
Adopted for Use by
the Federal Government

FIPS PUB 21-1
See Notice on Inside

Front Cover

ANSI X3.23-197 4

programming language
COBOL

AMERICAN NATIONAL STANDARD

An American National Standard implies a consensus of those substantially concerned with its scope and provisions. An American
National Standard is intended as a guide to aid the manufacturer, the consumer, and the general public. The existence of an American
National Standard does not in any respect preclude anyone, whether he has approved the standard or not, from manufacturing, mar­
keting, purchasing, or using products, processes, or procedures not conforming to the standard. American National Standards are sub­
ject to periodic review and users are cautioned to obtain the latest editions.

CAUTION NOTICE: This American National Standard may be revised or withdrawn at any time. The procedures of the American
National Standards Institute require that action be taken to reaffirm, revise, or withdraw this standard no later than five years from
the date of publication. Purchasers of American National Standards may receive current information on all standards by calling or
writing the American National Standards Institute.

ACKNOWLEDGMENT

Any organization interested in reproducing the COBOL standard and specifications in whole or in part, using ideas from this docu­
ment as the basis for an instruction manual or for any other purpose, is free to do so. However, all such organizations are requested
to reproduce the following acknowledgment paragraphs in their entirety as part of the preface to any such publication (any organi­
zation using a short passage from this document, such as in a book review, is requested to mention "COBOL" in acknowledgment of
the source, but need not quote the acknowledgment):

COBOL is an industry language and is not the property of.any company or group of companies, or of any organization or group of
organizations.

No warranty, expressed or implied, is made by any contributor or by the CODASYL Programming Language Committee as to the
accuracy and functioning of the programming system and language. Moreover, no responsibility is assumed by any contributor, or by
the committee, in connection therewith.

The authors and copyright holders of the copyrighted material used herein

FLOW-MATIC (trademark of Sperry Rand Corporation), Programming for the UNIVAc®1 and II, Data Automation Systems
copyrighted 1958, 1959, by Sperry Rand Corporation; IBM Commercial Translator Form No. F 28-8013, copyrighted 1959 by
IBM; FACT, OSI 27A5260-2760, copyrighted 1960 by Minneapolis-Honeywell

have specifically authorized the use of this material in whole or in part, in the COBOL specifications. Such authorization extends to
the reproduction and use of COBOL specifications in programming manuals or similar publications.

This standard has been adopted for federal government use.

Details concerning its use within the federal government are contained in FIPS PUB 21-1, COMMON !!USINESS
QRIENTED 1ANGUAGE (COBOL). For a complete list of the publications available in the FEDERAL INFORMA­
TION PROCESSING ST AND ARDS Series, write to the Office of Technical Information and Publications, National
Bureau of Standards, Washington, D.C. 20234.

Published by

American National Standards Institute
1430 Broadway, New York, New York 10018

Copyright© 1974 by American National Standards Institute, Inc
All rights reserved.

No part of this publication may be reproduced in any form,
in an electronic retrieval system or otherwise, without
the prior written permission of the publisher.

Printed in the United States of America

P2M477 /l 5

Secretariat

ANSI
X3.23-1974

Revision of
X3.23-1968

American National Standard
Programming Language

COBOL

Computer and Business Equipment Manufacturers Association

Approved May 10, 1974

American National Standards Institute, Inc

FOREWORD

(This Foreword is not a part of American National Standard Programming Language
COBOL, X3.23-1974.)

This standard is a revision of American National Standard COBOL, X3.23-1968. The
language specifications contained in this standard were drawn from both American
National Standard X3.23-1968 and the CODASYL COBOL Journal of Development. Like
its predecess·or, this document provides specifications for both the form and
interpretation of programs expressed in COBOL. It is intended to provide a high
degree of machine independence in such programs in order to permit their use on
a variety of automatic data processing systems.

The organization of COBOL specifications in this standard is based on a func­
tional processing concept. The standard defines a Nucleus and eleven functional
processing modules: Table Handling, Sequential I-0, Relative I-0, Indexed I-0,
Sort-Merge, Report Writer, Segmentation, Library, Debug, Inter-Program Communica­
tion, and Communication. Each module contains two or three levels with nine
modules having a null set as the lowest level. In all cases, lower levels are
proper subsets of the higher levels within the same module. The minimum standard
is defined as the low level of the Nucleus plus the low level of the Table Han­
dling and Sequential I-0 modules. Full American National Standard COBOL is defined
as the highest level of the Nucleus and the eleven processing modules. The major
technical differences between this standard and its predecessor are detailed in
Appendix B on pages XIV-9 through XIV-34.

The Technical Committee responsible for this standard, X3J4, evolved from Com­
mittee X3.4.4 and its subordinate working groups (the bodies responsible for the
original COBOL standard). X3J4 began the task of preparing a revision of the
COBOL standard in 1969 with the development of criteria against which each candi­
date for inclusion in the proposed revision was to be matched. Detailed work on
the revision began in early 1970 and, with the committee meeting every 4 to 6
weeks, a draft was completed in June 1972. COBOL Information Bulletins 14, 15,
and 16, published in the first half of 1972, kept the COBOL community informed
on the progress being made.

American National Standards Committee on Computers and Information Processing,
X3, approved the publication of the draft in July 1972, and the full text of the
proposed revision was made available to the community for comment in September
1972. It was approved as an American National Standard on May 10, 1974.

This standard was processed and approved for submittal to ANSI by American Na­
tional Standards Committee on Computers and Information Processing, X3. Committee
approval of the standard does not necessarily imply that all committee members
voted for its approval. At the time it approved this standard, the X3 Committee
had the following members:

J. F. Auwaerter, Chairman
V. E. Henriques, Vice-Chairman
R. M. Brown, Secretary

Organization Represented

Addressograph Multigraph Corporation •

Air Transport Association • • • •
American Bankers Association •

.

Name of Representative

. A. c • Brown
D. s. Bates (Alt) . F. c . White

• M • E. McMahon
J. Booth (Alt)

Organization Represented Name of Representative

American Institute of Certified Public Accountants •• N. Zakin
P. B. Goodstat (Alt)
C. A. Phillips (Alt)
F. Schiff (Alt)

American Library Association ••••••••••••• J. R. Rizzolo
J. C. Kountz (Alt)
M. S. Malinconico (Alt)

American Newspaper Publishers Association
American Nuclear Society • • • • • • • •

• W. D. Rinehart
• • • • • D. R. Vondy

American Society of Mechanical Engineers •

Association for Computing Machinery

Association for Educational Data Systems •
Association for Systems Management • • •
Association of American Railroads
Association of Computer Programmers and Analysts • •

Association of Data Processing Service Organizations
Burroughs Corporation • • • •

Control Data Corporation •

Data Processing Management Association •

Edison Electric Institute

Electronic Industries Association

General Electric Company • • • • •

General Services Administration

GUIDE International

Honeywell Information Systems Inc

Institute of Electrical and Electronics
Engineers, Communications Society

Institute of Electrical and Electronics
Engineers, Computer Society

. . . .

.

M. K. Butler (Alt)
• R. W. Rau

R. T. Woythal (Alt)
• P. Skelly

J. A. N. Lee (Alt)
L. Revens (Alt)
H. Thiess (Alt)

• C. Wilkes
• A. H. Vaughan
• R. A. Petrash
• T. G. Grieb

G. Thomas (Alt)
• J. B. Christiansen
• E. Lohse

J. F. Ka lb a ch (Alt)
• S. F. Buckland

C. E. Cooper (Alt)
• A. E. Dubnow

D. W. Sanford (Alt)
• R. Bushner

J. P. Markey (Alt)
• (Representation Vacant)

A. M. Wilson (Alt)
• R. R. Hench

J. K. Snell (Alt)
• D. L. Shoemaker

M. W. Burris (Alt) . T • E. Wiese
D. Stanford (Alt) . T • J. McNamara
E. H. Clamons (Alt)

• R. Gibbs

. G • c. Schutz
c. w. Rosenthal (Alt)

Insurance Accounting and Statistical Association ••• W. Bregartner
J. R. Kerber (Alt)

International Business Machines Corporation L. Robinson
W. F. McClelland (Alt)

Joint Users Group • T. E. Wiese
L. Rodgers (Alt)

Life Office Management Association • • B. L. Neff
A. J. Tufts (Alt)

Litton Industries • • • • • • • • • •••• I. Danowitz
National Association of State Information Systems • • G. H. Roehm

C. Vorlander (Alt)

Organization Represented Name of Representative

National Bureau of Standards •

National Cash Register Company •

National Machine Tool Builders' Association

• H. S. White, Jr
J. O. Harrison (Alt)

••• R. J. Mindlin
T. W. Kern (Alt)
O. A. Rodriques
E. J. Loeffler. (Alt)

• • • • I. Solomon National Retail Merchants Association
Olivetti Corporation of America
Pitney-Bowes Inc • • • •••••

• • • • • • E. J. Almquist

Printing Industries of America •

Scientific Apparatus Makers Association

SHARE Inc

Society of Certified Data Processors •

Telephone Group
UNIVAC, Division of Sperry Rand Corporation

U.S. Department of Defense

•• D. J. Reyen
B. Lyman (Alt)

• • • N. Scharpf
E. Masten (Alt)

• • • • • A. Savitsky
J. French (Alt)

• T. B. Steel, Jr
R. H. Wahlen (Alt)

• A. Taylor
J. J. Martin (Alt)

• V. N. Vaughan, Jr
S. M. Garland (Alt)
J. C. Nelson (Alt)

• • • M ..
c.

• w.
w.
w.

w.
D.
L.
B.
B.

Bass
Card (Alt)
Mc Greer
Rinehuls (Alt)
Robertson (Alt)

Xerox Corporation •••••••••••••••••• J. L. Wheeler

Technical Committee X3J4, which developed this standard, had the following
personnel:

R. Kearney, Chairman J. Couperus, Vice-Chairman P. A. Beard, Secretary

G. Abrams R. M. Bland D. N. Gumina R. E. Rountree,
D. G. Ashland J. Collica c. R. Kelleher s. D. Schiffman
G. N. Baird M. D. Dent c. L. Kent R. Solt
R. M. Barton J. P. Desmond J. N. Kirkeng L. J. Soma
R. P. Belmont N. o. Eaddy A. M. Nienhaus J. J. Strain
w. E. Bender M. Fedora P. Olshansky L. Sturges
R. F. Bets cha R. c. Fredette w. C. Rinehuls D. L. Tucker
J. E. Bishop P. R. Gustafson s. Root M. Vickers

Others who contributed to the work on the .. revision were as follows:

H. Bromberg H. s. Gile A. N. McMahan c. A. Schulz c. K. Cheng G. H. Goe R. M. Ops a ta . J. G • Solomon
J. s. Cousins J. s. Grant R. s. Pettus D. F. Wendell
R. L. Dover H. Hicks M. L. Ra.kestraw c. E.. Wilder
H. R. Fletcher J. Holloway R. R. Risley

The members of Technical Committee X3J4wish to note the special contribu­
tion of the secretary, Miss P. A. Beard, whose devotion and hard work made
this revision possible.

Jr

TABLE OF CONTENTS

SECTION I: INTRODUCTORY INFORMATION

Chapter 1. Introduction to the Standard

1.1
1.2
1.3
1.4
1.5

1.6
1. 7
1.8

Scope and Purpose. • • • • • • • •
Structure of Language Specifications • •
Organization of Document • • • • • •
How To Use The Standard. • • • ••
Definition of an Implementation of American

. .•

National Standard COBOL • • • • • • • • •
Implementor-Defined Language Specifications ••
Elements That Pertain To Specific Hardware Components ••
Shorthand Notation • • • • • • • • • • • • • • • • • •

Chapter 2. List of Elements by Module

General Description. •
Nucleus, Level 1 (1 NUC 1, 2) • • • • • • • •

• I-1
• I-1
• I-3
• I-3

. I-4
• I-7

I-8
I-9

• • • I-10
. I-11

• • I-16

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2 .11
2.12
2.13
2.14
2 .15
2.16
2.17
2.18
2.19
2.20
2.21
2.22
2.23
2.24

Nucleus, Level 2 (2 NUC 1,2) ••••••••••••
Table Handling, Level 1 (1 TBL 1,2) ••••• • • • • • I-19
Table Handling, Level 2 (2 TBL 1,2) •.
Sequential I-0, Level 1 (1 SEQ 1,2) •••
Sequential I-0, Level 2 (2 SEQ 1,2) ••
Relative I-0, Level 1 (1 REL 0,2).
Relative I-0, Level 2 (2 REL 0,2).
Indexed I-0, Level 1 (1 INX 0,2)
Indexed I-0, Level 2 (2 INX 0,2)
Sort-Merge, Level 1 (I SRT 0, 2) • • • • .
Sort-Merge, Level 2 (2 SRT 0,2) ••••••

• • • I-20
• • I-21

• I-23
I-24

• I-26
• I-27
. I-29
• I-30
• I-31

Report Writer, Level 1 (1 RPW 0,1) • • ••• • • • • • • • I-32
Segmentation, Level 1 (1 SEG 0,2).
Segmentation, .Level 2 (2 SEG 0, 2) • •
Library, Level 1 (1 LIB 0,2) •
Library, Level 2 (2 LIB 0 ,2) • • • • • • • • •
Debug, Level 1 (1 DEB 0,2) • • • • • • •
Debug, Level 2 (2 DEB 0,2) • • •••
Inter-Program Communication, Level 1 (1 IPC 0,2)
Inter-Program Communication, Level 2 (2 IPC 0,2)
Communication, Level 1 (1 COM 0,2) • • •••
Communication, Level 2 (2 COM 0,2) •

Chapter 3. List of Elements Showing Disposition

. I-34
• • I--34
• • I-35
•• I-35

• I-36
. • I-36
.• I-37

• I-37
• I-38

•• I-39

3.1 General Description. • • • • ~ • • • • • • I-40

Chapter 4. Glossary

4.1
4.2

Introduction
Definitions ••

Chapter 5. Overall Language Consideration

5 .. 1
5 .. :Z
5.3
5.4

Introduction. • • • • • • • • • • • •
Notation Used in Formats and Rules. •
Language Concepts • • ...
Identification Division • • • • • • • -. . . .

• I-52
I-5-2

1~12

I-72
I-.75
I-94

5.5 Environment Division.
5.6 Data Division
5.7 Procedure Division. .
5.8 Reference Format.
5.9 Reserved Words.
Chapter 6. Compo~ite Language Skeleton

6.1 General Description • • • • • • •

SECTION II: NUCLEUS

Chapter 1. Introduction to the Nucleus

Function. • • • • • • 1.1
1.2
1.3

Level Characteristics • • • •
Level Restrictions on Overall Language. •

Chapter 2. Identification Division in the Nucleus

General Description • • • •
Or gani za ti on. • • • • • • • • • • •
The PROGRAM-ID Paragraph. • • • • • • • • •

. .

·2.1
2'. 2
2.3
2.4 The DATE-COMPILED Paragraph • • • • • • • • • •

Chapter 3. Environment Division in the Nucleus

3.1 Configuration Section
3.1.1 The SOURCE-COMPUTER Paragraph
3.1.2 The OBJECT-COMPUTER Paragraph
3.1. 3 The SPECIAL-NAMES Paragraph
Chapter 4. Data Division in the Nucleus

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13

Working-Storage Section • • • • • • • • • • • • • •
The Data Description - Complete Entry Skeleton. • •
The BLANK WHEN ZERO Clause. • • • • • • •
The Data-Name or FILLER Clause.
The JUSTIFIED Clause.
Level-Number. • • • •
The PICTURE Clause. • •
The REDEFINES Clause. •
The RENAMES Clause. • •
The SIGN Clause • • • • •
The SYNCHRONIZED Clause
The USAGE Clause.
The VALUE Clause. • • • • •

Chapter 5. Procedure Division in the Nucleus

5.l
5.2
5.3
5.4
5.5
5.6
5.7
5.8

Arithmetic Expressions. • • • • • • • • • • • • • • • •
Conditional Expressions • • • • • • • • • • • • • • • •
Common Phrases and General Rules for Statement Formats.
The ACCEPT Statement ••
~he ADD Statement • • •
The· ALTER Statement •
The COMPUTE Statement
The DISPLAY Statement •

.

. . .

I-95
I-97
I-99
I-105
I-109

I-111

II-1
II-1
II-1

II-2
II-2
II-3
II-4

II-5
II-5
II-6
II-8

II-11
II-12
II-14
II-15
II-16
II-17
II-18
II-27
II-29
II-31
II-33
II-35
II-36

II-39
II-41
II-50
II-53
II-55
II-57
II-58
II-59

5.9 The DIVIDE Statement.
5.10 The ENTER Statement
5.11 The EXIT Statement.
5.12 The GO TO Statement
5.13 The IF Statement.
5.14 The INSPECT Statement
5.15 The MOVE Statement. I

5.16 The MULTIPLY Statement.
5 .17 The PERFORM Statement .
5.18 The STOP Statement. . . .
5.19 The STRING Statement.
5.20 The SUBTRACT Statement.
5.21 The UNSTRING Statement.

SECTION III: TABLE HANDLING MODULE

Chapter 1. Introduction to the Table Handling Module

1.1
1.2

Function. . • • • • •
Level Characteristics •

Chapter 2. Data Division in the Table Handling Module

2.1 The OCCURS Clause •••••
2·. 2 The USAGE IS INDEX Clause • •

. .

. .

Chapter 3. Procedure Division in the Table Handling Module

3.1
3.2
3.3
3.4

Relation Condition. • •
Overlapping Operands •••••
The SEARCH Statement ••
The SET Statement • •

SECTION IV: SEQUENTIAL I-0 MODULE

Chapter 1. Introduction to the Sequential I-0 Module

1.1
1.2
1.3

Function. • • • • • •
Level Characteristics •
Language Concepts

.

. .

. . .

Chapter 2. Environment Division in the Sequential I-0 Module

2.1 Input-Output Section ••••
2. l. 1 The FILE-CONTROL Paragraph.
2.l.2 The File Control Entry •••
2.1.3 The I-0-CONTROL Paragraph •

Chapter 3. Data Division in the Sequential I-0 Module

3.1
3.2
3.3
3.4
3.5
3.6
3.7

File Section. • • • • • • • • •
Record Description Structure. •
The File Description - Complete
The BLOCK CONTAINS Clause
The CODE-SET Clause • • • •
The DATA RECORDS Clause • • •
The LABEL RECORDS Clause.

Entry Skeleton ••

. . .

.

.

II-61
II-63
II-64
II-65
II-66
II-68
II-74
II-77
II-78
II-85
II-86
II-89
II-91

III-1
III-1

III-2
III-5

III-6
III-6
rn~1

III-11

IV-1
IV-1
IV-1

IV-4
IV-4
IV-4
IV-6

IV-9
IV-9
IV-10
IV-11
IV-12
IV-13
IV-14

3.8 The LINAGE Clause • • • • • •
3.9 The RECORD CONTAINS Clalise •.•
3.10 The VALUE OF Clause • • • • •

Chapter 4. Procedure Division in the Sequential I-0 Module

4.1
4.2
4.3
4.4
4.5
4.6

The CLOSE Statement •
The OPEN Statement. •
The READ Statement. •
The REWRITE Statement
The USE Statement •
The WRITE Statement •

SECTION V: RELATIVE 1-0 MODULE

Chapter 1. Introduction to the Relative I-0 Module

1.1
1.2
1. 3

Function. • • • • • •
Level Characteristics
Language Concepts

Chapter 2. Environment Division in the Relative I-0 Module

2.1 Input-Output Section ••••
2.1.1 The FILE-CONTROL Paragraph ••
2.1.2 The File Control Entry ••
2.1.3 The I-0-CONTROL Paragraph ••

Chapter 3. Data Division in the Relative I-0 Module

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

File Section. • • •
Record Description Structure. •
The File Description - Complete
The BLOCK CONTAINS Clause •
The DATA RECORDS Clause • •
The LABEL RECORDS Clause. • •
The RECORD CONTAINS Clause. •
The VALUE OF Clause • • • • •

Entry Skeleton.

Chapter 4. Procedure Division in the Relative I-0 Module

4.1 The CLOSE Statement.
4.2 The DELETE Statement
4.3 The OPEN Statement
4.4 The READ Statement
4.5 The REWRITE Statement.
4.6 The START Statement.
4.7 The USE Statement .. .
4.8 The WRITE Statement.

SECTION VI: INDEXED I-0 t«>DULE

Chapter 1. Introduction to the Indexed I-0 Module

1.1 Function •••••
1. 2. Level Characteristics.
1 .. 3 Language Concepts. • •

.

. . .
.

. .

. .

.

.

. .

IV-15
IV-18
IV-19

IV-20
IV-24
IV-28
IV-31
IV-32
IV-34

V-1
V-1
V-1

V-5
V-5
V-5
V-7

V-10
V-10
V-11
V-12
V-13
V-14
V-15
V-16

V-17
V-19
V-20
V-23
V-26
V-28
V-30
v;...32

VI-1
VI-1
VI-1

Chapter 2. Environment Division in the Indexed I-0 Module

2 .1 Input-Output Section • • •
2.1.l The FILE-CONTROL Paragraph
2. I. 2 The File Control Entry • • •
2. 1. 3 'Ihe I-0-CONTROL Paragraph.

.

Chapter 3. Data Division in the Indexed I-0 Module

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

File Section • • • • • • • • • .. • • • • •
Record Descripti.on Structure • • • • • • • • •
The File Description - Complete Entry Skeleton •
The BLOCK CONTAINS Clause. • • • • • • • • •
The DATA RECORDS Clause. • • •••
The LABEL RECORDS Clause • • • • •
The RECORD CONTAINS Clause •
The VALUE OF Clause •••

Chapter 4. Procedure Division in the Indexed I-0 Module

4.1 The CLOSE Statement. . . .
4.2 The DELETE Statement .
4.3 The OPEN Statement
4.4 The READ Statement . .
4.5 The REWRITE Statement.
4.6 The START Statement.
4.7 The USE Statement.
4.8 The WRITE Statement.

SECTION VI I: SORT -MERGE MODULE

Chapter 1. Introduction to the Sort-Merge Module

Function. • • • • • • 1.1
1.2
1.3

Level Characteristics • • • • • • • • • •
Relationship with Sequential I-0 Module •

.
.

Chapter 2. Environment Division in the Sort-Merge Module

2. 1 Input-Output Section. • • • •
2.1.1 The FILE-CONTROL Paragraph ••
2.1.2 The File Control Entry ••
2.1.3 The I-0-CONTROL Paragraph ••

Chapter 3. Data Division in the Sort-Merge Module

.

.

3.1
3.2
3.3
3.4

File Section. • • • • • • • • • • • • • • • • • • •. • • ·• • •
The Sort-Merge File Description - Complete Entry Skeleton
The DATA RECORDS Clause • • • • • • •
The RECORD CONTAINS Clause. • • • • • • • • • • • • •

Chapter 4. Procedure Division in the Sort-Merge Module

4.1
4.2
4.3
4.4

The MERGE Statement • •
The RELEASE Statement •
The RETURN Statement. •
The ~ORT Statement. • •

.

VI-5
VI-5
VI-5
VI-8

VI-11
VI-11
VI-12
VI-13
VI-14
VI-15
VI-16
VI-17

VI-18
VI-20
VI-21
VI-24
VI-28
VI-30
VI-32
VI-33

VII-1
VII-1
VII-1

VII-2
VII-2
VII-2

. VII-3

VII-5
VII-5
VII-6
VII-7

VII-8
VII-12
VII-13
VII-14

SECTION VIII: REPORT WRITER MODULE

Chapter 1. Introduction to the Report Writer Module

1.1
1.2
1.3

Function. • • • • • •
Language Concepts • • • • • • • • . • • •
Relationship with Sequential I-0 Module •

Chapter 2. Data Division in the Report Writer Module

File Section. • • • 2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14
2.15
2.16
2.17
2.18
2.19
2.20
2.21
2.22

Report Section. • • • • • • • • • • • • • • • • • •
The File Description - Complete Entry Skeleton. • •
The Report Description - Complete Entry Skeleton.
The Report Group Description - Complete Skeleton. • •
The BLOCK CONTAINS Clause • • • • • • • • • •
The CODE Clause • • • • • • • • • • • • • • • • • • •
The CODE-SET Clause • • •
The COLUMN NUMBER Clause. •
The CONTROL Clause. • • •
The Data-Name Clause. • • • •
The GROUP INDICATE Clause • •
The LABEL RECORDS Clause ••
The LINE NUMBER Clause. •
The NEXT GROUP Clause • •
The PAGE Clause • • • • • •
The RECORD CONTAINS Clause.
The REPORT Clause •
The SOURCE Clause •
The SUM Clause. •
The TYPE Clause • •
The VALUE OF Clause

Chapter 3. Procedure Division in the Report Writer Module

3.1 The GENERATE Statement. .
3.2 The INITIATE Statement.
3.3 The SUPPRESS Statement.
3.4 The TERMINATE Statement
3,5 The USE Statement

SECTION IX: SEGMENTATION MODULE

Chapter 1. Introduction to the Segmentation Module

1.1 Function. • • • • • •
1.2 Level Characteristics

Chapter 2. General Description of Segmentation

2.1· Scope •••••••••
2. 2 Organization. • • • • • • •
2.3 Segment Classification.
2.4 Segmentation Control •••

Chapter 3. Structure of Program Segments

3.1 Segment-Numbers
3.2 SEGMENT-LIMIT Clause ••

.

. .

. .

VIII-1
VIII-1
VIII-1

VIII-2
VIII-2
VIII-3
VIII-4
VIII-6
VIII-24
VIII-25
VIII-26
VIII-27
VIII-28
VIII-30
VIII-31
VIII-32
VIII-33
VIII-35
VIII-36
VIII-39
VIII-40
VIII-41
VIII-42
VIII-45
VIII-50

VIII-51
VIII-53
VIII-54
VIII-55
VIII~56

IX-1
IX-1

IX-2
IX-2
1x~3

IX-3

IX-4
IX-5

Chapter 4. Restriction on Program Flow

4.1
4.2
4.3
4.4

The ALTER Statement • •
The PERFORM Statement •
The MERGE Statement •
The SORT Statement. •

SECTION X: LIBRARY MODULE

Chapter 1. Introduction to the Library Module

1.1
1.2

Function. • • • • • •
Level Characteristics •

Chapter 2. The COPY Statement.

SECTION XI: DEBUG MODULE

Chapter 1. Introduction to the Debug Module

1.1
1.2
1. 3

Function. • . • • • • •
Level Characteristics
Language Concepts

Chapter 2. Environment Division in the Debug Module

2.1 The WITH DEBUGGING MODE Clause. •

Chapter 3. Procedure Division in the Debug Module

3.1
3.2

The USE FOR-DEBUGGING Statement •
Debugging Lines • • •

SECTION XI I: INTER-PROGRAM COMMUNICATION MODULE

Chapter 1. Introduction to the Inter-Program Communication Module

1.1 Function .••.•••
1.2 Level Characteristics •

Chapter 2. Data Division in the Inter-Program Communication Module

2.1 Linkage Section ••••

IX-6
IX-6
IX-6
IX-7

X-1
X-1

X-2

XI-1
XI-1
XI-1

XI-3

XI-4
XI-10

XII-1
XII-1

XII-2

Chapter 3. Procedure Division in the Inter-Program Communication Module

3.1 The Procedure Division Header . . .
3.2 The CALL Statement. . . . --
3.3 The CANCEL Statement.
3.4 The EXIT PROGRAM Statement.
SECTION XII I: COMMUNICATION MODULE

Chapter 1. Introduction to tpe Communication Module

L 1 Fune tion. • • • • • •
1.2 Level Characteristics • ' . _. .

. .

.
. . .
. . .

XII-4
XIT-5
XII-7
XII-8

Xi:II-1
XIII-1

Chapter 2. Data Division in the Communication Module

2.1 Communication Section • • .•••••••••••
2.2 The Communication Description - Complete Entry Skeleton

Chapter 3. Procedure Division in the Communication Module

The ACCEPT MESSAGE COUNT Statement. •
The DISABLE Statement • • • . • • • •
The ENABLE Statement .•.•.•..
The RECEIVE Statement. • •••••••

3.1
3.2
3.3
3.4
3.5 The SEND Statement • • • . • · • • • • • • • • • • • • • • • • •

SECTION XIV: APPENDIXES

Appendix A. The History of COBOL

1.1 Organization of COBOL Effort
1.2 Evolution of COBOL •.•••
1.3 Standardization of COBOL ...

Appendix B. The Revision of American National Standard COBOL

2.1
2.2
2.3

The Role of X3J4 • .
Interaction with Other COBOL Groups ••.•••
Differences Between X3.23-1968 and the Revised Standard ••

Appendix C. Concepts

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10

Features of the Language •
Record Ordering •.
Report Writer. • • . • . • • • • .
Table Handling . . • . • . •
File Organization and Access Methods •
Rerun. . • . . • • • •
Program Modularity • •
Communication Facility
Debugging .•
Library .••••.••

. ..

XIII-2
XIII-3

XIII-12
XIII-13
XIII-15
XIII-17
XIII-20

XIV-1
XIV-2
XIV-6

XIV-9
XIV-10
XIV-10

XIV-35
XIV-35
XIV-35
XIV-36
XIV-38
XIV-39
XIV-39
XIV-42
XIV-49
XIV-49

SECTION XV: INDEX. • . • . . . • . . . XV-1

Introduction

1. INTRODUCTION TO THE STANDARD

1.1 SCOPE AND PURPOSE

The scope of this standard is to specify both the form and interpretation
of programs expressed in COBOL. Its purpose is to promote a high degree of
machine independence in such programs in order to permit their use on a
variety of automatic data process1ng systems.

1.2 STRUCTURE OF LANGUAGE SPECIFICATIONS

The organization of COBOL specifications in this standard is based on a
functional processing module concept. The standard defines a Nucleus and
eleven functional processing modules: Table Handling, Sequential I-0, Relative
I-0, Indexed I-0, Sort-Merge, Report Writer, Segmentation, Library, Debug,
Inter-Program Connnunication, and Communication. Each module contains either
two or three levels. In all cases, the lower levels are proper subsets of the
higher levels within the same module. Nine modules contain a null set as their
lowest level.

This organization provides the flexibility necessary to tailor specifications
in such a way that they will satisfy the requirements of a large variety of
data processing applications. At the same time, inherent in this organization
is the ability to determine, with a greater degree of certainty than previously
possible, the elements of the standard that are included in a given compiler.

The following is a characterization of the contents of the component levels
of each module.·

The Nucleus contains lanugage elements that are necessary for internal
processing. This module is divided into two levels. The low level supplies
elements necessary to perform basic internal operations, i.e., the more ele­
mentary options of the various clauses and verbs. The high level of the
Nucleus provides more extensive and sophisticated internal processing
capabilities.

The Table Handling module contains the language elements necessary for:
(1) the definition of tables, (2) the identification, manipulation and use of
indices, and (3) reference to the items within tables. This module is
divided int.o two levels. The low level provides the ability to define fixed
length tables of up to three dimensions, and to refer to items within them
using either a subscript or an index. The high level provides for the defini­
tion of variable length tables. In addition, facilities for serial and
nonserial lookup are provided by the SEARCH verb and its attendant Data
Division clauses.

The Sequential I-0 module contains the language elements necessary for the
definition and access of sequentially organized external files. The module is
divided into two levels. The low level contains the basic facilities for the
definition and access of sequential files and for the specification of check­
points. The high level contains more complete facilities for defining and
accessing these files.

The Relative I-0 module provides the capability of defining and accessing
mass storage files in which records are identified by relative record numbers.

I-1

In troduation

Th.is module contains a null set as its lowest level, and two processing levels.
The low processing level provides basic facilities. The high level provides
more complete facilities, including the capability of accessing the file both
randomly and sequentially in the same COBOL program.

The Indexed I-0 module provides the capability of defining ~ss storage
files in which records are identified by the value of a key and accessed
through an index. This module contains a null set as its lowest level, and
two processing levels. The low processing level provides basic facilities.
The high level provides more complete facilities, including alternate keys,
and the capability of accessing the file both randomly and sequentially in
the same COBOL program.

The Sort-Merge module allows for the inclusion of one or more sorts in a
COBOL program, and consists of a null set and two processing levels. The low
processing level contains facilities sufficient to implement basic sorting,
while the high level provides extended sorting capabilities, including a merge
facility.

The Report Writer module provides for the semi-automatic production of
printed reports. This module consists of a null set and one processing level.

The Segmentation module provides for the overlaying at object time of
Procedure Division sections. This module consists of a null set and two
processing levels. The low processing level provides for section segment­
numbers and fixed segment limits. The high level adds the capability for
varying the segment limit.

The Library module consis.ts of a null set and two processing levels. It
provides for the inclusion into a program of predefined COBOL text. The low
processing level contains the basic COPY verb, to which the high level adds
the REPLACING phrase.

The Debug module provides a means by which the user can specify his
debugging algorithm -- the conditions under which data or procedure i terns are
monitored during execution of the program. It consists of a null set and two
processing levels. The low processing level provides a basic debugging
capability, including the ability to specify selective or full paragraph
monitoring. The high level provides the full COBOL debugging capability.

The Inter-Program Conununication module provides a facility by which a
program ca~ communicate with one or more other programs. This module consists
of a null set and two processing levels. The low processing level provides
a capability to transfer control to another program known at compile time,
and the ability for both programs to have access to certain conunon data items.
The high level adds the ability to transfer control to a program not identified
at compile time as well as the ability to determine the availability of
object time memory for the called program. The high level also provides the
capability for the release of memory areas occupied by called programs.

The Conununication module provides the ability to access, process and create
messages or portions thereof, and to conununicate through a Message Control
System with local and remote conununication devices. This module consists
of a null set and two processing levels. The low processing level provides

I-2

Introduction

basic facilities to send or receive complete messages. The high level provides
a more sophisticated facility including the capability to send or receive
segments of a message.

1.3 ORGANIZATION OF DOCUMENT

This document is divided into fifteen sections. The first section is com­
posed of the introduction, a list of elements by module, a list of elements
showing their disposition among the various modules, definitions, a discussion
of overall language considerations, and a composite language skeleton. Sections
II through XIII contain specifications for the Nucleus and for each of the
functional processing modules. These sections comprise the detailed specifi­
cations of American National Standard COBOL. Section XIV contains the
appendices to the document and Section XV contains the index.

The previous version of this standard contained a chapter for each level
of the Nucleus and of the functional processing modules. This revision, in
order to show more clearly the relationship of levels within a module, contains
one section for each module. In each section, specifications unique to the
high level are enclosed in boxes.

1.4 HOW TO USE THE STANDARD

It is envisioned that the standard will be examined from several different
viewpoints. In addition to the table of contents and the index, the list of
elements by module and the list of elements showing disposition are also
intended to serve as a key to the standard. To determine the contents of any
level, the list of elements by module beginning on page I-10 should be used.
This list contains a detailed breakdown of each element of American National
Standard COBOL and is organized by level. In addition, page and paragraph
numbers indicate where within the standard the specification for each element
is to be found. For example, to ascertain the contents of the low level of
Sequential 1-0, reference is made to that module within the list of elements
by module (see page I-21). There will be found a list of all COBOL elements
including overall language considerations, Environment Division and Data
Division entries and Procedure Division verbs that pertain to Sequential r~o.
Because levels are nested, in order to determine the contents of the highest
level, the entire module must be examined. To obtain more detailed informa­
tion concerning a specific element, the page and paragraph numbers that
accompany each element in the list may be used as a key to the technical
specification section of the standard.

To determine in which level or levels a specific language feature appears,
the list of elements showing disposition is used. (See pages I-40 through
I-51.) This list shows in detail all elements of American National Standard
COBOL and their occurrences within the various levels. In addition, for each
appearance of an element, the appropriate page numbers are shown. Those
elements which are not completely conta.ined within one level are shown in
sufficient detail to specify the location of each subelement. If more detailed
information is desired concerning the use of a specific element in any level,
the page numbers adjacent to each element in the list may be used as a guide
to the technical specification section of the standard. For example, to locate
where the READ statement appears within the standard, the list of elements
showing disposition is used. It will be seen that the READ statement appears
in low level of Sequential I-0, Relative I-0, and Indexed I-0. Because certain

I-3

Introduation

phrases of the READ statement appear only in the high levels of these modules,
its subelements are· listed separately. A page number appears for each appear­
ance of a subelement.

When the li.s t of elements by module is· used to determine the contents of a
level and subsequently it is desired to ascertain where else in the standard
a particular element is used, reference would be made to the list of elements
showing disposition, and from there, to the detailed technical specifications,
if necessary.

For general information regarding.overall language considerations or con­
cepts, the table of contents or index may be used as a key to 'the standard.

Finally, to determine the content of an implementation of American National
Standard COBOL, the schematic diagram on· page I-5 should be used. The schemat­
ic diagram is a graphic representation of the division of COBOL into the
various functional processing modules and the Nucleus. Further, the schematic
shows the hierarchy of levels within each functional processing module and
within the Nucleus.

1. 5 DEFINITION OF AN IMPLEMENTATION OF AMERICAN NATIONAL STANDARD COBOL

In terms of the schema.tic diagram on page I-5, an implementation of American
National Standard COBOL can be' represented by a combination of boxes, consist­
ing of one box from each of ·the twelve vertical columns. AS illustrations, and
for convenience of discourse, the following definitions are provided:

(1) The full American National Standard COBOL is composed of the highest
level of the Nucleus and of each of the functional processing modules.

(2) A subset of American Na.tional Standard COBOL is any combination of
levels of the Nucleus and of each of the functional processing modules other
than the full American National Standard COBOL.

(3) · The minimum American National Standard COBOL is composed of the lowest
level of the Nucleus and of each of the functional processing .modules. (Because
of the presence of null sets, the minimum standard consists of the low levels
of the Nucleus, Table Handling and Sequential I-0.)

An implementation is defined to meet the requirements of the American
National Standard COBOL specification if that implementation includes a fully
implemented specified level of each of the functional processing modules and
of the nucleus as defined in this standard. It follows from this that, in
order to meet the requirements of this standard, an implementation must:

(I) Not require the inclusion of substitute or additional language elements
in the source program, in order to accomplish any part of the function of any
of the standard language elements.

(2) Accept all standard language elements contained in a given level of a
module which is specified. as being included in the implementation, except as
specifically exempted by paragraph 1. 7 on page I-8.

I-4

l'IJIC?IONAL PJK>CISSIMG ll)DULIS

NUCLEUS TABLE SEQUDTW. ULATtVE mDEDD son- UPOta.' SEGMIN- LIBIAllY _ DBBUC INTEll-PROGRAH COMMUNI-
HANDLING . I-0 1...;o I-0 MERGE WRITER TUiotf OOllllJRICATION CATION

,'

2 UL 0,2 2 INX -o,2 2 Sta.' 0,2 _ 2 SIG 0,2 2 LIB 0,2 2 DEB 0,2 2 IPC 0,2 2 OOH 0,2
2 NUC 1,2 2 TBL 1,2 2 $P.Q l,2 1 RPW 0,1

1 UL 0,2 1 INX O,~ 1 Sta.' 0,2 1 SIG 0,2 l l..D 0,2 1 DD 0,2 1 IPC 0,2 1 COM 0,2

1 ..,c 1,2 1. TBL 1,2 1 sr.o 1,2 null

null null null nuil. null null null null

Introduction

These points are of particular pertinence in two areas:

(1) There are throughout the American National Standard COBOL specification
certain language elements whose syntax or effect is specified to be, in part,
implementor-defined. (See paragraph 1.6 on page I-7 for a list of these elements.)
While. the implementor specifies the constraints on that portion of each element's
syntax or rules that is indicated in this standard to be implementor-defined,
such constraints may not include any requirement for the inclusion in the source
program of substitute or additional language elements.

(2) When a function is provided outside the source program that accomplishes
a function specified by ariy particular standard COBOL element, then the imple­
mentation must not require, except for Environment Division elements,·the
specification of that external function in place of or in addition to that
standard language element.

The following qualifications apply to the American National Standard COBOL
specification:

(1) There are certain language elements which pertain to specific types of
hardware components (see paragraph 1.7 on page I-8 for a list of these elements).
In order for an implementation to meet the requirements of this standard, the
implementor must specify the minimum hardware configuration required for that
implementation and the hardware components that it supports. Further, when
support is thus claimed for a specific hardware component, all standard lan­
guage elements that pertain to that component must be implemented if the module
in which they appear is included in the implementation. Language elements that
pertain to specific hardware components for which support is not claimed, need
not be implemented. However, the absence of such elements from an implementa­
tion of American National Standard COBOL must be specified.

(2) An implementation of American National Standard COBOL may include the
ENTER statement or not, at the option of the implementor.

(3) An implementation that includes, in addition to a specified level of
each of the functional processing modules and of the Nucleus, elements or
functions that either are not defined in the American National Standard COBOL
specification or are defined in a given level of a standard module not other­
wise included in the implementation, meets the requirements of this standard.
This is true even though it may imply the extension of the list of reserved
words by the implementor, and prevent proper compilation of some programs that
meet the requirements of this standard. The implementor must specify any
optional language (language not defined in a specified level but defined else­
where in the standard) or extensions (language elements or functions not defined
in this standard) that are included in the implementation.

(4) In general, the American National Standard COBOL specification specifies
no upper limit on such things as the number of statements in a program, the
number of operands permitted in certain statements, etc. It is recognized
that these limits will vary from one implementation of American National Stan­
dard COBOL to another and may prevent the proper compilation of some programs
that meet the requirements of this standard.

I-6

(

\

Introduation

(5) For a discussion of character substitution which likewise may prevent
the proper compilation of some programs that meet the requirements of this
standard, see page I-75, paragraph 5.3.1, Character Set.

1.6 IMPLEMENTOR-DEFINED LANGUAGE SPECIFICATIONS

The language elements in the following lists depend on implementor defini­
tions to complete the specification of the syntax or rules for the elements.

The elements whose syntax is partly implementor-defined are:

Element

SOURCE-COMPUTER paragraph

OBJECT-COMPUTER paragraph

MEMORY SIZE clause

alphabet-name

SPECIAL-NAMES paragraph

ASSIGN clause

VALUE OF clause

RERUN clause

CALL and CANCEL statements

COPY statement

ENTER statement

Margin R

Area B

Qualification

Implementor-Defined Aspect

computer-name

computer-name

integer

implementor-name; whether implementor-names
are provided.

implementor-name

implementor-name

implementor-name; whether implementor-names
are provided.

implementor-name and the form; the
implementor provides at least one
of seven specified forms.

relationship between operand and the
referenced program.

relationship between library-name,
text-name, and the library.

language-name

The location.

The number of character positions.

The number of qualifiers; at least five
levels must be supported.

The elements whose effect is partly implementor-defined are:

Element

alphabet-name

implementor-name switches

USAGE IS COMPUTATIONAL
clause

Implementor-Defined Aspect

The correspondence between native and
foreign character sets.

Whether setting can change during
execution.

Representation and whether automatic
alignment occurs.

I-7

Introduction

Element

USAGE IS INDEX clause

SYNCHRONIZED clause

ACCEPT statement

DISPLAY statement

Numeric test

Comparison of nonnumeric
items

Arithmetic expressions

Implementor-Defined Aspect

Representation and whether automatic
alignment occurs.

Whether implicit FILLER positions are
generated; their effect on the size of
group items and redefining items.

Maximum size of one transfer of data in
Level 1 Nucleus.

Maximum size of one transfer of data in
Level 1 Nucleus.

Representation of valid sign in the
absence of the SIGN IS SEPARATE clause.

Collating sequence, where NATIVE or imple­
mentor-name collating sequence is ,
implicitly or explicitly specified.

Number of places carried for intermediate
results.

1.7 ELEMENTS THAT PERTAIN TO SPECIFIC HARDWARE COMPONENTS

The standard language elements in the list that follows pertain to specific
types of hardware components. These language elements must be implemented in
an implementation of American National Standard COBOL when support is claimed,
by the implementor, for the specific types of hardware components to which
they pertain, and the module in which they are defined is included in that
implementation.

Element

CODE-SET clause

MULTIPLE FILE TAPE clause

CLOSE ••• REEL/UNIT statement

CLOSE ••• NO REWIND statement

OPEN ••• REVERSED statement

OPEN .•• NO REWIND statement

OPEN ••• I-0 statement
(Sequential I-0 only)

OPEN EXTEND statement

REWRITE statement
(Sequential I-0 only)

SEND ••• BEFORE/AFTER
ADVANCING statement

Hardware Component

Device capable of supporting the specified
code.

Reel

Reel or mass storage

Reel or mass storage

Reel with the capability of making records
available in the reversed order; mass
storage with the capability of making
records available in the reversed order.

Reel or mass storage

Mass storage

R~el or mass storage

Mass storage

Devices capable of vertical positioning;
devices capable of action based on
mnemonic-names.

I-8

/
\

Element

USE ••• I-0 (Sequential
I-0 only)

WRITE ••• BEFORE/AFTER
ADVANCING

1.8 SHORTHAND NOTATION

Introduation

Hardware Component

Mass storage

Devices capable of vertical positioning;
devices capable of action based on
mnemonic-name.

Within the schematic diagram on page I-5, the list of elements by module on
pages I-10 through I-39, and the list of elements showing disposition on pages
1-40 through I-51, a shorthand notation has been adopted to indicate the hier­
archical position of any level within the Nucleus or a functional processing
module as well as the number of levels into which a module has been divided.
This code is composed of, from left to right, a one-digit number indicating
the level's position in the hierarchy, a three-character mnemonic name, and
a two-digit number indicating the minimum and maximum levels of the module
to which the level belongs. A level number of zero indicates a null level.
For example, 2 NUC 1,2 indicates that this level is the second level of the
Nucleus and that the Nucleus is composed of two levels, neither one of which
is a null set. As a further example, 2 SRT 0,2 indicates that this level is
the second non-null level of the Sort-Merge module which contains three
levels, the lowest of which is a null level.

The mnemonic names that are used in these codes are the following:

Mnemonic Name Meaning

NUC Nucleus
TBL Table Handling
SEQ Sequential I-0
REL Relative I-0
INX Indexed I-0
SRT Sort-Merge
RPW Report Writer
SEG Segmentation
LIB Library·
DEB Debug
!PC Inter-Program Communication
COM Communication

I-9

List of Elements by Module

2. LIST OF ELEMENTS BY MODULE

2. 1 GENERAL DESCRIPTION

This chapter contains a list of all elements in the American National
Standard COBOL organized by the level in which each element is located.
Adjacent to each element is a text reference. This reference indicates the
page number and the paragraph number of the detailed specification describing
the particular element.

I-10

List of E'lements by Modu 'le

NUCLEUS, LEVEL 1 (1 NUC 1,2)

ELEMENTS

Language Concepts ••••••
Characters used for words •

o, 1, •.• ' 9
A, B, ••• , Z
- (hyphen or minus)

Characters used for punctuation
" quotation mark

.
(left parenthesis
) right parenthesis

period
space

= equal sign
Characters used in

B space
editing. • • • • • • • • • • • • •

0 zero
+ plus

minus
CR credit
DB debit
z
*
$

zero suppress
check protect
currency sign
comma
period

I stroke
Separators •••••••••••••••

The separators, semicolon and comma,
allowed ••

Character-strings • • • • • • • • •
COBOL words. • • • • • • • • •

Not more than 30 characters
User-defined words ••

data-name

are not

Must begin with an alphabetic character •
Must be unique; may not be qualified. • •

level-number
mnemonic-name
paragraph-name
program-name
routine-name
section-name

System-names • •
computer-name
implementor-name
language-name

Reserved words •••
Key words
Optional words

.

I-11

PAGE
NUMBER

I-75
I-76

I-65

I-58

I-75

II-1
I-76
I-76

I-76

II-1
II-l

I-78

I-79·

PARAGRAPH
NUMBER

5.3
5.3.2.2.1

4.2

4.2

5.3.2.1

1.3.1
5.3.2.2
5.3.2.2.1

5.3.2.2.1.1

1. 3.2
1. 3. 2

5.3.2.2.1.2

5.3.2.2.1.3

List of Elements by Module

NUCLEUS, lEVEL 1 (1 NUC 1,2)

ELEMENTS

Reserved words (continued)

PAGE
NUMBER

Figurative constants • •
ZERO

. I-80

SPACE
HIGH-VALUE
LOW-VALUE
QUOTE

Special-character words.
Literals • • • • • • • ~ • • •

Nonnumeric literals have lengths from 1
through 120 characters

• • I-80
•• I-80

Numeric literals have lengths from l through
18 digits

PICTURE character-strings •••
Comment-entries •••••••

• I-82
I-82

• I-105
• • • I-106

Reference format •
Sequence number •
Area A. • • • • • • • .•• I-105

Division header.
Section header • •
Paragraph header • • • • • •
Data Division entries ••••••

Area B ••••••••••
Paragraphs • • • • • •
Data Division entries.

Continuation of lines • •
Only nonnumeric literals may be continued.

Comment lines • • • • • . • • • • • • • • • •
Asterisk (*) comment line
Stroke (/) comment line

Identification Division.
The PROGRAM-ID paragraph.
The AUTHOR paragraph. • •
The INSTALLATION paragraph.
The DATE-WRITTEN paragraph.
The SECURITY paragraph. •

Environment Division • • • • • • •
The SOURCE-COMPUTER paragraph •

computer-name
The OBJECT-COMPUTER paragraph •

computer-name
MEMORY SIZE clause
PROGRAM COLLATING SEQUENCE claus-e

• • • • I-106
• • • I-106

. I-107
• I-107

I-105
• I-107

•• I-107
• • • • • I-106

..• II-1
• I-108

• I-94
. II-3

•. II-2
• II-2

.• II-2

.• II-2

•.• I-95
• • • II-5

.. II-6

The SPECIAL-NAMES paragraph • • • • • • • • • • • II-8
implementor-name IS mnemonic-name
implementor-name IS mnemonic-name series
ON STATUS
OFF STATUS

I-12

PARAGRAPH
NUMBER

5.3.2.2.1.3.5

5.3.2.2.1.3.6
5.3.2.2.2

5.3.2.2.3
5.3.2.2.4

5.8
5.8.2.1
5.8.2
5.8.3.1
5.8.3.2
5.8.3.3
5.8.4
5.8.2
5.8.3.3
5.8.4
5.8.2.2
1. 3.4
5.8.6

5.4
2.3
2.2.1.l
2.2.1.1
2.2.1.1
2.2.1.1

5.5
3. L l

3.1.2

3.1.3

(

List of E"lements by Module

NUCLEUS , LEVEl 1 (1 NUC 1, 2)

ELEMENTS

The SPECIAL-NAMES paragraph (continued)
alphabet-name clause
CURRENCY SIGN clause
DECIMAL-POINT clause

PAGE
NUMBER

• I-97
. II-11

Data Division. • • • • • •
Working-Storage Section
The data description entry.
The BLANK WHEN ZERO clause.

• • • • • • II-12

The data-name or FILLER clause. • • • • • • • •
The JUSTIFIED clause (may be abbreviated JUST).
Level-number. • • • • • • • • • • • • • • • • • ~

01 through 10 (level numbers must be 2 digits)
7 7 •

The PICTURE clause (may be abbreviated PIC) • •
Character-string may contain 30 characters •
Data characters: A X 9
Operational symbols: S V P ••••
Fixed insertion characters • . • • •

• II-14
•• II-15

• II-16
. II-17
. II-13

• • II-11
•• II-18
•• II-18

II-18
• II-21
. II-21

0 (may be used only in edited items)

B (may be used only in edited items)

$
+ and -
DB and CR
I

(currency sign)
(right or left)

Replacement or floating characters • • • • • • • • • II-21
$ (currency sign)
+ and -
z
*

Currency sign substitution • • • • • •
Decimal point substitution • • • • • •

The REDEFINES clause (may not be nested).
The SIGN clause • • ~ • • • • • • • • • • •
The SYNCHRONIZED clause (may be abbreviated
The USAGE clause. • • • • • • • • • • • • •

COMPUTATIONAL (may be abbreviated COMP)
DISPLAY

The VALUE clause.
literal

Procedure Division • • • • • •
Conditional expressions • •

Simple condition • • •
Relation condition. • •

Relational opera~ors
[NOT] GREATER THAN
{NOT] LESS THAN
{NOT] EQUAL TO

I-13

. . . . II-21
II-21

. II-27 . . II-31
SYNC) . . . II-33 II-35

• • • • • • II~36

• 1-99
• • II-41

. II-41
. • II-41

PARAGRAPH
NUMBER

5.6
4.1
4.2
4.3
4.4
4.5
4.6
4.2.3
4.1. l
4.7
4.7.3
4.7.4
4.7.5
4.7.5

4.7.5

4.7.5
4.7.5
4.8
4.10
4 .11
4.12

4.13

5.7
5.2
5.2.1
5.2.L.l

List of Elements by Module

NUCLEUS, LEVEL 1 (1 NUC 1,2)

ELEMENTS

Relation condition (continued)
Comparison of numeric operands ••
Comparison of nonnumeric operands

must be of equal size) •
Class condition. • • • • .

NOT option
Switch-status condition. •

The arithmetic statements •••
Arithmetic operands limited to 18 digits

Overlapping operands • • •

(operands

The ACCEPT statement (only one transfer of data) •
The ADD statement •••••••••••••

identifier/literal series
TO identifier
GIVING identifier
ROUNDED phrase
SIZE ERROR phrase

The ALTER statement (only one procedure-name) •••••
The DISPLAY statement (only one transfer of data).
The DIVIDE statement • • • • • • • • • • • • • • •

INTO identifier
BY identifier/literal
GIVING identifier
ROUNDED phrase
SIZE ERROR phrase

The ENTER statement •••••••••••••••
The EXIT statement • • • • • • • • • • • • • • •
The GO TO statement (procedure-name is required)

DEPENDING ON phrase
The IF statement (statements must be imperative) •

ELSE phrase
The INSPECT statement (only single character data

item) . . . •- . . .
TALLYING phrase

ALL
LEADING
CHARACTERS

REPLACING phrase
ALL
LEADING
FIRST
CHARACTERS

TALLYING and REPLACING phrases
The MOVE statement • • • • • • • •

TO identifier
identifier series

The MULTIPLY statement
BY identifier
GIVING identifier
ROUNDED phrase
SIZE ERROR phrase

.

I-14

PAGE
NUMBER

II-42

II-42
II-43

II-44
II-51

II-51
II-53
II-55

II-57
II-59
II-61

II-63
II-64
II-65

II-66

II-68

II-74

II-77

PARAGRAPH
NUMBER

5.2.1.1.1

5.2.1.1.2
5.2.1.2

5.2.1.4
5.3.4

5.3.5
5.4
5.5

5.6
5.8
5.9

5.10
5.11
5.12

5.13

5·.14

5.15

5.16

List of Elements by Module

NUCLEUS, LEVEL 1 (1 NUC 1,2)

ELEMENTS

The PERFORM statement
procedure-name
THRU phrase
TIMES phrase

The STOP statement. • • • • • • • • • • • • • • • • •
literal
RUN

The SUBTRACT statement. • • • • • • • • • • • • • • •
identifier/literal series
FROM identifier
GIVING identifier
ROUNDED phrase
SIZE ERROR phrase

1-15

PAGE PARAGRAPH
NUMBER NUMBER

II-78 5.17

II-85 5.18

II-89 5.20

List of Elements by Module

NUCLEUS, LEVEL 2 (2 NUC 1,2)
PAGE PARAGRAPH

ELEMENTS

All elements of 1 NUC 1,2 are a part of 2 NUC 1,2

Language Concepts. • • • . • •
Characters used for punctuation • .

comma
; semicolon

NUMBER

. I-75

. I-65

NUMBER

5.3
4.2

Characters used for arithmetic operations ••••... I-52 4.2
+ addition

sul;>traction
* multiplication
I division
** exponentiation

Characters used in relations ••.••....•••.• I-66 4.2
equal to

> greater than
< less than

Separators. . . • . • • . . . • •.••. I-75
The separators, semicolon and comma, are allowed .• II-1

Character-strings • • • . • .• I-76
COBOL words. • • • • • • • • • • . • I-76

User-defined words. . .•.• I-76
condition-name
data-name

Need not begin with an alphabetic
character •.•••...• . . . II-1

May be qualified if necessary for
uniqueness • • .

Reserved words •....
Figurative constants

ZEROS; ZEROES
SPACES
HIGH-VALUES
LOW-VALUES
QUOTES
ALL literal

. } . .
II-1

• I-79
I-80

Connectives ••••.••••••••••••• I-79
Qualifier connectives: OF, IN
Series connectives: , (separator comma)

and ; (separator semicolon)
Logical connectives: AND, OR, AND NOT,

OR NOT
Qualification •

Reference format •
Continuation of lines (continuation of words and

I-87

• I-105

numeric 1i terals is allowed) • • • • • • • • • • II-1

Identification Division. • • • •
The DATE-COMPILED paragraph •

I-16

• I-94
.... II-4

5.3.2.1
1. 3.1
5.3.2.2
5.3.2.2.1
5.3.2.2.1.1

1. 3.2

1.3.2
5.3.2.2.1.3
5.3.2.2.1.3.5

5.3.2.2.1.3.3

5.3.3.8.1

5.8

1.3.4

5.4
2.4

List of Elements by Module

NUCLEUS, LEVEL 2 (2 NUC 1,2)

ELEMENTS

Environment Division
The SPECIAL-NAMES paragraph.

alphabet-name clause
literal

Data Division • •
The data description entry
Level-number • • • • • • • • • • •

01 through 49 (level-numbers may be 1 or 2 digits)
66
88

The REDEFINES clause (may be nested) • • • • • •
The RENAMES clause (may be nested) • • • • • • •

data-name
data-name THRU data-name

The VALUE clause • • • • • • • • • • • • • • • • • • •
literal-I, literal-2, •••
literal-! THRU literal-2
literal range series

Procedure Division. • • • • •
Arithmetic expressions • •
Conditional expressions ••••••

Simple condition. • •
Relational condition

Relational operators
[NOT] =
[NOT] >
[NOT] <

Comparison of nonnumeric operands (operands
of unequal size are allowed) • • • •

Condition-name condition • • • • • •
Sign condition •

NOT option
Complex condition

Logical operators AND, OR, and NOT
Negated simple condition •
Combined and negated combined conditions •

Abbreviated combined relation condition • • • • • •
Multiple results in arithmetic statements •••••••
The ACCEPT statement (no restrictions on the number

of transfers of data). • • •••
FROM phrase

The ADD statement •••••••
TO identifier series
GIVING identifier series
CORRESPONDING phrase

The ALTER statement •••••
The series option is allowed

I-17

PAGE
NUMBER

II-8

I-97
II-12
II-17

II-27
II-29

II-36

I-99
II-39
II-41
II-41
II-41

II-42
II-44
II-44

II-45

II-45
II-46
II-47
II-51

II-53

II-55

II-57 .

PARAGRAPH
NUMBER

3.1. 3

5.6
4.2
4.6

4.8
4.9

4.13

5.7
5.1
5.2
5.2.1
5.2.1.1

5.2.1.1.2
5.2.1.3
5.2.1.5

5.2.2

5-. 2. 2. 1
5.2.2.2
5.2.3
5.3.6

5.4

5.5

5.6

List of Elements by Module

NUCLEUS, LEVEL 2 (2 NUC 1,2)

ELEMENTS

The COMPUTE statement. • • • • . • • • • • • • • • • •
identifier series
ROUNDED phrase
SIZE ERROR phrase

The DISPLAY statement (no restrictions on the number
of transfers of data). • • ••

UPON phrase
The DIVIDE statement • • • • • • • • •

INTO identifier series
GIVING identifier series
REMAINDER phrase

The GO TO statement (procedure-name may be omitted) ••
The IF statement (nested statements) • . • • • • •
The INSPECT statement (multi-character data items)

series
The MOVE statement • • • •

CORRESPONDING phrase
The MULTIPLY statement • •

BY identifier series
GIVING identifier series

The PERFORM statement.
UNTIL phrase
VARYING phrase

The STRING statement • • • • • • • • • • • • • • • • •
DELIMITED series
POINTER phrase
ON OVERFLOW phrase

The SUBTRACT statement
FROM identifier series
GIVING identifier series
CORRESPONDING phrase

The UNSTRING statement
DELIMITED BY phrase
POINTER phrase
TALLYING phrase
ON OVERFLOW phrase

I-18

PAGE
NUMBER

II-58

II-59

II-61

II-65
II-66
II-68

II-74

II-77

II-78

II-86

II-89

II-91

PARAGRAPH
NUMBER

5.7

5.8

5.9

5.12
5.13
5.14

5.15

5.16

5.17

5 .19

5.20

5.21

TABLE HANDLING, LEVEL 1 (1 TBL 1,2}

ELEMENTS

Language Concepts
User-defined words

index-name
Subscripting - 3 levels.
Indexing - 3 levels ••••

Data Division
The OCCURS clause. • • •

integer TIMES
INDEXED BY index-name series

The USAGE IS INDEX clause. • • •

Procedure Division
Relation conditions.

Comparisons involving index-names and/or
index data items

Overlapping operands • • . . • •
The SET statement ••..••••

index-name/identifier series
index-name
UP BY identifier/integer
DOWN BY identifier/integer
index-name series

I-19

.

List of Elements by Module

. . .

PAGE
NUMBER

I-76

I-89
I-89

III-2

III-5

III-6

III-6
III-11

PARAGRAPH
NUMBER

5.3.2.2.1.1

5.3.3.8.2
5.3.3.8.3

2.1

2.2

3.1

3.2
3.4

List of Elements by Module

TABLE HANDLING, LEVEL 2 (2 TBL 1,2)

ELEMENTS

All elements of 1 TBL 1,2 are a part of 2 TBL 1,2

Data Division
The OCCURS clause. • • • • • • • • • •

integer-! TO integer-2 DEPENDING ON data-name
ASCENDING/DESCENDING data-name

data-name series
ASCENDING/DESCENDING series

Procedure Division

PAGE PARAGRAPH
NUMBER NUMBER

III-2 2.1

The SEARCH statement • • • • • • . • • • • • • • • • • III-7 3.3
VARYING phrase
AT END phrase
WHEN phrase

The SEARCH ALL statement • • • • • • • • • • • • • • • III-7 3.3
AT END phrase
WHEN phrase

I-20

List of Elements by Module

SEQUENTIAL 1-0, LEVEL 1 (1 SEQ 1,2)

ELEMENTS

Language Concepts
User-defined words

file-name
record-name

I-0 status • •

Environment Division
The FILE-CONTROL paragraph •
The file control entry • •

SELECT clause
ASSIGN TO implementor-name clause
ORGANIZATION IS SEQUENTIAL clause
ACCESS MODE IS SEQUENTIAL clause
FILE STATUS clause

The I-0-CONTROL paragraph. • • • • •
RERUN clause
SAME AREA clause
SAME AREA series

Data Division
File Section • • • • • • • • •
The file description entry • • •
The record description entry
The BLOCK CONTAINS clause •••

integer CHARACTERS
integer RECORDS

The CODE-SET clause ••
The DATA RECORDS clause ••

data-name
data-name series

The LABEL RECORDS clause
STANDARD
OMITTED

The RECORD CONTAINS clause • • • . • •
integer-I TO integer-2 CHARACTERS

The VALUE OF clause ••••••
·implementor-name IS literal
implementor-name IS literal series

Procedure Division
The CLOSE statement (only a single file-name may

appear in a CLOSE statement) •••••••
REEL
UNIT

The OPEN statement (only a single file-name may
appear in an OPEN statement) •••••••

INPUT
OUTPUT
I-0

I-21

PAGE PARAGRAPH
NUMBER NUMBER

I-76

IV-1

IV-4
IV-4

IV-6

IV-9
IV-10
IV-9
IV-11

IV-12
IV-13

IV-14

IV-18

IV-19

IV-20

IV-24

5.3.2.2.1.1

1. 3.4

2.1.1
2.1.2

2.1. 3

3.1
3.3
3.2
3.4

3.5
3.6

3.7

3.9

3.10

4.1

4.2

List of Elements by Module

SEQUENTIAL I-0, LEVEL 1 (1 SEQ 1,2)

ELEMENTS

The READ statement •••••••••••••••.•••
INTO identifier
AT END phrase

The REWRITE statement .
FROM identifier

The USE statement . • . • • •
EXCEPTION/ERROR PROCEDURE

ON file-name
ON INPUT
ON OUTPUT
ON I-0

The WRITE statement
FROM identifier
BEFORE/AFTER integer LINES
BEFORE/AFTER PAGE

I-22

PAGE PARAGRAPH
NUMBER NUMBER

IV-28 4.3

IV-31 4.4

IV-32 4.5

IV-34 4.6

List of Elements by Module

SEQUENTIAL I-0, LEVEL 2 {2 SEQ 1,2)

ELEMENTS

All elements of 1 SEQ 1,2 are a part of 2 SEQ 1,2

Language Concepts
Special register •

LINAGE-COUNTER. •

Environment Division
The FILE-CONTROL paragraph .
The file control entry • • •

SELECT clause
OPTIONAL phrase

RESERVE integer AREA(S) clause
The I-0-CONTROL paragraph • • • • • • • • • . . • • • •

SAME RECORD AREA clause
SAME RECORD AREA series
MULTIPLE FILE TAPE clause

Data Division
The file description entry • • • •
The BLOCK CONTAINS clause. • • • • •

integer-I TO integer-2 RECORDS
integer-1 TO integer-2 CHARACTERS

. .

The LINAGE clause. • • • • • • • • • • • • • • • • • •
FOOTING phrase
TOP phrase
BOTTOM phrase

The VALUE OF clause. • • • • • • • • • . • • • • • • •
implementor-name IS data-name
implementor-name IS data-name series

Procedure Division
The CLOSE statement. • • • • •

NO REWIND, REMOVAL, or LOCK
file-name series

The OPEN statement
INPUT

REVERSED
NO REWIND

OUTPur
NO REWIND

EXTEND
file-name series
INPUT, OUTPUT, I-0, and EXTEND series

The USE statement. • • • • • . • • • • • •
EXCEPTION/ERROR PROCEDURE ON file-name series
EXCEPTION/ERROR PROCEDURE ON EXTEND

The WRITE statement. • • • • • • • • • • • • . •
BEFORE/AFTER identifier LINES
BEFORE/AFTER mnemonic-name
AT END-OF-PAGE imperative-statement

I-23

PAGE PARAGRAPH
NUMBER NUMBER

I-80
IV-3

IV-4
IV-4

IV-6

IV-10
IV-11

IV-15

IV-19

IV-20

IV-24

IV-32

IV-34

5.3.2.2.1.3.4
1. 3 .6

2.1.1
2.1.2

2.1. 3

3.3
3.4

3.8

3.10

4.1

4.2

4.5

4.6

List of Elements by Module

RELATIVE I-0, LEVEL 1 {1 REL 0,2)

ELEMENTS

Language Concepts
User-defined words.

file-name
record-name

I-0 status ••••
Environment Division

The FILE-CONTROL paragraph ••
The file control entry. • •

SELECT clause
ASSIGN TO implementor-name clause
ORGANIZATION IS RELATIVE clause
ACCESS MODE clause

SEQUENTIAL
RANDOM

FILE STATUS clause
The I-0-CONTROL paragraph

RERUN clause
SAME AREA clause
SAME AREA series

Data Division
File Section. • • • • • • • • •
The file description entry •••••••
The record description entry.
The BLOCK CONTAINS clause

integer CHARACTERS
integer RECORDS

The DATA RECORDS clause • • • • • • • • • • • • • • •
data-name
data-name series

The LABEL RECORDS clause. • • • • • • • • • • • • • •
STANDARD
OMITrED

The RECORD CONTAINS clause. • • • • • •
integer-1 TO integer-2 CHARACTERS

The VALUE OF clause • • • • • • • • •
implementor-name IS literal
implementor-name IS literal series

Procedure Division
The CLOSE statement

WITH· LOCK
file-name series

The DELETE statement.
INVALID KEY phrase

The OPEN statement. • •••
INPUT
OUTPUT
I-0

.

I-24

PAGE PARAGRAPH
NUMBER NUMBER

I-76

V-2

V-5
V-5

V-7

V-10
V-11
V-10
V-12

V-13

V-14

V-15

V-16

V-17

V-19

V-20

5.3.2.2.1.1

1.3.4

2.1.1
2 .1. 2

2.1.3

3.1
3.3
3.2
3.4

3.5

3.6

3. 7

3.8

4.1

4.2

4.3

List of Elements by Module

RELATIVE I-0, LEVEL 1 (1 REL 0,2)
PAGE PARAGRAPH

ELEMENTS NUMBER NUMBER

The OPEN statement (continued)
file-name series
INPUT, OUTPUT, and I-0 series

The READ statement. . • . • . • . • . • • • • • • • • V-23 4.4
INTO identifier
AT END phrase
INVALID KEY phrase

The REWRITE statement • . • • • . • • • • • • • • • • V-26 4. 5
FROM identifier
INVALID KEY phrase

The USE statement • • • • • •
EXCEPTION/ERROR PROCEDURE

ON file-name
ON INPUT
ON OUTPUT
ON I-0

The WRITE statement •
FROM identifier
INVALID KEY phrase

.

I-25

V-30 4.7

V-32 4.8

List of Elements by Module

RELATIVE I-0, LEVEL 2 (2 REL 0,2)
PAGE PARAGRAPH

ELEMENTS NUMBER NUMBER

All elements of 1 REL 0, 2 are a part of 2 REL 0.,2

Environment Division
The FILE-CONTROL paragraph. • • • • •
The file control entry. • •

SELECT clause
RESERVE integer AREA(S) clause
ACCESS MODE IS DYNAMIC clause

•• V-5
• • • V-5

The I-0-CONTROL paragraph •
SAME RECORD AREA

• • • • • • • • • • • V-7

SAME RECORD AREA series

Data Division
The file description entry.
The BLOCK CONTAINS clause •

integer-1 TO integer-2 RECORDS
integer-1 TO integer-2 CHARACTERS

The VALUE OF clause • • • • • • •
implementor-name IS data-name
implementor-name IS data-name series

Procedure Division
The READ statement.

NEXT RECORD

V-11
V-12

• • • • • • V-16

• V-23

2.1.1
2.1. 2

2.1. 3

3.3
3.4

3.8

4.4

The START statement • V-28 4.6
KEY IS phrase
INVALID KEY phrase

The USE statement • • • • • • • • • • • • • • • • • • • V-30 4. 7
EXCEPTION/ERROR PROCEDURE

ON file-name series

t-26

List of Elements by Module

INDEXED I-0, LEVEL 1 (1 INX 0,2)

ELEMENTS

Language Concepts
User-defined words.

file-name
record-name

I-0 status ••••

Environment Division
The FILE-CONTROL paragraph ••
The file control entry •••••••

SELECT clause
ASSIGN TO implementor-name clause
ORGANIZATION IS INDEXED clause
ACCESS MODE clause

SEQUENTIAL
RANDOM

RECORD KEY clause
FILE STATUS clause

The I-0-CONTROL paragraph
RERUN clause
SAME AREA clause
SAME AREA series

Data Division
File Section. • • • • • • • ••
The file description entry ••
The record description entry ••
The BLOCK CONTAINS clause

integer CHARACTERS
integer RECORDS

The DATA RECORDS clause • • • • • • • • • • • • • • •
data-name
data-name series

The LABEL RECORDS clause •••••••••••••••
STANDARD
OMITTED

The RECORD CONTAINS clause •••••••.•••
integer-I TO integer-2 CHARACTERS

The VALUE OF clause • • • • • • • • •
implementor-name IS literal
implementor-name IS literal series

Procedure Division
The CLOSE statement

WITH LOCK
file-name series

The DELETE statement.
INVALID KEY phrase

The OPEN statement ••
INPUT
OUTPUT
I-0

• • • • • e- •. , • • • •

1~21

PAGE PARAGRAPH
NUMBER NUMBER

I-76 5.3.2.2.1.1

VI-2 1. 3.4

VI-5 2 .1.1
VI-5 2.1.2

VI-8 2 .1. 3

VI-11 3.1
VI-12 3.3
VI-11 3.2
VI-13 3.4

VI-14 3.5

VI-15 3.6

VI-16 3.7

VI-17 3.8

VI-18 4.1

VI-20 4.2

VI-21 4.3

List of Elements by ModulB

INDEXED I-0, LEVEL 1 (1 INX 0,2)

ELEMENTS

The OPEN statement (con-tinued)
file-name series
INPUT, OUTPUT, and I-0 series

The READ statement. •
INTO identifier
AT END phrase
INVALID KEY phrase

. -· . .

The REWRITE statement • • • • • • • • • • • • • • • •
FROM identifier
INVALID KEY phrase

The USE statement • • • • • •
EXCEPTION/ERROR PROCEDURE

ON file-name
ON INPUT
ON OUTPur
ON I-0

The WRITE statement •
FROM identifier
INVALID KEY phrase

.

I-28

PAGE PARAGRAPH
NUMBER NUMBER

VI-24 4.4

VI-28 4.5

VI-32 4.7

VI-33 4.8

INDEXED 1-0, LEVEL 2 {2 INX 0,2)

ELEMENTS

All elements of 1 INX 0,2 are a part of 2 INX 0,2

Environment Division
The FILE-CONTROL paragraph •
The file control entry • • • • • • • • •

SELECT clause
RESERVE integer AREA(S) clause
ACCESS MODE IS DYNAMIC clause
ALTERNATE RECORD KEY clause

WITH DUPLICATES phrase
The I-0-CONTROL paragraph.

SAME RECORD clause
SAME RECORD AREA series

Data Division
The file description entry • • • • •
The BLOCK CONTAINS clause. • • • • •

integer-I TO integer-2 RECORDS
integer-I TO integer-2 CHARACTERS

The VALUE OF clause •••••••
implementor-name IS data-name
implementor-name IS data-name series

Procedure Division
The READ statement

KEY IS phrase
NEXT RECORD

List of Elements by Module

PAGE PARAGRAPH
NUMBER NUMBER

VI-5
VI-5

VI-8

VI-12
VI-13

VI-17

VI-24

2.1.1
2.1. 2

2.1. 3

3.3
3.4

3.8

4.4

The START s ta temen t • • • • • • • • • • • • • • • • • • VI-30 4.6
· KEY IS phrase

INVALID KEY phrase
The USE statement •••

EXCEPTION/ERROR PROCEDURE
ON file-name series

VI-32 4.7

List of Elements by Module

SORT-MERGE, LEVEL 1 (1 SRT 0,2)

ELEMENTS

Language Concepts
User-defined words.

file-name

Environment Division
The FILE-CONTROL paragraph. • •
The file control entry •••••

SELECT clause
ASSIGN TO implementor-name clause

Data Division
File Section.
The sort-merge file description entry •
The DATA RECORDS clause • • • • • • •
The RECORD CONTAINS clause •••••••

Procedure Division
The RELEASE statement •

FROM phrase
The RETURN statement ••

INTO phrase
AT END phrase

The SORT statement (only one SORT statement, a STOP
RUN statement, and any associated input-output
procedures allowed in the nondeclarative
portion of a program) • • • • • • • • • • • • • •

KEY data-name
data-name series

ASCENDING series
DESCENDING series
mixed ASCENDING/DESCENDING
INPUT PROCEDURE phrase

THRU
USING phrase
OUTPUT PROCEDURE phrase

THRU
GIVING phrase

I-30

PAGE
NUMBER

I-76

VII-2
VII-2

VII-5
VII-5
VII-6
VII-7

VII-12

VII-13

VII-14

PARAGRAPH
NUMBER

5.3.2.2.1.1

2 .1.1
2.1.2

3.1
3.2
3 .• 3
3.4

4.2

4.3

4.4

SORT-MERGE, LEVEL 2 (2 SRT 0,2)

ELEMENTS

All elements of 1 SRT 0,2 are a part of 2 SRT 0,2

Environment Division
The FILE-CONTROL paragraph .••••
The file control entry ••

SELECT clause
The I-0-CONTROL paragraph •

SAME RECORD AREA clause
SAME SORT/SORT-MERGE AREA clause
SAME series

Procedure Division

List of Elements by Module

PAGE PARAGRAPH
NUMBER NUMBER

• • • • • VII-2
. • VII-2

• VII-3

2 .1.1
2 .1. 2

2 .1. 3

The MERGE statement
KEY data-name

. VII-8 4.1

data-name series
ASCENDING series
DESCENDING series
mixed ASCENDING/DESCENDING
COLLATING SEQUENCE phrase
USING phrase
OUTPUT PROCEDURE phrase

THRU
GIVING phrase

The SORT statement (multiple SORT statements are
permitted). • • • • • • . ••••••.••• VII-14 4.4

COLLATING SEQUENCE phrase

I-31

List of Elements by Module

REPORT WRITER, LEVEL 1 (1 RPW 0, 1)
PAGE PARAGRAPH

ELEMENTS NUMBER NUMBER

Language Concept
User-defined words. . • • • • • • • • • . • • • • • • • I-76 5. 3. 2. 2. 1. 1

file-name
report-name

Special registers •
LINE-COUNTER .
PAGE-COUNTER •

Data Division
Report Section. • • • • • • • •
The file description entry ••••
The report description entry ••
The report group description entry ••
The BLOCK CONTAINS clause
The CODE clause . • . • . •
The CODE-SET clause . • •
The COLUMN NUMBER clause.
The CONTROL clause.

data-name
data-name series
FINAL
FINAL data-name series

-The data-name clause. • . . • • •
The GROUP INDICATE clause .
The LABEL RECORDS clause.
The LINE NUMBER clause •.

integer
NEXT PAGE

PLUS integer

• I-80
• VIII..;.1

• • VIII-1

VIII-2
• VIII-3
• VIII-4
• VIII--6

• • • • VIII-24
• VIII-25

• • VIII-26
. . • • • VIII-27

• VIII-28

. • VIII-30
• VIII-31
• VIII-32
• VIII-33

5.3.2.2.1.3.4
1.2 .1
1.2 .2

2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10

2 .11
2 .12
2.13
2 .14

The NEXT GROUP clause . • • • • • • • • • • • • . . • • VIII-35 2. 15
integer
PLUS integer
NEXT PAGE

The PAGE clause ••..•••••••••••••••• VIII-36 2.16
integer LINES
HEADING
FIRST DETAIL
LAST DETAIL
FOOTING

The PICTURE clause.
The RECORD CONTAINS clause.
The REPORT clause . . .

report-name series
The SOURCE clause . .
The SUM clause.

UPON data-name series
RESET phrase

. .

. .

.
. . .

. . .

. II-18 4.7 VIII-39 2.17 . . . VIII-40 2.18

.- . VIII-41 2.19 VIII-42 2.20

The TYPE clause •••••••••••••••••••• VIII-45 2.21
REPORT HEADING {RB)
PAGE HEADING (PH)
CONTROL HEADING {CH)

I-32

REPORT WRITER, LEVEL 1 (1 RPW 0,1)

ELEMENTS

The TYPE clause (continued)
DETAIL (DE)
CONTROL FOOTING (CF)
PAGE FOOTING (PF)
REPORT FOOTING (RF)

The VALUE IS clause.
The VALUE OF clause.

Procedure Division
The GENERATE statement

report-name
data-name

The INITIATE statement •
report-name

. . ,

The SUPPRESS statement • •
report-name series

The TERMINATE statement. •
report-name series

The USE statement. •
BEFORE REPORTING

I-33

List of Elements by Module

PAGE PARAGRAPH
NUMBER NUMBER

II-36
VIII-50

VIII-51

4.13
2.22

3.1

VIII-53 3.2

VIII-54 3.3

VIII-55 3.4

VIII-56 3.5

List of Elements by Module

SEGMENTATION, LEVEL 1 (1 SEG 0,2)
PAGE PARAGRAPH

ELEMENTS NUMBER NUMBER

Language Concepts
User-defined words ••••••••.•••••.••.. I-76 5.3.2.2.1.1

segment-numb er

Procedure Division
Segment-nuni:> ers • • • • • • • • • • • • • . • • • • . . IX-4 3. 1

Fixed segment-number range 0 through 49
Non-fixed segment-number range 50 through 99
All sections with the same segment-nunber must

be together in the source program

SEGMENTATION~ LEVEL 2 (2 SEG 0,2)

ELEMENTS

All elements of 1 SEG 0,2 are a part of 2 SEG 0,2

Environment Division
The OBJECT-COMPUIER paragraph

PAGE
NUMBER

PARAGRAPH
NUMBER

SEGMENT-LIMIT. • • • • • • • • • • • • • • • • • • • IX-5 3. 2

Procedure Division
Segment-numbers • IX-4 3. 1

Sections with the same segment-number need not
be physically contiguous in the source program.

I-34

LIBRARY, LEVEL 1 (1 LIB 0,2)

ELEMENTS

Language Concepts
User-defined words.

text-name

All divisions
The COPY statement.

LIBRARY, LEVEL 2 (2 LIB 0,2}

ELEMENTS

All elements of 1 LIB 0,2 are a part of 2 LIB 0,2

Language Concepts
User-defined words.

library-name

All divisions
The COPY statement.

OF library-name
REPLACING phrase

I-35

List of Elements by Module

PAGE PARAGRAPH
NUMBER NUMBER

I-76 5.3.2.2.1.1

X-2 2.

PAGE PARAGRAPH
NUMBER NUMBER

I-76 5.3.2.2.1.1

x~2 2.

List of Elements by Module

DEBUG, LEVEL 1 (DEB 0,2)

ELEMENTS

Language Concepts
Special registers .•

DEBUG-ITEM. • •

Environment Division
The SOURCE-COMPUTER paragraph

WITH DEBUGGING MODE clause.

Procedure Division
USE FOR DEBUGGING statement.

procedure-name
procedure-name series
ALL PROCEDURES

Debugging lines ••.••

DEBUG, LEVEL 2 (2 DEB 0,2)

ELEMENTS

All elements of 1 DEB 0,2 are a part of 2 DEB 0,2

Procedure Division
USE FOR DEBUGGING statement ••••••

ALL REFERENCES OF identifier series
file-name series
cd-name series

I-36

PAGE PARAGRAPH
NUMBER NUMBER

I-80
XI-1

XI-3

XI-4

XI-10

5.3.2.2.1.3.4
1. 3.1

2.1

3.1

3.2

PAGE PARAGRAPH
NUMBER NUMBER

XI-4 3.1

List of Elements by· Module

INTER-PROGRAM COMMUNICATION 1 (1 IPC 0,2)

ELEMENTS

Data Division
Linkage Section.

Procedure Division
Procedure Division header ••••

USING phrase
The CALL statement • • • • •

literal
USING data-name series

The EXIT PROGRAM statement

INTER-PROGRAM COMMUNICATION 2 (2 IPC 0,2)

ELEMENTS

All elements of l !PC 0,2 are a part of 2 IPC 0,2

Procedure Division
The CALL statement ••

identifier
ON OVERFLOW phrase

The CANCEL statement. . . . •. -- ·-

I-37

PAGE PARAGRAPH
NUMBER NUMBER

XII-2 2.1

XII-4 3.1

. XII-5 3.2

XII-8 3.4

PAGE PARAGRAPH
NUMBER NUMBER

XII-5 3.2

XII-7 3.3

List of Elements by Module

COMMUNICATION (1 COM 0,2)

ELEMENTS

Language Concepts
User-defined words.

cd-name

Data Divisi.on
Communication Section
The communication description entry •

FOR INPUT clause
END KEY
MESSAGE COUNT
MESSAGE DATE
MESSAGE TIME
SYMBOLIC QUEUE
SYMBOLIC SOURCE
SYMBOLIC SUB-QUEUE-n
STATUS KEY
TEXT LENGTH

FOR OUTPUT clause
DESTINATION COUNT
DESTINATION TABLE

INDEXED BY
ERROR KEY
SYMBOLIC DESTINATION
STATUS KEY
TEXT LENGTH

Procedure Division
The ACCEPT MESSAGE COUNT statement .•
The DISABLE statement • • • • • • •

INPUT
OUTPUT
KEY identifier/literal

The ENABLE statement. • • • • • • • • • • • • • • • •
INPUT
OUTPUT
KEY identifier/literal

The RECEIVE statement
MESSAGE
INTO identifier
NO DATA phrase

The SEND statement.
FROM identifier-I WITH
WITH EMI
WITH EGI
BEFORE/AFTER ADVANCING

identifier-3 LINES
integer LINES
mnemonic-name
PAGE

I-38

PAGE PARAGRAPH
NUMBER NUMBER

I-76 5.3.2.2.1.1

XIII-2 2.1
XIII-3 2.2

XIII-12 3.1
XIII-13 3.2

XIII-15 3.3

XIII-17 3.4

XIII-20 3.5

List of Elements by Module

COMMUNICATION (2 COM 0,2)
PAGE PARAGRAPH

ELEMENTS NUMBER NUMBER

All elements of 1 COM 0,2 are a part of 2 COM 0,2

Connnunication Section
The connnunication description entry. • • • . • • • . • XIII-3 2.2

FOR INPUT
INITIAL

Procedure Division
The DISABLE statement.

INPUT
TERMINAL

The ENABLE statement
INPUT

TERMINAL
The RECEIVE statement •••

SEGMENT
The SEND statement •

FROM identifier-!
WITH identif ier-2
WITH ES!

