SYNCHRONIZED clause, VI-44
UNSTRING statement, VI-136
USAGE clause, VI-46
Working-Storage Section, VI-18

PLUS phrase
LINE NUMBER clause, XIII-46
NEXT GROUP clause, XIII-48

Plus (+)PICTURE symbol, VI•-32, VI-34, VI-35
POINTER phrase

STRING statement, VI-131
UNSTRING statement, VI-136

POSITION phrase, VII-16
POSITIVE, VI-58
Precedence rules for PICTURE character-string,

VI-36
Presentation rules tables, XIII-24
Prime record key, IX-14
Procedure, IV-35
Procedure branching statement, III-17, IV-26
Procedure Division, IV-35

Communication module, XIV-17
Debug module, XV-4
Element summary, 1-53
Indexed I-0 module, IX-18
Inter-Program Communication module, X-25
Nucleus, VI-51
Relative I-0 module, VIII-16
Report Writer module, XIII-62
Segmentation module, XVI-6
Sequential I-0 module, VII-34
Sort-Merge module, XI-8

XVIII-9

Procedure Division header, IV-36, X-25
Procedure-name, III-18

GO TO statement, VI-89
MERGE ~tatement, XI-8
PERFORM statement, VI-109
SORT statement, XI-16
USE FOR DEBUGGING statement, XV-5

PROGRAM-ID paragraph

Index

Inter-Program Communication module, X-12
lilucleus, VI-7

Program-name, III-18, IV-6
Conventions, X-5
End program header, X-11
PROGRAM-ID paragraph, VI-7, X-12

PROGRAM COLLATING SEQUENCE clause, VI-11
ALPHABET clause, VI-15

Program & run unit organization, II-18
Program classes, II-22
Program segments, XVI-1
Pseudo-text, XII-2, XII-6
Pseudo-text delimiters, III-18, IV-5, IV-43
Pseudo-text format, IV-43
Punctuation characters, III-18

Format punctuation·, IV-2
Separators, IV-4

PURGE statement, XIV-22

Qualification, IV-18
Restriction, VI-1

Queue, III-18
Queue concepts, II-32
Queue hierarchy, II-33
Quotation mark

Separator, IV-5
QUOTE, QUOTES, IV-11

Random access, II-4, VIII-2, IX-2
RD entry, XIII-10, XIII-11
RD level indicator, III-13, X-22, XIII-11

Reference format, IV-43
READ statement

Indexed I-0 module, IX-28
Relative I-0 module, VIII-26
Sequential I-0 module, VII-44

RECEIVE statement, XIV-23
Record

Concepts, IV-14
Fixed length records, II-3
Implementor-defined record types, II-3
Linkage records, X-14
Logical, II-2, IV-13
Physical, IV-13
Variable length records, II-3
Working storage records, VI-18

RECORD clause
Indexed I-0 module, IX-i6
Relative I-0 module, VIII-14
Report Writer module, XIII-7
Sequential I-0 module, VII-22, VII-30
Sort-Merge module, XI-7

RECORD CONTAINS clause
Indexed I-0 module, IX-16
Relative I-0 module, VIIl-14
Report writer module, XIII-7
Sequential I-0 module, VII-22, VII-30
Sort-Merge module, XI-7

RECORD DELIMITER clause
Report Writer module, XIII-3
Sequential 1-0 module, VII-7, VII-13

Record description entry, III-19, IV-33,
IV-34

Index

Record description structure, VI-19, VII-21,
XI-6, XIV-2

RECORD KEY clause, IX-14
Record-name, III-19, IV-6

Conventions, X-6
RECORDS, VII-23
RECORDS phrase, VII-17, VII-18
RECORD VARYING clause, VII-22, VII-30,

VIII-14, IX-16, XI-7
REDEFINES clause, VI-38

CORRESPONDING phrase, VI-68
INITIALIZE statement, VI-93
Procedure Division header, X-25
SYNCHRONIZED clause, VI-44
VALUE clause, VI-49

REEL, VII-35, XIII-63
Reference format, IV-41

Restriction, VI-2
Text-words, XII-4

Reference modification, IV-22
Restriction, VI-2
STRING statement, VI-131
UNSTRING statement, VI-136
USE FOR DEBUGGING statement, XV-5