XIII-13 3.2

XIII-15 3.3

XIII-17 3.4

XIII-20 3.5

I-39

List of Elements Showing Disposition

3. LIST OF ELEMENTS SHOWING DISPOSITION

3.1 GENERAL DESCRIPTION

This chapter contains a list of all elements in American National Standard
COBOL showing the levels in which each element is introduced. Adjacent to
each level code is a text reference. This reference indicates the page
number of the detailed specification describing the particular element.

I-40

List of Elements Showing Disposition

ELEMENTS

Language Concepts
Character set

Characters used for words
0,1, ••• ,9,A,B, ••• ,z - (hyphen or minus).

Characters used for punctuation
• " () = space • • • • • . , '

Characters used in arithmetic operations
+ - * I **

Characters used in relations
> < =

Characters used in editing
B 0 + - CR DB z * $ ' • I

Separators •
Semicolon and comma not permitted •
Semicolon and comma are allowed •

Character-strings. • • • •••••••••
COBOL words • • • • • • • • • • • • • •

Not more than 30 characters
User-defined words •

cd;...name • • ••
condition-name.
data-name

Must begin with an alphabetic character ••
Need not begin with an alphabetic

character • • • • • • • • •
file-name • • • • • • •
index-name. • •
level-number.
library-name.
mnemonic-name
paragraph-name. • • •
program-name.
record-name •
report-name • •
routine-name ••
section-name.
segment-number.
text-name •••

System-names • • •
computer-name
implementor-name
language-name

Reserved words • • • • • •
Key words • • • •
Optional words ••••••
Connectives

Qualifier connectives: OF, IN
Series connectives: , (separator comma)

and ; (separator semicolon)
Logical connectives: AND, OR, AND NOT

Oil NOT. • • • • .. • • • • •

I-41

LEVEL

1 NUC

1 NUC
2 NUC

2 NUC

2 NUC

1 NUC
1 NUC
1 NUC
2 NUC
1 NUC
1 NUC

1 NUC
1 COM
2 NUC

1 NUC

2 NUC
1 SEQ
1 TBL
1 NUC
2 LIB
1 NUC
1 NUC
1 NUC
1 SEQ
1 RPW
1 NUC
1 NUC
1 SEG
1 LIB
1 NUC

1 NUC
1 NUC
1 NUC

2 NUC

2 NUC

2 NUC

PAGE
NUMBER

I-76

I-65
I-65

I-52

I-66

I-58
I-75
II-1
II-1
I-76
I-76

I-76
XIII-3
I-77

II-1

II-1
I-59
III-2
I-84
I-61
I-78
I-78
I-65
I-66
I-67
I-67
I-78
IX-4
X-2
I-78

I-79
I-79
I-79

I-79

I-79

I-79

List of Elements ShOIJ)ing I>isposition

ELEMENTS

Reserved words (continued)
Special registers

LINE-COUNTER, PAGE-COUNTER. •
LINAGE-COUNTER. • • • • • •
DEBUG-ITEM. . • • • • • • • •

Figurative constants
ZERO. • • • •
ZEROS , ZEROES
SPACE •••
SPACES. • • • •
HIGH-VALUE, LOW-VALUE
HIGH-VALUES, LOW-VALUES
QUOTE • • • •
QUOTES. • • • • • • •
ALL literal • • • • • •

Special-character words
Arithmetic operators.
Relation characters • •

Literals
Nonnumeric literals have lengths from 1 through

120 characters
Numeric literals have lengths from 1 through

18 digits
PICTURE character-strings ••
Comment-entries ••

Qualification • • • •
No qualification permitted •
Qualification permitted. • • • • •

Subscripting
3 levels •

Indexing
3 levels

Identification Division
The PROGRAM-ID paragraph • •
The AUTHOR paragraph. • •
The INSTALLATION paragraph ••
The DATE-WRITTEN paragraph ••
The DATE-COMPILED paragraph •
The SECURITY paragraph •••••

Environment Division
Configuration Section

The SOURCE-COMPUTER paragraph.
computer-name • • • • • • •

WITH DEBUGGING MJDE phrase •
The OBJEcT~COMPUTER paragraph.

computer-name • • •
MEMORY SIZE clause. • • • •

I-42

LEVEL

1 RPW
2 SEQ
1 DEB

1 NUC
2 NUC
1 NUC
2 NUC
1 NUC
2 NUC
1 NUC
2 NUC
2 NUC

2 NUC
2 NUC
1 NUC

1 NUC
1 NUC

2 NUC
1 NUC
2 NUC

1 TBL

1 TBL

1 NUC
1 NUC
1 NUC
1 NUC
2 NUC
1 NUC

1 NUC
l NUC
1·-"DEB
1 NUC
1 NUC
1 NUC

PAGE
NUMBER

VIII-1
IV-3
XI-1

I-80
I-80
I-80
I-80
I-80
I-80
I-80
I-80
I-80

I-80
I-80
I-80

I-82
I-82

I-87
II-1
II-1

I-89

I-89

II-3
II-2
II-2
II-2
II-4
II-2

II-5
II-5
XI-3
II-6
II-6
II-6

List of Elements Showing Disposition

ELEMENTS

The OBJECT-COMPUTER paragraph (continued)
PROGRAM COLLATING SEQUENCE clause
SEGMENT-LIMIT clause. • • • • • • •

The SPECIAL-NAMES paragraph
implementor-name IS mnemonic-name •
ON STATUS . • • • • • • . • • •

LEVEL

•• I NUC
• 1 SEG

1 NUC

OFF STATUS. . • • • • • • • • • • • • • •
• 1 NUC

. • 1 NUC
• 1 NUC implementor-name series •

alphabet-name clause
STANDARD-1 • • • •
NATIVE • . • • • •
implementor-name •
literal ••••••

CURRENCY SIGN clause.
DECIMAL-POINT clause. •

Input-Output Section
The FILE-CONTROL paragraph

. I

. I
• • • 1

• 2
• • • 1

. I

NUC
NUC
NUC
NUC
NUC
NUC

SELECT clause • • • • • • • • • • • • • • • • . • 1 SEQ

OPTIONAL phrase. . • • • • • •
ASSIGN TO implementor-name clause

1 REL
1 INX
1 SRT

• 2 SEQ
1 SEQ
1 REL
1 INX
I SRT

RESERVE AREA(S) clause. • • • • • • • • • • • • • 2 SEQ

ORGANTZATION clause
SEQUENTIAL •
RELATIVE • • • • •
INDEXED. • • • •

ACCESS MODE clause
SEQUENTIAL • • • •

RANDOM ••

DYNAMIC. •

RECORD KEY clause •
ALTERNATE RECORD KEY clause •
FILE STATUS clause. • • •••

The I-0-CONTROL paragraph
RERUN clause. • • • • •

I-43

2 REL
2 INX

. 1 SEQ
• 1 REL

1 INX

. 1 SEQ
1 REL
I INX
1 REL
I INX

• 2 REL
2 INX

• 1 INX
2 INX
1 SEQ
I REL
I INX

1 SEQ
I REL
1 INX

PAGE
NUMBER

II-6
IX-5

II-8
II-8
II-8
II-8

II-8
II-8
II-8
II-8
II-8
II-8

IV-4
V-5
VI-5
VII-2
IV-4
IV-4
V-5
VI-5
VII-2
IV-4
V-5
VI-5

IV-4
V-5
VI-5

IV-4
V-5
VI-5
V-5
VI-5
V-5
VI-5
VI-5
VI-5
IV-4
V-5
VI-5

IV-6
V-7
VI-8

List of. Elements Showing Disposition

ELEMENTS LEVEL

The I-0-CONTROL paragraph (continued)
SAME AREA clause. • • • • • • • • • • • • • • • • 1 SEQ

1 REL
1 INX

SAME RECORD AREA clause • • • • • • • • • • • • • 2 SEQ
2 REL
2 INX
2 SRT

•• 2 SRT
•• 1 SEQ

1 REL
1 INX

MULTIPLE FILE TAPE clause • • • • • • • • • • • • 2 SEQ

SAME SORT/SORT-MERGE AREA clause. •
SAME series • • • • • • •

Data Division
Communication Section •
File Section. . • • •

• 1 COM
• 1 SEQ

1 REL
1 INX
1 SRT
l RPW

•• 1 IPC Linkage Section • • • •
Report Section. • • • • •
Working-Storage Section

• • • • • • • • • • • • • 1 RPW

The communication description
The data description entry.
The file description entry. •

entry •
• 1 NUC
• 1 COM

• • l NUC
. 1 SEQ

1 REL
1 INX
1 RPW

The record description entry •••••••••••••• 1 SEQ
1 REL
1 INX

The report description entry ••••••
The report group description entry •••
The sort-merge description entry •••
The BLANK WHEN ZERO clause ••••••••
The BLOCK CONTAINS clause

integer CHARACTERS/RECORDS

• • • • • 1 RPW
1 RPW

••• 1 SRT
• • • • • • • l NUC

• 1 SEQ
1 REL
l INX
1 RPW

integer-! TO integer-2 CHARACTERS/RECORDS •••••• 2 SEQ
2 REL
2 INX
1 RPW

The CODE clause • • •
The CODE-SET clause

The COLUMN NUMBER clause. •
The CONTROL clause. •
The data-name clause. • • •

I-44

1 RPW
1 SEQ
1 RPW

. l RPW
• 1 RPW

••• 1 NUC
l RPW

PAGE
NUMBER

IV-6
V-7
VI-8
IV-6
V-7
VI-8
VII-3
VII-3
IV-6
V-7
VI-8
IV-6

XIII-2
IV-9
V-10
VI-11
VII-5
VIII-2
XII-2
VIII-2
II-11
XIII-3
II-12
IV-10
V-11
VI-12
VIII-3
IV-9
V-10
VI-11
VIII-4
VIII.;..6
VII-5
II-i4

IV-11
V-12
VI-13
VIII-24
IV-11
V-12
VI-13
VIII-24
VIII-25
IV-12
VIII-26
VIII-27
VIII-28
II-15
VIII-30

List of Elements Showing Disposition

ELEMENTS LEVEL

The DATA RECORDS clause • • • • • • • • • • • • • • • • 1 SEQ
1 REL
1 INX
1 SRT

FILLER. • • • • • . • • . • . • • • • •
The GROUP INDICATE clause • • • • • • • • • • •
The JUSTIFIED clause (may be abbreviated JUST).
The LABEL RECORDS clause

STANDARD/OMITTED • • • • • • • • • • • . • •

Level-number
01 through 10 (level-number must be 2 digits) ••
1 through 49 (level-number may be 1 digit)
66 or 88 • • • • • • • • •
77 .• • • . • . • • • •

The LINAGE clause • • •
The LINE NUMBER clause. • •
The NEXT GROUP clause • •
The OCCURS clause

1 NUC
1 RPW

• 1 NUC

1 SEQ
1 REL
1 INX
1 RPW

.. 1 NUC
2 NUC

. 2 NUC
1 NUC

• 2 SEQ
• • 1 RPW
. . 1 RPW

integer TIMES. • • • • 1 TBL
ASCENDING/DESCENDING data-name • • . • • • • • 2 TBL

data-name series. • • • • • • • • • • • • 2 TBL
INDEXED BY index-name~ • • • • • • 1 TBL
integer-! TO intege+-2 DEPENDING ON data-name. • • • 2 TBL

The PAGE clause • • • • • • • • • . • • • • • • • 1 RPW
The PICTURE clause (may be abbreviated PIC)

Character-string may contain 30 characters • • • 1 NUC
Data characters: A X 9 ••••• 1 NUC
Operational symbols: S V P • • • • • •••• 1 NUC
Fixed insertion characters: 0 B , • $ + - DB CR I 1 NUC
Replacement or floating characters: + - Z * . 1 NUC
Currency sign substitution . • • • . • • • • 1 NUC

·Decimal point substitution • l NUC
The RECORD CONTAINS clause. • • • • • • • • 1 SEQ

The REDEFINES clause
May not be nested.
May be nested. • • • • •

The RENAMES clause ••
The REPORT clause • •
The SIGN clause • • •
The SOURCE clause • • • • •
The SUM clause. • .
The SYNCHRONIZED clause (may be abbreviated SYNC) •
The TYPE clause • • • • • • • • • • • • • •

I-45

1 REL
1 INX
1 SRT
1 RPW

• • 1 NUC
•• 2 NUC
• • 2 NUC
•• 1 RPW

• 1 NUC
• • 1 RPW

1 RPW
• • 1 NUC

• 1 RPW.

PAGE
NUMBER

IV-13
V-13
VI-14
VII-6
II-15
VIII-31
II-16

IV-14
V-14
VI-15
VIII-32

II-13
II-17
II-17
II-11
IV-15
VIII-33
VIII-35

III-2
III-2
III-2
III-2
III-2
VIII-36

II....;18
II-18
II-18
II-21
II-21
II-21
II-21
IV-18
V-15
VI-16
VII-7
VIII-39

II-27
II-27
II-29
VIII-40
Il-"31
VIII-41
VIII-42
II-33
VIII-45

List of EZements Showing Disposition

ELEMENTS

The USAGE clause
COMPUTATIONAL (may be abbreviated COMP) ••
DISPLAY. • • • • • • •
INDEX. • • • • • • • • •

The VALUE clause
literal. • • • • • . . .
literal series • • • • •
literal THRO literal
literal range series

The VALUE OF clause

LEVEL

1 NUC
••• 1 NUC

• 1 TBL

. 1 NUC
• 2 NUC
• 2 NUC

2 .NUC

implementor-name IS literal. • • •••• 1 SEQ
1 REL
1 INX
1 RPW

implementor-name IS data-name •••••••••••• 2 SEQ
2 REL
2 INX
1 RPW

Procedure Division
USING phrase in Procedure Division header •
Declaratives ••••••••••••••••

Arithmetic expressions ••
Conditional expressions

Simple conditions •••
Relation condition. •

Relation operators
[NOT} GREATER THAN.
[NOT] >
[NOT] LESS THAN
[NOT] < • • • •
[NOT] EQUAL TO.
(NOT] = • • • •

Comparison
Numeric operands.
Nonnum.eric operands

Operands must be of equal size
Operands may be unequal in size.

Class condition • • • • •
NOT option

Switch-status condition •

• 1 !PC
. • 1 SEQ

1 REL
l INX
1 RPW
1 DEB
2 NUC

••• 1 NUC
. 1 NUC
. I NUC

• 1 NUC
•• 2 NUC
•• I NUC

• 2 NUC
. 1 NUC

2 NUC

1 NUC

• 1 NUC
•• 2 NUC

• 1 NUC

• 1 NUC
Condition-name condition.
Sign condition. • • •

• • • • • • 2 NUC
••••• 2 NUC

NOT option·
Complex conditions

Logical operators AND, OR, and NOT.
Negated simple conditions • • • • •
Combined and negated combined conditions.

Abbreviated combined relation condition. • •

I-46

• 2 NUC

• 2 NUC
•• 2 NUC
•• 2 NUC

PAGE
NUMBER

II-35
II-35
III-5

II-36
II-36
II-36
II-36

IV-19
V-16
VI-17
VIII-50
IV-19
V-16
VI-17
VIII-50

XII-4
IV-32
V-30
VI-32
VIII-56
XI-4
II-39
II-41
II-41
II-41

II-42
II-42
II-42
II-42
II-42
II-42

II-42

II-42
II-42
II~43

II-44
II-44
II-44

II-45

II-45
II--46
II-47

List of Elements Showing Disposition

ELEMENTS

The arithmetic statements
Arithmetic operands limited to 18 digits ••

Overlapping operands • • • • • • • • •

Multiple results in arithmetic statements.

The ACCEPT statement
. Only one transfer of data • • •

No restriction on the number of
FROM phrase • . . • •

transfers

MESSAGE COUNT phrase. . . .
The ADD statement

identifier/literal series • • • • ••
TO identifier . • • • •
TO identifier series. • • •
GIVING identifier • • • • .
GIVING identifier series •••
ROUNDED phrase ••
SIZE ERROR phrase
CORRESPONDING phrase.

The ALTER statement
procedure-name. • • •
procedure-name series

The CALL statement
literal • • • • •
identifier ..••
USING data-name • •
ON OVERFLOW phrase. •

The CANCEL statement •
The CLOSE statement

Single file-name •••
file-name series •••

REEL ._ . •
UNIT •••
NO REWIND. •
FOR REMOVAL.
LOCK • • • •

The COMPUTE statement •••
The DELETE statement •

The DISABLE statement
INPU'r • • .

TERMINAL •.••••
OUTPUT. • • • • • • • • • • •
KEY identifier/literal.

The DISPLAY statement

. ,•

.

.
of

. . . .
data .

LEVEL

1 NUC
1 NUC
1 TBL
2 NUC

1 NUC
2 NUC
2 NUC
1 COM

1 NUC
1 NUC
2 NUC
1 NUC
2 NUC
1 NUC
1 NUC
2 NUC

1 NUC
2 NUC

1 IPC
2 !PC
1 IPC
2 !PC
2 !PC.

1 SEQ
2 SEQ
1 REL
1 INX
1 SEQ
1 SEQ
2 SEQ
2 SEQ
2 SEQ
1 REL
1 INX
2 NUC
1 REL
1 INX

1 COM
2 COM-.
1 COM
1 COM

Only one transfer of data • • • • • • • • • 1. NUC
No restriction on the number of transfers of data • ·2 NUC
UPON phrase • . • • • • • • • • • • • • • 2 .NUC

I-47

PAGE
NUMBER

II-51
II-51
III-6
II-51

II-53
II-53
II-53
XIII-12

II-55
II-55
II-55
II-55
II-55
II-55
II-55
II-55

II-57
II-57

XII-5
XII-5
XII-5
XII-5
XII-7

IV-20
IV-19
V-17
VI-18
IV-20
IV-20
IV-20
IV-20
IV-20
V-17
VI-18
II-58
V-19
VI-20

XIII-13
XIII-13
XIII-13
XIII-13

II-59
II-59
II-59

List of Elements Showing Disposition

ELEMENTS

The DIVIDE statement
INTO identifier ••
INTO identifier series • •
BY identifier •••••
GIVING identifier ••••
GIVING identifier series •
REMAINDER phrase •
ROUNDED phrase . •
SIZE ERROR phrase. •

The ENABLE statement
INPUT. • . •

TERMINAL • • • •
OUTPUT • • • • • •
KEY identifier/literal • •

The ENTER statement • • • • •
The EXIT statement ••••
The EXIT PROGRAM statement.
The GENERATE statement •••
The GO TO statement

procedure-name is required •
procedure~name is optional •
DEPENDING ON phrase .•••

The IF statement

.

. . .
Statements must be imperative statements
Nested statements.
ELSE • • • • • • • • •

The INITIATE statement •••
The INSPECT statement

Only single character data item.
Multi-character_ ~ata item. •

The MERGE statement
The MOVE statement

TO identifier ••••
TO identifier series •
CORRESPONDING phrase •

The MULTIPLY statement
BY identifier ••••
BY identifier series •
GIVING identifier ••
GIVING identifier series •
ROUNDED phrase • •
SIZE ERROR phrase. • • • •

The OPEN statement
INPUT

Single file-name ••
file-name series ••

REVERSED. • •
NO REWIND •

1-48

. .. -

LEVEL

• 1 NUC
2 NUC

..• 1 NUC
1 NUC
2 NUC

• 2 NUC
. • 1 NUC

••• 1 NUC

. . 1 COM . 2 COM
1 COM

. 1 COM

. 1 NUC
1 NUC . . 1 !PC

. . 1 RPW

. 1 NUC . 2 NUC
. . 1 NUC

1 NUC . 2 NUC . 1 NUC
. . 1 RPW

• • 1 NUC
•• 2 NUC

• 2 SRT

. • 1 NUC
• 1 NUC

2 NUC

• 1 NUC
• 2 NUC
• 1 NUC
• 2 NUC
• 1 NUC
• 1 NUC

• • • • 1 SEQ
2 SEQ·
1 REL
I INX

• 2 SEQ
• 2 SEQ

PAGE
NUMBER

II-61
II-61
II-61
II-61
II-61
II-61
II-61
II-61

XIII-15
XIII-15
XIII-15
XIII-15
II-63
II-64
XII-8
VIII-51

II-65
II-65
II;..65

II-66
II-66
II-66
VIII-53

II-67
II-67
VII-8

II-74
II-74
II-74

II-77
II-77
II-77
II-77
II-77
II-77

IV-24
IV-24
V-20
VI-21
IV-24
IV-24

List of Elements Showing Disposition

ELEMENTS

The OPEN statement (continued)
I-.o

Single file-name.
file-name series ••

EXTEND
file-name series. • • • • • • • • •

INPUT, OUTPUT, I-0, and EXTEND series.
INPUT, OUTPUT, and I-0 series ••••••

The PERFORM statement
procedure-name •
THRU phrase ••
TIMES phrase • •
UNTIL phrase ••
VARYING phrase •

The READ statement

LEVEL

• • 1 SEQ
2 SEQ
1 REL
1 INX

2 SEQ
2 SEQ

• 1 REL
1 INX

•• 1 NUC
1 NUC

.• 1 NUC
•• 2 NUC
•• 2 NUC

file-name. • ••• • 1 SEQ
1 REL
1 INX

INTO identifier ••.•••••••••••••••• 1 SEQ
1 REL
1 INX

AT END phrase. • • • • • • • • • • • • • • • • . • • 1 SEQ

INVALID KEY phrase .

NEXT RECORD. •

KEY IS phrase.
The RECEIVE statement

MESSAGE. • • • • •
SEGMENT. • • • • • • • •
INTO identifier.
NO DATA phrase • • • • •

The RELEASE statement
record-name. • • • •
FROM phrase. • • •

The RETURN statement
file-name. • ••
INTO phrase. • • •
AT END phrase. • •

The REWRITE statement
FROM identifier ••

INVALID KEY phrase • • .

The SEARCH statement.

1 REL
1 INX

. • 1 REL
1 INX

• • • . • • 2 REL
2 INX

•• 2 INX

• • • • • 1 COM
• 2 COM

• • • • • • • 1 COM
. • • • • • 1 COM

JI • • . ,. . .

I-49

• • 1 SRT
• • 1 SRT

1 SRT
1 SRT

• • 1 SRT

• • • • • 1 SEQ
1 REL
1 INX

•• 1 REL
1 INX

• 2 TBL

PAGE
NUMBER

IV-24
IV-24
V-20
VI-21

IV-24
IV-24
V-20
VI-21

II-78
II-78
II-78
II-78
II-78

IV-28
V-23
VI-24
IV-28
V-23
VI-24
IV-28
V-23
VI-24
V-23
VI-24
V-23
VI-24
VI-24

XIII-17
XIII-17
XIII-17
XIII-17

VII-12
VII-12

VII-13
VII-13
VII-13

IV-31
V-26
VI-28
V-26
VI-28
III-7

List of Elements Showing Disposition

ELEMENTS

The SEND statement
FROM identifier-I.
FROM identifier-I WITH • •
WITH identifier-2 •••••
WITH EGI •
WITH EMI • • • • • •
WITH ESI • ~ • • •
BEFORE/AFTER ADVANCING

The SET statement • • • • • • • • • •
The SORT statement

. .

LEVEL

. 2 COM . 1 COM . 2 COM . 1 COM . 1 COM . 2 COM

. 1 COM

. 1 TBL

Only one SORT statement, a STOP RUN statement,
any associated input-output procedures allowed
in the nondeclarative portion of a program. •

Program not limited to one SORT ·statement.
COLLATING SEQUENCE phrase.

and

• 1 SRT
• 2 SRT
• 2 SRT

The START statement • . • • •

The STOP statement ••
The STRING statement •••
The SUBTRACT statement

identifier/literal series •••••
FROM identifier. • • • • • • • •
FROM identifier series • •
GIVING identifier ••••
GIVING identifier series •
ROUNDED phrase • • •
SIZE ERROR phrase. • •
CORRESPONDING phrase •

The SUPPRESS statement.
The TERMINATE statement •
The UNSTRING statement ••
The USE statement

EXCEPTION/ERROR PROCEDURE
ON file-name/INPUT/OUTPUT/I-0

ON file-name series

ON EXTEND • • • • • • • •
BEFORE REPORTING • • • • • • •

The USE FOR DEBUGGING statement
procedure-name
procedure-name series. • • • •
ALL PROCEDURES • • • • • • • •
ALL REFERENCES OF identifier series ••
file-name series • •
cd-name series • • • • • • •

I-50

• 2 REL
2 INX

• 1 NUC
•• 2 NUC

• 1 NUC
1 NUC

• 2 NUC
.. 1 NUC

• • • • • 2 NUC

. ..

1 NUC
1 NUC

• 2 NUC
• 1 RPW
• 1 RPW
• 2 NUC

1 SEQ
1 REL
1 INX
2 SEQ
2 REL
2 INX
2 SEQ
1 RPW

. 1 DEB
1 DEB
1 DEB

• • • • 2 DEB
•• 2 DEB

. • 2 DEB

PAGE
NUMBER

XIII-20
XIII-20
XIII-20
XIII-20
XIII-20
XIII-20
XIII-20
III-11

VII-14
VII-14
VII-14
V-28
VI-30
II-85
II-86

II-89
II-89
II-89
II-89
II-89
II-89
II-89
II-89
VIII-54
VIII-55
II-91

IV-32
V-30
VI-32
IV-32
V-30
VI-32
IV-32
VIII-56

XI-4
XI-4
XI-4
XI-4
XI-4
XI-4

List of Elements Showing Disposition

ELEMENTS

The WRITE statement
record-name. • •

LEVEL

FROM identifier •••••••••••••••••••

1 SEQ
1 REL
1 INX
1 SEQ
1 REL
1 INX

BEFORE/AFTER ADVANCING
integer LINES • •
PAGE. • . • • . •
identifier LINES ••
mnemonic-name • • •

AT END-OF-PAGE phrase.
INVALID KEY phrase • •

Segmentation
Segment-number. • • • . . • • • . • • • •
Fixed segment-number range 0 through 49 •
Non-fixed segment-number range 50 through
SEGMENT-LIMIT clause ••••••.•.••

Library
COPY statement ••••

OF/IN library-name •
REPLACING phrase •

Reference format • .
Sequence numbers ••
Area A. • • • • •

Division header.
Section header • •
Paragraph header
Data Division entries.

Area B. • • • . • • • • •
Paragraphs • • . • . • •
Data Division entries •.

•• 1 SEQ
. • • • • • 1 SEQ

2 SEQ
2 SEQ

• • • • • 2 SEQ
1 REL
1 INX

1 SEG
• • • • • 1 SEG

99. • _l SEG
•• 2 SEG

1 LIB
•• 2 LIB
•• 2 LIB

1 NUC
• • 1 NUC

1 NUC
• • • • • 1 NUC

• • 1 NUC
• • 1 NUC
• • 1 NUC

1 NUC
. 1 NUC

. . 1 NUC
Continuation of lines • •

Nonnumeric literals ••
• • • • • • • • • • 1 NUC

Words and numeric literals • •
Comment lines • • • • • • • •

Asterisk (*) comment lines •
Stroke (/) comment lines • •

I-51

• • • • 1 NUC
2 NUC

• • • • • • 1 NUC
1 NUC
1 NUC

PAGE
NUMBER

IV-34
V-32
VI-33
IV-34
V-32
VI-33

IV-34
IV-34
IV-34
IV-34
IV-34
V-32
VI-33

IX-4
IX-4
IX-4
IX-5

X-2
X-2
X-2

I-105
I-106
I-105
I-106
I-106
I-107
I-107
I-105
I-107
I-107
I-106
II-1
II-1
I-108
I-108
I-108

Glossary

4. GLOSSARY

4.1 INTRODUCTION

The terms in this chapter are defined in accordance with their meaning as
used in this document describing COBOL and may not have the same meaning for
other languages.

These definitions are also intended to be either reference material or
introductory material to be reviewed prior to reading the detailed language
specifications that follow. For this reason, these definitions are, in most
instances, brief and do not include detailed syntactical rules.

4. 2 DEFINITIONS

Abbreviated Combined Relation Condition. The combined condition that
results from the explicit omission of a conunon subject or a common subject
and common relational operator in a consecutive sequence of relation
conditions.

Access Mode. The manner in which records are to be operated upon within
a file.

Actual Decimal Point. The physical representation, using either of the
decimal point characters period (.) or comma(,), of the decimal point
position in a data item.

Alphabet-Name. A user-defined word, in the SPECIAL-NAMES paragraph of the
Environment Division, that assigns a name to a specific character set and/or
collating sequence.

Alphabetic Character. A character that belongs to the following set of
letters: A, B, C, D, E, F, G, H, I, J, K, L, M, N, 0, P, Q, R, S, T, U, V,
W, X, Y, Z, and the space.

Alphanumeric Character. Any character in the computer's character set.

Alternate Record Key. A key, other than the prime record key, whose
contents identify a record within an indexed file.

Arithmetic Expression. An arithmetic expression can be an identifier or a
numeric elementary item, a numeric literal, such identifiers and literals
separated by arithmetic operators, two arithmetic expressions separated by an
arithmetic operator, or an arithmetic expression enclosed in parentheses.

Arithmetic Operator. A single character, or a fixed two-character combin­
ation, that -belongs to the following_ set:

Character
+

* I
**

Meaning
addition
subtraction
multiplication
d.ivision
exponentiation

I-52

Glossary

Ascending Key. A key upon the values of which data is ordered starting
with the lowest value of key up to the highest value of key in accordance with
the rules for comparing data items.

Assumed Decimal Point. A decimal point position which does not involve the
existence of an actual character in a data item. The assumed decimal point
has logical meaning but no physical representation.

At End Condition. A condition caused:

1. During the execution of a READ statement for a sequentially accessed
file.

2. During the execution of a RETURN statement, when no next logical
record exists for the associated sort or merge file.

3. During the execution of a SEARCH statement, when the search opera­
tion terminates without satisfying the condition specified in any of the
associated WHEN phrases.

Block. A physical unit of data that is normally composed of one or more
logical records. For mass storage files, a block may contain a portion of a
logical record. The size of a block has no direct relationship to the size of
the file within which the block is contained or to the size of the logical
record(s) that are either continued within the block or that overlap the block.
The term is synonymous with physical record.

Body Group. Generic name for a report group of TYPE DETAIL, CONTROL
HEADING or CONTROL FOOTING.

Called Program. A program which is the object of a CALL statement combined
at object time with the calling program to produce a run unit.

Calling Program. A program which executes a CALL to another program.

Cd-Name. A user-defined word that names an MCS interface area described in
a communication description entry within the Communication Section of the Data
Division.

Character. The basic indivisible unit of the language.

Character Position. A character position is the amount of physical storage
required to store a single standard data format character described as usage
is DISPLAY. Further characteristics of the physical storage are defined by
the implementor.

Character-String. A sequence of contiguous characters which form a COBOL
word, a literal, a PICTURE character-string, or a comment-entry.

Class Condition. The proposition, for which a truth value can be deter­
mined, that the -content of an item is wholly alphabetic or is wholly numeric.

Clause. A clause is an ordered set of consecutive COBOL character-strings
whose purpose is to specify an attribute of an entry.

I-53

·Glossary

COBOL Character Set.
characters listed below:

, Character
0,1, ••. ,9
A,B, ••• ,z

+

*
I
=
$

"
(
)
>
<

The complete COBOL character set consists of the 51

Meaning
digit
letter
space (blank)
plus sign
minus sign (hyphen)
asterisk
stroke (virgule, slash)
equal sign
currency sign
comma (decimal point)
semicolon
period (decimal point)
quotation mark
left parenthesis
right parenthesis
greater than symbol
less than symbol

COBOL Word. (See Word)

Collating Sequence. The sequence in which the characters that are accept­
able in a computer are ordered for purposes of sorting, merging, and comparing.

Column. A character position within a print line. The columns are numbered
from 1, by 1, starting at the leftmost character position of the print line and
extending to the rightmost position of the print line.

Combined Condition. A condition that is the result of connecting two or
more conditions with the 'AND' or the 'OR' logical operator.

Comment-Entry. An entry in the Identification Division that may be any
combination of characters from the computer character set.

Comment Line. A source program line represented by an asterisk in the
indicator area of the line and any characters from the computer's character
set in area A and area B of that line. The comment line serves only for
documentation in a program. A special form of comment line represented by a
stroke (/) in the indicator area of the line and any characters from the
computer's character set in area A and area B of that line causes page
ejection prior to printing the comment.

Communication Description Entry. An entry in the Communication Section of
the Data Division that is composed of the level indicator CD, followed by a
cd-name, and then followed by a set of clauses as required. It describes the
interface between the Message Control System (MCS) and the COBOL program.

Communication Device. A mechanism (hardware or hardware/software) capable
of sending data to a queue and/or receiving data from a queue. This mechanism
may be a computer or a peripheral device. One or more programs containing
communication description entries and residing within the same computer define
one or more of these mechanisms.

I-54

Glossary

Communication Section. The section of the Data Division that describes the
interface areas between the MCS and the program, composed of one or more CD
description entries.

Compile Time. The time at which a COBOL source program is translated, by a
COBOL compiler, to a COBOL object program.

Compiler Directing Statement. A statement, beginning with a compiler
directing verb, that causes the compiler to take a specific action during
compilation.

Complex Condition. A condition in which one or more logical operators
act upon one or more conditions. (See Negated Simple Condition, Combined
Condition, Negated Combined Condition.)

Computer-Name. A system-name that identifies the computer upon which the
program is to be compiled or run.

Condition. A status of a program at execution time for which a truth value
can be determined. Where the term 'condition' (condition-I, condition-2, •••)
appears in these language specifications in or in reference to 'condition'
(condition-I, condition-2, .••)of a general format, it is a conditional
expression consisting of either a simple condition optionally parenthesized,
or a combined condition consisting of the syntactically correct combination
of simple conditions, logical operators, and parentheses, for which a truth
value can be determined.

Condition-Name. A user-defined word assigned to a specific value; set of
values, or range of values, within the complete set of values that a condition­
al variable may possess; or the user-defined word assigned to a status of an
implementor-defined switch or device.

Condition-Name Condition. The proposition, for which a truth value can be
determined, that the value of a conditional variable is a member of the set of
values attributed to a condition-name associated with the conditional variable.

Conditional Expression. A simple condition or a complex condition specified
in an IF, PERFORM, or SEARCH statement. (See Simple Condition and Complex
Condition.)

Conditional Statement. A conditional statement specifies that the truth
value of a condition is to be determined and that the subsequent action of the
object program is dependent on this truth value.

Conditional Variabl.e. A data item one or more values of which has a
condition-name assigned to it.

Configuration Section. A section of the Environment Division that
describes overall specifications of source and object computers.

I-55

Glossary

Connective. A reserved word that is used to:

1. Associate a data-name, paragraph-name, condition-name, or text-name
with its qualifier.

2. Link two or more operands written in a series.
3. Form conditions (logical connectives). (See Logical Operator)

Contiguous Items. Items that are described by consecutive entries in the
Data Division, and that bear a definite hierarchic relationship to each other.

Control Break. A change in the value of a data item that is refe.renced in
the CONTROL clause. More generally, a change in the value of a data item that
is used to control the hierarchical structure of a report.

Control Break Level. The relative position within a control hierarchy at
which the most major control break occurred.

Control Data Item. A data item, a change in whose contents may produce a
control break.

Control Data-Name. A data-name that appears in a CONTROL clause and refers
to a control data item.

Control Footing. A report group that is presented at the end of the
control group of which it is a member.

Control Group. A set of body groups that is presented for a given value of
a control data item or of FINAL. Each control group may begin with a CONTROL
HEADING, end with a CONTROL FOOTING, and contain DETAIL report groups.

Control Heading. A report group that is presented at the beginning of the
control group of which it is a member.

Control Hierarchy. A designated sequence of report subdivisions defined by
the positional order of FINAL and the data-names within a CONTROL clause.

Counter. A data item used for storing numbers or number representations in
a manner that permits these numbers to be increased or decreased by the value
of another number, or to be changed or reset to zero or to an arbitrary posi­
tive or negative value.

Currency Sign. The character '$' of the COBOL character set.

Currency Symbol. The character defined by the CURRENCY SIGN clause in the
SPECIAL-NAMES paragraph. If no CURRENCY SIGN clause is present in a COBOL
source program, the currency symbol is identical to the currency sign.

Current Record. The record which is available in the record area
associated with the file.

Current Record Pointer. A conceptual entity .that is used in the selection
of the next record.

Glossary

Data Clause. A clause that appears in a data description entry in the Data
Division and provides information describing a particular attribute of a data
item.

Data Description Entry. An entry in the Data Division that is composed of
a level-number followed by a data-name, if required, and then followed by a
set of data clauses, as required.

Data Item. A character or a set of contiguous characters (excluding in
either case literals) defined as a unit of data by the COBOL program.

Data-Name. A user-defined word that names a data item described in a data
description entry in the Data Division. When used in the general formats,
'data-name' represents a word which can neither be subscripted, indexed, nor
qualified unless specifically permitted by the rules for that format.

Debugging Line. A debugging line is any line with 'D' in the indicator
area of the line.

Debugging Section. A debugging section is a section that contains a
USE FOR DEBUGGING statement.

Declaratives. A set of one or more special purpose sections, written at
the beginning of the Procedure Division, the first of which is preceded by the
key word DECLARATIVES and the last of which is followed by the key words END
DECLARATIVES. A declarative is composed of a section header, followed by a
USE compiler directing sentence, followed by a set of zero, one or more asso­
ciated paragraphs.

Declarative-Sentence. A compiler-directing sentence consisting of a single
USE statement terminated by the separator period.

Delimiter. A character or a sequence of contiguous characters that identi­
fy the end of a string of characters and separates that string of characters
from the following string of characters~ A delimiter is not part of the string
of characters that it delimits.

Descending Key. A key upon the values of which data is ordered starting
with the highest value of key down to the lowest value of key, in accordance
with the rules for comparing data items.

Destination. The symbolic identification of the receiver of. a transmission
from a queue.

Digit Position. A digit position is the amount of physical storage required
to store a single digit. This amount may vary depending on the usage of the
data item describing the digit position. Further characteristics of the
physical storage are defined by the imp·lementor.

Division. A set of zero, one or more sections of paragraphs, called the
division body, that are formed and combined in accordance with a specific set
of rules. There are four (4) divisions in a COBOL program: Identification,
Environment, Data, and Procedure.

I-57

Glossary

Division Header. A combination of words followed by a period and a space
that indicates that beginning of a division. The division headers are:

IDENTIFICATION DIVISION.
ENVIRONMENT DIVISION.
DATA DIVISION.
PROCEDURE DIVISION [USING data-name-1 [data-name-2] •••] •

Dynamic Access. An access mode in which specific logical records can be
obtained from or placed into a mass storage file in a non-sequential manner
(see Random Access) and obtained from a file in a sequential manner (see
Sequential Access), during the scope of the same OPEN statement.

Editing Character. A single character or a fixed two-character combination
belonging to the following set:

Character
B
0
+

CR
DB
z
*
$

I

Meaning
space
zero
plus
minus
credit
debit
zero suppress
check protect
currency sign
comma (decimal point)
period (decimal point)
stroke (virgule, slash)

Elementary Item. A data item that is described as not being further
logically subdivided.

End of Procedure Division. The physical position in a COBOL source program
after which no further procedures appear.

Entry. Any descriptive set of consecutive clauses terminated by a period
and written in the Identification Division, Environment Division, or Data
Division of a COBOL source program.

Environment Clause. A clause that appears as part of an Environment
Division entry.

Execution Time. (See Object Time)

Extend Mode. The state of a file after execution of an OPEN statement,
with the EXTEND phrase specified, for that file and before the execution of a
CLOSE statement for that file.

Figurative Constant. A compiler generated value referenced through the use
of certain reserved words.

F:i,le. A collection of records.

. I-58

I

\

GlossapY

File Clause. A clause that appears as part of any of the following Data
Division entries:

File description (FD)
Sort-merge file description (SD)
Conununication description (CD)

FILE-CONTROL. The name of an Environment Division paragraph in which the
data files for a given source program are declared.

File Description Entry. An entry in the File Section of the Data Division
that is composed of the level indicator FD, followed by a file-name, and then
followed by a set of file clauses as required.

File-Name. A user-defined word that names a file described in a file
description entry or a sort-merge file description entry within the File
Section of the Data Division.

File Organization. The permanent logical file structure established at the
time that a file is created.

File Section. The section of the Data Division that contains file
description entries and sort-merge file description entries together with
their associated record descriptions.

Format. A specific arrangement of a set of data.

Group Item. A named contiguous set of elementary or group items.

High Order End. The leftmost character of a string of characters.

I-0-CONTROL. The name of an Environment Division paragraph in which object
program requirements for specific input~output techniques, rerun points,
sharing of same areas by several data files, and multiple file storage on a
single input-output device are specified.

I-0 Mode. The state of a file after execution of an OPEN statement, with
the I-0 phrase specified, for that file and before the execution of a CLOSE
statement for that file.

Identifier. A data-name, followed as required, by the syntactically correct
combination of qualifiers, subscripts, and indices necessary to make unique
reference to a data item.

Imperative Statement. A statement that begins with an imperative verb and
specifies an unconditional action to be taken. An imperative statement may
consist of a sequence of imperative statements.

Implementor-Name. A system-name that refers to a particular feature avail­
able on that implementor's computing system.

Index. A computer storage position or register, the contents of which
represent the identification of a particular element in a table.

I-59

GZ.Ossmay

,Index Data Item. A data item in which the value associated with an
index-name can be stored in a form specified by the implementor.

Index-Name. A user-defined word that names an index associated with a
specific table ..

Indexed Data-Name. An identifier that is composed of a data-name, followed
by one or more index-names enclosed i~ parentheses.

Indexed File. A file with indexed organization.

Indexed Organization. The permanent logical file structure in which each
record is identified by the value of one or more keys within that record.

Input File. A file that is opened in the input mode.

Input Mode. The state of a file after execution of an OPEN statement, with
the INPUT phrase specified, for that file and before the execution of a CLOSE
statement for that file.

Input-Output File. A file that is opened in the. I-0 mode.

Input-Output Section. The section of the Environment Division that names
the files and the external media required by an object program and which pro­
vides information required for transmission and handling of data during
execution of the object program.

Input Procedure. A set of statements that is executed each time a record
is released to the sort file.

Integer. A numeric literal or a numeric data item that does not include
any character positions to the right of the assumed decimal point. Where the
term 'integer' appears in·general formats, integer must not be a numeric data
item, and must not be signed, nor zero unless explicitly allowed by the rules
of that format.

Invalid Key Condition. A condition, at object time, caused when a specific
value of the key associated with an indexed or relative file is determined to
be invalid.

Key. A data item which identifies the location of a record, or a set of
data items which serve to identify the ordering of data.

Key of Reference. The key, either prime or alternate, currently being used
to access records within an indexed file.

Key Word. A reserved word whose presence is required when the format in
which the word appears is used in a source program.

Language-Name. A system-name that specifies a particular programming
language.

Level Indicator. Two alphabetic characters that identify a specific type
of file or a position in hierarchy.

I.;..60

I

\

Glossary

Level-Number. A user-defined word which indicates the position of a data
item in the hierarchical structure of a logical record or which indicates
special properties of a data description entry. A level-number is expressed
as a one or two digit number. Level-numbers in the range 1 through 49 indi­
cate the position of a data item in the hierarchical structure of a logical
record. Level-numbers in the range 1 through 9 may be written either as a
single digit or as a zero followed by a significant digit. Level-numbers 66,
77, and 88 identify special properties of a data description entry.

Library-Name. A user-defined word that names a COBOL library that is to be
used by the compiler for a given source program compilation.

Library Text. A sequence of character-strings and/or separators in a COBOL
library.

Line. (See Report Line)

Line Number. An integer that denotes the vertical position of a report
line on a page.

Linkage Section. The section in the Data Division of the called program
that describes data items available from the calling program. These data
items may be referred to by both the calling and called program.

Literal. A character-string whose value is implied by the ordered set of
characters comprising the string.

Logical Operator. One of the reserved words AND, OR, or NOT. In the
formation of a condition, both or either of AND and OR can be used as logical
connectives. NOT can be used for logical negation.

Logical Record. The most inclusive data item. The level-number for a
record is 01~ (See Report Writer Logical Record)

Low Order End. The rightmost character of a string of characters.

Mass Storage. A storage medium on which data may be organized and main­
tained in both a sequential and nonsequential manner.

Mass Storage Control System (MSCS). An input-output control system that
directs, or controls, the processing of mass storage files.

Mass Storage File. A collection of records that is assigned to a mass
storage medium.

MCS. (See Message Control System)

Merge File. A collection of records to be merged by a MERGE statement.
The merge file is created and can be used only by the merge function.

Message. Data associated with an end of message indicator or an end of
group indicator. (See Message Indicators)

I-61

Glossa-py

Message Control System (MCS). A communication control system that supports
the processing of messages.

Message Count. The count of the number of complete messages that exist in
the designated queue of messages.

Message Indicators. EGI (end of group indicator), EMI (end of message
indicator), and ESI (end of segment indicator) are conceptual indications that
serve to notify the MCS that a specific condition exists (end of group, end of
message, end of segment).

Within the hierarchy of EGI, EMI, and ESI, an EGI is conceptually
lent to an ESI, EMI, and EGI. An EM! is conceptually equivalent to
and EMI. Thus, a segment may be terminated by an ESI, EMI, or EGI.
may be terminated by an EM! or EGI.

equiva­
an ESI

A message

Message Segment. Data that forms a logical subdivision of a message
normally associated with an end of segment indicator. (See Message Indicators)

Mnemonic-Name. A user-defined word that is associated in the Environment
Division with a specified implementor-name.

MSCS. (See Mass Storage Control System)

Native Character Set. The implementor-defined character set associated
with the computer specified in the OBJECT-COMPUTER paragraph.

Native Collating Sequence. The implementor-defined collating sequence
associated with the computer specified in the OBJECT-COMPUTER paragraph.

Negated Combined Condition. The 'NOT' logical operator immediately
followed by a parenthesized combined condition.

Negated Simple Condition. The 'NOT' logical operator immediately followed
by a simple condition.

Next Executable Sentence. The next sentence to which control will be
transferred after execution of the current statement is complete.

Next Executable Statement. The next statement· to which control will be
transferred after· execution of the "~current statement is complete.

Next Record. The record which logically follows the current record of a
file.

Noncontiguous Items.· Elementary data items, in the Working-Storage and
Linkage Sections, which bear no hierarchic relationship to other data items.

Nonnumeric Item. Adata item whose description permits its contents to be
composed of any combination of characters taken froni the computer's character
set. Certain categories of nonnumeric items may be formed from more restrict­
ed character sets.

I-62

GZossaPy

Nonnumeric Literal. A character-string bounded by quotation marks. The
string of characters may include any character in the computer's character set.
To represent a single quotation mark character within a nonnumeric literal,
two contiguous quotation marks must be used.

Numeric Character. A character that belongs to the following set of
digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

Numeric Item. A data item whose description restricts its contents to a
value represented by characters chosen from the digits 'O' through '9'; if
signed, the item may also contain a'+', '-',or other representation of an
operational sign.

Numeric Literal. A literal composed of one or more numeric characters that
also may contain either a decimal point, or an algebraic sign, or both. The
decimal point must not be the rightmost character. The algebraic sign, if
present, must be the leftmost character.

OBJECT-COMPUTER. The name of an Environment Division paragraph in which
the computer environment, within which the object program is executed, is
described.

Object of Entry. A set of operands and reserved words, within a Data
Division entry, that immediately follows the subject of the entry.

Object Program. A set or group of executable machine language instructions
and other material designed to interact with data to provide problem solutions.
In this context, an object program is generally the machine language result of
the operation of a COBOL compiler on a source program. Where there is no
danger of ambiguity, the word 'program' alone may be used in place of the
phrase 'object program'.

Object Time. The time at which an object program is executed.

Open Mode. The state of a file after execution of an OPEN statement for
that file and before the execution of a CLOSE statement for that file. The
particular open mode is specified in the OPEN statement as either INPUT,
OUTPUT, I-0 or EXTEND.

Operand. Whereas the general definition of operand is 'that component
which is operated upon', for the purposes of this publication, any lowercase
word (or words) that appears in a statement or entry format may be considered
to be an operand and, as such, is an implied reference to the data.indicated
by the operand.

Operational Sign. An algebraic sign, associated with a numeric data item
or a numerie literal, to indicate whether its value is positive.or negative.

Optional Word. A reserved word that is included in a specific format only
to improve the readability of the language and whose presence is optional to
the user when the format in which the word appears is used in a source program.

Output File. A file that is opened in either the output mode or extend
mode.

I-63

Glossary

Output Mode. The state of a file after execution of an OPEN statement, with
the OUTPUT or EXTEND phrase specified for that file and before the execution
of a CLOSE statement for that file.

Output Procedure. A set of statements to which control is given during
execution of a SORT statement after the sort function is completed, or during
execution of a MERGE statement after the merge function has selected the next
record in merged order.

Page. A vertical division of a report representing a physical separation
of report data, the separation being based on internal reporting requirements
and/or external characteristics of the reporting medium.

Page Body. That part of the logical page in which lines can be written
and/or spaced.

Page Footing. A report group that is presented at the end of a report page
as determined by the Report Writer Control System.

Page Heading. A report group that is presented at the beginning of a
report page and determined by the Report Writer Control System.

Paragraph. In the Procedure Division, a paragraph-name followed by a
period and a space and by zero, one, or more sentences. In the Identification
and Environment Divisions, a paragraph header followed by zero, one, or more
entries.

Paragraph Header. A reserved word, followed by a period and a space that
indicates the beginning of a paragraph in the Identification and Environment
Divisions. The permissible paragraph headers are:

In the Identification Division:

PROGRAM-ID.
AUTHOR.
INSTALLATION.
DATE-WRITTEN.
DATE-COMPILED.
SECURITY.

In the Environment Division:

SOURCE-COMPUTER.
OBJECT-COMPUTER.
SPECIAL-NAMES.
FILE-CONTROL.
I-0-CONTROL.

Paragraph-Name. A user-defined word that identifies and begins a paragraph
in the Procedure Division.

Phrase. A phrase is an ordered set of one or more consecutive COBOL
character-strings that form a portion of a COBOL procedural statement or of
a COBOL clause.

I--64

Glossary

Physical Record. (See Block)

Prime Record Key. A key whose contents uniquely identify a record within
an indexed file.

Printable Group. A report group that contains at least one print line.

Printable Item. A data item, the extent and contents of which are speci­
fied by an elementary report entry. This elementary report entry contains a
COLUMN NUMBER clause, a PICTURE clause, and a SOURCE, SUM or VALUE clause.

Procedure. A.paragraph or group of logically successive paragraphs, or a
section or group of logically successive sections, within the Procedure
Division.

Procedure-Name. A user-defined word which is used to name a paragraph or
section in the Procedure Division. It consists of a paragraph-name (which may
be qualified), or a section-name.

Program-Name. A user-defined word that identifies a COBOL source program.

Pseudo-Text. A sequence of character-strings and/or separators bounded by,
but not including, pseudo-text delimiters.

Pseudo-Text Delimiter. Two contiguous equal sign (=) characters used to
delimit pseudo-text.

Punctuation Character.

Character

"
(
)

=

A character that belongs to the following set:

Meaning
comma
semicolon
period
quotation mark
left parenthesis
right parenthesis
space
equal sign

Qualified Data-Name. An identifier that is composed of a data-name followed
by one or more sets of either of the connectives OF and IN followed by a data­
name qualifier.

Qualifier.
1. A data-name which is used in a reference together with another

data name at a lower level in the same hierarchy.

2. A section-name which is used in a reference together with a
paragraph-name specified in that section.

3. A library-name which is used in a reference together with a
text-name associated with that library.

Queue. A logical collection of messages awaiting transmission or
processing.

I-65

Glossary

Queue Name. A symbolic name that indicates to the MCS the logical path by
which a message or a portion of a completed message may be accessible in a
queue.

Random Access. An acces$ mode in which the program-specified value of a
key data item identifies the logical record that is obtained from, deleted
from or placed into a relative or indexed file.

Record. (See Logical Record)

Record Area. A storage area allocated for the purpose of processing the
record described in a record description entry in the File Section.

Record Description. (See Record Description Entry)

Record Description Entry. The total set of data description entries
associated with a particular record.

Record Key. A key, either the prime record key or an alternate record key,
whose contents identify a record within an indexed file.

Record-Name. A user-defined word that names a record described in a
record description entry in the Data Division.

Reference Format. A format that provides a standard method for describing
COBOL source programs.

Relation. (See Relational Operator)

Relation Character. A character that belongs to the following set:

Character Meaning
> greater than
< less than
= equal to

Relation Condition. The proposition, for which a truth value can be deter­
mined, that the value of an arithmetic expression or data item has a specific
relationship to the value of another arithmetic expression or data item. (See
Relational Operator)

Relational Operator. A reserved word, a relation character, a group of
consecutive reserved words, or a group of consecutive reserved words and
relation characters used in the construction of a relation condition. The
permissible operators and their meaning are:

Relational Operator
IS [NOT] GREATER THAN}
IS [NOT] >

IS [NOT] LESS THAN}
IS [NOT] <

IS fNOT] EQUAL TO}
IS fNOT] =

Meaning

Greater than or not greater than

Less than or not less than

Equal to or not equal to

Relative File. A file with relative organization.

I-66

Relative Key. A key whose contents identify a logical record in a
relative file.

Glossary

Relative Organization. The permanent logical file structure in which each
record is uniquely identified by an integer value greater than zero, which
specifies the record's logical ordinal position in the file.

Report Clause. A clause, in the Report Section of the Data Division, that
appears in a report description entry or a report group description entry.

Report Description Entry. An entry in the Report Section of the Data
Division that is composed of the level indicator RD, followed by a report
name, followed by a set of report clauses as required.

Report File. An output file whose file description entry contains a REPORT
clause. The contents of a report file consist of records that are written
under control of the Report Writer Control System.

Report Footing. A report group that is presented only at the end of a
report.

Report Group. In the Report Section of the Data Division, an 01 level­
number entry and its subordinate entries.

Report Group Description Entry. An entry in the Report Section of the Data
Division that is composed of the level-number 01, the optional data-name, a
TYPE clause, and an optional set of report clauses.

Report Heading. A report group that is presented only at the beginning of
a report.

Report Line. A division of a page representing one row of horizontal
character positions. Each character position of a report line is aligned
vertically beneath the corresponding character position of the report line
above it. Report lines are numbered from 1, by 1, starting at the top of the
page.

Report-Name. A user-defined word that names a report described in a report
description entry within the Report Section of the Data Division.

Report Section. The section of the Data Division that contains one or more
report description entries and their associated report group description
entries.

Report Writer Control System (RWCS). An object time control system,
provided by the implementor, that accomplishes the construction of reports.

Report Writer Logical Record. A record that consists of the Report Writer
print line and associated control information necessary for its selection and
vertical positioning.

Reserved Word. A COBOL word specified in the list of words which may be
used in COBOL source programs, but which must not appear in the programs as
user-defined words or system-names.

I-67

Glossary

Routine-Name. A user-defined word that identifies a procedure written in
a language other than COBOL.

Run Unit. A set of one or more object programs which function, at object
time, as a unit to provide problem solutions.

RWCS. (See Report Writer Control System)

Section. A set of zero, one, or more paragraphs or entries, called a
section body, the first of which is preceded by a section header. Each
section consists of the section header and the related section body.

Section Header. A combination of words followed by a period and a space
that indicates the beginning of a section in the Environment, Data and
Procedure Division.

In the Environment and Data Divisions, a section header is composed of
reserved words followed by a period and a space. The permissible section
headers are:

In the Environment Division:

CONFIGURATION SECTION.
INPUT-OUTPUT :SECTION.

In the Data Division:

FILE SECTION.
WORKING-STORAGE SECTION.
LINKAGE SECTION.
COMMUNICATION SECTION.
REPORT SECTION.

In the Procedure Division, a section header is composed of a section-name,
followed by the reserved word SECTION, followed by a segment-number (optional),
followed by a period and a space.

Section-Name. A user-defined word which names a section in the Procedure
Division.

Segment-Number. A user-defined word which classifies sections in the
Procedure Division for purposes of segmentation. Segment-numbers may contain
only the characters 'O', '1', ..• , '9'. A segment-number may be expressed
either as a one or two digit number.

Sentence. A sequence of one or more statements, the last of which is
terminated by a period followed by a space.

Separator. A punctuation character used to delimit character-strings.

Sequential Access. An access mode in which logical records are obtained
from or placed into a file in a consecutive predecessor-to-successor logical
record sequence determined by the order of records in the file.

Sequential File. A file with sequential organization.

I-68

Glossary

Sequential Organization. The permanent logical file structure in which a
record is identified by a predecessor-successor relationship established when
the record is placed into the file.

Sign Condition. The proposition, for which a truth value can be determined,
that the algebraic value of a data item or an arithmetic expression is either
less than, greater than, or equal to zero.

Simple Condition. Any single condition chosen from the set:

relation condition
class condition
condition-name condition
switch-status condition
sign condition
(simple-condition)

Sort File. A collection of records to be sorted by a SORT statement. The
sort file is created and can be used by the sort function only.

Sort-Merge File Description Entry. An entry in the File Section of the
Data Division that is composed of the level indicator SD, followed by a file­
name, and then followed by a set of file clauses as required.

Source. The symbolic identification of the originator of a transmission to
a queue.

SOURCE-COMPUTER. The name of an Environment Division paragraph in which
the computer envir~nment, within which the source program is compiled, is
described.

Source Item. An identifier designated by a SOURCE clause that provides
the value of a printable item.

Source Program. Although it is recognized that a source program may be
represented by other forms and symbols, in this document it always refers to a
syntactically correct set of COBOL statements beginning with an Identification
Division and ending with the end of the Procedure Division. In contexts where
there is no danger of ambiguity, the word 'program' alone may be used in place
of the phrase 'source program'.

I-69

Glossary

Special Character.

Character
+

*
I

$

"
(
)
>
<

A character that belongs to the following set:

Meaning
plus sign
minus sign
asterisk
stroke (virgule, slash)
equal sign
currency sign
comma (decimal point)
semicolon
period (decimal point)
quotation mark
left parenthesis
right parenthesis
greater than symbol
less than symbol

Special-Character Word. A reserved word which is an arithmetic operator or
a relation character.

SPECIAL-NAMES. The name of an Environment Division paragraph in which
implementor-names are related to user specified mnemonic-names.

Special Registers. Compiler generated storage areas whose primary use is
to store information produced in conjunction with the user of specific COBOL
features.

Standard Data Format. The concept used in describing the characteristics
of data in a COBOL Data Division under which the characteristics or properties
of the data are expressed in a form oriented to the appearance of the data on
a printed page of infinite length and breadth, rather than a form oriented to
the manner in which the data is stored internally in the computer, or on a
particular external medium.

Statement. A syntactically valid combination of words and symbols written
in the Procedure Division beginning with a verb.

Sub-Queue. A logical hierarchical division of a queue.

Subj ~.c-t.. of Entry. An operand or reserved word that appears immediately
following the level indicator or the level-number in a Data Division entry.

Subprogram. (See Called Program)

Subscript. An integer whose value identifies a particular element in a
table.

Subscripted Data-Name. An identifier that is composed of a data~name
followed by one or more subscripts enclosed in parentheses.

Sum Counter. A signed numeric data item establish~d by a SUM clause in the
Report Section of the Data Division. The sum counter is used by the Report
Writer Control System to contain the result of designated summing operations
that take place during production of a report.

I-70

. Glossary

Switch-Status Condition. The proposition, for which a truth value can be
determined, that an implementor-defined switch,· capable of being set to an
'on' or 'off' status, has been set to a specific status.

System-Name. A COBOL word which is used to communicate with the operating
environment.

Table. A set of logically consecutive items of data that are defined in
the Data Division by means of the OCCURS clause.

Table Element. A data item that belongs to the set of repeated items
comprising a table.

Terminal. The originator of a transmission to a queue, or the receiver of
a transmission from a queue.

Text-Name. A user-defined word which identifies library text.

Text-Word. Any character-string or separator, except space, in a COBOL
library or in pseudo-text.

Truth Value. The representation of the result of the evaluation of a
condition in terms of one of two values

true
false

Unary Operator. A plus (+) or a minus (-) sign, which precedes a variable
or a left parenthesis in an arithmetic expression and which has the effect of
multiplying the expression of +I or -1 respectively.

Unit. A module of mass storage the dimensions of which are determined by
each implementor.

User-Defined Word. A COBOL word that must be supplied by the user to
satisfy the format of a clause or statement.

Variable. A data item whose value may be changed by execution of the
object program. A variable used in an arithmetic expression must be a numeric
elementary item.

Verb. A word that expresses an action to be taken by a COBOL compiler or
object program.

Word. A character-string of not more than 30 characters which forms a
user-defined word, a system-name, or a reserved word.

Working-Storage Section. The section of the Data Division that describes
working storage data items, composed either of noncontiguous items or of
working storage records or of both.

77-Level-Description~Entry. A data description entry that d~scribes a
noncontiguous dataitem with the level-number 77.

I-71

Notation

5. OVERALL LANGUAGE CONSIDERATION

5.1 INTRODUCTION

The language considerations and rules specified in this chapter, apply to
the highest level of the American National Standard COBOL. When a particular
level of a module does not allow all of these language concepts, the restric­
tions will be pointed out in the chapter describing that language element. It
should also be noted that restrictions contained in one module might possibly
affect other modules. For example, series connectives are not allowed in
Level 1 of the Nucleus; therefore, any module which is combined with Level 1
of the Nucleus would have the same restriction. The flowcharts in this docu­
ment illustrate the logic of the statement under which they are contained and
are not meant to dictate implementation.

5.2 NOTATION USED IN FORMATS AND RULES

5.2.1 Definition of a General Format

A general format is the specific arrangement of the elements of a clause
or a statement. A clause or a statement consists of elements as defined below.
Throughout this document a format is shown adjacent to information defining the
clause or statement. When more than one specific arrangement is permitted,
the general format is separated into numbered formats. Clauses must be writ­
ten in the sequence given in the general formats. (Clauses that are optional
must appear in the sequence shown if they are used.) In certain cases, stated
explicitly in the rules associated with a given format, the clauses may appear
in sequences other than that shown. Applications, requirements or restric­
tions are shown as rules. Throughout this document, specifications unique to
the high level are enclosed in boxes.

5.2.1.1 Syntax Rules

Syntax rules are those rules that define or clarify the order in which words
or elements are arranged to form larger elements such as phrases, clauses, or
statements. Syntax rules also impose restrict~ons on individual words or
elements.

These rules are used to define or clarify how the statement must be
written, i.e., the order of the elements of the statement and restrictions
on what each element may represent.

5.2.1.2 General Rules

A general rule is a rule that defines or clarifies the meaning or relation­
ship of meanings of an element or set of elements. It is used to define or
clarify the semantics of the statement and the effect' that it has on either
execution or compilation.

5.2.1.3 Elements

Elements which make up a clause or a statement consist of uppercase words,
lowercase words, level....;numbers, brackets, braces, connectives and special
characters.

I-72

Notation

5. 2.1. 4 Words

All underlined uppercase words are called key words and are required when
the functions of which they are a part are used. Uppercase words which are
not underlined are optional to the user and may or may not be present in the
source program. Uppercase words, whether underlined or not, must be spelled
correctly.

Lowercase words, in a general format, are generic terms used to represent
COBOL words, literals, PICTURE character-strings, comment-entries, or a
complete syntactical entry that must be supplied by the user. Where generic
terms are repeated in a general format, a number or letter appendage to the
term serves to identify that term for explanation or discussion.

5.2.1.5 Level-Numbers

When specific level-numbers appear in data description entry formats,
those specific level-numbers are required when such entries are used in a
COBOL program. In this document, the form 01, 02, ••• , 09 is used to indi­
cate level-numbers 1 through 9.

5.2.1.6 Brackets and Braces

When a portion of a general format is enclosed in brackets, [] , that
portion may be included or omitted at the user's choice. Braces, { } ,
enclosing a portion of a general format means a selection of one of the
options contained within the braces must be made. In both cases, a choice is
indicated by vertically stacking the possibilities. When brackets or braces
enclose a portion of a format, but only one possibility is shown, the function
of the brackets or braces is to delimit that portion of the format to which a
following ellipsis applies. (See paragraph 5.2.1.7, The Ellipsis.) If an
option within braces contains only reserved words that are not key words, then
the option is a default option (implicitly selected unless one of the other
options is explicitly indicated).

5.2.1.7 The Ellipsis

In text, the ellipsis (•••) may show the omission of a portion of a source
program. This meaning becomes apparent in context.

In the general formats, the ellipsis represents the position at which
repetition may occur at the user's option. The portion of the format that
may be repeated is determined as follows:

Given ••• in a clause or statement format, scanning right to left, deter­
mine the] or} immediately to the left of the ••• ; continue scanning right
to left and determine the logically matching [or { ; the ••• applies to the
words between the determined pair of delimiters.

5.2.1.8 Fonnat Punctuation

The .punctuation characters comma and semicolon are shown in some formats.
Where shown in the formats, they are optional and may be included or omitted
by the user. In the source program these two punctuation characters are

I-73

Notation

interchangeable and either one may be used anywhere one of them is shown in
the formats. Neither one may appear immediately preceding the first clause
of an entry or paragraph.

If desired, a semicolon or comma may be used between statements in the
Procedure Division.

Paragraphs within the Identification and Procedure Divisions, and the
entries within the Environment and Data Divisions must be terminated by the
separator period.

5.2.1.9 Use of Certain Special Characters in Formats

The characters'+', '-', '>', '<', '= 1
, when appearing in formats, although

not underlined, are required when such formats are used.

I~74

Separators

5.3 LANGUAGE CONCEPTS

5.3.1 Character Set

The most basic and indivisible unit of the language is the character. The
set of characters used to form COBOL character-strings and separators includes
the letters of the alphabet, digits and special characters. The character set
consists of 51 characters as defined under COBOL Character.Set in the glossary
on page I-54. In the case of nonnumeric literals, comment-entries, and comment
lines, the character set is expanded to include the computer's entire character
set. The characters allowable in each type of character-string and as separa­
tors are defined in paragraph 5.3.2 and in the glossary beginning on page I-52.

Since the character set of a particular computer may not have the characters
defined, single character substitution must be made as required. When such a
character set contains fewer than 51 characters, double characters must be
substituted for the single characters.

5.3.2 Language Structure

The individual characters. of the language are concatenated to form
character-strings and separators. A separator may be concatenated with another
separator or with a character-string. A character-string may only be concate­
nated with a separator. The concatenation of character-strings and separators
forms the text of a source program.

5.3.2.1 Separators

A separator is a string of one or more punctuation characters. The rules
for formation of separators are:

(1) The punctuation character space is a separator. Anywhere a space is
used as a separator, more than one space may be used.

(2) The punctuation characters comma, semicolon and period, when immediate~
ly followed by a space, are separators. These separators may appear in a COBOL
source program only where explicitly permitted by the general formats, by
format punctuation rules (see page I-73, Format Punctuation), by statement and
sentence structure definitions (see page 1~101, Statements and Sentences), or
reference format rules (see page I-105, Reference Format).

(3) The punctuation characters right and left parenthesis are separators.
Parentheses may appear only in balanced pairs of left and right parentheses
delimiting subscripts, indices, arithmetic expressions, or conditions.

(4) The punctuation character quotation mark is a separator. An opening
quotation mark must.be immediately preceded by a space or left parenthesis; a
closing quotation mark must be immediately followed by one of the separators
space, comma, semicolon, period, or right parenthesis.

Quotation marks may appear only in balanced pairs delimiting nonnumeric
literals except when the literal is continued. (See page I-106, Continuation
of Lines.)

I-75

Character-Strings

(5) Pseudo-text delimiters are separators. An opening pseuao-text delimiter
must be immediately preceded by a space; a closing pseudo-text delimiter must
be immediately followed by one of the separators space, comma, semicolon, or
period.

Pseudo-text delimiters may appear only in balanced pairs delimiting
pseudo-text.

(6) The separator space may optionally immediately precede all separators
except:

a. As specified by reference format rules (see page I-105, Reference
Format), and

b. The separator closing quotation mark. In this case, a preceding
space is considered as part of the nonnumeric literal and not as a separator.

c. The opening pseudo-text delimiter, where the preceding space is
required.

(7) The separator space may optionally immediately follow any separator
except the opening quotation mark. In this case, a following space is consid­
ered as part of the nonnumeric literal and not as a separator.

Any punctuation character which appears as part of the specification of a
PICTURE character-string or numeric literal is not considered as a punctuation
character, but rather as a symbol used in the specification of that PICTURE
character-string or numeric literal. PICTURE character-strings are delimited
only by the separators space, comma, semicolon, or period.

The rules established for the formation of separators do not apply to the
characters which comprise the contents of nonnumeric literals, comment-entries,
or comment lines.

5.3.2.2 Character-Strings

A character-string is a character or a sequence of contiguous characters
which forms a COBOL word~ a literal, a PICTURE character-string, or a comment­
entry. A character-string is delimited by separators.

5.3.2.2.1 COBOL Words

A COBOL word is a character-string of not more than 30 characters which
forms a user-defined word, a system-name, or a reserved word. Within a given
source program these classes form disjoint sets; a COBOL word·may belong to
one and only one of these classes.

5. 3. 2. 2 .1.1 User-Defined Words

A user-defined word is a.COBOL word that must be supplied by the user to
satisfy the format of a clause or statement~ Each character of a user-defined
word is selected from the set of characters 'A', 'B', 'C', ••• 'Z', 'O', •••
'9', and '-', except that the'-' may not appear as the first or last character.

I-76

There are seventeen . (l 7) types of user-defined words:

alphabet-name
cd-name
condition-name
data-name
file-name
index-name
level-number
library-name
mnemonic-name
paragraph-name
program-name
record-name
report-name
routine-name
section-name
segment-number
text-name

User-Defined Words

Within a given source program, fifteen (15) of these seventeen (17) types
of user-defined words are grouped into thirteen (13) disjoint sets. The
disjoint sets are:

alphabet-names
cd-names
condition-names, data-names, and record-names
file-names
index-names
library-names
mnemonic-names
paragraph-names
program-names
report-names
routine-names
section-names
text-names

All user-defined words, except segment-numbers and level-numbers, can belong
to one and only one of these disjoint sets. Further, all user-defined words
within a given disjoint set must be unique, either because no other user-defined
word in the same source program has identical spelling or punctuation, or
because uniqueness can be insured by qualification. (See page I-87, Uniqueness
of Reference.)

With the exception of paragraph-name, section-name, level-number and segment­
number, all user-defined words must contain at least one alphabetic character.
Segment-numbers and level-numbers need not be unique; a given specification of
a segment-number or level-number may be identical to any other segment-number
or level-number and may even be identical to a paragraph-name or section-name.

I-77

System-Names

5.3.2.2.1.1.1 Conditton-Name

A condition-name is a name which is assigned to a specific value, set of
values, or range of values, within a complete set of values that a data item
may assume. The data item itself is called a conditional variable.

Condition-names may be defined in the Data Division or in the SPECIAL-NAMES
paragraph within the Environment Division where a condition-name must be assigned
to the ON STATUS or OFF STATUS, or both, of implementor-defined switches.

A condition-name is used only in the RERUN clause or in conditions as an
abbreviation for the relation condition; this relation condition posits that
the associated conditional variable is equal to one of the set of values to
which that condition-name is assigned.

5.3.2.2.1.1.2 Mnemonic-Name

A mnemonic-name assigns a user-defined word to an implementor-name. These
associations are established in the SPECIAL-NAMES paragraph of the Environment
Division. (See page II-8, The SPECIAL-NAMES Paragraph.)

5.3.2.2.1.1~3 Paragraph-Name

A paragraph-name is a word which names a paragraph in the Procedure Division.
Paragraph-names are equivalent if, and only if, they are composed of the same
sequence of the same number of digits and/or characters.

5.3.2.2.1.1.4 Section-Name

A section-name is a word which names a section in the Procedure Division.
Section-names are equivalent if, and only if, they are composed of the same
sequence of the same number of digits arid/or characters.

5.3.2.2.1.1.5 Other User-Defined Names

See the glossary beginning on page I-52 for definitions of all other types
of user-defined words.

5. 3. 2. 2 .1. 2 System-Names

A system-name is a COBOL word which is used to communicate with the operat­
ing environment. Rules for the formation of a system-name are defined by the
implementor, except that each character used in the formation of a system-name
must be selected from the set of characters. 'A', 'B', 'C', .•. 'Z', 'O', ...
'9', and'-', except that the'-' may not appear as the first or last character.

There are three (3) types of system-names:

computer-name
implementor-name
language-name

Within a given implementation these three types of system-names form
disjoint sets; a given system-name may belong to one and only one of tllem.

I-78

Reserved Words

The system-names listed on page I-78 are individually defined in the glossary
beginning on page I-52.

5.3.2.2.1.3 Reserved Words

A reserved word is a COBOL word that is one of a specified list of words
which may be used in COBOL source programs, but which must not appear in the
programs as user-defined words or system-names. Reserved words can only be
used as specified in the general formats. (See page I-109, Reserved Words.)

There are six (6) types of reserved words:

Key words
Optional words
Connectives
Special registers
Figurative constants
Special-character words

5.3.2.2.1.3.1 Key Words

A key word is a word whose presence is required when the format in which
the word appears is used in a source program. Within each format, such words
are uppercase and underlined.

Key words are of three types:

(1) Verbs such as ADD, READ, and ENTER.

(2) Required words, which appear in statement and entry formats.

(3) Words which have a specific functional meaning such as NEGATIVE,
SECTION, etc.

5.3.2.2.1.3.2 Optional Words

Within each format, uppercase words that are not underlined are called
optional words and may appear at the user's option. The presence or absence
of an optional word does not alter the semantics of the COBOL program in
which it appears.

5. 3. 2. 2. l. 3. 3 Connectives

There are three types of connectives:

(1) Qualifier connectives that are used to associate a data-name, a
condition-name, a text-name, or a paragraph-name with its qualifier! OF, IN

(2) Series connectives that link two or more consecutive operands:
, (separator comma) or ; (separator semicolon)

(3) Logical connectives that are used in the formation of conditions:
AND, -OR

I-79

Literals

5.3.2.2.1.3.4 Special Registers

Certain reserved words are used to name and reference special registers.
Special registers are certain c_ompiler generated storage areas whose primary
use is to store information produced in conjunction with the use of specific
COBOL features. These special registers include the following: LINAGE-COUNTER
(see page IV-3), LINE-COUNTER (see page VIII-1), PAGE-COUNTER (see page VIII-1),
and DEBUG-ITEM (see page XI-1).

5.3.2.2.1.3.5 Figurative Constants

Certain reserved words are used to name and reference specific constant
values. These reserved words are specified on page I-81, Figurative Constant
Values.

5.3.2.2.1.3.6 Special-Character Words

The arithmetic operators and relation characters are reserved words. (See
the glossary beginning on page I-52.)

5.3.2.2.2 Literals

A literal is a character-string whose value is implied by an ordered set of
characters of which the literal is composed or by specification of a reserved
word which references a figurative constant. Every literal belongs to one of
two types, nonnumeric or numeric.

5.3.2.2.2.1 Nonnumeric Literals

A nonnumeric literal is a character-string delimited on both ends by quota­
tion marks and consisting of any allowable character in the computer's charac­
ter set. The implementor must allow for nonnumeric literals of 1 through 120
characters in length. To represent a single quotation mark character within
a nonnumeric literal, two contiguous quotation marks must be used. The value
of a nonnumeric literal in the object program is the string of characters
itself, except:

(1) The delimiting quotation marks are excluded, and

(2) Each embedded pair of contiguous quotation marks represents a single
quotation mark character.

All other punctuation characters are part of the value of the nonnumeric
literal rather than separators; all nonnumeric literals are category alpha­
numeric. (See page II-18, The PICTURE Clause.)

5.3.2.2.2.2 Numeric Literals

A numeric literal is a character-string whose characters are selected from
the digits 'O' through '9', the plus sign, the minus sign, and/or the decimal
point. The implementormust allow for numeric literals of 1 through 18 digits
in length. The rules for the formation of numeric literals are as follows:

(1) A literal must contain at least one digit~

I-80

Figurative Constants

(2) A literal must not contain more than one sign character. If a sign is
used, it must appear as the leftmost character of the literal. If the literal
is unsigned, the literal is positive.

(3) A literal must not contain more than one decimal point. The decimal
point is treated as an assumed· decimal point, and may appear anywhere within
the literal except as the rightmost character. If the literal contains no
decimal point, the literal is an integer.

If a literal conforms to the rules for the formation of numeric liter­
als, but is enclosed in quotation marks, it is a nonnumeric literal and it is
treated as such by the compiler.

(4) The value of a numeric literal is the algebraic quantity represented
by the characters in the numeric literal. Every numeric literal is category
numeric. (See page II-18, The PICTURE Clause.) The size of a numeric literal
in standard data format characters is equal to the number of digits specified
by the user.

5.3.2.2.2.3 Figurative Constant Values

Figurative constant values are generated by the compiler and referenced
through the use of the reserved words given below. These words must not be
bounded by quotation marks when used as figurative constants. The singular
and plural forms of figurative constants are equivalent and may be used
interchangeably.

The figurative constant values and the reserved words used to reference
them are as follows:

ZERO
ZEROS
ZEROES

SPACE
SPACES

HIGH-VALUE
HIGH-VALUES

LOW-VALUE
LOW-VALUES

QUOTE
QUOTES

ALL literal

Represents the value 'O', or one or more of the character
'O', depending on context.

Represents one or more of the character space from the
computer's character set.

Represents one or more of the character that has the high­
est ordinal position in the program collating sequence.

Represents one or more of the character that has the lowest
ordinal position in the program collating sequence.

' ' Represents one or more of the character " The word
QUOTE or QUOTES cannot be used in place of a quotation mark
in a source program to bound a nonnumeric literal.. Thus,
QUOTE ABD QUOTE is incorrect as a way of stating the
nonnumeric literal "ABD".

Represents one or more of the string of characters compris­
ing the literal. The literal must be· either a nonnumeric
literal or a figurative constant other than ALL literal.
When a figurative constant is used, the word ALL is
redundant and is used for readability only.

I-81

Data Description Concepts

When a figurative constant represents a string of one or more characters,
the length of the string is determined by the compiler from context according
to the following rules: ·

(1) When a figurative constant is associated with another data item, as
when the figurative constant is moved to or compared with another data item,
the string of characters specified by the figurative constant is repeated
character by character on the right until the size of the resultant string is
equal to the size in characters of the associated data item. This is done
prior to .and independent of the application of any JUSTIFIED clause that may
be associated with the data item.

(2) When a figurative constant is not associated with another data item,
as when the figurative constant appears in a DISPLAY, STRING, STOP or UNSTRING
statement, the length of the string is one character.

A figurative constant may be used wherever a literal appears in a format,
except that whenever the literal is restricted to having -0nly numeric char­
acters in it, the only figurative constant permitted is ZERO (ZEROS, ZEROES).

When the figurative constants HIGH-VALUE(S) or LOW-VALUE(S) are used in
the source program, the actual character associated with each figurative
constant depends upon the program collating sequence specified. (See page
II-6, The OBJECT-COMPUTER Paragraph, and page II-8, The SPECIAL-NAMES
Paragraph.)

Each reserved word which is used to reference a figurative constant value
is a distinct character-string with the exception of the construction 'ALL
literal' which is composed of two distinct character-strings.

5.3.2.2.3 PICTURE Character-Strings

A PICTURE character-string consists of certain combinations of characters
in the COBOL character set used as symbols. See page II~18, The PICTURE
Clause, for the discussion of the PICTURE character-string and for the rules
that govern their use.

Any punctuation character which appears as part of the specification of a
PICTURE character-string is not considered as a punctuation character, but
rather as a symbol used in the specification of that PICTURE character-string.

5.3.2.2.4 Comment-Entries

A comment-entry is an entry in the Identification Division that may be any
combination of characters from the computer's character set.

5.3:3 Concept of Computer Independent Data Description

To make data as computer independent as possible, the characteristics or
properties of the data are described in relation to a standard data format
rather than an equipment-oriented format. This standard data format is
oriented to general data processing applications and uses the decimal system
to represent numbers (regardless of the radix used by the computer) and the
remaining characters in the COBOL character set to describe nonnumeric data
items.

I-82

Data Description Concepts

5.3.3.1 Logical Record and File Concept

The approach taken in defining file information is to distinguish between
the physical aspects of the file and the conceptual characteristics of the
data contained within the file.

5.3.3.1.1 Physical Aspects of a File

The physical aspects of a file describe the data as it appears on the
input or output media and include such features as:

(1) The grouping of logical records within the physical limitations of
the file medium.

(2) The means by which the file can be identified.

5.3.3.1.2 Conceptual Characteristics of a File

The conceptual characteristics of a file are the explicit definition of
each logical entity within the file itself. In a COBOL program, the input
or output statements refer to one logical record.

It is important to distinguish between a physical record and a logical
record. A COBOL logical record is a group of related inforrr~tion, uniquely
identifiable, and treated as a unit.

A physical record is a physical unit of information whose size and record­
ing mode is convenient to a particular computer for the storage of data on an
input or output device. The size of a physical record is hardware dependent
and bears no direct relationship to the size of the file of information
contained on a device.

A logical record may be contained within a single physical unit; or several
logical records may be contained within a single physical unit; or, in the
case of mass storage files, a logical record may require more than one
physical unit to contain it. There are several source language methods
available for describing the relationship of logical records and physical
units. When a permissible relationship has been established, control of
the accessibility of logical records as related to the physical unit must be
provided by the interaction of the object program on the implementor's
hardware and/or software system. In this document, references to records
means to logical records, unless the term 'physical record' is specifically
used.

The concept of a logical record is not restricted to file data but is
carried over into the definition of working storage. Thus, working storage
may be grouped into logical records and defined by a series of record descrip­
tion entries.

5.3.3.1.3 Record Concepts

The record description consists of a set of data description entries which
describe the characteristics of a particular record. Each data description
entry consists of a level-number followed by a data-name, if required, followed
by a series of independent clauses, as required.

I-83

Data Description Concepts

5.3.3.2 Concept of Levels

A level concept is inherent in the structure of a logical record. This
concept arises from the need to specify subdivisions of a record for the
purpose of data reference. Once a subdivision has been specified, it may be
further subdivided to permit more detailed data referral.

The most basic subdivisions of a record, that is, those not further sub­
divided, are called elementary items; consequently, a record is said to
consist of a sequence of elementary items, or the record itself may be an
elementary item.

In order to refer to a set of elementary items, the elementary items are
combined into groups. Each group consists of a named sequence of one or more
elementary items. Groups, in turn, may be combined into groups of two or
more groups, etc. Thus, an elementary item ma:y belong to more than one group.

5.3.3.2.1 Level-Numbers

A system of level-numbers shows the organization of elementary items and
group items. Since records are the most inclusive data items, level-numbers
for records start at 01. Less inclusive data items are assigned higher (not
necessarily successive) level-numbers not greater in value than 49. There
are special level-numbers 66, 77, and 88, which are exceptions to this rule
(see below). Separate entries are written in the source program for each
level-number used.

A group includes all group and elementary items following it until a level­
number less than or equal to the level-number of that group is encountered.
All items which are immediately subordinate to a given group item must be
described using identical level-numbers greater than the level-number used to
describe that group item.

Three types of entries exist for which there is no true concept of level.
These are:

(1) Entries that specify elementary items or groups introduced by a
RENAMES clause,

(2) Entries that specify noncontiguous working storage and linkage data
items,

(3) Entries that specify condition-names.

Entries describing items by means of RENAMES clauses for the purpose of
regrouping data items have been assigned the special level-number 66.

Entries that specify noncontiguous data items, which are not subdivisions
of other items, and are not themselves subdivided, have been assigned the
special level~number 77.

Entries that specify condition-names, to be associated with particular
values of a conditional variable, have been assigned the special level-number
88.

I-84

Data Description Concepts

5.3.3.3 Concept of Classes of Data

The five categories of data items (see page II-18, The PICTURE Clause) are
grouped into three classes: alphabetic, numeric, and alphanumeric. For
alphabetic and numeric, the classes and categories are synonymous. The
alphanumeric class includes the categories of alphanumeric edited, numeric
edited and alphanumeric (without editing). Every elementary item except for
an index data item belongs to one of the classes and further to one of the
categories. The class of a group item is treated at object time as alpha­
numeric regardless of the class of elementary items subordinate to that group
item. The following chart depicts the relationship of the class and
categories of data items.

LEVEL OF ITEM CLASS CATEGORY

Alphabetic Alphabetic

Numeric Numeric

Elementary Numeric Edited

Alphanumeric Alphanumeric Edited

Alphanumeric

Alphabetic

Numeric

Nonelementary Alphanumeric Numeric Edited

(Group) Alphanumeric Edited

Alphanumeric

5.3.3.4 Selection of Character Representation and Radix

The value of a numeric item may be represented in either binary or decimal
form depending on the equipment. In addition there are several ways of
expressing decimal. Since these representations are actually combinations of
bits, they are commonly called binary-coded decimal forms. The selection of
radix is generally dependent upon the arithmetic capability of the computer.
If more than one arithmetic radix is provided, the selection is dependent
upon factors included in such clauses as USAGE. The binary-coded decimal
form is also used to represent characters and symbols that are alphanumeric
items.

The selection of the proper binary-coded alphanumeric or binary-coded
decimal form is dependent upon the capability of the computer and its
external media.

When a computer provides more than one means of representing data, the
standard data format must be used if not otherwise specified by the data
description. If both the external medium and the computer are cap.able of
handling more than one form of data representation, or if there is no external
medium associated with the data, the selection is dependent on factors

I-85

Data Description Concepts

included in USAGE> PICTURE, etc., clauses. Each implementor provides a
complete explanation of the possible forms on the computer for which he is
implementing COBOL. The method used in selecting the proper data form is
also provided to allow the programmer to anticipate and/or control the
selection.

The size of an elementary data item or a group item is the number of char­
acters in standard data format of the item. Synchronization and usage may
cause a difference between this size and the actual number of characters
required for the internal representation.

5.3.3.5 Algebraic Signs

Algebraic signs fall into two categories: operational signs, which are
associated with signed numeric data items and signed numeric literals to
indicate their algebraic properties; and editing signs, which appear
on edited reports to identify the sign of the item.

The SIGN clause permits the programmer to state explicitly the location
of the operational sign. The clause is optional; if it is not used operation­
al signs will be represented as defined by the implementor.

Editing signs are inserted into a data item through the use of the sign
control symbols of the PICTURE clause.

5.3.3.6 Standard Alignment Rules

The standard rules for positioning data within an elementary item depend
on the category of the receiving item. These rules are:

(1) If the receiving data item is described as numeric:

a. The data is aligned by decimal point and is moved to the receiving
character positions with zero fill or truncation on either end as required.

b. When an assumed decimal point is not explicitly specified, the
data item is treated as if it had an assumed decimal point immediately
following its rightmost character and is aligned as in paragraph la above.

(2) If the receiving data item is a numeric edited data item, the data
moved to the edited data item is aligned by decimal point with zero fill or
truncation at either end as required within the receiving character positions
of the data item, except where editing requirements cause replacement of the
leading zeros •

(3) If the receiving data item is alphanumeric (other than a numeric
edited data item), alphanumeric edited or alphabetic, the sending data is
moved to the receiving character positions and aligned at the leftmost char­
acter position in the data item with space fill or truncation to the right,
as required.

If the JUSTIFIED clause is specified for the receiving item, these stan­
dard rules are modified as described in the JUSTIFIED clause on page II-16.

I-86

QuaZifiaation

5.3.3.7 Item Alignment for Increased Object-Code Efficiency

Some computer memories are organized in such a way that there are natural
addressing boundaries in the computer memory (e.g., word boundaries, half-word
boundaries, byte boundaries). The way in which data is stored is determined by
the object program, and need not respect these natural boundaries.

However, certain uses of data (e.g., in arithmetic operati~ns or in
subscripting) may be facilitated if the data is stored so as to be aligned on
these natural boundaries. Specifically, additional machine operations in the
object program may be required for the accessing and storage of data if
portions of two or more data items appear between adjacent natural boundaries,
or if certain natural boundaries bifurcate a single data item.

Data items which are aligned on these natural boundaries in such a way as
to avoid such additional machine operations are defined to be synchronized.
A synchronized item is assumed to be introduced and carried in that form;
conversion to synchronized form occurs only during the execution of a proce­
dure (other than READ or WRITE) which stores data in the item.

Synchronization can be accomplished in two ways:

(1) By use of the SYNCHRONIZED clause

(2) By recogniz.ing the appropriate natural boundaries and organizing the
data suitably without the use of the SYNCHRONIZED clause. (See page II-34,
The SYNCHRONIZED Clause, General Rule 9.)

Each implementor who provides for special types of alignment will specify
the precise interpretatfons which are to be made.

5.3.3.8 Uniqueness of Reference

5.3.3.8.1 Qualffication

Every user-specified name that defines an element in a COBOL source program
must be unique, either because no other name has the identical spelling and
hyphenation, or because the name exists within a hierarchy of names such that
references to the name can be ma.de unique by mentioning one or more of the
higher levels of the hierarchy. The higher levels are called qualifiers and
this process that specifies uniqueness is called qualification. Enough
qualification must be mentioned to make the name unique; however, it may not
be necessary to mention all levels of the hierarchy. Within the Data Division,
all data-names used for qualification must be associated with a level indicator
or a level-number. Therefore, two identical data-names must not appear as
entries subordinate to a group item unless they are capable of being ma.de
unique through qualification. In the Procedure Division two.identical
paragraph-names must not appear in the same section.

In the hierarchy of qualification, names associated with a level indicator
are the most significant, then those names associated with level-number 01,
then names associated with level-n.umber 02, • • • , 49. A section-name is the
highest (and the only) qualifier available for a paragraph-name. Thus, the
most significant name in the hierarchy must be unique and cannot be qualified.
Subscripted or indexed data-names and conditional variables, as well as

I-87

Quali fiaation

procedure-names and data-names, may be made unique by qualification. The
name of a conditional variable can be used as a qualifier for any of its
condition-names. Regardless of the available qualification, no name can be
both a data-name and procedure-name.

Qualification is performed by following a data-name, a condition-name, a
paragraph-name, or a text-name by one or more phrases composed of a qualifier
preceded by IN or OF. IN and OF are logically equivalent.

The general formats for qualification are:

Format 1

{ data-name-! J [{OF} 1 condition-name IN data-name-2 • • •

Format 2

paragraph-name [{~~1 section-name]

Format 3

text-name [{ OINF) library-name]

The rules for qualification are as follows:

(1) Each qualifier must be of a successively higher level and within the
same hierarchy as the name it qualifies.

(2) The same name must not appear at two levels in a hierarchy.

(3) If a data-name or a condition-name is assigned to more than one data
item in a source program, the data-name or condition-name must be qualified
each time it is referred to in the Procedure, Environment, and Data Divisions
(except in the REDEFINES clause where qualification is unnecessary and must
not be used.)

(4) A paragraph-name must not be d\llplicated within a section. When a
paragraph-name is qualified by a section-name, the word SECTION must not
appear. A paragraph-name need not be qualified when referred to from within
the same section.

(5) A data-name cannot be subscripted when it is being used as a qualifier.

(6) A name can be qualified even though it does not need qualifications;
if there is more than one combination of qualifiers tha.t ensures uniqueness,
then any such set can be used. The complete set of qualifiers for a data-name
must not be the same as any partial set of qualifiers for another data-name.

I-88

Subscripting

Qualified data-names may have any number of qualifiers up to an implementor­
defined limit. This limit must be at least five.

(7) If more than one COBOL library is available to the compiler during
compilation, text-name must be qualified each time it is referenced.

5.3.3.8.2 Subscripting.

Subscripts can be used only when reference is made to an individual element
within a list or table of like elements that have not been assigned individual
data-names (see page III-2, The OCCURS Clause).

The subscript can be represented either by a numeric literal that is an
integer or by a data-name. The data-name must be a numeric elementary item
that represents an integer. When the subscript is represented by a data-name,
the data-name may be qualified but not subscripted. In the Report Section,
neither a sum counter nor the special registers LINE-COUNTER and PAGE-COUNTER
can be used as a subscript.

The subscript may be signed and, if signed, it must be positive. The low­
est possible subscript value is 1. This value points to the first element of
the table. The next sequential elements of the table are pointed to by sub­
scripts whose values are 2, 3, •••• The highest permissible subscript value,
in any particular case, is the maximum number of occurrences of the item as
specified in the OCCURS clause.

The subscript, or set of subscripts, that identifies the table element is
delimited by the balanced pair of separators left parenthesis and right
parenthesis following the table element data-name. The table element data­
name appended with a subscript is called a subscripted data-name or an
identifier. When more than one subscript is required, they are written in
the order of successively less inclusive dimensions of the data organization.

The format is:

{
data-name) [(J] condition-name (subscript-.! , subscript-2 , subscript-3 .)

5.3.3.8.3 Indexing

References can be made to individual elements within a table of like elements
by specifying indexing for that reference. An index is assigned to that level
of the table by using the INDEXED BY phrase in the definition of a table. A
name given in the INDEXED BY phrase is known as an index-name and is used to
ref er to the assigned index. The value of an index corresponds to the occur­
rence number of an element in the associated table. An index-name must be
initialized before it is used as a table reference. An index-name can be
given an initial value by either a SET, a SEARCH ALL, or a Format 4 PERFORM
statement.

Direct indexing is specified by using an index-name in the form of a
subscript. Relative indexing is specified when the index-name is followed by
the operator + or -, followed by an unsigned integer numeric literal all

I-89

Indexing

delimited by the balanced pair of separators left parenthesis and right paren­
thesis following the table element data-name. The occurrence number resulting
from relative indexing is determined by incrementing (where the operator + is
used) or decrementing (when the operator - is used), by the value of the
literal, the occurrence number represented by the value of the index. When
more than one index-name is required, they are written in the order of success­
ively less inclusive dintensions of the data organization.

At the time of execution of a statement which refers to an indexed table
element, the value contained in the index referenced by the index-name asso­
ciated with the table element must neither correspond to a value less than
one (1) nor to a value greater than the highest permissible occurrence number
of an element of the associated table. This restriction also applies to the
value resultant from relative indexing.

The general format for indexing is:

{
data-name)
condition-name (

(index-name-!

lliteral-1

r {±} literal-2 J

[

' {index-name-2

literal-3

[{±} literal-4~ ~
{

index-name-3

literal-5

r {±} literal-6~11)

5.3.3.8.4 Identifier

An identifier is a term used to reflect that a data-name, if not unique in
a program, must be followed by a syntactically correct combination of quali­
fiers, subscripts or indices necessary to ensure uniqueness.

The general formats for identifiers are:

Format 1

data-name-1 [[~~} data-name-2] [(subscript-! [. subscript-2

[, subscript-3]])]

Format 2

data-name-1 [{ ~~1 data-name-2] [(

[
' {index-name-2 [{±} litera-1--4~ _(_- '_

literal-3 J

I-90

{
index-name-1

literal-I

{

index-name-3

literal-5

. [{±} literal-2])

[{±} literal-6~11>1

Condition-Name

Restrictions on qualification, subscripting and indexing are:

(1) A data-name must not itself be subscripted nor indexed when that
data-name is being used as an index, subscript or qualifier.

(2) Indexing is not permitted where subscripting is not permitted.

(3) An index may be modified only by the SET, SEARCH, and PERFORM state­
ments. Data items described by the USAGE IS INDEX clause permit storage of
the values associated with index-names as data in a form specified by the
implementor. Such data items are called index data items.

(4) Literal-!, literal-3, literal-5 in the above format must be positive
numeric integers. Literal-2, literal-4, literal-6 must be unsigned numeric
integers.

5.3.3.8.5 Condition-Name

Each condition-name must be unique, or be made unique through qualification
and/or indexing, or subscripting.

If qualification is used to make a condition-name unique, the associated
conditional variable may be used as the first qualifier. If qualification is
used, the hierarchy of names associated with the conditional variable or the
conditional variable itself must be used to make the condition-name unique.

If references to a conditional variable require indexing or subscripting,
then references to any of its condition-names also require the same combina­
tion of indexing or subscripting.

The format and restrictions on the combined use of qualification, subscript­
ing, and indexing of condition-names is exactly that of 'identifier' except
that data-name-I is replaced by condition-name-I.

In the general formats, 'condition-name' refers to a condition-name
qualified, indexed or subscripted, as necessary.

5.3.4 Explicit and Implicit Specifications

There are three types of explicit and implicit specifications that occur
in COBOL source programs:

(1) Explicit and implicit Procedure Division references

(2) Explicit and implicit transfers of control

(3) Explicit and implicit attributes.

5.3.4.1 Explicit and Implicit Procedure Division References

A COBOL source program can reference data items either explicitly or
implicitly in Procedure Division statements. An explicit reference occurs
when the name of the referenced item is written in a Procedure Division
statement or when the name of the referenced item is copied into the Procedure

I-91

Explioit & Implicit

Division by the processing of a COPY statement. An implicit reference occurs
when the item is referenced by a Procedure Division statement without· the name
of the referenced item being written in the source statement. An implicit
reference also occurs, during the execution of a PERFORM statemen·t, when the
index or data item referenced by the index-name or identifier specified in the
VARYING, AFTER or UNTII phrase is initialized, modified, or evaluated by the
control mechanism associated with that PERFORM statement. Such an implicit
reference occurs if and only if the data item contributes to the execution of
the statement.

5.3.4.2 Explicit and Implicit Transfers of Control

The mechanism that controls program flow transfers control from stat~ment
to statement in the sequence in which they were written in the source program
unless an explicit transfer of control overrides this sequence or there is no
next executable statement to which control can be passed. The transfer of
control from statement to statement occurs without the wri~ing of an explicit
Procedure Division statement, and therefore, is an implicit transfer of
control.

COBOL provides both explicit and implicit means of altering the implicit
control transfer mechanism.

In addition to the implicit transfer of control between consecutive state­
ments, implicit transfer of control also occurs when th~ normal flow is altered
without the execution of a procedure branching statement. COBOL provides the
following types of implicit control flow alterations which override the state­
ment-to-statement transfers of control:

(1) If a paragraph is being executed under control of another COBOL state­
ment (for example, PERFORM, USE, SORT and MERGE) and the paragraph is the last
paragraph in the range of the controlling statement, then an implied transfer
of control, occurs from the last statement in the paragraph to the control
mechanism of the last executed controlling statement. Further, if a paragraph
is being executed under the control of a PERFORM statement which causes itera­
tiv~ execution and that paragraph is the first paragraph in the range of that
PERFORM statement, an implicit transfer of control occurs between the control
mechanism associated with that PERFORM statement and the first statement in
that paragraph for each iterative execution of the paragraph.

(2) When a SORT or MERGE statement is executed, an implicit transfer of
control occurs to any associated input or output procedures.

(3) When any COBOL statement is executed which results in the execution
of a declarative section, an implicit transfer of control to the declarative
section occurs. Note that another implicit transfer of control occurs after
execution of the declarative section, as described in (1) above.

An explicit transfer of control consists of an alteration of the implicit
control transfer mechanism by the execution of a procedure branching or
conditional statement. (See page I-103, Categories of Statements.) An
explicit transfer of control can be caused only by the execution of a proce­
dure branching or conditional statement. The execution of the procedure
branching statement ALTER does not in its-elf constitute an explicit transfer
of control, but affects the explicit transfer of control that occurs when the

1-92

Explicit & Implicit

associated GO TO statement is executed. The procedure branching statement
EXIT PROGRAM causes an explicit transfer of control when the statement is
executed in a called program.

In this document, the term 'next executable statement' is used to refer to
the next COBOL statement to which control is transferred according to the
rules above and the rules associated with each language element in the
Procedure Division.

There is no next executable statement following:

(1) The last statement in a declarative section when the paragraph in
which it appears is not being executed under the control of some other COBOL
statement.

(2) The last statement in a program when the paragraph in which it appears
is not being executed under the control of some other COBOL statement.

5.3.4.3 Explicit and Implicit Attributes

Attributes may be implicitly or explicitly specified. Any attribute which
has been explicitly specified is called an explicit attribute. If an attri­
bute has not been specified explicitly, then the attribute takes on the default
specification. Such an attribute is known as an implicit attribute.

For example, the usage of a d~ta item need not be specified, in which case
a data item1 s usage is DISPLAY.

I-93

Identifiaation Division

5.4 IDENTIFICATION DIVISION

5.4.l General Description

The Identification Division must be included in every COBOL source program.
This division identifies both the source program and the resultant output
listing. In addition, the user may include the date the program is written,
the date the compilation of the source program is accomplished and such other
information as desired under the paragraphs in the general format shown below.

5.4.2 Organization

Paragraph headers identify the type of information contained in the
paragraph. The name of the program must be given in the first paragraph,
which is the PROGRAM-ID paragraph. The other paragraphs are optional and
may be included in this division at the user's choic~, in order of presenta­
tion shown by the format below.

5.4.3 Structure

The following is the general format of the paragraphs in the Identification
Division and it defines the order of presentation in the source program.

5.4.3.1 General Format

IDENTIFICATION DIVISION.

PROGRAM-ID. program-name.

[AUTHOR. [connnent-entry]]

[INSTALLATION. [connnent-entry]]

[DATE-WRITTEN. [connnent-entry]

[DATE-COMPILED. f connnent-entry]]

[SECURITY. fconnnent-entryJ]

I-94

Environment Division

5.5 ENVIRONMENT DIVISION

5.5.1 General Description

The Environment Division specifies a standard method of expressing those
aspects of a data processing problem that are dependent upon the physical
characteristics of a specific computer. This division allows specification
of the configuration of the compiling computer and the object computer. In
addition, information relating to input-output control, special hardware
characteristics and control techniques can be given.

The Environment Division must be included in every COBOL source program.

5.5.2 Organization

Two sections make up the Environment Division: the Configuration Section
and the Input-Output Section.

The Configuration Section deals with the characteristics of the source
computer and the object computer. This section is divided into three para­
graphs: the SOURCE-COMPUIER paragraph, which describes the computer configu­
ration on which the source program is compiled; the OBJECT-COMPUTER paragraph,
which describes the computer configuration on which the object program produced
by the compiler is to be run; and the SPECIAL-NAMES paragraph, which relates
the implementor-names used by the compiler to the mnemonic-names used in the
source program.

The Input-Output Section deals with the information needed to control
transmission and handling of data between external media and the object pro­
gram. This section is divided into two paragraphs: the FILE-CONTROL para­
graph which names and associates the files with external media; and the
I-0-CONTROL paragraph which defines special control techniques to be used in
the object program.

5.5.3 Structure

The following is the general format of the sections and paragraphs in the
Environment Division, and defines the order of presentation in the source
program.

I-95

Environment Division

5.5.3.1 General Format

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

SOURCE-COMPUTER. source-computer-entry

OBJECT-COMPUTER. object-computer-entry

[SPECIAL-NAMES. special-names-entry]

[INPUT-OUTPUT SECTION.

FILE-CONTROL. {file-control-entry}

[I-0-CONTROL. input-output-control-entry]]

5.5.3.2 Syntax Rules

(1) The Environment Division begins with the reserved words ENVIRONMENT
DIVISION followed by a period and a space.

I-96

Data Division

5.6 DATA DIVISION

5.6.1 Overall Approach

The Data Division describes the data that the object program is to accept
as input, to manipulate, to create, or to produce as output. Data to be
processed falls into three categories:

a. That which is contained in files and enters or leaves the internal
memory of the computer from a specified area or areas.

b. That which is developed internally and placed into intermediate or
working storage, or placed into specific format for output reporting purposes.

c. Constants which are defined by the user.

5.6.2 Physical and Logical Aspects of Data Description

5.6.2.1 Data Division Organization

The Data Division, which is one of the required divisions in a program, is
subdivided into sections. These are the File, Working-Storage, Linkage,
Communication, and Report Sections.

The File Section defines the structure of data files. Each file is defined
by a file description entry and one or more record descriptions, or by a file
description entry and one or more report description entries. Record descrip­
tions are written immediately following the file description entry. When the
file description specifies a file to be used as a Report Writer output file,
no record description entries are permitted for that file. Report description
entries. appear in a separate section of the Data Division, the Report Section.
The Working-Storage Section describes records and noncontiguous data items
which are not part of external data files.but are developed and processed
internally. It also describes data items whose values are assigned in the
source program and do not change during the execution of the object pro·gram.
The Linkage Section appears in the called program and describes data items
that are to be referred to by the calling program and the called program. Its
structure is the same as the Working-Storage Section. The Communication
Section describes the data item in the source program that will serve as the
interface between the MCS and the program. The Report Section describes the
content and format of reports that are to be generated.

I-97

Data Division

5.6.2.2 Data Division Structure

The following gives the general format of the sections in the Data Division,
and defines the order of their presentation in the source program.

DATA DIVISION.

[

FILE SECTION.

[
file-description-entry [record-description-entry] •••
sort-merge-file-description-entry {record-description-entry}

~
WORKING-STORAGE SECTION.

[
77-level-description-entryl
record-description-entry

[

LINKAGE SECTION.

[
77-level-descri.ption-entryl
record-description-entry

...]

...]

. .. J . . .]

[

COMMUNICATION SECTION. .

(commlDlication-description-entry [record-description-entry] ••• J ... J

[

REPORT SECTION.

[report-description-entry {report-group-description-entry} •••] •••]

I-98

Procedure Division

5. 7 PROCEDURE DIVISION

5.7.1 General Description

The Procedure Division must be included in every COBOL source program.
This division may contain declaratives and nondeclarative procedures.

5.7.1.1 Declaratives

Declarative sections must be grouped at the beginning of the Procedure
Division preceded by the key word DECLARATIVES and followed by the key words
END DECLARATIVES. (See pages IV-32, V-30, VI-32, VIII-56, and XI-4 for the
USE statement.)

5.7.1.2 Procedures

A procedure is composed of a paragraph, or group of successive paragraphs,
or a section, or a group of successive sections within the Procedure Division.
If one paragraph is in a section, then all paragraphs must be in sections. A
procedure-name is a word used to refer to a paragraph or section in the source
program in which it occurs. It consists of a paragraph-name (which may be
qualified), or a section-name.

The end of the Procedure Division and the physical end of the program is
that physical position in a COBOL source program after which no further
procedures appear.

A section consists of a section header followed by zero, one, or more
successive paragraphs. A section ends immediately before the next section or
at the end of the Procedure Division or, in the declaratives portion of the
Procedure Division, at the key words END DECLARATIVES.

A paragraph consists of a paragraph-name followed by a period and a space
and by zero, one, or more successive sentences. A paragraph ends immediately
before the next paragraph-name or section-name or at the end of the Procedure
Division or, in the declaratives portion of the Procedure Division, at the
key words END DECLARATIVES.

A sentence consists of one or more statements and is terminated by a
period followed by a space.

A statement is a syntactically valid combination of words and symbols
beginning with a COBOL verb.

The term 'identifier' is defined as the word or words necessary to make
unique reference to a data item.

5.7.1.3 Execution

Execution begins with the first statement of the Procedure Division,
excluding declaratives. Statements are then executed in the order in which
they are presented for compilation, except where the rules indicate some
other order.

I-99

Procedure Division

5.7.1.4 Procedure Division Structure

5.7.1.4.1 Procedure Division Header

The Procedure Division is identified by and must begin with the following
header:

PROCEDURE DIVISION [USING data-name-1 [, data-name-2] •••].

5.7.1.4.2 Procedure Division Body

The body of the Procedure Division must conform to one of the following
formats:

Format 1

[DECLARATIVES.

{section-name SECTION [segment-number]. declarative-sentence

[paragraph-name. [sentence] •••] ••• }

END DECLARATIVES.]

{section-name SECTION [segment-number].

[paragraph-name. [sentence] •••] ••• }

Format 2

{paragraph-name. [sentence] ••• } •••

1-100

Statements and Sentences

5.7.2 Statements and Sentences

There are three types of statements: conditional statements, compiler
directing statements, and imperative statements.

There are three types of sentences: conditional sentences, compiler
directing sentences, and imperative sentences.

5.7.2.1 Conditional Statements and Conditional Sentences

5.7.2.l.l Definition· of Conditional Statement

A conditional statement specifies that the truth value of a condition is
to be' determined and that the subsequent action of the object program is
dependent on this truth value.

A conditional statement is one of the· following:

a. An IF, SEARCH or RETURN statement.

b. A READ statement that specifies the AT END or INVALID KEY phrase.

c. A WRITE statement that specifies the INVALID KEY or END-OF-PAGE phrase.

d. A START, REWRITE or DELETE statement that specifies the INVALID KEY
phrase.

e. An arithmetic statement (ADD, COMPUTE, DIVIDE, MULTIPLY, SUBTRACT)
that specifies the SIZE ERROR phrase.

f. A RECEIVE statement that specifies a NO DATA phrase.

g. A STRING, UNSTRING or CALL statement that specifies the ON OVERFLOW
phrase.

5. 7. 2 .1. 2 Oefi ni ti on of Condit iona 1 Sentence

A conditional sentence is a conditional statement, optionally preceded by
an imperative statement, terminated by a period followed by a space.

5.7.2.2 Compiler Directing Statements and Compiler Directing Sentences

5.7.2.2.l Definition of Compiler Directing Statement

A compiler directing statement cons is ts of a compiler directing verb and
its operands. The compiler directing verbs are COPY, ENTER, and USE (see
page X-2, The COPY Statement; page II-63, The ENTER Statement; and The USE
Statement on pages IV-32, V-30, VI-32, VIII-56, and XI-4). A compiler direct­
ing statement causes the compiler to take a specific action during compilation.

5.7.2.2.2 Oefinitjon of Compiler Directin·g Sentence

A compiler directing sentence is a single compiler directing statement
terminated by a period followed by a space.

I-101

Statements and Sentences

5.7.2.3 Imperative Statements and Imperative Sentences

5.7.2.3.1 Definition of Imperative Statement

An imperative statement indicates a specific unconditional action to be
taken by the object program. An imperative statement is any statement that
is neither a conditional statement, nor a compiler directing statement. An
imperative statement may consist of a sequence of imperative statements, each
possibly separated from the next by a separator. The imperative verbs are:

ACCEPT GENERATE SEND
ADD (1) GO SET
ALTER INITIATE. SORT
CALL (3) INSPECT START (2)
CANCEL MERGE STOP
CLOSE MOVE STRING (3)
COMPUTE (1) MULTIPLY (1) SUBTRACT (1)
DELETE (2) OPEN SUPPRESS
DISABLE PERFORM TERMINATE
DISPLAY READ (5) UNSTRING (3)
DIVIDE (1) RECEIVE (4) WRITE (6)
ENABLE RELEASE
EXIT REWRITE (2)

(1) Without the optional SIZE ERROR phrase.
(2) Without the optional INVALID KEY phrase.
(3) Without the optiohal ON OVERFLOW phrase.
(4) Without the optional NO DATA phrase.
(5) Without the optional AT END phrase or INVALID KEY phrase.
(6) Without the optional INVALID KEY phrase or END-OF-PAGE phrase.

When 'imperative-statement' appears in the general format of statements,
'imperative-statement' refers to that sequence of consecutive imperative
statements that must be ended by a period or an ELSE phrase associated with
a previous IF statement or a WHEN phrase associated with a previous SEARCH
statement.

5.7.2.3.2 Definition of Imperative Sentence

An imperative sentence is an imperative statement terminated by a period
followed by a space.

I-102

5.7.2.4 Categories of Statements

Category

Arithmetic

Compiler Directing

Conditional

Data Movement

Ending

Verbs

ADD
COMPUTE
DIVIDE

Categories of Statements

INSPECT (TALLYING)
MULTIPLY
SUBTRACT

{

COPY
ENTER
USE

ADD (SIZE ERROR)
CALL (OVERFLOW)
COMPUTE (SIZE ERROR)
DELETE (INVALID KEY)
DIVIDE (SIZE ERROR)
IF
MULTIPLY (SIZE ERROR)
READ (END or INVALID KEY)
RECEIVE (NO DATA)
RETURN (END)
REWRITE (INVALID KEY)
SEARCH
START (INVALID KEY)
STRING (OVERFLOW)
SUBTRACT (SIZE ERROR)
UNSTRING (OVERFLOW)
WRITE (INVALID KEY or END-OF-PAGE)

ACCEPT (DATE> DAY, or TIME)
ACCEPT MESSAGE COUNT
INSPECT (REPLACING)
MOVE
STRING
UNSTRING

STOP

I-103

Categories of Statements

Category

Input-Output

Inter-Program
Communicating

Ordering

Procedure Branching

Report Writing

Table Handling

Verbs

ACCEPT (identifier)
CLOSE
DELETE
DISABLE
DISPLAY
ENABLE
OPEN
READ
RECEIVE
REWRITE
SEND
START
STOP (literal)
WRITE

{CALL
l CANCEL

{

MERGE
RELEASE
RETURN
SORT

{

ALTER
CALL
EXIT
GO TO
PERFORM

{

GENERATE
INITIATE
SUPPRESS
TERMINATE

{.SEARCH
_SET

IF is a verb in the COBOL sense; it is recognized that it is not a verb
in English.

5. 7. 2. 4.1 Specific Statement Formats

The specific statement formats, together with a detailed discussion of
the restrictions and limitations associated with each, appear in alphabetic
sequence in the appropriate section of this document. (See the index begin­
ning on page XV-1 to determine the page cqntaining the discussion of a
specific verb.)

I-104

Ref erenae Format

5.8 REFERENCE FORMAT

5.8.1 General Description

The reference format, which provides a standard method for describing
COBOL source programs, is described in terms of character positions in a line
on an input-output medium. Each implementor must define what is meant by
lines and character positions for each input-output medium used with his
compiler. Within these definitions, each COBOL compiler accepts source pro­
grams written in reference format and produces an output listing of the
source program input in reference format.

The rules for spacing given in the discussion of the reference format
take precedence over all other rules for spacing.

The divisions of a source program must be ordered as follows: the Identifi­
cation Division, then the Environment Division, then the Data Division, then
the Procedure Division. Each division must be written according to the rules
for the reference format.

5.8.2 Reference Format Representation

The reference format for a line is represented as follows:

~· Ma .1 I
Margil

I
rg1n rg1n Margin Margin

L c A B R

] 1 I I I I 1
6 I I 8

1 1 1 1

I 2 3 4 5 7 9 0 1 2 3

\._ y- JT~)"--v---------1 v
Sequence Number Area Area A Area B

Indicator Area

Margin L is immediately to the left of the leftmost character position of
a line.

Margin c is between the 6th and 7th character positions of a line.

Margin A is between the 7th and 8th character positions of a line.

Margin B is between the 11th and 12th character positions of a line.

Margin R is immediately to the right of the rightmost character position
of a line.

The sequence number area occupies six character positions (1-6), and is
between margin L and margin C.

The indicator area is the 7th character position of a line.

I-105

Reference Format

Area A occupies character positions 8, 9, 10, and 11, and is between
margin A and margin B.

Area B occupies a finite number of character positions specified by the
implementor; it begins immediately to the right of margin B and terminates
immediately to the left of margin R.

5.8.2.1 Sequence Numbers

A sequence number, consisting of six digits in the sequence area, may be
used to label a source program line.

5.8.2.2 Continuation of Lines

Whenever a sentence, entry, phrase, or clause requires more than one line,
it may be continued by starting subsequent line(s) in area B. These subse­
quent lines are called the continuation line(s). The line being continued is
called the continued line. Any word or literal may be broken in such a way
that part of it appears on a continuation line.

A hyphen in the indicator area of a line indicates that the first nonblank
character in area B of the current line is the successor of the last
nonblank character of the preceding line without any intervening space. How­
ever, if the continued line contains a nonnumeric literal without closing
quotation mark, the first nonblank character in area B on the continuation
line must be a quotation- mark, and the continuation starts with the character
immediately after that quotation mark. All spaces at the end of the continued
line are considered part of the literal. Area A of a continuation line must
be blank.

If there is no hyphen in the indicator area of a line, it is assumed
that the last character in the preceding line is followed by a space.

5.8.2.3 Blank Lines

A blank line is one that is blank from margin C to margin R, inclusive.
A blank line can appear anywhere in the source program, except immediately
preceding a continuation line. (See paragraph 5.8.2.2 above.)

5.8.3 Division, Section, Paragraph Formats

5.8.3.1 Division Header

The division header must start in area A.

5.8.3.2 Section Header

The section header must start in area A.

A section consists of paragraphs in the Environment and Procedure Divisions
and Data Division entries in the Data Division.

I-106

Ref erenae Format

5.8.3.3 Paragraph Header, Paragraph-Name and Paragraph

A paragraph consists of a paragraph-name followed by a period and a space
and by zero, one or more sentences, or a paragraph header followed by one or
more entries. Comment entries may be included within a paragraph as indicated
in paragraph 5.8.6 on page I-108. The paragraph header or paragraph-name
starts in area A of any line following the first line of a division or a
section.

The first sentence or entry in a paragraph begins either on the same line
as the paragraph header or paragraph-name or in area B of the next nonblank
line that is not a connnent line. Successive sentences or entries either
begin in area B of the same line as the preceding sentence or entry or in
area B of the next nonblank line that is not a comment line.

When the sentences or entries of a paragraph require more than one line
they may be continued as described in paragraph 5.8.2.2 on page I-106.

5.8.4 Data Division Entries

Each Data Division entry begins with a level indicator or a level-number,
followed by a space, followed by its associated name (except in the Report
Section), followed by a sequence of independent descriptive clauses. Each
clause, except the last clause of an entry, may be terminated by either the
separator semicolon or the separator comma. The last clause is always termi­
nated by a period followed by a space.

There are two types of Data Division entries: those which begin with a
level indicator and those which begin with a level-number.

A level indicator is any of the following: FD; SD, RD, CD.

In those Data Division entries that begin with a level indicator, the
level indicator begins in area A followed by a space and followed in area B
with its associated name and appropriate descriptive information.

Those Data Division entries that begin with level-numbers are called data
description entries.

A level-number has a value taken from the set of values 1 through 49, 66,
77, 88. Level-numbers in the range 1 through 9 may be written either as a
single digit or as a zero followed by a significant digit. At least one space
must separate a level-numb~r from the word following the level-number.

In those data description entries that begin with a level-number 01 or 77,
the level-number begins in area A followed by a space and followed in area B
by its associated record-name or item-name and appropriate descriptive informa­
tion.

Successive data description entries may have the same format as the first
or may be indented according to level-number. The entries in the output list­
ing need be indented only if the input is indented. Indentation does not
affect the magnitude of a level-number.

I-107

Reference FoPmat

When level-numbers are to be indented, each new level-number may begin
any number of spaces to the right of margin A. The extent of indentation to
the right is determined only by the width of the physical medium.

5.8.5 Declaratives

The key word DECLARATIVES and the key words END DECLARATIVES that precede
and follow, respectively, the declaratives portion of the Procedure Division
must appear on a line by itself. Each must begin in area A and be followed
by a period and a space.

5.8.6 Comment Lines

A connnent line is any line with an asterisk in the continuation indicator
area of the line. A comment line can appear as any line in a source program
after the Identification Division header. Any combination of characters from
the computer's character set may be included in area A and area B of that line.
The asterisk and the characters in area A and area B will be produced on the
listing but serve as documentation only. A special form of comment line
represented by a stroke in the indicator area of the line causes page
ejection prior to printing the comment.

Successive counnent lines are allowed. Continuation of comment lines is
permitted, except that each continuation line must contain an '*' in the
indicator area.

I-108

Reserved Words

5.9 Reserved Words

The following is a list of reserved words:

ACCEPT CORRESPONDING EXTEND LESS
ACCESS COUNT LIMIT
ADD CURRENCY FD LIMITS
ADVANCING FILE LINAGE
AFTER DATA FILE-CONTROL LINAGE-COUNTER
ALL DATE FILLER LINE
ALPHABETIC DATE-COMPILED FINAL LINE-COUNTER
ALSO DATE-WRITTEN FIRST LINES
ALTER DAY FOOTING LINKAGE
ALTERNATE DE FOR LOCK
AND DEBUG-CONTENTS FROM LOW-VALUE
ARE DEBUG-ITEM LOW-VALUES
AREA DEBUG-LINE GENERATE
AREAS DEBUG-NAME GIVING MEMORY
ASCENDING DEBUG-SUB-I GO MERGE
ASSIGN DEBUG-SUB-2 GREATER MESSAGE
AT DEBUG-SUB-3 GROUP MODE
AUTHOR DEBUGGING MODULES

DECIMAL-POINT HEADING MOVE
BEFORE DECLARATIV-ES HIGH-VALUE MULTIPLE
BLANK DELETE HIGH-VALUES MULTIPLY
BLOCK DELIMITED
BOTTOM DELIMITER I-0 NATIVE
BY DEPENDING I-0-CONTROL NEGATIVE

DESCENDING IDENTIFICATION NEXT
CALL DESTINATION IF NO
CANCEL DETAIL IN NOT
CD DISABLE INDEX NUMBER
CF DISPLAY INDEXED NUMERIC
CH DIVIDE INDICATE
CHARACTER DIVISION INITIAL OBJECT-COMPUTER
CHARACTERS DOWN INITIATE OCCURS
CLOCK-UNITS DUPLICATES INPUT OF
CLOSE DYNAMIC INPUT-OUTPUT OFF
COBOL INSPECT OMITTED
CODE EGI INSTALLATION ON
CODE-SET ELSE INTO OPEN
COLLATING EMI INVALID OPTIONAL
COLUMN ENABLE IS OR
COMMA END ORGANIZATION
COMMUNICATION END-OF-PAGE JUST OUTPUT
COMP ENTER JUSTIFIED OVERFLOW
COMPUTATIONAL ENVIRONMENT
COMPUTE EOP KEY PAGE
CONFIGURATION EQUAL PAGE-COUNTER
CONTAINS ERROR LABEL PERFORM
CONTROL ES! LAST PF
CONTROLS EVERY LEADING PH
COPY EXCEPTION LEFT PIC
CORR EXIT LENGTH PICTURE

I-109

Rese:eved Wo:eds

PLUS RERUN SPACE TYPE
POINTER RESERVE SPACES
POSITION RESET SPECIAL-NAMES UNIT
POSITIVE RETURN STANDARD UNSTRING
PRINTING REVERSED STANDARD-I UNTIL
PROCEDURE REWIND START UP
PROCEDURES REWRITE STATUS UPON
PROCEED RF STOP USAGE
PROGRAM RH STRING USE
PROGRAM-ID RIGHT SUB-QUEUE-1 USING

ROUNDED SUB-QUEUE-2
QUEUE RUN SUB-QUEUE-3 VALUE ,
QUOTE SUBTRACT VALUES
QUOTES SAME SUM VARYING

SD SUPPRESS
RANDOM SEARCH SYMBOLIC WHEN
RD SECTION SYNC WITH
READ SECURITY SYNCHRONIZED WORDS
RECEIVE SEGMENT WORKING-STORAGE
RECORD SEGMENT-LIMIT TABLE WRITE
RECORDS SELECT TALLYING
REDEFINES SEND TAPE ZERO
REEL SENTENCE TERMINAL ZEROES
REFERENCES SEPARATE TERMINATE ZEROS
RELATIVE SEQUENCE TEXT
RELEASE SEQUENTIAL THAN +
REMAINDER SET THROUGH
REMOVAL SIGN THRU * RENAMES SIZE TIME I
REPLACING SORT TIMES **
REPORT SORT-MERGE TO >
REPORTING SOURCE TOP <

REPORTS SOURCE-COMPUTER TRAILING

I-110

Composite Language Skeleton

6. COMPOSITE LANGUAGE SKELETON

6.1 GENERAL DESCRIPTION

This chapter contains the composite language skeleton of the American
National Standard COBOL. It is intended to display complete and syntactically
correct formats.

The leftmost margin on pages I-112 through I-123 is equivalent to margin A
in a COBOL source program. The first indentation after the leftmost margin is
equivalent to margin B in a COBOL source program. (See page I-105 for descrip­
tion of margin A and margin B.)

On pages I-124 through I-132 the leftmost margin indicates the beginning of
the format for a new COBOL verb. The first indentation after the leftmost

_margin indicates continuation of the format of the COBOL verb.

The following is a summary of the formats shown on pages I-112 through
I-135.

Page I-112:

Page I-113:

Page I-115:

Page I-117:

Page I-119:

Page I-120:

Page I-121:

Page I-123:

Page I-124:

Page I-133:

Page I-134:

Page I-135:

Identification Division general format

Environment Division general format

The three formats of the file control entry

Data Division general format

The three formats for a data description entry

The two general formats for a communication description entry

The three formats for a report group description entry

Procedure Division general format

General format of verbs listed in alphabetical order

General format for conditions

Formats for qualification, subscripting, indexing, and
an identifier

General format for COPY statement

I-111

Identification Division

GENERAL FORMAT FOR IDENTIFICATION DIVISION

IDENTIFICATION DIVISION.

PROGRAM-ID. program-name.

[AUTHOR. [comment-entry J ••• J
[INSTALLATION. (comment-entry)

[DATE-WRITTEN. (comment-entry)

[DATE-COMPILED. (comment-entry)

[SECURITY. [comment-entry] •••]

...]

...]
...]

I.;..112

GENERAL FORMAT FOR ENVIRONMENT DIVISION

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

SOURCE-COMPUTER. computer-name (WITH DEBUGGING MODE]

OBJECT-COMPUTER. computer-name

[
, MEMORY SIZE integer {~=CTERs}]

MODULES

f, PROGRAM COLLATING SEQUENCE IS alphabet-name]

[, SEGMENT-LIMIT IS segment-number 1
[SPECIAL-NAMES. [, implementor-name

Environment Division

!§. mnemonic-name [, ON STATUS IS condition-name-1 [, OFF STATUS IS condition-name-2]]

IS mnemonic-name [, OFF STATUS IS condition-name-2 [, ON STATUS IS condition-name-1]]

ON STATUS IS condition-nam.e-1 (,OFF STATUS IS condition-name-2]

OFF STATUS 15. condition-name-2 [, ON STATUS IS condition-name-1)

, alphabet-name IS

STANDARD-I
NATIVE

implemen to[r-f ;::ouGH } •

1
literal-I 1THRU 11teral-2

ALSO literal-3 (, ALSO literal-4] .••

literal-5 THRU .. literal-6 . • .•
[[

{ THROUGH} . 1]
ALSO literal-7 [, ALSO literal-8] •••

[, CURRENCY SIGN IS literal-9]

[, DECIMAL-POINT IS COMMA] • l

I-113

Environment Division

GENERAL FORMAT FOR ENVIRONMENT DIVISION

[INPUT-OUTPUT ,SECTION.

FILE-CONTROL.

(file-control-entry)

[I-0-CONTROL.

[
; RERUN [ON {f ile-name-1 }]

implementor-name

{

{ [END OF) {~ii}} OF file-name-2
EVERY linteger-1 RECORDS

integer-2 CLOCK-UNITS
condition-name

[
; SAME [=RD]. AREA FOR file-name-3 {, file-name-4]

SORT-MERGE .. · l
[; MULTIPLE FILE TAPE CONTAINS file-name-5 (POSITION integer-3]

[, file-name-6 [POSITION integer-4]} . • •] • • . •]]

I-114

Environment Division

GENERAL FORMAT FOR FILE CONTROL ENTRY

FORMAT 1:

SELECT [OPTIONAL] file-name

ASSIGN TO implementor-name-I [, implementor-name-2] •••

[; RESERVE integer-I r=sl]

(; ORGANIZATION IS SE9UENTIAL]

[; ACCESS MODE IS SEQUENTIAL]

[; FILE STATUS IS data-name-I] .

FORMAT 2:

SELECT file-name

ASSIGN TO implementor-name-I [, implementor-name-2] .•.

[; RESERVE integer- I (=Sn

ORGANIZATION IS RELATIVE

[; ACCESS MODE IS

{

SEQUENTIAL (, RELATIVE KEY IS data-name- Ij]

{ RANDOM 1 , RELATIVE KEY IS data-name-I DYNAMIC

[; FILE STATUS IS data-name-2] .

I-115

Environment Division

GENERAL FORMAT FOR FILE CONTROL ENTRY

FORMAT 3:

SELECT file-name

ASSIGN TO implementor-name-I [, implementor-name-2] •••

[; RESERVE integer-1 [~~11
ORGANIZATION IS INDEXED

[
; ACCESS MODE IS s ~::rm}] l DYNAMIC

RECORD KEY IS data-name-1

[; ALTERNATE RECORD KEY IS data-name-2 (WITH DUPLICATES 11 ...
[; FILE STATUS .IS data-name-3] •

FORMAT 4:

SELECT file-name ASSIGN TO implementor-name-I [, implementor-name-2] •••

I-116

DATA DIVISION.

[FILE SECTION.

[FD file-name

GENERAL FORMAT FOR DATA DIVISION

[; BLOCK CONTAINS (integer-1 TO) integer-2 { ~iERS}]
[; RECORD CONTAINS (integer-3 TO l integer-4 CHARACTERS)

f RECORD IS 1 {STANDARD}
LABEL 1RECORDS ARE OMITTED

[; VALUE OF implementor-name-! IS u~~=~:~~~-l}

[, implementor-name-2 IS {~~~=;:~~~-2}] •••]

[
. ,· {RECORD IS }

DATA RECORDS ARE data-name-3 [, data-name-4] ~ .. 1

Data Division

[
LINAGE IS {data-name.;_SJ LINES

; --- integer-5 [
WITH FOOTING AT .{data-name-6}]

' integer-6

[LINES AT TOP {?ata-name-7}]
' ~- integer-7 [

LINES AT BOTTOM {~ata-name-sl]J
' · integer-8 J

[; CODE-SET IS alphabet-name}

[; {
REPORT. IS }
REPORTS ARE . report-name-I [, report-name-2 } .. • • • 1 .

(record-description-en try J • • •] •••

f SD f He-name

[; RECORD CONTAINS (integer-1 TO l integer-2 CHARACTERS l
r; DATA l :~:s 1!u 1 data-name-1 [, data-name-2] ...] •

lrecord-description-entry l ...] ...]

f woRKING-STORAGE SECTION.

[77-levdedl-desciri~tion-entry] •• • l
recor - escr ption-entry

I-117

Data Division

GENERAL FORMAT FOR DATA DIVISION

[LINKAGE SECTION.

[
77-level-description-entry] ···]
record-description-entry

[COMMUNICATION SECTION.

[coDllllunication-description-entry

[record-description-entry] •••] •••]

(REPORT SECTION.

[RD report-name

CODE literal-!)

{
CONTROL IS l {data-name-I (, data-name-2] • • • ·}]
CONTROLS AREJ l FINAL (, data-name-I (, data-name-2] •••]

PAGE [LIMIT IS]
-- LIMITS ARE integer-1 [

LINE 1
LINESj [, HEADING integer-2 J

(, FIRST DETAIL integer-3] [, LAST DETAIL integer-4]

[, FOOTING integer-5]] •

l report-group-description-entry } •••] •••]

I-118

GENERAL· FORMAT FOR DATA DESCRIPTION ENTRY

FORMAT 1:

{
. data-name-1}

level-number FILLER

[; REDEFINES data-name-21

[; {:i~TURE} IS character-string 1
[; r USAGE rs] {~[;:TIONALj l
[; [SIGN IS 1 { ~~:G} [SEPARATE CHARACTER)]

Data Division

[
OCCUR. S {integer-1 TO integer-2 TIMES DEPENDING ON data-name-3}

; ----- integer-2 TIMES ·

[{ ~~=~;G} KEY IS dai:a-name-4 [, data-name-s } • . •] •••

[INDEXED BY index-name-1 (, index-name-2} •••]]

[
; {SYNCHRONIZED} [LEFT l]

SYNC RIGHT

[; {~~~iIFIED} RIGHT]
[; BLANK WHEN ZERO]

[; VALUE IS literal] .

FORMAT 2:

66 data-name-1; RENAMES data-name-2 [{~UGH} data-name-3] •

FORMAT 3:

{
VALUE IS } . 88 condition-name; VALUES ARE literal-1

[, literal-3 [{~UGH} literal-411 • ••

[{
THROUGH}
THRU literal-21

, I-119

Data Division

GENERAL FORMAT FOR COMMUNICATION DESCRIPTION. ENTRY

FORMAT 1:

CD cd-name;

FOR [INITIAL 1 INPUT

FORMAT 2:

CD cd-name ; FOR OUTPUT

r~ SYMBOLIC QUEUE IS data-name-1]

[; SYMBOLIC SUB-QUEUE-1 IS data-name-2)

(; SYMBOLIC SUB-QUEUE-2 IS data-name-3]

(; SYMBOLIC SUB-QUEUE-3 IS data-name-4]

(; MESSAGE DATE IS data-name-5]

(; MESSAGE TIME IS data-name-6]

[; SYMBOLIC SOURCE IS data-name-7]

(; TEXT LENGTH IS data-name-8]

[; END KEY IS data-name-91

p STATUS KEY IS data-name-10]

[; MESSAGE COUNT IS data-name-11]]

[data-name-1, data-name-2, ••• , data-name-11]

[; DESTINATION COUNT IS data-name-1]

[; TEXT LENGTH IS data-name-2]

[; STATUS KEY IS data-name-3]

[; DESTINATION TABLE OCCURS integer-2 TIMES

[; INDEXED BY index-name-1 (, index-name-2] • • •] 1
(; ERROR KEY IS data-name-4]

(; SYMBOLIC DESTINATION IS data-name-5] •

. ·. t-120

GENERAL FORMAT FOR REPORT GROUP DESCRIPTION ENTRY

FORMAT 1:

01 [data-name-1]

[
• LINE NUMBER IS ·j integer-! [ON NEXT PAGE nJ ' -- l PLUS integer-2 J

[
; NEXT GROUP IS {;~~~g~~~;ger-4}]

NEXT PAGE ----

TYPE IS

{_:PORT HEADING l
{:~GE HEADING}

{~NTROL HEADING}

{~:TAIL}
f~NTROL FOOTING)

{:~GE FOOTING}

(REPORT FOOTING)
lRF · J

[; [USAGE rs] DISPLAY 1 .
FORMAT 2:

level-number [data-name-1]

{
data-name-21
FINAL

{
dat a-name-31
FINAL

[
• LINE NUMBER IS S integ:r-1 (ON NEXT PAGE 1}] ' -- l PLUS integer-2

[; [USAGE IS] DISPLAY] •

· I-121

Data Division

Data Division

GENERAL FORMAT FOR REPORT GROUP DESCRIPTION ENTRY

FORMAT 3:

level-number [data-name-1]

[; BLANK WHEN ZERO]

[; GROUP INDICATE]

[; f JUSTIFIED} RIGHT1 L JUST

[
• LINE NUMBER IS { integ:r-1 [oN NEXT PAGE])]
' -- PLUS integer-2 ']

[; COLUMN NUMBER IS integer-3)

(PICTURE} .
lPIC IS character-string

SOURCE IS identifier-!

VALUE IS literal

SUM identifier-2 [, identifier-31

[uPON data-name~2 [, data-name-3] ••• J}

[
RESET ON { data-name-4}]

FINAL

[; [USAGE rs] DISPLAY] •

l-122

Proaedure Division

GENERAL FORMAT FOR PROCEDURE DIVIS ION

FORMAT 1:

PROCEDURE DIVISION [USING data-name-1 [, data-name-2] •••] •

[DECLARATIVES.

{section-name SECTION [segment-number 1

(paragraph-name. (sentence] ••.] •.• J ...
END DECLARATIVES.]

{section-name SECTION [segment-number] .

declarative-sentence

(paragraph-name. [sentence] •••] .•• J ...

FORMAT 2:

PROCEDURE DIVISION [US ING data-name-I [, data-name-2 1 · · •] •
{paragraph-name. [sentence J ... } ...

I-123

COBOL Verb Formats.

GENERAL FORMAT FOR V.ERBS

ACCEPT identifier f FROM mnemonic-name] .

ACCEPT identifier FROM . { ~!iE1.
TIME

ACCEPT cd-name MESSAGE COUNT

ADD {identif ier-1)
literal-I J [

' identif ier-21
· , literal-2 TO identifier-m [ROUNDED]

[, identif ier-n (ROUNDED n [; ON SIZE ERROR imperative-statement]

ADD f identif ier-11
lliteral-1

.f identi.· f ier-2}
' l literal-2 [

' identifier-3]
, literal-3

GIVING identif ier-m [ROUNDED 1 [, ideritif ier-n [ROUNDED]]

[; ON SIZE ERROR imperative-statement]

ADD {
CORRESPONDING) . d . f. l TO • d · f i 2 (R. ·oUNDED) ~- CORR J i enti ier- ~ i enti er-

[; ON SIZE ERROR imperative-statement]

ALTER procedure-name-I TO (PROCEED TO] procedure-name-2

[, procedure-name-3 TO [PROCEED. TO] procedure-name-4]

CALL \i~~!!i~~r-lJ [USING data-name-1 [. data-'name-2] •••]

[; ON OVERFLOW imperative-statement]

CANCEL {identifier-I)
l literal-1 J .[

', identifier-21
literal-2

CLOSE file-name-1

, file-name-2

., REEL) [WITH NO REWINDl
l UNIT.} ·. FOR REMOVAL

WITH {NO REWIND}
LOCK

{REEL) [WITH NO REWIND1
l UNIT.J FOR REMOVAL ·

WITH J NO REWIND}· l LOCK

CLOSE file-name-1 [WITH LOCK} {, file-name-2 f WITH LOCK]] •• ~

I-124

COBOL VePb Formats

GENERAL FORMAT FOR VERBS

COMPUTE identifier-I {ROUNDED] {, identifier-2 [ROUNDED] 1
= arithmetic-expression [; ON SIZE ERROR imperative-statement]

DELETE file-name RECORD (; INVALID KEY imperative-statementl

DISABLE (INPUT {TERMINAL l} cd-name WITH KEY {identifier-I} l OUTPUT . -- literal-I

DISPLAY {identifier-I} [' identifier-2]
literal-I , literal-2 (UPON mnemonic-name l

DIVIDE f identifier-I} INTO identifier-2 (ROUNDED)
lliteral-1

[, identifier-3 (ROUNDED]] • • • [; ON SIZE ERROR imperative-statement]

D.IVIDE {i~entifier-l1 INTO f i~entifier-2J GIVING identifier-3 (ROUNDEDl
literal-1 ~~ lliteral-2

[, identifier-4 (ROUNDED)] (; ON SIZE ERROR imperative-statement]

DIVIDE {identifier-I} BY (i~entifier-21 GIVING identifier-3 ·[ROUNDED]
literal-! - lliteral-2

[, identifier-4 [ROUNDED 1] . . . (; ON SIZE ERROR imperative-statement]

DIVIDE {i~entifier-1} INTO {identifier-2} GIVING identifier-3 [ROUNDEDl
literal-I literal-2

REMAINDER identifier~4 (; ON SIZE ERROR imperative-statement]

DIVIDE {i~entifier-1}
literal-I

BY (i~entifier-2}
- lliteral-2 GIVING identifier-3 [ROUNDED l

REMAINDER identifier-4 (; ON SIZE ERROR imperative-st~tementl

ENABLE l ~~{TERMINAL]) cd-name WITH KEY, {i~!!i~~r-lJ

ENTER language-name f routine-name] •

EXIT { PROGRAM] •

GENERATE {data-name }
report-name

GO TO [procedure-name-!]

I-125

COBOL VePb Formats

GENERAL FORMAT FOR VERBS

GO TO procedure-name-I [, procedure-name-2] • ... , procedure-name-n

DEPENDING ON identifier

IF condition; {
statement-I l (; ELSE statement-2 }
NEXT SENTENCE_J \; ELSE NEXT SENTENCE

INITIATE report-name-I [, report-name-21

INSPECT identifier-! TALLYING

INSPECT identifier-! REPLACING

{

CHARACTERS BY {identifier-6) [{BEFORE) INITIAL {identifier-7J]
~ literal-4 J AFTER literal-5

{
, (~~ING]. {, {identifier-SJ BY {identifier-6) [{BEFORE}

1FIRST literal-3 ~ literal-4 J ~ INITIAL {identifi.er-7)JJ] J
literal-5 J ··· ···

INSPECT identif ier-1 TALLYING

REPLACING

{ ... {.

CHA,. RACTERS BY {identifier-6} [{BEFORE\ INITIAL f identifier-7}].
lliteral-4 ~ J · \literal-5

{~ING] {• {identifier-SJ. BY {ident:tfi.e.r-6.}:·· rr·~EFOREJ . INITIAL
FIRST literal-l ~ literal-4 ·~ {identifier-7)1} }

li.teral-5 J .· • • • • • •

I-126

COBOL Verb Formats

GENERAL FORMAT FOR VERBS

MERGE file-name-1 ON {ASCENDING 1
DESCENDING

KEY data-name-1 [, data-name-2]

[ON
{ASCENDING)

DESCENDING
KEY data-name-3 [, data-name-4] . . .] ...

[coLLATING SEQUENCE IS alphabet-name)

USING file-name-2, file-name-3 [~ file-name-4]

{

OUTPUT PROCEDURE IS seetion-n11me-l [{~UGH) seetion-name-2 J.ll
GIVING fi1e-name-5 I

MOVE lidentifier-1} TO .d .f. 2 l •t 1 1 ent1 1er-1 era ~
[, identifier-3]

MOVE {
CORRESPONDING) • d t. f. l TO . d t . f. 2 CORR 1 en 1 1er- ~ 1 en 1 ier-

MULTIPLY {i~~::!i:~r-l} BY identifier-2 r ROUNDED]

[, ider_itifier-3 [ROUNDED 11 [; ON SIZE ERROR imperative-statement]

MULTIPLY {i~entifier-l) BY ·{i~entifier-2} GIVING identifier-3 · .. [ROUNDED·]
literal-I ~ literal-2

[, identifier-4 [ROUNDED]] [;ON SIZE ERROR imperative-statement]

INPUT file-name-1 [:::a~D REWIND] [• file-n.ime-2 [~~~ER;: REWIND]]

OPEN OUTPUT file-name-3 (WITH NO REWIND 1 [, f ile-name-4 (WITH NO · REWIND]]

I-0 file-name-5 (, file-name-6] •••

EXTEND file-name-7 .[, file..-name-8]

{

INPUT file-name-1 [, file-n~me-2.]· _ ••.• }
OPEN OUTPUT file-name-3 (, file-name-4] •••

· I-0 file-name-5 (, file-name-6] •••

PERFORM proeedure-name-1 [{=UGH 1 proeedure-name-2]

[{THRTHR00UGH) PERFORM procedure-name-! procedure-name-2] {identifier-I}·
integer-1 TIMES

[
f. THTHRJROUUGH l PERFORM procedure-name-! () proeedure-name-2] UNTIL condition-I

+-:-127

COBOL Verb Formats

GENERAL FORMAT FOR VERBS

PERFORM procedure-name-! [{=UGH} procedure-name-2 l
VARYING

BY

[AFTER

BY

J identif ier-2}
\index-name-I

{identifier-4}
literal-3

{identifier-SJ
index-name-3

{ identifier-7]
literal-4

[AFTER
{identifier-8}

index-name-5

BY { ident ifier-10)
literal-6

{

identif ier-3}
FROM index-name-2

literal-I

UNTIL condition-I ---

tentifier-6}
FROM index-name-4

literal-3

UNTIL condition-2

rdentifier-9}
FROM index-name-6

literal-5

UNTIL condition-311

READ file-name RECORD [INTO identifier] [;AT END imperative-statement]

READ file-name [NEXT] RECORD [INTO identifier]

[; AT END imperative-statementl

READ file-name RECORD [INTO identifier] [; INVALID KEY imperative-statement]

READ file-name RECORD [INTO identifier]

[; KEY IS data-name]

[; INVALID KEY imperative-statement]

RECEIVE cd-name { ~~=~ l INTO identif ier-1 [; NO DATA imperative-statement]

.RELEASE record-name [FROM identifier]

RETURN file-name RECORD [INTO identifier) AT END imperative-statement

' REWRITE record-name [FROM identifier]

REWRITE record-name [FROM identifier] [; ·INVALID KEY imperative-statement)

I-128

COBOL VePb Formats

GENERAL FORMAT FOR VERBS

SEARCH identifier-1 [VARYING l ~dentifier-21] [· AT END imperative-statement-!]
lindex-name-1 '

WHEN condition-I
{

imperative-statement-21
NEXT SENTENCE

[; WHEN condition-2 {
imperative-statement-3]]
NEXT SENTENCE

SEARCH ALL identifier-! [;AT END imperative-statement-!]

tdata-name-1 {~~ ~QuAL To} {i~;:=!i~r-3 . }]
WHEN arithmetic-expression-!

condition-name-I

data-name-2 lrs
[{

(rs

AND condition-name-2

{
imperative-statement-2}
NEXT SENTENCE

{
identifier-4 1}] literal-2
arithmetic-expression-2 .••

SEND cd-name FROM identifier-!

{

WITH identifier-j

SEND cd-name [!!Q!! identifier-!] :i: :~
WITH EGI

SET

{
BEFORE).
AFTER j ADVANCING

l{ ~dentifier-3) integer J

{
mnemonic-name)
PAGE J

{;nddenext:nfaimeer=.Il [, identifier-2]
.... ,[, index-name-2 J . ·.· ·. ·} . --· . {

identifier-3}
TO index-name-3 .

integer-I

SET index-name-4 [, index-name-5] {
UP BY)
DOWN BY {

identifier-4}
integer-2 ---

'l-129

COBOL VePb Formats

GENERAL FORMAT FOR VERBS ..

SORT file-name-I ON r ASCENDING] KEY data-riame-I [, data-name-2] l DESCENDING

[
ON {ASCENDING l . KEY data-name""'" 3 . (, da ta-name-4]

DESCENDING J
[COLLATING SEQUENCE IS alphabet-name]

{

. ' [{THROUGH} INPUT PROCEDURE IS section-name-I THRU .

USING file-name-2 [, file-name-3] ...

(_OUTPUT PROCEDURE IS section-name-3 r t~~UGHJ
~GIVING file-name-4

IS EQUAL TO
IS

section-name-2JJ _

section-name-4]}

START file-name KEY
IS GREATER THAN
IS >

data-name

IS NOT LESS THAN
IS NOT <

[; INVALID KEY imperative-statementl

STOP {~~eral]

STRING {
identifier-!)
literal-I

[

(identifier-4)
' lliteral-4 J

[
', identifier-2 l

literal-2 j

[
' identif ier-51
, literal-5

INTO identifier-7 [wrTH POINTER identifier-al

[; ON OVERFLOW imperative-statement]

.. · 1

SUBTRACT {
ident.ifier-1} [' identif.ier-2] [] literal-! , literal-Z FROM identifier-m ROUNDED

[, identifier-n (ROUNDED 11 [; ON SIZE ERROR imperative-statement]

I-130

COBOL Verb Formats

GENERAL FORMAT FOR VERBS

SUBTRACT {identifier-I) [' iden ti.fier-2]
literal-I J , literal-2

FROM (identifier-m)
--- lliteral-m J

GIVING identifier-n [ROUNDED] [, identifier-a (ROUNDED J] ...
[; ON SIZE ERROR imperative-statement]

SUBTRACT {.=ESPONDING} identifier-I FROM identifier-2 [ROUNDED l
[; ON SIZE ERROR imperative-statement]

SUPPRESS PRINTING

TERMINATE report-name-I [, report-name-2 l ...
UNSTRING identifier-I

[DELIMITED BY [ALL l { identifier-21
literal-1

[OR [,\LL] { i~entifier-3} J
' ~ ~- literal-2 .. · l

INTO identif ier-4 (, DELIMITER IN identifier-SJ [, COUNT IN identif ier-6]

[, identifier-7 [, DELIMITER IN identif ier-8] [, COUNT IN identif ier-9 J] ...
[WITH POINTER identifier-IO] [TALLYING IN identifier-11]

[; ON OVERFLOW imperative-statement]

USE ~FTER STANDARD {EXCEPTION} PROCEDURE ON
- ERROR

USE AFTER STANDARD {EXCEPTION} PROCEDURE ON
--- ERROR

USE BEFORE REPORTING identifier.

I-13I

file-name-I [, file-name-2] •••
INPUT --OUTPUT
I-0
EXTEND

{i~-~~~name-1 [, file-name-2] • ·]_ •

OUTPUT
I-0

COBOL Verb Formats

GENERAL .FORMAT FOR VERBS·

cd-name-1
[ALL REFERENCES OF] identifier-I

USE FOR DEBUGGING ON

cd-name-2

f ile-name-1
, procedure~name-1

ALL· PROCEDURES

{ALL REFERENCES OF] identifier-2
f ile-name-2
procedure-name-2
ALL PROCEDURES

WRITE record-name [FROM identif ier-1]

[{
BEFORE} ADVANCING {{!:~::;;ier-2}
AFTER . f mnemonic-name)

\PAGE j

[LINE l
LINES.

[
f END-OF-PAGE)] ; AT tEOP imperative-statement

WRITE record-name [FROM identifier 1 [; INVALID KEY imperative-statement J

I-132

Condition Formats

GENERAL FORMAT FOR CONDITIONS

RELATION CONDITION:

{

identifier-1 }
literal-1

.

arithmetic-expression-1
index-name-1

CLASS CONDITION:

IS [NOT] GREATER THAN
IS [NOT) LESS THAN
IS {NOT] EQUAL TO
IS [NOT] >
IS [NOT] <
IS [NOT]

identifier IS (NOT] {!_~~IC}

SIGN CONDITION:

{
POSITIVE ·1·

arithmetic-expression is [NOT] NEGATIVE
ZERO

CONDITION-NAME CONDITION:

condition-name

SWITCH-STATUS CONDITION:

condition-name

NEGATED SIMPLE CONDITION:

NOT simple-condition

COMB I NED CONDITION:

condition {{:i1 condition}

ABBREVIATED COt4HNED RELATION CONDITION:

{

identifier-2 j
literal-2
arithmetic-expression-2
index-name-2

relation-condition { { :1') [NOT] [relational-e>perator). object} •••

I-133

Miscellaneous Forrrats

MISCELLANEOUS FORMATS

QUALIFICATION:

{
data-name-l } [{OF}]
condition-name IN data-name-2

paragraph-name [{~:} section-name]

text-name [H! 1 library-name 1
SUBS CRI PTI NG:

{:::~~:n-name} (subscript-I (, subscript-2 [, subscript-31])

INDEXING:

(data-name J
l.condition-name {

index-name-1 '({±} literal-2]1

(literal-I J

[{

index-name-2 ({±} literal-4 J/ [,
' literal-3 J {

index-name-3 ({ ±} literal-6 Jfj])
literal-5 J

IDENTIFIER: FORMAT 1

data-name-1 [{~!} data-name-2 J
(, subscript-3]])]

IDENTIFIER: FORMAT 2

data-~-1 [{~i} data-name-2]

[

' { index-name-2 [{ ±} literal-4]1
literal-3 J

[<subscript-I [, subscript-2

[

{ {index-name-1 [{:!:} literal-2]1
literal-I J

[

' {index-name-3 [{±} literal-6]1] l)]
literal-5 J

I-134

COPY Statement

GENERAL FORMAT FOR COPY STATEMENT

OOPY text-name [{ ~~) library-name]

REPLACING

{ {

==pseudo-text-1==1
identifier- I

' literal-I
word-I

{==pseudo~text-2===} 1
identifier-2

BY literal-2 ·•·
word-2

I-135

Nucleus - Introduction

1. INTRODUCTION TO THE NUCLEUS

1.1 FUNCTION

The Nucleus provides a basic language capability for the internal process­
ing of data within the basic structure of the four divisions of a program.

1.2 LEVEL CHARACTERISTICS

Nucleus Level 1 does not provide full COBOL facilities for qualification,
pup.ctuation characters, data-name formation, connectives, and figurative
constants. Within the Procedure Division, the Nucleus Level 1 provides limit­
ed capabilities for the ACCEPT, ADD, ALTER, DIVIDE, DISPLAY, IF, INSPECT, MOVE,
MULTIPLY, PERFORM, and SUBTRACT statements and full capabilities for the ENTER,
EXIT, GO, and STOP statements.

Nucleus Level 2 provides full facilities for qualification, punctuation
charact~rs, data-name formation, connectives, and figurative constants. Wit~­

in the Procedure Division, the Nucleus Level 2 provides full capabilities for
the ACCEPT, .ADD, ALTER, DIVIDE, DISPLAY, IF, INSPECT, MOVE, MULTIPLY, PERFORM,
and SUBTRACT statements.

1.3 LEVEL RESTRICTIONS ON OVERALL LANGUAGE

1.3.1 Format Notation

The separators, comma and semicolon, are not included in Level 1. The
comma and semicolon are not boxed within the general formats of this document
in order to simplify the formats. I The separators, comma and semicolon, are

I included in Level 2. l

1.3.2 Name Characteristics

All data-names must begin with an alphabetic character in Level l. Quali­
fication is not included, therefore, all data-names, paragraph-names, and
text-names must be unique in Level 1. J In Level 2 data-names need not begin
with an alphabetic character; the alphabetic characters may be positioned any­
where within the data-name. Qualification is permitted in Level 2; thus all
data-names, condition-names, paragraph-names, and text-names need not be unique.

1.3.3 Figurative Constants

The only figurative constants that may be used in Level 1 are: ZERO, SPACE,
HIGH-VALUE, LOW-VALUE, and QUOTE. In Level 2, all the following figurative
constants may be used: ZERO, ZEROS, ZEROES, SPACE, SPACES, HIGH-VALUE,
HIGH-VALUES, LOW-VALUE, LOW-VALUES, QUOTE, QUOTES, and ALL literal.

1.3.4 Reference Format

In Level,l a word·or numeric literal cannot be broken in such a wa
part of it a ears on a continuation line. In Leve12 a word or numeric
literal can be broken in such a way that part of>it appearscon a continuation
line.

II-1

2. IDENTIFICATION DIVISION IN THE NUCLEUS

2.1 GENERAL DESCRIPTION

Nucleus - Identification Divi$.ion

The Identification Division must be included in every COBOL source program.
This division identifies the source program and the resultant output listing.
In addition, the user may include the date the program is written and such
other information as desired under the paragraphs in the general format shown
below.

2.2 ORGANIZATION

Paragraph headers identify the type of information contained in the
paragraph. The name of the program must be given in the first paragraph,
which is the PROGRAM-ID paragraph. The other paragraphs are optional and may
be included in this division at the user's choice, in the order of presenta­
tion shown by the general format below.

2.2.1 Structure

The following is the general format of the paragraphs in the Identification
Division and it defines the order of presentation in the source program.
Paragraphs 2.3 and 2.4 define the PROGRAM-ID paragraph and the DATE-COMPILED
paragraph. While the other paragraphs are not defined, each general format is
formed in the same manner.

2.2.1.1 General Format

IDENTIFICATION DIVISION.

PROGRAM-ID. program-name.

[AUTHOR. [comment-entry] •••]

[INSTALLATION. [comment-entry]

[DATE-WRITTEN. (comment-entry]

[DATE-COMPILED. (comment-entry]

[SECURITY. [comment-entry] ••• J

2. 2.1. 2 Syntax Rules

...]

...]
... Jj

(1) The Identification Division must begin with the reserved words
IDENTU'ICATION DIVISION followed by a period and a space.

(2) The comment-entry may be any· combination of the characters from the·
computer's character set. The continuation of the comment-entry·by the use
of the hyphen in the indicator area is not permitted; however, the comment­
entry may be contained on one or more lines.

II-2

Nucleus - PROGRAM-ID

2.3 THE PROGRAM-IO PARAGRAPH

2.3.1 Function

The PROGRAM-ID paragraph gives the name by which a program is identified.

2.3.2 General Format

PROGRAM-ID. program-name.

2.3.3 Syntax Rules

(1) The program-name must conform to the rules for formation of a
user-defined word.

2.3.4 General Rules

(1) The ·PROGRAM-ID paragraph must contain the name of the program and
must be present in every program.

(2) The program-name identifies the source program and all listings
pertaining to a particular program.

II-3.

Nualeus - DATE-COMPILED

2.4 THE DATE-COMPILED PARAGRAPH

2.4.1 Function

The DATE-COMPILED paragraph provides the compilation date in the
Identification Division source program listing.

2.4.2 General Format

DATE-COMPILED. [comment-entry]

2.4.3 Syntax Rules

(I) The comment-entry may be any combination of the characters from the
computer's character set. The continuation of the comment-entry by the use
of the hyphen in the indicator area is not permitted; however, the comment­
entry may be contained on one or more lines.

2.4.4 General Rules

(1) The paragraph-name DATE-COMPILED causes the current date to be insert­
ed during program compilation. If a DATE-COMPILED paragraph is present, it is
replaced during compilation with a paragraph of the form:

DATE-COMPILED. current date.

II-4

Nucleus - SOURCE-COMPUTER

3. ENVIRONMENT DIVISION IN THE NUCLEUS

3.1 CONFIGURATION SECTION

3.1.1 The SOURCE~COMPUTER Paragraph

3.1.1.1 function

The SOURCE-COMPUTER paragraph identifies the computer upon which the
program is to be coinpiled.

3.1.1.2 General Format

SOURCE-COMPUTER. computer-name.

3.1.1.3 Syntax Rules

(1) Computer-name is a system-name.

3.1.1~4 General Rules

(1) Fixed computer-names are assigned by the individual implementor.

(2) The computer-name may provide a means for identifying equipment con­
figuration, in which case the computer-name and its implied configuration are
specified by each implementor.

II-5

Nucleus - OBJECT-COMPUTER

3.1.2 The OBJECT-COMPUTER Paragraph

3.1.2.1 Function

The OBJECT-COMPUTER paragraph identifies the computer on which the program,
is to be executed.

3.1.2.2 General Format

OBJECT-COMPUTER. computer-name t MEMORY SIZE integer

[, PROGRAM COLLATING SEQUENCE IS alphabet-name 1 .

3.1.2.3 Syntax Rules

(1) Computer-name is a system-name.

3.1.2.4 General Rules

{
WORDS }] CHARACTERS
MODULES

(1) The computer-name may provide a means for identifying equipment conf ig­
uration, in which case the computer-name and its implied configuration are
specified by each implementor. The configuration definition contains specific
information concerning the memory size.

The implementor defines what is to be done if the subset specified by
the user is less than the minimum configuration required for running the
object program.

(2) If the PROGRAM COLLATING SEQUENCE clause is specified, the collating
sequence associated with alphabet-name is used to determine the truth value of
any nonnumeri~ comparisons:

a. Explicitly specified in relation conditions. (See page II-41,
Relation Condition.)

b. Explicitly specified in condition-name conditions. (See page
II-44, Condition-Name Condition (Conditional Variable).)

c. Implicitly specified by the presence of a CONTROL clause in a
report description entry. (See page VIII-28~ The CONTROL Clause.)

(3) If the PROGRAM COLLATING SEQUENCE clause is not specified, the native
collating -sequence is used.

(4) If the PROGRAM COLLATI-NG SEQUENCE clause is specified, the program
collating sequen-ce is the collating sequence associated with the alphabet-name
specifiecl in that clause.

(5) The PROGRAM COLLATING SEQUENCE clause is also applied to any nonnumeric
merge· or sort keys unless· the COLLATING SEQUENCE phrase of the respec~ive
MERGE -or SORT statement is specified. (See pag-e VII.._8, -'!'he MERGE Statement,
and page VII-14, The SORT Statement.)

II-6

NuaZeus - OBJECT-COMPUTER

(6) The PROGRAM COLLATING SEQUENCE clause applies only to·the.program in
which it is specified.

II•7

3.1. 3 The SPECIAL-NAMES Paragraph

3.1.3.1 Function

Nucleus - SPECIAL-NAMES

The SPECIAL-NAMES paragraph provides a means of relating implementor-names
to user-specified mnemonic-names and of relating alphabet-names to character
sets and/or collating sequences.

3.1.3.2 General Format

SPECIAL-NAMES. [, implementor-name

IS mnemonic-name (, ON STATUS IS condition-name-! [, OFF STATUS IS condition-name-2]]

IS mnemonic-name [, OFF STATUS IS condition-name-2 [, ON STATUS IS· condition-name-1)]

ON STATUS IS condition-name-! (, OFF STATUS IS condition-name-2]

OFF STATUS IS condition-name-2 [, ON STATUS IS condition-name-1]

, alphabet-name IS

STANDARD-I
NATIVE
implementor-name

literal-! [{=UGH} literal-2 J
ALSO literal-3 (, ALSO literal-4] •••

r literal-5 [{=UGH} literal-6]]· •• -
L . ALSO literal-7 [, ALSO literal-8] •••.

[, CURRENCY SIGN IS literal-9)

[, DECIMAL-POINT IS COMMA J

3.1.3.3 Syntax Rules

(1) The literals specified in the literal phrase of the alphabet-name
clause:

a. If numeric, must be unsigned integers and must have a value within
the range of one (1) through the maximum number of characters in the native
character set.

b. If ·nonnumeric and associated with a THROUGH or ALSO phrase, must
each be one character in length.

(2) If the literal phrase of the alphabet-name clause is specified a
given character must not be specified more than once in an alphabet-name
clause.

(3) The words TIIRU and THROUGH are equivalent.

11~8

Nucleus - SPECIAL-NAMES

(4) In repetition, a comma may be used before implementor-name.

3.1.3.4 General Rules

(1) If the implementor-name is not a switch, the associated mnemonic-name
may be used in the ACCEPT, DISP.LAY, SEND, and WRITE statement.

(2) If the implementor-name is a switch, at least one condition-name must
be associated with it. The status of the switch is specified by condition­
names and interrogated by testing the condition-names (see page II-44,
Switch-Status Condition).

(3) The alphabet-name clause provides a means for relating a name to a
specified character code set and/or collating sequence. When alphabet-name is
referenced in the PROGRAM COLLATING SEQUENCE clause (see page II-6, The
OBJECT-COMPUTER Paragraph) or the COLLATING SEQUENCE phrase of a SORT or MERGE
statement (see page VII-8, The MERGE Statement, and page VII-14, The SORT
Statement), the alphabet-name clause specifies a collating sequence. When
alphabet-name is referenced in a CODE-SET clause in a file description entry
(see page IV-10, The File Description - Complete Entry Skeleton), the
alphabet-name clause specifies a character code set.

a. If the STANDARD-! phrase is specified, the character code set or
collating sequence identified is that defined in American National Standard
Code for Information Interchange, X3.4-1968. Each character of the standard
character set is associated with its corresponding character of the native
character set. The implementor defines the correspondence between the char­
acters of the standard charactei:: set and the characters of the native charac­
ter set for which there is no correspondence otherwise specified.

b. If the NATIVE phrase is specified, the native character code set
or native collating sequence is used.

c. If the implementor-name phrase is specified, the character code
set or collating sequence identified is that defined by the implementor. The
implementor also defines the correspondence between characters of the char­
acter code set specified by implementor-name and the characters of the native
character code set.

d. If the literal phrase is specified, the alphabet-name may not be
referenced in a CODE-SET clause (see IV-12, The CODE-SET Clause). The collat­
ing sequence identified is that defined according to the following rules:

Rule 1: The value of each literal specifies:

1. The ordinal number of a character within the native
character set, if the literal is numeric. This value must not exceed the
value which represents the number of characters in the native character set.

2. The actual character within the .native character set,
if .the literal is nonnumeric. If the value of the nonnumeric literal contains
multiple characters, each character in the litera:i, st:art:tng with the leftmost
character, is assigned' successive ·ascending positions in the collating sequence
being specified.

II-9

Nucleus - SPECIAL-NAMES

Rule 2: The order in which the literals appear in the alphabet­
name clause specifies, in ascending sequence, the ordinal number of the
character within the collating sequence being specified.

Rule 3: Any characters within the native collating sequence,
which are not explicitly specified in the literal phrase, assume a position,
in the collating sequence being specified, greater than any of the explicitly
specified characters. The relative order within the set of these unspecified
characters is unchanged from the native collating sequence.

Rule 4: If the THROUGH phrase is specified, the set of contiguous
characters in the native character set beginning with the character specified
by the value of literal-1, and ending with the character specified by the
value of literal-2, is assigned a successive ascending position in the collat­
ing sequence being specified. In addition, the set of contiguous characters
specified by a given THROUGH phrase may specify characters of the native
character set in either ascending or descending sequence.

Rule 5: If the ALSO phrase is specified, the characters of the
native charact~r set specified by the value of literal-1, literal-3, literal-4,
.•. ,are assigned to the same position in the collating sequence being
specified.

(4) The character that has the highest ordinal position in the program
collating sequence specified is associated with the figurative constant
HIGH-VALUE. If more than one character has the highest position in the
program collating sequence, the last character specified is associated with
the figurative constant HIGH-VALUE.

(5) The character that.has the lowest ordinal position in the program
collating sequence specified is associated with the figurative constant
LOW-VALUE. If more than one character has the lowest position in the program
collating sequence, the first character specified is associated with the
figurative constant LOW-VALUE.

(6) The literal which appears in the CURRENCY SIGN IS literal clause is
used in the PICTURE clause to represent the currency symbol. The literal
is limited to a single character and must not be one of the following
characters.

a. digits 0 thru 9;

b. alphabetic characters A, B, C, D, L, P, R, S, V, X, Z, or the
space;

c.
'/', 1='

special characters '*' '+', ,_, ' ' ' , ' ' . , ';', '(', ')', ttll

If this clause is not present, only the currency sign is used in the
PICTURE clause.

, (7) The clause;-;:bECIMAL-POINT ts COMMA means that. the function of ~omma and
period are eXchanged in the character-string of the PICTURE clause and in
numeric literals~

II-10

Nucleus - Working-Storage Section

4. DATA DIVISION IN· THE NUCLEUS

4.1 WORKING-STORAGE SECTION

The Working-Storage Section is composed of the section header, followed by
data description entries for noncontiguous data items and/or record description
entries. Each Working-Storage Section record name and noncontiguous item name
must be unique since it cannot be qualified. Subordinate data-names need not
be unique if they can be made unique by qualification.

4.1.1 Noncontiguous Working-Storage

Items and constants in Working-Storage which bear no hierarchical relation­
ship to one another need not be g-rouped into records, provided they do not
need to be further subdivided. Instead,. they are classifie.d and defined as
noncontiguous elementary items. Each of these items is defined in a separate
data description entry which begins with th~ special level-number,-77.

The following data clauses are required in each data description entry:

a. level-number 77
b. data-name
c. the PICTURE clause or the USAGE IS INDEX clause.

Other data description clauses are optional and can be used to complete the
description of the item if necessary.

4.1.2 Working-Storage Records

Data elements and cons tan ts in Working-Storage which bear a defin'ite hier­
archic relationship to one another must be grouped into records according to
the rules for formation of record descriptions. All clauses which are used
in record descriptions in the File Section can be used in record descriptions
in the Working-Storage Section.

4.1.3 Initial Values

The initial value of any item in the Working-Storage Section except an
index data item is specified by using the VALUE clause with the data item.
The initial value of any index data item .is unpredictable.

II-11

Nualeus - Data Description

4.2 THE DATA DESCRIPTION -·COMPLETE ENTRY SKELETON

4.2.1 Function

A data description entry specifies the characteristics of a particular item
of data.

4.2.2 General Format

Format 1

level-numb er f data-name-I} l FILLER

(; REDEFINES data-name-2]

[; {
PICTURE}] PIC IS character-string

1 {
COMPurATIONAL11

[USAGE IS COMP
DISPLAY

[;
[;
[;
[;

[SIGN IS] w~~iGl [SEPARATE CHARACTER] 1

(;

1 SYNCHRONIZED} [LEFT]]
\SYNC RIGHT

{
JUSTIFIED} RIGHT 1
JUST ---- . ,

BLANK WHEN ZERO .] . .

[; VALUE IS literal] •

Format 2

66 data-name-1; RENAMES data-name..,-2 [{=UGH} data-name-3 J .
Format 3

88 condition-name; {~~:s I!im} literal-1 [t=UGH) literal-2]

[• literal-3 [{;:uj literal-4 J]

II-12

Nucleus - Data Desc'Piption

4.2.3 Syntax Rules

(1)
or 77.
or 77.

In Level 1 the level-number in Format 1
In Level 2, the level-number in Format 1

number from 01-10
number from 01-49

(2) The clauses may be written in any order with two exceptions: the data­
name-1 or FILLER clause must immediately follow the level-number; the REDEFINES
clause, when used, must immediately follow the .data-name'.""! clause.

(3) The PICTURE cla~e mu8t be specified for every elementary item except
an index data item, in which case use of this clause is prohibited.

(4) The words THRU and THROUGH are equivalent.

4.2.4 General Rules

(1) The clauses SYNCHRONIZED, .PICTURE, JUSTIFIED, and BLANK WHEN ZERO,
must not be specified except for an elementary data item.

(2) Format 3 is used for each condition-name. Each condition-name requires
a separate entry with level-number 88. Format 3 contains the name of the
condition and the value, values, or range of values associated with the condi­
tion-name. The condition-name entries for a particular conditional variable
must follow the entry describing the item with which the condition-name is
associated. A condition-name can be associated with any data description
entry which contains a level-number except the following:

a. Another condition-name.

b. A level 66 item.

c. A group containing items with descriptions including JUSTIFIED,
SYNQIRONIZED or USAGE (other than USAGE IS DISPLAY).

d. An index data item (See page III-5, The USAGE IS INDEX Clause).

II-13

Nucleus - BLANK WHEN ZERO

4.3 THE BLANK WHEN ZERO CLAUSE

4.3.1 Function

The BLANK WHEN ZERO clause permits the blanking of an item when its value
is zero.

4.3.2 General Format

BLANK WHEN ZERO

4.3.3 Syntax Rules

(1) The BLANK WHEN ZERO clause can be used only for an elementary item
whose PICTURE is specified as numeric or numeric edited. (See page II-18,
The PICTURE Clause)

4.3.4 General Rules

(1) When the BLANK WHEN ZERO clause is used, the item will contain nothing
but spaces if the value of the item is zero.

(2) When the BLANK WHEN ZERO clause is used for an item whose PICTURE is
numeric, the category of the item is considered to be numeric edited.