Relation character, IV-9
Relation condition, VI-54

Abbreviated combined, VI-60
Indexed data item, VI-46
Nonnumeric operands, VI-55
Numeric operands, VI-55

Relational operator, VI-54, VI-55
Relative file, VIII-1
Relative I-0 module, VIII-1

Element summary, I-22
RELATIVE KEY phrase, VIII-8, VIII-10
Relative organization, II-2, VIII-1, VIII-12
Relative record number, VIII-1, VIII-10
RELEASE statement, XI-13

Imperative statement, IV-39
Relative subscripting, IV-22
REMAINDER phrase, VI-80
REMOVAL phrase, VII-35, XIII-63
RENAMES clause, VI-21, VI-40

CORRESPONDING phrase, VI-68
INITIALIZE statement, VI-92
Level-number, IV-15, VI-25
PICTURE clause, VI-29

REPLACE statement, XII-6
Compiler directing statement, IV-38

REPLACING LINE phrase, XIV-26
REPLACING phrase

COPY statement, XII-2
INITIALIZE statement, VI-92
INSPECT statement, VI-94

REPORT clause, XIII-9
Report description entry, III-20, X-22,

XIII-10, XIII-11
Report file, XIII-1, XIII-3
REPORT FOOTING (RF), XIII-55
Report footing presentation rules, XIII-39
Report group description entry, III-20,

XIII-10, XIII-20
REPORT HEADING (RH), XIII-55
Report heading group presentation rules, XIII-27
Report-name, III-21, IV-6, XIII-9, XIII-11,

XIII-66, XIII-75
Conventions, X-6

Report Section, IV-33, XIII-10
Report writer concepts, II-8
Report Writer module, XIII-1

Element summary, I-33

XVIII-10

Required words, IV-8
RERUN clause

Indexed I-0 module, IX-15
Relative I-0 module, VIII-13
Sequential I-0 module, VII-15, VII-17

RESERVE clause
Indexed I-0 module, IX-8
Relative I-0 module, VIII-8
Report Writer module, XIII-3
Sequential I-0 module, VII-7, VII-14

Reserved word, IV-8, IV-45
Implementation, I-8

Reserved word list, IV-45
RESET phrase, XIII-52
RETURN statement, XI-14

Conditional statement, IV-37
REVERSED phrase, VII-39
REWRITE statement

Indexed I-0 module, IX-33
Relative I-0 module, VIII-30
Sequential I-0 module, VII-48

RF, XIII-55
RH; XIII-55
RIGHT, VI-24, VI-44
ROUNDED phrase, VI-67

ADD statement, VI-73
COMPUTE statement, VI-76
DIVIDE statement, VI-80
MULTIPLY statement, VI-107
SUBTRACT statement, VI-134

Routine-name, III-21, IV-6, VI-83
Rules, IV-3
RUN, VI-130

'S' PICTURE symbol, VI-31
SIGN clause, VI-42
USAGE clause, VI-46

SAME clause
Indexed I-0 module, IX-15
Relative I-0 module, VIII-13
Report Writer module, XIII-5
Sequential I-0 module, VII-15, VII-19

SAME RECORD AREA clause
Indexed I-0 module, IX-15
Relative I-0 module, VIII-13
Sequential I-0 module, VII-15, VII-19
Sort-Merge module, XI-3, XI-4

SAME SORT AREA clause, XI-3, XI-4
SAME SORT-MERGE AREA clause, XI-3, XI-4
Scope of names, X-4
Scope of statements, IV-40
Scope terminators, IV-27, IV-40
SD level indicator, III-13, XI-6, XI-7

Reference format, IV-43
SEARCH statement, VI-122

Conditional expression, VI-54
SET statement, VI-128
USAGE IS INDEX clause, VI-46

Section, IV-35, IV-43
Section header, III-22, IV-43
Section-name, IV-6, IV-7
SECURITY paragraph, VI-6
Segment, XVI-1
SEGMENT-LIMIT clause, XVI-5
Segment-number, III-22, IV-6, XVI-7
SEGMENT phrase, XIV-23
Segmentation classification, XVI-2
Segmentation control, XVI-3
Segmentation module, XVI-1

Element summary, I-39

SELECT clause
Inde,xed I-0 module, IX-8
Relative I-0 module, VIII-8
Report Writer module, XIII-3
Sequential I-0 module, VII-7
Sort-Merge module, XI-2