II-14

Nucleus - Data-Name

4.4 THE DATA-NAME OR FILLER CLAUSE

4.4.1 Function

A data-name specifies the name of the data being described. The word
FILLER specifies an elementary item of the logical record that cannot be
referred to explicitly.

4.4.2 General Format

{
data-name]
FILLER

4.4.3 Syntax Rules

(1) In the File, Working-Storage, Communication and Linkage Sections, a
data-name or the key word FILLER must be the first word following the level­
number in each data description entry.

4.4.4 General Rules

(1) The key word FILLER may be used to name an elementary item in a record.
Under no circumstances can a FILLER item be referred to e However,
the key word FILLER may be used as a conditional variable because such use
does not require explicit reference to the FILLER item, but to its value.

II-15

Nucleus - JUSTIFIED

4.5 THE JUSTIFIED CLAUSE

4.5.1 Function

The JUSTIFIED clause specifies non-standard positioning of data within a
receiving data item.

4.5.2 General Format

{
JUSTIFIED) RIGHT
JUST

4.5.3 Syntax Rules

(1) The JUSTIFIED clause can be specified only at the elementary i tern
level.

(2) JUST is an abbreviation for JUSTIFIED.

(3) The JUSTIFIED clause cannot be specified for any data item described
as numeric or for which editing is specified.

4.5.4 General Rules

(1) When a receiving data item is described with the JUSTIFIED clause and
the sending data item is larger than the receiving data item, the leftmost
characters are truncated. When the receiving data item is described with the
JUSTIFIED clause and it is larger than the sending data item, the data is
aligned at the rightmost character position in the data item with space fill
for the leftmost character positions.

(2) When the JUSTIFIED clause is omitted, the standard rules for aligning
data within an elementary item apply. (See page I-86, Standard Alignment
Rules.)

II-16

Nucleus - Level-Number

4.6 LEVEL-NUMBER

4.6.1 Function

The level-number shows the hierarchy of data within a logical record. 'In
addition, it is used to identify entries for working storage items, linkage
items,lcondition-names, and the RENAMES clause. l
4.6.2 General Format

level-number

4.6.3 Syntax Rules

(1) A level-number is required as the first element in each data descrip­
tion entry.

(2) Data description entries subordinate to an FD, SD or CD entry must
have level-numbers with the values 01 thru 10 in Level l;lOl-49, 66 or 88 in

l Level 2. I (See page IV-10 for FD, page VII-5 for SD, and page XIII-3 for CD.)

(3) Data description entries subordinate to an RD entry must have level­
numbers with the value 01 thru 10 in Level 1 ;I 01 thru 49. in Level 2.1 (See
page VIII-4 for RD.)

(4) Data description entries in the Working-Storage Section and Linkage
Section must have level-numbers with the values 01-10 or 77 in Level l;IOl-49,l
66, 77 or 88 in Level 2. I
4.6.4 General Rules

(1) The level-number 01 identifies the first entry in each record
description or a report group. (See page VIII-6, The Report Group Description.)

(2) Special level-numbers have been assigned to certain entries where
there is no real concept of level:

a. Level-number 77 is assigned to identify noncontiguous_ working
storage data items, noncontiguous linkage data items, and can be used only
as described by Format 1 of the data description skeleton. (See page II-12,
The Data Description - Complete Entry Skeleton.)

b. Level-number 66 is assigned to identify RENAMES entries and can be
used only as described in Format 2 of the data description skeleton. (See
page II-12, The Data Description - Complete Entry Skeleton.)

c. Level-number 88 is assigned to entries which define condition­
names associated with a conditional variable and can be used only as described
in Format 3 of the data description skeleton. (See pageII-12, The Data
Description - Complete Entry Skeleton.)

(3) Multiple level 01 entries subordinate to any given level indicator,
other than RD, represent implicit redefinitions of the same area.

II-17

Nucleus - PICTURE

4.7 THE PICTURE CLAUSE

4 • 7 . 1 Fun ct i on

The PICTURE clause describes the general characteristics and editing
requirements of an elementary item.

4.7.2 General Format

(PICTURE} . lPIC IS character-string

4.7.3 Syntax Rules

(1) A PICTURE clause can be specified only at the elementary item level.

(2) A character-string consists of certain allowable combinations of
characters in the COBOL character set used as symbols. The allowable combina­
tions determine the category of the elementary item.

(3) The maximum number of characters allowed in the character-string is 30.

(4) The PICTURE clause must be specified for every elementary item except
an index data item, in which case use of this clause is prohibited.

(5) PIC is an abbreviation for PICTURE.

(6) The asterisk when used as the zero suppression symbol and the clause
BLANK WHEN ZERO may not appear in the same entry.

4. 7 .4

(1)
clause:
edited.

(2)

and

General Rules

There are five categories of data that can be described with a PICTURE
alphabetic, numeric, alphanumeric, alphanumeric edited, and numeric

To define an item as alphabetic:

a. Its PICTURE character-string can only contain the symbols 'A', 'B';

b. Its contents when represented in standard data format must be any
combination of the twenty-six (26) letters of the Roman alphabet and the space
from the COBOL character set.

(3) To define an item as numeric:

a. I ts PICTURE character-string can only contain the symbols '9' , 'P' ,
'S', and 'V'. The nuni>er of digit positions that can be described by the
PICTURE character-string must range from 1 to 18 inclusive; and

b. If unsigned, its contents when represented in standard data format
must be a combination of the Arabic numerals 'O', 'l', '2', '3', '4', '5', '6',

II-18

Nucleus - PICTURE

'7', '8', and '9'; ·if signed, the item may also contain a '+', '~', or other
representation of an operational sign. (See page II-31, The SIGN Clause.)

(4) To define an item as alphanumeric:

a. Its PICTURE character-string is restricted to certain combinations
of the symbols 'A', 'X', '9', and the item is treated as if the character-_
string contained all X's. A PICTURE character-string which contains all A's
or all 9's does not define an alphanumeric item; and

b. Its contents when represented in standard data format are allow­
able characters in the computer's character set.

(5) To define an item as alphanumeric edited:

a. Its PICTURE character-string is restricted to certain combinations
of the following symbols: 'A', 'X', '9', 'B', 'O', and '/'; and

1) The character-string must contain at least one 'B' and at
least one 'X' or at least one 'O' (zero) and at least one 'X' or at least one
'/' (stroke) and at least one 'X'; or

2) The character-string must contain at least one 'O' (zero) and
at least one 'A' or at least one'/' (stroke) and at least one 'A'; and

b. The contents when represented in standard data format are allow­
able characters in the computer's character set.

(6) To define an item as numeric ,edited:

a. Its PICTURE character-string is restricted to certain combinations
of the symbols 'B' , 'I' , 'P' , 'V' , 'Z' , '0' , '9' , ' , ' , ' . ' , '*' , '+' , ' - ' ,
'CR', 'DB', and the currency symbol. The allowable combinations are determined
from the order of precedence of symbols and the editing rules; and

1) The number of digit positions that can be represented in the
PICTURE character-string must range from 1 to 18 inclusive; and

2) The character-string must contain at least one 'O', 'B', '/',
'Z' , '*' '+' , ' , ' , ' . ' , ' - ' , 'CR' , 'DB' , or currency symbol.

b. The contents of the character positions of these symbols that are
allowed to represent a digit in standard data format, must be one of the
numerals.

(7) The size of an elementary item, where size means the number of char­
acter positions occupied by the elementary item in standard data format, is
determined by the number of allowable symbols that represent character posi­
tions. An integer which is enclosed in parentheses following the symbols 'A',
',', 'X', '9', 'P', 'Z', '*', 'B', '/', 'O', '+', '-', or the currency symbol
indicates the number of consecutive occurrences of the symbol. Note that the
following symbols may appear only once in a given PICTURE: 'S', 'V', '.',
' CR' , and 'DB ' •

II-19

Nucleus - PICTURE

(8) The functions of the symbols used to describe an elementary item are
explained as follows:

A Each 'A' in the character-string represents a character position
which can contain only a letter of the alphabet or a space.

B Each 'B' in the character-string represents a character position
into which the space character will be inserted.

P Each 'P' indicates an assumed decimal scaling position and is used
to specify the location of an assumed decimal point when the point is not with­
in the number that appears in the data item. The scaling position character
'P' is not counted in the size of the data item. Scaling position characters
are counted in determining the maximum number of digit positions (18) in numer­
ic edited items or numeric items. The scaling position character 'P' can
appear only to the left or right as a continuous string of 'P's within a
PICTURE description; since the scaling position character 'P' implies an
assumed decimal point (to the left of 'P's if 'P's are leftmost PICTURE char­
acters and to the right if 'P's are rightmost PICTURE characters), the assumed
decimal point symbol 'V' is redundant as either the leftmost or rightmost
character within such a PICTURE description. The character 'P' and the inser­
tion character '.' (period) cannot both occur in the same PICTURE character­
string. If, in any operation involving conversion of data from one form of
internal representation to another, the data item being converted is described
with the PICTURE character 'P', each digit position described by a 'P' is
considered to contain the value zero, and the size of the data item is consid­
ered to include the digit positions so described.

S The letter 'S' is used in a character-string to indicate the
presence, but neither the representation nor, necessarily, the position of an
operational sign; it must be written as the leftmost character in the PICTURE.
The 'S' is not counted in determining the size (in terms of standard data
format characters) of the elementary item unless the entry is subject to a
SIGN clause which specifies the optional SEPARATE CHARACTER phrase. (See page
II-31, The SIGN Clause.)

V The 'V' is used in a character-string to indicate the location of
the assumed decimal point and may only appear once in a character-string. The
'V' does not represent a character position and therefore is not counted in
the size of the elementary item. When the assumed decimal point is to the
right of the rightmost symbol in the string the 'V' is redundant.

X Each 'X' in the character-string is used to represent a character
position which contains any allowable character from the computer's character
set.

Z Each 'Z' in a character-string may only be used to represent the
leftmost leading numeric character positions which will be replaced by a space
character when the contents of that character position is zero. Each 'Z' is
counted in the size of the item.

9 Each '9' in the character-string represents a character position
which contains a numeral and is counted in the size of the item.

II-20

Nucleus - PICTURE

0 Each 'O' (zero) in the character-string represents a character
position into which the numeral zero will be inserted. The 'O' is counted
in the size of the item.

I Each '/' (stroke) in the character-string represents a character
position into which the stroke character will be inserted. The '/' is counted
in the size of the item.

, Each',' (connna) in the character-string represents a character
position into which the character',' will be inserted. This character posi­
tion is counted in the size of the item. The insertion character',' must not
b~ the last character in the PICTURE character-string.

, When the character'.' (period) appears in the character-string it
is an editing symbol which represents the decimal point for alignment purposes
and in addition, represents a character position into which the character'.'
will be inserted. The character'.' is counted in the size of the item. For
a given program the functions of the period and comma are exchanged if the
clause DECIMAL-POINT IS COMMA is stated in the SPECIAL-NAMES paragraph. In
this exchange the, rules for the period apply to the connna and the rules for
the comma apply to the period wherever they appear in a PICTURE clause. The
insertion character'.' must not be the last character in the PICTURE
character-string.

+, -, ·cR, DB These symbols are used as editing sign control symbols.
When used, they represent the character position into which the editing sign
control symbol will be placed. The symbols are mutually exclusive in any one
character-string and each character used in the symbol is counted in deter­
mining the size of the data item.

* Each '*' (asterisk) in the character-string represents a leading
numeric character position into which an asterisk will be placed when the
contents of that position is zero. Each '*' is counted in the size of the
item.

cs The currency symbol in the character-string represents a character
position into which a currency symbol is to be placed. The currency symbol in
a character-string is represented by either the currency sign or by the single
character specified in the CURRENCY SIGN clause in the SPECIAL-NAMES paragraph.
The currency symbol is counted in the size of the item.

4.7.5 Editing Rules

(1) There are two general methods of performing editing in the PICTURE
clause, either by insertion or by suppression and replacement. There are four
types of insertion editing available. They are:

a. Simple insertion
b. Special insertion
c. Fixed insertion
d. Floating insertion

II-21

Nualeua - PICTURE

There are two types of suppression and replacement editing:

a. Zero suppression and replacement with spaces
b. Zero suppression and replacement with asterisks

(2) The type of editing which may be performed upon an item is dependent
upon the category to which the item belongs. The following table specifies
which type of editing may be performed upon a given category:

CATEGORY TYPE OF EDITING

Alphabetic Simple insertion 'B' only

Numeric None

Alphanumeric None

Alphanumeric Edited Simple insertion '0' , 'B' and 'I'
Numeric Edited All, subject to rules in rule 3 below

(3) Floating insertion editing and editing by zero suppression and replace­
ment are mutually exclusive in a PICTURE clause. Only one type of replacement
may be used with zero suppression in a PICTURE clause.

(4) Simple Insertion Editing. The',' (comma), 'B' (space), 'O' (zero),
and '/' (stroke) are used as the insertion characters. The insertion charac­
ters are counted in the size of the item and represent the position in the
item into which the character will be inserted.

(5) Special Insertion Editing. The'.' (period) is used as the insertion
character. In addition to being an insertion character it also represents the
decimal point for alignment purposes. The insertion character used for the
actual decimal point is counted in the size of the item. The use of the assumed
decimal point, represented by the symbol 'V' and the actual decimal point,
represented by the insertion character, in the same PICTURE character-string
is disallowed. The result of special insertion editing is the appearance of
the insertion character in the item in the same position as shown in the
character-string.

(6) Fixed Insertion Editing. The currency symbol and the editing sign
control symbols, '+', '-', 'CR', 'DB', are the insertion characters. Only
one currency symbol and only one of the editing sign control symbols can be
used in a given PICTURE character-string. When the symbols 'CR' or 'DB' are
used they represent two character positions in determining the size of the
item and they must represent the rightmost character positions that are
counted in the size of the item. The symbol '+'or'-', when used, must be
either the leftmost or rightmost character position to be counted in the size
of the item. The currency symbol must be the leftmost character position to
be counted in the size of the item except that it can be preceded by either a
'+' or a '-' symbol. Fixed insertion editing results in the insertion char­
acter occupying the same character position in the edited item as it occupied
in the PICTURE character-string. Editing sign control symbols produce the
following results depending upon the value of the data item:

II-22

Nuateus - PICTURE

RESULT
EDITING SYMBOL IN

PICTURE CHARACTER-STRING DATA ITEM DATA ITEM
POSITIVE OR ZERO NEGATIVE

+ + -
- space -
CR 2 spaces CR

DB 2 spaces DB

(7) Floating Insertion Editing. The.currency symbol and editing sign
control symbols '+' or '-' are the floating insertion characters and as such
are mutually exclusive in a given PICTURE character-string.

Floating insertion editing is indicated in a PICTURE character-string
by using a string of at least two of the floating insertion characters. This
string of floating insertion characters may contain any of the fixed insertion
symbols or have fixed insertion characters immediately to the right of this
string. These simple insertion character~ are part of the floating string.

The leftmost character of the floating insertion string represents the
leftmost limit Qf the floating symbol in the data item. The rightmost charac­
ter of the floating string represents the rightmost limit of the floating
symbols in the data item.

The second floating character from the left represents the leftmost
limit of the numeric data that can be stored in the data item. Non-zero
numeric data may replace all the characters at or to the right of this limit.

In a PICTURE character-string, there are only two ways of representing
floating insertion editing. One way is to represent any or all of the leading
numeric character positions on the left of the decimal point by the insertion
character. The other way is to represent all of the numeric character posi­
tions in the PICTURE character-string by the insertion character.

If the insertion characters are only to the left of the decimal point
in the PICTURE character-string, the result is that a single floating inser­
tion character will be placed into the character position immediately preceding
either the decimal point or the first non-zero digit in the data represented by
the insertion symbol string, whichever is farther to the left in the PICTURE
character-string. The character positions preceding the insertion character
are replaced with spaces.

If all numeric character positions in the PICTURE character-string are
represented by the insertion character, the result depends upon the value of
the data. If the value is zero the entire data item will contain spaces. If
the value is not zero, the result is the same as when the insertion character
is only to the left of the decimal point.

To avoid truncation, the minimum size of the PICTURE character-string
for the receiving data item must be the number of characters in the sending

II-23

NucZeus - PICTURE

data item, plus the number of non-floating insertion characters being edited
into the receiving data item, plus one for the floating insertion character.

(8) Zero Suppression Editing. The suppression of leading zeroes in
numeric character positions is indicated by the use of the alphabetic charac­
ter 'Z' or the character '*' (asterisk) as suppression symbols in a PICTURE
character-string. These symbols are mutually exclusive in a given PICTURE
character-string. Each suppression symbol is counted in determining the size
of the item. If 'Z' is used the replacement character will be the space and
if the asterisk is used, the replacement character will be '*'

Zero suppression and replacement is indicated in a PICTURE character­
s tring by using a string of one or more of the allowable symbols to represent
leading numeric character positions which are to be replaced when the asso­
ciated character position in the data contains a zero. Any of the simple
insertion characters embedded in the string of symbols or to the immediate
right of this strin& are part of the string.

In a PICTURE character-string, there are only two ways of representing
zero suppression. One way is to represent any or all of the leading numeric
character positions to the left of the decimal point by suppression symbols.
The other way is to represent all of the numeric character positions in the
PICTURE character-string by suppression symbols.

If the suppression symbols appear only to the left of the decimal
point, any leading zero in the data which corresponds to a symbol in the
string is replaced by the replacement character. Suppression terminates at
the first non-zero digit.in the data represented by the suppression symbol
string or at the decimal point, whichever is encountered first.

If all numeric character positions in the PICTURE character-string
are represented by suppression symbols and the value of the data is not zero
the result is the same as if the suppression characters were only to the left
of the decimal point. If the value is zero and the suppression symbol is 'Z',
the entire data item will be spaces. If the value is zero and the suppression
symbol is '*', the data item will be all '*' except for the actual decimal
point.

(9) The symbols '+', '-', '*', 'Z', and the currency symbol,, when used as
floating replacement characters, a·re mutually exclusive within a given
character-string.

4.7.6 Precedence Rules

The chart on page II-25 shows the order of precedence when using characters
as symbols in a character-string. An 'X' at an intersection indicates that
the symbol(s) at the top of the column may precede, in a given character­
string, the symbol(s) at the left of the row. Arguments appearing in braces
indicate that the symbols are mutually exclusive. The currency symbol is
indicated by the symbol 'cs'.

At least one of the symbols 'A', 'X', 'Z', '9' or '*', or at least two of
the symbols '+', '-'or 'cs' must be present in a PICTURE string.

II-24

Nucleus - PICTURE

PICTURE Character Precedence Chart

~
Non-Floating Floating Other Symbols Insertion Symbols Insertion Symbols

{:} f:} {~!} {!1 {~1 l:) \:) A d

1

B 0 I 9 s v p p
' cs cs cs x 1

B x x x x x x x x x x x x x x x x x

0 x x x x x x x x x x x x x x x x x

I x x x x x x x x x x x x x x x x x

Cl) x x x x x x x x x x x x x x x x 0 ' :t
~ >. ..., tn • x x x x 0 Cl x x x x x x
.-10
ra.~
I u
Cl ...

{:) 0 •
20 ~

l+)
-f x x x x x x x x x x x x x x

{~:} x x x x x x x x x x x x x x

cs x

{!l x x x x x x x

{!} x x x x x x x x x x x
Cl)
0

t {:} x x x x x x 00 >-
Cl tn

'r4 ..., Cl
"'0

{~l o~ x % x x x x x x, x x
1114 ...

a> • s:: cs x x x x x ,x

cs x x x x x x x x x x

9 x x x x x x x x x x x x x x x

A
• x x x x x x
0

t s en
k • -

'5 v 0 x x x x x x x x x x x x

p x x x x x x x x x x x. x

p x x x x x

II-25

Nualeus - PICTURE

Non-floating insertion symbols '+'and'-', floating insertion symbols 'Z',
'*', '+', '-',and 'cs', and other symbol 'P' appear twice in the PICTURE
character precedence chart on page II-25. The leftmost column and uppermost
row for each symbol represents its use to the left of the decimal point posi­
tion. The second appearance of the symbol in the chart represents its use to
the right of the decimal point position.

II-26

Nucleus - REDEFINES

4.8 THE REDEFINES CLAUSE

4.8.1 Function

The REDEFINES clause allows the same computer storage area to be described
by different data description entries.

4.8.2 General Format

level-number data-name-1; REDEFINES data-name-2

NOTE: Level-number, data-name-lland the semicolonlare shown in the
above format to improve clarity. Level-number and data-name-1
are not part of the REDEFINES clause.

4.8.3 Syntax Rules

(1) The REDEFINES clause, when specified, must immediately follow
da t a-name-1.

2 The level-numbers of data-name-! and data-name-2 must be identical,
but must not be 66 or 88

(3) This clause must not be used in level 01 entries in the File Section.
(See page IV-12, The DATA RECORDS Clause, General Rule 2.)

(4) This clause must not be used in level 01 entries in the Communication
Section.

(5) The data description entry for data-name-2 cannot contain a REDEFINES
clause. In Level 1, data-name-2 cannot be subordinate to an entr which con­
tains a REDEFINES clause. In Level 2, data-name-2 may be subordinate to an
ent which contains a REDEFINES clause. The data description entry for data­
name-2 cannot contain an OCCURS clause.]However, data-name-2 may be subordi­
nate to an item whose data description entry contains an OCCURS clause. In
this case, the reference to data-name-2 in the REDEFINES clause ma_y not be
subscri_E_ted or indexed.] Neither the original definition nor the redefinition
can include an item whose size is variable as defined in the OCCURS clause.
(See page III-2, The OCCURS Clause.)

(6) No entry having a level-number numerically lower than the level-number
of data-name-2 and data-name-1 may occur between the data description entries
of data-name-2 and data-name-!.

4.8.4 General Rules

(1) Redefinition starts at data-name-2 and ends when a level-number less
than or equal to that of data-name-2 is encountered.

(2) When the level-number of data-name-1 is other than 01, it must specify
the same number of character positions that the data item referenced by data­
name-2 contains. It is important to observe that the REDEFINES clause speci­
fies the redefinition of a storage area, not of the data items occupying the
area.

II-27

Nucleus - REDEFINES

(3) Multiple redefinitions of the same character positions are permitted.
The entries giving the new descriptions of the character positions must follow
the entries defining the area being redefined, without intervening entries
that define new character positions. Multiple redefinitions of the same char­
acter positions must all use the data-name of the entry that originally defined
the area.

(4) The entries giving the new description of the character rositions must
not contain any VALUE clauses, I except in condition-name entries._

(5) Multiple level 01 entries subordinate to any given level indicator
represent implicit redefinitions of the same area.

II-28

Nucleus - RENAMES

4.9 THE RENAMES CLAUSE

4.9.1 Function

The RENAMES clause permits alternative, possibly overlapping, groupings of
elementary items.

4.9.2 General Format

66 data-name-1; RENAMES data-name-2 [{;.UGH} data-name-31 •

NOTE: Level-number 66, data-name-1 and the semicolon are shown in the
above format to improve clarity. Level-number and data-name-1
are not part of the RENAMES clause.

4.9.3 Syntax Rules

(1) All RENAMES entries referring to data items within a given logical
record must immediately follow the last data descript~on entry of the asso­
ciated record description entry.

(2) Data-name-2 and data-name-3 must be names of elementary items or
groups of elementary items in the same logical record·, and cannot be the same
data-name. A 66 level entry cannot rename another 66 level entry nor can it
rename a 77, 88, or 01 level entry.

(3) Data-name-1 cannot be used as a qualifier, and can only be qualified
by the names of the associated level 01, FD, CD or SD entries. Neither
data-name-2 nor data-name-3 may have an OCCURS clause in its data description
entry nor be subordinate to an item that has an OCCURS clause in its data
description entry. (See page III-2, The OCCURS Clause.)

(4) The beginning of the area described by data-name-3 must not be to the
left of the beginning of the area described by data-name-2. The end of the
area described by data-name-3 must be to the right of the end of the area
described by data-name-2. Data-name-3,_ therefore, cannot be subordinate to
data-name-2.

(5) Data-name-2 and data-name-3 may be qualified.

(6) The words THRU and THROUGH are equivalent.

(7) None of the items within the range, including data-name-2 and data..;.
name-3, if specified, can be an item whose size is variable as defined in the
OCCURS clause (see page III-2).

4.9.4 General Rules

(1) One or more RENAMES entries can be written for a logical record.

(2) When data-name-3 is specified, data-name-1 is a group item which
includes all elementary items starting with data-name-2 (if data-name-2 is an
elementary item) or the first elementary item in data-name-2 (if data-name-2

II-29

Nucleus - RENAMES

is a group item), and concluding with data-name-3 (if data-name-3 is an
elementary item) or the last elementary item in data-name-3 (if data-name-3
is a group item).

(3) When data-name-3 is not specified, data-name-2 can be either a group
or an elementary item; when data-name-2 is a group item, data-name-1 is treat­
ed as a group item, and when data-name-2 is an elementary item, data-name-1 is
treated as an elementary' item.

II-30

Nucleus - SIGN

4.10 THE SIGN CLAUSE

4.10.1 Function

The SIGN clause specifies the position and the mode of representation of
the operational sign when it is necessary to describe these properties
explicitly.

4.10.2 General Format

4.10.3 Syntax Rules

(1) The SIGN clause may be specified only for a numeric data description
entry whose PICTURE contains the character 'S', or a group item containing at
least one such numeric data description entry.

(2) The numeric data description entries to which the SIGN clause applies
must be described as usage is DISPLAY.

(3) At most one SIGN clause may apply to any given numeric data descrip­
tion entry.

(4) If the CODE-SET clause is specified, any signed numeric data descrip­
tion entries associated with that file description entry must be described
with the SIGN IS SEPARATE clause.

4.10.4 General Rules

(1) The optional SIGN clause, if present, specifies the position and the
mode of representation of the operational sign for the numeric data descrip­
tion entry to which it applies, or for each numeric data description entry
subordinate to the group to which it applies. The SIGN clause applies only
to numeric data description entries whose PICTURE contains the character 'S';
the 'S' indicates the presence of, but neither the representation nor, neces­
sarily, the position of the operational sign.

(2) A numeric data description entry whose PICTURE contains the character
'S', but to which no optional SIGN clause applies, has an operational sign,
but neither the representation nor, necessarily, the position of the opera­
tional sign is specified by the character 'S'. In this (default) case, the
implementor will define the position and representation of the operational
sign. General rules 3 through 5 do not apply to such signed numeric data
items.

(3) If the optional SEPARATE CHARACTER phrase is not present, then:

a. The operational sign will be presumed to be associated with the
leading (or, respectively, trailing) digit position of the elementary numeric
data item.

II-31

Nucleus - SIGN

b. The letter 'S' in a PICTURE character-string is not counted in
determining the size of the item (in terms of standard data format characters).

c. The implementor defines what constitutes valid sign(s) for data
items.

(4) If the optional SEPARATE CHARACTER phrase is present, then:

a. The operational sign will be presumed to be the leading (or,
respectively, trailing) character position of the elementary numeric data
item; this character position is not a digit position.

b. The letter 'S' in a PICTURE character-string is counted in deter­
mining the size of the item (in terms of standard data format characters).

c. The operational signs for positive and negative are the standard
data format characters'+' and'-', respectively.

(5) Every numeric data description entry whose PICTURE contains the char­
acter 'S' is a signed numeric data description entry. If a SIGN clause
applies to such an entry and conversion is necessary for purposes of computa­
tion or comparisons, conversion takes place automatically.

II-32

Nualeus - SYNCHRONIZED

4.11 THE SYNCHRONIZED CLAUSE

4.11.1 Function

The SYNCHRONIZED clause specifies the alignment of an elementary item on
the natural boundaries of the computer memory (see page I-87, Item Alignment
for Increased Object-Code Efficiency).

4.11.2 General Format

.f SYNCHRONIZED} .[LEFT]
lSYNC RIGHT

4.11.3 Syntax Rules

(1) This clause may only appear with an elementary item.

(2) SYNC is an abbreviation for SYNCHRONIZED.

4.11.4 General Rules

(1) This clause specifies that the subject data item is to be aligned in
the computer such that no other data item occupies any of the character posi­
tions between the leftmost and rightmost natural boundaries delimiting this
data item. If the number of character positions required to store this data
item is less than the number of character positions between those natural
boundaries, the unused character positions (or portions thereof) must not be
used for any other data item. Such unused character positions, however, are
included in:

a. The size of any group item(s) to which the elementary item belongs;
and

b. The character positions redefined when this data item is the object
of a REDEFINES clause.

(2) SYNCHRONIZED not followed by either RIGHT or LEFT specifies that the
elementary item is to be positioned between natural boundaries in such a way
as to effect efficient utilization of the elementary data item. The specific
positioning is, however, determined by the implementor.

(3) SYNCHRONIZED LEFT specifies that the elementary item is to be posi­
tioned such that it will begin at the left character position of the natural
boundary in which the elementary item is placed.

(4) SYNCHRONIZED RIGHT specifies that the elementary item is to be posi­
tioned such that it. will terminate on the right character position of the
natural boundary in which the elementary item is placed.

(5) Whenever a SYNCHRONIZED item is referenced in the source program, the
original size of the item, as shown in the PICTURE clause, is used in deter­
mining any action that depends on size, such as justification, truncation or
overflow.

II-33

NuaZeus - SYNCHRONIZED

(6) If the data description of an item contains the SYNCHRONIZED clause
and an operational sign, the sign of the item appears in the normal operation­
al sign position, regardless of whether the item is SYNCHRONIZED LEFT or
SYNCHRONIZED RIGHT.

(7) When the SYNCHRONIZED clause is specified in a data description entry
of a data item that also contains an OCCURS clause, or in a data description
entry of a data item subordi1i.ate to a data description entry that co~tains an
OCCURS clause, then:

a. Each occurrence of the data item is SYNCHRONIZED.

b. Any implicit FILLER generated for other data items within that
same table are generated for each occurrence of those data items. (See
general rule 8b.)

(8) This clause is hardware dependent and in addition to rules 1 through
7, the implementor must specify how elementary items associated with this clause
are handled regarding:

a. The format on the external media of records or groups containing
elementary items whose data description contains the SYNCHRONIZED clause.

b. Any necessary generation of implicit FILLER, if the elementary
item immediately preceding an item containing the SYNCHRONIZED clause does
not terminate at an appropriate natural boundary. Such automatically gener~
ated FILLER positions are included in:

1) The size of any group to which the FILLER item belongs; and

2) The number of character positions allocated when the group
item of which the FILLER item is a part appears as the object of a REDEFINES
clause.

(9) An implementor may, at his option, specify automatic alignment for
any internal data formats except, within a record, data items whose usage is
DISPLAY. However, the record itself may be synchronized.

(10) Any rules for synchronization of the records of a data file, as this
effects the synchronization of elementary items, will be specified by the
implementor.

II-34

Nuc Zeus - USAGE

4.12 THE USAGE CLAUSE

4.12.1 Function

The USAGE clause specifies the format of a data item in the computer storage.

4.12.2 General Format

[USAGE rs]
{

COMPUTATIONAL}
COMP
DISPLAY

4.12.3 Syntax Rules

(1) The PICTURE character-string of a COMPUTATIONAL item can contain only
'9's, the operational sign character 'S', the implied decimal point character
'V', one or more 'P's. (See page II-18, The PICTURE Clause.)

(2) COMP is an abbreviation for COMPUTATIONAL.

4.12.4 General Rules

(1) The USAGE clause can~ be written at any level. If the USAGE clause is
written at a group level, it applies to each elementary item in the group.
The USAGE clause of an elementary item cannot contradict the USAGE clause of
a group to which the item belongs.

(2) This clause specifies the manner in which a data item is represented
in the storage of a computer. It does not affect the use of the data item,
although the specifications for some statements in the Procedure Division may
restrict the USAGE clause of the operands referred to. The USAGE clause may
affect the radix or type of character representation of the item.

(3) A COMPUTATIONAL item is capable of representing a value to be used in
computations and must be numeric. If a group item is described as
COMPUTATIONAL, the elementary items in the group are COMPUTATIONAL. The group
item itself is not COMPUTATIONAL (cannot be used in computations).

(4) The USAGE IS DISPLAY clause indicates that the format of the data is
a standard data format.

(5) If the USAGE clause is not specified for an elementary item, or for
any group to which the item belongs, the usage is implicitly DISPLAY.

II-35

Nua Zeus - VALUE

4.13 THE VALUE CLAUSE

4.13.1 Function

The VALUE clause defines the value of constants, the value of Report
Section printable items, the initial value of working storage items, the
initial value of data items in the Connnunication Section, land the values
associated with a condition-name.I

4.13.2 General Format

Format 1

VALUE IS literal

Format 2

{~~~81!n_E} literal-I [{~UGH} literal-21

[· literal-3 [{~UGH} literal-4]] ••.

4.13.3 Syntax Rules

(1) The words THRU and THROUGH are equivalent.I

(2) The VALUE clause cannot be stated for any items whose size is variable.
(See page III-2, The OCCURS Clause.)

(3) A signed numeric literal must have associated with it a signed numeric
PICTURE character-string.

(4) All numeric literals in a VALUE clause of an item must have a value
which is within the range of values indicated by the PICTURE clause, and must
not have a value which would require truncation of nonzero digits. Nonnumeric
literals in a VALUE clause of an item must not exceed the size indicated by
the PICTURE clause.

4.13.4 General Rules

(1) The VALUE clause must not conflict with other clauses in the data
description of the item or in the data description within the hierarchy of
the item. The following rules apply:

a. If the category of the item is numeric, all literals in the VALUE
clause must be numeric. If the literal defines the value of a working storage
item, the literal is aligned in the data item according to the standard align~
ment rules. (See page I-86, Standard Alignment Rules.)

II-36

Nucleus - VALUE

b. If the category of the item is alphabetic, alphanumeric, alpha­
numeric edited or numeric edited, all literals in the VALUE clause must be
nonnumeric literals. The literal is aligned in the data item as if the data
item had been described as alphanumeric. (See page I-86, Standard Alignment
Rules.) Editing characters in the PICTURE clause are included in determining
the size of the data item (see page II-18, The PICTURE Clause) but have no
effect on initialization of the data item. Therefore, the VALUE for an
edited item is presented in an edited form.

c. Initialization takes place independent of any BLANK WHEN ZERO or
JUSTIFIED clause that may be specified.

(2) A figurative constant may be substituted in both Format 1 and Format 2
wherever a literal is specified.

4.13.5 Condition-Name Rules

(1) In a condition-name entry, the VALUE clause is required. The VALUE
clause and the condition~name itself are the only two clauses permitted in the
entry. The characteristics of a condition-name are implicitly those of its
conditional variable.

(2) Format 2 can be used only in connection with condition-names. (See
page I-91, Condition-Name.) Wherever the THRU phrase is used, literal-! must
be less than literal-2, literal-3 less than literal-4, etc.

4.13.6 Data Description Entries Other Than Condition-Names

(1) Rules governing the use of the VALUE clause differ with the respective
sections of the Data Division:

a. In Level 1, the VALUE clause cannot be used in the File Section.
In the File Section, the VALUE clause may be used only in condition-name
entries.

b. In the Workin -Storage Section and the Connnunication Section,Jthe
VALUE clause must be used in condition~name entries. The VALUE clause may also
be used to specify the initial value of any other data item; in which case the
clause causes the item to assume the specified value at the start of the object
program. If the VALUE clause is not used in an item's description, the initial
value is undefined.

c. In Level 1, the VALUE clause cannot be used in the Linka e Section.
In the Linkage Section, the VALUE clause may be used only in condition-name
entries.

d. In the Report Section, if the elementary report entry containing
the VALUE clause does not contain a GROUP INDICATE clause, then the printable
item will assume the specified value each time its report group is printed.
However, when the GROUP INDICATE clause is also present, the specified value
will be presented only when certain object time conditions exist. (See page
VIII-31, The GROUP INDICATE Clause.)

II-37

Nucleus - VALUE

(2) The VALUE clause must not be stated in a data description entry that
contains an OCCURS clause, or in an entr that is subordinate to an entr
containing an OCCURS clause. This rule does not a 1 to condition-name

l entries.] (See page III-2, The OCCURS Clause.)

(3) The VALUE clause must not be stated in a data description entry that
contains a REDEFINES clause, or in an entr that is subordinate to an entr
containing a REDEFINES clause. This rule does not apply to condition-name

I entries. I

(4) If the VALUE clause is used in an entry at the group level, the
literal must be a figurative constant or a nonnumeric literal, and the group
area is initialized without consideration for the individual elementary or
group items contained within this group. The VALUE clause cannot be stated
at the subordinate levels within this group.

(5) The VALUE clause must not be written for a group containing items
with descriptions including JUSTIFIED, SYNCHRONIZED, or USAGE (other than
USAGE IS DISPLAY).

II-38

Nucleus - Arithmetic Expressions

5. PROCEDURE DIVISION IN THE NUCLEUS

5.1 ARITHMETIC EXPRESSIONS

5.1.1 Definition of an Arithmetic Expression

An arithmetic expression can be an identifier of a numeric elementary item,
a numeric literal, such identifiers and literals separated by arithmetic oper­
ators, two arithmetic expressions separated by an arithmetic operator, or an
arithmetic expression enclosed in parentheses. Any arithmetic expression may
be preceded by a unary operator. The permissible combinations of variables,
numeric literals, arithmetic operator and parentheses are given in Table 1,
Combination of Symbols in Arithmetic Expressions, on page II-40.

Those identifiers and literals appearing in an arithmetic expression must
represent either numeric elementary items or numeric literals on which arith­
metic may be performed.

5.1.2 Arithmetic Operators

There are five binary arithmetic operators and two unary arithmetic opera­
tors that may be used in arithmetic expressions. They are represented by
specific characters that must be preceded by a space and followed by a space.

Binary Arithmetic
Operators

+

* I
**

Unary Arithmetic
Operators

+

5.1.3 Formation And Evaluation Rules

Meaning

Addition
Subtraction
Multiplication
Division
Exponentiation

Meaning

The effect of multiplication
by numeric literal +l

The effect of multiplication
by numeric literal ~I.

(1) Parentheses may be used in arithmetic expressions to specify the
order in which elements are to be evaluated. Expressions within parentheses
are evaluated first, and within nested parentheses, evaluation proceeds from
the least inclusive set to the most inclusive set. When parentheses are not
used, or parenthesized expressions are at the same level of inclusiveness,
the following hierarchical order of execution is implied:

1st - Ynary plus and minus
2nd - Exponentiation
3rd - Multiplication and division
4th - Addition and subtraction

II-39

Nucleus - Arithmetic Expressions

(2) Parentheses are used either to eliminate ambiguities in logic where
consecutive operations of the same hierarchical level appear or to modify the
normal hierarchical sequence of execution in expressions where it is necessary
to have some deviation from the normal precedence. When the sequence of execu~
tion is not specified by parentheses, the order of execution of consecutive
operations of the same hierarchical level is from left to right.

(3) The ways in which operators, variables, and parentheses may be combined
in an arithmetic expression are summarized in Table 1, where:

a. The letter 'P' indicates a permissible pair of symbols.

b. The character '-' indicates an invalid pair.

c. 'Variable' indicates an identifier or literal.

FIRST SECOND SYMBOL
SYMBOL

Variable * I ** - + Unary + () or -

Variable - p - - p

* I ** + - p - p p -
Unary +or - p - - p -
(p - p p -
) - p - - p

Table 1. Combination of Symbols in Arithmetic Expressions

(4) An arithmetic expression may only begin with the symbol'(', '+', '-'
or a variable and may only end with a')' or a variable. There must be a one­
to-one correspondence between left and right parentheses of an arithmetic
expression such that each left parenthesis is to the left of its corresponding
right parenthesis.

(5) Arithmetic expressions allow the user to combine arithmetic operations
without the restrictions on composite of operands and/or receiving data items.
See, for example, syntax rule 3 on page II-55. Each implementor will indicate
the techniques used in handling arithmetic expressions.

II-40

Nucleus - Conditional Expressions

5.2 CONDITIONAL EXPRESSIONS

Conditional expressions identify conditions that are tested to enable the
object program to select between alternate paths of control depending upon the
truth value of the condition. Conditional expressions are specified in the IF,
PERFORM and SEARCH statements. There are two categories of conditions asso­
ciated with conditional expressions: simple conditionsland complex conditions.I
Each may be enclosed within any number of paired parentheses, in which case its
category is not changed.

5.2.1 Simple Conditions

The simple conditions are the relation, class,/condition-name,I switch-status,
fand signlconditions. A simple condition has a truth value of 'true' or 'false'.
The inclusion in parentheses of simple conditions does not change the simple
truth value.

5.2.1.1 Relation Condition

A relation condition causes a comparison of two operands, each of which may
be the data item referenced by an identifier, a literal,lor the value result- I

ling from an arithmetic expression. I A relation condition has a truth value of
'true' if the relation exists between the operands. Comparison of two numeric
operands is permitted regardless of the formats specified in their respective
USAGE clauses. However, for all other comparisons the operands must have the
same usage. If either of the operands is a group item, the nonnumeric compar­
ison rules apply.

The general format of a relation condition is as follows:

I"'
IS [NOT] GREAT
IS [NOT] LESS

~ IS [NOT] EQUAL
IS T_NOT] >
IS [NOT] <
IS [NOT] = ...

NOTE: The required relational characters '>', '<',and'=' are
not underlined to avoid confusion with other symbols
such as ·~' (great-er than or equal to).

The first operand (identifier-!, literal-1,lor arithmetic-expression-If) is
called the sub ect of the condition; the second operand (identifier-2, literal-2,
or arithmetic-e ression-2) is called the object of the condition. The rela­
tion condition must contain at least one reference to a variable.

The relational operator specifies the type of comparison to be made in a
relation condition. A space must precede and follow each reserved word com­
prising the relational operator. When used, 'NOT' and the next key word or
relation character are one relational operator that defines the comparison to
be executed for truth value; e.g., 'NOT EQUAL' is a truth test for an 'unequal'

II-41

Nualeus - Relation Condition

comparison; 'NOT GREATER' is a truth test for an 'equal' or 'less' comparison.
The meaning of the relational operators is as follows:

Meaning

Greater than or not greater than

Less than or not less than

Equal to or not equal to

Relational Operator

IS [NOT] GREATER THAN
I IS [NOT] > I

IS [NOT] LESS THAN
I IS [NOT] < I

IS [NOT] E UAL TO
IS [NOT] =

NOTE:· The required relational characters '>', '<', and '=' are not
underlined to avoid confusion with other symbols such as
'~' (greater than or equal to).

5. 2.1.1.1 Comparison of Numeric Operands

For operands whose class is numeric (see page I-85, paragraph 5.3.3.3),
a comparison is made with respect to the algebraic value of the operands. The
length of the literallor arithmetic expression operands,J in terms of number
of digits represented, is not significant. Zero is considered a unique value
regardless of the sign.

Comparison of these operands is permitted regardless of the manner in which
their usage is described. Unsigned numeric operands are considered positive
for purposes of comparison.

5. 2 .1.1. 2 Comparison o,f Nonnumeri c Operands

For nonnumeric operands, or one numeric and one nonnumeric operand, a com­
parison is ·made with respect to a specified collating sequence of characters
(see page II-6, The OBJECT-COMPUTER Paragraph). If one of the operands is
specified as numeric~ it must be an integer data item or an integer literal
and:

a. If the nonnumeric operand is an elementary data item or a nonnumeric
literal, the numeric operand is treated as though it were moved to an elemen­
tary alphanumeric data item of the same size as the numeric data item (in terms
of standard data format characters), and the contents of this alphanumeric data
item were then compared to the nonnumeric operand. (See page II-74, The MOVE
Statement, and page II-20, the PIC~URE character 'P'.)

b. If the nonnumeric operand is a group item, the numeric operand is
treated as though it were moved to a group item of the-same size as the numeric
data item (in terms of standard data format characters), and the contents of
this group item were then compared to the nonnumeric operand. (See page II-74,
The MOVE Statement,/ and page II-20, the PICTURE character 'P' .)

c. A non-integer numeric operand cannot be compared to a nonnumeric operand.

II-42

Nucleus - Class Condition

The size of an operand is the total numb.er of standard data format char­
acters in the operand. Numeric and nonnumeric operands may be compared only
when their usage is .. the same.

There are two.cases to consider: operands of equal size\and operands of\
I unequal size. \

(1) Operands of e_qual size. If the operands are of equal size, comparison
effectively proceeds by comparing characters in corresponding character posi­
tions starting from the high order end and continuing until either a pair of
unequal characters is encountered or the low order end of the operand is
reached, whichever comes first. The operands are determined to be equal if all
pairs of characters compare equally through the last pair, when the low order
end is reached.

The first encountered pair of unequal characters is compared to deter­
mine their relative position in the collating sequence. The operand that
contains the character that is positioned higher in the collating sequence is
considered to be the greater operand.

(2) Operands of unequal si.ze. If the operands are of unequal size, com­
parison proceeds as though the shorter operand we·re extended on the right by
sufficient spaces to make the ~perands of equal size.

5.2.1.2 Class Condition

The class condition determines whether the operand is numeric, that is,
consists entirely of the characters '0', '1', '2', '3', ••• , '9' , with or
without the operational sign, or alphabetic, that is, consists entirely of
the characters 'A', 'B', 'C', ••• , 'Z', space. The general format fo~ the
class condition is as follows:

identifier IS [NoT] [NUMERIC 1
lALPHABETIC

The usage of the operand being tested must be described as display. When
used, 'NOT' and the next key word specify one class condition that defines
the class test to be executed for truth value; e.g. 'NOT NUMERIC' is a truth
test for determining that an operand is nonnumeric.

The NUMERIC test cannot be used.with an item whose data description describes
the item as alphabetic or as a group item composed of elementary items whose
data description indicates the presence of operational sign(s). If the data
description of the item being tested does not indicate the presence of an oper­
ational sign, the item being tested is determined to be numeric only if the
contents are numeric and an operational sign is not present. If the data
description of the item does indicate the presence of an operational sign, the
item being tested is determined to be numeric only if the contents are numeric
and a valid operational sign is present. Valid operational signs for data
items described with the SIGN IS SEPARATE clause are the standard data format
characters, '+'and'-'; the implementor defines what constitutes valid sign(s)
for data items not described with the SIGN IS SEPARATE clause.

II-43

Nuaieus - Condition-Name Condition

The ALPHABETIC test cannot be used with an item whose data description
describes the item as numeric. The item being tested is determined to be
alphabetic only if the contents consist of any combination of the alphabetic
characters 'A' through 'Z' and the space •

. 5.2.1.3 Condition-Name Condition (Conditional Variable)

In a condition-name condition, a conditional variable is tested to deter­
mine whether or not its value is equal to one of the values associated with a
condition-name. The general format for the condition-name condition is as
follows:

condition-name

If the condition-name is associated with a range or ranges of values, then
the conditional variable is tested to determine whether or not its value falls
in this range, including the end values.

The rules for comparing a conditional variable with a condition-name value
are the same as those specified for relation conditions.

The result of the test is true if one of the values corresponding to the
condition-name equals the value of its associated conditional variable.

5.2.1.4 Switch-Status Condition

A switch-status condition determines the 'on' or 'off' status of an
implementor-defined switch. The implementor-name and the 'on' or 'off' value
associated with the condition must be named in the SPECIAL-NAMES paragraph of
the Environment Division. The general format for the switch-status condition
is as follows:

condition-name

The result of the test is true if the switch is set to the specified posi­
tion corresponding to the condition-name.

5.2.1.5 Sign Condition

The sign condition determines whether or not the algebraic value of an
arithmetic expression is less than, greater than, or equal to zero. The
general format for a sign condition is as follows:

arithmetic-expression IS
'POSITIVE}

[NOT] ~ NEGATIVE

~

II-44

Nucleus - Complex Conditions

When used, 'NOT' and the next key word specify one sign condition that
defines the algebraic test to be executed for truth value; e.g., 'NOT ZERO'
is a truth test for a nonzero (positive or negative) value. An operand is
positive if its value is greater than zero, negative if its value is less
than zero, and zero if its value is equal to zero. The arithmetic expression
must contain at least one reference to a variable.

5.2.2 Complex Conditions

A complex condition is formed by combining simple conditions, combined
conditions and/or complex conditions with logical connectors (logical opera-,
tors 'AND' and 'OR') or negating these conditions with logical negation
(the logical operator 'NOT'). The truth value of a complex condition, whether
parenthesized or not, is that truth value which results from the interaction
of all the stated logical operators on the individual truth values of simple
conditions, or the intermediate truth values of conditions logically connected
or logically negated.

The logical operators and their meanings are:

Logical Operator

AND

OR

NOT

Meaning

Logical conjunction; the truth value is 'true' if
both of the conjoined conditions are true; 'false'
if one or both of the conjoined conditions is false.

Logical inclusive OR; the truth value is 'true' if
one or both of the included conditions is true;
'false' if both included conditions are false.

Logical negation or reversal of truth value; the
truth value is 'true' if the condition is false;
'false' if the condition is true.

The logical operators must be preceded by a space and followed by a space.

5.2.2.1 Negated Simple Conditions

A simple condition (see page II-41) is negated through the use of the
logical operator 'NOT'. The negated simple condition effects the opposite
truth value for a simple condition. Thus the truth value of a negated simple
condition is 'true' if and only if the truth value of the simple condition is
'false'; the truth value of a negated simple condition is 'false' if and only
if the truth value of the simple condition is 'true'. The inclusion in paren­
theses of a negated simple condition does not change the truth value.

The general format for a negated simple condition is:

NOT simpl~condition

II-45

Nucleus - Combined Conditions

5.2.2.2 Combined and Negated Combined Conditions

A combined condition results from connecting conditions with one of the
logical operators 'AND' or 'OR'. The general format of a combined condition
is:

condition {{ ~ 1 condition]

Where 'condition' may be:

(1) A simple condition, or

(2) A negated simple condition, or

(3) A combined condition, or

(4) A negated combined condition; i.e., the 'NOT' logical operator
followed by a combined condition enclosed within parentheses, or

(5) Combinations of the above, specified according to the rules summarized
in table 2, Combinations of Conditions, Logical Operators, and Parentheses,
located on the next page.

Although parentheses need never be used when either 'AND' or 'OR' (but not
both) is used exclusively in a combined condition, parentheses may be used to
effect a final truth value when a mixture of 'AND', 'OR' and 'NOT' is used.
(See table 2, Combinations of Conditions, Logical Operators, and Parentheses,
on the next page and paragraph 5.2.4, Condition Evaluation Rules, on page II-48.)

Table .2 on the next page indicates the ways in which conditions and logical
operators may be combined and parenthesized. There must be a one-to-one
correspondence between left and right parentheses such that each left paren­
thesis is to the left of its corresponding right parenthesis.

II-46

Nucleus - Abbreviated Combined Relation Conditions

Location in In a left-to-right sequence of elem~nts:
conditional Element, when not Element, when not

Given the follow- expression first, may be last, may be
ing element First Last immediately pre- immediately fol-

ceded by only: lowed by only:

simple-condition Yes Yes OR, NOT, AND, (OR, AND,)

OR or AND No No simple-condition,) simple-condition,
NOT, (

NOT Yes No OR, AND, (simple-condition, (

(Yes No OR, NOT, AND, (simple-condition,
NOT, (

) No Yes simple-condition,) OR, AND,)

Table 2. Combinations of Conditions, Logical Operators, and Parentheses

Thus, the element pair 'OR NOT' is permissible while the pair 'NOT OR' is
not permissible; 'NOT (' is permissible while 'NOT NOT' is not permissible.

5.2.3 Abbreviated Combined Relation Conditions

When simple or negated simple relation conditions are combined with logical
connectives in a consecutive sequence such that a succeeding relation condition
contains a subject or subject and relational operator that is common with the
preceding relation condition, and no parentheses are used within such a
consecutive sequence, any relation condition except the first may be abbre­
viated by:

(1) The omission of the subject of the relation condition, or

(2) The omission of the subject and relational operator of the relation
condition.

The format for an abbreviated combined relation condition is:

relation-condition { { ~} [NOT J [relational-operator] object}

Within a sequence of relation conditions both of /the above forms of abbre­
viation may be used. The effect of using such abbreviations is as if the last
preceding stated subject were inserted in place of the omitted subject, and
the last stated relational operator were inserted in place of the omitted
relational operator. The result of such implied insertion must comply with
the rules of Table 2, Combinations of Conditions, Logical Operators, and
Parentheses, shown above. This insertion of an omitted subject and/or

II-47

Nucleus - Condition Evaluation Rules

relational operator terminates once a complete simple condition is encountered
within a complex condition.

The interpretation applied to the use of the word 'NOT' in an abbreviated
combined relation condition is as follows:

(1) If the word immediately following 'NOT' is 'GREATER', '>', 'LESS',
'<', 'EQUAL', '=',then the 'NOT' participates as part of the relational
operator; otherwise

(2) The 'NOT' is interpreted as a logical operator and, therefore, the
implied insertion of subject or relational operator results in a negated
relation condition.

Some examples of abbreviated combined and negated combined relation
conditions and expanded equivalents follow.

Abbreviated Combined
Relation Condition

a > b AND NOT < c OR d

a NOT EQUAL b OR c

NOT a = b OR c

NOT (a GREATER b OR < c)

NOT (a NOT > b AND c AND NOT d)

5.2.4 Condition Evaluation Rules

Expanded Equivalent

((a > b) AND (a NOT < c)) OR (a NOT < d)

(a NOT EQUAL b) OR (a NOT EQUAL c)

(NOT (a = b)) OR (a = c)

NOT ((a GREATER b) OR (a < c))

NOT ((((a NOT > b) AND (a NOT > c)) AND
(NOT (a NOT > d))))

Parentheses may be used to specify the order in which individual conditions
of complex conditions are to be evaluated when it is necessary to depart from
the implied evaluation precedence. Conditions within parentheses are evaluated
first, and, within nested parentheses, evaluation proceeds from the least
inclusive condition to the most inclusive condition. When parentheses are not
used, or parenthesized conditions are at the same level of inclusiveness, the
following hierarchical order of logical evaluation is implied until the final
truth value is determined:

(1) Values are established for arithmetic expressions. (See Formation
and Evaluation Rules on page II-39.)

(2) Truth values for simple conditions are established in the following
order:

relation (following the expansion of any abbreviated relation
condition)

class
condition-name
switch-status
sign

II-48

Nucleus - Condition Evaluation Rules

(3) Truth values for negated simple conditions are established.

(4) Truth values for combined conditions are established:

'AND' logical operators, followed by
'OR' logical operators.

(5) Truth values for negated combined conditions are established.

(6) When the sequence of evaluation is not completely specified by paren­
theses, the order of evaluation of consecutive operations of the same
hierarchical level is from left to right •

. II-49

Nucleus - Options & Rules for Formats

5.3 COMMON PHRASES AND GENERAL RULES FOR STATEMENT FORMATS

In the statement descriptions that follow, several phrases appear frequent­
ly: the ROUNDED phrase, the SIZE ERROR phrase,jand the CORRESPONDING phrase.

In the discussion below, a resultant-identifier is that identifier associ­
ated with a result of an arithmetic operation.

5.3.1 The ROUNDED Phrase

If, after decimal point alignment, the number of places in the fraction of
the result of an arithmetic operation is greater than the number of places
provided for the fraction of the resultant-identifier, truncation is relative
to the size provided for the resultant-identifier. When rounding is requested,
the absolute value of the resultant-identifier is increased by one (1) when­
ever the most significant digit of the excess is greater than or equal to
five (5).

When the low-order integer positions in a resultant-identifier are repre­
sented by the character 'P' in the picture for that resultant-identifier,
rounding or truncation occurs relative to the rightmost integer position for
which storage is allocated.

5.3.2 The SIZE ERROR Phrase

If, after decimal point alignment, the absolute value of a result exceeds
the largest value that can be contained in the associated resultant-identifier,
a size error condition exists. Division by zero always causes a size error
condition. The size error condition applies only to the final results of an
arithmetic operation and does not apply to intermediate results, except in
the MULTIPLY and DIVIDE statements, in which case the size error condition
applies to the intermediate results as well. If the ROUNDED phrase is speci­
fied, rounding takes place before checking for size error. When such a size
error condition occurs, the subsequent action depends on whether or not the
SIZE ERROR phrase is specified.

(1) If the SIZE ERRORphrase is not specified and a size error condition
occurs, the value of those resultant-identifier(s) affected is undefined.
Values of resultant-identifier(s) for which no size error condition occurs
are unaffected by size errors that occur for other resultant-identifier(s)
during execution of this operation.

(2) If the SIZE ERROR phrase is specified and a size error condition
occurs, then the values of resultant-identifier(s) affected b the size errors
are not altered. Values of resultant-identifier(s) for which no size error
condition occurs are unaffected by size errors that occur 1or other resultant­
identifier(s) during execution of this o eration. After completion of the
execution of this operation, the imperative statement in the SIZE ERROR phrase
is executed.

For the ADD statement with the CORRESPONDING phrase and the SUBTRACT state­
ment with the CORRESPONDING phrase, if any of the individual operations produces
a size error condition, the imperative statement in the SIZE ERROR phrase is
not executed until all of the individual additions or subtractions are completed.

II-50

NucZeus - Options & Rules foP Formats

5.3.3 The CORRESPONDING Phrase

For the purpose of this discussion, d1 and d2 must each be identifiers that
refer to group items. A pair of data items, one from d1 and one from d2 cor­
respond if the following conditions exist:

(1) A data item in d
1

and a data item in d
2

are not designated by the key
word FILLER and have the same data-name and the same qualifiers up to, but not
including, d1 and d2•

(2) At least one of the data items is an elementary data item in the case
of a MOVE statement with the CORRESPONDING phrase; and both of the data items
are elementary numeric data items in the case of the ADD statement with the
CORRESPONDING phrase or the SUBTRACT statement with the CORRESPONDING phrase.

(3) The description of d1 and d2 must not contain level-number 66, 77, or
88 or the USAGE IS INDEX clause.

(4) A data item that is subordinate to d1 or d2 and contains a REDEFINES,
RENAMES, OCCURS or USAGE IS INDEX clause is ignored, as well as those data
items subordinate to the data item that contains the REDEFINES, OCCURS, or
USAGE IS INDEX clause. However, dl and d2 may have REDEFINES or OCCURS clauses
or be subordinate to data items with REDEFINES or OCCURS clauses. (See page
III-2, The OCCURS Clause.)

5.3.4 The Arithmetic Statements

The arithmetic statements are the ADD,lCOMPUTE,lDIVIDE, MULTIPLY, and
SUBTRACT statements. They have several common features.

(1) The data descriptions of the operands need not be the same; any
necessary conversion and decimal point alignment is supplied throughout the
calculation.

(2) The maximum size of each operand is eighteen (18) decimal digits. The
composite of operands, which is a hypothetical data item resulting from the
superimposition of specified operands in a statement aligned on their decimal
points (see page II-55, The ADD Statement; page II-61, The DIVIDE Statement;
page II-77, The MULTIPLY Statement; and page II-89, The SUBTRACT Statement)
must not contain more than eighteen deGimal digits.

5.3.5 Overlapping Operands

When a sending and a receiving item in an arithmetic statement or an
INSPECT, MOVE, SET,f STRING, or UNSTRING\stat~ment share a part of their stor­
age areas, the result of the execution of such a statement is undefined.

5.3.6 Multiple Results in Arithmetic Statements

The ADD, COMPUTE, DIVIDE, MULTIPLY, and SUBTRACT statements may have multi­
ple results. Such statements behave as though they had been written in the
following way:

II-51

Nualeus - Options & Rules for Formats

\l) A statement which performs all arithmetic necessary to arrive at the
result to be stored in the receiving items, and stores that result in a
temporary storage location.

(2) A sequence of statements transferring or combining the value of this
temporary location with a single result. These statements are considered to
be written in the same left-to-right sequence that the multiple results are
listed.

The result of the statement

ADD a, b, c TO c, d (c), e

is equivalent to

ADD a, b, c GIVING temp
ADD temp TO c
ADD temp TO d (c)
ADD temp TO e

where 'temp' is an intermediate result item provided by the implementor.

5.3.7 Incompatible Data

Except for the class condition (see page II-43, The Class Condition), when
the contents of a data item are referenced in the Procedure Division and the
contents of that data item are not compatible with the class specified for
that data item by its PICTURE clause, then the result of such a reference is
undefined.

II-52

Nucleus - ACCEPT

5.4 THE ACCEPT STATEMENT

5.4.1 Function

The ACCEPT statement causes low volume data to be made available to the
specified data item.

5.4.2 General Format

Format 1

ACCEPT identifier j [~ mnemonic-name] \ .

Format 2

ACCEPT identifier FROM { ~!~E)
TIME~

5.4.3 Syntax Rules

(1) The mnemonic-name in Format l must alSo be specified in the SPECIAL­
NAMES paragraph of the Environment Division and must be associated with a
hardware device.

5.4.4 General Rules

FORMAT 1

(1) The ACCEPT statement causes the transfer of data from the hardware
device. This data replaces the contents of the data item named by the
identifier.

(2) The implementor will define, for each hardware device, the size of a
data transfer.

(3) If a hardware device is capable of transferring data of the same size
as the receiving data item, the transferred data is stored in the receiving
data item.

(4) If a hardware device is not capable of transferring data of the same
size as the receiving data item, then:

a. If the size of the receivin data item (or of the portion of the
receivin data item not. et current! occupied by transferred data) exceeds
the size of the transferred data, the transferred data is stored aligned to
the left in the receivin data item (or the portion of the receiving data
item not yet occupied, and additional data is requested. In Level 1, only one
transfer of data is provided. ·

II-53

Nuc Zeus - ACCEPT

b. If the size of the transferred data exceeds the size of the
receiving data item or of the ortion of the receivin data item not et
occupied by transferred data), only the leftmost characters of the transferred
data are stored in the receiving data itemJ(or in the portion remaining).t The
remaining characters of tpe transferred data which do not fit into the receiv­
ing data item are ignored.

(5) If f the FROM phrase is not given,f the device that the implementor speci­
fies as standard is used.

FORMAT 2

(6) The ACCEPT statement causes the information requested to be trans­
ferred to the data item specified by identifier according to the rules of
the MOVE statement. DATE, DAY, and TIME are conceptual data items and, there­
fore, are not described in the COBOL program.

(7) DATE is composed of the data elements year of century, month of year,
and day of month. The sequence of the data element codes shall be from high
order to low order (left to right), year of century, month of year, and day
of month. Therefore, July 1~ 1968 would be expressed as 680701. DATE, when
accessed by a COBOL program, behaves as if it had been described in the COBOL
program as an unsigned elementary numeric integer data item six digits in
length.

(8) DAY is composed of the data elements year of century and day of year.
The sequence of the data element codes shall be from high order to low order
(left to right) year of century, day of year. Therefore, July 1, 1968 would
be expressed as 68183. DAY, when accessed by a COBOL program, behaves as if
it had been described in a COBOL program as an unsigned elementary numeric
integer data item five digits in length.

(9) TIME is composed of the data elements hours, minutes, seconds and
hundredths of a second. TIME is based on elapsed time after midnight on a
24-hour clock basis -- thus, 2:41 p.m. would be expressed as 14410000. TIME,
when accessed by a COBOL program behaves as if it had been described in a
COBOL program as an unsigned elementary numeric integer data item eight digits
in length. The minimum value of TIME is 00000000; the maximum value of TIME
is 23595999. If the hardware does not have the facility to provide fractional
parts of TIME, the value is converted to the closest decimal approximation.

II-54

Nualeus - ADD

5.5 THE ADD STATEMENT

5.5.1 Function

The ADD statement causes two or more numeric operands to be summed and the
result to be stored.

5.5.2 General Format

Format 1

f identifier-1([' identifier-21 [1
ADD lliteral-l J , literal-2 J TO identifier-m ROUNDED

I [. identifier-n [ROUNDED J] .. · l [; ON SIZE ERROR imperative-statementl

Format 2

{
identifier-1) { identifier-2J r, identifier-3]

ADD literal-1 j ' literal-2 l, literal-3

GIVING identif ier-m [ROUNDED] -i -r-,__;;i;.._d_en_t_i_f_i_e_r ___ n_[_;R_O __ U_ND_E_D_n __ _

[; ON SIZE ERROR imperative-statement]

Format 3

ADD {~~:ESPONDINGJ identifier-1 TO identifier-2 (ROUNDED]

[; ON SIZE ERROR imperative-statement)

5.5.3 Syntax Rules

(I) In Formats 1 and 2, each identifier must refer to an elementary
numeric item, except that in Format 2 each identifier following the word
GIVING must refer to either an elementary numeric item or an elementary
numeric edited item. I In Format 3, each identifier must refer to a group

I item. I

(2) Each literal must be a numeric literal.

(3) The composite of operands must not contain more than 18 digits {see
page II-51, The Arithmetic Statements).

a. In Format I the composite of operands is determined by using all
of the operands in a given statement.

b. In Format 2 the composite of operands is determined by using all
of the operands in a given statement excluding the data items that follow the
word GIVING.

II-55

Nualeus - ADD

c. In Format 3 the composite of operands is determined separately for
each pair of corresponding data items.

(4) CORR is an abbreviation for CORRESPONDING.

5.5w4 General Rules

(1) See page II-50, The ROUNDED Phrase; page II-50, The SIZE ERROR Phrase;
pa e II-51, The CORRESPONDING Phrase; a e II-51, Th.e Arithmetic Statements;
page II-51, Overlapping Operands; and a e II-51, Multi le Results in Arithmetic

I Statements .f

(2) If Format 1 is used, the values of the operands preceding the word TO
are added together, then the sum is added to the current value of identifier-m
storin the result immediate! into identifier-m and repeating this process
res ectivel for each o erand followin the word TO.

(3) If Format 2 is used, the values of the operands preceding the word
GIVING are added to ether, then the sum is stored as the new value of[eachl
identifier-m, identifier~n, ••• , the resultant-identifiers.

(4) If Format 3 is used, data items in identifier-I are added to and
stored in corresponding data items in identifier-2.

(5) The compiler insures that enough places are carried so as not to lose
any significant digits during execution.

II-56

NuaZeus - ALTER

5.6 THE ALTER STATEMENT

5. 6.1 Function

The ALTER statement modifies a predetermined sequence of operations.

5.6.2 General Format

ALTER procedure-name-I TO [PROCEED TO] procedure-name-2

[, _procedure-name-3 TO [PROCEED TO 1 procedure-name-4]

5.6.3 Syntax Rules

(1) Each procedure-name-l,lprocedure-name-3, ••• ,I is the name of a para­
graph that contains a single sentence consisting of a GO TO statement without
the DEPENDING phrase.

(2) Each procedure-name-2,lprocedure-name-4, ••• ,]is the name of a para­
graph or section in the Procedure Division.

5.6.4 General Rules

(1) Execution of the ALTER statement modifies the GO TO statement in the
paragraph named procedure-name-I,lprocedure~name-3, ••• ,\so that subsequent
executions of the modified GO TO statements cause transfer of control to
procedure-name-2, I procedure-name-4, ••• , respectively. I Modified GO TO state­
ments in independent segments may, under some circumstances, be returned to
their initial states (see page IX-2, Independent Segments).

(2) A GO TO statement in a section whose segment-number is greater than or
equal to 50 must not be referred to by an ALTER statement in a section with a
different segment-number.

All other uses of the ALTER statement are valid and are performed even
if procedure-name-!, I procedure-name-31 is in an overlay able fixed segment.
(See Section IX, Segmentation.)·

II-57

Nucleus - COMPUTE

5.7 THE COMPUTE STATEMENT

5.7.1 Function

The COMPUTE statement assigns to one or more data items the value of an
arithmetic expression.

5.7.2 General Format

COMPUTE iden tifier-1 (ROUNDED] [, iden t ifier-2 [ROUNDED 11
= arithmetic-expression [; ON SIZE ERROR imperative-statement]

5.7.3 Syntax Rules

(1) Identifiers that appear only to the left of = must refer to either an
elementary numeric item or an elementary numeric edited item.

5.7.4 General Rules

(1) See page II-50, The ROUNDED Phrase, page II-50, The SIZE ERROR Phrase;
page II-51, The Arithmetic Statements; page II-51, Overlapping Operands; and
page II-51, Multiple Results in Arithmetic Statements.

(2) An arithmetic expression consisting of a single identifier or literal
provides a method of setting the values of identifier-I, identifier-2, etc.,
equal to the value of the single identifier or literal. (See page II-39,
Arithmetic Expressions.)

(3) If more than one identifier is specified for the result of the opera­
tion, that is preceding =, the value of the arithmetic expression is computed,
and then this value is stored as the new value of each of identifier-I,
identifier-2, etc., in turn.

(4) The COMPUTE statement allows the user to combine arithmetic operations
without the restrictions on composite of operands and/or receiving data items
imposed by the arithmetic statements ADD, SUBTRACT, MULTIPLY, and DIVIDE.

Thus, each implementor will indicate the techniques used in handling
arithmetic expressions.

II-58

Nualeus - DISPLAY

5.8 THE DISPLAY STATEMENT

5 .. 8.1 Function

The DISPLAY statement causes low volume data to be transferred to an
appropriate hardware device.

5.8.2 General Format

DISPLAY {
identifier-!)
literal-I

5.8.3 Syntax Rules

[
, identifier-2]
, literal-2 r~ mnemonic-name]

(1) The mnemonic-name is associated with a hardware device in the SPECIAL­
NAMES paragraph in the Environment Division.

(2) Each literal may be any figurative constant, except ALL.

(3) If the literal is numeric, then it must be an unsigned integer.

5.8.4 General Rules

(1) The DISPLAY statement causes the contents of each operand to be trans­
ferred to the hardware device in the order listed.

(2) The implementor will define, for each hardware device, the size of a
data transfer.

(3) If a figurative constant is specified as one of the operands, only a
single occurrence of the figurative constant is displayed.

(4) If the hardware device is capable of receiving data of the same size
as the da~a item being transferred, then the data item is transferred.

(5) If the hardware device is not capable of receiving data of the same
size as the data item being transferred, then one of the following applies:

a. If the size of the data item being transferred exceeds the size
of the data that the hardware device is capable of receiving in a single
transfer, the data beginning with the leftmost character is stored ali ned to
the left in the receiving hardware device and additional data is re uested.
In Level 1, only one transfer of data is provided.

b. If the size of the data item that the hardware device is capable
of receiving exceeds the size of the data being transferred, the transferred
data is stored aligned to the left in the receiving hardware device.

(6) When a DISPLAY statement contains more than one operand, the size of
the sending item is the sum of the sizes associated with 'the operands, and the
values of the operands are transferred in the sequence in which the operands
are encountered.

II-59

Nucleus - DISPLAY

(7) !If the UPON phrase is not used,lthe implementor's standard display
device is used.

II-60

Nucleus - DIVIDE

5.9 THE DIVIDE STATEMENT

5.9.1 Function

The DIVIDE statement divides one numeric data item into others and sets the
values of data items equal to the quotientland remainder.I

5.9.2 General Format

Format 1

DIVIDE {
identifier-I}
literal-I INTO identif ier-2 (ROUNDED)

I [, identifier-3 r ROUNDED]] ••• [; ON SIZE ERROR imperative-statement]

Format 2

DIVIDE {
identifier-!}
literal-I

INTO {identifier-2)
literal-2 J GIVING identifier-3 (ROUNDED)

I[, identifier-4 [ROUNDEDJ1 •• • I [; ON SIZE ERROR imperative-statement]

Format 3

DIVIDE f identifier-I}
lliteral-1 {

iden tlfier-2)
BY. literal-2 GIVING identifier-3 (ROUNDED)

I[, identifier-4 [ROUNDED]] •.• , [; ON SIZE ERROR imperative-statement]

Format 4

DIVIDE {
identifier-I)
literal-I

INTO {identifier-2}
literal-2 GIVING identifier-3 [ROUNDEDJ

REMAINDER identifier-4 [; ON SIZE ERROR imperative-statement]

Format 5

DIVIDE {identifier-IJ
literal-I BY {

identifier-2J
literal-2 GIVING identifier-3 (ROUNDEDl

REMAINDER identifier-4 [; ON SIZE ERROR imperative~statement]

5. 9. 3 Syntax Rules·

(1) Each identifier must refer to an elementary numeric item, except that
any identifier associated with the GIVINGlor REMAINDERlphrase must refer to
either an elementary numeric item or an elementary numeric edited item.

II-61

Nucleus - DIVIDE

(2) Each literal must be a numeric literal.

(3) The composite of operands, which is the hypothetical data item result­
ing from the superimposition of all receiving data items (except the REMAINDER
data item) of a given statement aligned on their decimal points, must not
contain more than eighteen digits.

6.9.4 General Rules

(1) See page II-50., The ROUNDED Phrase; page II-50, The SIZE ERROR Phrase;
page II-51, The Arithmetic Statements; page II-51, Overlapping Operands; land I

a e II-51, Multiple Results in Arithmetic Statements; for a description of
these functions. See also general rules 5 through 7 below for a discussion of
the ROUNDED hrase and the SIZE ERROR hrase as the pertain to Formats 4 and 5.·

(2) When Format 1 is used, the value of identifier-I or literal-I is
divided into the value of identifier-2. The value of the dividend (identifier-2)
is replaced by this quotient; I similarly for identifier-I or literal-I and I

lidentifier-3, etc. l

(3) , When Format 2 is used, the value of identifier-I or literal-I is
divided into identifier-2 or literal-2 and the result is stored in
identifier-3 ,I identifier-4, etc. I

(4) When Format 3 is used, the value of identifier-I or literal-! is
divided by the value of identifier-2 or literal-2 and the result is stored
in identifier-3,lidentifier-4, etc.\

(5) Formats 4 and 5 are used when a remainder from the division operation
is desired, namely identifier-4. The remainder in COBOL is defined as the
result of subtracting the product of the quotient (identifier-3) and the
divisor from the dividend. If identif ier-3 is defined as a numeric edited
item, the quotient used to calculate the remainder is an intermediate field
which contains the unedited quotient. If ROUNDED is used, the quotient used
to calculate the remainder is an intermediate field which contains the quo­
tient of the DIVIDE statement, truncated rather than rounded.

(6) In Formats 4 and 5, the accuracy of the REMAINDER data item
(identifier-4) is defined by the calculation described above. Appropriate
decimal alignment and truncation (not rounding) will be performed for the
content of the data item referenced by identifier-4, as needed.

(7) When the ON SIZE ERROR phrase is used in Formats 4 and 5, the follow­
ing rules pertain:

a. If the size error occurs on the quotient, no remainder calcula­
tion is meaningful. Thus, the contents of the data items referenced by both
identif ier-3 and identif ier-4 will remain unchanged.

b. If the size error occurs on the remainder, the c-0ntents of the
data item referenced by identifier-4 remains unchanged. However, as with
other instances of multiple results of arithmetic statements, the user will
have to do his own analysis to recognize which situation has actually
occurred. ..

II-62

Nucleus - ENTER

5.10 THE ENTER STATEMENT

5.10.1 Function

The ENTER statement provides a means of allowing· the use of more than one
language in the same program.

5.10.2 General Format

ENTER language-name [routine-name] •

5.10.3 Syntax Rules

(1) The language-name may ref er to any programming language which the
implementor specifies may be entered through COBOL. _ Language-name is speci­
fied by the implementor.

(2) A routine-name is a COBOL word and it may be referred to only in an
ENTER sentence.

(3) The sentence ENTER COBOL must follow the last other-language state­
ment in order to indicate to the compiler where a return to COBOL source
language takes place.

5.10.4 General Rules

(1) The other language statements are executed in the object program as if
they had been compiled into the object program following the ENTER statement.

(2) Implementors will specify, for their compilers, all details on how the
other language(s) are to be written.

(3) If the statements in the entered language cannot be written in-line,
a routine-name is given to identify the portion of the other language coding
to be executed at this point in the procedure sequence. If the other
language statements can be written in-line, routine-name is not used.

II-63

Nucleus - EXIT

5.11 THE EXIT STATEMENT

5.11.1 Function

The EXIT statement provides a connnon end point for a series of procedures.

5.11.2 General Format

EXIT.

5.11.3 Syntax Rules

(1) The EXIT statement must appear in a sentence by itself.

(2) The EXIT sentence must be the only sentence in the paragraph.

5.11.4 General Rules

(1) An EXIT statement serves only to enable the user to assign a procedure­
name to a given point in a program. Such an EXIT statement has no other
effect on the compilation or execution of the program.

II-64

Nucleus - GO TO

5.12 THE GO TO STATEMENT

5.12.1 Function

The GO TO statement causes control to be transferred from one part of the
Procedure Division to another.

5.12.2 General Format

Format 1

GO TO ill procedure-name-! m
Format 2

GO TO procedure-name-I [, procedure-name-2] • • • , procedure-name-n

DEPENDING ON identifier

5.12.3 Syntax Rules

(1) Identifier is the name of a numeric elementary item described without
any positions to the right of the assumed decimal point.

(2) When a paragraph is referenced by an ALTER statement, that paragraph
can consist only of a paragraph header followed by a Format 1 GO TO statement.

(3) A Format 1 GO TO statement, without procedure-name-I, can only appear
in a single statement paragraph.

(4) If a GO TO statement represented by Format 1 appears in a consecutive
sequence of imperative statements within a sentence, it must appear as the
last statement in that sequence.

5.12.4 General Rules

(1) When a GO TO statement, represented by Format 1 is executed, control
is transferred to procedure-name-I or to another procedure-name if the GO TO
statement has been modified by an ALTER statement.

(2) If procedure-name-I is not specified in Format 1, ·an ALTER statement,
referring to this GO TO statement, must be executed prior to the execution
of this GO TO statement.

(3) When a GO TO statement represented ·by Format 2 is executed, control is
transferred to procedure-name-I, procedure-name-2, etc~, depending on the
value of the identifier being I, 2, ••• , n. If the value of the identifier is
anything other than the positive or unsigned integers 1, 2, ••• , n, then no
transfer oc-curs and control passes to the next statement in the normal
sequence for execution.

II-65

Nucleus - IF

5.13 THE IF STATEMENT

5.13.1 Function

The IF statement causes a condition (see page II-41, Conditional Expressions)
to be evaluated. The subsequent action of the object program depends on whether
the value of the condition is true or false.

5.13.2 General Format

IF condition; {
statement-1 } {; ELSE statement-2 }
NEXT SENTENCE ; ELSE NEXT SENTENCE

5.13.3 Syntax Rules

(1) Statement-! and statement-2 re resent either an im erative statement
or a conditional statement, and either may be followed by a conditional state­
ment.

(2) The ELSE NEXT SENTENCE phrase may be omitted if it immediately
precedes the terminal period of the sentence.

5.13.4 General Rules

(1) When an IF statement is executed, the following transfers of control
occur:

a. If the condition is true, statement-1 is executed if specified.
If statement-! contains a procedure branching[or conditionallstatement, control
is explicitly transferred in accordance with the rules of that statement. (See
page I-103, Categories of Statements.) If statement-1 does not ~ontain a pro­
cedure branchinglor conditional)statement, the ELSE phrase, if specified, is
ignored and control passes to the next executable sentence.

b. If the condition is true and the NEXT SENTENCE phrase is specified
instead of statement-I, the ELSE phrase, if specified, is ignored and control
passes to the next executable sentence.

c. If the condition is false, statement-1 or its surrogate NEXT
SENTENCE is ignored, and statement-2, if specified, is executed. If statement-2
contains a procedure branchinglor conditionallstatement, control is explicitly
transferred in accordance with the rules of that statement. (See page I-103,
Categories of Statements.) If statement-2 does not contain a procedure branch­
ing tor conditionallstatement, control passes to the next executable sentence.
If the ELSE statement-2 phrase is not specified, statement-I is ignored and
control passes to the next executable sentence.

d. If the condition is false, and the ELSE NEXT SENTENCE phrase is
specified, statement-I is ignored, if specified, and control passes to the
next executable sentence.

(2) Statement-! and/or statement-2 may contain an IF statement. In this
case the IF statement is said to be nested.

II-66

Nualeus - IF

IF statements within IF statements may be considered as paired IF and
ELSE combinations, proceeding from left to right. Thus, any ELSE encol.llltered
is considered to apply to the innnediately preceding IF that has not been
already paired with an ~LSE.

U-67

Nucleus - INSPECT

5.14 THE INSPECT STATEMENT

5.14.1 Function

The INSPECT statement provides the ability to tally (Format I), replace
(Format 2), or tally and replace (Format 3) occurrences of single characters

I or groups of characterslin a data item.

5.14.2 General Format

Format 1

INSPECT identifier-I TALLYING

Format 2

INSPECT identifier-I REPLACING

Format 3

INSPECT identifier-I TALLYING

, identifier-2 FOR , LEADING literal-I j AFTER
{ {

{{
ALL } {identifier-3)~ [{BEFORE}

CHARACTERS --

REPLACING

{

CHARACTERS BY {i~entifier-6} [{BEFORE}
---- - ll.teral-4 AFTER

} r ~~ING] {• {identifier-5} BY l' lFIRST literal-3 -

INITIAL {i~entifier-7}]
literal-5

{identifier-6) [{BEFORE}
literal-4 J AFTER

II-68

{identifier-7JJ.}r-1}r.:-J literal-5 ~ ~

Nualeus - INSPECT

5.14.3 Syntax Rules

ALL FORMATS

(1) Identifier-I must reference either a group item or any category of ele­
mentary item, described (either implicitly or explicitly) as usage is DISPLAY.

(2) Identifier-3 ••• identifier-n must reference either an el~mentary
alphabetic, alphanumeric or numeric item described (either implicitly or
explicitly) as usage is DISPLAY.

(3) Each literal must be nonnumeric and may be any figurative constant,
except ALL.

(4) In Level 1, literal-I, literal-2, literal-3, literal-4, and literal-5,
and the data items referenced by identifier-3, identifier-4, identifier-5,
identifier-6 and identifier-7 must be one character in len th. Except as
specifically noted in syntax and general rules, this restriction on length
does not a 1 to Level 2.

FORMATS 1 and 3 ONLY

(5) Identifier-2 must reference an elementary numeric data item.

(6) If either literal-I or literal-2 is a figurative constant, the figura­
tive constant refers to an implicit one character data item.

FORMATS 2 .AND 3 ONLY

(7) The size of the data referenced by literal-4 or identifier-6 must be
equal to the size of the data referenced by literal-3 or identifier-5. When
a figurative constant is used as literal-4, the size of the figurative
constant is equal to the size of literal-3 or the size of the data item
referenced by identifier-5.

(8) When the CHARACTERS phrase is used, literal-4, literal-5, or the size
of the data item referenced by identifier-6, identifier-7 must be one character
in length.

(9) When a figurative constant is used as literal-3, the data referenced
by literal-4 or identifier-6 must be one character in length.

5.14.4 General Rules

(1) Inspection (which includes the comparison cycle, the establishment of
boundaries for the BEFORE or AFTER phrase, and the mechanism for tallying
and/or replacing) begins at the leftmost character position of the data item
referenced by identifier-I, regardless of its class, and proceeds from left to
-right to the rightmost character position as described in general rules 4
through 6.

(2) For use in the INSPECT statement, the contents of 'the data item refer­
enced by identifier-I, identifier-3, identifier-4, identifier-5, identifier-6
or identifier-7 will be treated as follows:

II-69

Nucleus - INSPECT

a. If any of identifier-1, identifier-3, identifier-4, identifier-5,
identifier-6 or identifier-7 are described as alphanumeric, the INSPECT state­
ment treats the contents of each such identifier as a character-string.

b. If any of identifier-1, identifier-3, identifier-4, identifier-5,
identifier-6 or identifier-7 are described as alphanumeric edited, numeric
edited or unsigned numeric, the data item is inspected as though it had been
redefined as alphanumeric (see general rule 2a) and the INSPECT statement
had been written to reference the redefined data item.

c. If any of the identifier-1, identifier-3, identifier-4, identi­
fier-5, identifier-6 or identifier-7 are described as signed numeric, the data
item is inspected as though it had been moved to an unsigned numeric data item
of the same length and then the rules in general rule 2b had been applied.
(See page II-74, The MOVE Statement.)

(3) In general rules 4 through 11 all references to literal-1, literal-2,
literal-3, literal-4, and literal-5 apply equally to the contents of the data
item referenced by identifier-3, identifier-4, identifier-5, identifier-6,
and identifier-7, respectively.

(4) During inspection of the contents of. the data item referenced by
identifier-1, each properly matched occurrence of literal-1 is tallied
(Formats 1 and 3) and/or each properly 1D8tched occurrence of literal-3 is
replaced by literal-4 (Formats 2 and 3).

(5) The comparison operation to determine the occurrences of literal-I
to be tallied and/or occurr~nces of literal-3 to be replaced, occurs as follows:

a. The operands of the TALLYING and REPLACING phrases are considered
in the order they are specified in the INSPECT statement from left to right.
The first literal-1, literal-3 is compared to an equal number of contiguous
characters, starting with the leftmost character position in the data item
referenced by identifier-1. Literal-1, literal-3 and that portion of the
contents of the data item referenced by identifier-1 match if, and only if,·
they are equal, character for character.

b. If no match occurs in the comparison of the first literal-I,
literal-3, the comparison is repeated with each successive literal-I, literal-3,
if any, until either a match is found or there is no next successive literal-I,
literal-3. When there is no next successive literal-1, literal-3, the char­
acter position in the data item referenced by identif ier-1 immediately to the
right of the leftmost character position considered in the last comparison
cycle is considered as the leftmost character position, and the comparison
cycle begins again with the first literal-1, literal-3.

c. Whenever a match occurs, tallying and/or replacing takes place as
described in general rules 8 through 10. The character position in the data
item referenced by identifier-I immediately to the right of the rightmost
character position that participated in the :match is now considered to be the
leftmost character position of the data item referenced by identifier-I, and
the comparison cycle starts again with the first literal-I, literal-3.