Semicolon, IV-2, IV-4 •
Interchangeable with comma, IV-2

SEND statement, XIV-26
Mnemonic~name, VI-13
SPECIAL-NAMES paragraph, VI-13
STOP statement, VI-130

Sentence, IV-35, IV-37, IV-43
SEPARATE CHARACTER phrase, VI~42
Separator, IV-4

Restriction, VI-1
SEQUENCE clause, VI-11
Sequence number, IV-42
Sequence number area, IV-41
Sequential access, II-3, VII-1, VIII-2, IX-2
Sequential file, VII-1
Sequential I-0 module, VII-1

Element summary, I-19
Sequential organization, II-1, VII-1, VII-11
SET statement, VI-127

Imperative statement, IV-39
SPECIAL-NAMES paragraph, VI-15

Shared memory area, II-17
Sharing data, X-4
Sharing files, .X-4
SIGN clause, VI~42

Class c~ndition, VI-57
MOVE statemen~, VI-105
Operational sign, IV-16
PICTURE clause, VI-31
Report group description entry, XIII-21,

XIII-49
Sign condition, VI-58
Simple condition, VI-54
Simple insertion. editing, VI-33
Single character substitution, IV-4
SIZE, VI-11, VI-131
SIZE ERROR phrase, VI-67

ADD statement, VI-73
COMPUTE statement, VI-76
DIVIDE statement, VI-80
MULTIPLY statement, VI-107
SUBTRACT statement, VI-134

Slant (/) comment line, IV-42
Sort file, XI-1
SORT statement, XI-16

Imperative statement, IV-39
Segmentation, XVI-9
Transfer of control, IV-26

Sort-merge file des·cription entry, III-23,
XI-6, XI-7

Sort-Merge module, XI-1
Element summary, I-30

Sorting, II-5
SOURCE clause, XIII-21, XIII-51
SOURCE-COMPUTER paragraph, VI-10

WITH DEBUGGING MODE phrase, XV-3
Source program, IV-29, VI-3

COPY statement, XII-2
Separately compiled, VI-4

Source text manipulation module, XII-1
Element summary, I-32

Space, IV-4
SPACE/SPACES, IV-11, VI-104
Special character, III-23, IV-3
Special-character words, IV-3, IV-9
Special insertion editing, VI-33

SPECIAL-NAMES paragraph, VI-13
ACCEPT statement, VI-71
Condition-name, IV-7
DISPLAY statement, VI-78
Mnemonic-name, IV-7
SEND statement, XIV-26
Switch-status condition, VI-58
WRITE statement, VII-52

Special registers, IV-9
DEBUG-ITEM, XV-1
LINAGE-COUNTER, VII-5
LINE-COUNTER, XIII-1
PAGE-COUNTER, XIII-1

Standard alignment rules, IV-16
Standard COBOL, I-6
Standard data format, III-24, IV-13
Standard language element acceptance, I-7
STANDARD-I phrase

ALPHABET clause, VI-13, VI-15
RECORD DELIMITER clause, VII-13

STANDARD-2 phrase, VI-13, VI-15
Standardization of COBOL, XVII-11
START statement

Indexed I-0 module, IX-36
Relative I-0 module, VIII-33

Statement, IV-35, IV-37
STATUS KEY clause, XIV-3, XIV-4
STOP statement, VI-130

Figurative constant, IV-11
Imperative statement, IV-39
Transfer of control, IV-26

STRING statement, VI-131
Figurative constant, IV-11
Imperative statement, IV-39

Subscripting, IV-21
Concepts, II-14
Condition-name, IV-24
Conditional variable, IV-24
MOVE statement, VI-103
Qualified, IV-21
Report Section, XIII-2
Restriction, VI-2
SET statement, VI-128

Subsets of Standard COBOL, I-5
Substantive changes, XVII-42
Substitute language elements, I-7
SUBTRACT statement, VI-134

Composite of operands, VI-69
COMPUTE statement, VI-76
Conditional statement, IV-37
CORRESPONDING (CORR), VI-68
Data conversion, VI-69
Decimal alignment, VI-69
Imperative statement, IV-39
Maximum operand size, VI-69
Multiple results, VI-69

Index

SUBTRACT CORRESPONDING (SUBTRACT CORR), VI-68,

XVIII-11

VI-134
SUM clause, XIII-21, XIII-52
Summary of elements by COBOL division, I-40
Summary of elements by module, I-10
Summary of differences, XVII-16
SUPPRESS statement, XIII-74

Imperative statement, IV-39
Switch-status condition, VI-58
Symbolic-character, III-24, IV-6
Symbolic-character figurative constant, IV-11
SYMBOLIC CHARACTERS clause, VI-13
SYMBOLIC DESTINATION clause, XIV-4
SYMBOLIC QUEUE clause, XIV-3
SYMBOLIC SOURCE clause, XIV-3
SYMBOLIC SUB-QUEUE-! clause, XIV-3

Index

SYMBOLIC SUB-QUEUE-2 clause, XIV-3
SYMBOLIC SUB-QUEUE-3 clause, XIV-3
SYMBOLIC TERMINAL clause, XIV-4
SYNCHRONIZED (SYNC) clause, VI-44

Elementary data item, VI-21
VALUE clause, VI-49

Syntax rules, IV-3
Sys.tern-name, IV-8

Table, II-12, VI-122, VI-127
Table definition, II-12
Table element, II-12, VI-122, VI-12.7
Table handling, II-12, VI-127
TALLYING phrase

INSPECT statement, VI-94
UNSTRING statement, VI-136

TE.RMINAL. phrase, XIV-18, XIV-20
TERMINATE statement, XIII-75
TEST AFTER phrase, VI-109, VI-110
TEST _BEFORE phrase, VI-109, VI-110'
TEXT LENGTH clause, XIV-3, XIV-4
Text-name, III-25, IV-6, XII-2

Qualified, IV-19
Text word, III-25, XII-2
THEN, VI-90
niROUGH (THRU)

ALPHABET clause, VI-13
EVALUATE statement, VI-84
MERGE statement, XI-8
PERFORM statement, VI-109
RENAMES clause, VI-40
SORT statement, XI-16
VALUE clause, VI-48

TIME, VI-72
TIMES, VI-109
TRAIL ING, VI-42
Transact ion c.ommunicat ion, II-35
Transfer of control, II-23, IV-25
TRUE, VI-84, VI-127
TYPE clause, XIII-20, XIII-55

Unary arithmetic operator, VI-52
Unary minus, VI-52
Unary plus, VI-52.
Unde.fined language element list, XVII-96
Uniqueness of reference, IV-17
UNIT, VII-35, XIII-63
UNSTRING statement, VI-136

Figurative constant, IV-11
Imperative statement, IV-39

UNTIL phrase, VI-.J09, VI-110
UP BY, VI-127
UPON phrase

DISPLAY statement, VI-78
SUM clause, XIII-52

Uppercase letters, IV-6, VI-29, VI-56
USAGE. clause,, VI-46

Class condition, VI-57
INSPECT statement, VI-95
Relation condition, VI-54
Report. group description en.try, XIII-20,.

XII I-21 , XI II-60
SIGN clause, VI-42
STRING statement, V.I-131
SYNCHRONIZED cla.use, VI-44
UNSTRING statement, Vl-136.
VALUE. clause, VI-49

USAGE IS INDEX clause, VI-46
CORRESPONDING phrase, VI-68
SEARCH statement'· VI-:-123
Working-Storage Section, VI-18

USE statement
Compiler directihg statement, IV-38
Declaratives, IV-35
Indexed I-0 module, IX-39
Inter-Program Communication module, X-34
Relative 1-0 module, VIII-35
Report Writer module, XIII-76
Sequential I-0 module, VII-50

USE BEFORE REPORTING statement, X-35, XIII-78
USE FOR DEBUGGING statement, XV-5
User-defined words, IV-6

Restrictions, VI-1
USING phrase in CALL statement, X-27

Index data item, VI-46
USING phrase in MERGE statement, XI-8
VSING phrase in Procedure Division header, X-25

r'ndex data item, VI-46
USING phrase in SORT statement, XI-16

'V' PICTURE symbol, VI-32
USAGE clause, VI-46

VALUE clause, VI-48
Report Writer module, XIII-21, XIII-61
SET statement, VI-129

VALUE OF clause
Indexed I-0 module, IX-16
Relative I-0 module, VIII-14
Report Writer module, XIII-7
Sequential I-0 module, VII-22, VII-33

Variable length records, II-3, VII-30
Variable· occurrence data item, III-26, VI-27,