II-70

Nua Zeus - INSPECT

d. The comparison operation continues until the rightmost character
position of the data item referenced by identifier-I has participated in a
match or has been c0nsidered as the leftmost character position. When this
occurs, inspection is terminated.

e. If the CHARACTERS phrase is specified, an implied one character
operand participates in the cycle described in paragraphs Sa through Sd above,
except that no comparison to the contents of the data item referenced by
identifier-I takes place. This implied character is considered always to
match the leftmost character of the contents of the data item referenced by
identifier-I participating in the current comparison cycle.

(6) The comparison operation defined in general rule 5 is affected by the
BEFORE and AFTER phrases as follows:

a. If the BEFORE or AFTER phrase is not specified, literal-I, literal-3
or the implied operand of the CHARACTERS phrase participates in the comparison
operation as described in general rule 5.

b. If the BEFORE phrase is specified, the associated literal-I, .
literal-3 or the implied operand of the CHARACTERS phrase participates only
in those comparison cycles which involve that portion of the contents of the
data item referenced by identifier-I from its leftmost character position up
to, but not including, the first occurrence of literal-2, literal-5 within the
contents of the data item referenced by identifier-I. The position of this
first occurrence is determined before the first cycle of the comparison opera­
tion described in general rule 5 is begun. If, on any comparison cycle,
literal-I, literal-3 or the implied operand of the CHARACTERS phrase is not
eligible to participate, it is considered not to match the contents of the
data item referenced by identifier-I. If there is no occurrence of literal-2,
literal-5 within the contents of the data item referenced by identifier-!, its
associated literal-I, literal-3, or the implied operand of the CHARACTERS
phrase participates in the comparison operation as though the BEFORE phrase
had not been specified.

c. If the AFTER phrase is specified, the associated literal-I,
literal-3 or the implied operand of the CHARACTERS phrase may participate only
in those comparison cycles which involve that portion of the contents of the
data item referenced by identifier-I from the character position immediately
to the right of the rightmost character position of the first occurrence of
literal-2, literal-5 within the contents of the data item referenced by iden­
tifier-I and the rightmost character position of the data item referenced by
identifier-I. The position of this first occurrence is determined before the
first cycle of the comparison operation described in general rule 5 is begun.
If, on any comparison cycle, literal-I, literal-3 or the implied operand of
the CHARACTERS phrase is not eligible to participate, it is con·sidered not to
match the contents of the data item referenced by identifier-I. If there is
no occurrence of literal-2, literal-5 within the contents of the data item
referenced by identifier-I, its associated literal-I, literal-3, or the
implied operand of the CHARACTERS phrase is never eligible to participate in
the comparison operation.

II..-71

Nucleus - INSPECT

FORMAT 1

(7) The contents of the data item referenced by identifier-2 is not
initialized by the execution of the INSPECT statement.

(8) The rules for tallying are as follows:

a. If the ALL phrase is specified, the contents of the data item
referenced by identifier-2 is incremented by one (1) for each occurrence of
literal-! matched within the contents of the data item referenced by
identifier-!.

b. If the LEADING phrase is specified, the contents of the data item
referenced by identif ier-2 is incremented by one (1) for each contiguous
occurrence of literal-! matched within the contents of the data item ref er­
enced by identifier-!, provided that the leftmost such occurrence is at the
point where comparison began in the first comparison cycle in which literal-1
was eligible to participate.

c. If the CHARACTERS phrase is specified, the contents of the data
item referenced by identifier-2 is incremented by one (1) for each character
matched, in the sense of general rule Se, within the contents of the data
item referenced by identifier-!.

FORMAT 2

(9) The re uired words ALL, LEADING, and FIRST are adjectiveslthat apply
to each BY hrase until the next ad·ective appears.

(IO) The rules for replacement are as follows:

a. When the CHARACTERS phrase is specified, each character m~tched,
in the sense of general rule Se, in the contents of the data item referenced
by identifier-I is replaced by literal-4.

b. When the adjective ALL is specified, each occurrence of literal-3
matched in the contents of the data item referenced by identifier-I is replaced
by literal-4.

c. When the adjective LEADING is specified, each contiguous occurrence
of literal-3 matched in the contents of the data item referenced by identifier-I
is replaced by literal-4, provided that the leftmost occurrence is at the point
where comparison began in the first comparison cycle .in which literal-3 was
eligible to participate.

d. When the adjective FIRST is specified, the leftmost occurrence of
literal-3 matched within the contents of the data item referenced by
identifier-I is replaced by literal-4.

FORMAT 3

(11) A Format 3 INSPECT statement is interpreted and executed as though two
successive INSPECT statements specifying the same identifier-I had been written
with one statement being a Format I statement with TALLYING phrases identical

II-72

Nucleus - INSPECT

to those specified in the Format 3 statement, and the other statement being a
Format 2 statement with REPLACING phrases identical to those specified in the
Format 3 statement. The general rules given for matching and counting apply
to the Format 1 statement and the general rules given for matching and replac­
ing apply to the Format 2 statement.

5.14.5 Examples

Following are six examples of the INSPECT statement:

INSPECT word TALLYING count FOR LEADING "L" BEFORE INITIAL "A", count-1 FOR
LEADING "A" BEFORE INITIAL "L".

Where word
Where word

LARGE, count = 1, count-I = 0.
ANALYST, count = O, count-1 = 1.

INSPECT word TALLYING count FOR ALL "L", REPLACING LEADING "A" BY "E" AFTER
INITIAL "L".

Where word
Where word
Where word

CALLAR, count
SALAMI, count
LATTER, count

2, word
1, word
1, word

CALLAR.
SALEMI.
LETTER.

INSPECT word REPLACING ALL "A" BY "G" BEFORE INITIAL "X".

Where word
Where word

ARXAX, word = GRXAX.
HANDAX, word = HGNDGX.

INSPECT word TALLYING count FOR CHARACTERS AFTER INITIAL "J" REPLACING ALL
"A" BY "B".

Where word
Where word
Where word

ADJECTIVE, count = 6, word = BDJECTIVE.
JACK, count = 3, word = JBCK.
JUJMAB, count = 5, word = JUJMBB.

INSPECT word REPLACING ALL "X" BY "Y", "B" BY "Z", "W" BY "Q" AFTER INITIAL "R".

Where word
Where word
Where word

= RXXBQWY, word= RYYZQQY.
YZACDWBR, word = YZACDWZR.
RAWRXEB , word = RAQRYEZ.

INSPECT word REPLACING CHARACTERS BY "B" BEFORE INITIAL "A".

word before: 1 2 · X Z A B C D
word after: B B B B B A B C D

II-73

Nuc Zeus - MOVE

5.15 THE MOVE STATEMENT

5.15.1 Function

The MOVE statement transfers data, in accordance with the rules of editing,
to one or more data areas.

5.15.2 General Format

Format I

MOVE {i~entifier-l) TO identifier-2 [, identifier-3]
-- literal J

Format 2

MOVE {CORRESPONDING) identifier-I TO identifier-2
-- CORR J

5.15.3 Syntax Rules

(I) Identifier-I and literal represent the sending area; identifier-2,
identifier-3, ••• , represent the receiving area.

(2) CORR is an abbreviation for CORRESPONDING.

(3) When the CORRESPONDING phrase is used, both identifiers must be group
items.

(4) An index data item cannot appear as an operand of a MOVE statement.
(See page III-5, The USAGE Clause.)

5.15.4 General Rules

(1) If the CORRESPONDING phrase is used, selected items within identifier-I '1

are moved to selected items within identifier-2, according to the rules given
in paragraph 5.3.3, The CORRESPONDING Phrase, on page II-51. The results are I
the, same as if the user had referred to each pair of corresponding identifiers

i in separate MOVE statements.

(2) The data designated by the literal or identifier-I is moved first to
identifier-2, then to identifier-3, •••• The rules referring to identifier-2
also apply to the other receiving areas. Any subscripting or indexing associ­
ated with identifier-2, ••• , is evaluated immediately before the data is moved
to the respective data item.

Any subscripting or indexing associated with identifier-I is evaluated
only once, immediately before data is moved to the first of the receiving
operands. The result of the statement

MOVE a (b) TO b, c (b)

II-74

Nucleus - MOVE

is equivalent to:

MOVE a (b) TO temp
MOVE temp TO b
MOVE temp TO c (b)

where 'temp' is an intermediate result item provided by the implementor.

(3) Any MOVE in which the sending and receiving items are both elementary
items is an elementary move. Every elementary item belongs to one of the fol­
lowing categories: numeric, alphabetic, alphanumeric, numeric edited, alpha­
numeric edited. These categories are described in the PICTURE clause.
Numeric literals belong to the category numeric, and nonnumeric literals
belong to the category alphanumeric. The figurative constant ZERO belongs to
the category numeric. The figurative constant SPACE belongs to the category
alphabetic. All other _figurative constants belong to the category alphanumeric.

The following rules apply to an elementary move between these
categories:

a. The figurative constant SPACE, a numeric edited, alphanumeric
edited, or alphabetic data item must not be moved to a numeric or numeric
edited data item.

b. A numeric literal, the figurative constant ZERO, a numeric data
item or a numeric edited data item must not be moved to an alphabetic data
item.

c. A non-integer numeric literal or a non-integer numeric data item
must not be moved to an alphanumeric or alphanumeric edited data item.

d. All other elementary moves are legal and are performed according
to the rules given in general rule 4.

(4) Any necessary conversion of data from one form of internal representa­
tion to another takes place during legal elementary moves, along with any
editing specified for the receiving data item:

a. When an alphanumeric edited or alphanumeric item is a receiving
item, alignment and any necessary space filling takes place as defined under
Standard Alignment Rules on page I-86. If the size of the sending item is
greater than the size of the receiving item, the excess characters are trun­
cated on the right after the receiving item is filled. If the sending item
is described as being signed numeric, the operational sign will not be moved;
if the operational sign occupied a ·separate character position (see page II-31,
The SIGN Clause), that character will not be moved and the size of the sending
item will be considered to be one less than its actual size (in terms of
standard data format characters).

b. When a numeric or numeric edited item is the receiving item,
alignment by decimal point and any necessary zero-filling takes place as
defined under the Standard Alignment Rules on·page I-86, except where zeroes
are replaced because of editing requirements.

II-75

Nucleus - MOVE

1. When a signed numeric item is the receiving item, the sign of
the sending item is placed in the receiving item. (See page II-31, The SIGN
Clause). Conversion of the representation of the sign takes place as neces­
sary. If the sending item is unsigned, a positive sign is generated for the
receiving item.

2. When an unsigned numeric item is the receiving item, the
absolute value of the sending item is moved and no operational sign is gener­
ated for the receiving item.

3. When a data item described as alphanumeric is the sending item,
data is moved as if the sending item were described as an unsigned numeric
integer.

c. When a receiving field is described as alphabetic, justification
and any necessary space-filling takes place as defined under the Standard Align­
ment Rules on page I-86. If the size of the sending item is greater than the
size of the receiving item, the excess characters are truncated on the right
after the receiving item is filled.

(5) Any move that is not an elementary move is treated exactly as if it
were an alphanumeric to alphanumeric elementary move, except that there is no
conversion of data from one form of internal representation to another. In
such a move, the receiving area will be filled without consideration for the
individual elementary or group items contained within either the sending or
receiving area, except as noted in general rule 4 of the OCCURS clause (see
page III-4).

(6) Data in the following chart summarizes the legality of the various
types of MOVE statements. The general rule reference indicates the rule that
prohibits the move)or the behavior of a legal move.

CATEGORY OF RECEIVING DATA ITEM

CATEGORY OF
NUMERIC INTEGER SENDING ALPHABETIC ALPHANUMERIC EDITED NUMERIC NON-INTEGER DATA ITEM ALPHANUMERIC NUMERIC EDITED

ALPHABETIC Yes/4c Yes/4a No/3a

ALPHANUMERIC Yes/4c Yes/4a Yes/4b

ALPHANUMERIC EDITED Yes/4c Yes/4a No/3a

NUMERIC INTEGER No/3b Yes/4a Yes/4b

NON-INTEGER No/3b No/3c Yes/4b

NUMERIC EDITED No/3b Yes/4a No/3a

II-76

Nucleus - MULTIPLY

5.16 THE MULTIPLY STATEMENT

5.16.1 Function

The MULTIPLY statement causes numeric data items to be multiplied and sets
the values of data items equal to the results.

5.16.2 General Format

Format 1

MULTIPLY {identifier-1} d 2 ·r] literal-! BY i entifier- ROUNDED

I[. identifier-3 [ROUNDED]) ••• 1 (; ON SIZE ERROR imperative-statement]

Format 2

MULTIPLY {identifier-I} BY {identifier-2) [] literal-I literal-2 GIVING identifier-3 ROUNDED

.~l-G __ i_d_e_n_t_i_f_i_e_r ___ 4 ___ [_R_O_U_ND __ E_D_]_] ____ ~I (;ON SIZE ERROR imperative-statement]

5.16.3 Syntax Rules

(1) Each identifier must refer to a numeric elementary item, except that
in Format 2 each identifier following the word GIVING must refer to either an
elementary numeric item or an elementary numeric edited item.

(2) Each literal must be a numeric literal.

(3) The composite of operands, which is that hypothetical data item
resulting from the superimposition of all receiving data items of a given
statement aligned on their decimal points, must not contain more than eighteen
(18) digits.

5.16.4 General Rules

(1) See page II-50, The ROUNDED Phrase; page II-50, The SIZE ERROR Phrase;
page II-51, The Arithmetic Statements; page II-51, Overlapping Operands;landl

l page II-51, Multiple Results in Arithmetic Statements .I

(2) When Format 1 is used, the value of identifier-I or literal-1 is
multiplied by the value of identifier-2. The value of the multi lier
(identifier-2) is replaced by this product; similar! for identifier-I or

lliteral-1 and identifier-3, etc. I

(3) When Format 2 is used, the value of identifier-I or literal-1 is
multiplied by identifier-2 or literal-2 and the result is stored in
identif ier-3, I identifier-4, etc. I

II-77

Nucleus - PERFORM

5.17 THE PERFORM STATEMENT

5.17.1 Function

The PERFORM statement is used to transfer control explicitly to one or more
procedures and to return control implicitly whenever execution of the specified
procedure is complete.

5.17.2 General Format

Format 1

PERFORM procedure-name-! [t=UGH} procedure-name-2]

Format 2

PERFOlm procedure-name-! [f THROUGHJ] {identifier-11 THRU procedure-name-2 integer-! TIMES

Format 3

PERFORM procedure-name-! [\~UGH} procedure-name-2] UNTIL condition-!

Format 4

PERFORMprocedure-name-i [{~UGH] .procedure-name-2]

lidentifier-21 . {identifier-3} ..
-VARYING i ·d · l FROM index-name-2

n ex-name- - .. -- .. li teral-1 . -

BY f identifier-4} UNTIL condition-I
- lliteral-2

[
AFI'ER lidentifier-5} FROM {!!. ::~~==:)

index-name-3 -.- literal-3

BY · f identifiex--7) UNTIL condition-2
-. - lliteral-4 J

r AFTEH {identifier-8}. FROM {~!~:!.~!!:::}. l ~ index-name-5 -- literal-5

BY u~:!!~~:r-lO} UNTIL condition-3 J]

II-78

Nualeus - PERFORM

5.17.3 Syntax Rules.

(I) Each identifier represents a numeric elementary item described in the
Data Division. In Format 2,, identifier-I must be described as a numeric
integer.

(2) Each literal represents a numeric literal.

(3) The words THRU and THROUGH are equivalent.

(4). If an ind.ex-name is specified in the VARYING or AFTER phrase, then:

a. The identifier in the associated FROM and BY phrases must be an
integer data item.

b. The literal in the associated FROM phrase must be a positive
i.nteger.

c. The literal irt the associated BY phrase must be a non-zero integer.

(5) If an index-name is, specified in the FROM phrase, then:

a. The identifier in the associated VARYING or AFTER phrase must be
an integer data item.

b. The identifier in the associated BY phrase must be an integer
data item.

c. The literal in the associated BY phrase must be an integer.

(6) Literal in the BY phrase must not be zero.

(7) Condition-!, condition-2, condition-3 may be any conditional expression
as described on page II-41, Conditional Expressions.

(8) Where procedure-name-I and procedure-name-2 are both specified and
either is the name of a procedure in the declarative section of the program
then both .must be procedure""."names in the same declarative section.

5.17.4 General Rules

(1) The data items referenced by identifier-4, identifier""."7, and identi­
fier-IO must not have a zero value.

(2) ,If an index-name is specified in the VARYING .o-r AFTER phrase, and an
identifier is specified in the associated FROM phrase, then the data item
referenced by the identifier must have a positive value~

(3) When the P~RFO~ statement is executed, ~ontrol is transferred to the
first statement o~~ the pro~edure named procedure-name-I ·(except as indicated
in general.rules 6b, 6c, and 6d). 'I:Ais transfer of control occurs only once.
for each execution of a PERFORM statement. For those cases where a transfer;
of control to thfi! named procedure does take plac.a, an implicit transfer of
control to the next executable statement following the PERFORM statement fa
established as follows:

·II-79

Nualeus - PERFORM

a. If procedure-name-I is a paragraph-name and procedure-name-2 is
not specified, then the return is after the last statement of procedure-name-I.

b. If procedure-name-I is a section-name and procedure-name-2 is not
specified, then the return is after the last statement of the last paragraph
in procedure-name-I.

c. If procedure-name-2 is specified and it is a paragraph-name, then
the return is after the last statement of the paragraph.

d. If procedure-name-2 is specified and it is a section-name, then
the return is after the last statement of the last paragraph in the section.

(4) There is no necessary relationship between procedure;...name-I artd
procedure-name-2 except that a consecutive sequence of operations is to be
executed beginning at the procedure named procedure~name-1 and ending with
the execution of the procedure named procedure-name-2. In particular, GO TO
and PERFORM statements may occur between procedure-name-1 and the end of
procedure-name-2. If there are two or more logical paths 'to the return point,
then procedure-name-2 may be the name of a paragraph consisting of the EXIT
statement, to which all of these paths must lead.

(5) If control passes to these procedures by means other than a PERFORM
statement, control will pass through the last statement of the procedure to
the next executable statement as if no PERFORM statement mentioned these
procedures.

(6) The PERFORM statements operate as follows with rule 5 above applying
to all formats :

a. Format 1 is the basic PERFORM statement. A procedure referenced
by this type of PERFORM statement is executed once and then control passes
to the next executable statement following the PERFORM statement.

b. Format 2 is the PERFORM ••• TIMES. The procedures are performed the
number of times specified by integer-I or by the initial value of the data item
referenced by identifier-I for that execution. If, at the time of execution of
a PERFORM statement, the value of the data item referenced by identifier-I is
equal to zero or is negative, control passes to the next executable statement
following the PERFORM statement.. Following the execution of the procedures
the specified number of times, control is transferred to the next executable
statement following the PERFORM statement.

During execution of the PERFORM statement, references to identi- -
fier-I cannot ·alter the riumber of times the procedures are to be executed from
that which was indicated by the initial value of identifier;...!.

c. Format 3 is the PERFORM ••• UNTIL. The specified procedures are
performed until the condition specified by the UNTIL· phrase is true. When the
condition is true, control is transferred to the next executable statement
after the PERFORM statement. ·If the condition is true when the PERFORM state­
ment is entered, no transfer co procedtire-name..:I takes place, and control is
passed to the next executable statement following the PERFORM statement .. ·

II-80

Nucleus - PERFORM

d. Format 4 is the PERFORM ••• VARYING. This variation of the PERFORM
statement is used to augment the values referenced by one or more identifiers
or index-names in an orderly fashion during the execution of a PERFORM state­
ment. In the following discussion, every reference to.identifier as the
object of the VARYING, AFTER.and FROM (current value) phrases also refers to
index-names. When index-name appears in a VARYING and/or AFTER phrase, it is
initialized and subsequently augmented (as described below) according to the
rules of the SET statement. When index-name appears in the FROM phrase,
identifier, when it appears in an associated VARYING or AFTER.phrase, is
initialized according to the rules of the SET statement; subsequent augmenta­
tion is as described below.

In Format 4, when one identifier is varied, identifier-2 is set to
the value of literal-I or the current value of identifier-3 at the point of
initial execution of the PERFORM statement; then, if' the condition of the UNTIL
phrase is false, the sequence of procedures, procedure-name-! through proceciure­
name-2, is executed once. The value of identifier-2 is augmented by the
specified increment or decrement value (the value of identifier-4or literal-2)
and -condition-1 is evaluated again. The cycle continues until this condition
is true; at which point, control is transferred to the next executable state~
ment following the PERFORM statement. If condition-I is true at the beginning
of execution of the PERFO~ statement, control is transferred to the next
executable statement following the PERFORM statement.

ENTRANCE

Set identifier-2 equal to
current FROM value

Condition-I T ue l---------....... =-=---~ Exit

Execute procedure-name-I
THRU procedure-name-2

Augment identifier-2 with
.---~--1 current BY value

Flowchart for the VARYING Phrase of a PERFORM Statement Having One Condition

II-81

Nucleus - PERFORM

In Format 4, when two identifiers are varied, identifier-2 and
identifier-5 are set to the current value .of identifier-3 and identifier-6,
respectively. After the identifiers have been set, condition-! is evaluated;
if true, control is transferred to the next executable statement; if false,
condition-2 is evaluated. If condition-2 is false, procedure-name-1 through
procedure-name-2 is executed once, then identifier-5 is augmented by identi­
fier-7· or literal-4 and condition-2 is evaluated again. This cycle of
evaluation and augmentation continues until this condition is true. When
condition-2 is true, identifier-5 is set to the value of literal-3 or the
current value of identifier-6, identifier-2 is augmented by identifier-4 and
condition-! is re-evaluated. The PERFORM statement is completed if condition-I
is true; if not, the cycles continue until condition-I is true.

During the execution of the procedures associated with the PERFORM
statement, any change to the VARYING variable (identifier-2 and index-name-1),
the BY variable (identifier-4)-, the AFTER variable (identifier~5 and index­
name-3), or the FROM variable (identifier-3 and index-name.;.2) will be taken
into consideration and will .affect the operation of the PERFORM statement •

. ENTRANCE

Set identif ier-2 and identif ier-5
to current FROM values

Condition-!

,...-~~---~~~--11 Condition-2

Execute procedure-name-I
THRU procedure-name~2

Augment identif ier-5 with
current BY value

T

Exit

Set identif ier-5 to its
current FROM value

Augment_identifier-2 with
current BY value

Flowchart for the VARYING Phrase of a PERFORM Statement Having Two Conditions

At the termination of the PERFOBM statement identif ier-5 contains
the current value of identifier-6. Identifier-2 has a value that exceeds the
last used setting by an increment or decrement value, unless condition-I was
true when the PERFORM statement was entered, in which case identifier-2
contains the current value of identifier-3 ..

When two identifiers are varied, identifier-5 goes through a
complete cycle (FROM, BY, UNTIL) each time identifier-2 is varied.

II-82

Nueleus - PERFORM

For three identifier-s the mechanism is the same as fo-r two identi­
fiers except that identif ier-8 g-0es through a complete cycle each time that
identifier-5 is augment~d by identifier-7 -0r literal-4, which in turn goes
through a complete cycle each .time identif ier-2 is varied.

ENTRANCE

Set
identifier-2, identifier--5,

identif ier-8
to current FROM values

Cond-ltion-1

Execute
procedure-name-1
THRU procedure­

name-2

Augment
identif ier-8
with current

BY value

Exit

True

Set
identif ier-8

to its current
FROM value

Augment
identif ier-5
with current

BY valtie

Se·t
identifier-5

to its current
FROM value

Augment
identif ier-2
with cur-rent

BY value

-Flowchart for the VARYING Phrase of a PERFORM Statement Hav·ing Three Conditi-Ons.

A-fter the· completion of a Format 4 PERFORM sta-tement, i.dentifier-5
and i.denti-fier-8 contain the current value of identifier-6 and ident·ifier-9
respectively. Identlf ier-2 has a value that exceeds its las-t used setting by
one increment or deccrement value, unless condition-I i~ true when the PERFORM
statement is entered, i.n whi-ch ·_case i.dent:ifier-2 contains the eurrent value -0f
i-dentlf ier-3.

Il-Bl

•·

Nualeus·- PERFORM

(7) If a-sequence of statements referred to by a PERFORM statement includes
another PERFORM· statement, the sequence of proc-edures associated with the
included PERFORM must itself either be totally included in, or totally excluded
from, the logical sequence referred to by the first·PERFORM. Thus, an active
PERFORM statement, whose execution point begins within the range of another
active PERFORM statement, must not allow control to pass to the exit of the
other active PERFORM statement; furthermore, two or more such active PERFORM
statements may not have a common exit. See the illustration below.

x PERFORM a THRU m x PERFORM a 'l'HRU m

a a

d PERFORM f THRU j d PERFORM f THRU.j

f h

j m

m f

j

x PERFORM a· THRU m

a

f

m

j

d PERFORM f THRU j

(8) A PERFORM statement that ,appears in a section that is not in an inde­
pendent, segment can have within. it:.s range, in addition to c:tnY declarative

. sections wl19se execution is caused within that range., only one. of the following:

.a. Sections and/or paragraphs wholly contained . .in one or more
non-independent segments.

b. Sectio~s. and/or paragraphs ,wholly con_tained in a single ind~p.endent
segment.

(9) . A PERFORM stateme:qt _that appears in an independent seglllent can have
within its range·, in ad~ition to any declarative s'ecti~ns whose execution. is
cau~ed' witliin. that. range, o.nly .one of_ the following:' . . .

a. _Sections .and/or 'par(igraphs whollY,. ~ontained it\ one or more
non-·independent segments. · · ·

b. Sections and/or paragraphs wholly contained in the same independent
segment as that PERFORM statement.

II-84

Nucteus - STOP

5 .. 18 THE STOP STATEMENT

5.18.1 Function

The STOP statement causes a permanent or temporary suspension of the
execution of the object program.

5.18. 2 General Format

STOP {RUN) -· -- ~ literal

5.18.3 Syntax~ules

(l) The literal may be numeric or nonnumeric or may be any figurative
constant, except ALL.

(2) If the literal is numeric, then it must be an unsigned integer.

(3) If a STOP RUN statement appears in a consecutive sequence of impera­
tive statements within a sentence., it mus·t appear as the last statement in
that sequence.

5 .. 18.4 General Rules

(1) If the RUN phrase is used.., then the ending.procedure established by
the installation and/or the compiler is instituted.

(2) If STOP literal is specified, the literal is communicated to the
operator. Continuation of the object program begins with the execution of
the next executable statement in sequence.

II-85

Nualeus - STRING

5. 19 THE STRING STATEMENT

5.19.1 Function

The STRING statement provides juxtaposition -of the partial or complete
contents of two or more data items into a single data item.

5.19.2 General format

STRING {identifier-I)
literal-1 J --[,' identifier-2].·

literal-2 {

identifier-3}
DELIMITED BY liter al-3 ...

-srzE

[
f id.enti.fie. r-4) (' id.entifi-er-51 . {identiii~r-1]

, \literal-4 J , literal-S • • • • DELIMITED BY itera -
· · · · · . . - SIZE ,

INTO identifier-7 [WITH POINTER identifier-8]

(; ON OVERFLOW imperative-statement]

5.19.3 Syntax Rules

(1) Each literal may be any fi-gurative constant without the optional word
ALL.

(2) All literals must be described as nonnumeric lU:erals, and all identi­
fiers, except identifier-8, must be described implicitly or explicitly as
usage is 'DISPLAY.

(3) Identifier-7 must represent an elementary glphanumeric data item with­
out editing symbols -0r the JUSTIFIED clause~

(4) Identifier-8 111ust represent an elementary numeric integer data item
of sufficient size to contain a value equal to the size plus l of the area
referenced by identifier-7. The symbol 'P' may not be used in the PICTURE
character-string of identifier-8.

(5} Where identifier-I, identifier~2, ••• ,or identifier-3 is an elementary
numeric data item, i-t must be described as an integer without the symbol 'P'
in its PICTURE character-string.

5.19.4 General Rules

(1) All references to identifier-!, identifier-2, identifier-3, literal-I,
literal'.""'2, lite-ral-3 apply equally to identifier-4, identifier-5, identifier-6, ·
literal-4, literal~S and literal-6, respectively, and all recursions thereof.

(2) Identifier~!, literal-I, identifier-2, literal-2, represent the
sending items. Identifier-7 represents the receiving.item.

(3) Literal-3, identifier-3, indicate the character(s) delimiting the move.
If the SIZE phrase is used, ~he complete data item defined by identifier-I,

II ... 86

. Nua leus - STRING

literal.;..l, identifier-2, literal-Z ,' is moved •. · When a figurative constant is
used as the delimiter, it stands for a single '.character nonnumeric literal.

(4)- When a figura'tive constant is specified as literal-I, literal-2,
literal-3, it refers to an implicit one character data item whose usage is
DISPLAY.

(5) When the STRING statement is executed, the transfer of data is
governed by the following rules:

a. Those characters from literal-!, literal-2, or from the contents
of the data item referenced by identifier-I, identifier-2, are transferred to
the contents· of identifier-7 in accordance with the rules for alphanumeric to
alphanumeric moves, except that no space-filling will be· provided. (See page
II-74, The MOVE Statement.)

b. If the DELIMITED phrase is specified without the SIZE phrase, the
contents of the data item referenced by identifier-!, identifier-2, or the
value of literal-!, literal-2, are transferred to the receiving data item in
the sequence specified in the STRING statement beginning with the leftmost
character and continuing from left to right until the end of the data item
is reached, or until the character(s) specified by literal-3, or by the
contents of identifier-3 are encountered. The character(s) specified by
literal-3 or by the data item referenced by identifier-3 are not transferred.

c. If the DELIMITED phrase is specified with the SIZE phrase, the
entire contents of literal-!, literal-2, or the contents of the data item
referenced by identifier-!, identifier-2, are transferred, in the sequence
specified in the STRING statement, to the data item referenced by identifier-7
until all data has been transferred or the end of the data item referenced by
identifier-7 has been reached.

(6) If the POINTER phrase is specified, identifier~8 is explicitly avail­
able to the programmer, and he is responsible for setting its initial value.
The initial value must not be less than one.

(7) If the POINTER phrase is not specified, the following general rules
apply as if the user had specified identifier-8 with an initial value of 1.

(8) When characters are transferred to the data item referenced by
identifier-7, the moves behave as though the characters were moved one at a
time from the source into the character position of the data item.referenced
by identifier-7 designated by the value associated with identifier-8, and then
identifier-8 was increased by one prior to the move of the next character.
The value associated with identifier-8 is changed during execution of the
STRING statement only by the behavior specified above.

(9) At the end of execution of the STRING statement, only the portion of
the data item referenced by identifier-7 that was referenced during the execu­
tion of the STRING statement is changed. All other portions of the data item
referenced by identifier-7 will contain data that was present before this
execution of the STRING statement.

.·. II....;87

Nualeus - STRING

(10) If at any point at or after initialization of the STRING statement,
but before execution of the STRING statement is completed, the value associ­
ated with identif ier-:8 is either less than one or exceeds the number of
character positions in the data item referenced by identifier-7, no. (further)
data is transferred to the data item referenced by identifier-7, and the
imperative statement in the ON OVERFLOW phrase is executed, if specified.

(11) If the ON OVERFLOW phrase is not specified when the c-0nditions
described in general rule 10 above are encountered' contr-01 is transferred to
the next executable statement.

.It-88

Nucleus - SUBTfiACT

5. 20 THE SUBTRACT STATEMENT

5.20.1 Function

The SUBTRACT statement is used to subtract one, or the sum of two or more,
numeric data items from one or more items, and set the values of one or more·
items equal to the results.

5.20.2 General Format

Format 1

SUBTRACT {identifier-!} [, ide .. ntifier-21
literal-! · , literal:-2 FROM id en tifier-m . [ROUNDED 1

I [, identifier-n [ROUNDED 1] ... I[; ON SIZE ERROR imperative-statement]

Format 2

SUBTRACT {id .. ent.ifier-1)_ [.' i_·denti.fier.-2] F_ ROM {_identif. ier-m)
U..teral-1 J , literal-2 . -. -- literal-m J

GIVING identif;l.er-n [ROUNDEP] I [, identifier-o [ROUNDED]] ...

[;ON SIZE ERROR imperative-statement]

Format 3

SUBTRACT { ~~:iiSPOND ING} identif ier-1 FROM iden tif ier-2 []l.OUNDED 1
[; ON SIZE ERROR imperative-statement]

5.20.3 Syntax Rules

(1) Each identifier must refer to a numeric elementary item except that:

a. In Format 2, each identifier following the word GIVING must refer
to either an elementary numeric item or an elementary numeric edited item.

b. In Format 3, where each identifier must refer to a group item.

(2) Each literal must be a numeric literal.

(3) The composite of operands must not contain more than 18 digits. (See
page II-51, The Arithmetic Statements.)

a. In Format 1 the composite of operands is determined by using all
of the operands in a given statement.

· II-89

Nucleus - SUBTRACT

b. In Format 2 the composite of operands is determined by using all
of the operands in a given statement excluding the data items that follow the
word GIVING.

c. In Format 3 the composite of operands is determined separately for
each pair of corresponding data items.

(4) CORR is an abbreviation for CORRESPONDING.

5.20.4 General .Rules

(1) See page II-50, The ROUNDED Phrase; page II-50, The SIZE ERROR Phrase;
page II-51, The CORRESPONDING Phrase; page II-51, The Arithmetic Statement;
page II-51, Overlapping Operands; and page II-51, Multiple Results in Arith­
metic Statements. I

(2) In Format 1, all literals or identifiers preceding the word FROM are
added together and this total is subtracted from the current value of identi­
f ier-m storin the result immediate! into identif ier-m, and repeating this
process respectively for each operand following the word FROM.

(3) In Format 2, all literals or identifiers preceding the word FROM are
added together, the sum is subtracted from literal-m or identifier-m and the
result of the subtraction is stored.a:s the new value of identifier-n,

I identif ier-o, etc. I

(4) If Format 3 is used, data items in identifier-I are subtracted from
and stored into correspondin data items in identifier-2.

(5) The compiler insures enough places are carried so as not to lose
significant digits during execution.

Nualeus - UNSTRING

5.21 THE UNSTRlN-G STATEMENT

5.21.1 Function

The UNSTRING statement causes contiguous data in a sending field to be
separated and placed into multiple receiving fields.

5.21.2 General Format

UNSTRING identifier-1

[DELIMITED BY [ALL] u:~:!!i ~~r-Z} [, OR [ALL] {i:~:!!i ~;r-3}] . ,. J
INTO identifier-4 (, DELIMITER IN identifier-5) [, COUNT IN identifier-6]

[, identifier-7 (, DELIMITER IN identifier-8] [, COUNT IN identifier-9 l] ...
[wITH POINTER identifier-IO] [TALLYING IN identifier.;..11]

,[;ON OVERFLOW imperative-statement]

5.21.3 Syntax Rules

(1) Each literal must be a nonnumeric literal. In addition, each literal
may be any figurative constant without the optional word ALL.

(2) Identifier-!, identifier-2, identifier-3, iderttifier-5, and identi­
fier-8 must be described, implicitly or explicitly, as an alphanumeric data­
item.

(3) Identifier-4 and identifier-7 may be described as either alphabetic
(except that the symbol 'B' may not be used in the PICTURE character-string),
alphanumeric, or numeric (except that the symbol 'P' may not be· used in the
PICTURE character-string), and must be described as usage is DISPLAY.

(4) Identifier-6, identifier-9, identifier-IO, and identifier-11 must be
described as elementary numeric integer data items (except that the symbol 'P'
may not be used in the PICTURE character-string).

(5) No identifier may name a level 88 entry.

(6) The DELIMITER IN phrase and the COUNT IN phrase may be specified only
if the DELIMITED BY phrase is specified.

5.21.4 General Rules

(1) All -references to identifier 2, literal-1, identifier-4, identifier-5
and identifier-6, apply equally to·identifier-3, literal-2, identifier-7,

. identifier-8 and identifier-9, respectively, and all rec.ursions thereof.

(2) Identifier-I represents the sending area.

Nucleus - UNSTRING

(3) Identifier-4 represents the data receiving area. Identifier-5
represents the receiving area for delimiters.

(4) Literal-I or the data item referenced by identifier-2 specifies a
delimiter.

(5) Identifier-6 represents the count of the number of characters within
the data item referenced by identifier-I isolated by the delimiters for the
move to identifier-4. This value. does not include a coun~ of the delimiter
character(s).

(6) The data item referenced, by identifier-IO contains a value that indi­
cates a relative character position.withiti the al:'.'ea defined by identifier-I.

(7) The data item referenced by identif ier-11 · is a counter that records
the number of data items acted upon during the execution of an UNSTRING
statement.

(8) When a figurative constant is used as the delimiter, it stands for a
single character nonnumeric literal.

When the ALL phrase is specified, one occurrence or two or more
contiguous occurrences of literal-I (figurative constant or not) or the
contents of the data item referenced by identifier-2 are treatedas if it
were only one occurrence, and this occurrence is moved to the receiving data
item according to the rules in general rule 13d.

(9) When any examination encounters two contiguous delimiters, the current
receiving area is either space or zero filled according to the description of
the receiving area.

(10) Literal-I or the contents of the data item referenced by identifier-2
can contain any character in the computer's character set.

(ll) Each literal-l or the data item referenced by identifier-2 represents
one delimiter. When a delimiter contains two or more charact·ers, all of the
characters must be present in contiguous positions of the sending item, and
in the order given to be recognized as a delimiter.

(12) When two or more delimiters are specified in the DELIMITED BY phrase,
an 'OR' condition exists between them. Each delimiter is compared to the
sending field. If a match occurs, the character(s) in the sending field is
considered to be a single delimiter. No character(s) in the sending field
can be considered a part of more than one delimiter.

Each delimiter is applied to the sending field in the sequence
specified in the UNSTRING statement.

(13) When the UNSTRING statement is initiated, the current receiving area
is the data item referenced by identifier-4. Data is trans_ferred from the
data item referenced by identifier-I to the data item referenced by identifier-4
accordin.g to the following rules:

II-92

Nucleus - UNSTRING

a. If the POINTER phrase is specified, the string of characters refer­
enced by identifier-1 is examined beginning with the relative character posi­
tion indicated by the contents of the data item referenced by identifier-IO.
If the POINTER phrase is not specified, the string of characters is examined
beginning with the leftmost character position.

b. If the DELIMITED BY phrase is specified, the examination proceeds
left to right until either a delimiter specified by the value of literal-I or
the data item referenced by identifier-2 is encountered. (See general rule
11.) If the DELIMITED BY phrase.is not specified, the number of characters
examined is equal to the size of the current receiving area. However, if the
sign of the receiving item is de·fined as occupying a separate character posi­
tion, the number of characters examined is one less than the size of the
current receiving area.

If the end of the data item referenced by identifier-I is
encountered before·the delimiting condition is met, the examination terminates
with the last character examined.

c. The characters thus examined (excluding the delimiting character(s),
if any) are treated as an elementary alphanumeric data item, and are moved
into.the current receiving area according to the rules for the MOVE statement.
(See page II-74, The MOVE Statement.)

d. If the DELIMITER IN phrase is specified,, the· delimiting character(s)
are treated as an elementary alphanumeric data item and are moved into. the
data item referenced by identifier-5 according to the rules for the MOVE
statement. (See page II-74, The MOVE Statement.) If the delimiting condition
is the end of the data item referenced by identifier-I, then the data item
referenced by identifier-5 is space-filled.

e., If the COUNT IN phrase is. specified, a value equal to the number
of characte:rs thus examine~ (excluding.the delimiter character(s), if any) is
moved into the area.referenced·by identifier-6 according to the rules for an
elementary move.

f. If the DELIMITED BY phrase is specified,. the string of characters
is further examined beginning with the first character to the right of the
delimiter. If the DELIMITED BY phrase is not specified, the string of charac­
ters is further examined beginning with the character to the right of the
last character transferred.

g. After data is transferred to the data item referenced by identi­
fier-4, the current receiving area is the data item referenced by identifier-7.
The behavior described in paragraph l3b through 13f is repeated until eithe:r
all the characters are exhausted in the data item referenced by identifier-1,
or until there are no more receiving areas.

(14) The initializaUon of the contents of the data items associated with
th.e POINTER phrase. or the TALLYING phrase is the responsibility of the user.

(IS) The contents of the data item,re£erenced by identifier-IO will be
incremented by one for each character examined in the data item referenced by
identifier-I. When the execution of an UNSTRING statement with a POINTER

II-93

Nucleus - UNSTRING

phrase is completed, the contents of the data item referenced by identifier-IO
will contain a value equal to the initial value plus the number of characters
examined in the data item referenced by identifier-I.

(I6) When the execution of an UNSTRING statement with a TALLYING phrase is
completed, the contents of the data item referenced by identifier-II contains
a value equal to its initial value plus the number of data r.eceiving items
acted upon.

(17) Either of the following situations causes an overflow condition:

a. An UNSTRING is initiated, and the value in the data item referenced
by identifier-IO is less than 1 or greater than the size of the data item
referenced by identifier-I.

b. If, during execution of an UNSTRING statement, all data receiving
areas have been acted upon, and the data item referenced by identifier-I
contains characters that have not been examined.

(18). When an overflow condition exists, the UNSTRING operation is terminated.
If an ON OVERFLOW phrase has been specified, the imperative statement included
in the ON OVERFLOW.phrase is executed. If the ON OVERFLOW phrase is not speci­
fied, control is transferred to the next executable statement.

(19) · The evaluation of subscripting and :Lndexing for the identifiers is as
follows:

a. Any subscripting or indexing associated with.identifier-I,
identifier-IO, identifier-11 is evaluated only once, immediately before any
data is transferred as the result of the execution of the UNSTRING statement.

b~ Any subscripting or indexing associated with identifier-2;
identifier-3, identifier.;;..4, identifier;;..5~ identifier-6 is evaluated immediately
before the transfer of data into"thetespective data item.

II-94

Table Handling ~ Introduction

1. INTRODUCTION TO THE TABLE HANDLING MODULE

1. 1 FUN CTI ON

The Table Handling module provides a capability for defining tables of
contiguous data items and accessing an item relative to its position in the
table.- Language facility- is provided for specifying how many times an item
is to.be repeated. Each item may-be identified through use. of a subscript
or an index (see page I-89).

1.2 LEVEL CHARACTERISTICS

Table Handling Level 1 provides a capability for accessing items in up to
three-dimensional fixed length tables. This level also provides series options
and the ability to vary the contents of indices by an increment or decrement.

Table Handling Level 2 provides a capability for accessing items in up to
three-dimensional variable length tables. This level also provides the addi­
tional facilities for specifying ascending or descending keys and permits
searching a dimension of a table for an item satisfying a specified condition.

III-1

2. DATA DIVISION IN THE TABLE HANDLING MODULE

2.1 THE OCCURS CLAUSE

2 .1. 1 Function

Table Handling - OCCURS

The OCCURS clause eliminates the need for separate entries for repeated
data items and supplies information required for the application of subscripts
or indices.

2.1.2 General Format

Format 1

OCCURS integer-2 TIMES

[{
ASCENDING J
DESCENDING KEY IS data-name-2 [, data-name-3} •••]

[INDEXED BY index-name-1 [, index-name-2]

Format 2

OCCURS integer-1 TO integer-2 TIMES DEPENDING ON data-name-1

[f~~~~~~~G} KEY IS data-name-2 (, data-name-3] ••• 1 ...
[INDEXED BY index-name-1 [, index-name-2] •••]

2.1.3 Syntax Rules

(1) Where both integer-1 and integer-2 are used, the value of integer-1
must be less than the value of integer-2.

(2) The data description of data-name-l must describe a positive integer.

(3) Data-name-1, data-name-2, data-name-3, •.• may be qualified.

(4) Data-name-2 must either be the name of the entry containing the OCCURS
clause or the name of an entry subordinate to the entry containing the OCCURS
clause.

(5) Data-name-3, etc., must be the name of an entry subordinate to the
group item which is the subject of this entry.

(6) An INDEXED BY phrase is required if the subject of this entry, or an
entry subordinate to this entry, is to be referred to by indexing. The index­
name identified by this clause is not defined elsewhere since its allocation
and format are dependent on the hardware, and not being data, cannot be
associated with any data hierarchy.

III-2

Table Handling - OCCURS

(7) A data d·escription entry that contains Format 2 of the OCCURS clause
may only be followed, within that record description, by.data description
entries which are subordinate to it.

(8) The OCCURS clause cannot be specified in adata description entry that:

a. Has a 01, 66, 77, or an 88 level-number.

b. Describes an item whose size is variable. The size of an item is
variable if the data description of any subordinate item contains Format 2 of
the OCCURS clause.

(9) In Format 2, the data item defined by data-name-..1 must not occupy a
character position within the range of the first character position defined by
the data description entry containing the OCCURS clause and the last character
position defined by the record description entry containing that OCCURS clause.

(10) If data-name-2 is not the subject of ·this entry, then:

a~ All of the items identified by the data-names in the KEY IS phrase
must be within the group item which is the subject of this entry.

I b. Items identified by the data-name in the KEY IS phrase must not
contain an OCCURS clause.

c. There must not be any entry that contains an OCCURS clause between
the items identified by the data-names in the KEY IS phrase and the subject of
this entry.

(11) Index-name-1, index-name-2, ••. must be unique words within the
program.

2.1.4 General Rules

(1) The OCCURS clause is used in defining tables and other homogeneous
sets of repeated data items. Whenever the OCCURS clause is used, the data­
name which is the subject -of this entry must be either subscrifted or indexed
whenev-er it is referred to in a statement other thanJSEARCH or_USE FOR
DEBUGGING. Further, if the subject of. this entry is the name of a group item,
then all data-names belonging to the group must be subscripted or indexed
whenever they are used as operands, except as the object of a REDEFINES clause.
(See~page I-89, Subscripting; page I-89, Indexing; page I-90, Identifier.)

(2) Except for the OCCURS clause itself, all data description clauses
associated with an item whose description includes an OCCURS clause apply to
each occurrence of the item described. (See restriction in general rule 2 on
page H-38.)

(3) The number of occurrences of the subject entry is defined as _follows:

a. In Format 1, the value -of integer-2 represents the exact number of
occurrences.

b. In F-0rmat 2, the current va1ue of the data item referenced by
data..;..name-1 represen~s the number of occurrences.

III-3

Table Handling - OCCURS

This format specifies that the subject of this entry has a variable
number of occurrences. The value of integer-2 represents the maximum number of
occurrences and the value of integer-1 represents the minimum .number of occur­
rences. This does not imply that the length of the subject of the entry is
variable, but that the number of occurrences is variable.

The value of th.e. data item referenced by data-name-I must fall
within the range integer-1 through integer-2. Reducing the value of the data
item referenced by data-name-I makes the contents of data items, whose occur­
rence numbers now exceed the value of the data item referenced by data-name-1,
unpredictable.

(4) When a group item, having subordinate to it an entry that specifies
Format 2 of the OCCURS clause, is referenced, only that part of the table
area that is specified by the value of data-name-I will be used in the opera­
tion.

(5) The KEY IS phrase is used to indicate that the repeated data is
arranged in ascending or descending order according to the values contained in
data~name-2, data-name-3, etc. The ascending or descending order is determined
according to the rules for comparison of operands (see page II-42, Comparison
of Numeric Operands, and page II-42, Comparison of Nonnumeric Operands). The
data-names are listed in their descending order of signif.icance.

III-4

Table Handling - USAGE

2.2 THE USAGE CLAUSE

2.2.l function

The USAGE -clause specifies the format of 'a data item in the computer storage.

2.2.2 General Fonnat

f USAGE IS 1 INDEX

2.2.3 Syntax Rules

(1) An index data item can be referenced explicitly -only in a} SEARCH, or J
SET statement, a relation condition, the USING ph-rase of a Procedure Division
header, or the USING phrase of a CALL statement.

(2) The SYNCHRONIZED, JUSTIFIED, PICTURE, VALUE and BLANK WHEN ZERO clauses
catll1ot be used to describe group .or elementary items described with the USAGE
IS INDEX clause ..

2.2.4 General Rules

(1) The USAGE clause can be written at any level.. If t:he USAGE clause is
written at a groU;p level, it applies to each elementary item in the group.
The USAGE clause of an elementary item cannot contradict the USAGE clause of
a group Lo which the item belongs.

{2) An elementary item described with the USAGE IS INDEX clause is -called
an index data item and contains a value which must -correspond to an occurrence
number of a table element. The elementary item cannot be a conditional var­
iable. The method of representati-0n and the actual value assigned are deter­
mined by the imp1ementor. If a group item is -described with the USAGE IS INDEX
clause the elementary items in the group are all index.data items. The group
itself is not an index data item and cannot be used in the)SEARCH orlSET state­
ment or in a relation eondition.

(3) An index data item can be part of a group which is referred to in a
MOVE or input-output st:atement~ in which case no conversion will take place.

(4) The external and internal format-0f an -index data item is specified
by the impl0ement-0r.

111-5

TabZe HandZing - Proaedure Division

3. PROCEDURE DIVISION IN THE TABLE HANDLING MODULE

3.1 RELATION CONDITION

3.1.1 - Comparisons Involving Index-Names and/or Index Data Items

Relation tests may be made between:

(1) Two index-names. The result is the same as if the corresponding
occurrence numbers were compared.

· (2) An index-name and a data item (other than an index data item} or
literal. _ The occurrence number that correspon.ds to the value of the index-name
is compared :io the ·data item or literal. · ·

(3) An index data item and an index-name or another index data item. The
actual values are compared w:ithout conversion.

(4) Th~ result of the comparison of an index data item with any data item
or literal not specified above is undefined.

3.2 OVERLAPPING OPERANDS

When a sending and a receiving item in a SET statement share a part of
their storage areas~ the result of the execution of such a statement is
undefined.

III-6

Table Handling - SEARCH,

3. 3 ·THE SEARCH STATEMENT

3.3.1 Function

The SEARCH statement is used to search a table for a table element that
satisfies the specified eondition and t-o adjust the associated index-name to
indicate that table element.

3. 3. 2 General Format

Format 1

SEARCH ident:ifier-1 {.VARYING.· {identi~ie. r-l.J. ·] . · · index-name-1

[; AT END imperative-~tatement~l]

wHEN condition- I
{

imperative-s.tatement-21
NEXT SENTENCE J --.· .

[; WHEN condition-2 {~~r::;~~~atement-3}]

Format 2

SEARCH ALL identifier-I {; AT END impe~ative_:statement-1] .

WHEN (data-name-1 { i~
\condition-name-I

~QuAL ro} \~!i~~:;;r:~:xpression-111

[

AND (data-name-2 ~i~ ~QUAL
• -- l condition-name-2

{

identi fier-4 - J.] ·
literal-2 · · · · ·
arithmetic-expression-2 _ •••

{
.imper. ative-statement-2].· .·

. NEXT SENTENCE .

NOTE: The required relational character '=' is not underlined to avoid
confusion with other symbols.

3.3.3 SyntaxRules

(1) In both Fo~ats 1 and 2, identifier-I must not be subscripted or
indelted,. but it~,_j ·description IDtl$ t contain an OCCURS clalf,f?e,. a~d an INDEXED BY
clause. The description of identifier-1 in Format. 2 must .also _contain the KEY
IS phrase in ,its OCCURS clause.

III-7

Table Handling - SEARCH

(2) Identifier-2, when specified, must be described as USAGE rs· INDEX or
as a numeric elementary item without any positions to the right of the assumed
decimal point.

(3) · In Format 1, condition-!, condition-2, etc,, may be any condition as
described in Conditional Exp-ressions, page II-41.

(4) In F.ormat 2, all referenced condition-names must be defined as having
only a single value. The data-name associated with a condition~name·must
appear in the KEY clause of identifier-!. Each data-name-1, data-name-2 may
be qualified. Each data-name-1, data-name-2 must be indexed by the first
index-name associated with identifier-I along with other indices or literals
as required, and must be referenced in the KEY clause of identifier-I. Identi­
fier-3, identifier-4, or identifiers specif·ied in arithmetic-expression-l,
~rithmetic-expres-sipn-2 mu.~t not be referenced in the KEY clause of identifier-I
or be indexed by the first index-name associated with identifier-I.

In Format 2, when a data-name in the KEY clause of identifier-I is
referenced, or ·when a condition-name associated with a data-name in the KEY
clause of identifier-! is referenced, all preceding data-names in the KEY
clause of identifier-I or their associated condition-~ames m~st also be
referenced.

3.3.4 General Rules

(1) If Format 1 of the SEARCH is used., a serial type of search operation
takes place, starting with the current index setting.

a. If, at the start of execution of the SEARCH statement, the index­
name associated with identifier-I contains a vatue that corresponds to an
occurrence number that is greater than the highest permissible occurrence
number for identifier-!, the SEARCH is terminated immediately. The number
of occurrences of identifier-I, the last of which is the highest permissible,
is discussed in the OCCURS clause. (See page III-2, The OCCURS Clause.)
Then, if the AT END phrase is specified, imperativ.e-statement-1 is executed;
if the AT END phrase is.not specified, control passes to the next executable
sentence.

b. If, at the start of execution of the SEARCH statement, the index­
name associated with identifier-I contains a value that.corresponds to an
occurrence number that is not greater than the highest permissible occurrence
number for identifier-I (the number of occurrences of identifier-1, the last
of which is the highest permissible is discussed in the OCCURS clause; s·ee
page III--2, The OCCURS Clause), the SEAR.CH statement :operates by evaluating
the conditions in the order that they are written, making use of the index
settings, wherever specified, to determine the occurrence of those items to
be tested. If none of the conditions are satisfied, the index-name for
identifier-I is incremented to.obtain reference to the next occurrence. The

· process. is then repeated using the new index-name settings unless the new
value. o_f the .index~nalne settings· for identifier~! corresponds to a table
element outside .the:permissible.range·of·occurrence values, in which ·case the
~earch terminates ~s indicated in la above. If one of the_conditibns is
satisfied upon. its evaluation, the search terminat¢"s immediately and the
imperative statementassociated with that condition is· executed; the index­
name remains set at the occurrence which caused the condition to be satisfied.

III-8

Table Handling - SEARCH

(2) In a Format .. 2 SEARCH, -the results of the .SEARCH ALL. operation are pre­
dictable only when::

a. The data in the table is ordered in the same manner as·described·
in the ASCENDING/DESCENDING KEY clause associated with the description of
identifier-I, and

b. l'h:e contents of the key(s) referenced in the WHEN clause are
suffi~ient·to identify a unique table element.

(3) If Format 2 of the SEARCH is used, a nonserial type of search opera- .
tion may take place; the initial setting of the index-name ·for identifier-I
is ignored and its setting is varied during the search operation in a·manner
specified by the implementor, with the restriction that at no .time is it set
to a value that exceeds the value which corresponds to the last element of
the table, or that is less than the value that corresponds to the first ele­
ment of the table. The length of the table"is discussed in the OCCURS clause.
(See page III-2, The OCCURS Clause.) If any of the conditions specified in.­
the WHEN clause cannot be satisfied for any setting of the index within the
permitted range, control is passed to imperative-statement-I of the AT END
phrase, when specified, or to the next executable sentence.when this phrase is
not specified; in either case the final setting of the index is not predictable.
If all the conditions can be satisfied, the index.indicates, an occurrence that
allows the conditions to be satisfied, and control passes to imperative-state­
ment-2.

(4) After execution of imperative-statement-I, imperative-statement-2, or
imperative-statenient-3, that does not terminate with a GO TO statement, control
passes to the next executable sentence.

(5) In Format 2, the index-name that is used for the search operation is
the first (or.only) index-name that appears in the_ INDEXED BY phrase of identi­
fier-I. Any other index-names for identifier-I remain unchanged. '

{6) In Format I, if the VARYING phrase is not used,.the index-name that is
used for the search operation is the first (or only) index-:'name that appears
in the INDEXED BY phrase of identifier-I. Any other index-names for identi­
fier-I remain unchanged.

(7) In Format 1, if the VARYING index-name....;1 phrase.is specified, and if
index-name-I appears in the INDEXED BY phrase of identifier-_!, that.index-name
is used for this search. If this is not the case, 'or if the VARYING identi­
fier-2 phrase is specified, the first (or only) index-:-'Q.ame given in the INDEXED
BY phrase of identifier-I is used for the search. In addition, the follow~ng
operations will occur:

a. If the VARYING index-name-! phrase is used, .and if index-name-1
appears in the INDEXED BY phrase of another table entry, the occurrence number
repres.ented by index-name;_! is incremented by the same amount as, and at the
same time· as, the occurrence .number represented by. the index-name associated ·
with identifier-I is incremented.

b. If the .VARYING identifier-2 phrase is specified, and identifier-2·
is an index data item, then- the data item referenced by ,fdentffie-i....;2 is incre­
mented by the sameamount·as, and at the same time as;, the index associated

. :ru-9

Tabte HandUng - SEARCH

with identifier-I is incremented. If identifier-2 is not an index data item,
the data item referenced by identifier-2 is incremented by the value one (1)
at the same time as -the index referenced by the index-name associated with
identifier-I is ·incremented.

(8) If identifier-I is a data item subordinate to a data item that con­
tains an OCCURS clause (providing for a two or three dimensional table), an
index-name must be associated with each dimension of the table through the
INDEXED BY phrase of the OCCURS clause. Only the setting of the index~name
associated with identif ier-1 (and the data item identifier-2 or index-name-I,
if present) is modified by the execution of the SEARCH statement. To search
an entire two or three dimensional table it is necessary to execute a SEARCH
statement several times. Prior to each execution of a SEARCH statement, SET
statements must be executed whenever index-names must be adjusted to appro­
priate settings ..

A flowchart of the Format 1 SEARCH operation containing two WHEN phrases
follows:

START

·Index setting: * imperative--
---.. highest permissible1-----__.g....__...&.lll.lli.w.:.;;__ _ _.statement-l1---___.

occurrence number

t----------=~u:=:e=------4 imp_erat ive-s tatement-2 ___ __

1-*---"-----~--=T~e=---------Jimperative- t-*---)
statement-3

False

Increment
index-name for
i.dentifier-l
{index-name-1·
if aPPlicable)

Increment *
index-name-I {for
a different table)
or, -identifi-er-2

*These ,operations ar,e options included only when specified- in -the SEARCH
statement.

**Each of these:contro1 -transfers is to· the next executable sentence unless
-the impera-tive-statement'endS'With.-11 GO_TQstatetnent-.

"lII_;l-0

Table Handling - SET

3.4 THE SET STATEMENT

3.4.1 Function

The SET statement establishes reference points for table handling operations
by setting index-riames associated with table elements.

3.4.2 General Format

Format 1

SET {identifie.r-1 [, identifier-2]
~- index-name-1 [' index-name-2]

Format 2

SET index-name-4 [, index-name-5]-

3.4.3 Syntax Rules

~ .. } ...

{
UP BY · 1 f 1.·· .dentifier-4}
DOWN BY . l_integer-2

(1) All ref er enc es to index-name-1, identifier-!, and index~name-4 apply
equally to index-name-2~ identifier--2, and index-name-5, respectively.

(2) Identifier-I and identif:ler.;..3 must name either index data items, or
elementary items described as an integer.

(3) Identifier-4 must be described as an elementary numeric integer.

(4) Integer-1 and integer-2 may be signed. Integer-1 must be positive.

3.4.4 General Rules

(1) Index-names are conside·red related to a given table and are defined by
being specified in the INDEXED BY clause •

. (2) If l.ndex-name-3 is specified, ·the value of the index before the
execution of the SET statement must correspond to· an occurrence number of an
element in the associated table.

If index-name-4, index-name-5 is specified, the value of the index
both before and after the execution of the SET statement must correspond to an
occurrence number of an element in the associated table. If index-name-1,
index-name-2 is specified, the value of the index after the execution of the
SET statement must correspond to an occurrence number of an elemel).t in the
associated table. The value of the index associated with an index-name after
the execution of a SEARCH or PERFORM statement may be undefined. (See~
III-7 .The SEARCH Statement and page II-78, The PERFORM Statement.)

III-11

Tahle Handling - SET

(3) In Format I, the following action occurs:

a. Index-name-I is set to a value causing it to refer to the table
element that corresponds in occurrence number to the table, element referenced
by index-name-3, identifier-3, or integer-I. If identifier~3 is an index data
item, or if index-name-3 is related to the same table as index-name-1, no
conversion takes place.

b. If identifier-I is an index data item, it may be set equal to
either the contents of index-name-3 or identifier-3 where identif ier-3 is
also an index data item; no conversion takes place in either case.

c. If identifier-I is not an index data item, it may be set only to
an occurrence number that corresponds to the value of index-name-3. Neither
identifier-3 nor integer-I can be used in this case.

d. The process is repeated for index-name-2, identifier-2, etc., if
specified. Each time the value of index-name-3 or identifier-3 is used as it
was at the beginning of the execution of the statement. Any subscripting or
indexing associated with identifier-I, etc., is evaluated immediately before
the value of the respective data item is changed.

(4) In Format 2, the contents of index-name-4 are incremented {Ur BY) or
decremented {DOWN BY) by a value that corresponds to the number of occurrences
represented by the value of integer-2 or identifier-4; thereafter, the process
is repeated for index-name-5, etc. Each time the value of-identifier-4 is
used as it was at the beginning of the execution of the statement.

(5) Data in the following chart represents the validity of various operand
combinations in the SET statement. The general rule reference indicates the
applicable general rule.

Receiving Item
Sending Item

Integer Data Item Index-name Index Data Item

Integer Literal No/3c Valid/3a No/3b

Integer Data Item No/3c Valid/3a No/3b

Index-Name Valid/Jc Valid/3a Valid/3b *
Index Data Item No/Jc Valid/3a * Valid/3b *

*No conversion takes place

III-12

Sequential I-0 - Introduction

1. INTRODUCTION TO THE SEQUENTIAL I-0 MODULE

1. 1 FUN CTI ON

The Sequential I-0 module provides a capability to access records of a
file in established sequence. The sequence is established as a result of
writing the records. to the file. It also provides for the specification of
rerun points and the. shar:i.ng of memory areas -among files•

1.2 LEVEL CHARACTERISTICS

Sequential I-0 Level 1 does not provide full COBOL facilities for the
FILE-CONTROL, I-0-CONTROL, and FD entries as specified in the formats of this
module. Within the Procedure Division, the Sequential I-0 Level 1 provides
limited capabilities for the CLOSE, OPEN, USE, and WRITE statements and full
capabilities for the READ. and REWRITE statements, as specified in the formats
of this module.

Sequential I-0 Level 2 provides full facilities for the FILE-CONTROL,
I-0-CONTROL, and FD entries as specified in the formats of this module. With­
in the Procedure Division, the Sequential I-0 Level 2 provides full capabil­
ities for the CLOSE, OPEN, READ, REWRITE, USE, and WRITE statements as
specified in the formats of this module. The additional features available in
Level 2 include:. OPTIONAL files, the RESERVE clause, SAME RECORD AREA,
MULTIPLE FILE tapes, REVERSED, EXTEND, and additional flexibility through.
series options. -

1. 3 LANGUAGE CONCEPTS

1.3.1 Organization

Sequential files are organized such that each record in the file except
the first has a unique predecessor record, and each record except the last
has a- unique successor record. These predecessor-successor relationships are
establishe.d by the order of WRITE statements when the file is created. Once
established, the predecessor-successor relationships do not change except in
the case where records are added to the end of the file.

1. 3. 2 Access Mode

In the sequential access mode, the sequence in which records are accessed
is the order in which the records were originally written.

1.3.3 Current Record Pointer

The current record pointer is a conceptual entity used in this document to
facilitate specification of the next record to be .accessed within a given file.
The concept of the current record pointer has no meaning fo-r a file opened in
the output mode. The setting of the current record pointer.is affected only
by the OPEN and READ statements.

1.3.4 I-0 Status

If the FILE STATUS clause is specified in a file control entry, a value is
placed into the specified two-character data item during the execution of an

IV.;...l

Sequential I-0 - Introduction

OPEN, CLOSE, READ, WRITE, or REWRITE statement and befcn:e any applicable
USE procedure is executed, to indicate to the COBOL program the status of
that input-output operation.

1. 3.4 .1 Status Key 1 .

The leftmost character· position of the FILE STATUS data item is known as
status key 1 and is set to indicate one of the following conditions upon
completion of the input-output operation.

'O' indicates Successful Completion
'l' indicates At End
'3' indicates PermanentError
' 9 ' indicates Implementor Defined

The meaning of. the above indications are as follows:

0 - Successf~l Completion. The input-output statement was successfully
executed.

1 - At End. The sequential READ statement was unsuccessfully executed
either as a result of an attempt to read a record when no next lo ical rec rd
exists in. the file or _as a result of the first READ statement b·eing executed
for a file described wi.th the OPTIONAL clause, and that file was not available
to the program at the time its associated OPEN statement was executed.

3 - Permanent Error. The input-output statement was unsuccessfully executed
as the result of a boundary violation for a sequential file or as the result of
an input-output error, such as data check parity error, or transmission error.

9 - Implementor Defined. The input-output statement was unsuccessfully
executed as a result of a condition that is specified by the implementor. This
value is used only to indicate a condition not indicated by other defined
values of status key 1, or by specified combinations of the values of status
key 1 and status key 2.

1.3.4.2 Status Key 2

The rightmost character position of the FILE STATUS data item is known as
status key 2 and is used to further describe the results of the input-output
operation. This character will contain a value as follows:

1. If no further information is available concerning the input-output
operation, then status key 2 contains a value of 'O' ~

2. When status key 1 contains a value. of '3' indicating a permanent error
condition, status key 2 may contain a value of '4' indicating a boundary viola­
tion·. This condition indicates. that an attempt has been made to write beyond
the externally defined.boundaries of a sequential file. The implementor
specifies the manner in which these boundaries are defined.

3. When status key 1 contains a value of '9' indicating an implementor­
defined condition, the vaiue of status key 2 is defined by the implementor.

IV-2

Sequential I-0 - Introduction

1.3.4.3 Valid Combinations of Status Keys 1 and 2

The valid permissible combinations of the values of status key 1 and status
key 2 are shown in the following figure. An 'X' at an intersection indicates
a valid permissible combination.

Status Key 2

Status Key 1 No Further Boundary
Information Violation

(O) (4)

Successful Completion (O) x

At End (1) x

Permanent Error (3) x x

Implementor Defined (9)

1.3.5 The AT END Condition

The AT END condition can occur as a res.ult of the execution of a READ
statement. For details of the causes of the condition, see page IV-28, The
READ Statement.

1.3.6 LINAGE-COUNTER

The reserved word LINAGE-COUNTER is a name for a special register generated
by the presence of a LINAGE clause in a file description entry. The implicit
description is that of an unsigned integer whose size is equal to the size of
integer-I or the data item referenced by data-name-I in the LINAGE clause.
See page IV-15, The LINAGE Clause, for the rules governing the ~INAGE;...COUNT~R.

IV-3

Sequential I-0 - FILE-CONTROL

2. ENVIRONMENT DIVISION IN THE SEQUENTIAL 1-0 MODULE

2.1 INPUT-OUTPUT SECTION

2~1.1 The FI LE-CONTROL Paragraph

2.1.1.1 Function

The FILE-CONTROL paragraph names each file and allows specification of
other file-related information.

2.1.1.2 General Format

FILE-CONTROL. {file-control-entry}

2.1.2 The File Control Entry

2.1.2.1 Function

The file control entry names a file and may specify other file-related
information.

2.1.2.2 General Format

SELECT ((OPTIONAL) lfile-name

ASSIGN TO implementor-name-I [, implementor-name-2] •••

[;RESERVE integer-! [!:.~s]]

f ; ORGANIZATION IS SEQUENTIAL]

[; ACCESS MODE IS SEQUENTIAL]

[; FILE STATUS IS data-name-1]

2.1.2.3 Syntax Rules

(1) The SELECT clause must be spe·cified first in the file control entry.
The clauses which follow the SELECT clause· may appear in any.order.

(2) Each file described in the Data Division must be named once and only
once as file-name in the FILE-CONTROL paragraph. · Each file specified in the
file control entry must have a file description entry in the Data Division.

(3) If the ACCESS MODE clause is not specified, the ACCESS MODE IS
SEQUENTIAL clause is implied.

(4) Data-name-1 must be defined in the Data Division as a two-character
data item of the category alphanumeric and must not b1e 4~fined in the File
Section, the Report Section, or the Gonnnun:ication Section.

IV-4

Sequential I-0 - FILE-CONTROL

(5.) Data-name-I may be qualified.

(6) When the ORGANIZATION IS SEQUENTIAL clause is not specified, the
ORGANIZATION IS SEQUENTIAL clause is implied.

(7) The OPTIONAL phrase may only be .specified for input files. Its
specification is required for input files that are not necessarily present
each time the object program is executed.

2.1.2.4 General Rules

(1) The ASSIGN clause specifies the association of the file referenced by
file-name to a storage medium.

(2) The RESERVE clause allows the user to specify the number of input-output
areas allocated. If the RESERVE clause is specified, the number of input-output
areas allocated is equal to the value of integer-I. If the RESERVE clause is
not specified the number of input-output areas allocated is specified by the
implementor.

(3) The ORGANIZATION clause specifies the logical structure of a file.
The file organization is established at the time a file is created and cannot
subsequently be changed.

(4) Records in the file are accessed in the sequence dictated by the file
organization. This sequence is specified by predecessor-successor record
relationships established by the execution of WRITE statements when the file
is created or extended.

(5) When the FILE STATUS clause is specified, a value will be moved by
the operating system into the data item specified by data-name-1 after the
execution of every statement that references that file either explicitly or
implicitly. This value indicates the status of execution of the statement.
(See page IV-1, I-0 Status.)

IV-5

2.1.3 The 1-0-CONTROL Paragraph

2.1.3.1 Function

Sequential I-0 - I-0-CONTROL

The I-0-CONTROL paragraph specifies the points at which rerun is to be
established, the memory area which is to be shared .by different files, and
the location of files .on a multiple file reel.

2.1.3.2 General Format

I-0-CONTROL.

{
[END OF] {~~i}) OF file-name-2
integer-I RECORDsf

integer-2 CLOCK-UNITS
condition-name

[; SAME I [RECORD l j AREA FOR file-name-3 {, f ile-name-4 J • • •]
[; MULTIPLE FILE TAPE CONTAINS file-name-5 (POSITION integer-3)

[, file-name-6 [POSITION integer-4]] • • •] ••.

2.1.3.3 Syntax Rules

(1) The I-0-CONTROL paragraph is optional.

(2) File-name-I must be a sequentially organized file.

(3) The END OF REEL/UNIT clause may only be used if f ile-name-2 is a
sequentially organized file. The definition of UNIT is determined by each
implementor.

(4) When either the integer-I RECORDS clause or the integer-2 CLOCK-UNITS
clause is specified, implementor-name must be given in the RERUN clause.

(5) More than one RERUN clause may be specified for a given file-name-2,
subject to the following restrictions:

a. When multiple integer-! RECORDS clauses are specified, no two of
them may specify the same file-name-2.

b. When multiple END OF REEL or END OF UNIT clauses are specified,
no two of them may specify the same file-name-2.

(6) Only one RERUN clause containing the CLOCK-UNITS clause may be
specified.

IV-6

Sequential I-0 - I-0-CONTROL

(7) The two forms of the SAME clause (SAME AREA, f SAME RECORD AREA)! are
considered separately in the following:

More than one SAME clause may be included in a program, however:

a. A file-name must not appear in more than one SAME AREA clause.

b. A file-name must not appear in more than one SAME RECORD AREA
clause.

c. If one or more file-names of a SAME AREA clause appear in a SAME
RECORD AREA clause, all of the file-names in that SAME AREA clause must
appear in the SAME RECORD AREA clause. However, additional file-names not
appearing in that SAME AREA clause may also appear in that SAME RECORD AREA
clause. The rule that only one of the files mentioned in a SAME AREA clause
can be open at any given time takes precedence over the rule that all files
mentioned in a SAME RECORD AREA clause can be open at any given time.

(8) The files referenced in the SAME AREAlor SAME RECORD AREAi clause need
not all have the same organization or access.

2.1.3.4 General Rules

(1) The RERUN clause specifies when and where the rerun information is
recorded. Rerun information is recorded in the following ways:

a. If file-name-1 is specified, the rerun information is written on
each reel or unit of an output file and the implementor specifies where, on
the reel or file, the rerun information is to be recorded.

b. If implementor-name is specified, the rerun information is
written as a separate file on a device specified by the implementor.

(2) There are seven forms of the RERUN clause, based on the several
conditions under which rerun points can be established. The implementor
must provide at least one of the specified forms of the RERUN clause.

a. When either the END OF REEL or END OF UNIT clause is used with­
out the ON clause. In this case, the rerun information is written on file­
name-2, which must be an output file.

b. When either the END OF REEL or END OF UNIT clause is used and
file-name-I is specified in the ON clause. In this case, the rerun infor­
mation is written on file-name-1, which must be an output file. In addition,
normal reel, or unit, closing functions for file-name-2 are performed.
File-name-2 may either be an input or an output file.

c. When either the END OF REEL or END OF UNIT clause is used and
. implementor-name is specified in the ON clause. In this case, the rerun
information is written on a separate rerun unit defined by the implementor.
File-name-2 may be either an input or output file.

d. When the integer-1 RECORDS clause is used. In this case, the
rerun information is written on the device specified by implementor-name,
which must be specified in the ON clause, whenever integer-1 records of

IV-7

Sequential I-0 - I-0-CONTROL

file-name-2 have been processed. File-name-2 may be either an input or
output file with any organization oi access.

e. When the integer-2 CLOCK-UNITS clause is used. In this case, the
rerun information is written on the device specified by implementor-name,
which must be specified in the ON clause, whenever an interval of time,
calculated by an internal clock, has elapsed.

f. When the condition-name clause is used and implementor-name is
specified in the ON clause. In this case, the rerun information is written
on the device specified by implementor-name whenever a switch assumes a
particular status as specified by condition-name. In this case, the associated

·switch must be defined in the SPECIAL-NAMES paragraph of the Configuration
Section of the Environment Division. The implementor specifies when the
switch status is interrogated.

g. When the condition-name clause is used and file-name-1 is
specified in the ON clause. In this case, the rerun information is written
on file-name-1, which must be an output file, whenever a switch assumed a
particular status as specified by condition-name. In this case, as in
paragraph f above, the associated switch must be defined in the SPECIAL-NAMES
paragraph of the Configuration Section of the Environment Division~ The
implementor specifies when the switch status is interrogated.

(3) The SAME AREA clause specifies that two or more files that do not
represent sort or merge files are to use the same memory area during process­
ing. The area being shared includes all storage area assigned to the files
specified; therefore, it is not valid to have more than one of the files open
at the same time. (See syntax rule 7c on page IV-7.)

(4) The SAME RECORD AREA clause specifies that two or more files are to
use the same memory area for processing of the current logical record. All of
the files may be open at the same time. A logical record in the SAME RECORD
AREA is considered as a logical record of each opened output file whose file­
name appears in this SAME RECORD AREA clause and of the most recently read
input file whose file-name appears in this SAME RECORD AREA clause. This is
equivalent to an implicit redefinition of the area, i.e., records are aligned
on the leftmost character position.

(5) The MULTIPLE FILE clause is required when more than one file shares
the same physical reel of tape. Regardless of the number of files on a single
reel, only those files that are used irt the object program need be specified.
If all file-names have been listed in consecutive order, the POSITION clause
need not be given. If any file in the sequence is not listed, the position
relative to the beginning of the tape must be given. Not more than one file
on the same tape reel may be open at one time.

IV-8

Sequential I-0 - File Section

3. DATA DIVISION IN THE SEQUENTIAL I-0 MODULE

3.1 FILE SECTION

In a COBOL program the file description entry (FD) represents the highest
level of organization in the File Section. The File Section header is followed
by a file description entry consisting of a level indicator (FD), a file-
name and a series of independent clauses. The FD clauses specify the size of
the logical and physical records, the presence or absence of label records,
the value of implementor-defined label items, the names of the data records
which comprise the file, and the number of lines to be written on a logical
printer page. The entry itself is terminated by a period.

3.2 RECORD DESCRIPTION STRUCTURE

A record description consists of a set of data description entries which
describe the characteristics of a particular record. Each data description
entry consists of a level-number followed by a data-name if required, followed
by a series of independent clauses as required. A record description has a
hierarchical structure and therefore the clauses used with an entry may vary
considerably, depending upon whether or not it is followed by subordinate
entries. The structure of a record description is defined in Concepts of
Levels on page I-84 while the elements allowed in a record description are
shown in the data description skeleton on page II-12.

IV-9

SequentiaZ I-0 - File Description

3. 3 THE FILE DESCRIPTION - COMPLETE ENTRY SKELETON

3.3.l Function

The file description furnishes information concerning the physical struc­
ture, identification, and record names pertaining to a given file.

3.3.2 General Format

FD file-name

[; BLOCK CONTAINS Ir integer-I .!Q] I integer-2 {~~ERS}1
[; RECORD CONTAINS [integer-3 TO) integer-4 CHARACTERS 1

LABEL {RECORD IS 1 { STANDARD')_
RECORDS ARE OMITTED j

[; VALUE OF implementor-name-I IS (1~~~:;:~~-ll}

[
' implementor-name-2 IS {l d~ta-name-2 111 · ..]

literal-2

[; DATA {!~~~:s 1~ 1 data-name-3

[: LINAGE IS {data-name-51
integer-5 LINES

[
LINES AT TOP {data-name-7)]

' ~- integer-7

[; CODE-SET IS alphabet-name] •

3.3.3 Syntax Rules

(, data-name-4] •••]

[' WITH FOOTING AT (~ata-name-6l]
hnteger-6 J

[
LINES AT BOTTOM {data-name-Bt]]

' integer-8 J

(1) The level indicator FD identifies the beginning of a file description
and must precede the file-name.

(2) The clauses which follow the name of the file are optional in many
cases, and their order of appearance is immaterial.

(3) One or more record description entries must follow the file
description entry.

IV-10

Sequential I-0 - BLOCK CONTAINS

3.4 THE BLOCK CONTAINS CLAUSE

3.4.1 Function

The BLOCK CONTAINS clause specifies the size of a physical record.

3.4.2 General Fonnat

BLOCK CONTAINS I r integer-1 !Q.] I integer-2 f ~~RS 1
3. 4. 3 Genera 1 Rules

(1) This clause is required except when:

a. A physical record contains one and only one complete logical
record.

b. The hardware device assigned to the file has one and only one
physical record size.

c. The hardware device .assigned to the file has more than one
physical record size but the implementor has designated one as standard. In
this case, the absence of this clause denotes the standard physical record
size.

(2) The size of the physical record may be stated in terms of RECORDS,
unless one of the following situations exists, in which case the RECORDS
phrase must not be used.

a. In mass storage files, where logic~l records may extend across
physical records.

b. The physical record contains padding (area not contained in a
logical record).

c. Logical records are grouped in such a manner that an inaccurate
physical record size would be implied.

(3) When the word CHARACTERS is specified, the physical record size is
specified in terms of the number of character positions required to store
the physical record, regardless of the types of characters used to repr-esent
the items within the physical record.

(4) If .only inte er-2 is shown it re resents the exact size of the
ph sical record. If integer-I and integer-2 are both shown, they refer to
the minimum and maximum size of the physical record, respectively.

,(5) If logical records -0f differing si-ze are grouped into one physical
record, the techni.que for determining the size of each logical record is
specified by the implementor~

IV-11

Sequential I-0 - CODE~SET

3.5 THE CODE-SET CLAUSE

3.5.1 Function

The CODE-SET clause specifies the character code set used to represent
data on the external media.

3.5.2 Genera] Fonnat

CODE-SET IS alphabet-name

3.5.3 Syntax Rules

(1) When the CODE-SET clause is specified for a file, all data in that
file must be described as usage is DISPLAY and any signed numeric data must be
described with the SIGN IS SEPARATE clause.

(2) The alphabet-name clause referenced by the CODE-SET clause must not
specify the literal phrase.

(3) The CODE-SET clause may only be specified for non-mass storage files.

3.5.4 General Rules

(1.) If the CODE-SET clause is specified, alphabet-name specifies the
character code convention used to represent data on the external media. It
also spe~ifies the algorithm for converting the character codes on the external
media from/to the native character codes. This code conversion occurs during
the execution of an input or output operation. (See page II-8, The SPECIAL­
NAMES Paragraph.)

(2) If the CODE-SET clause is not specified, the native character -code
set is assumed for data on the external media_.

IV--12

Sequential I-0 - DATA RECORDS

3.6 THE DATA RECORDS CLAUSE

3.6.1 Function

The DATA RECORDS clause serves only as documentation for the names of data
records with their associated file.

3.6.2 General Format

{
RECORD IS)

DATA RECORDS .. ARE

3.6.3 Syntax Rules

data-name-1 r., data-name-2 J

(1) Data-name-! and data-name-2 are the names of data records and must
have 01 level-number record descriptions, with the same names, associated
with them.

3.6.4 General Rules

(1) The presence of more than one data-name indicates that the file
contains more than one type of data record. These records may be of differ­
ing sizes, different formats, etc. The order in which they are listed is not
significant.

(2) Conceptually, all data records within a file share the same area.
This is in no way altered by the presence of more than one type of data
record within the file.

IV-13

Sequential I-0 - LABEL RECORDS

3.7 THE LABEL RECORDS CLAUSE

3.7.1 Function

The LABEL RECORDS clause specifies whether labels are present.

3.7.2 General Format

LABEL {RECORD IS 1 { STANDARD}
RECORDS ARE OMITTED

3.7.3 Syntax Rules

(1) This clause is required in every ~ile description entry.

3.7.4 General Rules

(1) OMITTED specifies that no explicit labels exist for the file or the
device to which the file is assigned.

(2) STANDARD specifies that labels exist for the file or the device to
which the file is assigned and the labels conform to the implementor's label
specifications.

IV-14

Sequential I-0 - LINAGE

3.8 THE LINAGE CLAUSE

3.8.1 Function

The LINAGE clause provides a means for specifying the depth of a logical
page in terms of number of lines. It also provides for specifying the size of
the top and bottom margins on the logical page, and the line number, within the
page body, at which the footing area begins.

3.8.2 General Format

{
data-name-1} [· LINAGE IS integer-l LINES , WITH FOOTING AT

[
LINES AT TOP (~ata-name-3t] [, LINES AT BOTTOM

' ~- linteger-3 J

3.8.3 Syntax Rules

(~ata-name-2).]
\.integer-2 J

(~ata-name-4}]
\.mteger-4

(1) Data-name-1, data-name-2, data-name-3, data-name-4 must reference
elementary unsigned numeric integer data items.

(2) The value of integer-1 must be greater than zero.

(3) The value of integer-2 must not be greater than integer-I.

(4) The value of integer-3, integer-4 may be zero.

3.8.4 General Rules

(1) The LINAGE clause provides a means for specifying the size of a logical
page in terms of number of lines. The logical page size is the sum of the
values referenced by each phrase except the FOOTING phrase. If the LINES AT
TOP or LINES AT BOTTOM phrases are not specified, the values for these functions
are zero. If the FOOTING phrase is not specified, the assumed value is equal
to integer-I, or the contents of the data item referenced by data-name-1,
whichever is specified.

There is not necessarily any relationship between the size of the
logical page and the size of a physical page.

(2) The value of integer-! or the data item referenced by data-name-1
specifies the number of lines that can be written and/or spaced on the logical
page. The value must be greater than zero. That part of the logical page in
which these lines can be written and/or spaced is called the page body.

(3) The value of integer-3 or the data item referenced by data-name-3
specifies the number of lines that comprise the top margin on the logical page.
The value may be zero.

(4) The value of integer-4 or the data item referenced by data-name-4
specifies the number of lines that comprise the bottom margin on the logical
page. The value may be zero.

IV-15

Sequential I-0 - LINAGE

(5) The value of integer-2 or the data item referenced by data-name-2
specifies the line number within the page body at which the footing area
begins. The value must be greater than zero and not greater than the value
of integer-I or the data item referenced by data-name-1.

The footing area comprises the area of the logical page between the
line represented by the value of integer-2 or the data item referenced by
data-name-2 and the line represented by the value of integer-1 or the data
item referenced by data-name-1, inclusive.

(6) The value of integer-!, integer-3, and integer-4, if specified, will
be used at the time the file is opened by the execution of an OPEN statement
with the OUTPUT phrase, to specify the number of lines that comprise each of
the indicated sections of a logical page. The value of integer-2, if specified,
will be used at that time to define the footing area. These values are used
for all logical pages written for the file during a given execution of the
program.

(7) The values of the data items referenced by data-name-1, data-name-3,
and data-name-4, if specified, will be used as follows:

a. The values of the data items, at the time an OPEN statement with
the OUTPUT phrase is executed for the file, will be used to specify the number
of lines that are to comprise each of the indicated sections for the first
logical page.

b. The values of the data items, at the time a WRITE statement with
the ADVANCING PAGE phrase is executed or page overflow condition occurs (see
page IV-34, The WRITE Statement), will be used to specify the number of lines
that are to comprise each of the indicated sections for the next logical page.

(8) The value of the data item referenced by data-name-2, if specified,
at the time an OPEN statement with the OUTPUT phrase is executed for the file,
will be used to define the footing area for the first logical page. At the
time a WRITE statement with the ADVANCING PAGE phrase is executed or a page
overflow condition occurs, it will be used to define the footing area for the
next logical page.

(9) A LINAGE-COUNTER is generated by the presence of a LINAGE clause. The
value in the LINAGE-COUNTER at any given time represents the line number at
which the device is positioned within the current page body. The rules govern­
ing the LINAGE-COUNTER are as follows:

· a. A separate LINAGE-COUNTER is supplied for each file described in
the File Section whose file description entry contains a LINAGE clause.

b. LINAGE-COUNTER may be referenced, but may not be modified, by Pro­
cedure Division statements. Since more than one LINAGE-COUNTER may exist in a
program, the user must qualify LINAGE-COUNTER by file-name when necessary.

c. LINAGE-COUNTER is automatically modified, according to the follow­
ing rules, during the execution of a WRITE statement to an associated file:

1) When the ADVANCING PAGE phrase of the WRITE statement is
specified, the LINAGE-COUNTER is autqmatically reset to one (1).

IV-16

Sequential I-0 - LINAGE

2) When the ADVANCING identif ier-2 or integer phrase of the WRITE
statement· is specified, the LINAGE-COUNTER is incremented by integer or the
value of the data item referenced by identifier-2.

3) When the ADVANCING phrase of the WRITE statement is not speci­
fied, the LINAGE-COUNTER is incremented by the value -one,(l). (See page IV-34,
The WRITE Statement.)

4) The value of LINAGE-COUNTER is automatically reset to one (1)
when the device is repositioned to the first line that can be written on for
each of the succeeding logical pages. (See page IV-34, The WRITE Statement.)

d. The value of LINAGE-COUNTER is automatically set to one (1) at the.
time an OPEN statement is executed for the associated file.

(10) Each logical page is contiguous to the next with no additional spacing
provided.

IV-17

Sequential I-0 - RECORD CONTAINS

3.9 THE RECORD CONTAINS CLAUSE

3.9.1 Function

.The RECORD CONTAINS clause specifies the size of data records.

3.9.2 General Format

RECORD CONTAINS [integer-! TO] integer-2 CHARACTERS

3.9.3 General Rules

(1) The size of each data record is completely defined within the record
description entry, therefore this clause is never required. When present,
however, the following notes apply:

a. Integer-2 may not be used by itself unless all the data records in
the file have the same size. In this case integer-2 represents the exact
number of characters in the data record. If integer-I and integer-2 are both
shown, they refer to the minimum number of characters in the smallest size
data record and the maximum number of characters in the largest size data
record, respectively.

b. The size is specified in terms of the number of character posi­
tions required to store the logical record, regardless of the types of charac­
ters used to represent the items within the logical record. The size of a
record is determined by the sum of 'the number of characters in all fixed
length elementary items plus the sum of the maximum number of characters in
any variable length item subordinate to the record. This sum may be different
from the actual size of the record; see page I-85, Selection of Character
Representation and Radix; page II-33, The SYNCHRONIZED Clause; and page II-35,
The USAGE Clause.

IV-18

Sequential I-0 - VALUE OF

3.10 THE VALUE OF CLAUSE

3.10.1 Function

The VALUE OF clause particularizes the description of an item in the label
records associated with a file.

3.10.2 General Format

Is {I data-name-11) VALUE OF implementor-name-I
literal-1

[
' implementor-name-2 IS {I data-name-2!)]

literal-2

3.10 .. 3 Syntax Rules

(1) Data-name-1, data-name-2, etc., should be qualified when necessary,
but cannot be subscripted or indexed, nor can they be items described with the
USAGE IS INDEX clause.

(2) Data-name-1, data-name-2, etc., must be in the Working-Storage Section.

3.10.4 General Rules

(1) For an input file, the appropriate label routine checks to see if the
value of im lementor-name-1 is e ual to the value of literal-1, l or of l
data-name-1 whichever has been s ecified.

For an output file, at the appropriate time the value of im lementor­
name-1 is made equal to the value of literal-1, or of a data-name-I whichever

f has been specified. l

(2) A figurative constant may be substituted in the format above whereve,r
a literal is specified.

IV-19

4. PROCEDURE DIVISION IN THE SEQUENTIAL I-0 MODULE

4.1 THE CLOSE STATEMENT

4 .1.1 Function

Sequential I-0 - CLOSE

The CLOSE statement terminates the processing of reels/units and files
with optional rewind and/or lock or removal where applicable.

4.1.2 General Format

CLOSE file-name-1 [{~1 WITH

l file-name-2 [{:~] WITH

4.1.3 Syntax Rules

[
WITH .NO REWIND]
FOR REMOVAL

{
NO REWIND}
LOCK

[WIT. H NO .REWIND]]]. FOR REMOVAL J
f NO REWIND}
lLOCK

(1) The REEL or UNIT phrase must only be used for sequential files.

(2) The files referenced in the CLOSE statement need not all have the same
organization or access.

4.1.4 General Rules

Except where otherwise stated in the general rules below, the terms 'reel'
and 'unit' are synonymous and completely interchangeable in the CLOSE state­
ment. Treatment of sequential mass storage files is logically equivalent to
the treatment of a file on tape or analogous sequential media.

(1) A CLOSE statement may only be executed for a file in an open mode.

(2) For the purpose of showing the effect of various types of CLOSE state­
ments as applied to various storage media, all files are divided into the
following categories:

a. Non-reel/unit. A file whose input or output medium is such that
the concepts of rewind and reels/units have no meaning.

b. Sequential single-reel/unit. A sequential file that is entirely
contained on one reel/unit.

c. Sequential multi-reel/unit. A sequential file that is contained
on more than one reel/unit.

IV--20

Sequential I-0 - CLOSE

(3) The results of executing each type of CLOSE for each category of file
are summarized in Table 1, Relationship of Categories of Files and the Formats
of the CLOSE Statement.

File Category

CLOSE Sequential
Statement Single-

Format Non-Reel/Unit Reel/Unit

CLOSE c C,G

CLOSE WITH LOCK C,E C,G,E

CLOSE WITH NO REWIND x C,B

CLOSE REEL/UNIT x x

CLOSE REEL/UNIT x x
FOR REMOVAL

.

CLOSE REEL/UNIT x ·x
WITH NO REWIND

Table 1. Relationship of Categories of Files and the Formats
of the CLOSE Statement

Sequential
Multi-
Reel/Unit

C,G,A

C,G,E,A

C,B,A

F,G

F,D,G

F,B

The definitions of· the symbols in the table are given below. Where
the definition depends on whether the file is an input, output or input-output
file, alternate definitions are given; otherwise, a definition applies to
input, output, and input-output files.

A. Previous Reels/Units Unaffected

Input Files and Input-Output Files:

All reels/units in the file prior to the current reel/unit are
processed according to the implementor's standard reel/unit swap procedure,
except those reels/units controlled by a prior CLOSE REEL/UNIT statement. If
the current reel/unit is not the last in the file, the reels/units in the file
following the current one are not processed.

Output Files:

All reels/units in the file prior to the current reel/unit are
processed according to the implementor's standard reel/unit swap procedure,
except those reels/units controlled by a prior CLOSE REEL/UNIT statement.

B. No Rewind of Current Reel

The current reel/unit is left in its current po$i.tion.

IV-21

Sequential I-0 - CLOSE

C. Close File

Input Files and Input-Output Files:

If the file !s positioned at its end and label records are speci­
fied for the file, the labels are processed according to the implementor's
standard label convention. The behavior of the CLOSE statement when label
records are specified but not present, or when label records are not specified
but are present, is undefined. Closing operations specified by the implementor
are executed. If the file is positioned at its end and label records are not
specified for the file, label processing does not take place but other closing
operations specified by the implementor are executed. If the file is posi­
tioned other than at its end, the closing operations specified by the implemen­
tor are executed, but there is no ending label· processing.

Output Files :

If label records are specified for the file, the labels are
processed according to the implementor's standard label convention. The
behavior of the CLOSE statement when label records are specified_ but not
present, or when label records are not specified but are present, is undefined.
Closing operations specified by the implementor are executed. If label records
are not specified for the file, label processing does not take place but other
closing operations specified by the implementor are executed.

D. Reel/Unit Removal

An implementor-defined technique is supplied to ensure that the
current reel or unit is rewound when applicable, and that the operating
system is notified that the reel or unit is logically removed from this run
unit; however, the reel or tmit may be accessed again, in its proper order
of reels or units within the file, if a CLOSE statement without the REEL or
UNIT phrase is subsequently executed for this file followed by the execution
of an OPEN statement for the file.

E. File Lock

An implementor-defined technique is supplied to ensure that this
file cannot be opened again during this execution of this run unit.

F. Close Reel/Unit

Input Files:

The following operations take place:

1. A reel/wiit swap.

2. The standard beginning reel/unit label procedure is executed.

The next executed READ statement for that file makes available
the next data record on the new reel/unit.

IV-22

Sequential I-0 - CLOSE

Output Files and Input-Output Files:

The following operations take place:

1. (For output files only.) The standard ending reel/unit label
procedure is executed.

2. A reel/unit swap.

3. The standard beginning reel/unit label procedure is executed.

For input-output files, the next executed READ statement that
references that file makes the next logical data record on. the next mass
storage unit available. For output files, the next executed WRITE statement
that references that file directs the next logical data record to the next
reel/unit of the file.

G. Rewind

The current reel or analogous device is positioned at its physical
beginning.

X. Illegal

This is an illegal combination of a CLOSE option and a file
category. The results at object time are undefined.

(4) The action taken if the file is in the open mode when a STOP RUN
statement is executed is specified by the implementor. The action taken for
a file that has been opened in a called program and not closed in that program
prior to the execution of a CANCEL statement for that program is also specified
by the implementor.

(5) If the OPTIONAL phrase has been specified for the file in the FILE­
CONTROL paragraph of the Environment Division and the file is not present.,
the standard end-of-file processing is not performed for that file.

(6) If a CLOSE statementlwithout the REEL or UNIT phraselhas been exe­
cuted for a file, no other statement (except the SORT or MERGE statements with
the USING or GIVING phrases) can be executed that references that file, either
explicitly or implicitly, unless an intervening OPEN statement for that file
is executed.

(7) The WITH NO REWIND and FOR REMOVAL phrases will have no effect at
object time if they do not apply to the storage media on which the file
resides.

(8) Following the successful execution of a CLOSE statementlwithout thel
I REEL or UNIT phrase,\ the record area associated with file-name is no longer

available. The unsuccessful execution of such a CLOSE statement leaves the
availability of the :record area undefined.

IV-23

Sequential I-0 - OPEN

4.2 THE OPEN STATEMENT

4.2.1 Function

The OPEN statement initiates the processing of files. It also performs
checking and/or writing of labels and other input-output operations.

4.2.2 General Format

" INPUT f ile-name-1

OPEN OUTPUT file-name-3 __ 1

I-0 file-name-5 (
~- '

. EXTEND file-name-7

4.2.3 Syntax Rules

[REVERSED] [f ile-name-2 fREVERSED ll
WITH NO REWIND ' l WITH NO REWIND •••

(WITH NO REWIND 1 [, file-name-4 [WITH NO REWIND]] ..•

file-name-6]

[, f ile-name-8]

(1) The REVERSED and the NO REWIND phrases can only be used with
sequential files. (See The CLOSE Statement on a e IV-20.)

(2) The I-0 phrase can be used only for mass storage files.

(3) The EXTEND phrase can be used only for sequential files.

(4) The EXTEND phrase must not be specified for multiple file reels.
(See The I-0-CONTROL Paragraph on page IV-6.)

(5) The files referenced in the OPEN statement need not all have the
same organization or access.

4.2.4 General Rules

(1) The successful execution of an OPEN statement determines the avail­
ability of the file and results in the file being in an open mode.

(2) The successful execution of an OPEN statement make.s the associated ·
record area available to the program.

(3) Prior to the successful execution of an OPEN statement for a given
file, no statement (except for a SORT or MERGE statement with the USING or
GIVING phrases) can be executed that references that file, either explicitly
or implicitly.

(4) An OPEN statement must be successfully executed prior to the execution
of any of the permissible input-output statements. In Table 2, Permissible
Statements, on page IV-25, 'X' at an intersection indicates that the specified
statement, used in the sequential access mode, may be used with the sequential
file organization and op·en mode given at the top- of the column.

I\l-24

Sequential I-0 - OPEN

Open Mode

Statement Input Output Input-Output Extend

READ x x

WRITE x x

REWRITE x

Table 2. Permissible Statements

(5) A file may be opened with the INPUT, OUTPUT,[EXTEND)and I-0 phrases
in the same program. Following the initial execution of an OPEN statement
for a file, ea~h subsequent OPEN statement execution for that same file must
~eceded by the execution of a CLOSE statement, without the REEL, UNIT,[Qi]
~phrase, for that file.

(6) Execution of the OPEN statement does not obtain or release the first
data record.

(7) If label records are specified for the file, the beginning labels are
processed as follows:

a. When the INPUT phrase is specified, the execution of the OPEN
statement causes the labels to be checked in accordance with the implementor's
specified conventions for input label checking.

b. When the OUTPUT phrase is specified, the execution of the OPEN
statement causes the labels to be written in accordance with the implementor's
specified conventions for output label writing.

The behavior of the OPEN statement when label records are specified
but not present, or when label records are not specified but are present,
is undefined.

(8) The file descri tion entr for file-name-l,lfile-name-2,\file-name-5,
file-name-6 file-name-7 or file-name-8 must be equivalent to that used when
this file was created.

(9) If an input file is designated with the OPTIONAL phrase in its SELECT
clause, the object program causes an interrogation for the presence or
absence of this file. If the file is not present, the first READ statement
for this file causes the AT END condition to occur. (See The READ Statement
on page IV-28.)

(10) The REVERSED and·No REWIND phrases can only be used with sequential
single reel/unit files~ (See The CLOSE Statement on page IV-20.)

(11) The- REVERSED and WITH NO REWIND phrases will b~(ignored if they. do
not apply to the storage media on which the file· resides ..

IV-25

SequentiaZ I-0 - OPEN

(12) If the storage medium for the file permits rewinding, the following
rules apply:

a. [When neither the REVERSED, the EXTEND, nor the NO REWIND phrase isl
-,s_p_e_c_1-.f-1-·e-d--,I execution of the OPEN statement causes the fi1e to be positioned at
its beginning.

b. When the NO REWIND phrase is specified, execution of the OPEN
statement does not cause the file to be repositioned; the file must be already
positioned at its beginning prior to execution of the OPEN statement.

c. When the REVERSED phrase is specified, the file is positioned at
its end by execution of the OPEN statement.

(13) When the REVERSED phrase is specified, the subsequent READ statements
for the file make the data records of the file available in reversed order;
that is, starting with the last record.

(14) For files being opened with the INPUT or I-0 phrase, the OPEN state­
ment sets the current record pointer to the first rec.ord currently existing
within the file. If no records exist in the file, the current record pointer
is set such that the next executed READ statement for the file will result in
an AT END condition.

(15) When the EXTEND phrase is specified, the OPEN statement positions the
file immediately following the last logical record of that file. Subsequent
WRITE statements referencing the file will add records to the file as though
the file had been opened with the OUTPUT phrase.

(16) When the EXTEND phrase is specified and the LABEL RECORDS clause
indicates label records are present, the execution of the OPEN statement
includes the following steps:

a. The beginning file labels are processed only in the case of a
single reel/unit file.

b. The beginning reel/unit labels on the last existing reel/unit are
processed as though the file was being opened with the INPUT phrase.

c. The existing ending file labels are processed as though the file
is being opened with the INPUT phrase. These labels are then deleted.

d. Processing then proceeds as though the file had been opened with
the OUTPUT phrase.

(17) The I-0 phrase permits the opening of-a mass storage file for both
input and output operations. Since this phrase implies the existence of the
file, it cannot be used if the mass storage file is being initially created.

(18) When the I-0 phrase is specified and the LABEL RECORDS clause indicates
label records are present, the e~ecution of the OPEN statement includes the
following steps:

a. The labels are checked in accordance with the implementor's
specified conventions for input-output label checking.

IV-26

Sequential I-0 - OPEN

b. The new labels are written in accordance with the implementor's
specified conventi-0ns for input-output label writing ..

(19) Upon successful execution of an OPEN statement with the OUTPUT phrase
specified, a file is created. At that time the ass,ociated file contains no
data records.

IV-27

Sequential I-0 - READ

4. 3 THE READ STATEMENT

4.3.l Function

The READ statement makes available the next logical record from a file.

4.3.2 General Format

READ file-name RECORD [INTO identifier] [; AT END imperative-statement 1

4.3.3 Syntax Rules

(1) The INTO phrase must not be used when the input file contains logical
records of various sizes as indicated by their record descriptions. The
storage area associated-with identifier and the record area associated with
file-name must not be the same storage area.

(2) The AT END phrase must be specified if no applicable USE procedure
is specified for file-name.

4. 3.4 General Rules

(l} The associated file must be open in the INPUT or I-0 mode at the time
this statement is executed. (See The OPEN Statement on page IV-24.)

(2) The record to be made available by the READ statement is determined
as follows:

a. If the current record pointer was positioned by the execution of
the OPEN statement, the record pointed to by the current record pointer is
made available.

b. If the current record pointer was positioned by the execution of
a previous READ statement, the current record pointer is updated to point to
the next existing record in the file and then that record is made available.

(3) The execution of the READ statement causes the value of the FILE
STATUS data item, if any, associated with file-name to be updated. (See page
IV-1, 1-0 Status.)

(4) Regardless of the method ~used to overlap access time with processing
time, the concept of the READ statement is unchanged in that a record is
available to the object program prior to the execution of any statement
£ollowing the READ statement.

(5} When the logical records of a file are described with more than one
record description, these records automatieally share the same storage area;
this is equivalent: to an implicit redefinition -0f the area. The contents of
any data items which lie beyond the range·o£. the current data record are
undefined at the completion of the execution of the READ statement.

(6) If the INTO phrase is specified, the record being read is moved from
the record area to the area specified by identifier according to the rules
specified for the MOVE statement without the {;ORRESPONDING .phrase. The implied

IV-2-8

Sequential I-0 - READ

MOVE does not occur if the execution of the READ statement was unsuccessful.
Any subscripting or indexing associated with identifier is evaluated after the
record has been read and immediately before it is moved to the data item.

(7) When the INTO phrase is used, the record being read-is available in
both the input record area and the data area associated with identifier.

(8) If, at the time of execution of a READ statement, the position of
current record pointer for that file is undefined, the execution of that READ
statem~nt is unsuccessful.

(9) If the end of a reel or unit is recognized during execution of a READ
statement, and the logical end of the file has not been reached, the following
operations are executed:

a. The standard ending reel/unit label procedure.

b. A reel/unit swap.

c. The standard beginning reel/unit label procedure.

d. The first data record of the new reel/unit is made available.

(10) If a file described with the OPTIONAL phrase is not present at the
time the file is opened, then at the time of execution of the first READ state­
ment for the file, the AT END condition occurs and the execution of the READ
statement is unsuccessful. The standard end-of-file procedures are not per­
formed. (See page IV-4, The FILE-CONTROL Paragraph; page IV-24, The OPEN
Statement; page IV-32, The USE Statement; and page IV-1, I-0 Status.) Execu­
tion of the program then proceeds as specified in general rule 12.

(11) If, at the time of the execution of a READ statement, no next logical
record exists in the file, the AT END condition occurs, and the execution of
the READ statement is considered unsuccessful. (See page IV-1, I-0 Status.)

(12) When the AT END condition is recognized the following actions are
taken in the specified order:

a. A value is placed into the FILE STATUS data item, if specified
for this file, to indicate an AT END condition. (See page IV-1, I-0 Status.)

b-. If the AT END phrase is specified in the statement causing the
condition, control is transferred to the AT END imperative-statement. Any
USE procedure specified for this file is not executed.

c. If the AT END phrase is not specified, then a USE procedure must
be specified, either explicitly or implicitly, for this file and that
procedure is executed.

When the AT END condition occurs, execution of the input-output state­
ment which caused the condition is unsuccessful.

IV-29

Sequential I-0 - READ

(13) Following the unsuccessful execution of any READ statement, the con­
tents of the associated record area and the position of the current record
pointer are undefined •

. (14) When the AT END condition has been recognized, a READ statement for
that file must not be executed without first executing a successful CLOSE state­
ment followed by the execution of a successful OPEN statem~nt for that file.

IV-30

Sequential I-0 - REWRITE

4.4 THE REWRITE STATEMENT

4.4.1 Function

The REWRITE statement logically replaces a record existing in a mass
storage file.

4.4.2 General Format

REWRITE record-name [FROM identifier]

4.4.3 Syntax Rules

(1) Record-name and identifier must not refer to the same storage area.

(2) Record-name is the name of a logical record in the File Section of
the Data Division and may be qualified.

4.4.4 General Rules

(1) The file associated with record-name must be a mass storage file and
must be open in the I-0 mode at the time of execution of this statement.
(See page IV-24, The OPEN Statement.)

(2) The last input-output statement executed for the associated file prior
to the execution of the REWRITE statement must have been a successfully
executed READ statement. The MSCS logically replaces the record that was
accessed by the READ statement.

(3) The number of character positions in the record referenced by record­
name must be equal to the number of character positions in the record being
replaced.

(4) The logical record released by a successful execution of the REWRITE
statement is no longer available in the record areaJunless the associated file
is named in a.SAME RECORD AREA clause, in which case the logical record is
available to the program as a record of other files appearing in the same
SAME RECORD AREA clause as the associated I-0 file, as well as to the file
associated with record-name.

(5) The execution of a REWRITE statement with the FROM phrase is equiva­
lent to the execution of:

MOVE identifier TO record~name

followed by the execution of the same REWRITE statement without the FROM
phrase. The contents of the record area prior to the execution of the implicit
MOVE statement have no effect on the execution of the REWRITE statement.

(6) The current record pointer is not affected by the execution of a
REWRITE statement.

(7) The execution of the REWRITE statement causes the value of the FILE
STATUS data item, if any, associated with the file to be updated. (See page
IV-1, I-0 Status.)

IV-31

Sequential I-0 - USE

4.5 THE USE STATEMENT

4.5.1 Function

The USE statement specifies procedures for input-output error handling
that are in addition to the standard procedures provided by the input-output
control system.

4.5.2 General Format

USE AFTER STANDARD {EXCEPTION} PROCEDURE ON
~- ERROR

4.5.3 Syntax Rules

file-name-1 j[, file-name-21. .• j
INPUT
OUTPUT
I-0

I EXTEND I

(1) A USE statement, when present, must immediately follow a section
header in the declaratives section and must be followed by a period followed
by a space. The remainder of the section must consist of zero, one or more
procedural paragraphs that define the procedures to be used.

(2) The USE statement itself is never executed; it merely defines the
conditions calling for the execution of the USE procedures.

(3) The same file-name can appear in a different specific arrangement of
the format. Appearance of a file-name in a USE statement must not cause the
simultaneous request for execution of more than one USE procedure.

(4) The words ERROR and EXCEPTION are synonymous and may be used inter­
changeably •.

(5) The files implicitly or ex.i>licitly referenced in a USE statement need
not all have the same organization or access.

4.5.4 General Rules

(1) The designated procedures are executed by the input-output system
after completing the standard input-output error routine, or upon recognition
of the AT END condition, when the AT END phrase has not been specified in the
input-output statement.

(2) After execution of a USE procedure, control is returned to the
invoking routine.

(3) Within a USE procedure, there must not be any reference to any non­
declarative procedures. Conversely, in the nondeclarative portion there must
be no reference to procedure-names that appear in the declarative port:Lon,
except that PERFORM statements may refer to a USE statement or to the proce­
dures associated with such a USE statement.

IV-32

Sequential I-0 - USE

(4) Within a USE procedure, there must not be the execution of any state­
ment that would cause the execution of a USE procedure that had previously
been invoked and had not yet returned control to the invoking routine.

IV-33

Sequential I-0 - WRITE

4.6 THE WRITE STATEMENT

4.6 .1 Fune ti on

The WRITE statement releases a logical record for an output file. It can
also be used for vertical positioning of lines within a logical page.

4.6.2 General Format

WRITE record-name [FROM identifier-I]

fBEFOREl l AFTER ~ ADVANCING

~ AT {END-OF-PAGE) r \EOP

4.6.3 Syntax Rules

{ l~dentifier-2 I) rLINE 1
integer J LLINES

{
lmnemonic-namel}
PAGE

imperative-statement]

(I) Record-name and identifier-I must not reference the same storage area.

(2) When mnemonic-name is specified, the name is associated with a parti­
cular feature specified by the implementor. The mnemonic-name is defined in
the SPECIAL-NAMES paragraph of the Environment Division.

(3) The record-name is the name of a logical record in the File Section
of the Data Division and may be qualified.

(4) When identifier-2 is used in the ADVANCING phrase, it must be the
.name of an elementary integer data item.

(5) Integer lor the value of the data item referenced by ident·ifier-2 lmay
be zero.

(6) If the END-OF-PAGE phrase is specified, the LINAGE clause must be
specified in the file description entry for the associated file.

(7) The words END-OF-PAGE and EOP are equivalent.

(8) The ADVANCING mnemonic-name phrase cannot be specified when writing
a record to a file whose file description entry contains the LINAGE clause.

4.6.4 General Rules

(1) The associated file must be open in the OUTPUT lor EXTENDlmode at the
time of the execution of this statement. (See page IV-24, The OPEN Statement.)

(2) The logical record released by the execution of the WRITE statement
is no longer available in the record area unless lthe associated file is named I

I in a SAME RECORD AREA clause orl the execution of the WRITE statement was
unsuccessful due to a boundary violation. I The logical record is also avail- J

IV-34

Sequential I-0 - WRITE

able to the program as a record of other files referenced in the same SAME
RECORD AREA clause as the associated output file, as well as to the file
associated with record-name.

(3) The results of the execution of the WRITE statement with the FROM
phrase is equivalent to the execution of:

a. The statement:

MOVE identifier-I TO record-name

according to the l!'ules specified for the MOVE statement, followed by:

b. The same WRITE statement without the FROM phrase.

The contents of the record area prior to the execution of the implicit
MOVE statement have no effect on the execution of this WRITE statement.

After execution of the WRITE statement is complete, the information
in the area referenced by identifier-I is available, even though the informa­
tion in the area referenced by record-name may not be. (See general rule 2.)

(4) The current record pointer is unaffected by the execution of a WRITE
statement.

(5) The execution of the WRITE statement causes the value of the FILE
STATUS data item, if any, associated with the file to be updated. (See page
IV-1, I-0 Status.)

(6) The maximum record size for a file is established at the time the
file is created and must not subsequently be changed.

(7) The number of character positions on a mass storage device required
to store a logical record in a file may or may not be equal to the number of
character positions defined by the logical description of that record in the
program.

(8) The execution of the WRITE statement releases a logical record to the
operating system.

(9) f Both(the ADVANCING phraseland the END-OF-PAGE phraselallow control of
the vertical posit~oning of each line on a representation of a printed page.
If ~he ADVANCING phrase is not used, automatic advancing will be provided by
the implementor to act as if the user had specified AFTER ADVANCING I LINE.
If the ADVANCING phrase is used, advancing is provided as· follows:

a. If identifier-2 is s.pecified, the representation of the printed
page is advanced the number of lines equal to the cur'rent value associated

· with identifier-2.

b. If integer is specified, the representation of the printed page
is advanced the number of lines equal to the value of integer.

c. If mnemonic-name is specified,. the representation of the printed
page is advanced according to the rules specified by the implementor for
that hardware dence_L

IV-35

Sequentiat I-0 - WRITE

d. If the BEFORE phrase is used, the line is presented before the
representation of the printed page is advanced according to rules a, b, and
c above.

e. If the AFTER phrase is used, the line is presented after the
representation of the printed page is advanced according to rules a, b, and c
above.

f. If PAGE is specified, the record is presented on the logical page
before or after (dependin on the hrase us.ed) the device is re ositioned to
the next logical page. If the record to be written is associated with a file
whose file description entry contains a LINAGE clause, the repositioning is
to the first line that can be written on the next lo ical a e as s ecified in
the LINAGE clause. If the record to be written is associated with a file
whose file description entry does not contain a LINAGE clause, the reposition­
ing to the next logical page is accomplished in accordance with an implementor­
def ined technique. If page has no meaning in conjunction with a specific
device, then advancing will be provided by the implementor to act as if the
user had specified BEFORE or AFTER (depending on the phrase used) ADVANCING 1
LINE.

(10) If the logical end of the representation of the printed page is reached
during the execution of a WRITE statement with the END-OF-PAGE phrase, the
imperative-statement specified in the END-OF-PAGE phrase is executed. The
logical end is specified in the LINAGE clause associated with record-name.

(11) An end-of-page condition is reached whenever the execution of a given
WRITE statement with the END-OF-PAGE phrase causes printing or spacing within
the footing area of a page body. This occurs when the execution of such a
WRITE statement causes the LINAGE-COUNTER to equal or exceed the value speci­
fied by integer-2 or the data item referenced by data-name~2 of the LINAGE
clause, if specified. In this case, the WRITE statement is execqted and then
the imperative statement in the END-OF-PAGE phrase is executed.

An automatic page overflow condition is reached whenever the execution
of a given WRITE statement (with or without an END-OF-PAGE phrase) cannot be
fully accommodated within the current page body.

This occurs when a WRITE statement, if executed, would cause the
LINAGE-COUNTER to exceed the value specified by integer-I or the data item
referenced by data-name-1 of the LINAGE clause. In this case, the record is
presented on the logical page before or after (depending on the phrase used)
the device is repositioned to the first line that can be written on the next
logical page as specified in the LINAGE clause. The imperative statement in
the END-OF-PAGE clause, if specified, is executed after the record is written
and the device has been repositioned.

If integer-2 or data-name-2 of the LINAGE clause is not specified, no
end-of-page condition distinct from the page overflow condition is detected.
In this case, the end-of-page condition and page overflow condition occur
simultaneously.

If integer-2 or data-name-2 of the LINAGE clause is specified, but
the execution of a given WRITE statement would cause LINAGE-COUNTER to

IV-36

Sequential I-0 - WRITE

simultaneously exceed the value of both integer-2 or the data item referenced
by data-name-2 and integer-I or the data item referenced by data-name-1, then
the o_..E.eration _£roceeds as if inte_g_er-2 or data-name-2 had not been S_Qecified.

(12) When an attempt is made to write beyond the externally defined b.oun­
daries of a sequential file, an exception condition exists and the contents
of the record area are unaffected. The following action takes place:

a. The value of the FILE STATUS data item, if any, of the associated
file is set to a value indicating a boundary violation. (S.ee page IV-1,
I-0 Status.)

b. If a USE AFTER STANDARD EXCEPTION declarative is explicitly or
implicitly specified for the file, that declarative procedure will then be
executed.

c. If a USE AFTER STANDARD EXCEPTION declarative is not explicitly
or implicitly specified for the file, the result is undefined.

(13) After the recognition of an end-of-reel or an end-of-unit of an output
file that is contained on more than one physical reel/unit, the WRITE state­
ment performs the following operations:

a. The standard ending reel/unit label procedure.

b. A reel/unit swap.

c. The standard beginning reel/unit label procedure.

IV-37

1. INTRODUCTION TO THE RELATIVE I-0 MODULE

1. 1 FUN CTI ON

Relative I-0 - IntPoduation

The Relative I-0 module provides a capability to access records of a mass
storage file in either a random or sequential manner. Each record in a rela­
tive file is uniquely identified by an integer value greater than zero which
specifies the record's logical ordinal position in the file.

1. 2 LEVEL CHARACTERISTICS

Relative I-0 Level 1 does not provide full COBOL facilities for the
FILE-CONTROL, I-0-CONTROL, and FD entries as specified in the formats of this
module. Within the Procedure Division, the Relative I-0 Level 1 provides
limited capabilities for the READ and USE statements and full capabilities for
the CLOSE, DELETE, OPEN, REWRITE, and WRITE statements, as specified in the
formats of this module.

Relative I-0 Level 2 provides full facilities for the FILE-CONTROL,
I-0-CONTROL, and FD entries as specified in the formats of this module. Within
the Procedure Division; the Relative I-0 Level 2 provides full capabilities
for the CLOSE, DELETE, OPEN, READ, REWRITE, START, USE, and WRITE statements
as specified in the formats of this module. The additional features available
in Level 2 include: the RESERVE clause, DYNAMIC accessing, SAME RECORD AREA,
READ NEXTi and the entire START statementi

1.3 LANGUAGE CONCEPTS

1.3.1 Organization

Relative file organization is permitted only on mass storage devices. A
relative file consists of records which are identified by relative record
numbers. The file may be thought of as composed of a serial string of areas,
each capable of holding a logical record. Each of these areas is denominated
by a relative record number. Records are stored and retrieved based on this
number. For example, the tenth record is the one addressed by relative record
number 10 and is in the tenth record area, whether or not records have been
written in the first through the ninth record areas.

1.3.2 Access Modes

In the sequential access mode, the sequence in which records are accessed
is the ascending order of the relative record numbers of all records which
currently exist within the file.

In the random access mode, the sequence in which records are accessed is
controlled by the programmer. The desired record is accessed by placing its
relative record number in a relative key data item.

In the dynamic access mode, the programmer may change at will from
sequential access to random access using appropriate forms of input-output
statements.

V-1

Relative I-0 - Introduction

1.3.3 Current Record Pointer

.The current record pointer is a conceptual entity used in this document to
facilitate specification of the next record to be accessed within a given file.
The concept of the current record pointer has no meaning for a file opened in
.the output mode. The setting of the current record pointer is affected only

. by the OPEN, I START, I and READ statements •

1.3.4 1-0 Status

If the FILE STATUS clause is specified in a file control entry, a value is
placed into the specified two-character data item during the execution of an
OPEN, CLOSE, READ, WRITE, REWRITE, DELETE, lor START\ statement and before any
applicable USE procedure is executed, to indicate to the COBOL program the
status of that input-output operation.

1. 3. 4.1 Status Key 1

Th.e leftmost character position of the FILE STATUS data item is known as
status key 1 and is set to indicate one of the following conditions upon
completion of the input-output operation.

'O' indicates Successful Completion
'1' indicates At End
'2' indicates Invalid Key
'3' indicates Permanent Error
'9' indicates Implementor Defined

The meaning of the above indications are as fallows :

0 - Successful Completion. The input-output statement was successfully
executed.

1 - At End. The Format 1 READ statement was unsuccessfully executed as a
result of an attempt to read a record when no next logical record exists in the
file.

2 - Invalid Key. The input-output statement was unsuccessfully executed as
a result of one of the following:

Duplicate Key
No Record Found
Boundary Violation

3 - Permanent Error.. The input-output statement was unsuccessfully
executed as the result of an input-output error, such as data check, parity
error, or transmission error.

9 - Implementor Defined. The input-output statement was unsuccessfully
executed as a result of a condition that is specified by the implementor. 'Ibis
value is used only to indicate a condition not indicated by other defined
values of status key 1, or by specified combinations of the values of status
key 1 and status key 2.

V-2

Relative I-0 - Introduction

1.3.4.2 Status Key 2

The rightmost character position of the FILE STATUS data item is known as
status key 2 and is used to further describe the results of the input-output
operation. This character will contain a value as follows:

1. If no further information is available concerning the input-output
operation, then status key 2 contains a value of 'O'.

2. When status key 1 contains a value of '2' indicating an INVALID KEY
condition, status key 2 is used to designate the cause of that condition as
follows:

a. A value of '2' in status key 2 indicates a duplicate key value.
An attempt has been made to write a record that would create a duplicate key
in a relative file.

b. A value of '3' in status key 2 indicates no record found. An
attempt has been made to access a record, identified by a key, and that
record does not exist in the file.

c. A value of '4' in status key 2 indicates a boundary violation.
An attempt has been made to write beyond the externally-defined boundaries of
a relative file. The implementor specifies the manner in which these bound_;,
aries are defined.

3. When status key 1 contains a value of '9' indicating an implementor­
defined condition, the value of status key 2 is defined by the implementor.

1.3.4.3 Valid Combinations of Status Keys 1 and 2

The valid permissible combinations of the values of status key 1 and status
key 2 are shown in the following figure. An 'X' at an intersection indicates
a valid permissible combination.

Status Key 2

Status No Further Duplicate No Record Boundary
Key 1 Information Key Found Violation

(0) (2J (3) (4)

Successful x Completion (O)

At End (1) x

Invalid Key (2) x x x

Permanent x Error (3)

Implementor
Defined (9)

V-3

Relative I-0 - Introduction

1. 3. 5 The INVALID KEY Condition

The INVALID KEY condition can occur as a result of the execution of a
.--S-TAR--T--.,lREAD, WRITE, REWRITE or DELETE statement. For details of the causes

of the condition, see}page V-28, The START Statement;lpage V-23, The READ
Statement; page,V-.32, The WRITE Statement; page V-26, The REWRITE Statement;
and page V-19, The DELETE Statement.

When the INVALID KEY condition is recognized, the MSCS takes these actions
in, the following order:

1. A value is placed into the FILE STATUS data item, if specified for this
file, to indicate an INVALID KEY condition. (See page v~2, I-0 Status.)

2. If the INVALID KEY phrase is specified in the statement causing the
condition, control is transferred to the INVALID KEY imperative statement.
Any USE procedure specified for this file is not executed.

3. If the INVALID KEY phrase is not specified, but a USE procedure is
specified, either explicitly or implicitly, for this file, that procedure is
executed.

When the INVALID KEY condition occurs, execution of the input-output state­
ment which recognized the condition is unsuccessful and the file is not
affected.

1.3.6 The AT END Condition

The AT END condition can occur as a result of the execution of a READ
statement. For d~tails of the causes of the condition, see page V-23,
The READ Statement.

V-4

Re'lative I-0 - FILE-CONTROL

2. ENVIRONMENT DIVISION IN THE RELATIVE I-0 MODULE

2.1 INPUT-OUTPUT SECTION

2.1.1 The FILE-CONTROL Paragraph

2.1.1.1 Function

The FILE-CONTROL paragraph names each file and allows specification of
other file-related information.

2.1.1.2 General Format

FILE-CONTROL. {file-control-entry}

2.1.2 The File Control Entry

2.1.2.1 Function

The file control entry names a file and may specify other file-related
information.

2.1.2.2 General Format

SELECT file-name

ASSIGN TO implementor-name-I [, implementor-name-2] •••

[; RESERVE integer-1 (~11
ORGANIZATION IS RELATIVE

[
; ACCESS MODE IS {{ :::1

I DYNAMIC I
[; FILE STATUS IS data-name-21

2.1.2.3 Syntax Rules

(, RELATIVE KEY IS. da ta-name-1 l}]
, RELATIVE KEY IS data-name-1 J

(1) The SELECT clause must be specified first in the file control entry.
The clauses which follow the SELECT clause may appear in any order.

(2) Each file described in the Data Division must be named once and only
once as file-name in the FILE-CONTROL paragraph. Each file specified in the
file control entry must have a file description entry in the Data Division.

(3) If the ACCESS MODE clause is not specified, the ACCESS MODE IS
SEQUENTIAL clause is implied~

V-5

Rel.ative I-0 - FILE-CONTROL

(4) Data-name-2 must be defined in the Data Division as a two-character
dat·a item of the category alphanumeric and must not be defined in the File
Section, the Report Section, or the Communication Section.

(5) Data-name-1 and data-name-2 may be qualified.

(6) If a relative file is to be referenced by a START statement, the
RELATIVE KEY phrase must be specified for that file.

(7) Data-name-1 must not be defined in a record description entry
associated with that file-name.

(8) The data item referenced by data-name-1 must be defined as an
unsigned integer.

2.1.2.4 General Rules

(1) The ASSIGN clause specifies the association of the file referenced by
file-name to a storage medium.

(2) The RESERVE clause allows the user to specify the number
output areas allocated. If the RESERVE clause is specified, the
input-output areas allocated is equal to the value of integer-I.
RESERVE clause is not specified the number of input-output areas
is specified by the implementor.

of input­
num.ber of
If the

allocated

(3) The ORGANIZATION clause specifies the logical structure of a file.
The file organization is established at the time a file is created and cannot
subsequently be changed.

(4) When the access mode is sequential, records in the file are accessed
in the sequence dictated by the file organization. This sequence is the order
of ascending relative record numbers of existing records in the file.

(5) When the FILE STATUS clause is specified, a value will be moved by
the operating system into the data item specified by data-name-2 after the
execution of every statement that references that file either explicitly or
implicitly. This value indicates the status of execution of the statement.
(See page V-2, I-0 Status.)

(6) If the access mode is random, the value of the RELATIVE KEY data item
indicates the record to be accessed.

(7) When the access mode is dynamic, records in the file may be accessed
sequentially and/or randomly. (See general rules 4 and 6.)

(8) All records stored in a relative file are uniquely identified by
relative record numbers. The relative record number of a given record
specifies the record's logical ordinal position in the file. The first
logical record has a relative record number of one (1), and subsequent
logical records have relative record numbers of 2, 3, 4, ••••

(9) The data item specified by data-name-1 is used to communicate a
relative record number between the user and the MSCS.

V-6

- 2.1. 3 The I--0-CONTROL Paragraph

2.1.3.1 Function

Relative I-0 - I~O~CONTROL

The I-0-CONTROL paragraph specifies the points at which rerun is to be
established and the memory area which is to be shared by different files.

2.1.3.2 General Format

I-0-CONTROL.

; RERUN ON :ile-name-l EVERY integer-2 CLOCK-UNITS •••
[{ } {

integer-1 RECORDS OF file-name-2}]

- implementor-name condition-name

[; SAME j (RECORD] I AREA FOR file-name-3 {, file-name-4} •••] •••

2.1.3.3 Syntax Rules

(1) The I-0-CONTROL paragraph is optional.

(2) File-name-! must be a sequentially organized file.

(3) When either the integer-1 RECORDS clause or the integer-2 CLOCK-UNITS
clause is specified, implementor-name must be given in the RERUN clause.

(4) More than one RERUN clause may be specified for a given file-name-2,
subject to the following restriction:

a. When multiple integer-1 RECORDS clauses are specified, no two of,
them may specify the same file-name-2.

(5) Only one RERUN clause containing the CLOCK-UNITS clause may be
specified.

(6) The two forms of the SAME clause (SAME AREA,ISAME RECORD AREA)(are
considered separately in the following:

More than one SAME clause may be included in a program, however:

a. A file-name must not appear in more than one SAME AREA clause.

b. A file-name must not appear in more than one SAME RECORD AREA
clause.

c. If one or more file-names of a SAME AREA clause appear in a SAME
RECORD AREA clause, all of the file-names in that SAME AREA clause must
appear in the SAME RECORD AREA clause. However, additional file-names not
appearing in that SAME AREA clause may also appear in that SAME RECORD AREA
clause. The rule that only one of the files mentioned in a SAME AREA clause
can be open at any given time takes precedence over the rule that all files
mentioned in a SAME RECORD AREA clause can be open at any given time.

V-7

Reiative I-0 - I-0-CONTROL

(7) The files referenced in the SAME AREAi or SAME RECORD AREA\ clause need
not all have the same organization or access.

2.1.3.4 General Rules

(1) The RERUN clause specifies when and where the rerun information is
recorded. Rerun information is recorded in the following ways:

a. If file-name-1 is specified, the rerun information is written on
each reel or unit of an output file and the implementor specifies where, on
the file, the rerun information is to be recorded.

b. If implementor-name is specified, the rerun information is
written as a separate file on a device specified by the implementor.

(2) There are four forms of the RERUN clause, based on the several
conditions under which rerun points can be established. The implementor
must provide at least one of the specified forms of the RERUN clause.

a. When the integer-I RECORDS clause is used. In this case, the
rerun information is written on the device specified by implementor-name,
which must be specified in the ON clause, whenever integer-I records or
file-name-2 has been processed. File-name-2 may be either an input or
output file with any organization or access.

b. When the integer-2 CLOCK-UNITS clause is used. In this case, the
rerun information is written on the device specified by implementor-name,
which must be specified in the ON clause, whenever an interval of time,
calculated by an internal clock has elapsed.

c. When the condition-name clause is used and implementor-name is
specified in the ON clause. In this case, the rerun information is written
on the device specified by implementor-name whenever a switch assumes a
particular status as specified by condition-name. In this case, the associated
switch must be defined in the SPECIAL-NAMES paragraph of the Configuration
Section of the Environment Division. The implementor specifies when the
switch status is interrogated.

d. When the condition-name clause is used and file-name-I is
specified in the ON clause. In this case, the rerun information is written
on file-name-1, which must be an output file, whenever a switch assumed a
particular status as specified by condition-name. In this case, as in
paragraph c above, the associated switch must be defined in the SPECIAL-NAMES
paragraph of the Configuration Section of the Environment Division. The
implementor specifies when the switch status is interrogated.

(3) The SAME AREA clause specifies that two or more files that do not
represent sort or merge files are to use the same memory area during process­
ing. The area being shared includes all storage areas (including alternate
areas) assigned to the files specified; therefore, it is not valid to have
more than one of the files open at the same time. (See syntax rule 6c on
page V-7.)

V-8

Relative I-0 - I-0-CONTROL

(4) The SAME RECORD AREA clause specifies that two or more files are to
use the same memory area for processing of the current logical record. All of
the files may be open at the same time. A logical record in the SAME RECORD
AREA is considered as a logical record of each opened output file whose file­
name appears in this SAME RECORD AREA clause and of the most recently read
input file whose file-name appears in this SAME RECORD AREA clause. This is
equivalent to an implicit redefinition of the area, i.e., records are aligned
on the leftmost character position.

V-9

ReZative I-0 - File Section

3. DATA DIVISION IN THE RELATIVE I-0 r.1lDULE

3.1 FILE SECTION

In a COBOL program the file description entry (FD) represents the highest
level of organization in the File Section. The File Section header is followed
by a file description entry consisting of a level indicator (FD), a file-
name and a series of independent clauses. The FD clauses specify the size of
the logical and physical records, the presence or absence of label records,
the value of implementor-defined label items, and the names of the data records
which comprise the file. The entry itself is terminated by a period.

3.2 RECORD DESCRIPTION STRUCTURE

A record description consists of a set of data description entries which
- describe the characteristics of a particular record. Each data description
entry consists of a level-number followed by a data-name if required, followed
by a series of independent clauses as required. A record description has a
hierarchical structure and therefore the clauses used with an entry may vary
considerably, depending upon whether or not it is followed by subordinate
entries. The structure of a record description is defined in Concepts of
Levels on page I-84 whilethe elements allowed in a record description are
shown in the data description skeleton on page II-12.

v-10

Relative I-0 - File Description

3.3 THE FILE DESCRIPTION - COMPLETE ENTRY SKELETON

3.3.1 Function

The file description furnishes information concerning the physical struc­
ture, identification, and record names pertaining to a given file.

3.3.2 General Format

FD file-name

[; BLOCK CONTAINS I (integer-I !Q.]I integer-2 {~~ERS}]
[; RECORD CONTAINS [integer-3 TO] integer-4 CHARACTERS]

LABEL f RECORD IS ·.) l STANDARD)
l RECORDS AREj 1 OMITTED

[; VALUE OF implementor-name-I IS W:::~:~-ll}

[· implementor-nmre-2 IS ll~:~::~~~-21} 1 · · · 1
[

(_RECORD IS 1
; DATA \RECORDS ARE data-name-3 (, data-name-4] ... 1 .

3.3.3 Syntax Rules

(1) The level indicator FD identifies the beginning of a file description
and must precede the file-name.

(2) The clauses which follow the name of the file are optional in many
cases, and their order of appearance is immaterial.

(3) One or more record description entries must follow the file description
entry.

v-11·

Relative I-0 - BLOCK CONTAINS

3.4 THE BLOCK CONTAINS CLAUSE

3.4.1 Function

The BLOCK CONTAINS clause specifies the size of a physical record.

3.4.2 General Format

BLOCK CONTAINS I [integer-I ..'!Q.)j integer-2

3.4.3 General Rules

{
RECORDS 1
CHARACTERS

(1) This clause is required except when:

a. A physical record contains one and only one complete logical
record.

b. The hardware device assigned to the file has one and only one
physical record size.

c. The hardware device assigned to the file has more than one
physical record size but the implementor has designated one as standard. In
this case, the absence of this clause denotes the standard physical record
size.

(2) The size of the physical record may be stated in tenns of RECORDS,
unless one of the following situations exists, in which case the RECORDS
phrase must not be used

a. Where logical records may extend across physical records.

b. The physical record contains padding (area not contained in a
logical record).

c. Logical records are grouped in such a manner that an inaccurate
physical record size would be implied.

(3) When the word CHARACTERS is specified, the physical record size is
specified in terms of the number of character positions required to store
the physical record, regardless of the types of characters used to represent
the items within the physical record.

(4) If only inte er-2 is shown, it represents the exact size of the
physical record. If integer-I and integer-2 are both shown, they refer to
the minimum and maximum size of the physical record, respectively.

(5) If logical records of differing size are grouped into one physical
record, the technique for determining the size of each logical record is
specified by the implementor.

V-12

Relative I-0 - DATA RECORDS

3.5 THE DATA RECORDS CLAUSE

3.5.1 Function

The DATA RECORDS clause serves only as documentation for the names of data
records with their associated file.

3.5.2 General Format

DATA f RECORD IS J data-name-1 (, data-name-2] -- l RECORDS ARE

3.5.3 Syntax Rules

(1) Data-name-1 and data-name-2 are the names of data records and must
have 01 level-number record descriptions, with the same names, associated
with them.

3.5~4 General Rules

(l} The presence of more than one data-name indicates that the file
contains more than one type of data record. These records may be of differ­
ing sizes, different formats, etc. The order in which they are listed is not
significant.

(2) Conceptually, all data records within a file share the same area.
This is in no way altered by the presence of more than one type of data
record within the file.

V-13

Reiative I-0 - LABEL RECORDS

3.6 THE LABEL RECORDS CLAUSE

3.6.1 Function

The LABEL RECORDS clause specifies whether labels are present.

3.6.2 General Format

LABEL f RECORD IS J J STANDARD}
lRECORDS ARE lOMITTED

3.6.3 Syntax Rules

(1) 'ill.is clause is required in every file description entry.

3.6.4 General Rules

(1) OMITTED specifies that no explicit labels exist for the file or the
device to which the file is assigned.

(2) STANDARD specifies that labels exist for the file or the device to
which the file is assigned and the labels conform to the implementor's label
specifications.

V-14

Relative I-0 - RECORD CONTAINS

3.7 THE RECORD CONTAINS CLAUSE

3.7.1 Function

The RECORD CONTAINS clause specifies the size of data records.

3.7.2 General Format

RECORD CONTAINS (integer-1 TO] integer-2 CHARACTERS

3.7.3 General Rules

(1) The size of each data record is completely defined within the record
description entry, therefore this clause is never required. When present,
however, the following notes apply:

a. Integer-2 may not be used by itself unless all the data records in
the file have the same size. In this case integer-2 represents the exact
number of characters in the data record. If integer-I and integer-2 are both
shown they refer to the minimum number of characters in the smallest size
data record and the maximum number of characters in the largest size data
record, respectively.

b. The size is specified in terms of the number of character posi­
tions required to store the logical record, regardless of the types of charac­
ters used to represent the items within the logical record. The size of a
record is determined by the sum of the number of characters in all fixed
length elementary items plus the sum of the maximum number of characters in
any variable length item subordinate to the record. This sum may be different
from the actual size of the record; see page I-85, Selection of Character
Representation and Radix; page II-33, The SYNCHRONIZED Clause; and page II-35,
The USAGE Clause.

V-15

Relative I-0 - VALUE OF

3.8 THE VALUE OF CLAUSE

3.8.1 Function

The VALUE OF clause particularizes the description of an item in the label
records associated with a file.

3.8.2 General Format

VALUE OF implementor-name-~ IS

[• implementor-name-2 IS

3.8.3 Syntax Rules

f Ida ta-name- liJ
l literal-1

{
ldata-name-2f\ 1
literal-2 · 1

(1) Data-name-I, data-name-2, etc., should b£ qualified when necessary,
but cannot be subscripted or indexed, nor can they be items described with the
USAGE IS INDEX clause.

(2) Data-name-1, data-name-2, etc., must be in the Working-Storage Section.

3.8.4 General Rules

(I) For an input file, the appropriate label routine checks to see if the
value of im lementor-name-1 is e ual to the value of literal-I, for ofl
data-name-l, whichever has been specified.

For an output file, at the appropriate time the value of im:lementor­
name-I is made equal to the value of literal-1,lor of a data-name-I whicheverl

lhas been specified. I

(2) A figurative constant may be substituted in the format above wherever
a literal is specified.

V-16

4. PROCEDURE DIVISION IN THE RELATIVE I-0 MODULE

4.1 THE CLOSE STATEMENT

4. 1. 1 Function

Relative I-0 - CLOSE

The CLOSE statement terminates the processing of files with optional lock.

4.1.2 General Format

CLOSE file-name-1 [wITH LOCK1 [, file-name-2 [wrTH LOCKJ]

4.1.3 Syntax Rules

(1) The files referenced in the CLOSE statement need not all have the
same organization or access.

4.1.4. General Rules

(1) A CLOSE statement may only be executed for a file in an open mode.

(2) Relative files are classified as belonging to the category of
non-sequential single/multi-reel/unit. The results of executing each type
of CLOSE for this category of file are summarized in the following table.

CLOSE File Category =
Statement Non-sequential

Format Single/Multi-Reel/Unit

CLOSE A

CLOSE WITH LOCK A,B

The definitions of the symbols in the table are given below. Where
the definition depends on whether the file is an input, output or input-output
file, alternate definitions are given; otherwise, a definition applies to
input, output, and input-output files.

A. Close File

Input Files and Input-Output Files (Sequential Access Mode):

If the file is positioned at its end and label records are
specified for the file, the labels are processed according to the implementor's
standard label convention. The behavior of the CLOSE statement when label
records are specified but not present, or when label records are not specified
but are present, is undefined. Closing operations specified by the implementor
are executed. If the file is positioned at its end and label records are not
specified for the file, label processing does not take place but other closing
operations specified by the implementor are executed. If the file is positioned
other than at its end, the closing operations specified by the implementor
are executed, but there is no ending label processing.

V-17

Relative I-0 - CLOSE

Input Files and Input-Output Files (Random or Dynamic Access Mode);
Output Files (Random, nynamic, or Sequential Access Mode):

If label records are specified for the file, the labels are pro­
cessed according to the implementor's standard label convention. The behavior
of the CLOSE statement when label records are specified but not present, or
when label records are not specified but are present, is undefine~. Closing
operations specified by the implementor are executed. If label records are
not specified for the file, label processing does not take place but other
closing operations specified by the implementor are executed.

B. File Lock

An implementor-defined technique is supplied to insure that this
file cannot be opened again during this execution of this run unit.

(3) The action taken if a file is in the open mode when a STOP RUN state­
ment is executed is specified by the 'implementor. The action taken for a
file that has been opened in a called program and not closed in that program
prior to the execution of a CANCEL statement for that program is also speci­
fied by the implementor.

(4) If a CLOSE statem~nt has been executed for a file, no other statement
can be executed that references that file, either explicitly or implicitly,
unless an intervening OPEN statement for that file is executed.

(5) Following the successful execution of a CLOSE statement, the record
area associated with file-name is no longer available. The unsuccessful
execution of such a CLOSE statement leaves the availability of the record
area undefined.

V-18

Relative I-0 - DELETE

4.2 THE DELETE STATEMENT

4.2.1 Function

The DELETE statement logically removes a record from a mass storage file.

4.2.2 General Format

DELETE file-name RECORD [;INVALID KEY imperative-statement]

4.2.3 Syntax Rules

(1) The INVALID KEY phrase must not be specified for a DELETE statement
which references a file which is in sequential access mode.

(2) The INVALID KEY phrase must be specified for a DELETE statement which
references a file which is not in sequential access mode and for which an
applicable USE procedure is not specified.

4.2.4 General Rules

(1) The associated file must be open in the I-0 mode at the time of the
execution of this statement. (See page V-20, The OPEN Statement.)

(2) For files in the sequential access mode, the last input-output state­
ment executed for file-name prior to the execution of the DELETE statement must
have been a successfully executed READ statement. The MSCS logically removes
from the file the record that was accessed by that READ statement.

(3) For a file in randomlor dynamic! access mode, the MSCS logically removes
from the file that record identified by the contents of the RELATIVE KEY data
item associated with file-name. If the file does not contain the record
specified by the key, an INVALID KEY condition exists. (See page V-4, The
INVALID KEY Condition.)

(4) After the successful execution of a DELETE statement, the identified
record has been logically removed from the file and can no longer be accessed.

(5) The execution of a DELETE statement does not affect the contents of
the record area associated with file-name.

(6) The current record pointer is not affected by the execution of a
DELETE statement.

(7) The execution of the DELETE statement causes the value of the spec­
ified FILE STATUS data item, if any, associated with file-name to be updated.
(See page V-2, I-0 Status.)

V-19

ReZative I-0 - OPEN

4.3 THE OPEN STATEMENT

4.3.1 Function

The OPEN statement initiates the processing of files. It also performs
checking and/or writing of labels and o.ther input-output operations.

4.3.2 General Format

{

INPUT file-name-1 [, file-name-2] }
OPEN OUTPUT file-name-3 (, file-name-4] ·::.

I-0 file-name-5 [, file-name-6] •••

4.3.3 Syntax Rules

(1) The files referenced in the OPEN statement need not all have the
same organization or access.

4.3.4 General Rules

(1) The successful execution of an OPEN statement determines the avail­
ability of the file and results in the file being in an open mode.

(2) The successful execution of the OPEN statement makes the associated
record area available to the program.

(3) Prior to the successful execution of an OPEN statement for a given
file, no statement can be executed that references that file, either explicit­
ly or implicitly.

(4) An OPEN statement must be successfully executed prior to the execution
of any of the permissible input-output statements. In Table 1, Permissible
Statements, 'X' at an intersection indicates that the specified statement,
used in the access mode given for that row, may be used with the relative
file organization and the open mode given at the top of the column.

V-20

Relative I-0 - OPEN

Open Mode
File Access

Mode Statement Input Output Input-Output

Sequential READ x x
WRITE x
REWRITE x
START x x
DELETE x

Random READ x I I x
WRITE x x
REWRITE I x
START T
DELETE l x

Dynamic READ x ! x
WRITE x x
REWRITE x
START x x
DELETE x

Table 1. Permissible Statements

(5) A file may be opened with the INPUT, OUTPUT, and I-0 phrases in the
same program. Following the initial execution of an OPEN statement for a
file, each subsequent OPEN statement execution for that same file must be
preceded by the execution of a CLOSE statement, without the LOCK phrase, for
that file.

(6) Execution of the OPEN statement does not obtain or release the first
data record.

(7) If label records are specified for the file, the beginning labels are
processed as follows:

a. When the INPUT phrase is specified, the execution of the OPEN
statement causes the labels to be checked in accordance with the implementor's
specified conventions for input label checking.

b. When the OUTPUT phrase is specified, the execution of the OPEN
statement causes the labels to be written in accordance with the implementor's
specified conventions for output label writing.

The behavior of the OPEN statement when label records are specified
but not present, or when label records are not specified but are present, is
undefined.

V-21

Relative I-0 - OPEN

(8) The file description entry for file-name-1, file-name-2, file-name-5,
or file-name-6 must be equivalent to that used when this file was created.

(9) For files being opened with the INPUT or I-0 phrase, the OPEN state­
ment sets the current record pointer to the first record currently existing
within the file. If no records exist in the file, the current record pointer
is set such that the next executed Format l READ statement for the file will
result in an AT END condition.

(10) The I-0 phrase permits the opening of a file for both input and output
operations. Since this phrase implies the existence of the file, it cannot be
used if the file is being initially created.

(11) When the I-0 phrase is specified and the LABEL RECORDS clause indicates
label records are present, the execution of the OPEN statement includes the
following steps:

a. The labels are checked in accordance with the implementor's
specified conventions for input-output label checking.

b. The new labels are written in accordance with the implementor's
specified conventions for input-output label writing.

(12) Upon successful execution of an OPEN statement with the OUTPUT phrase
specified, a file is created. At that time the associated file contains no
data records.

V-22

Relative I-0 - READ

4.4 THE READ STATEMENT

4.4.1 Function

For sequential access, the READ statement makes available the next logical
record from a file. For random access, the READ statement makes available a
specified record from a mass storage file.

4.4.2 General Format

Format 1

READ file-name I [NEXT] I RECORD r INTO identifier]- [; AT END imper a ti ve-s tatement]

Format 2

READ file-name RECORD [INTO identifier] [; INVALID KEY imperative-statement]

4.4.3 Syntax Rules

(1) The INTO phrase must not be used when the input file contains logical
records of various sizes as indicated by their record descriptions. The
storage area associated with identifier and the record area associated with
file-name must not be the same storage area.

(2) Format 1 must be used for all files in sequential access mode.

(3) The NEXT phrase must be specified for files in dynamic access mode,
when records are to be retrieved sequentially.

(4) Format 2 is used for files in random access mode(or for files inl
I dynamic access model when records are to be retrieved randomly.

(5) The INVALID KEY phrase or the AT END phrase must be specified if no
applicable USE procedure is specified for file-name.

4.4.4 General Rules

(1) The associated files must be open in the INPUT or I-0 mode at the
time this statement is executed. (See page V-20, The OPEN Statement.)

(2) The record to be made available by a Format 1 READ statement is deter­
mined as follows:

a. The record, pointed to by the current record pointer, is made
available provided that the current record pointer was positioned by the

I START or!OPEN statement and the record is still accessible through the path
indicated by the current record pointer; if the record is no longer access­
ible, which may have been caused by the deletion of the record, the current
record pointer is updated to point to the next existing record in the file
and that record is then made available.

V-23

Relative I-0 - READ

b. If the current record pointer was positioned by the execution of
a previous READ statement, the current record pointer is updated to point to
the next existing record in the file and then that record is made available.

(3) The execution of the READ statement causes the value of the FILE
STATUS data item, if any, associated with file-name to be updated. (See page
V-2, I-0 Status.)

(4) Regardless of the method used to overlap access time with processing
time, the concept of the READ statement is unchanged in that a record is
available to the object program prior to th.e execution of any statement fol­
lowing the READ statement.

(5) When the logical records of a file are described with more than one
record description, these records automatically share the same storage area;
this is equivalent to an implicit redefinition of the area. The contents of
any data items which lie beyond the range of the current data record are
undefined at the completion of the execution of the READ statement.

(6) If the INTO phrase is specified, the record being read is moved from
the record area to the area specified by identifier according to the rules
specified for the MOVE statement without the CORRESPONDING phrase. The implied
MOVE does not occur if the execution of the READ statement was unsuccessful.
Any subscripting or indexing associated with identifier is evaluated after the
record has been read and immediately before it is moved to the data item.

(7) When the INTO phrase is used, the record being read is available in
both the input record area and the data area associated with identifier.

(8) If, at the time of execution of a Format 1 READ statement, the posi­
tion of current record pointer for that file is undefined, the execution of
that READ statement is unsuccessful.

(9) If, at the time of the execution of a Format 1 READ statement, no
next logical record exists in the file, the AT END condition occurs, and the
execution of the READ statement is considered unsuccessful. (See page V-2,
I-0 Status.)

(10) When the AT END condition is recognized the following actions are
taken in the specified order:

a. A value is placed into the FILE STATUS data item, if specified
for this file, to indicate an AT END condition. (See page V-2, I-0 Status.)

b. If the AT END phrase is specified in the statement causing the
condition, control is transferred to the AT END imperative-statement. Any
USE procedure specified for this file is not executed.

c. If the AT END phrase is not specified, then a USE procedure must
be specified, either explicitly or implicitly, for this file, and that
procedure is executed.

When the AT END condition occurs, execution of the input-output state­
ment which caused the condition is unsuccessful.

V-24

Relative I-0 - READ

(11) Following the unsuccessful execution of any READ statement, the con­
tents of the associated record area and the position of the current record
pointer are undefined.

(12) When the AT END condition has been recognized, a Format 1 READ state­
ment for that file must not be executed without first executing one of the
following:

a. A successful CLOSE statement followed by the execution of a
successful OPEN statement for that file.

b. A successful START statement for that file.

c. A successful Format 2 READ statement for that file.

(13) For a file for which dynamic access mode is specified, a Format 1
READ statement with the NEXT phrase specified causes the next logical record
to be retrieved from the- file as described in general rule 2.

(14) If the RELATIVE KEY phrase is specified, the execution of a Fonnat 1
READ statement updates the contents of the RELATIVE KEY data item such that
it contains the relative record number of the record made available.

(15) The execution of a Format 2 READ statement sets the current record
pointer to, and makes available, the record whose relative record number is
contained in the data item named in the RELATIVE KEY phrase for the file. If
the file does not contain such a record, the INVALID KEY condition exists and
execution of the READ statement is unsuccessful. (See page V-4, The INVALID
KEY Condition.)

V-25

Relative I-0 - REWRITE

4.5 THE REWRITE STATEMENT

4.5.1 Function

The REWRITE statement logically replaces a record existing in a mass
storage file.

4.5.2 General Format

REWRITE record-name [FROM identifier 1 [; INVALID KEY imperative-statement 1

4.5.3 Syntax Rules

(1) Record-name and identifier must not refer to the same storage area.

(2) Record-name is the name of a logical record in the File Section of
the Data Division and may be qualified.

(3) The INVALID KEY phrase must not be specified for a REWRITE statement
which references a file in sequential access mode.

(4) The INVALID KEY phrase must be specified in the REWRITE statement for
files in the randomlor dynamiclaccess mode for which an appropriate USE
procedure is not specified.

4.5.4 General Rules

(1) The file associated with record-name must be open in the I-0 mode at
the time of execution of this statement. (See page V-20, The OPEN Statement.)

(2) For files in the sequential access mode, the last input-output
statement 'executed for the associated file prior to the execution of the
REWRITE statement must have been a successfully executed READ statement.
The MSCS logically replaces the record that was accessed by the READ state­
ment.

(3) The number of character positions in the record referenced by record­
name must be equal to the number of character positions in the record being
replaced.

(4) The logical record released by a successful execution of the REWRITE
statement is no lon_g_er available in the record areaJunless the associated file
is named in a SAME RECORD AREA clause, in which case the logical record is
available to the program as a record of other' files appearing in the same
SAME RECORD AREA clause as the associated I-0 file, as well as to the file
associated with record-name.

(5) The execution of a REWRITE statement with the FROM phrase is equiva­
lent to the execution of:

MOVE identifier TO record-name

followed by the execution of the same REWRITE statement without the FROM phrase.
The contents of the record area prior to the execution of the implicit MOVE
statement have no effect on the execution of the REWRITE statement.

V-26

Relative I-0 - REWRITE

(6) The current record pointer is not affected by the execution of a
REWRITE statement.

(7) The execution of the REWRITE statement causes the value of the FILE
STATUS data item, if any, associated with the file to be updated. (See page
V-2, I-0 Status.)

(8) For a file accessed inleitherlrandomlor dynamiclaccess mode, the MSCS
logically replaces the record specified by the contents of the RELATIVE KEY
data item associated with the file. If the file does not contain the record
specified by the key, the INVALID KEY condition exists. (See page V-3, The
INVALID KEY Condition.) The updating operation does not take place and the
data in the record area is unaffected.

V-27

Relative I-0 - START

4.6 THE START STATEMENT

4.6.1 Function

The START statement provides a basis for logical positioning within a
relative file, for subsequent sequential retrieval of records.

4.6.2 General Format

START file-name KEY

IS EQUAL TO
IS
IS GREATER THAN
IS >
IS NOT LESS THAN
~--~-IS NOT <

G INVALID KEY imperative-statement]

data-name

NOTE: The required relational characters '>', '<',and'='
are not underlined to avoid confusion with other symbols
such as '~' (greater than or equal to).

4.6.3 Syntax Rules

(1) File-name must be the name of a file with sequential or dynamic access.

(2) Data-name may be qualified.

(3) The INVALID KEY phrase must be specified if no applicable USE proce­
dure is specified for file-name.

(4) Data-name, if specified, must be the data item specified in the
RELATIVE KEY phrase of the associated file control entry.

4.6.4 General Rules

(1) File-name must be open in the INPUT or I-0 mode at the time that
the START statement is executed. (See page V-20, The OPEN Statement.)

(2) If the KEY phrase is not specified the relational operator 'IS EQUAL
TO' is implied.

(3) The type of comparison specified by the relational operator in the
KEY phrase occurs between a key associated with a record in the file referenced
by file-name and a data item as specified in general rule. 5.

a. The current record pointer is positioned to the first logical
record currently existing in the file whose key satisfies the comparison.

b. If the comparison is not satisfied by any record in the file, an
INVALID KEY condition exists, the execution of the START statement is
unsuccessful, and the position of the current record pointer is undefined.
(See V-4, The INVALID KEY Condition.)

V-28

Relative I-0 - START

(4) The execution of the START statement causes the value of the FILE
STATUS data item, if any, associated with file-name to be updated. (See
page V-2, I-0 Status.)

(5) The comparison described in general rule 3 uses the data item
referenced by the RELATIVE KEY clause associated with file-name.

V-29

Relative I-0 - USE

4.7 THE USE STATEMENT

4.7.1 Function

The USE statement specifies procedures for input-output error handling
that are in addition to the standard procedures provided by the input-output
control system.

4.7.2 General Format

{

file-name-1 ([,. file-name-2] •• • 'J
USE AFTER STANDARD {EXCEPTION] PROCEDURE ON INPUT
- ERROR OUTPUT •

I~O

4.7.3 Syntax Rules

(1) A USE statement, when present, must inunediately follow a section
header.in the declaratives section and must be followed by a period followed
by a space. The remainder of the section must consist of zero, one or more
procedural parag;raphs that define the procedures to be used.

(2) The USE statement itself is never executed; it merely defines the
conditions calling for the execution of the USE procedures.

(3) The same file-name can appear in a different specific arrangement of
the format. Appearance of a file-name in a USE statement must not cause the
simultaneous request for execution of more than one USE procedure.

(4) The words ERROR and EXCEPTION are_ synonymous and may be used
interchangeably.

(5) . The files implicitly or explicitly referenced in a USE statement need
not all have the -same organization or access.

4.7.4 General Rules

(1) The designated procedures are executed by the input-output system
after completing the standard input-output error routine, or upon recognition
of the INVALID KEY or AT END conditions, when the INVALID KEY phrase or AT END
phrase, respectively, has not been specified in the input-output statement.

(2) After execution of a USE procedure, control is returned to the
invoking routine.

(3) Within a USE ptocedure, there must not be any reference to any nonde­
clarative procedures. Conversely, in the nondeclarative portion there must be
no reference to procedure-names that appear in the declarative portion, except
that PERFORM statements may ref er to a USE statement or to the procedures
associated with such a USE statement.

V-30

Relative I-0 - USE

(4) Within a USE procedure, there must not be the execution of any state­
ment that would cause the execution of a USE procedure that had previously
been invoked and had not yet returned control to the invoking routine.

V-31

Relative I-0 - WRITE

4.8 THE WRITE STATEMENT

4.8.1 Function

The WRITE statement releases a logical record for an output or input-output
file.

4.8.2 General Format

WRITE record-name [FROM identifier] [; INVALID KEY imperative-statement]

4.8.3 Syntax Rules

(1) Record-name and identifier must not reference the same storage area.

(2) The record-name is the name of a logical record in the File Section
of the Data Division and may be qualified.

(3) The INVALID KEY phrase must be specified if an applicable USE proce­
dure is not specified for the associated file.

4.8.4 General Rules

(1) The associated file must be open in the OUTPUT or I-0 mode at the
ti.me of the execution of this statement. (See page V-20, The OPEN Statement.)

(2) The logical record released by the execution of the WRITE statement
is no lon er available in the record area unless lthe associated file is named
in a SAME RECORD AREA clause or the execution of the WRITE statement is unsuc­
cessful due to an INVALID KEY condition. JThe logical record is also available
to the program as a record of other files referenced in the same SAME RECORD
AREA clause as the associated output file, as well as to the file associated
with record-name.

(3) The results of the execution of the WRITE statement with the FROM
phrase is equivalent to the execution of:

a. The statement:

MOVE identifier TO record-name

according to the rules specified for the MOVE statement, followed by:

b. The same WRITE statement without the FROM phrase.

The contents of the record area prior to the execution of the implicit
MOVE statement have no effect on the execution of this WRITE statement.

After execution of the WRITE statement is complete, the information in
the area referenced by identifier is available, even though the information in
the area referenced by record-name may not be. (See general rule 2.)

(4) The current record pointer is unaffected by the execution of a WRITE
statement.

V-32

Relative I-0 - WRITE

(5) The execution of the WRITE statement causes the value of the FILE
STATUS data item, if any, associated with the file to be updated. (See page
V-2, I-0 Status.)

(6) The maximum record size for a file is established at the time the
file .is created and must not subsequently be changed.

(7) The number of character positions on a mass storage device required
to store a logical record in a file may or may not be equal to the number of
character positions defined by the logical description of that record in the
program.

(8) The execution of the WRITE statement releases a logical record to the ',
operating system.

(9) When a file is opened in the output mode, records may be placed into
the file by one of the following:

a. If the access mode is sequential, the WRITE statement will cause
a record to be released to the MSCS. The first record will have a relative
record number of one (1) and subsequent records released will have relative
record numbers of 2, 3, 4, ••.. If the RELATIVE KEY data item has been
specified in the file control entry for the associated file, the relative
record number of the record just released will be placed into the RELATIVE
KEY data item by the MSCS during execution of the WRITE statement.

b. If the access mode is random or dynamic, prior to the execution of
the WRITE statement the value of the RELATIVE KEY data item must be initialized
in the program with the relative record number to be associated with the record
in the record area. That record is then released to the MSCS by execution of
the WRITE statement.

(10) When a file is opened in the I-0 mode and the access mode is random
or dynamic, records are to be inserted in the associated file. The value of
the RELATIVE KEY data item must be initialized by the program with the relative
record number to be associated with the record in the record area. Execution
of a WRITE statement then causes the contents of the record area to be released
to the MSCS.

(11) The INVALID KEY condition exists under the following circumstances:

a. When the access mode is random or dynamic, and the RELATIVE KEY
data item specifies a record which already exists in the file, or

b. When an attempt is made to write beyond the externally defined
boundaries of the file.

(12) When the INVALID KEY condition is recognized, the execution of the
WRITE statement is unsuccessful, the contents of the record area are unaffected,
and the FILE STATUS data item, if any, of the associated file is set to a value
indicating the cause of the condition. Execution of the program proceeds
according to the rules stated in the INVALID KEY condition ·on page V-3.
(See page V-2, I-0 Status.)

V-33

Indexed I-0 - Introduction

1. INTRODUCTION TO THE INDEXED I-0 l\'ODULE

1.1 FUNCTION

The Indexed I-0 module provides a capability to access records of a mass
storage file in either a random or sequential manner. Each record in an
indexed file is uniquely identified by the value of one or more keys within
that record.

1.2 LEVEL CHARACTERISTICS

Indexed I-0 Level 1 does not provide full COBOL facilities for the FILE­
CONTROL, I-0-CONTROL, and FD entries as specified in the formats of this module.
Within the Procedure Division, the Indexed I-0 Level 1 provides limited capabil­
ities for the READ and USE statements and full capabilities for the CLOSE,
DELETE, OPEN, REWRITE, and WRITE statements, as specified in the formats for
this module.

Indexed I-0 Level 2 provides full facilities for the FILE-CONTROL, I-0-CONTROL,
and FD entries as specified in the formats for this module. Within the Procedure
Division, the Indexed I-0 Level 2 provides full capabilities for the CLOSE,
DELETE, OPEN, READ, REWRITE, START, USE, and WRITE statements as specified in
the formats for this module. The additional features available in Level 2
include: the RESERVE clause, DYNAMIC accessing, ALTERNATE KEYS, SAME RECORD
AREA, READ NEXT, and the entire START statement.

1.3 LANGUAGE CONCEPTS

1. 3.1 Organization

A file whose organization is indexed is a mass storage file in which data
records may be accessed by the value of a key. A record description may include
one or more key data items, each of which is associated with an index. Each index
provides a logical path to the data records according to the contents of a data
item within each record which is the record key for that index.

The data item named in the RECORD KEY clause of the file control entry for a
file is the prime record key for that file. For purposes of inserting, updating
and deleting records in a file, each record is identified solely by the value of
its prime record key. This value must, therefore, be unique and must not be
changed when updating the record.

A data item named in the ALTERNATE RECORD KEY clause of the file control entry
for a file is an alternate record key for that file. The value of an alternate
record key may be non-unique if the DUPLICATES phrase is specified for it. These
keys provide alternate access paths for retrieval of records from the file.

-~~

1.3.2 Access Modes

In the sequential access mode, the sequence in which records are accessed
is the ascending order of the record key values. The order of retrieval of
records within a set of records having duplicate record key values is the
order in which the records were writ ten into the set.

VI-I

Indexed I-0 - Introduction

In the random access mode, the sequence in which records are accessed is
controlled by the programmer. The desired record is accessed by placing the
value of its record key in a record key data item.

In the dynamic access mode, the programmer may change at will from sequential
access to random access using appropriate forms of input-output statements.

1.3.3 Current Record Pointer

The current record pointer is a conceptual entity used in this document to
facilitate specification of the next record to be accessed within a given file.
The concept of the current record pointer has no meaning for a file opened in
the output mode. The setting of the current record pointer is affected only
by the OPEN,jSTART,(and READ statements.

1.3.4 I-0 Status

If the FILE STATUS clause is specified in a file control entry, a value is
placed into the specified two-character data item during the execution of an
OPEN, CLOSE, READ, WRITE, REWRITE, DELETElor START!statement and before any
applicable USE procedure is executed, to indicate to the COBOL program the
status of that input-output operation.

1. 3.4.1 Status Key 1

The leftmost character position of the FILE STATUS data item is known as
status key 1 and is set to indicate one of the following conditions upon
completion of the input-output operation.

'0' indicates Successful Completion
'1' indicates At End
'2' indicates Invalid Key
'3' indicates Permanent Error
'9' indicates Implementor Defined

The meaning of the above indications are as follows:

0 - Successful Completion. The input-output statement was successfully
executed.

1 - At End. The Format 1 READ statement was unsuccessfully executed as a
result of an attempt to read a record when no next logical record exists in
the file.

2 - Invalid Key. The input~output statement was unsuccessfully executed
as a result of one of the following:

Sequence Error
Duplicate Key
No Record Found
Boundary Violation

3 - Permanent Error. The input-output statement was unsuccessful as the
result of an input-output error, such as data check, parity error, or trans~
mission error.

VI--2

Indexed I-0 - Introduetion

9 - Implementor Defined. The input-output statement was unsuccessfully
executed as a result of a condition that is specified by the implementor.
This value is used only to indicate a condition not indicated by other defined
values of status key 1, or by specified combinations of the value of status
key 1 and status key 2.

1.3.4.2 Status Key 2

The rightmost character position of the FILE STATUS data item is known as
status key 2 and is used to further describe the results of the input-output
operation. This character will contain a value as follows:

1. If no further information is available concerning the input-output
operation, then status key 2 contains a value of 'O'.

2. When status key 1 contains a value of 'O' indicating a successful com­
pletion, status key 2 may contain a value of '2' indicating a duplicate key.
This condition indicates:

a. For a READ statement, the key value for the current key of refer­
ence is equal to the value of that same key in the next record within the
current key of reference.

b. For a WRITE or REWRITE statement, the record just written created
a duplicate key value for at least one alternate record key for which
duplicates are allowed.

3. When status key 1 contains a value of '2' indicating an INVALID KEY
condition, status key 2 is used to designate the cause of that condition as
follows:

a. A value of 'l' in status key 2 indicates a sequence error for a
sequentially accessed indexed file. The ascending sequence requirements of
successive record key values have been violated (see The WRITE Statement on
page VI-33), or the prime record key value has been changed by the COBOL
program between the successful execution of a READ statement and the execution
of the next REWRI~E statement for that file.

b. A value of '2' in status key 2 indicates a duplicate key value.
An attempt has been made to write or rewrite a record that would create a
duplicate key in an indexed file.

c. A value of '3' in status key 2 indicates no record found. An
attempt has been·made to access a record, identified by a key, and that record
does not exist in the file.

d. A value-of '4' in status key 2 indicates a.boundary violation. An
attempt has been made to write beyond the. externally defined boundaries of an
indexed file. The implementor specifies the manner in which these boundaries
are defined.

4. When status key l contains a value of '9' indicating an· implementor­
defined condition, thE!. val\le of status key 2 is defined by the implementor.

VI-3

Indexed I-0 - Introduction

1.3.4.3 Valid Combinations of Status Keys 1 and 2

The valid permissible combinations of the value of status key 1 and status
key 2 are shown in the following figure. An 'X' at an intersection indicates
a valid permissible combination.

Status Key 2

Status No Further Sequence Duplicate No Record Boundary
Key 1 Information Error Key Found Violation

(0) (1) (2) (3) (4)

Successful x x Completion (O)

At End (1) x

Invalid Key (2) x x x x

Permanent x Error (3)

Implementor
Defined (9)

1.3.5 The INVALID KEY Condition

The INVALID KEY condition can occur as a result of the execution of alSTART,l
READ, WRITE, REWRITE or DELETE statement. For details of the caus,es of the
condition, see (page VI-30, The START Statement; fpage VI-24, The READ Statement;
page VI-33, The WRITE Statement; page VI-28, The REWRITE Statement; and page
VI-20, The DELETE Statement.

When the INVALID KEY condition is recognized,, the MSCS takes these actions
in the following order:

1. A value is placed into the FILE STATUS data item, if specified for this
file, to indicate an INVALID KEY condition. (See page VI-2, I-0 Status.)

2. If the INVALID KEY phrase is specified in the statement causing the
condition, control is transferred to the INVALID KEY imperative statement.
Any USE procedure specified for this file is not executed.

3. If the INVALID KEY phrase is not specified, but a USE procedure is
specified, either explicitly or implicitly, for this file, that procedure
is executed._

When the INVALID KEY condition occurs, execution of the input-output state­
ment which recognized the condition is unsuccessful and the file is not affected.

1.3.ti The AT END Condition

The AT END condition can occur as a result of the execution of a READ state­
ment. For details of the causes of the condition, see page VI-24, The READ
Statement.

VI-4

Indexed I-0 - FILE-CONTROL

2. ENVIRONMENT DIVISION IN THE INDEXED I-0 MODULE

2.1 INPUT-OUTPUT SECTION

2.1.1 The FILE-CONTROL Paragraph

2.1.1.1 Function

The FILE-CONTROL paragraph names each file and allows specification of
other file-related information.

2.1.1.2 General Format

FILE-CONTROL. {file-control-entry}

2.1.2 The File Control Entry

2.1.2.1 Function

The file control entry names a file and may specify other file-related
information.

2.1.2.2 General Format

SELECT file-name

ASSIGN TO implementor-name-I [, implementor-name-2]

[; RESERVE integer-I [~~sl]
ORGANIZATION IS INDEXED

[
; ACCESS MODE IS { =~IAL~l

I DYNAMIC I J
RECORD KEY IS data-name-1

[; ALTERNATE RECORD KEY IS data-name-2 (WITH DUPLICATES 11 ...
[; FILE STATUS IS data-name-3 1 .

2.1. 2. 3 Syntax Rules

(1) The SELECT clause must be specified first in the file control entry.
The clauses which follow the SELECT clause may appear in any order.

(2) Each file described in the Data Division must be named once and only
once as file-name in the FILE-CONTROL'paragraph. Each file specified in the
file control entry must have a file description entry in the Data Division.

VI-5

Indexed I-0 - FILE-CONTROL

(3) If the ACCESS MODE clause is not specified, the ACCESS MODE IS
SEQUENTIAL clause is implied.

(4) Data-name-3 must be defined in the Data Division as a two-character
data item of the category alphanumeric and must not be defined in the File
Section, the Report Section, or the Connnunication Section.

(5) Data-name-1,I data-name-2,land data-name-3 may be qualified.

(6) The data items referenced by data-name-lland dat·a-name-2lmust each be
defined as a data item of the category alphanumeric within a record description
entry associated with that file-name.

(7) Neither data-name-llnor data-name-2)can describe an item whose size
is variable. (See page III-2, The OCCURS Clause.)

(8) Data-name-2 cannot reference an item whose leftmost character position
corresponds to the leftmost character position of an item referenced by data­
name-1 or by any other data-name-2 associated with this file.