VI-50
VARYING IN SIZE phrase, VII-30
VARYING phrase

PERFORM statement, VI-110
SEARCH statement, VI-122

Verb, III-26

WHEN phrase
EVALUATE statement, VI-84
SEARCH statement, VI-122

WITH DATA phrase, XIV-23
WITH DEBUGGING MODE clause, VI-10, XV-2,

XV-3
WITH DUPLICATES phrase

ALTERNATE RECORD KEY clause, IX-8, IX-11
SORT statement, XI-16

WITH EGI phrase, XIV-26
WITH EMI phrase, XIV-26
WITH ESI phrase, XIV-2.6
WITH FOOTING phrase, VII-27
WITH identifier phrase, XIV-26
WITH KEY phrase, XIV-18, XIV-20
WITH LOCK phrase, VII-35, VIII-17, IX-19,

XUI-63
WITH NO ADVANCING phrase, VI-78
WITH NO REWIND phrase, VII-35, VII-39, XIII-63,

XIII-70
WITH POINTER phrase

STRING statement, VI-131
UNSTRING statement, VI-136

WITH TEST phrase, VI-109
Word, IV-I
WORDS, VI-11
Working-Storage Sectio.n, IV-33, VI-18.

VALUE clause, VI-49

XVIII-12

WRITE statement
Conditional statement, IV-37
Imperative statement, IV-39
Indexed I-0 module, IX-41
Mnemonic-name, VI-13
Relative I-0 module, VIII-37
Sequential I-0 module, VII-52
SPECIAL-NAMES paragraph, VI-13

'X' PICTURE symbol, VI-32

'Z' PICTURE symbol, VI-32, VI-35
ZERO/ZEROS/ZEROES, IV-11, VI-104
ZERO in sign condition, VI-58
Zero suppression editing, VI-35

'O' PICTURE symbol, VI-32, VI-33
'9' PICTURE symbol, VI-32, VI-46
'Ol' entry, IV-14, VI-25, XIII-20
'66' RENAMES data description entry, VI-21,

VI-25, VI-40
'77' item description entry, VI-18, VI-25,

X-13
'88' condition-name data description entry,

VI-21, VI-25

> relation, VI-54
< relation, VI-54

relation, VI-54
+ operator, VI-52
+ PICTURE symbol, VI-32, VI-34, VI-35
- continuation line, IV-42
- operator, VI-52
- PICTURE symbol, VI-32, VI-34, VI-35
* comment 11ne, IV-42
*operator, VI-52
*PICTURE symbol, VI-32, VI-35
I comment line, IV-42
I operator, VI-52
/PICTURE symbol, VI-32, VI-33
**operator, VI-52
== pseudo-text delimiter, III-18, IV-42

Index

XVIII-13

X3.115-1984 Unformatted 80 Megabyte Trident Pack for Use
at 370 tpi and 6000 bpi (General, Physical, and Magnetic Charac
teristics)
X3.117-1984 Printable/Image Areas for Text and Facsimile Com•
munication Equipment
X3.118-1984 Financial Services - Personal Identification Number
- PIN Pad
X3.119-1984 Contact Start/Stop Storage Disk, 158361 Flux Trans
itions per Track, 8.268 Inch (210 mm) Outer Diameter and 3.937
inch (100 mm) Inner Diameter
X3.120-1984 Contact Start/Stop Storage Disk
X3.121-1985 Two-Sided, Double-Density, Unformatted 5.25-inch
(130-mm), 48-tpi (1,9-tpmm), Flexible Disk Cartridge for 7958
bpr Use
X3.124·1985 Graphical Kernel System (GKS) Functional
Description
X3.124.1-1985 Graphical Kernel System (GKS) FORTRAN
Binding

X3.126·1985 One- or Two-Sided Double-Density Unformatted
Flexible Disk Cartridge for 7958 BPR Use
X11.1-1977 Programming Language MUMPS
IEEE 416-1978 Abbreviated Test Language for All Systems
(ATLAS)
IEEE 716-1982 Standard C/ATLAS Language
IEEE 717-1982 Standard C/ATLAS Syntax
IEEE 770X3.97·1983 Programming Language PASCAL
IEEE 771-1980 Guide to the Use of ATLAS
MIL-STD-1815A·1983 Reference Manual for the Ada Programming
Language

X3/TRl-82 Dictionary for Information Processing Systems
(Technical Report)

American National Standards for Information Processing
X3.1-1976 Synchronous Signaling Rates for Data Transmission X3.57-1977 Structure for Formatting Message Headings Using the.
X3.2-1970 Print Specifications for Magnetic Ink Character American National Standard Code for Information Interchange for
Recognition Data Communication Systems Control
X3.4-1977 Code for Information Interchange X3.58-1977 Unrecorded Eleven-Disk Pack (General, Physical,and
X3.5-1970 Flowchart Symbols and Their Usage Magnetic Requirements)
X3.6-1965 Perforated Tape Code X3.59-1981 Magnetic Tape Cassettes, Dual Track Complementary
X3.9-1978 Prag·ramming Language FORTRAN Return-to-Bias (CRB) Four-States Recording on 3.81-mm (0.150-
X3.11·1969 General Purpose Paper Cards Inch) Tape
X3.14-1983 Recorded Magnetic Tape (200 CPI, NRZI) X3.60-1978 Programming Language Minimal BASIC
X3.15-1976 Bit Sequencing of the American National Standard X3.61-1978 Representation of Geographic Point Locations
Code for Information Interchange in Serial-by-Bit Data Transmission X3.62·1979 Paper Used in Optical Character Recognition (OCR)
X3.16·1976 Character Structure and Character Parity Sense for Systems
Serial-by-Bit Data· Communication in the American National Stan- X3.63-1981 Unrecorded Twelve-Disk Pack (100 Megabytes) (Gen-
dard Code for Information Interchange eral, Physical, and Magnetic Requirements)
X3;17-1981 Character Set for Optical Character Recognition X3.64-1979 Additional Controls for Use with American National
(OCR-A) . Standard Code for Information Interchange
X3.18-1974 One-Inch Perforated Paper Tape X3.66-1979 Advanced Data Communication Control Procedures
X3.19-1974 Eleven-Sixteenths-Inch Perforated Paper Tape (ADCCP)
X3.20-1967 Take-Up Reels for One-Inch Perforated Tape X3.72-1981 Parallel Recorded Magnetic Tape Cartridge, 4 Track,
X3.21-1967 Rectangular Hoies in Twelve-Row Punched Cards 0.250 Inch (6.30 mm), 1600 bpi (63 bpmml. Phase Encoded
X3.22·1983 Recorded Magnetic Tape (800 CPI, NAZI) X3.73-1980 Single-Sided Unformatted Flexible Disk Cartridge
X3.23-1985 Programming Language COBOL (for 6631-BPR Use)
X3.25-1976 Character Structure and Character Parity Sense for X3.74-1981 Programming Language PL/I, General-Purpose Subset
Parallel-by-Bit Data Communication in the American National X3.76-1981 Unformatted Single-Disk Cartridge (Top Loading,
Standard Code for Information Interchange 200 tpi 4400 bpi) (General, Physical, and Magnetic Requirements)
X3.26-1980 Hollerith Punched Card Code X3.77-1980 Representation of Pocket Select Characters
X3.27-1978 Magnetic Tape Labels and File Structure X3.78-1981 Representation of Vertical Carriage Positioning Char-
X3.28-1976 Procedures for the Use of the Communication Control acters in Information Interchange
Characters of American National Standard Code for Information: X3.79-1981 Determination of Performance of Data Communica-
lnterchange in Specified Data Communication Links tions Systems That Use Bit-Oriented Communication Procedures
X3.29-1971 Specifications for Properties of Unpunched Oiled X3.80-1981 Interfaces between Flexible Disk Cartridge Drives
Paper Perforator Tape and Their Host Controllers
X3.30-1971 Representation for Calendar Date and Ordinal Date X3.82-1980 One-Sided Single-Density Unformatted 5.25-lnch
X3.31-1973 Structure for the Identification of the Counties of the Flexible Disk Cartridge (for 3979-BPR Use)
United States X3.83-1980 ANSI Sponsorship Procedures for ISO Registration
X3.32-1973 Graphic Representation of the Control Characters of According to ISO 2375
American National Standard Code for Information Interchange X3.84-1981 Unformatted Twelve-Disk Pack (200 Megabytes) (Gen-