2.1.2.4 General Rules

(1) The ASSIGN clause specifies the association of the file referenced by
file-name to a storage medium.

(2) The RESERVE clause allows the user to specify the number
output areas allocated. If the RESERVE clause is specified, the
input-output areas allocated is equal to the value of integer-I.
RESERVE clause is not specified the number of input-output areas
is specified by the implementor.

of input­
number of
If the

allocated

(3) The ORGANIZATION clause specifies the logical structure of a file.
The file organization is established at the time a file is created and cannot
subsequently be changed.

(4) When the access mode is sequential, records in the file are accessed
in the sequence dictated by the file organization. For indexed files this
sequence is the order of ascending record key values within a given key of
reference.

(5) When the FILE STATUS clause is specified, a value will be moved by
the operating system into the data item specified by data-name-3 after the
execution of every statement that references that file either explicitly or
implicitly. This value indicates the status of execution of the statement.
(See page VI-2, I-0 Status.)

(6) If the access mode is random, the value of the record key data item
indicates the record to be accessed.

(7) When the access mode is dynamic, records in the file may be accessed
sequentially and/or randomly. (See eneral rules 4 and 6.)

VI-6

Indexed I-0 - FILE-CONTROL

(8) The RECORD KEY clause specifies the record key that is the prime
record key for the file. The values of the prime record key must be unique
among records of the file. This prime record key provides an access path to
records in an indexed file.

(9) An ALTERNATE RECORD KEY clause specifies a record key that is an
alternate record key for the file. This alternate record key provides an
alternate access path to records in an indexed file.

(10) The data descriptions of data-name-ljand data-name-2(as well as their
relative locations within a record must be the same as that used when the file
was created. e n er of alternate keys for the file must also e the same
as that used when the file was created.

(11) The DUPLICATES phrase specifies that the value of the associated
alternate record key may be duplicated within any of the records in the file.
If the DUPLICATES phrase is not specified, the value of the associated alter­
nate record key must not be duplicated among any of the records in the file.

VI-7

2.1.3 The I-0-CONTROL Paragraph

2.1.3.1 Function

Indexed I-0 - I-0-CONTROL

The I-0-CONTROL paragraph specifies the points at which rerun is to be
established and the memory area which is to be shared by different files.

2.1.3.2 General Format

I-0-CONTROL.

[{ · 1 {integer-I RECORDS OF file-name-2}]
; RERUN ON ~ile-name-l EVERY inte er-2 CLOCK-UNITS
--- -- implementor-name d~ . con 1t1on-name

[; SAME j [RECORD] I AREA FOR file-name-3 {, file-name-4} •••] •••

2.1.3.3 Syntax Rules

(I) The I-0-CONTROL paragraph is optional.

(2) File-name-1 must be a sequentially organized file.

(3) When either the integer-I RECORDS clause or the integer-2 CLOCK-UNITS
clause is specified, implementor-name must be given in the RERUN clause.

(4) When multiple integer-I RECORDS clauses are specified, no two of
them may specify the same file-name-2.

(5) Only one RERUN clause containing the CLOCK-UNITS clause may be
specified.

(6) The two forms of the SAME clause (SAME AREA, I SAME RECORD AREAi) are
considered separately in the following:

More than one SAME clause may be included in a program, however:

a. A file-name must not appear in more than one SAME AREA clause.

b. A file-name must not appear in more than one SAME RECORD AREA
clause.

c. If one or more file-names of a SAME AREA clause appear in a SAME
RECORD AREA clause, all of the file-names in that SAME AREA clause must
appear in the SAME RECORD AREA clause. However, additional file-names not .
appearing in that SAME AREA clause may also appear in that SAME RECORD AREA
clause. The rule that only one of the files mentioned in a SAME AREA clause
can be open at any given time takes precedence over the rule that all files
mentioned in a SAME RECORD AREA clause can be open at any given time.

VI-8

Indexed I-0 - I-0-CONTROL

(7) The files referenced in the SAME AREAlor SAME RECORD AREAlclause need
not all have the same organi.zation or access.

2.1.3.4 General Rules

(1) The RERUN clause specifies when and where the rerun information is
recorded. Rerun information is recorded in the following ways:

a. If file-name-1 is specified, the rerun information is written on
each reel or unit of an output file and the implementor specifies where, on
the file, the rerun information is to be recorded.

b. If implementor-name is specified, the rerun information is
written as a separate file on a device specified by the implementor.

(2) There are four forms of the RERUN clause, based on the several
conditions under which rerun points can be established. The implementor
must provide at least one of the specified forms of the RERUN clause.

a. When the integer-1 RECORDS clause is used. In this case, the
rerun information is written on the device specified by implementor-name,
which must be specified in the ON clause, whenever integer-1 records of
file-name-2 has been processed. File-name-2 may be either an input or
output file with any organization or access.

b. When the integer-2 CLOCK-UNITS clause is used. In this case, the
rerun information is written on the device specified by implementor-name,
which must be specified in the ON clause, whenever an interval of time,
calculated by an internal clock, has elapsed.

c. When the condition-name clause is used and implementor-name is
specified in the ON clause. In this case, the rerun information is written
on the device specified by implementor-name whenever a switch assumes a
particular status as specified by condition-name. In this case, the associated
switch must be defined in the SPECIAL-NAMES paragraph of the Configuration
Section of the Environment Division. The implementor specifies when the
switch status is interrogated.

d. When the condition-name clause is used and file-name-1 is
specified in the ON clause. In this case, the rerun information is written
on file-name-1, which must be an output file, whenever a switch assumes a
particular status as specified by condition-name. In this case, as in
paragraph c above, the associated switch must be defined in the SPECIAL-NAMES
paragraph of the Configuration Section of the Environment Division. The
implementor specifies when the switch status is interrogated.

(3) The SAME AREA claus.e specifies that two or more files that do not
represent sort or merge files are to use the same memory area during process­
ing. The area being shared includes all storage areas assigned to the files
specified; therefore, it is not valid to have more than one of the files open
at the same time. (See syntax rule 6c on page VI-8.) ·

VI-9

Indexed I-0 - I-0-CONTROL

(4) The SAME RECORD AREA clause specifies that two or more files are to
use the same memory area for processing of the current logical record. All of
the files may be open at the same time. A logical record in the SAME RECORD
AREA is considered as a logical record of each opened output file whose file­
name appears in this SAME RECORD AREA clause and of the most recently read
input file whose file-name appears in this SAME RECORD AREA clause. This is
equivalent to an implicit redefinition of the area, i.e., recerds are aligned
on the leftmost character position.

VI-10

Indexed I-0 - File Section

3. DATA DIVISION IN THE INDEXED I-0 f.UDULE

3.1 FILE SECTION

In a COBOL program the file description entry (FD) represents the highest
level of organization in the File Section. The File Section header is followed
by a file description entry consisting of a level indicator (FD), a file-name
and a series of independent clauses. The FD clauses specify the size of the
logical and physical records, the presence or absence of label records, the
value of implementor-defined label items, and the names of the data records
which comprise the file. The entry itself is terminated by a period.

3.2 RECORD DESCRIPTION STRUCTURE

A record description consists of a set of data description entries which
describe the characteristics of a particular record. Each data description
entry consists of a level-number followed by a data-name if required, followed
by a series of independent clauses as required. A record description has a
hierarchical structure and therefore the clauses used with an entry may vary
considerably, depending upon whether or not it is followed by subordinate
entries. The structure of a record description is defined in Concepts of
Levels on page I-84 while the elements allowed in a record description are
shown in the data description skeleton on page II-12.

VI-11

Indexed I-0 - File Description

3.3 THE FILE DESCRIPTION - COMPLETE ENTRY SKELETON

3.3.1 Function

The file description furnishes information concerning the physical struc­
ture, identification,. and record names pertaining to a given file.

3.3.2 General Format

FD file-name

r BLOCK CONTAINS I [integer-'-} .!2.] I integer-2 l~~RS }]
~ RECORD CONTAINS (integer-3 TO] integer-4 CHARACTERS 1

{
RECORD IS } {STANDARD)

LABEL RECORDS ARE OMITTED J

[; VALUE OF implementor-name-I IS tl~~::;:~-ll}

I• implementor-name-2 IS l1~:~:;:~-2 I} l ...]
~ DATA {:~:s 1~} data-name-3 [, data-name-4] •••] •

3.3.3 Syntax Rules

(1) The level indicator FD identifies the beginning of a file description
and must precede the file-name.

(2) The clauses which follow the name of the file are optional in many
cases, and their order of appearance is immaterial.

(3) One or more record description entries must follow the file
description entry.

VI-12

Indexed I-0 - BLOCK CONTAINS

3.4 THE BLOCK CONTAINS CLAUSE

3.4.1 Function

The BLOCK CONTAINS clause specifies the size of a physical record.

3.4.2 General Format

BLOCK CONTAINS l(integer-1 .!Q.]l integer-2

3.4.3 General Rules

{
RECORDS 1
CHARACTERS

(1) This clause is required except when:

a. A physical record contains one and only one complete logical
record.

b. The hardware device assigned to the file has one and only one
physical record size.

c. The hardware device assigned to the file has more than one
physical record size but the implementor has designated one as standard. In
this case, the absence of this clause denotes the standard physical record
size.

(2) The size of the physical record may be stated in terms of RECORDS,
unless one of the following situations exists, in which case the RECORDS
phrase must not be used·

a. Where logical records may extend across physical records.

b. The physical record contains padding (area not contained in a
logical record).

c. Logical records are grouped in such a manner that an inaccurate
physical record size would be implied.

(3) When the word CHARACTERS is specified, the physical record size is
specified in terms of the number of character positions required to store
the physical record, regardless of the types of characters used to represent
the items within the physical record.

(4) If only integer-2 is shown, it represents the exact size of the
h sical record. If integer-I and integer-2 are both shown, they refer to

the minimum and maximum size of the hys-ical record, respectively.

(5) If logical records of differing size are grouped into one physical
record, the technique for determining the size of each logical record is
specified by the implementor.

VI-13

Indexed I-0 - DATA RECORDS

3.5 THE DATA RECORDS CLAUSE

3.5.1 Function

The DATA RECORDS clause serves only as documentation for the names of data
records with their associated file.

3.5.2 General Format

DATA {RECORD IS } data-name-I
RECORDS ARE

3.5.3 Syntax Rules

(, data-name- 2]
"

(1) Data-name-I and data-name-2 are the names of data records and must
have 01 level-number record descriptions, with the same names, associated
with them.

3. 5. 4 Genera 1 Rules

(1) The presence of more than one data-name indicates that the file
contains more than one type of data record. These records may be of differ­
ing sizes, different formats, etc. The order in which they are listed is not
significant.

(2) Conceptually, all data records within a file share the same area.
This is in no way altered by the presence of more than one type of data
record within the file.

VI-14

Indexed I-0 - LABEL RECORDS

3.6 THE LABEL RECORDS CLAUSE

3. 6.1 Function

The LABEL RECORDS clause specifies whether labels are present.

3.6.2 General Format

f RECORD IS I f STANDARD}
LABEL l RECORDS ARE [l OMITTED .

3.6.3 Syntax Rules

(1) This clause is required in every file description entry.

3.6.4 General Rules

(1) OMITTED specifies that no explicit labels exist for the file or the
device to which the file is assigned.

(2) STANDARD specifies that labels exist for the file or the device to
which the file is assigned and the labels conform to the implementor's label
specifications.

VI-15

Indexed I-0 - RECORD CONTAINS

3.7 THE RECORD CONTAINS CLAUSE

3.7.1 Function

The RECORD CONTAINS clause specifies the size of data records.

3.7.2 General Format

RECORD CONTAINS [integer-I TOl integer-2 CHARACTERS

3.7.3 General Rules

(1) The size of each data record is completely defined within the record
description entry, therefore this clause is never required. When present,
however, the following notes apply:

a. Integer-2 may not be used by itself unless all the data records in
the file have the same size. In this case integer-2 represents the exact
number of characters in the data record. If integer-I and integer-2 are both
shown, they refer to the minimum number of characters in the smallest size
data record and the maximum number of characters in the largest size data
record, respectively.

b. The size is specified in terms of the number of character posi­
tions required to store the logical record, regardless of the types of charac­
ters used to represent the items within the logical record. The size of a
record is determined by the sum of the number of characters in all fixed
length elementary items plus the sum of the maximum number of characters in
any variable length item subordinate to the record. This sum may be different
from the actual size of the record; see page I-85, Selection of Character
Representation and Radix; page II-33, The SYNCHRONIZED Clause; and page II-35, ·
The USAGE Clause.

VI-16

Indexed I-0 - VALUE OF

3.8 THE VALUE OF CLAUSE

3. 8. 1 Function

The VALUE OF clause particularizes the description of an item in the label
records associated with a file.

3.8.2 General Format

VALUE . OF implementor-name-! IS \Jdata-name- ~1
literal-!

~ implementor-name-2 IS ildata-name-2~ J
literal-2

l

3.8.3 Syntax Rules

(1) Data-name-1, data-name-2, etc., should be qualified when necessary,
but cannot be subscripted or indexed, nor can they be items described with
the USAGE IS INDEX clause.

(2) Data-name-!, data-name-2, etc., must be in the Working-Storage Section.

3~ 8. 4 General Rules

(1) For an input file, the appropriate label routine checks to see if the
value of im lementor-name-1 is e ual to the value of literal-1,\or of\
data-name-1 whichever has been s ecified.

For an output file, at the appropriate time the value of implementor­
name-1 is made equal to the value of literal-1,lor of a data-name-1, whicheverl

J has been specified. f

(2) A figurative constant may be substituted in the format above wherever
a literal is specified.

VI-17

4. PROCEDURE DIVISION IN THE INDEXED I-0 MODULE

4.1 THE CLOSE STATEMENT

4.1.1 Function

Indexed I-0 - CLOSE

The CLOSE statement terminates the processing of files with optional lock.

4.1.2 General Format

CLOSE f ile-name-1 [WITH LOCK] [, f ile-name-2 (WITH LOCK] 1 ...

4.1.3 Syntax Rules

(1) The files referenced in the CLOSE statement need not all have the same
organization or access.

4.1.4 General Rules

(1) A CLOSE statement may only be executed for a file in an open mode.

(2) Indexed files are classified as belonging to the category of
non-sequential single/multi-reel/unit. The results of executing each type
of CLOSE for this category of file are summarized in the following table.

CLOSE File Category =
Statement Non-sequential

Format Single/Multi-Reel/Unit

CLOSE A

CLOSE WITH LOCK A,B

The definitions of the symbols in the table are given below. Where
the definition depends on whether the file is an input, output, or input-output
file, alternate definitions are given; otherwise, a definition applies to
input, output, and input-output files.

A. Close File

Input Files and Input-Output Files (Sequential Access Mode):

If the file is positioned at its end and label records are
specified for the file, the labels are processed according to the implementor's
standard label convention. The behavior of the CLOSE statement when label
records are specified but not present, or when label records are not specified
but are present, is undefined. Closing operations specified by the implementor
are executed. If the file is positioned at its end and label records are not
specified for the file, label processing does not take place but other closing
operations specified by the implementor are executed. If the file is positioned
other than at its end, the closing operations specified by the implementor are
executed, but there is no ending label processing.

VI-18

Indexed I-0 - CLOSE

Input Files and Input-Output Files (Random or Dynamic Access Mode);
Output Files (Random, Dynamic, or Sequential Access Mode):

If label records are specified for the file, the labels are pro­
cessed according to the implementor's standard label convention. The behavior
of the CLOSE statement when label records are specified but not present, or
when label records are not specified but are present, is undefined. Closing
operations specified by the implementor are executed. If label records are
not specified for the file, label processing does not take place but other
~losing operations specified by the implementor are executed.

B. File Lock

An implementor-defined technique is supplied to insure that this
file cannot be opened again during this execution of this run unit.

(3) The action taken if a file is in the open mode when a STOP RUN state­
ment is executed is specified by the implementor. The action taken for a
file that has been opened in a called program and not closed in that program
prior to the execution of a CANCEL statement for that program is also speci­
fied by the implementor.

(4) If a CLOSE statement has been executed for a file, no other statement
can be executed that references that file, either explicitly or implicitly,
unless an intervening OPEN statement for that file is executed.

(S) Following the successful execution of a CLOSE statement, the record
area associated with file-name is no longer available. The unsuccessful
execution of such a CLOSE statement leaves the availability of the record
area undefined.

VI-19

Indexed I-0 - DELETE

4.2 THE DELETE STATEMENT

4.2.1 Function

The DELETE statement logically removes a record from a mass storage file.

4.2.2 General Format

DELETE file-name RECORD [;INVALID KEY imperative-statement]

4.2.3 Syntax Rules

(1) The INVALID KEY phase must not be specified for a DELETE statement
which references a file which is in sequential access mode.

(2) The INVALID KEY phrase must be specified for a DELETE statement which
references a file which is not in sequential access mode and for which an
applicable USE procedure is not specified.

4.2.4 General Rules

(1) The associated file must be open in the I-0 mode at the time of the
execution of this statement. (See page VI-21, The OPEN Statement.)

(2) For files in the sequential access mode, the last input-output state­
ment. executed for file-name prior to the execution of the DELETE statement
must have been a successfully executed READ statement. The MSCS logically
removes from the file the record that was accessed by that READ statement.

(3) For a file in random[or dynamic(access mode, the MSCS logically
removes from the file the record identified by the contents of the prime
record key data item associated with file-name. If the file does not contain
the record specified by the key, an INVALID KEY condition exists. (See page
VI-4, The INVALID KEY Condition.)

(4) After the successful execution of a DELETE statement, the identified
record has been logically removed from the file and can no longer be accessed.

(5) The execution of a DELETE statement does not affect the contents of
the record area associated with file-name.

(6) The current record pointer is not affected by the execution of a
DELETE statement.

(7) The execution of the DELETE statement causes the value of the spec­
ified FILE STATUS data item, if any, associated with file-name to be updated.
(See page VI-2, I-0 Status.)

VI-20

Indexed I-0 - OPEN

4.3 THE OPEN STATEMENT

4.3.1 Function

The OPEN statement initiates the processing of files. It also performs
checking and/or writing of labels and other input-output operations.

4.3.2 General Format

{

INPUT file-name-1 [, f ile-name-2] • • • }
OPEN OUfPUT file-name-3 (, file-name-4] •••

I-0 file-name-5 (, file-name-6] •••

4.3.3 Syntax Rules

(1) The files referenced in the OPEN statement need not all have the
same organization or access.

4.3.4 General Rules

(1) The successful execution of an OPEN statement determines the avail­
ability of the file and results in the file being in an open mode.

(2) The successful execution of the OPEN statement makes the associated
record area available to the program.

(3) Prior to the successful execution of an OPEN statement for a given
file, no statement can be executed that references that file, either explicit­
ly or implicitly.

(4) An OPEN statement must be successfully executed prior to the execution
of any of the permissible input-output statements. In Table 2, Permissible
Statements, 'X' at an intersection indicates that the specified statement,
used in the access mode given for that row, may be used with the indexed file
organization and the open mode given at the top of the column.

VI-21

Indexed I-0 - OPEN

Open Mode
File Access

Mode Statement Input Output Input-Ouput

Sequential READ x x
WRITE x
REWRITE x
START x x
DELETE x

Random READ x x
WRITE x x
REWRITE x
START

DELETE x
Dynamic READ x x

WRITE x x
REWRITE x
START x x
DELETE x

Table 2. Permissible Statements

(5) A file may be opened with the INPUT, OUTPUT, and I-0 phrases in the
sa~e program. Following the initial execution of an OPEN statement for a
file, each subsequent OPEN statement execution for that same file must be
preceded by the execution of a CLOSE statement, without the LOCK phrase, for
that file. _

(6) Execution of the OPEN statement does not obtain or release the first
data record.

(7) If label records are specified for the file, the beginning labels are
processed as follows:

a. When the INPUT phrase is specified, the execution of the OPEN
statement causes the labels to be checked in accordance with the implementor's
s-pecif i-ed conventions for input label checking.

b. When the OUTPUT phrase is specified, the execution of the OPEN
statement causes the labels to be written in accordance with the implementor's
specified conventions for output label writing.

The behavior of the OPEN statement when label records are specified
but not present, or when label records are not specified but are present, is
undefined.

VI-22

Indexed I-0 - OPEN

(8) The file description entry for file-name-1, file-name-2, file-name-5,
or file-name-6 must be equivalent to that used when this file was created.

(9) For files being opened with the INPUT or I-0 phrase, the OPEN state­
ment sets the current record pointer to the first record currently existing
within the file. For indexed files, the prime record key is established as
the key of reference and is used to determine the first record to be accessed.
If no records exist in the file, the current record pointer is set such that
the next executed Format 1 READ statement for the file will result in an AT
END condition.

(10) The I-0 phrase permits the opening of a file for both input and output
operations. Since this phrase implies the existence of the file, it cannot be
used if the file is being initially created.

(11) When the I-0 phrase is specified and the LABEL RECORDS clause indi­
cates label records are present, the execution of the OPEN statement includes
the following steps:

a. The labels are checked in accordance with the implementor's
specified conventions for input-output label checking.

b. The new labels are written in accordance with the implementor's
specified conventions for input-output label writing.

(12) Upon successful execution of an OPEN statement with the OUTPUT phrase
specified, a file is created. At that time the associated file contains no
data records.

VI-23

Indexed I-0 - READ

4.4 THE READ STATEMENT

4.4.1 Function

For sequential access, the READ statement makes available the next logical
record from a file. For random access, the READ statement makes available a
specified record from a mass storage file.

4.4.2 General Format

Format 1

READ file-name I [~l I RECORD [INTO identifier 1
(;AT END imperative-statement]

Format 2

READ file-name RECORD (INTO identifier)

I [; ~IS data-name] I
[; INVALID KEY imperative-statement]

4.4.3 Syntax Rules

(1) The INTO phrase must not be used when the input file contains logical
records of various sizes as indicated by their record descriptions. The
storage area associated with identifier and the storage area which is the
record area associated with file-name must not be the same storage area.

(2) Data-name must be the name of a data item specified as a record key
associated with file-name.

(3) Data-name may be qualified.

(4) Format 1 must be used for all files in sequential access mode.

(5) The NEXT phrase must be specified for files in dynamic access mode,
when records are to be retrieved sequentially.

(6) Format 2 is used for files in random access modelor for files in
I dynamic access model when records are to be retrieved randomly.

(7) The INVALID KEY phrase or the AT. END phrase must be specified if no
applicable USE procedure is specified for file-name.

4.4.4 General Rules

(1) The associated file must be open in the INPUT or I-0 mode at the
time this statement is executed. (See page VI-21, The OPEN Statement.)

VI-24

Indexed I-0 - READ

(2) The record to be made available by a Format 1 READ statement is
determined as follows:

a. The record, pointed to by the current record pointer, is made
available provided that the current record pointer was positioned by the

I START or!OPEN statement and the record is still accessible through the path
indicated by the current record pointer; if the record is no longer accessible,
which may have been caused by the deletion of the recordlor a change in an I
I alternate record key,I the current record pointer is updated to point to the
next existing record within the established key of reference and that record
is then made available.

b. If the current record pointer was positioned by the execution of
a previous READ statement, the current record pointer is updated to point to
the next existing record in the file with the established key of reference and
then that record is made available.

(3) The execution of the READ statement causes the value of the FILE STATUS
data item, if any, associated with file-name to be updated. (See page VI-2,
I-0 Status.)

(4) Regardless of the method used to overlap access time with processing
time, the concept of the READ statement is unchanged in that a record is
available to the object program prior to the execution of any statement fol­
lowing the READ statement.

(5) When the logical records of a file are described with more than one
record description, these records automatically share the same storage area;
this is equivalent to an implicit redefinition of the area. The contents of
any data items which lie beyond the range of the current data record are
undefined at the completion of the execution of the READ statement.

(6) If the INTO phrase is specified, the record being read is moved from
the record area to the area specified by identifier according to the rules
specified for the MOVE statement without the CORRESPONDING phrase. The implied
MOVE does not occur if the execution of the READ statement was unsuccessful.
Any subscripting or indexing associated with identifier is evaluated after the
record has been read and immediately before it is moved to the data item.

(7) When the INTO phrase is used, the record being read is available in
both the input record area and the data area associated with identifier.

(8) If, at the time of execution of a Format 1 READ statement, the posi­
tion of current record pointer for that file is undefined, the execution of
that READ statement is unsuccessful.

(9) If, at the time of the execution of a Format 1 READ statement, no next
logical record exists in the file, the AT END condition occurs, and the execu­
tion of the READ statement is considered unsuccessful. (See page VI-2, I-0
Status.)

(10) When the.AT END condition is recognized the following actions are
taken in the specified order:

VI-25

Indexed I-0 - READ

a. A value is placed into the FILE STATUS data item, if specified for
this file, to indicate an AT END condition. (See page VI-2, I-0 Status.)

b. If the AT END phrase is specified in the statement causing the
condition, control is transferred to the AT END imperative statement. Any
USE procedure specified for this file is not executed.

c. If the AT END phrase is not specified, then a USE procedure must
be specified, either explicitly or implicitly, for this file, and that
procedure is executed.

When the AT END condition occurs, execution of the input-output state­
ment which caused the condition is unsuccessful.

(11) Following the unsuccessful execution of any READ statement, the con­
tents of the associated record area and the position of the current record
pointer are undefined. For indexed files the key of reference is also
undefined.

(12) When the AT END condition has been recognized, a Format 1 READ state­
ment for that file must not be executed without first executing one of the
following:

a. A successful CLOSE statement followed by the execution of a
successful OPEN statement for that file.

b. A successful START statement for that file.

c. A successful Format 2 READ statement for that file.

(13) For a file for which dynamic access mode is specified, a Format 1 READ
statement with the NEXT phrase specified causes the next logical record to be
retrieved from that file as described in general rule 2.

(14) For an indexed file being sequentially accessed, records having the
same duplicate value in an alternate record key which is the key of ref er­
ence are made available in the same order in which they are released by
execution of WRITE statements, or by execution of REWRITE statements which
create such duplicate values.

(15) For an indexed file if the KEY phrase is specified in a Format 2 READ
statement, data-name is established as the key of reference for this retrieval.
If the dynamic access mode is specified, this key of reference is also used
for retrievals by any subsequent executions of Format 1 READ statements for the
file until a different key of reference is established for the file.

(16) If the KEY phrase is not specified in a Format 2 READ statement, the
prime record key is established as the ke_y of reference for this retrieval.
If the dynamic access mode is specified, this key of reference is also used
for retrievals by any subsequent executions of Format 1 READ statements for
the file until a different key of reference is established for the file •

.

(17) Execution of a Format 2 READ statement causes the value of the key of
reference to be compared with the value contained in the corresponding data
item of the stored records in the file, until the first record having an equal

VI--26

Indexed I-0 - READ

value is found. The current record pointer is positioned to this record which
is then made available. If no record can be so identified, the INVALID KEY
condition exists and execution of the READ statement is unsuccessful. (See
page VI-4, The INVALID KEY Condition.)

VI-27

Indexed I-0 - REWRITE

4.5 THE REWRITE STATEMENT

4.5.1 Function

The REWRITE statement logically replaces a record existing in a mass
storage file.

4.5.2 General Format

REWRITE record-name [FROM identifier] [; INVALID KEY imperative-statement]

4.5.3 Syntax Rules

(1) Record-name and identifier must not,refer to the s~me storage area.

(2) Record-name is the name of a logical record in the File Section of
the Data Division and may be qualified.

(3) The INVALID KEY phrase must be specified in the REWRITE statement for
files for ~hich an appropriate USE procedure is not specified.

4.5.4 General Rules

(1) The file associated with record-name must be open in the I-0 mode at
the time of execution of this statement. (See page VI-21, The OPEN Statement.)

(2) For files in the sequential access mode, the last input-output state­
ment executed for the associated file prior to the execution of the REWRITE
statement must have been a successfully executed READ statement. The MSCS
logically replaces the record that was accessed by the READ statement.

(3) The number of character positions in the record referenced by record- ,
name must be equal to the number of character positions in the record being
replaced.

(4) The logical record released by a successful execution of the REWRITE
statement is no lon_g_er available in the record arealunless the associated file
is named in a SAME RECORD AREA clause, in which case the logical record is
available to the program as a record of other files appearing in the same
SAME RECORD AREA clause as the associated I-0 file, as well as to the file
associated with record-name.

(5) The execution of a REWRITE statement with the FROM phrase is equiva­
lent to the execution of:

MOVE identifier TO record-name

followed by the execution of the same REWRITE statement without the FROM
phrase. The contents of the record area prior to the execution of the implicit
MOVE statement have no effect on the execution of the REWRITE statement.

(6) The current record pointer is not affected by the execution of a
REWRITE statement.

VI-28

Indexed I-0 - REWRITE

(7) The execution of the REWRITE statement causes ·the value· of the FILE
STATUS data item, if any, associated with the file to be updated. (See page
VI-2, I-0 Status.)

(8) For a file in the sequential access mode, the record to be replaced is
specified by the value contained in the prime record key. When the REWRITE
statement is executed the value contained in the prime record key data item of
the record to be replaced must be equal to the value of the prime record key
of the last record read from this file.

(9) For a file in the randomlor dynamiclaccess mode, the record to be
replaced is specified by the prime record key data item.

(10) The contents of alternate record key data items of the record being
rewritten may differ from those in the record being replaced. The MSCS
utilizes the conterit of the record key data items during the execution of the
IU."WRITE statement in. such a way that subsequent access of the record may be
made based upon any of those specified record keys.

(11) The INVALID KEY condition exists when:

a. The access mode is sequential and the value contained in the
prime record key data item of the record to be replaced is not equal to the
value of the prime record key of the last record read from this file, or

b. ·The value contained in the prime record key data item does not
equal that of any record stored in the file, or

c. The value contained in an alternate record key data item for which
a DUPLICATES clause has not been specified is equal to that of a record
already stored in the file.

The updating operation does not take place and the data in the record
area is unaffected. (See page VI-4, The INVALID KEY Condition.)

VI-29

Indexed I-0 - START

4.6 THE START STATEMENT

4.6.1 Function

The START statement provides a basis for logical positioning within an
indexed file, for subsequent sequential retrieval of records.

4.6.2 General Format

START file-name KEY

IS EQUAL TO
IS
IS GREATER THAN
IS >
IS NOT LESS THAN -----IS NOT <

[; INVALID KEY imperative-statement]

data-name

NOTE: The required relational characters '>', '<',and '='
are not underlined to avoid confusion with other symbols
such as '~' (greater than or equal to).

4.6.3 Syntax Rules

(1) File-name must be the name of an indexed file.

(2) File-name must be the name of a file with sequential or dynamic access.

(3) Data-name may be qualified.

(4) The INVALID KEY phrase must be specified if no applicable USE proce­
dure is specified for file-name.

(5) If file-name is the name of an indexed file, and if the KEY phrase is
specified, data-name may reference a data item specified as a record key asso­
ciated with file-name, or it may reference any data item of category alpha­
numeric subordinate to the data-name of a data item specified as a record key
associated with {ile-name whose leftmost character position corresponds to
the leftmost character position of that record key data item.

4.6.4 General Rules

(1) File-name must be open in the INPUT or I-0 mode at the time that
the START statement is executed. (See page VI-21, The OPEN Statement.)

(2) If the KEY phrase is not specified the relational operator 'IS EQUAL
TO' is implied.

(3) The type of comparison specified by the relational operator in the KEY
phrase occurs between a key associated with a record in the file referenced by
file-name and a data item as specified in general rule 5. If file-name refer­
ences an indexed file and the operands are of unequal s.ize, comparison proceeds
as though the longer one were truncated on the right such tha.t its length is

VI-30

Indexed I-0 - START

equal to that of the shorter. All other nonnumeric comparison rules apply
except that the presence of the PROGRAM COLLATING SEQUENCE clause will have
no effect on the comparison. (See page II-42, Comparison of Nonnumeric
Operands.)

a. The current record pointer is positioned to the first logical
record currently existing in the file whose key satisfies the comparison.

b. If the comparison is not satisfied by any record in the file, an
INVALID KEY condition exists, the execution of the START statement is unsuc­
cessful, and the position of the current record pointer is undefined. (See
page VI-4, The INVALID KEY Condition.)

(4) The execution of the START statement causes the value of the FILE
STATUS data item, if any, associated with file-name to be updated. (See
page VI-2, I-0 Status.)

(5) If the KEY phrase is specified, the comparison described in general
rule 3 uses the data item referenced by data-name.

(6) If the KEY phrase is not specified, the comparison described in gen­
eral rule 3 uses the data item referenced in the RECORD KEY clause associated
with file-name.

(7) Upon completion of the successful execution of the START statement,
a key of reference is established and used in subsequent Format 1 READ state­
ments as follows: (See page VI-24, The READ Statement.)

a. If the KEY phrase is not specified, the prime record key specified
for file-name becomes the key of reference.

b. If the KEY phrase is specified, and data-name is specified as a
record key for file-name, that record key becomes the key of reference.

c. If the KEY phrase is specified, and data-name is not specified as
a record key for file-name, the record key whose leftmost character position
corresponds to the leftmost character position of the data item specified by
data-name, becomes the key of reference.

(8) If the execution of the START statement is not successful, the key of
reference is undefined.

VI-31

Indexed I-0 - USE

4.7 THE USE STATEMENT

4.7.1 Function

rhe USE statement specifies procedures for input-output error handling
that are in addition to the standard procedures provided by the input-output
control system.

4.7.2 General Format

{

file-name-1 I[,
INPUT ---
OUTPUT
I-0

USE AFTER STANDARD {EXCEPTION] PROCEDURE ON
- ERROR

file-name-2]
... ~

4.7.3 Syntax Rules

(1) A USE statement, when present, must immediately follow a section
header in the declaratives section and must be followed by a period followed
by a space. The remainder of the section must consist of zero, one or more
procedural paragraphs that define the procedures to be used.

(2) The USE statement itself is never executed; it merely defines the
conditions calling for the execution of the USE procedures.

(3) The same file-name can appear in a different specific arrangement of
the format. Appearance of a file-name in a USE statement must not cause the
simultaneous request for execution of more than one USE procedure.

(4) The words ERROR and EXCEPTION are synonymous and may be used inter­
changeably.

(5) The files implicitly or explicitly referenced in a USE statement need
not all have the same organization or access.

4.7.4 General Rules

(1) The designated procedures are executed by the input-output system
after completing the standard input-output error routine, or upon recognition
of the INVALID KEY or AT END conditions, when the INVALID KEY phrase or AT
END phrase, respectively, has not been specified in the input-output statement.

(2) After execution of a USE procedure, control is returned to the
invoking routine.

(3) Within a USE procedure, there must not be any reference to any
nondeclarative procedures. Conversely, in the nondeclarative portion there
must be no reference to procedure-names that appear in the declarative portion,
except that PERFORM statements may refer to a USE statement or to the proce­
dures associated with such a USE statement.

(4) Within a USE procedure, there must not be the-execution of any statement
that would cause the execution of a USE procedure that had previously been
invoked and had not yet returned control to the invoking routine.

VI-32

Indexed I-0 - WRITE

4.8 THE WRITE STATEMENT

4.8.1 Function

The WRITE statement releases a logical record for an output or input-output
file.

4.8.2 General Format

WRITE record-name [FROM identifier] [; INVALID KEY imperative-statement]

4.8.3 Syntax Rules

(1) Record-name and identifier must not reference the same storage area.

(2) The record-name is the name of a logical record in the File Section
of the Data Division and may be qualified.

(3) The INVALID KEY phrase must be specified if an applicable USE proce­
dure is not specified for the associated file.

4.8.4 General Rules

(1) The associated file must be open in the OUTPUT or I-0 mode at the time
of the execution of this statement. (See page VI-21, The OPEN Statement.)

(2) The logical record released by the execution of the WRITE statement is
no loner available in the record area unlessithe associated file is named I
in a SAME RECORD AREA clause or the execution of the WRITE statement is unsuc­
cessful due to an INVALID KEY condition. jThe logical record is also available
to the program as a record of other files referenced in the same SAME RECORD
AREA clause as the associated output file, as well as to the file associated
with record-name.

(3) The results of the execution of the WRITE statement with the FROM
phrase is equivalent to the execution of:

a. The statement:

MOVE identifier TO record-name

according to the rules specified for the MOVE statement, followed by:

b. The same WRITE statement without the FROM phrase.

The contents of the record area prior to the execution of the implicit
MOVE statement have no effect on the execution of this WRITE statement.

After execution of the WRITE statement is complete, the information
in the area referenced by identifier is available, even though the information
in the area referenced by record-name may not be. (See general rule 2.)

(4) The current rec_ord pointer is unaffected by the execution of a WRITE
statement.

VI-33

Indexed I-0 - WRITE

(5) The execution of the WRITE statement causes the value of the FILE
STATUS data item, if any, associated with the file to be updated. (See page
VI-2, I-0 Status.)

(6) The maximum record size for a file is established at the time the
file is created and must not subsequently be changed.

(7) The number of character positions on a mass storage device required
to store a logical record in a file may or may not be equal to the number of
character positions defined by the logical description of that record in the
program.

(8) The execution of the WRITE statement releases a logical record to the
operating system.

(9) Execution of the WRITE statement causes the contents of the record
area to be released. The MSCS utilizes the content of the record keys in
such a way that subsequent access of the record key may be made based upon any
of those specified record keys.

(10) The value of the prime record key must be unique within the records
in the file.

(11) The data item specified as the prime record key must be set by the
program to the desired value prior to the execution of the WRITE statement.
(See general rule 3.)

(12) If sequential access mode is specified for the file, records must be
released to the MSCS in ascending order of prime record key values.

(13) If randomlor dynamiclaccess mode is specified, records may be released
to the MSCS in any program-specified order.

(14) When the ALTERNATE RECORD KEY clause is specified in the file control
entry for an indexed file, the value of the alternate record key may be
non-unique only if the DUPLICATES phrase is specified for that data item. In
this case the MSCS provides storage of records such that when records are
accessed sequentially, the order of retrieval of those records is the order
in which they are released to the MSCS.

(15) The INVALID KEY condition exists under the following circumstances:

a. When sequential access mode is specified for a file opened in
the output mode, and the value of the prime record key is not greater than
the value of the prime record key of the previous record, or

b. When the file is opened in the output or I-0 mode, and the value
of the prime record key is equal to the value of a prime record key of a
record already existing in the file, or

c. When the file is opened in the output or r~o mode, and the value
of an alternate record key for which duplicates are not allowed equals the
corresponding data item of a record already existing in the file, or

VI-34

Indexed I-0 - WRITE

d. When an attempt is made to write beyond the externally defined
boundaries of the file.

(16) When the INVALID KEY condition is recognized the execution of the WRITE
statement is unsuccessful, the contents of the record area are unaffected and
the FILE STATUS data item, if any, associated with file-name of the associated
file is set to a value indicating the cause of the condition. Execution of the
program proceeds according to the rules stated on page VI-4, The INVALID KEY
Condition. (See page VI-2, I-0 Status.)

VI-35

Sort-Merge - Introduction

1. INTRODUCTION TO THE SORT-MERGE MODULE

1.1 FUNCTION

The Sort-Merge module provides the capability to order one or more files of
records,! or to combine two or more identically ordered files of records,! accord­
ing to a set of user-specified keys contained within each record. Optionally,
a user may apply some special processing to each of the individual records by
input or output procedures. This special processing may be applied before
and/or after the records are ordered by the SORTlor after the records have!

lbeen combined by the MERGE. I

1.2 LEVEL CHARACTERISTICS

Sort-Merge Level 1 provides the facility for sorting a single file only
once within a given execution of a COBOL program. Procedures for special
handling of each record in the file before and/or after it has been sorted are
also provided.

Sort-Merge Level 2 provides the facility for sorting one or more files, or
combining two or more files, one or more times within a given execution of a
COBOL pro_gram.

1.3 RELATIONSHIP WITH SEQUENTIAL I-0 MODULE

The files specified in the USING and GIVING phrases of the SORTiand MERGEJ
statements must be described implicitly or explicitly in the FILE-CONTROL
paragraph as having sequential organization. No input-output statement may
be executed for the file named in the sort-merge file description.

VII-1

Sort-Merge - FILE-CONTROL

2. ENVIRONMENT DIVISION IN THE SORT-MERGE MODULE

2.1 INPUT-OUTPUT SECTION

2.1.1 The FILE-CONTROL Paragraph

2.1~1.l Function

The FILE-CONTROL paragraph names each file and allows specification of
other file-related information.

2.1.1.2 General Format

FILE-CONTROL. {file-control-entry}

2.1.2 The File Control Entry

2.1.2.1 Function

The file control entry names a sortlor mergelfile and specifies the associa­
tion of the file to a storage medium.

2.1.2.2 General Format

SELECT file-name ASSIGN TO implementor-name-I [, impl~mentor-name-2]

2.1.2.3 Syntax Rules

(1) Each sortlor mergejfile described in the Data Division must be named
once and only once as file-name in the FILE-CONTROL paragraph. Each sort for I

I mergelfile specified in the file control entry must have a sort-merge file
description entry in the Data Division.

(2) Since file-name represents a sort(or mergejfile, only the ASSIGN
clause is permitted to follow file-name in the FILE-CONTROL paragraph.

2.1.2.4 General Rules

(1) The ASSIGN clause specifies the association of the sort) or merge) file
referenced by file-name to a storage medium.

VII-2

2.1.3 The 1-0-CONTROL Paragraph

2.1.3.l Function

SoPt-Merge - I-0-CONTROL

The I-0-CONTROL paragraph specifies the memory area which is to be shared
by different files.

2.1.3.2 General Format

I-0-CONTROL.

; SAME SORT
[{

RECORD }

-- SORT-MERGE
AREA FOR file-name-1 {, file-name-2} . ..] ...

2.1.3.3 Syntax Rules

(1) The I-0-CONTROL paragraph is optional.

(2) In the SAME AREA clause, SORT and SORT-MERGE are equivalent.

(3) If the SAME SORT AREA or SAME SORT-MERGE AREA clause is used, at least
one of the file-names must represent a sort or merge file. Files that do not
represent sort or merge files may also be named in the clause.

(4) The three formats of the SAME clause (SAME RECORD AREA, SAME SORT
AREA, SAME SORT-MERGE AREA) are considered separately in the following:

More than one SAME clause may be included in a program, however:

a. A file-name must not appear in more than one SAME RECORD AREA
clause.

b. A file-name that represents a sort or merge file must not appear
in more than one SAME SORT AREA or SAME SORT-MERGE AREA clause.

c. If a file-name that does not represent a sort or merge file appears
in a SAME AREA clause and one or more SAME SORT AREA or SAME SORT-MERGE AREA
clauses, all of the files named in that SAME AREA clause must be named in that
SAME SORT AREA or SAME SORT-MERGE AREA elause(s). (See page IV-6, Sequential
I-0.)

(5) The files referenced in the SAME SORT AREA, SAME SORT-MERGE AREA, or
SAME RECORD AREA clause need not all have the same organization or access.

2.1.3.4 General Rules

(1) The SAME RECORD AREA clause specifies that two or more files are to
use the same memory area for proeessing of the current logical record. All of
the files may be open at the same time. A logical record in the SAME RECORD
AREA is considered as a logical record of each op~ned output file whose file­
name appears in this SAME RECORD AREA clause and of the most recently read
input file whose file-name appears in this SAME RECORD AREA clause. This is

VII-3

Sort-Merge - I-0-CONTROL

equivalent to implicit redefinition of the_area, i.e., records are aligned on
the leftmost character position.

(2) If the SAME SORT AREA or SAME SORT-MERGE AREA clause is used, at least
one of the file-names must represent a sort or merge file. Files that do not
represent sort or merge files may also be named in the clause. This clause
specifies that storage is shared as follows:

a. The SAME SORT AREA or SAME SORT-MERGE AREA clause specifies a
memory area which will be made available for use in sorting or merging each
sort or merge file named. Thus any memory area allocated for the sorting or
merging of a sort or merge file is available for reuse in sorting or merging
any of the other sort or merge files.

b. In addition, storage areas assigned to files that do not represent
sort or merge files may be allocated as needed for sorting or merging the sort
or merge files named in the SAME SORT AREA or SAME SORT-MERGE AREA clause.
The extent of such allocation will be specified by the implementor.

c. Files other than sort or merge files do not share the same storage
area with each other. If the user wishes these files to share the same stor­
age area with each other, he must also include in the program a SAME AREA or
SAME RECORD AREA clause naming these files.

d. During the execution of a SORT or MERGE statement that refers to
a sort or merge file named in this clause, any non sort-merge files named in
this clause must not be open.

VII-4

Sort-MePge - Sort-Merge File Description

3. DATA DIVISION IN THE SORT-MERGE MODULE

3.1 FILE SECTION

An SD file description gives information about the size and the names of
the data records associated with the file to be sortedfor merged.I There are
no label procedures which the user can control, and the rules for blocking
and internal storage are peculiar to the SORT land MERGElstatements.

3.2 THE SORT-MERGE FILE DESCRIPTION - COMPLETE ENTRY SKELETON

3.2.1 Function

The sort-merge file description furnishes information concerning the
physical structure, identification, and record names of the file to be sorted

I or merged.I

3.2.2 General Format

SD file-name

[; RECORD CONTAINS [integer-I TO] integer.;;;:-2 CHARACTERS)

p DATA { :~:/~} data-name-1 [, data-name-2] • • •] •

3.2.3 Syntax Rules

(1) The level indicator SD identifies the beginning of the sort-merge
file description and must precede the file-name.

(2) The clauses which follow the name of the file are optional and their
order of appearance is immaterial.

(3) One or more record description entries must follow the sort-merge
file description entry, however, no input-output statements may be executed
for this file.

VII-5

Sort-Merge - DATA RECORDS

3. 3 THE DATA RECORDS CLAUSE

3.3.1 Function

The DATA RECORDS clause serves only as documentation for the names of data
records with their associated file.

3.3.2 General Format

DATA { ::;g:/!ru:J data-name-1 [, data-name-2] •••

3.3.3 Syntax Rules

(1) Data-name-1 and data-name-2 are the names of data records and must
have 01 level-number record descriptions, with the same names, associated
with them.

3.3.4 General Rules

(1) The presence of more than one data-name indicates that the file
contains more than one type of data record. These records may be of differ­
ing sizes, different formats, etc. The order in which they are listed is not
significant.

(2) Conceptually, all data records within a file share the same area.
This is in no way altered by the presence of more than one type of data
record within the file.

VII-6

Sort-Merge - RECORD CONTAINS

3.4 THE RECORD CONTAINS CLAUSE

3.4.1 Function

The RECORD CONTAINS clause specifies the size of data records.

3.4.2 General Format

RECORD CONTAINS (integer-1 TO] integer-2 CHARACTERS

3.4.3 General Rules

(1) The size of each data record is completely defined within the record
description entry, therefore this clause is never required. When present,
however, the following notes apply:

a. Integer-2 may not be used by itself unless all the data records in
the file have the same size. In this case integer-2 represents the exact
number of characters in the data record. If integer-1 and integer-2 are both
shown, they refer to the minimum number of characters in the smallest size
data record and the maximum number of characters in the largest size data
record, respectively.

b. The size is specified in terms of the number of character positions
required to store the logical record, regardless of the types of characters
used to represent the items within the logical record. The size of a record
is determined by the sum of the number of characters in all fixed length ele­
mentary items plus the sum of the maximum number of characters in any variable
length item subordinate to the record. This sum may be different from the
actual size of the record; see page I-85, Selection of Character Representation
and Radix; page II-33, The SYNCHRONIZED Clause; and page II-35, The USAGE
Clause.

VII-7

Sort-Merge - MERGE

4. PROCEDURE DIVISION IN THE SORT-MERGE MODULE

4.1 THE MERGE STATEMENT

4 .1.1 Function

The MERGE statement combines two or more identically sequenced files on a
set of specified keys, and during the process makes records available, in
merge order, to an output procedure or to an output file.

4.1.2 General Format

MERGE file-name-1 ON {ASCENDING 1 KEY data-name-1 [, data-name-2]
DESCENDING

{ ASCENDING 1 KEY data-name-3
DESCENDING

[coLLATING SEQUENCE IS alphabet-name]

USING file-name-2, file-name-3 [, file-name-4]

[, data-name-4]

{

OUTPUT PROCEDURE IS section-name-1 [\~~UGH} section-name-2] I
GIVING file-name-5 ~

4.1.3 Syntax Rules

. . . J ...

(1) File-name-1 must be described in a sort-merge file description entry
in the Data Division.

(2) Section-name-I represents the name of an output procedure.

(3) File-name-2, file-name-3, file-name-4, and file-name-5 must be
described in a file description entry, not in a sort-merge file description
entry, in the Data Division. The actual size of the logical record(@}
described for file-name-2, file-name-3, file-name-4, and file-name-5 must be
equal to the actual size of the logical record(s} described for file-name-1.
If the data descriptions of the elementary items that make up these records
are not identical, it is the programmer's responsibility to describe the
corresponding records in such a manner so as to cause an equal number of
character positions to be allocated for the corresponding records.

(4) The words THRU and THROUGH are equivalent.

(5) Data-name-I, data-name-2, data-name-3, and data-name-4 are KEY data­
names and are subject to the following rules:

a. The data items identified by KEY data-names must be described in
records associated with file-name-1.

b. KEY data-names may be qualified.

VII-8

Sort-Merge - MERGE

c. The data items identified by KEY data-names must not be variable
length items.

d. If file-name-1 has more than one record description, then the data
items identified by KEY data-names need be described in only one of the record
descriptions.

e. None of the data items: identified by KEY data-names can be
described by an entry which either contains an OCCURS clause or is subordinate
to an entry which contains an OCCURS clause.

(6) No more than one file-name from a multiple file reel can appear in the
MERGE statement.

(7) File-names must not b.e repeated within the MERGE statement.

(8) MERGE statements may appear anywhere except in the declaratives portion
of the Procedure Division or in an input or output procedure-associated with a
SORT or MERGE statement.

4.1.4 General Rules

(1) The MERGE statement will merge all records contained on file-name-2,
file-name-3, and file-name-4. The files referenced in the MERGE statement
must not be open at the time the MERGE statement is executed. These files
are automatically opened and closed by the merge operation with all implicit
functions performed, such as the execution of any associated USE procedures.
The terminating function for all files is performed as if a CLOSE statement,
without optional phrases, had been executed for each file.

(2) The data-names following the word KEY are listed from left to right in
the MERGE statement in order of decreasing significance without regard to how
they are divided into KEY phrases. In the format, data-name-1 is the major
key, data-name-2 is the next most significant key, etc.

a. When the ASCENDING phrase is specified, the merged sequence will
be from the lowest value of the contents of the data items identified by the
KEY data-names to the highest value, according to the rules for comparison
of operands in a relation condition.

b. When the DESCENDING phrase is specified, the merged sequence will
be from the highest value of the contents of the data items identified by the
KEY data-names to the lowest value, according to the rules for comparison of
operands in a relation condition.

(3) The collating sequence that applies to the comparison of the nonnumeric
key data items specified is determined in the following order of precedence:

a. First, the collating sequence established by the COLLATING
SEQUENCE phrase, if specified, in that MERGE statement.

b. Second, the collating sequence established as the program
collating sequence.

VII-9

Sort-Merge - MERGE

(4) The output procedure must consist of one or more sections that appear
contiguously in a so.urce program and do not form a .part of any other procedure.
In order to make merged records available for processing, the output procedure
must include the execution of at least one RETURN statement. Control must not
be passed to the output procedure except when a related SORT or MERGE state­
ment is being executed. The output procedure may consist of any procedures
needed to select, modify, or copy the records that are being returned one at
a time in merged order, from file-name-I. The restrictions on the procedural
statements within the output procedure are as follows:

a. The output procedure must not contain any transfers of control to
points outside the output procedure; ALTER, GO TO and PERFORM statements in
the output procedure are not permitted to ref er to procedure-names outside the
output procedure. COBOL statements are allowed that will cause an implied
transfer of control to declaratives.

b. The output procedures must not contain any SORT or MERGE state-
ments.

c. The remainder of the Procedure Division must not contain any trans­
fers of control to points inside the output procedures; ALTER, GO TO, and
PERFORM statements in the remainder of the Procedure Division are not permitted
to refer to procedure-names within the output procedures.

(5) If an output procedure is specified, control passes to it during
execution of the MERGE statement. The compiler inserts a return mechanism
at the end of the last section in the output procedure. When control passes
the last statement in the output procedure, the return mechanism provides for
termination of the merge, and then passes control to the next executable
statement after the MERGE statement. Before entering the output procedure,
the merge procedure reaches a point at which it can select the next record
in merged order when requested. The RETURN statements in the output procedure
are the requests for the next record.

(6) Segmentation, as defined in Section IX, can be applied to programs
containing the MERGE statement. However, the following restrictions apply:

a. If the MERGE statement appears in a section that is not in an
independent segment, then any output procedure referenced by that MERGE
statement must appear:

1) Totally within non-independent segments, or

2) Wholly contained in a single independent segment.

b. If a MERGE statement appears in an independent segment, then any
output procedure referenced by that MERGE statement must be contained:

1) Totally within non-independent segments, or

2) Wholly within the same independent segment as that MERGE
statement.

VII-10

Sort-Merge - MERGE

(7) If the GIVING phrase is specified, all the merged records in
file-name-I are automatically written on file-name-5 as the implied output
procedure for this MERGE statement.

(8) In the case of an equal compare, according to the rules for comparison
of operands in a relation condition, on the contents of the data items identi­
fied by all the KEY data-names between records from two or more input files
(file-name-2, file-name-3, file-name-4, •••), the records are written on file­
name-5 or returned to the output procedure, depending on the phrase specified,
in the order that the associated input files are specified in the MERGE
statement.

(9) The results of the merge operation are predictable only when the
records in the files referenced by file-name-2, file-name~3, ••• ,are ordered
as described in the ASCENDING or DESCENDING KEY clause associated with the
MERGE statement.

VII-11

Sort-Merge - RELEASE

4.2 THE RELEASE STATEMENT

4.2.1 Function

The RELEASE statement cransfers records to the initial phase of a SORT
operation.

4.2.2 General Format

RELEASE record-name [FROM identifier]

4.2.3 Syntax Rules

(1) A RELEASE statement may only be used within the range of an input
procedure associated with a SORT statement for a file whose sort-merge file
description entry contains record-name. (See page VII-14, The SORT State­
ment.)

(2) Record-name must be the name of a logical record in the associated
sort-merge file description entry and may be qualified.

(3) Record-name and identifier must not refer to the same storage area.

4.2.4 General Rules

(1) The execution of a RELEASE statement causes the record named by
record-name to be released to the initial phase of a sort operation.

(2) If the FROM phrase is used, the contents of the identifier data area
are moved to record-name, ~hen the contents of record-name are released to
the sort file. Moving. takes place according to the rules specified for the
MOVE statement without the CORRESPONDING phrase. The information in the
record area is no longer available, but the information in the data area
associated with identifier is available.

(3) After the execution of the RELEASE statement, the logical record is
no longer available in the record area unless the associated sort-merge file
is named in a SAME RECORD AREA clause. The logical record is also available
to the program as a record of other files referenced in the same SAME RECORD
AREA clause as the associated sort-merge file, as well as to the file
associated with record-name. When control passes from the input procedure,
the file consists of all those records which were placed in it by the
execution of RELEASE statements.

VII-12

Sort-Merge - RETURN

4.3 THE RETURN STATEMENT

4.3.1 Function

The RETURN statement obtains either sorted records from the final phase of
a SORT operation or merged records during a MERGE operation.

4.3.2 General Format

RETURN file-name RECORD [INTO identifier] AT END imperative-statement

4.3.3 Syntax Rules

(1) File-name must be described by a sort-merge file description entry in
the Data Division.

(2) A RETURN statement may only be used within the range of an output
procedure associated with a SORTlor MERGElstatement for file-name.

(3) The INTO phrase must not be used when the input file contains logical
records of various sizes as indicated by their record descriptions. The
storage area associated with identifier and the record area associated with
file-name must not be the same storage area.

4.3.4 General Rules

(1) When the logical records of a file are described with more than one
record description, these records automatically share the same storage area;
this is equivalent to an implicit redefinition of the area. The contents of
any data items which lie beyond the range of the current data record are
undefined at the completion of the execution of the RETURN statement.

(2) The execution of the RETURN statement causes the next record, in the
order specified by the keys listed in the SORTlor MERGElstatement, to be made
available for processing in the record areas associated with the sortlor merge I
file.

(3) If the INTO phrase is specified, the current record is moved from the
input area to the area specified by identifier according to the rules for the
MOVE statement without the CORRESPONDING phrase. The implied MOVE does not
occur if there is an AT END condition. Any subscripting or indexing associated
with identifier is evaluated after the record has been returned and immediately
before it is moved to the data item.

(4) When the INTO phrase is used, the data is available in both the input
record area and the data area associated with identifier.

(5) If no next logical record exists for the file at the time of the execu­
tion of a RETURN statement, the AT END condition occurs. The contents of the
record areas associated with the file when the AT END condition occurs are
undefined. After the execution of the imperative-statement in the AT END
phrase, no RETURN statement may be executed as part of the current output
procedure.

VII-13

Sort-Merge - SORT

4.4 THE SORT STATEMENT

4.4.1 Function

The SORT statement creates a sort file by executing input procedures or by
transferring records from another file, sorts the records in the sort file on
a set of specified keys, and in the final phase of the sort operation, makes
available each record from the sort file, in sorted order, to some output
procedures or to an output file.

4.4.2 General Format

SORT file-name-1 ON {ASCENDING 1 KEY data-name-1 [, data-name-2]
DESCENDING

ON (ASCENDING 1 KEY data-name-3
lDESCENDING

COLLATING SEQUENCE IS alphabet-name]

{

INPUT PROCEDURE IS

USING file-name-2 I
r OUTPUT PROCEDURE IS

1.GIVING file-name-4

4.4.3 Syntax Rules

section-name-1 n=UGH1
[, file-name-3] ••• I
section-name-3 [{=UGH}

[, data-name-4]

section-name-2 J}

section-name-4]}

. . . J ...

(1) File-name-1 must be described in a sort-merge file description entry
in the Data Division.

(2) Section-name-I represents the name of an input procedure. Section­
name-3 represents the name of an output procedure.

(3) File-name-2,lfile-name-3land file-name-4 must be described in a file
description entry, not in a sort-merge file description entry, in the Data
Division. The actual size of the logical record(s) described for file-name-2,

lfile-name-3land file-name-4 must be equal to the actual size of the logical
record(s) described for file-name-1. If the data descriptions of the elemen­
tary items that make up these records are not identical, it is the programmer's
responsibility to describe the corresponding records in such a manner so as to
cause equal amounts of character positions to be allocated for the correspond­
ing records.

(4) Data-name-1, data-name-2, data-name-3, and data-name....:4 are KEY data­
names and are subject to the following rules: ·

a. The data items identified by KEY data-names must be described in
records associated with file_;,name-1.

VII-14

Sort-Merge - SORT

b. KEY data-names may be qualified.

c. The data items identified by KEY data-names must not be variable
length items.

d. If file-name-1 has more than one record description, then the data
items identified by KEY data-names need be described in only one of the record
descriptions.

e. None of the data items identified by KEY data-names can be
described by an entry which either contains an OCCURS clause or is subordinate
to an entry which contains an OCCURS clause.

(5) The words THRU and THROUGH are equivalent.

(6) SORT statements may appear anywhere except in the declaratives portion
of the Procedure Division or in an input or output procedure associated with a
SORTlor MERGE]statement.

(7) No more than one file-name from a multiple file reel can appear in
the SORT statement.

4.4.4 General Rules

(1) In Level 1, the Procedure Division of a program contains one SORT
statement and a STOP RUN statement in the first non-declarative portion.
Other sections consist of only the input and output procedures associated
with the SORT statement.

(2) In Level 2, the Procedure Division may contain more than one SORT
statement appearing anywhere except:

a. in the declaratives portion, or

b. in the input and output procedures associated with a SORT or
MERGE statement.

(3) The data-names following the word KEY are listed from left to right in
the SORT statement in order of decreasing significance without regard to how
they are divided into KEY phrases. In the format; data-name.:..1 is the major
key, data-name-2 is the next most significant key, etc.

a. When the ASCENDING phrase is specified, the sorted sequence will
be from the lowest value of the contents of the data items identified by the
KEY data-names to the highest value, according to the rules for comparison of
operands in a relation condition.

b. When the DESCENDING phrase is specified, the sorted sequence will
be from the highest value of the contents of the data items identified by the
KEY data-names to the lowest value, according to the.rules for comparison of
operands in a relation condition.

(4) The collating sequence that applies to the comparison of the nonnumeric
key data items specified is determined in the following order of precedence:

VII-15

Sort-Merge - SORT

a.. First, the collating sequence established by the COLLATING
SEQUENCE phrase, if specified, in the SORT statement ..

b. Second, the collating sequence established as the program
collating sequence.

(5) The input procedure must consist of one or more sections that appear
contiguously in a source program and do not form a part of any output proce­
dure. In order to transfer records to the file referenced by file-name-1, the
input procedure must include the execution of at least one RELEASE statement.
Control must not be passed to the input procedure except when a related SORT
statement is being executed. The input procedure can include any procedures
needed to select, create, or modify records. The restrictions on the proce­
dural statements within the input procedure are as follows:

a. The input procedure must not contain any SORTlor MERGElstatements.

b. The input procedure must not contain any explicit transfers of
control to points outside the input procedure; ALTER, GO TO, and PERFORM
statements in the input procedure are not permitted to refer to procedure­
names outside the input procedure. COBOL statements are allowed that will
cause an implied trarisfer of control to declaratives.

c. The remainder of the Procedure Division must not contain any
transfers of control to points inside the input procedure; ALTER, GO TO and
PERFORM statements in the remainder of the Procedure Division must not refer
to procedure-names within the input procedure.

(6) If an input procedure is specified, control is passed to the input
procedure before file-name-I is sequenced by the SORT statement. The compiler
inserts a return mechanism at the end of the last section in the input proce­
dure and when control passes the last statement in the input procedure, the
records that have been released to file-name-I .are sorted.

(7) The output procedure must consist of one or more sections that appear
contiguously in a source program and do not form part of any input procedure.
In order to make sorted records available for processing, the output procedure
must include the execution of at least one RETURN statement. Control must not
be passed to the output procedure except when a related SORT statement is being
executed. The output procedure may consist of any procedures needed to select,
modify or copy the records that are being returned, one at a time in sorted
order, from the sort file. The restrictions on the procedural statements with­
in the output procedure are as follows:

a. The output procedure must not contain any SORT(or MERGElstatements.

b. The output procedure must not contain any explicit transfers of
control to points outside the output procedure; ALTER, GO TO, and PERFORM
statements in the output procedure are not permitted to refer to procedure­
names outside the output procedure.. COBOL statements are allowed that will
cause an implied transfer of control to declaratives.

c. The remainder of the Procedure Division must not contain any trans­
fers of control to points inside the output procedure; ALTER, GO TO and PERFORM
statements in the remainder of the Procedure Division are not permitted to
refer to procedure-names within the output procedure.

VII-16

Sort-Merge - SORT

(8) If an output procedure is specified, control passes to it after file­
name-I has been sequenced by the SORT statement. The compiler inserts a return
mechanism at the end of the last section in the output procedure and when
control passes the last statement in the output procedure, the return mechanism
provides for termination of the sort and then passes control to the next
executable statement after the SORT statement. Before entering the output
procedure, the sort procedure reaches a point at which it can select the
next record in sorted order when requested. The RETURN statements in the
output procedure are the requests for the next record.

(9) Segmentation as defined in Section IX can be applied to programs
containing the SORT statement. However, the following restrictions apply:

a. If a SORT statement appears in a section that is not in an inde­
pendent segment, then any input procedures or output procedures referenced
by that SORT statement must appear:

1) Totally within non-independent segments, or

2) Wholly contained in a single independent segment.

b. If a SORT statement appears in an independent segment, then any
input procedures or output procedures referenced by that SORT statement must
be contained:

1) Totally within non-independent segments, or

2) Wholly within the same independent segment as that SORT
statement.

(IO) If the USING phrase is specified, all the records in file-name-2landl
lfile-name-3lare transferred automatically to file-name-1. At the time of
execution of the SORT statement, file-name-2land file-name-3\must not be open.
The SORT statement automatically initiates the processing of, makes available
the logical records for, and terminates the processing of file-name-2fand file-I

lname-3.l These implicit functions are performed such that any associated USE
procedures are executed. The terminating function for all files is performed
as if a CLOSE statement, without optional phrases, had been executed for each
file. The SORT statement also automatically performs the im licit functions
of moving the records from the file area of file-name-2 and file-name-3 to the
file area for file-name-I and the release of records to the initial phase of
the sort operation.

(11) If the GIVING phrase is specified, all the sorted records in file­
name-I are automatically written on file-name-4 as the implied output procedure
for this SORT statement. At .the time of execution of the SORT statement file­
name-4 must not be open. '.!'he SORT statement automatically initiates the
processing of, releases the logical records to, and terminates the processing
of file-name-4. These implicit functions are performed such that any asso­
ciated USE procedures are executed •. The terminating function is performed as
if a CLOSE statement, without optional phrases, had been executed for the file.
The SORT statement also automatically performs the implicit functions of the
return of the sorted records from the final phase of the sort operation and
the moving of the records from the file area for file.;...na.me-I to the file area
for file-name-4.

VII-17

Report Writer - Introduction

1. INTRODUCTION TO THE REPORT WRITER MODULE

1. 1 FUNCTION

The Report Writer module provides the f acllity for producing reports by
specifying -the physical appearance of a report rather than requiring specifi­
cation of the detailed procedures necessary to produce that report.

A hierarchy of levels is used in defining the logical organization of a
report. Each report is divided into report groups, which in turn are divided
into sequences of items. Such a hierarchical structure permits explicit
reference to a report group with implicit reference to other levels in the
hierarchy. A report group contains one or more items to be presented on one
or more lines.

1. 2 LANGUAGE -CONCEPTS

1.2.1 LINE-COUNTER

The reserved word LINE-COUNTER is a name for a special register that is
generated for each report description entry in the Report Section of the Data
Division. The implicit description is that of an unsigned integer that must
be capable of representing a range of values from 0 through 999999. The usage
is defined by the implementor. The value in LINE-COUNTER is maintained by
the Report Writer Control System, and is used to determine the vertical
positioning of a report. The value in LINE-COUNTER may be accessed by
Procedure Division statements; however, only the RWCS may change the value of
LINE-COUNTER.

1.2.2 PAGE-COUNTER

The reserved word PAGE-COUNTER is a name for a special register that is
generated for each report description entry in the Repo-rt Section of the Data
Division. The implicit description is that of an unsigned integer that must
be capable of representing a range of values from 1 through 999999. The usage
is defined by the implementor. The value in PAGE-COUNTER is maintained by the
Report Writer Control System and is used by the program to number the pages of
a report. The value in PAGE-COUNTER may be altered by Procedure Division
statements.

1.2.3 SUBSCRIPTING

In the Report Section, neither a sum counter nor the special registers
LINE-COUNTER and PAGE-COUNTER can be used as a subscript ..

1. 3 RELATIONSHIP WITH SEQUENTIAL I-0 MODULE

A report file is a sequential file as described in the Sequential I-0 module
and is subject to the restrictions in the following paragraph.

An OPEN statement, specifying either the OUTPUT or EXTEND phrase, must have
been executed prior to the execution of the INITIATE statement, and a CLOSE,
without the REEL or UNIT phrase, _must be executed for this file subsequent to
the execution of the.TERMINATE statement. No other input-output statement may
be execut~d for this file ..

VIII-1

Report Writer ~ Report Section

2. DATA DIVISION IN THE REPORT WRITER MODULE

2.1 FILE SECTION

A REPORT clause is required in the FD entry to list the names of the
reports to be produced.

2.2 REPORT SECTION

In the Report Section the description of each report must begin with a
report description entry (RD entry) and be followed by the entries that
describe the report groups within the report.

2.2.1 Report Description Entry

In addition to naming the report, the RD entry defines the format of each
page of the report by specifying the vertical boundaries of the region within
which each type of report group may be printed. The RD entry also specifies
the control data items. When the report is produced, changes in the values
of the control data items cause the detail information of the report tp be
processed in groups called control groups.

Each report named in the REPORTS clause of an RD entry in the File Section
must be the subject of an RD entry in the Report Section. Furthermore each
report in the Report Section must be named in one and only one FD entry.

2.2.2 Report Group Description Entry

The report groups that will comprise the report are described following the
RD entry. The description of each report group begins with a report group
description entry; that is an entry that has a 01 level-number and a TYPE
clause. Subordinate to the report group description· entry, there may appear
group and elementary entries that further describe the characteristics of the
report group.

VIII-2

Report Writer - File Description

2.3 THE FILE DESCRIPTION - COMPLETE ENTRY SKELETON

2.3.1 Function

The file description furnishes information concerning the physical struc­
ture, identification and report names pertaining to a given report file.

2.3.2 General Format

FD file-name

[; BLOCK CONTAINS (integer-1 TO] integer-2 {~iERS1]
(; RECORD CONTAINS [integer-3 TO] integer-4 CHARACTERS]

f RECORD IS } { STANDARD)
LABEL 1RECORDS ARE OMITTED

[; VALUE OF implementor-name-I IS { data-name-1}
literal-1

[· implementor-name-2 IS { data-name-2}]
literal-2

[; CODE-SET IS alphabet-name

f REPORT IS l
;lREPORTS AREJ

report-name-1 [, repo~t-name-2]

2.3.3 Syntax Rules

.. · 1

(1) The level indicator FD identifies the beginning of a file description
and must precede the file-name.

(2) The clauses which follow the name of the file.are option~! in many
cases, and their order of appearance is immaterial.

(3) The file referenced by file-name must be defined, implicitly or
explicitly in the FILE-CONTROL paragraph of the Environment Division, as a
sequential file. Further, each report named in the REPORT clause must be
the subject of a.report· description entry in the Report Section.

(4) No record description entries are permitted for file-name and no
input-output statements, except the OPEN with either the OUTPUT or EXTEND
phrase and the CLOSE without either the REEL.or UNIT phrase~ may be executed
for this file.

VIII-3

Report Writer - Report Description

2.4 THE REPORT DESCRIPTION - COMPLETE ENTRY SKELETON

2.4.1 Function

The report description entry names a report, specifies any identifying
characters to be appended to each print line, and describes the physical
structure and organization of that report.

2.4.2 General Format

RD report-name

(; CODE literal-I j

[; {
CONTROL IS 1 {data-name-1 [, data-name-2] •••
CONTROLS ARE FINAL (,data-name-I [, data-name-2] ... 1}]

r PAGE [
LIMIT IS]
LIMITS ARE integer-I [

LINE]
LINES f, HEADING integer-2)

(, FIRST DETAIL integer-3] [, LAST DETAIL integer-4 1
(, FOOTING integer-5] •

2.4.3 Syntax Rules

(I) The report-name must appear in one and only one REPORT clause.

(2) The order of appearance of the clauses following the report-name
is immaterial.

(3) Report-name is thehighest permissible qualifier that may be specified
for LINE-COUNTER, PAGE-COUNTER and all data-names defined within the Report
Section.

(4) One or more report group description entries must follow the report
description entry.

2.4.4 PAGE-COUNTER Rules

(1) PAGE-COUNTER is the reserved word to reference a special register
that is automatically created for each report specified in the Report Section.
(See page VIII-1, PAGE-COUNTER.)

(2) In the Report Section, a reference to PAGE-COUNTER can only appear in
a SOURCE clause. Outside of the Report Section, PAGE-COUNTER may be used in
any context in which a data~name of integral value can appear.

(3) If more than one PAGE-COUNTER exists in a program, PAGE-COUNTER must
be qualified by a report-name whenever it is referenced in the Procedure
Division.

-vru-4

Report Writer - Report Desaription

In the Report Section an unqualified reference to .PAGE-COUNTER is
implicitly qualified by the name of the report in which the reference is made.
Whenever the PAGE-COUNTER of a different report is referenced, PAGE-COUNTER
must be explicitly qualified by that report-name. (See page II-1, Name
Characteristics, for constraints that apply when Report Writer is associated
with Nucleus, Level 1.)

(4) Execution of the INITIATE statement causes the Report Writer Control
System to set the PAGE-COUNTER of the referenced report to one (1).

(5) PAGE-COUNTER is automatically incremented by one (1) each time the
Report Writer Control System executes a page advance.

(6) PAGE-COUNTER may be altered by Procedure Division statements.

2.4.5 LINE-COUNTER Rules

(1) LINE-COUNTER is the reserved word used to reference a special register
that is automatically created for each report specified in the Report Section.
(See page VIII-I, LINE-COUNTER.)

(2) In the Report Section a reference to LINE-COUNTER can only appear in
a SOURCE clause. Outside the Report Section, LINE-COUNTER may be used in
any context in which a data-name of integral value may appear. However, only
the Report Writer Control System can change the contents of LINE-COUNTER.

(3) If more than one LINE-COUNTER exists in a program, LINE-COUNTER must
be qualified by a report-name whenever it is referenced in the Procedure
Division.

In the Report Section an unqualified reference to LINE-COUNTER is
implicitly qualified by the name of the report in which the reference is made.
Whenever the LINE-COUNTER of a different report is referenced, LINE-COUNTER
must be explicitly qualified by that report-name. (See page II-1, Name
Characteristics, for constraints that apply when Report Writer is associated
with Nucleus, Level 1.)

(4) Execution of an INITIATE statement causes the Report Writer Control
System to set the LINE-COUNTER of the referenced report to zero (O). The
Report Writer Control System also automatically resets LINE-COUNTER to zero
each time it executes a page advance.

(5) The value of LINE-COUNTER is not affected by the processing of
non-printable report groups nor by the processing of a printable report group
whose printing is suppressed by means of the SUPPRESS statement.

(6) At the time each print line is presented, the value of LINE-COUNTER
represents the line number on which the print line is presented. The value of
LINE-COUNTER after the presentation of a report group is governed by the
presentation rules for the report group. (See paragraph 2.5.5, Presentation
Rules Tables, beginning on page VIII-9.)

VIII-5

Report Writer - Report Group Description

2.5 THE REPORT GROUP DESCRIPTION - COMPLETE SKELETON

2.5.1 Function

The report group description entry specifies the characteristics of a
report group and of the individual i-tems within a report group.

2.5.2 General Format

Format 1

01 [data-name-I]

[
; LINE NUMBER IS {integer-I ON NEXT PAGEn]

PLUS integer-2)

[; NEXT GROUP IS {!~~~g~~~;ger-4}]
NEXT PAGE ----

TYPE IS

{;1'0RT HEADING)

{~~GE HEADINGJ

{~NTROL HEADING}

{:TAIL 1
{~NTROL FOOTING}

{~~GE FOOTING}

r::.PORT FOOTING}

[; [USAGE IS) DISPLAY] •

Format2

level-number [data-name-1)

{
data-name-2]
FINAL

{
data-name-3}
FINAL

[
; LINE NUMBER IS ·{integ:r-1 [ON NEXT ~n.]
-- · PLUS integer-2 j

[; (USAGE IS] DISPLAY 1 .

VIlI-6

Report Writer - Report Group Desaription

Format 3

level-number [data-name-!]

[; BLANK WHEN ZERO]

[; GROUP INDICATE]

[; { JUSTIFIED} RIGHT]
JUST

[
. LINE NUMBER IS { integ:r-1 [ON NEXT PAGE J}]
' ~~ PLUS integer-2

[; COLUMN NUMBER IS integer-3]

{
PICTURE} PIC IS character-string

SOURCE IS identifier-I

VALUE IS literal

{; SUM identifier-2 [, identifier-3]

[UPON data-name-2 [, data-name-3] • • • J} ...
r RESET ON { ~~~~name-4}1

[; [USAGE IS] DISPLAY] •

2.5.3 Syntax Rules

(1) The report group description entry can appear only in the Report
Section.

(2) Except for the data-name clause, which when present must immediately
follow the level-number, the clauses may be written in any sequence.

(3) In Format 2 the level-number may be any integer from 02 to 48
inclusive. In Format 3 the level-number may be any integer from 02 to
49 inclusive.

(4) The description of a report group may consist of one, two or three
hierarchic levels:

a. The first entry that describes a report group must be a Format 1
entry.

b. Both Format 2 and Format 3 entries may be immediately subordinate
to a Format 1 entry.

VIII-7

Report Writer - Report Group Description

c. At least one Format 3 entry must be immediately subordinate to a
Format 2 entry.

d. Format 3 entries must be elementary.

(S) In a Format 1 entry, data-name-1 is required only when:

a. A DETAIL report group is referenced by a GENERATE statement,

b. A DETAIL report group is referenced by the UPON phrase of a
SUM clause,

c. A report group is referenced in a USE BEFORE REPORTING sentence,

d. The name of a CONTROL FOOTING report group is used to qualify a
reference to a sum counter.

(6) A Format 2 entry must contain at least one optional clause.

(7) In a Format 2 entry, data-name-1 is optional. If present it may be
used only to qualify a sum counter reference.

(8) In the Report Section, the USAGE clause is used only to declare the
usage of printable items.

a. If the USAGE clause appears in a Format 3 entry, that entry must
define a printable item.

b. If the USAGE clause appears in a Format 1 or Format 2 entry, at
least one subordinate entry must define a printable item.

(9) An entry that contains a LINE NUMBER clause must not have a subordi­
nate entry that also contains a LINE NUMBER clause.

(10) In Format 3:

a. A GROUP INDICATE clause may appear only in a TYPE DETAIL report
group.

b. A SUM clause may appear only in a TYPE CONTROL FOOTING report group.

c. An entry that contains a COLUMN NUMBER clause but no LINE NUMBER
clause must be subordinate to an entry that contains a LINE NUMBER clause.

d. Data-name-1 is optional but may be specified in any entry. Data­
name-1, however, may be referenced only if the entry defines a sum counter.

e. A LINE NUMBER clause must not be the only clause specified.

f. An entry that contains a VALUE clause must also have a COLUMN
NUMBER clause.

(11) The following table shows all permissible clause combinations for a
Format 3 entry. The table is read from left to right along the selected row.

VIII-8

Report Wrviter - Report Group Description

An 'M' indicates that the presence of the clause is mandatory.

A 'P' indicates that the presence of the clause is permitted, but
not required.

A blank indicat·es that the clause is not permitted.

CLAUSES

BLANK GROUP PIC COLUMN SOURCE SUM VALUE JUST WHEN INDICATE USAGE LINE
ZERO

M M p

M M M p p p
..

M p M p p p p

M p M p p p p

M M M p p p p

Permissible Clause Combinations in Format 3 Entries

2.5.4 General Rules

(1) Format 1 is the report group entry. The report group is defined by
the contents of this entry and all of its subordinate entries.

2.5.5 Presentation Rules Tables

2.5.5.1 Description

.The tables and rules on the following pages specify:

(1) The permissible combinations of LINE NUMBER and NEXT GROUP clauses
for each type of report group,

(2) The requirements that are placed on the use of these clauses, and

(3) The interpretation that the RWCS gives to these clauses.

2.5.5.2 Organization

There is an individual presentation rules table for each of the following
types of report groups: REPORT HEADING, PAGE HEADING, PAGE FOOTING, REPORT
FOOTING. In addition, DETAIL report groups, CONTROL HEADING report groups,
and CONTROL FOOTING report groups are treated jointly in the Body Group
Presentation Rules Table. (See paragraph 2.5.5.8, The Body Group Presentation
Rules Table, beginning on page VIII-15.)

Columns 1 and 2 of a presentation rules table list all of the permissible
combinations of LINE NUMBER ?nd NEXT GROUP clauses for the designated_ report
group TYPE. Consequently, for the purpose of identifying the set of presen-

VIII-9

Report Writer - Report Group Description

tation rules that apply to a particular combination of LINE NUMBER and NEXT
GROUP clauses, a presentation rules table is read from left to right, along
the selected row.

The applicable rules columns of a presentation rules table are partitioned
into two parts. The first part specifies the rules that apply if the report
description contains a PAGE clause, and the second part specifies the rules
that apply if the PAGE clause is omitted. The purpose of the rules named in
the applicable rules columns is discussed below:

(1) Upper Limit Rules and Lower Limit Rules. These rules specify the
vertical subdivisions of the page within which the specified report group
may be presented.

In the absence of a PAGE clause the printed report.is not considered
to be partitioned into vertical subdivisions. Consequently, within the tables
no upper limit rule and lower limit rule is specified for a report description
in which the PAGE clause is omitted.

(2) Fit Test Rules. The fit test rules are applicable only to body groups,
and hence fit test rules are specified only within the Body Group Presentation
Rules Table. At object time the RWCS applies the fit test rules to determine
whether the designated body group can be presented on the page to which the
report is currently positioned.

However, even for body groups there are no fit test rules when the
PAGE clause is omitted from the report description entry.

(3) First Print Line Position Rules. The first print line position rules
specify where on the report medium the RWCS shall present the first print line
of the given report group.

The presentation rule tables do not specify where on the report medium
the RWCS shall present the second and subsequent print lines (if any) of a
report group. Certain general rules determine where the second and subsequent
print lines of a report group shall be presented. Refer to the LINE NUMBER
clause general rules for this information. (See page VIII-33, The LINE NUMBER
Clause.)

(4) Next Group Rules. The next group rules relate to the proper use of
the NEXT GROUP clause.

(5) Final LINE-COUNTER Setting Rules. The terminal values that the RWCS
places in LINE-COUNTER after presenting report groups are specified by the
final LINE-COUNTER setting rules.

2.5.5.3 LINE NUMBER Clause Notation

Column 1 of the presentation rules table uses a shorthand notation to
describe the sequence of LINE NUMBER clauses that may appear in the descrip­
tion of a report group. The meaning of the abbreviations used in column 1.
is as follows:

VIII-10

Report Writer - Report Group Description

(1) The letter 'A' represents one or more absolute LINE NUMBER clauses,
none of which have the NEXT PAGE phrase, that appear ·in consecutive order
within the sequence of LINE NUMBER clauses in the report group description
entry.

(2) The letter 'R' represents one or more relative LINE NUMBER clauses
that appear in consecutive order within the sequence of LINE NUMBER clauses
in the report group description entry.

(3) The letters 'NP' represent one or more absolute LINE NUMBER clauses
that appear in consecutive order within the sequence of LINE NUMBER clauses
in the report group description entry, with the phrase NEXT PAGE appearing in
the first, and only in the first, LINE NUMBER clause.

When two abbreviations appear together, they refer to a sequence of LINE
NUMBER clauses that consists of the two specified consecutive sequences. For
example 'AR' refers to a report group description entry within which the 'A'
sequence (defined in rule 1 above) is innnediately followed by the 'R' sequence
(defined in rule 2 above). ·

2.5.5.4 LINE NUMBER Clause Sequence Substitutions

Where 'AR' is shown to be a permissible sequence in the presentation rules
table, 'A' is also permissible and the same presentation rules are applicable.

When 'NP R' is shown to be a permissible sequence in the presentation rules
table, 'NP' is also permissible and the same presentation rules are applicable.

2.5.5.5 Saved Next Group Integer Description

Saved next group integer is a data item that is addressable only by the
RWCS. When an absolute NEXT GROUP clause specifies a vertical positioning
value which cannot be acconnnodated on the current page, the RWCS stores that
value in saved next group integer. After page advance processing, the RWCS
positions the next body group using the value stored in saved next group
integer.

2.5.5.6 Table 1 - REPORT HEADING Group Presentation Rules Table

The table on page VIII-12 points to the appropriate presentation rules for
all permissible combinations of LINE-NUMBER and NEXT GROUP clauses in a REPORT
HEADING report group.

2.5.5.6.1 Table 1 Presentation Rules

(1) Upper Limit Rule. The first line n.umber on which the REPORT HEADING
report group can be presented is the line number specified by the HEADING
phrase of the PAGE clause.

(2) Lower Limit Rules

a. The last line number on which the REPORT HEADING report group can
be presented is the line number that is obtained by subtracting 1 from the
value of integer-3 of the FIRST DETAIL phrase of the PAGE clause. ,.,,.

VIII-11

<!
H
H
H
I

N

Applicable Rules ***

** If the PAGE clause is specified. If the PAGE clause
is omitted.

First Final First Final
Sequence of Print LINE- Print LINE-
LINE NUMBER NEXT GROUP Upper Lower Line Next COUNTER Line COUNTER

clauses*

AR

AR

AR

AR

R

R

R

R

clause Limit Limit Position Group Setting Position Setting

Absolute 1 2a 3a 4a 5a Illegal + Combination

Relative 1 2a 3a 4b 5b Illegal c mb. . + o 1nat1on

NEXT PAGE 1 2b 3a 4c 5c Illegal Comb ina ti on +

1 2a 3a Sd. Illegal Combination+

Absolute 1 2a 3b 4a Sa Illegal ++ Combination

Relative 1 2a 3b 4b 5b 3d 5b

NEXT PAGE 1 2b 3b 4c 5c Illegal c mb. . ++ o 1nat1on

1 2a 3b 5d 3d 5d

3c 5e 3c Se

* See page VIII-10, LINE NUMBER Clause Notation, for a description of the
abbreviations used in· column 1.