X3.3f-1972 Interchange Rolls of Perforated Tape eral, Physical, and Magnetic Requirements)
X3.36-1975 Synchronous High-Speed Data Signaling Rates between X3.85-1981 1 /2-lnch Magnetic Tape Interchange Using a Self
Data Terminal Equipment and Data Communication Equipment Loading Cartridge
X3.37-1980 Programming Language APT X3.86-1980 Optical Character Recognition (OCR) Inks
X3.38·'11l72 ldentificatio-ri of States of the United States X3.88-1981 Computer Program Abstracts
(Including the District of Columbia) X3.89-1981 Unrecorded Single-Disk, Double-Density Cartridge
X3.39-1973 Recorded Magnetic Tape (1600 CPI, PE) (Front Loading, 2200 bpi, 200 tpi) (General, Physical, and Mag-
X3.40-1983 Unrecorded Magnetic Tape (9-Track 800 CPI, NAZI; netic Requirements)
1600 CPI, PE; and 6250 CPI, GCR) X3.91M-1982 Storage Module Interfaces
X3.41-1974 Code Extension Techniques for Use with the 7-Bit X3.92-1981 Data Encryption Algorithm
Coded Character Set of American National Standard Code for lnfor- X3.93M-1981 OCR Character Positioning
mation Interchange X3.94-1985 Programming Language PANCM
X3.42-1975 Representation of Numeric Values in Character Strings X3.95-1982 Micropr.ocessors - Hexadecimal Input/Output; Using
X3.43-1977 Representations of Local Time of the Day 5-Bit and 7-Bit Teleprinters
X3.44-1974 Determination of the Performance of Data Communi- X3.96-1983 Continuous Business Forms (Single-Part)
cation Systems X3.98-1983 Text Information Interchange in Page Image Format
X3.45-1982 Character Set for Handprinting (PIF)
X3.46-1974 Unrecorded Magnetic Six-Disk Pack (General, Physical, X3.99-1983 Print Quality Guideline for Optical Character Recogni-
and Magnetic Characteristics) tion (OCR)
X3.47-1977 Structure for the Identification of Named Populated X3.100-1983 Interface Between Data Terminal Equipment and
Places and Related Entities of the States of the United States for Data Circuit-Terminating Equipment for Packet Mode Operation
Information Interchange with Packet Switched Data Communications Network
X3.48-1977 Magnetic Tape Cassettes (3.810-mm [0.150-lnch] X3.101-1984 Interfaces Between Rigid Disk Drivels) and Host(s)
Tape at 32 bpmm [800 bpi], PE) · X3.102-1983 Data Communication Systems and Services - User-
X3.49-1975 Character Set for Optical Character Recognition (OCR-Bl Oriented Performance Parameters
X3.50-1976 Representations for U.S. Customary, SI, and Other X3.103-1983 Unrecorded Magnetic Tape Mini cassette for lnforma-
Units to Be Used in Systems with Limited Character Sets tion Interchange, Coplanar 3.81 mm (0.150 in)
X3.51-1975 Representations of Universal Time, Local Time Differ- X3.104-1983 Recorded Magnetic Tape Minicassette for lnforma-
entials, and United States Time Zone References tion Interchange, Coplanar 3.81 mm (0.150 in), Phase ·Encoded
X3.52-1976 Unrecorded Single-Disk Cartridge (Front Loading, X3.105-1983 Data Link Encryption
2200 BPI) (General, Physical, and Magnetic Requirements) X3.106-1983 Modes of Operation for the Data Encryption Algorithm
X3.53-1976 Programming Language PL/I X3.110-1983 Videotex/Teletext Presentation Level Protocol Syntax
X3.54-1976 Recorded Magnetic Tape (6250 CPI, Group Coded X3.112-1984 14-in (356-mm) Diameter Low-Surface-Friction
Recording) Magnetic Storage Disk
X3.55-1982 Unrecorded Magnetic Tape Cartridge, 0.250 Inch X3.114-1984 Alphanumeric Machines; Coded Character Sets for
(6.30 mm), 1600 bpi (63 bpmm), Phase encoded Keyb'Oard Arrangements in ANSI X4.23-1982 and X4.22-1983
X3 .. 56-1977 Recorded Magnetic Tape Cartridge, 4 Track, 0.250
Inch (6.30 mm), 1600 bpi (63 bpmm), Phase Encoded (continued on reverse)

December 1985