** A blank entry in column 1 or column 2 indicates that the named clause is
totally absent from the report group description entry.

*** A blank entry in an applicable rules column indicates the absence of the
named rule for the given combination of LINE NUMBER and NEXT GROUP clauses.

+ See page VIII-33, The LINE NUMBER Clause.

++ See page VIII-35, The NEXT GROUP Clause.

t-3

~
(1)

......

~
'1::1
0

~
::II
t:i::I

~
H
!Zl
Ci)

Ci)
11
0

~ .§
'1::1

()
~

11 tl-
(1)
(/)

~ (1)
::s
rt tl-
P> ~
rt ~
f-1•
0
::s

~
~
~

'\j ()
(1) ~ (/) tl-

t-3
~ ~ ()
~ (1)

~
~
Q

~.
'\j
tl-
~.
()
~

Rf3port Writer - Report Group Desaription

b. The last line number on which the REPORT HEADING report group can
be presented is the line number specified by integer-I of the PAGE clause.

(3) First Print Line Position Rules

a. The first print line of the REPORT HEADING report group is pre­
sented on the line nutrb er specified by the integer of its LINE NUMBER clause.

b. The first print line of the REPORT HEADING report group is pre­
sented on the line number obtained by adding the integer of the first LINE
NUMBER clause and the value obtained by subtracting 1 from the value of
integer-2 of the HEADING phrase of the PAGE clause.

c. The REPORT HEADING report group is not presented.

d. The first print line of the REPORT HEADING report group is pre­
sented on the line number obtained by adding the contents of its LINE-COUNTER
(in this case, zero) to the integer of the first LINE NUMBER clause.

(4) Next Group Rules

a. The NEXT GROUP integer must be greater than the line nuni:>er on
which the final print line of the REPORT HEADING report group is presented.
In addition, the NEXT GROUP integer must be less than the line number speci­
fied by the value of integer-3 of the FIRST DETAIL phrase of the PAGE clause.

b. The sum of the NEXT GROUP integer and the line number on which the
final print line of the REPORT HEADING report group is presented must be less
than the value of integer-3 of the FIRST DETAIL phrase of the PAGE clause.

c. NEXT GROUP NEXT PAGE signifies that the REPORT HEADING report
group is to be presented entirely by itself on the first page of the report.
The RWCS processes no other report group while positioned to the first page
of the report.

(5) Final LINE-COUNTER Setting Rules

a. After the REPORT HEADING report group is presented, the RWCS places
the NEXT GROUP integer into LINE-COUNTER as the final LINE-COUNTER setting.

b. After the REPORT HEADING report group is presented, the RWCS places
the sum of the NEXT GROUP integer and the line number on which the final print
line of the REPORT HEADING report group was presented into LINE-COUNTER as the
final LINE-COUNTER s·et ting.

c. After the REPORT HEADING report group is presented, the RWCS places
zero into LINE-COUNTER as the final LINE-COUNTER setting.

d. After the REPORT HEADING report group is presented, the final LINE­
COUNTER setting is the line number on which the final print line of the REPORT
HEADING report group was presented.

e. LINE-COUNTER is unaffected by the processing of a non-printable
report group.

VIII-13

Report Writer - Report Group Description

2.5.5.7 Table 2 - PAGE HEADING Group Presentation Rules Table

The following table points to the appropriate presentation rules for all
permissible combinations of LINE NUMBER and NEXT GROUP clauses in a PAGE
HEADING report group.

Table 2 - PAGE HEADING Group Presentation Rules Table

Applicable Rules ***
**

If the PAGE clause is specified ****

Sequence of Final LINE-
LINE NUMBER NExr GROUP Upper Lower First Print Next COUNTER

clauses* clause Limit Limit Line Position Group Setting·

AR 1 2 3a 4a

R 1 2 3b 4a

Jc 4b

* See page VIII-10, LINE NUMBER Clause Notation, for a description of the
abbreviations used in column 1.

** A blank entry in column 1 or column 2 indicates that the named clause is
totally absent from the report group description entry.

*** A blank entry in an applicable rules column indicates the absence of the
named rule for the given combination of LINE NUMBER and NEXT GROUP clauses.

**** If the PAGE clause is omitted from the report description entry, then a
PAGE HEADING report group may not be defined. (See page VIII-45, The
TYPE Clause.)

2.5.5.7.1 Table 2 Presentation Rules

(1) Upper Limit Rules. If a REPORT HEADING· report group has been presented
on the page on which the PAGE HEADING report group is to be presented, then the
first line number on which the PAGE HEADING report group can be presented is
one greater than the final LINE-COUNTER setting established by the REPORT
HEADING.

Otherwise the first line number on which the PAGE HEADING report group
can be presented is the line number specified by the HEADI~G phrase of the
PAGE clause.

(2) Lower Limit Rule. The last line number on which the PAGE- HEADING
report group can be presented is the line number that is obtained by .subtract­
ing one (1) from the value of integer-3 of the FIRST DETAIL phrase of the PAGE
clause.

VIII-14

Report Writer - Report Group Description

(3) First Print Line Position Rules.

a. The first print line of the PAGE HEADING report group is presented
on the line nuni>er specified by the integer of its LINE NUMBER clause.

b. If a REPORT HEADING report group has been presented on the page .on
which the PAGE HEADING report group is to be presented, then the sum of the
final LINE-COUNTER setting established by the REPORT HEADING report group and
the integer of the first LINE NUMBER clause of the PAGE HEADING report group
defines the line number on which the first print line of the PAGE HEADING
report group is presented.

Otherwise the sum of the integer of the first LINE NUMBER clause
of the PAGE HEADING report group and the va~ue obtained by subtracting one (1)
from the value of integer-2 of the HEADING phrase of the PAGE clause defines
the line number on which the first print line of the· PAGE HEADING report group
is presented.

c. The PAGE HEADING report group is not presented.

(4) Final LINE-COUNTER Setting Rules

a. The final LINE-COUNTER setting is the line number on which the
final print line of the PAGE HEADING report group was presented.

b. LINE-COUNTER is unaffected by the processing of a non-printable
report group.

2.5.5.8 Table 3 - Body Group Presentation Rules Table

The table on page VIII-16 points to the appropriate presentation rules for
all permissible combinations of LINE NUMBER and NEXT GROUP clauses in CONTROL
HEADING, DETAIL and CONTROL FOOTING report groups.

2.5.5.8.1 -Table 3 Presentation Rules

(1) Upper Limit Rule. The first line number on which a body group can be
presented is the line number specified by the FIRST DETAIL phrase of the PAGE
clause.

(2) Lower Limit Rules. The last line number on which a CONTROL HEADING
report group or DETAIL report group can be presented is the line number
specified by the LAST DETAIL phrase of the PAGE clause.

The last line number on which a CONTROL FOOTING report group can be
presented is the line number specified by the FOOTING phrase of the PAGE clause.

(3) Fit Test Rules.

a. If the value in LINE-COUNTER is less than the integer of the first
absolute LINE NUMBER clause, then the body group shall be presented on the
page to which the report is currently positioned.

Otherwise the RWCS executes page advance processing. After the
PAGE HEADING report group (if defined) has been processed, the RWCS determines

VIII-15

<I
H
H
H
I

I-'

°'

Applicable Rules ***

** If the PAGE clause is specified.
If the PAGE clause

is omitted.

Sequence First Final First Final
of LINE Print LINE- Print
NUMBER NEXI GROUP Upper Lower Fit Line Next COUNTER Line
clauses* clause Limit Limit Test Position Group Setting Position

AR

AR

AR

AR

R

R

R

R

NP R

NP R

NP R

NP R

Absolute 1 2 3a 4a 5 6a Illegal

Relative 1 2 3a 4a 6b Illegal

NEX! PAGE 1 2 3a 4a 6c Illegal

1 2 3a 4a 6d Illegal

Absolute 1 2 3b 4b 5 6a Illegal

Relative 1 2 3b 4b 6b 4d

NEXT PAGE 1 2 3b 4b 6c Illegal

1 2 3b 4b 6d 4d

Absolute 1 2 3c 4a 5 6a Illegal

Relative 1 2 3c 4a 6b Illegal

NEX! PAGE 1 2 3c 4a 6c Illegal

1 2 3c 4a 6d Illegal

4c 6e 4c

* See page VIII-10, LINE NUMBER Clause Notation, for a description of the
abbreviations used in column 1.

** A blank entry in column 1 or column 2 indicates that the named clause is
totally absent from the report group description entry.

LINE-
COUNTER
Setting

Combination +
Combination +
Combination +
Combination +
Combination ++

6f

Combination ++
6d

Combination +
Combination +
Combination +
Combination +

6e

*** A blank entry in an applicable rules column indicates the absence of the
named rule for the given combination of LINE NUMBER and NEXT GROUP clauses.

+ See page VIII-33, The LINE NUMBER Clause.

++ See page VIII-35, The NEXT GROUP Clause.

t-3

~
I-'
(I)

w

tld
0
0...
'<
Cil
11
0

.a
""d ~ 11
(I) ~
Cll c
(I) "'$
i::s ~
rt
SU

~ rt
0 ~
i::s ~

~
"'$

I-'
(I) ~ Cll

t-3
~ c

~ "'$
~

I-'
(I)

~
C5

~

~
0)

~

~-
~
~

~-c
~

Report WPiter - Report Group Description

whether the saved next group integer location was set when the final body group
was presented on the preceding page. (See final LINE-COUNTER setting rule 6a
on page VIII-18.) If the saved next group integer was not so set, the body
group shall be presented on the page to which the report is currently positioned.
If the saved next group integer was so set, the RWCS moves the saved next
group integer into LINE-COUNTER, resets the saved next group integer to zero,
and reapplies fit test rule 3a.

b. If a body group has been presented on the page to which the report
is currently positioned, the RWCS computes a trial sum in a work location. The
trial sum is computed by adding the contents of LINE-COUNTER to the integers of
all LINE NUMBER clauses of the report group. If the trial sum is not greater
than the body group's lower limit integer, then the report group is presented
on the current page. If the trial sum exceeds the body group's lower limit
integer, then the RWCS executes page advance processing. After the PAGE HEADING
report group (if defined) has been processed, the RWCS reapplies fit test rule 3b.

If no body group has yet been presented on the page to which the
report is currently positioned, the RWCS determines whether the saved next group
integer location was set when the final body group was presented on the preced­
ing page. (See final LINE-COUNTER setting rule 6a on page VITI-18.) If the
saved next group integer was not so set, the body group shall be presented on
the page to which the report is currently positioned. If the saved next group
integer was so set, the RWCS moves the saved next group integer into LINE­
COUNTER, resets the saved next group integer to zero, and computes a trial sum
in a work location.

The trial sum is computed by adding the contents of LINE-COUNTER to
the integer one (1) and the integers of all but the first LINE NUMBER clause
of the body group. If the trial sum is not greater than the body group's
lower limit integer, then the body group is presented on the current page. If
the trial sum exceeds the body group's lower limit integer, then the RWCS
executes page advance processing. After the PAGE HEADING report group (if
defined) has been processed, the RWCS presents the body group on that page.

c. If a body group has been presented on the page to which the report
is currently positioned, the RWCS executes page advance processing. After the
PAGE HEADING report group (if defined) has been processed, the RWCS reapplies
fit test rule 3c.

If no body group has yet been presented on the page to which the
report is currently positioned, the RWCS determines whether the saved next
group integer location was set when the· final body group was presented on the
preceding page. (See final LINE-COUNTER setting rule 6a on page VIII-18.) If
the saved next group integer was not so set,_ the body group shall be presented
on the page to which the report is currently positioned. If the saved next
group integer was so set, the RWCS moves the saved next group integer into
LINE-COUNTER and resets the saved next group integer to zero. If then the
value in LINE-COUNTER is less than the integer of the first absolute LINE
NUMBER clause, the body group shall be presented on the page to which the
report is currently positioned. Otherwise the RWCS executes page advance
processing. After the PAGE HEADING report group (if defined) has been processed,
the RWCS presents the body group on that page.

VIII-17

Report Writer - Report Group Desaription

(4) First Print Line Position Rules

a. The first print line of the body group is presented on the line
number specified by the integer of its LINE NUMBER clause.

b. If the value in LINE-COUNTER is equal to or greater than the line
number specified by the FIRST DETAIL phrase of the PAGE clause, and if no body
group has previously been presented on the page to which the report is current­
ly positioned, then the fi·rst print line of the current body group is presented
on the line immediately following the line indicated by the value contained in
LINE-COUNTER.

If the value in LINE-COUNTER is equal to or greater.than the line
number specified by the FIRST DETAIL phrase of the PAGE clause, and if a body
group has previously been presented on the page to which the report is current­
ly positioned, then the first print line of the current body group is presented
on the line that is obtained by adding the contents of LINE-COUNTER and the
integer of the first LINE NUMBER clause of the current body group.

If the value in LINE-COUNTER is less than the line number speci­
fied by the FIRST DETAIL phrase of the PAGE clause, then the first print line
of the body group is presented on the line specified by the FIRST DETAIL phrase.

c. The body group is not presented.

d. The sum of the contents of LlNE-COUNTER and the integer of the
first LINE NUMBER clause defines the line number on which the first print line
is presented.

(5) Next Group Rule. The integer of the absolute NEXT GROUP clause must
specify a line nuni>er that is not less than that specified in the FIRST DETAIL
phrase of the PAGE clause, and that is not greater than that specified in the
FOOTING phrase of the PAGE clause.

(6) Final LINE-COUNTER Setting Rules

a. If the body group that has just been presented is a CONTROL FOOTING
report group and if the CONTROL FOOTING report group is not associated with the
highest level at which the RWCS detected a control break, then the final LINE­
COUNTER setting is the line number on which the final print line. of the CONTROL
FOOTING report group was presented.

For all other cases the RWCS makes a comparison of the line number
on which the final print line of the body group was presented and the integer
of the NEXT GROUP clause. If the former is less than the latter, then the
RWCS places the NEXT GROUP integer into LINE-COUNTER as the final LINE-COUNTER
setting. If the former is equal to or greater than the latter, then the RWCS
places the line number specified by the FOOTING phrase of the PAGE clause into
LINE-COUNTER as the final LINE-COUNTER setting; in addition the RWCS places
the NEXT GROUP integer into the saved next group integer location.

b. If the body group that has just been presented is a CONTROL FOOTING
report group, and if the CONTROL FOOTING report group is not associated with
the highest level at which the RWCS detected a control break, then the final

VIII-18

Report Writer - Report Group Desaription

LINE-COUNTER setting is the line number on which the final print line of the
CONTROL FOOTING report group was presented.

For all other cases the RWCS computes a trial sum in a work loca­
tion. The trial sum is computed by adding the integer of the NEXT GROUP clause
to the line number on which the final print line of the body group was present­
ed. If the sum is less than the line number specified by the FOOTING phrase
of the PAGE clause, then the RWCS places that sum into LINE-COUNTER as the
final LINE-COUNTER setting. If the sum is equal to or greater than the line
number specified by the FOOTING phrase of the PAGE clause, then the RWCS
places the line number specified by the FOOTING phrase of the PAGE clause
into LINE-COUNTER as the final LINE-COUNTER setting.

c. If the body group that has just been presented is a CONTROL FOOT­
ING report group, and if the CONTROL FOOTING report group is not associated
with the highest level at which the RWCS detected a control break, then the
final LINE-COUNTER setting is the line number on which the final print line
of the CONTROL FOOTING report group was presented.

For all other cases the RWCS places the line number specified by
the FOOTING phrase of the PAGE clause into LINE-COUNTER as the final LINE­
COUNTER setting.

d. The final LINE-COUNTER setting is the line number on which the
final print line of the body group was presented.

e. LINE-COUNTER is unaffected by the processing of a non-printable
body group.

f. If the body group that has just been presented is a CONTROL FOOTING
report group, and if the CONTROL FOOTING report group is not associated with
the highest level at which the RWCS detected a control break, then the final
LINE-COUNTER setting is the line number on which the final print line of the
CONTROL FOOTING report group was presented.

For all other cases the RWCS places the sum of the line number on
which the final print line was presented and the NEXT GROUP i~teger into
LINE-COUNTER as the final LINE-COUNTER setting.

VIII-19

Report Writer - Report Group Desaription

2.5.5.9 Table 4 - PAGE FOOTING Presentation Rules

The following table points to the appropriate presentation rules for all
permissible combinations of LINE NUMBER and NEXT GROUP clauses in a PAGE
FOOTING report group.

Table 4 - PAGE FOOTING Presentation Rules Table

Applicable Rules ***

** If the PAGE clause is specified ****

Sequence of Final LINE-
LINE NUMBER NEXT GROUP Upper Lower First Print Next COUNTER

clauses* clause Limit Limit Line Position Group Setting

AR Absolute 1 2 3a 4a Sa

AR Relative 1 2 3a 4b Sb

AR 1 2 3a Sc

3b 5d

* See page VIII-10, LINE NUMBER Clause Notation, for a description of the
abbreviations used in column 1.

** A blank entry in column 1 or column 2 indicates that the named clause is
totally absent from the report group description entry.

*** A blank entry in an applicable rules column indicates the absence of the
named rule for the given combination of LINE NUMBER and NEXT GROUP clauses.

**** If the PAGE clause is omitted from the report description entry, then a
PAGE FOOTING report group may not be defined. (See page VlII-45, The
TYPE Clause.)

2.5.5.9.1 Table 4 Presentation Rules

(1) Upper Limit Rule. The first line number on which the PAGE FOOTING
report group can be presented, is the line number obtained by adding one to
the value of integer-5 of the FOOTING phrase of the PAGE clause.

(2) Lower Limit Rule. The last line number on which the PAGE FOOTING
report group can be presented is the line number specified by integer-I of
the PAGE clause.

(3) First Print Line Position Rules

a. The first print line of the PAGE FOOTING report group is presented
on the line specified by the integer of its LINE NUMBER clause.

b. The PAGE FOOTING report group is not presented •

. VIII-20

Report Writer ~ Report Group Deseription

(4) NEXT GROUP Rules

a. The NEXT GROUP integer must be greater than the line number on
which the final print line of the PAGE FOOTING report group is presented. In
addition, the NEXT GROUP integer must not be greater than the line number
specified by integer-I of the PAGE clause.

b. The sum of the NEXT GROUP integer and the line number on which the
final print line of the PAGE FOOTING report group is presented must not be
greater than the line number specified by integer-I of the PAGE clause.

(5) Final ·LINE-COUNTER Setting Rules

a. After the PAGE FOOTING report group is presented, the RWCS places
the NEXT GROUP integer into LINE-COUNTER as the final LINE-COUNTER setting.

b. After the PAGE FOOTING report group is presented, the RWCS places
the sum of the NEXT GROUP integer and the line number on which the final print
line of the PAGE FOOTING report group was presented into LINE~COUNTER as the
final LINE-COUNTER setting.

c. After the PAGE FOOTING report group is presented the final LINE­
COUNTER setting is the line number on which the final print line of the PAGE
FOOTING report group was presented.

d. LINE-COUNTER is unaffected by the processing of a non-printable
report group.

2. 5. 5.10 Table 5 - REPORT FOOTING Presentation Rules Table

The table on page VIII-22 points to the appropriate presentation rules for
all permissible combinations of LINE NUMBER and NEXT GROUP clauses in a REPORT
FOOTING report group.

2.5.5.10.1 Table 5 Presentation Rules

(1) Upper Limit Rules

a. If a PAGE FOOTING report group has been presented on the page to
which the report is currently positioned, then the first line number on which
the REPORT FOOTING report group can be presented is one greater than the final
LINE-COUNTER setting established by the PAGE FOOTING report group.

Otherwise the first line number on which the REPORT FOOTING report
group can be presented is the line number obtained by adding.one and the value
of integer-5 of the PAGE clause.

b. The first line number on which the REPORT FOOTING report group can
be presented, is the line number specified by the HEADING phrase of the PAGE'
clause.

(2) Lower Limit Rule. The last line number on which the REPORT FOOTING
report group can be presented is the line number speClfied by integer~! of
the PAGE clause.

VIII-21

<
H
H
H
I

N
N

Applicable Rules ***

** If the PAGE clause is specified. If the PAGE clause
is omitted.

First Final First
Sequence of Print LINE- Print
LINE NUMBER NEXT GROUP Upper Lower Line Next COUNTER Line
clauses* clause Limit Limit Position Group Setting Position

AR la 2 3a 4a Illegal

R la 2 3b 4a 3d

NP R lb 2 3c 4a Illegal

3e 4b 3e

* See page VI!I-10, LINE NUMBER Clause Notation, for a description of the
abbreviations used in column 1.

** A blank entry in column 1 or column 2 indicates that the named clause is
totally absent from the report group description entry.

Final
LINE-
COUNTER
Setting

c ib. • + om 1nat1on

4a

c mb. . + o 1nat1on

4b

*** A blank entry in an applicable rules column indicates the absence of the
named rule for the given combination of LINE NUMBER and NEXT GROUP clauses.

+ See page VIII-33, The LINE NUMBER Clause.

t-3

~
t-'
(1)

Vl

~
1-d
0

~

~
Q
~
G")

~
1-d 'i::s
t1 a (1) ~ fl)

* (1)
::s ~ rt

~-D>
rt

* 1-1• {\:)
0 ~ ::s

~ ~ t-'
~ (1)

fl) a
t-3 ~

~ *
c;")

1--'
~ (1)

~
t:::i
{\:)
Cl)
Q

~.
'i::s

* ~.
a
~

Report Writer - Report Group Description

(3) First Print Line Position Rules

a. The first print line of the REPORT FOOTING report group is pre­
sented on the line specified by the integer of its LINE NUMBER clause.

b. If a PAGE FOOTING report group has been presented on the page to
which the report is currently positioned, then the sum of the final LINE­
COUNTER setting established by the PAGE FOOTING report group and the integer
of the first LINE NUMBER clause of the REPORT FOOTING report group defines the
line number on which the first print line of the REPORT FOOTING report group
is presented. Otherwise the sum of the integer of ,the first LINE NUMBER
clause of the REPORT FOOTING report group, and the line number specified by
the value of integer-5 of the FOOTING phrase of the PAGE clause defines the
line number on which the first print line of the REPORT FOOTING report group
is presented.

c. The NEXT PAGE phrase in the first absolute LINE NUMBER clause
directs that the REPORT FOOTING report group is presented on a page on which
no other report group has been presented. The first print line of the REPORT
FOOTING report group is presented on the line number specified by the integer
of its LINE NUMBER clause.

d. The sum of the contents of LINE-COUNTER and the integer of the
first LINE NUMBER clause defines the line number on which the first print
line is presented.

e. The REPORT FOOTING report group is not presented.

(4) Final LINE-COUNTER Setting Rules.

a. The final LINE-COUNTER setting is the line number on which the
final print line of the REPORT FOOTING report group is presented.

b. LINE-COUNTER is unaffected by the processing of a non-printable
report group.

VIII-23

Report Writer - BLOCK CONTAINS

2.6 THE BLOCK CONTAINS CLAUSE

2.6.1 Function

The BLOCK CONTAINS clause specifies the size of a physical record.

2.6.2 General Format

BLOCK CONTAINS [integer-1 TO) integer-2 { ~~ERS J
2.6.3 General Rules

(1) This clause is required except when:

a. A physical record contains one and only one complete logical
record.

b. The hardware device assigned to the file has one and only one
phy$ical record size.

c. The hardware device assigned to the file has more than one
physical record size but the implementor has designated one as standard. In
this case, the absence of this clause denotes the standard physical record
size.

(2) The size of the physical record may be stated in terms of RECORDS,
unless one of the following situations exists, in which case the RECORDS
phrase must not be used

a. In mass st--0rage files, where logical records may extend across
physical records.

b. The physical record contains padding (area not contained in a
logical re cord) •

c. Logical records are grouped in such a manner that an inaccurate
physical record size would be implied.

(3) When the word CHARACTERS is specified, the physical record size is
specified in terms of the number of character positions required to store
the physical record, regardless of the types of characters used to represent
the items within the physical record.

(4) If only integer-2 is shown, it represents the exact size of the
physical record. If integer-I and integer-2 are both shown, they refer to
the minimum and maximum size of the physical record, respectively.

(5) If logical records of differing size are grouped into one physical
record, the technique for determining the size of each logical record is
specified by the implementor.

VIII-24

Report Writer - CODE

2.7 THE CODE CLAUSE

2.7.1 Function

The CODE clause specifies a two character literal that identifies each
print line as belonging to a specific report.

2.7.2 General Format

CODE literal-!

2.7.3 Syntax Rules

(l) Literal-! is a two character nonnumeric literal.

(2) If the CODE clause is specified for any report in a file, then it
must be specified for all reports in the same file.

2.7.4 General Rules

(1) -When the CODE clause is specified, literal-1 is automatically placed
in the first two character positions of each Report Writer logical record.

(2) The positions occupied by literal-I are not included in the
description of the print line, but are included in the logical record size.

VIII-25

Report Writer - CODE-SET

2.8 THE CODE-SET CLAUSE

2.8.1 Function

The CODE-SET clause specifies the character code set used to represent
data on the.external media.

2.8.2 General Format

CODE-SET IS alphabet-name

2.8.3 Syntax Rules

{ 1) When the CODE-SET clause is specified for a file, all data in that
file must be described as usage is DISPLAY and any signed numeric data must be
described with the SIGN IS SEPARATE clause.

(2) The alphabet-name clause referenced by the CODE-SET clause must not
specify the literal phrase.

(3) The CODE-SET clause may only be specified for non-mass storage files.

2.8.4 General Rules

· (1) If the CODE-SET clause is specified, alphabet-name specifies the
character code convention used to represent data on the ~xternal media. It
also specifies the algorithm for converting the character codes on the external
media from the native character codes. This code conversion occurs during
the execution of an output operation. (See page 11-8, The SPECIAL-NAMES
~aragraph.)

(2) If the CODE-SET clause is not specified, the native character code
set is assumed for data on the external media.

VIIl-26

Report Writer - COLUMN NUMBER

2.9 THE COLUMN NUMBER CLAUSE

2.9.1 Function

The COLU}:JN NUMBER clause identifies a printable item and specifies the
column number position of the item on a print line.

2.9.2 General Format

COLUMN NUMBER IS integer-I

2.9.3 Syntax Rules

(1) The COLUMN NUMBER clause can only be specified at the elementary level
within a report group. The COLUMN NUMBER clause, if present, must appe.ar in
or be subordinate to an entry that contains a LINE NUMBER clause.

(2) Within a given print line, the printable items must be defined in
ascending column number order such that each character defined occupies a
unique position.

2.9.4 General Rules

(1) The COLUMN NUMBER clause indicates that the object of a SOURCE clause
or the object of a VALUE clause or the sum counter defined by a SUM clause is
to be presented on the print line. The absence of a COLUMN NUMBER clause
jndicates that the entry is not to be presented on a print line.

(2) Integer-1 specifies the column number of the leftmost character posi­
tion of the printable item.

(3) The Report Writer Control System supplies space character for all
positions of a print line that are not occupied by printable items.

(4) The first position of the print line is considered to be column
number 1.

VIII-27

Report Writer - CONTROL

2.10 THE CONTROL CLAUSE

2.10.1 Function

The CONTROL clause establishes the levels of the control hierarchy for the
report.

2.10.2 General Format

{
CONTROL IS)
CONTROLS AREj

J data-name-I [, data-name-2] • • • J
lFINAL [, data-name-1 [, data-name-2] •••]

2.10.3 Syntax Rules

(I) Data-name-I and data-name-2 must not be defined in the Report Section.
Data-name-I and data-name-2 may be qualified but must not be subscripted or
indexed.

(2) Each data-name must identify a different data item.

(3) Data-name-1, data-name-2, ••• ,must not have subordinate to it a data
item whose size is variable as defined in the OCCURS clause. (See page III-2,
The OCCURS Clause.)

2.10.4 General Rules

(1) The data-names and the word FINAL specify the levels of the control
hierarchy. FINAL, if specified, is the highest control, data-name-1 is the
major control, data-name-2 is an intermediate control, etc. The last data­
name specified is the minor control.

(2) The execution of the chronologically first GENERATE statement for a
given report causes the RWCS to save the values of all control data items
associated with that report. On subsequent executions of all GENERATE state­
ments for that report, control data items are tested by the RWCS for a change
of value. A change of value in any control data item causes a control brea:k
to occur. The control break is associated with the highest level for which
a change of value is noted. (See page VIII-51, The GENERATE Statement.)

(3) The Report Writer Control System tests for a control break by compar­
ing the contents of each control data item with the prior contents s~ved from
the execution of the previous GENERATE statement for the same report. The
RWCS applies the inequality relation test described on page II-41, The Relation
Condition, as follows:

a. If the control data item is a numeric data item, the relation
test is for the comparison of two numeric operands.

b. If the control data item is an index data item, the relation test
is for the comparison of two index data items.

VIII-28

Report WriteP - CONTROL

c. If the control data item is a data item other than as described in
paragraph 3a and 3b, the relation test is for the comparison of two nonnumeric
operands.

See page II-6, PROGRAM COLLATING SEQUENCE clause.

(4) FINAL is used when the most inclusive control group in the report is ·
not associated with a control data-name.

VIII-29

Report Writer - Data-Name

2.11 THE DATA-NAME CLAUSE

2.11.1 Function

A data-name specifies the name of the data being described.

2.11.2 General Format

data-name

2.11.3 Syntax Rules

(1) In the Report Section a data-name need not appear in a data descrip­
tion entry and FILLER must not be used.

2.11.4 General Rules

(1) In the Report Section, data-name must be given in the following cases:

a. When the data-name represents a report group to be referred to by
a GENERATE or a USE statement in the Procedure Division.

b. When reference is to be made to the sum counter in the Procedure
Division or Report Section.

c. When a DETAIL report group is referenced in the UPON phrase of
the SUM clause.

d. When the data-name is required to provide sum counter qualification.

VIII;...30

Report Writer - GROUP INDICATE

2.12 THE GROUP INDICATE CLAUSE

2.12.1 Function

The GROUP INDICATE clause specifies that the associated printable item is
presented only on the first occurrence of its report group after a control
break or page advance.

2.12.2 General Format

GROUP INDICATE

2.12.3 Syntax Rules

(1) The GROUP INDICATE clause may only appear in a DETAIL report group
entry that defines a printable item.

2.12.4 General Rules

(1) If a GROUP INDICATE clause is specified, it causes the SOURCE or
VALUE clause to be ignored and spaces supplied, except:

a. On the first presentation of the DETAIL report group in the
report, or

b. On the first presentation of the DETAIL report group after every
page advance, or

c. On the first presentation of the DETAIL report group after every
control break.

(2) If the report description entry specifies neither a PAGE clause nor a
CONTROL clause, then a GROUP INDICATE printable item is presented the first
time its DETAIL is presented after the INITIATE statement is executed. There­
after spaces are supplied for indicated items with SOURCE or VALUE clauses.

VIII-31

Report Writer - LABEL RECORDS

2 .13 THE LABEL RECORDS CLAUSE

2.13.1 Function

The LABEL RECORDS clause specifies whether labels are present.

2.13.2 General Format

LABEL { RECORD IS) f STANDARD}
RECORDS AREj 1 OMITTED

2.13.3 Syntax Rules

(1) This clause is required in every File Description entry.

2.13.4 General Rules

(1) OMITTED specifies that no explicit labels exist for the file or the
device to which the file is assigned.

(2) STANDARD specifies that labels exist for the file or the device to
which the file is assigned and the labels conform to the implementor's label
specifications.

VIII-32

Report Writer - LINE NUMBER

2.14 THE LINE NUMBER CLAUSE

2.14.1 Function

The LINE NUMBER clause specifies vertical positioning information for its
report group.

2.14.2 General Format

LINE NUMBER IS
{

integer-I (ON NEXT PAGE]}
PLUS integer-2

2.14.3 Syntax Rules

(1) Integer-I and integer-2 must not exceed three significant digits in
length.

Neither integer-I nor integer-2 may be specified in such a way as to
cause any line of a report group to be presented outside of the vertical sub­
division of the page designated for the report group type, as defined by the
PAGE clause. (See page VIII-36, The PAGE Clause.)

(2) Within a given report group description entry, an entry that contains
a LINE NUMBER clause must not contain a subordinate entry that also contains a
LINE NUMBER clause.

(3) Within a given report group description entry, all absolute LINE
NUMBER clauses must precede all relative LINE NUMBER clauses.

(4) Within a given report group description entry, successive absolute
LINE NUMBER clauses must specify integers that are in ascending order. The
integers need not be consecutive.

(5) If the PAGE clause is omitted from a given report group description
entry, only relative LINE NUMBER clauses can be specified in any report group
description entry within that report.

(6) Within a given report group description entry a NEXT PAGE phrase can
appear only once and, if present, must be in the first LINE NUMBER clause in
that report group description entry.

A LINE NUMBER clause with the NExr PAGE phrase can appear only in the
description of body groups and in a REPORT FOOTING report group.

(7) Every entry that defines a printable item (see page VIII-27, The
COLUMN NUMBER Clause) must either contain a LINE NUMBER clause, or be subordi­
nate .. to an eIJ.try that contains a LINE NUMBER clause.

(8) The first LINE NUMBER clause specified within ·a PAGE FOOTING report
group must be an absolute LINE NUMBER clause.

VIII-33

Report Writer - LINE NUMBER

2 .. 14. 4 General Rules

(1) A LINE NUMBER clause must be specified to establish each print line
of a report group.

(2) The RWCS effects the vertical positioning specified by a LINE NUMBER
clause, before presenting the print line established by that LINE NUMBER clause.

(3) Integer-! specifies an absolute line number •. An absolute line number
specifies the line number on which the print line is presented.

(4) Integer-2 specifies a relative line number. If a relative LINE NUMBER
clause is not the first LINE NUMBER clause in the report group description
entry, then the line number on which its print line is presented is determined
by calculating the sum of the line number on which the previous print line of
the report group was presented and integer-2 of the· relative LINE NUMBER clause.

If a relative LINE NUMBER clause is the first LINE NUMBER clause in
the report group description entry, then the line number on which its print
line is presented is determined by the rules stated in paragraph 2.5.5,
Presentation Rules Tables, beginning on page VIII-9.

(5) The NEXT PAGE phrase specifies that the report group is to be presented
beginning on the indicated line number on a new page. (See paragraph 2.5.5,
Presentation Rules Tables, beginning on page VIII-9.)

VIII-34

Report Writer - NEXT GROUP

2.15 THE NEXT GROUP CLAUSE

2.15.1 Function

The NEXT GROUP clause specifies information for vertical positioning of a
page following the presentation of the last line of a report group.

2.15.2 General Format

{

integer-I }
NEXT GROUP IS PLUS integer-2

NEXT PAGE ----

2.15~3 Syntax Rules

(1) A report group entry must not contain a NEXT GROUP clause unless the
description of that report group contains at least one LINE NUMBER clause.

(2) Integer-I and integer-2 must not exceed three significant digits in
length.

(3) If the PAGE clause is omitted from the report description entry only
a relative NEXT GROUP clause may be specified in any report group description
entry within that report.

(4) The NEXT PAGE phrase of the NEXT GROUP clause must not be specified
in a PAGE FOOTING report group.

(5) The NEXT GROUP clause must not be specified in a REPORT FOOTING report
group or in a PAGE HEADING report group.

2.15.4 General Rules

(1) Any positioning of the page specified by the NEXT GROUP clause takes
place after the presentation of the report group in which the clause appears.
(See paragraph 2.5.5, Presentation Rules Table, beginning on page VIII-:9.)

(2) The vertical positioning information supplied by the NEXT GROUP clause
is interpreted by the RWCS along with information from the TYPE and PAGE clauses,
and the value in LINE-COUNTER, to determine a new value for LINE-COUNTER. (See
paragraph 2.5.5, Presentation Rules Tables, beginning on page VIII-9.?

(3) The NEXT GROUP clause is ignored by the RWCS when it is specified on
a CONTROL FOOTING report group that is at a level other than the highest level
at which a control break is detected.

(4) The NEXT GROUP clause of a body group refers to the next body group to
be presented, and therefore can affect the location at which the next body
group is presented. The NEXT GROUP clause of a REPORT HEADING report group
can affect the location at which the PAGE HEADING report group is presented.
The NEXT GROUP clause of a PAGE FOOTING report group can affect the location
at which the REPORT FOOTING report group is presented. (See paragraph 2.5.5,
Presentation Rules Tables, beginning on page VIII-9.)

VIII-35

Report Writer - PAGE

2.16 THE PAGE CLAUSE

2. 16 .1 Function

The PAGE clause defines the length of a page and the vertical subdivisions
within which report groups are presented.

2.16.2 General Format

PAGE [
LIMIT IS 1
LIMITS ARE integer-! [

LINE]
LINES

[, HEADING integer-2] [, FIRST DETAIL integer-3]

(, LAST DETAIL integer-4] [, FOOTING in teger-5]

2.16.3 Syntax Rules

(1) The HEADING, FIRST DETAIL, LAST DETAIL and FOOTING phrases may be
written in any order.

(2) Integer-1 must not exceed three (3) significant digits in length.

(3) Integer-2 must be greater than or equal to one (1).

(4) Integer-3 must be greater than or equal to integer-2.

(5) Integer-4 must be greater than or equal to integer-3.

(6) Integer-5 must be greater than or equal to integer-4.

(7) Integer-1 must be greater than or equal to integer-5.

(8) The following rules indicate the vertical subdivision of the page in
which each TYPE of report group may appear when the PAGE clause is specified.
(See page VIII-38, Page Regions Table.)

a. A REPORT HEADING report group that is to be presented on a page
by itself, if defined, must be defined such that it can be presented in the
vertical subdivision of the page that extends from the line number specified
by integer~2 to the line number specified by integer-I, inclusive.

A REPORT HEADING report group that is not to be presented on a
page by itself, if defined, must be defined such that it can be presented in
the vertical subdivision of the page that extends from the line number speci­
fied by integer-2 to the line number specified by integer-3 minus 1, inclusive.

b. A PAGE HEADING report group, if defined·, mtist be defined such that
it can be presented in the vertical subdivision of the page that extends from
the line number spec;tfied by integer-2. to the line number specified by ·
integer-3 minus 1, inclusive.

VIII-36

RepoPt WPitep - PAGE

c. A CONTROL HEADING or DETAIL report group, if defined, must be
defined such that it can be presented in the vertical subdivision of the page
that extends from the line number specified by integer-3 to the line number
specified by integer-4, inclusive.

d. A CONTROL FOOTING report group, if defined, must be defined such
that it can be presented in the vertical subdivision of the page that extends
from the line number specified by integer-3 to the line number specified by
integer-5, inclusive.

e. A PAGE FOOTING report group, if defined, must be defined such that
it can be presented in the vertical subdivision of the page that extends from
the line number specified by integer-5 plus 1 to the line number specified by
integer-1, inclusive.

f. · A REPORT FOOTING report group that is to be presented on a page
by itself, if defined, must be defined such that it can be presented in the
vertical subdivision of the page that extends .from the line number specified
by integer-2 to the line number specified by integer-!, inclusive.

A REPORT FOOTING report group that is not to be presented on a
page by itself, if defined, must be defined such that it can be presented in
the vertical subdivision of the page that extends from the line number speci­
fied by integer-5 plus 1 to the line number specified by integer-!, inclusive.

(9) All report groups must be described such that they can be presented
on one page. The RWCS never splits a multi-line report group across page
boundaries.

2.16.4 General Rules

(1) The vertical format of a report page is established using the integer
values specified in the PAGE clause.

a. Integer-! defines the size of a report page by specifying the
number of lines available on each page.

b. HEADING integer-2 defines the first line number on which a REPORT
HEADING or PAGE HEADING report group may be presented.

c. FIRST DETAIL integer-3 defines the first line number on which a
body group may be presented. REPORT HEADING and PAGE HEADING report groups
may not be presented on or beyond the line number specified by integer-3.

d. LAST DETAIL integer-4 defines the last line number on which a
CONTROL HEADING or DETAIL report group may be presented.

e. FOOTING integer-5 defines the last line number on which a CONTROL
FOOTING report group may be presented. PAGE FOOTING and REPORT FOOTING report
groups must follow the line number specified by integer-5.

(2) If the PAGE clause is specified the following implicit values are
assumed for any omitted phrases:

VIII-37

Report Writer - PAGE

a. If, the HEADING phrase is omitted, a value of one (1) is assumed
for integer-2.

b. If the FIRST DETAIL phrase is omitted, a value equal to integer-2
is given to integer-3.

c. If the LAST DETAIL and the FOOTING phrases are both omitted, the
value of integer-1 is given to both integer~4 and integer-5.

d. If the FOOTING phrase is specified and the LAST DETAIL phrase is
omitted, the value of integer-5 is given to integer-4.

e. If the LAST DETAIL phrase is specified and the FOOTING phrase is
omitted, the value of integer-4 is given to integer-5.

(3) If the PAGE clause is omitted, the report consists of a single page
of indefinite length.

(4) The presentation rules for each TYPE of report group are speciiied
in paragraph 2.5.5, Presentation Rules Tables, beginning on page VIII-9.

2.16.5 Page Regions Table

Page regions that are established by the PAGE clause are described below.

Report Groups That May Be First Line Number Last Line Number
Presented In The Region Of The Region Of The Region

REPORT HEADING described with NEXT
GROUP NEXT PAGE integer-2 integer-1
REPORT FOOTING described with LINE
integer-1 NEXT PAGE

REPORT HEADING not described with
NEXT GROUP NEXT PAGE integer-2 integer-3

PAGE HEADING
minus 1

CONTROL HEADING

DETAIL integer-3 integer-4

CONTROL FOOTING integer-3 integer-5

PAGE .FOOTING integer-5 integer-1
REPORT FOOTING not described with plus 1
LINE integer-I NEXT PAGE

VIII-38

Report Writer - RECORD CONTAINS

2.17 THE RECORD CONTAINS CLAUSE

2.17.1 Function

The RECORD CONTAINS clause specifies the size of data records.

2.17.2 General Format

RECORD CONTAINS [integer- I TO l integer-2 CHARACTERS

2.17.3 General Rules

(1) The size of each data record is completely defined within the record
description entry, therefore this clause is never required. When present,
however, the following notes apply:

a. Integer-2 may not be used by itself unless all the data records in
the file have the same size. In this case integer-2 represents the exact
number of characters in the data record. If integer-I and integer-2 are both
shown, they refer to the minimum number of characters in the smallest size
data record and the maximum number of characters in the largest size data
record, respectively.

b. The size is specified in terms of the number of character posi­
tions required to store the logical record, regardless of the types of charac­
ters used to represent the items within th'e logical record. The size of a
record is determined by the sum of the number of characters in all fixed
length elementary items plus the sum of the maximum number of characters in
any variable length item subordinate to the record. This sum may be different
from the actual size of the record; see page I-85, Selection of Character
Representation and Radix; page II-33, The SYNCHRONIZED Clause; and page II-35,
The USAGE Clause.

VIII-39

Report Writer - REPORT

2.18 THE REPORT CLAUSE

2.18.1 Function

The REPORT clause specifies the names of reports that comprise·a report
file.

2.18.2 General Format

{~:~!is I~E J report-name-1 [, report-name-2] •••

2.18.3 Syntax Rules

(1) Each report-name specified in a REPORT clause must be the subject of
a report description entry in the Report Section. The order of appearance
of the report-names is not significant.

(2) A report-name must appear in only one REPORT clause.

(3) The subject of a file description entry that specifies a REPORT clause
may only be referred to by the OPEN OUTPUT, OPEN EXTEND, and CLOSE statements.

2.18.4 General Rules

(1) The presence of more than one report-name in a REPORT clause indicates
that the file contains more than one report.

VIII-40

Report Writer - SOURCE

2.19 THE SOURCE CLAUSE

2.19.1 Function

The SOURCE clause identifies the sending data item that is moved to an
associated printable item defined within a report group description entry.

2.19.2 General Format

SOURCE IS identifier-1

2.19.3 Syntax Rules

(1) Identifier-I may be defined in any section of the Data Di vision. If
identifier-1 is a Report Section item it can only be:

a. PAGE-COUNTER, or

b. LINE-COUNTER, or

c. A sum counter of the report within which the SOURCE clause ·appears.

(2) Identifier-1 specifies the sending data item of the implicit MOVE
statement that the RWCS will execute to move identifier-I to the printable
item. Identifier-! must be defined such that it conforms to the rules for
sending items in the MOVE statement. (See page II-74, The MOVE Statement.)

2.19.4 General Rules

(1) The RWCS formats the print lines of a report group just prior to
presenting the report group. (See page VIII-45, The TYPE Clause.) It is at
this time that the implicit MOVE statements specified by SOURCE clauses are
executed by the RWCS.

VIII-41

Report Writer - SUM

2.20 THE SUM CLAUSE

2.20.1 Function

The SUM clause establishes a sum counter and names the data items to be
summed.

2.20.2 General Format

{suM identifier-I [, identifier-2]

[UPON data-name-1 [, data-name-2] ••• J} ...
[RESET ON {~;~name-3}]

2.20.3 Syntax Rules

(1) Identifier""'.'! and- identifier-2 must be defined as numeric data items.
When defined in the Report Section, identifier-I and identifier-2 must be the
names of sum counters.

If the UPON phrase is omitted, any identifiers in the associated SUM
clause which are themselves sum counters must be defined either in the same
report group that contains this SUM clause or in a report group which is at
a lower level in the control hierarchy of this report.

If the UPON phrase is specified, any identifiers in the associated
SUM clause must not be sum counters.

(2) Data-name-1 and data-name-2 must be the names of DETAIL report groups
described in the same report as the CONTROL FOOTING report group in which the
SUM clause appears. Data-name-1 and data-name-2 may be qualified by a
report-name.

(3) A SUM clause can appear only in the description of a CONTROL FOOTING
report group.

(4) Data-name-3 must be one of the data-names specified in the CONTROL
clause for this report. Data-name-3 must not be a lower level control than
the associated control for the report group in which the RESET phrase appears.

FINAL, if specified in the RESET phrase, must also appear in the
CONTROL clause for this report.

(5) The highest permissible qualifier of a sum counter is the report-name.

2.20.4 General Rules

(1) The SUM clause establishes a sum counter. The sum counter is a numeric
data item with an optional sign. At object time the RwCS adds directly into
the sum counter each of the values contained in identifier-! and identifier-2.
This addition is performed under the rules of the ADD statement. (See page
II-55, The ADD Statement.)

VIII-42

Report Writer ~ SUM

(2) The size of the sum counter is equal to the number of receiving char­
acter positions specified by the PICTURE clause that accompanies the SUM clause
in the description of the elementary item.

(3) Only one sum counter exists for an elementary report entry regardless
of the number of SUM clauses specified in the elementary report entry.

(4) If the elementary report entry for a printable item contains a SUM
clause, the sum counter serves as a source data item. The RWCS moves the data
contained in the sum counter, according to the rules of the MOVE statement, to
the printable item for presentation.

(5) If a data-name appears as the subject of an elementary report entry
that contains a SUM clause, the data-name is the name of the sum counter; the
data-name is not the name of the printable item that the entry may also define.

It is permissible for Procedure Division statements to alter the
contents of sum counters.

(6) Addition of the identifiers into sum counters is performed by the RWCS
during the execution of GENERATE and TERMINATE statements. There are three
categories of sum counter incrementing called subtotalling, crossfooting, and
rolling forward. Subtotalling is accomplished during execution of GENERATE
statements only, after any control break processing but before processing of
the DETAIL report group. (See page VIII-51,. The GENERATE Statement.) Cross­
footing and rolling forward are accomplished during the processing of CONTROL
FOOTING report groups. (See page VIII-45, The TYPE Clause.)

(7~ The UPON phrase provides the capability to accomplish selective
subtotalling for the DETAIL report groups named in the phrase.

(8) The RWCS adds each individual addend into the sum counter at a time
that depends upon the characteristics of the addend.

a. When the addend is a sum counter defined in the same CONTROL FOOTING
report group, then the accumulation of that addend into the sum counter is
termed crossfooting.

Crossfooting occurs when a control break takes place and at the
time the CONTROL FOOTING report group is processed.

Crossfooting is performed according to the sequence in which sum
counters are defined within the CONTROL FOOTING report group. That is, all
crossfooting into the first sum counter defined in the CONTROL FOOTING report
group is completed, and then all crossfooting into the second sum counter
defined in the CONTROL FOOTING report group is completed. This procedure is
repeated until all. crossfooting operations are completed.

b. When the addend is a sum counter defined in a lower level CONTROL
FOOTING report group, then the accumulation of that addend into the sum counter
is termed rolling forward. A sum counter in a lower level CONTROL FOOTING
report group is rolled forward when a control break occurs and at the time
that the lower level CONTROL FOOTING report group is processed.

VIII-43

Report Writer - SUM

c. When the addend is not a sum counter the accumulation into a sum
counter of such an addend is called subtotalling. If the SUM clause contains
the UPON phrase, the addends are subtotalled when a GENERATE statement for the
designated DETAIL report group is executed. If the SUM clause does not contain
the UPON phrase, the addends which are not sum counters are subtotalled when
any GENERATE data-name statement is executed for the report in which the SUM
clause appears.

(9) If two or more of the identifiers specify the same addend, then the
addend is added into the sum counter as many times as the addend is referenced
in the SUM clause. It is permissible for two or more of the data-names to
specify the same DETAIL report group. When a GENERATE data-name statement
for such a DETAIL report group is given, the incrementing occurs repeatedly,
as many times as data-name appears in the UPON phrase.

(10) For the subtotalling that occurs when a GENERATE report-name statement
is executed, see page VIII-51, The GENERATE Statement.

(11) In the absence of an explicit RESET phrase, the RWCS will set a sum
counter to zero at the time that the RWCS is processing the CONTROL FOOTING
report group within which the sum counter is defined. If an explicit RESET
phrase is specified, then the RWCS will set the sum counter to zero at the
time that the RWCS is processing the designated level of the control hierarchy.
(See page VIII-45, The TYPE Clause.)

Sum counters are initially set to zero by the RWCS during the execution
of the INITIATE statement for the report containing the sum counter.

VIII-44

Report Writer - TYPE

2.21 THE TYPE CLAUSE

2.21.1 Function

The TYPE clause specifies the particular type of report group that is
described by this entry and indicates the time at which the report group is
to be processed by the R~port Writer Control System.

2. 21.2 General Format

{:PORT HEADING}

\;~GE HEADING}

{ ~NTROL HEADING) { data-name-11
FINAL

TYPE IS {~:TAIL J
{~~NTROL FOOTING1 { data-name-21

FINAL
{:!GE FOOTING}

{ :1'0RT FOOTING)

2. 21. 3 Syntax Rules

(1) RH is an abbreviation for REPORT HEADING.
PH is an abbreviation for PAGE HEADING.
CH is an abbreviation for CONTROL HEADING.
DE is an abbreviation for DETAIL.
CF is an abbreviation for CONTROL FOOTING.
PF is an abbreviation for PAGE FOOTING.
RF is an abbreviation for REPORT FOOTING.

(2) REPORT HEADING, PAGE HEADING, CONTROL HEADING FINAL, CONTROL FOOTING
FINAL, PAGE FOOTING, and REPORT FOOTING report groups may each appear no more
than once in the description of a report.

(3) PAGE HEADING and PAGE FOOTING report groups may be specified only if
a PAGE clause is specified in the corresponding report description entry.

(4) Data-name-1, data-name-2 and FINAL, if present, must be spe~ified in
the CONTROL clause of the_ corresponding r.eport description entry. At most,
one CONTROL HEADING report group and one CONTROL FOOTING report group can be
specified for each data-name .or FINAL in the CONTROL clause of the report
description entry. However, neither a CONTROL HEADING report group nor a
CONTROL FOOTING report group is required for a data-name or FINAL specified
in the CONTROL clause of the report description entry.

(5) In CONTROL FOOTING, PAGE HEADlNG, PAGE .-FOOTING, and REPORT FOOTING
report groups, SOURCE clauses and USE statements must not reference any of the
following:

VIII-45

Report Writer - TYPE

a. Group data items containing a control data item.

b. Data items subordinate to a control data item.

c. A redefinition or renaming of any part of a control data item.

In PAGE HEADING and PAGE FOOTING report groups, SOURCE clauses and USE
statements must not reference control data-names.

(6) When a GENERATE report-name statement is specified in the Procedure
Division, the corresponding report description entry must include no more than
one DETAIL report group. If no GENERATE data-name statements are specified
for such a report, a DETAIL report group is not required.

(7) The description of a report must include at least one body group.

2.21.4 General Rules

(1) DETAIL report groups are processed by the RWCS as a direct result of
GENERATE statements. If a report group is other than TYPE DETAIL, its pro­
cessing is an automatic RWCS function.

(2) The REPORT HEADING phrase specifies a report group that is processed
by the RWCS only once, per report, as the first report group of that report.
The REPORT HEADING report group is processed during the execution of the
chronologically first GENERATE statement for that report.

(3) The PAGE HEADING phrase specifies a report group that is processed by
the RWCS as the first report group on each page of that report except under
the following conditions:

a. A PAGE HEADING report group is not processed on a page that is to
contain only a REPORT HEADING report group or only a REPORT FOOTING report
group.

b. A PAGE HEADING report group is processed as the second report
group on a page when it is preceded by a REPORT HEADING report group that is
not to be presented on a page by itself.

See paragraph 2.5.5, Presentation Rules Tables, beginning on page
VIII-9, for further information.

(4) The CONTROL HEADING phrase specifies a report group that is processed
by the RWCS at the beginning of a control group for a designated control data­
name or, in the case of FINAL, is processed during the execution of the
chronologically first GENERATE statement for that report. During the execution
of any GENERATE statement at which the RWCS detects a control break, any
CONTROL HEADING report groups associated with the highest control level of the
break and lower levels are processed. ,

(5) The DETAIL phrase specifies a report group that is processed by the
RWCS when a corresponding GENERATE statement is executed.

(6) The CONTROL FOOTING phrase specifies a report group that is processed
by the RWCS at the end of a control group fot a designated control data-name.

VIII-46

Report Writer - TYPE

In the case of FINAL, the CONTROL FOOTING report group is processed
only once per report as the last body group of that report. During the
execution of any GENERATE statement in which the RWCS detects a control break,
any CONTROL FOOTING report group associated with the highest level of the
control break or more minor levels is presented. All CONTROL FOOTING report
groups are presented during the execution of the TERMINATE statement if there
has been at least one GENERATE statement executed for the report. (See page
VIII-55, The TERMINATE Statement.)

(7) The PAGE FOOTING phrase specifies a report group that is processed by
the RWCS as the last report group on each page except under the following
conditions:

a. A PAGE FOOTING report group is not processed on a page that is to
contain only a REPORT HEADING report group or only a REPORT FOOTING report
group.

b. A PAGE FOOTING report group is processed as the second to last
report group on a page when it is followed by a REPORT FOOTING report group
that is not to be processed on a page by itself.

See paragraph 2.5.5, Presentation Rules Tables, beginning on page
VIII-9, for further information.

(8) The REPORT FOOTING phrase specifies a report group that is processed
by the RWCS only once per report and as the last report group of that report.
The REPORT FOOTING report group is processed during the execution of a corre­
sponding TERMINATE statement, if there has been at least one GENERATE state­
ment executed for the report. (See page VIII-55, The TERMINATE Statement.)

(9) The sequence of steps that the RWCS executes when it processes a
REPORT HEADING, PAGE HEADING, CONTROL HEADING, PAGE FOOTING, or REPORT FOOTING
report group is described below.

a. If there is a USE BEFORE REPORTING procedure that references the
data-name of the report group, the USE procedure is executed.

b. If a SUPPRESS statement has been executed or if the report group
is not printable, there is no further processing to be done for the report
group.

c. Otherwise, the RWCS formats the print lines and presents the
report group according to the presentation rules for that type of report group.
(See paragraph 2.5.5, Presentation Rules Tables, beginning on page VIII-9.) ·

(10) The sequence of steps that the RWCS executes when it processes a
CONTROL FOOTING report group is described below.

The GENERATE rules specify that when a control break occurs, the RWCS
produces the CONTROL FOOTING report groups beginning at the minor level, and
proceeding upwards, through the level at which the highest control break was
sensed. In this regard, it should be noted that even though no CONTROL FOOTING
report group has been defined for a given control data-name, the RWCS will still
have to execut_e the. step described in paragraph lOf below: if a RESET phrase
within the report description specifies that control d~tc:1.-name.

VIII-47

Report Writer - TYPE

a. Sum counters are crossfooted, i.e., all sum counters defined in
this report group that are operands of SUM clauses in the same report group ,
are added to their sum counters. (See page VIII-42, The SUM Clause.)

b. Sum counters are rolled forward, i.e., all sum counters defined
in the report group that are operands of SUM clauses in higher level CONTROL
FOOTING report groups are added to the higher level sum counters. (See page
VIII-42, The SUM Clause.)

c. If there is a USE BEFORE REPORTING procedure that references the
data-name of the report group the USE procedure is executed.

d. If a SUPPRESS statement has been executed or if the report group
is not printable, the RWCS next executes the step described in paragraph lOf
below.

e. Otherwise the RWCS formats the print lines and presents the report
group according to the presentation rules for CONTROL FOOTING report groups.

f. Then the RWCS resets those sum counters that are to be reset when
the RWCS processes this level in the control hierarchy. (See page VIII-42,
The SUM Clause.)

(11) The DETAIL report group processing that the RWCS executes in response
to a GENERATE data-name statement is described in paragraphs lla through 1 le
below.

When the description of a report includes exactly one DETAIL report
group, the detail-related processing that the RWCS executes in response to a
GENERATE report-name statement is described in paragraph lla through paragraph
lld below. These steps are performed as though a GENERATE data-name statement
were being executed.

When the description of a report includes no DETAIL report groups, the
detail-related processing that the RWCS executes in response to a GENERATE
report-name statement is described in paragraph lla below. This step is per­
formed as though the description of the report included exactly one DETAIL
report group, and a GENERATE data-name statement were being executed.

a. The RWCS performs any subtotalling that has been designated for
the DETAII report group. (See page VIII-42, The SUM Clause.)

b. If there is a USE BEFORE REPORTING procedure that refers to the
data-name of the report group, the USE procedure is executed.

c. If a SUPPRESS statement has been executed or if the report group
is not printable there is no further processing done for the report group.

d. If the DETAIL report group is being processed as a consequence of
a GENERATE report-name statement, there is no further processing done for the
report group.

e. Otherwise the RWCS formats the print lines and presents the report
group according to the presentation rules for DETAIL report groups. (See
paragraph 2.5.5, Presentation Rules Tables, beginning on page VIII-9.)

VIII-48

Report Writer - TYPE

(12) When the RWCS is processing a CONTROL HEADING, CONTROL FOOTING, or
DETAIL report group, as described in general rules 9, 10, and 11, the RWCS
may have to interrupt the processing of that body group after determining
that the body group is to be presented, and execute a page advance (and
process PAGE FOOTING and PAGE HEADING report groups) before actually present­
ing the body group.

(13) During control break processing, the values of control data items that
the RWCS used to detect a given control break are referred to as prior values.

a. During control break processing of a CONTROL FOOTING report group,
any references to control data items in a USE procedure or SOURCE clause
associated with that CONTROL FOOTING report group are supplied with prior
values.

b. When a TERMINATE statement is executed, the RWCS makes the prior
control data item values available to SOURCE clause or USE procedure references
in CONTROL FOOTING and REPORT FOOTING report groups as though a control break
had been detected in the highest control data-name.

c. All other data item references within report groups and their USE
procedures access the current values that are contained within the data items
at the time the report group is processed.

VIII-49

Report Writer - VALUE OF

2.22 THE VALUE OF CLAUSE

2.22.1 Function

The VALUE OF clause particularizes the description of an item in the label
records associated with a file.

2.22.2 General Format

VALUE OF implementor-name-I IS 5 data-name-lJ
lliteral-1

[
' implementor-name-2 IS {data-name-2]]

literal-2

2.22.3 Syntax Rules

(1) Data-name-1, data-name-2, etc., should be qualified when necessary,
but cannot be subscripted or indexed, nor can they be items described with the
USAGE IS INDEX clause.

(2) Data-name-I, data-name-2, etc., must be in the Working-Storage Section.

(3) See page IV-19, The VALUE OF Clause, for constraints that apply when
Report Writer is associated with Sequential I-0, Level 1.

2.22.4 General Rules

(1) For an output file, at the appropriate time the value of implementor­
name-1 is made equal to the value of literal-1, or of data-name-1, whichever
has been specified.

(2) A figurative constant may be substituted in the format above wherever
a literal is specified.

VIII-50

Report Writer - GENERATE

3. PROCEDURE DIVISION IN THE REPORT WRITER MODULE

3.1 THE GENERATE STATEMENT

3.1.1 Function

The GENERATE statement directs the RWGS to produce a report in accordance
with the report description that was specified in the Report Section of the
Data Division.

3.1.2 General Format

GENERATE {data-name }
report-name

3.1.3 Syntax Rules

(1) Data-name must name a TYPE DETAIL report group and may be qualified by
a report-name.

(2) Report-name may be used only if the referenced report description
contains:

a. A CONTROL clause, and

b. Not more than one DETAIL report group, and

c. At least one body group.

3.1.4 General Rules

(1) In response to a GENERATE report-name statement, the RWCS performs
summary processing. If all of the GENERATE statements that are exec.uted for
a report are of the form GENERATE report-name, then the report that is pro­
duced is called a summary report. A summary report is one in which no DETAIL
report group is presented.

(2) In response to a GENERATE data-name statement, the RWCS performs
detail processing that includes certain processing that is specific for the
DETAIL report group designated by the GENERATE statement. Normally, the
execution of a GENERATE data-name statement causes the RWCS to present the
designated DETAIL report group.

(3) During the execution of the chronologically first GENERATE statement
for a given report, the RWCS saves the values within the control data items.
During the execution of the second and subsequent GENERATE statements for the
same report, and until a control break is detected, the RWCS utilizes this set
of control values to determine whether a control break has occurred. When a
control break occurs, the RWCS saves the new set of control values, which it
thereafter uses to sense for a control break until another control break occurs.

(4) During report presentation, an automatic fWlction of the RWCS is to
process PAGE HEADING and PAGE FOOTING report groups, if defined, when the RWCS

VIrr~s1

Report Writer - GENERATE

must advance the report to a new page for the purpose of presenting a body
group. (See paragraph 2.5.5, Presentation Rules Tables, beginning on page
VIII-9.)

(5) When the chronologically first GENERATE statement for a given report
is executed, the RWCS processes, in order, the report groups that are named
below, provided that such report groups are defined within the report des­
cription. The RWCS also processes PAGE HEADING and PAGE FOOTING report groups
as described in general rule 4. See page VIII-45, The TYPE Clause, for the
actions that the RWCS takes when it processes each type of report group.

a. The REPORT HEADING report group is processed.

b. The PAGE HEADING report group is processed.

c. All CONTROL HEADING report groups are processed from major to minor.

d. If a GENERATE data-name statement is being executed, the process­
ing for the designated DETAIL report group is performed. If a GENERATE
report-name statement is being executed, certain of the steps that are involved
in the processing of a DETAIL report group are performed. (See page VIII-45,
The TYPE Clause.)

(6) When a GENERATE statement other than the chronologically first is
executed for a given report, the RWCS performs the steps enumerated below,
as applicable. The RWCS also processes PAGE HEADING and PAGE FOOTING report
groups as described in general rule 4. See page VIII-4.5, The TYPE Clause, for
the actions that the RWCS takes when it processes each type of report group.

a. Sense for control break. The rules for determining the equality
of control data items are the same as those specified for relation conditions.
If a control break has occurred then:

1) Enable the CONTROL FOOTING USE procedures and CONTROL FOOTING
SOURCE clauses to access the control data item values that are described on
page VIII-45, The TYPE Clause.

2) Process the CONTROL FOOTING report groups in the order minor
to major. Only CONTROL FOOTING report groups that are not more major than the
highest level at which a control break occurred are processed.

3) Process the CONTROL HEADING report groups in the order major
to minor. Only the CONTROL HEADING report groups that are not more major than
the highest level at which a control break occurred are processed.

b. If a GENERATE data-name statement is being executed, the pro­
cessing for the designated DETAIL report group is performed. If a GENERATE
report-name statement is being executed, certain of the steps that are involved
in the. processing of a DETAIL report group are performed. (See page VIII-45,
The TYPE Clause.)

(7) GENERATE statements for a report can be executed only after an
INITIATE statement for the report has been executed and before a TERMINATE
statement for the report has .been executed.

vrn:...52

Report Writer - INITIATE

3.2 THE INITIATE STATEMENT

3.2.1 Function

The INITIATE statement causes the Report Writer Control System to begin the
processing of a report.

3.2.2 General Format

INITIATE report-name-I[, report-name-2] •••

3.2.3 Syntax Rules

(1) Each report-name must be defined by a report description entry in
the Report Section of the Data Division.

3.2.4 General Rules

(1) The INITIATE statement performs the following initialization functions
for each named report:

a. All sum counters are set to zero.

b. LINE-COUNTER is set to zero.

c. PAGE-COUNTER is set to one (1).

(2) The INITIATE statement does not open the file with which the report
is associated, therefore an OPEN statement with either the OUTPUT phrase or
the EXTEND phrase for the file must be executed prior to the execution of
the INITIATE statement.

(3) A subsequent INITIATE statement for a particular report-name must not
be executed unless an intervening TERMINATE statement has been executed for
that report-name.

VIII-53

Report Writer - SUPPRESS

3.3 THE SUPPRESS STATEMENT

3.3.1 Function

The SUPPRESS statement causes the Report Writer Control System to inhibit
the presentation of a report group.

3.3.2 General Format

SUPPRESS PRINTING

3.3.3 Syntax Rules

(1) The SUPPRESS statement may only appear in a USE BEFORE REPORTING
procedure.

3.3.4 General Rules

(1) The SUPPRESS statement inhibits presentation only for the report group
named in the USE procedure within which the SUPPRESS statement appears.

(2) The SUPPRESS statement must be executed each time the presentation of
the report group is to be inhibited.

(3) When the SUPPRESS statement is executed, the RWCS is instructed to
inhibit the processing of the following report group functions:

a. The presentation of the print lines of the report group,

b. The processing of all LINE clauses in the report group,

c. The processing of the NEXT GROUP clause in the report group,

d. The adjustment of LINE-COUNTER.

VIII-54

Report Writer - TERMINATE

3.4 THE TERMINATE STATEMENT

3.4.1 Function

The TERMINATE statement causes the Report Writer Control System to complete
the processing of the specified reports.

3.4.2 General Format

TERMINATE report-name-1 [, report-name-2 1 ...

3.4.3 Syntax Rules

(1) Each report-name given in a TERMINATE statement must be defined by an
RD entry in the Report Section of the Data Division.

3.4.4 General Rules

(1) The TERMINATE statement causes the RWCS to produce all the CONTROL
FOOTING report groups beginning with the minor CONTROL FOOTING report group.
Then the REPORT FOOTING report group is produced. The RWCS makes the prior
set of control data item values available to the CONTROL FOOTING and REPORT
FOOTING SOURCE clauses and USE procedures, as though a control break has been
sensed in the most major control data-name.

(2) If no GENERATE statements have been executed for a report during the
interval between the execution of an INITIATE statement and a TERMINATE state­
ment, for that report, the TERMINATE statement does not .cause the RWCS to
produce any report groups or perform any of the related processing.

(3) During report presentation, an automatic function of the RWCS is to
process PAGE HEADING and PAGE FOOTING report groups, if defined, when the RWCS
must advance the report to a new page for the purpose of presenting a body
group. (See paragraph 2.5.5, Presentation Rules Tables, beginning on page
VIII-9.)

(4) The TERMINATE statement cannot be executed for a report unless the
TERMINATE statement was chronologically preceded by an INITIATE statement for
that report and for which no TERMINATE statement has yet been executed.

(5) The TERMINATE statement does not close the file with which the report
is associated; a CLOSE statement for the file must be executed. Every report
in a file that is in an initiated condition must be terminated before a CLOSE
statement is executed for that file.

VIII-55

Report Writer - USE

3.5 THE USE STATEMENT

3.5.1 Function

The USE statement specifies Procedure Division statements that are executed
just before a report group named in the Report Section of the Data Division is
produced.

3.5.2 General Format

USE BEFORE REPORTING identifier.

3.5.3 Syntax Rules

(1) A USE statement, when present, must immediately follow a section
header in the declaratives section and must be followed by a period followed
by a space. The remainder of the section must consist of zero, one or more
procedural paragraphs that define the procedures to be used.

(2) Identifier represents a report group. Identifier must not appear in
more than one USE statement.

The GENERATE, INITIATE or TERMINATE statements must not appear in a
paragraph within a USE BEFORE REPORTING procedure.

A USE BEFORE REPORTING procedure must not alter the value of any
control data item.

(3) The USE statement itself is never executed; it merely defines the
conditions calling for the execution of the USE procedures.

3.5.4 General Rules

(1) The designated procedures are executed by the Report Writer Control
Sys tern just before the named report group is produced. (See page VIII-45,
The TYPE Clause.)

(2) Within a USE procedure, there must not be any reference to any
nondeclarative procedures. Conversely, in the nondeclarative portion there

. must be no reference to procedure-names that appear in the declarative portion,
except that PERFORM statements may refer to a USE BEFORE REPORTING statement
or to the procedures associated with such a USE statement.

VIII-56

Segmentation - Introduction

1. INTRODUCTION TO THE SEGMENTATION MODULE

1.1 FUNCTION

The Segmentation module provides a capability to specify object program
overlay requirements.

1. 2 LEVEL CHARACTERISTICS

Segmentation Level 1 provides a facility for specifying permanent and
independent segments (see paragraph 2.2.1 on page IX-2). All sections with.
the same segment-number must be contiguous in the source program. All segments
specified as permanent segments must be contiguous in the source program.

Segmentation Level 2 provides the facility for intermixing sections with
different segment-numbers and allows the fixed portion of the source program
to contain segments that may be overlaid (see paragraph 2. 2. 2 on page IX-2).

IX-1

Segmentation - General Description

2. GENERAL DESCRIPTION OF SEGMENTATION

COBOL segmentation is a facility that provides a means by which the user
may communicate with the compiler to specify object program overlay require­
ments.

2.1 SCOPE

COBOL segmentation deals only with· segmentation of procedures. As such,
only the Procedure Division and the Environment Division are considered in
determining segmentation requirements for.an object program.

2.2 ORGANIZATION

2.2.1 Program Segments

Although it is not mandatory, the Procedure Division for a source program
is usually written as a consecutive group of sections, each of which is com­
posed of a series of closely related operations that are designed to collec­
tively perform a particular function. However, when segmentation is used, the
entire Procedure Division must be in sections. In addition, each section must
be classified as belonging either to the fixed portion or to one of the inde­
pendent segments of the object program. Segmentation in no way affects the
need for qualification of procedure-names to insure uniqueness.

2.2.2 Fixed Portion

The fixed portion is defined as that part of the object program which is
logically treated as if it were always in memory. This portion of the program
is composed two types of segments: fixed permanent segments land fixedj
overla able se ments.

A fixed permanent segment is a segment in the fixed_portion which cannot be
overlaid by any other part of the program.J A fixed overlayable segment is a
segment in the fixed portion which, although logically treated as if it were
always in memory, can be overlaid by another segment to optimize memory utili­
zation. Variation of the number of fixed permanent segments in the fixed
portion can be accomplished by using a special facility called the SEGMENT­
LIMIT clause (see page IX-5, SEGMENT-LIMIT). Such a segment, if called for
by the program, is always made available in its last used state.

2.2.3 Independent Segments

An independent segment is defined as art of ram which can
overlay, and can be overlaid by, either a fixed ment or another
independent segment. An independent segment is in its initial state whenever
control is transferred (either implicitly or explicitly) to that segment for
the first time during t.he execution of a program. On subsequent transfers of
control to the segment, an independent segment is also in its initial s:tate
when:

(1) Control is transferred to that segment as a result of the implicit
transfer of control between consecutive statements from a segment with a
different segment-number.

IX-2

Segmentation - General Description

(2) Control is transferred to that segment as the result of the implicit
transfer of control between a SORT or MERGE statement, in a segment with a
different segment-number, and an associated input or output procedure in that
independent segment.

(3) Control is transferred explicitly to that s.egment from a segment with
a different segment-number (with the exception noted in paragraph 2 below).

On subsequent transfer of control to the segment, an independent segment
is in its last-used state when:

(1) Control is transferred implicitly to that segment from a segment with
a different segment-number (except as noted in paragraphs 1 and 2 above).

(2) Control is transferred explicitly to that segment as the result of
the execution of an EXIT PROGRAM statement.

See paragraph 3.4.2, Explicit and Implicit Transfers of Control, page I-92.

2.3 SEGMENTATION CLASSIFICATION

Sections which are to be segmented are classified, using a system of
segment-numbers (see paragraph 3.1 on page IX-4) and the following criteria:

(1) Logic Requirements - Sections which must be available for reference at
all times, or which are referred to ver:y frequently, are normally classified
as belonging to one of the permanent segments; sections which are used less
frequently are normally classified as belongingleither to one of the over-

1 layable fixed segments or I to. one of the independent segments, depending on
logic requirements.

(2) Frequency of Use - Generally, the more frequently a section is referred
to, the lower its segment-number, the less frequently it is referred to, the
higher its segment-number.

(3) Relationship to Other Sections - Sections which frequently communicate
with one another should be given the same segment-numbers.

2.4 SEGMENTATION CONTROL

The logical sequence of the program is the same as the physical sequence
except for specific transfers of control. If any reordering of the object
program is required to handle the flow from segment to segment, according to
the rules in paragraph 3.1 on page IX-4, the implementor must provide control
transfers to maintain the logical flow specified in the source program. The
implementor must also provide all controls necessary for a segment to operate
whenever the segment is used. Control may be transferred within a source pro­
gram to any paragraph in a section; that is, it is not mandatory to transfer
control to the beginning of a section.

IX-3

3. STRUCTURE OF PROGRAM SEGMENTS

3.1 SEGMENT-NUMBERS

Segmentation - Segment-Nunibers

Section classification is accomplished by means of a system of segment­
numbers. The segment-number is included in the section header.

3.1.1 General Format

section-name SECTION [segment-number] -•

3.1.2 Syntax Rules

(1) The segment-number must be an integer ranging in value from 0 through
99.

(2) If the segment-number is omitted from the section header, the segment­
number is assumed to be 0.

(3) Sections in the declaratives must contain segment-numbers less than
50.

3.1.3 General Rules

(1) All sections which have the same segment-number constitute a program
segment. In Level 1 all sections which have the same segment-number must be
to ether in the source ro ram. In Level 2 sections with the same segment­
numbers need not be physically conti uous in the source ro ram.

(2) Segments with segment-number 0 through 49 belong to the fixed portion
of the object program. In Level 1 all sections with segment-number 0 through
49 must be together in the source program.

(3) Segments with segment-number 50 through 99 are independent segments.

IX-4

Segmentation - SEGMENT-LIMIT

3.2 SEGMENT-LIMIT

Ideally, all program segments having segment-numbers ranging from 0 through
49 should be specified as permanent segments. However, when insufficient mem­
ory is available to contain all permanent segments plus the largest overlayable
segment, it becomes n~cessary to decrease the number of permanent segments.
The SEGMENT-LIMIT feature provides the user with a means by which he can· reduce
the number of permanent segments in his program, while still retaining the log­
ical properties of fixed portion segments (segment-numbers 0 through 49).

3.2.1 General Format

The SEGMENT-LIMIT clause appears in the OBJECT-COMPlITER paragraph and has
the following format:

(, SEGMENT-LIMIT IS segment-number]

3.2.2 Syntax Rules

(1) Segment-number must be an integer ranging in value from 1 through 49.

3.2.3 General Rules

(1) When the SEGMENT-LIMIT clause is specified, only those segments having
segment-numbers from 0 up to, but not including, the segment-number designated
as the segment-limit, are considered as permanent segments of the object pro­
gram.

(2) Those segments having segment-numbers from the segment-limit through
49 are considered as overlayable fixed segments.

(3) When ·the SEGMENT-LIMIT clause is omitted, all segments having segment­
numbers from 0 through 49 are considered as permanent segments of the object
program.

IX-5

Segmentation - Restriations

4. RESTRICTIONS ON PROGRAM FLOW

When segmentation is used, the following restrictions are placed on the
ALTER, PERFORM, MERGE, and SORT statements.

4.1 THE ALTER STATEMENT

A GO TO statement in a section whose segment-number is greater than or
equal to 50 must not be referred to by an ALTER statement in a section with
a different segment-number.

All other uses of the ALTER statement are valid and are performed even if
the GO TO to which the ALTER refers is in a fixed overla able se ent.

4.2 THE PERFORM STATEMENT

A PERFORM statement that appears in a section that is not in an independent
segment can have within its range, in addition to any declarative sections
whose execution is caused within that range, only one of the following:

a. Sections and/or paragraphs wholly contained in one or more
non-independent segments.

b. Sections and/or paragraph wholly contained in a single independent
segment.

A PERFORM statement that appears in an independent segment can have within
it:s range, in addition to any declarative sections whose execut''ion is caused
within that range, only one of the following:

a. Sections and/or paragraphs wholly contained in one or more
non-independent segments.

b. Sections and/or paragraphs wholly contained in the same independent
segment as that PERFORM statement

4.3 THE MERGE STATEMENT

If the MERGE statement appears in a section that is not in an independent
segment, then any output procedure referenced by that MERGE statement must
appear:

a. Totally within non-independent segments, or

b. Wholly contained in a single independent segment.

If a MERGE statement appears in an independent segment, then any output
procedure referenced by that-MERGE statement must be contained:

a. Totally within non-independent segments, or

b. Wholly within the same independent segment as that MERGE statement.

IX-6

Segmentation - Restriations

4.4 THE SORT STATEMENT

If a SORT statement appears in a section that is not an independent segment,
then any input procedures or output procedures referenced by that SORT state­
ment must appear:

a. Totally within non-independent segments, or

b. Wholly contained in a single independent segment.

If a SORT statement appears in an independent segment, then any input
procedures or output procedures refere.nced by that SORT statement must be
contained:

a. Totally within non-independent segments, or

b. Wholly within the same independent segment as that SORT statement.

IX-7

LibPa:ry - IntPoduction

1. INTRODUCTION TO THE LIBRARY MODULE

1. 1 FUN CTI ON

The Library module provides a capability for specifying text that is to be
copied from a library.

COBOL libraries contain library texts that are available to the compiler
for copying at compile time. The effect of the interpretation of the COPY
statement is to insert text into the source program, where it will be treated
by the compiler as part of the source program.

COBOL library text is placed on the COBOL library as a function independent
of the COBOL program and according to implementor-defined techniques.

1.2 LEVEL CHARACTERISTICS

Library Level 1 provides the facility for copying text from a single library
into the source program. Text is copied from the library without change.

Library Level 2 provides the additional capability of replacing all occur­
rences of a given literal, identifier, word or group of words in the library
text, with alternate text, during the copying process. Level 2 also provides
for the availability of more than one COBOL library at compile time.

X-1

Library - COPY

2. THE COPY STATEMENT

-2.1 FUNCTION

The COPY statement incorporates text into a COBOL source program.

2.2 GENERAL FORMAT

~text-name [{~~1 library-name]

r MPUCING {,

2.3 SYNTAX RULES

{~~~:~~~~:~~~t-1==1 BY
literal-I
word-I t

==pseudo-text-2==1] ..,
identifier-2
literal-2 •••
word-2

(1) J If more than one COBOL library is available during compilation, text-----name must be qualified by the library-name identifying the COBOL library in
which the text associated with text-name resides. (See page II-1, Name Char­
acteristics, for constraints that app.ly when Library is associated with
Nucleus, Level 1.)

Within one COBOL library, each text-name must be unique.

(2) The COPY statement must be preceded by a space and terminated by the
separator period.

(3) Pseudo-text-1 must not be null, nor may it consist solely of the
character space(s), nor may it consist solely of comment lines.

(4) Pseudo-text-2 may be null.

(5) Character-strings within pseudo-text-1 and pseudo-text-2 may be
continued. However, both characters of a pseudo-text delimiter must be on
the same line. (See page I-106, Continuation of Lines.)

(6) Word-I or word-2 may be any single COBOL word.

(7) A COPY statement may occur in the source program anywhere a character­
string or a separator may occur except that a COPY statement must not occur
within a COPY statement.

2.4 GENERAL RULES

(1) The compilation of a source program containing COPY st~tements is
logically equivalent to processing all COPY statements prior to the processing
of the resulting source program.

· (2) The 'effect of processing a COPY statement is that::'the library text
associated with text-name is copied into the source program, logically replac­
ing the entire COPY statement; beginning with the reserved word COPY and ending
with the punctuation character period, inclusive.

X-2

LibraP!J - COPY

(3) I If the REPLACING phrase is not specified,) the library text is copied
unchanged.

If the REPLACING phrase is specified, the library text is copied and
each properly matched occurrence of pseudo-text-1, identifier-I, word.;..l, and
literal-1 in the library text is replaced by the corresponding pseudo-text-2,
identifier-2, word-2, or literal-2.

(4) For purposes of matching, identifier-I, word-1, and literal-1 are
treated as pseudo-text containing only identifier-!, word-1, or literal-I,
respectively.

(5) The comparison operation to determine text replacement occurs in the
following manner:

Any separator connna, semicolon and/or space(s) preceding the leftmost
library text-word is copied into the source program. Starting with the left­
most library text-word and the first pseudo-text-I, identifier-I, word-I, or
literal-1 that was specified in the REPLACING phrase, the entire REPLACING
phrase operand that precedes the reserved word BY is compared to an equiva­
lent number of contiguous library text-words.

Pseudo-text-I, identifier-I, word-I, or literal-1 match the library
text if, and only if, the ordered sequence of text-words that forms pseudo­
text-1, identifier-1, word-1, or literal-I is equal, character for character,
to the ordered sequence of library text-words. For purposes of matching, each
occurrence of a separator connna or semicolon in pseudo-text-1 or in the library
text is considered to be a single space except when pseudo-text-I consists
solely of either a separator comma or semicolon, in which case it participates
in the matCh as a text-word. Each sequence of one or more space separators is
considered to be a single space.

If no match occurs, the comparison is repeated with each next success­
ive pseudo-text-!, identifier-I, word-I, or literal-!, if any, in the REPLACING
phrase until either a match is found or there is no next successive REPLACING
operand.

When all the REPLACING phrase operands have been compared and no match
has occurred, the leftmost library text-word is copied into the source program.
Th.e next successive library text-word is then considered as the leftmost
library text-word, and the comparison cycle starts again with the first pseudo­
text-I, identifier-I, word-1, or literal-I specified in the· REPLACING phrase.

Whenever a match occurs between pseudo-text-I, identifier-I, word-1,
or literal-! and the library text, the corresponding pseudo-text-2, identifier-2,
word-2, or literal-2 is placed into the source program. The library text-word
immediately following the rightmost text-word that participated in the match is
then considered as the leftmost library text-word. The comparison cycle starts
agai.n with the first pseudo-text-1, identifier-i, word-1, or literal-I specified
in·the REPLACING phrase.

Th:e comparis.on ·operation continues until the rightmost . text-word in the
library text has. eith~r participated in a ma_tch or been considered as a leftmost
library text-word and ·par-ticipated in a complete .comparison cycle.

X-3

Lib-Pary - COPY

A comment line occurring in the libr'ary text·· and seudo-text-1 is inter­
reted, for purposes of matchin as a sin le s ace Comment lines appearing

pseudo-text-2 and library text are copied into the source program unchanged.

(7) Debu lines are ermitted within librar text and pseudo-text-2.
Debugging lines are not permitted within pseudo-text-I; text-words within a
debugging line participate in the matchin rules as if the 'D' did not a ear
in the indicator area. If a COPY statement is specified on a debugging line,
then the text that is the result of the processing of the COPY statement will
appear as though it were specified on debugging lines with the following
exception: comment lines in library text will appear as comment lines in the
resultant source program.

(8) The text produced as a result of the complete processing of a COPY
statement must not contain a COPY statement.

(9) The syntactic correctness of the library text cannot be independently
determined. The syntactic correctness of the entire COBOL source program
cannot be determined until all COPY statements have been completely processed.

(10) Library text must conform to the rules for COBOL reference format.

(11) For purposes of compilation, text-words after replacement are placed
in the source program according to the rules for reference format. (See
page I-105, Reference Format.)

X-4

Debug - Introduction

1. INTRODUCTION TO THE DEBUG MODULE

1.1 FUNCTION

The Debug n."dule provides a means by which the user can describe his
debugging algorithm including the conditions under which data items or
procedures are to be monitored during the execution of the object program.

The decisions of what to monitor and what information to display on the
output device are explicitly in the domain of the user. The COBOL debug
facility simply provides a convenient access to pertinent information.

1.2 LEVEL CHARACTERISTICS

Debug Level 1 provides a basic debugging capability, including the ability
to specify: (a) selective or full procedure monitoring, and (b) optionally
compiled debugging statements.

Debug Level 2 provides the full COBOL debugging facility.

1.3 LANGUAGE CONCEPTS

The features of the COBOL language that support the Debug module are:

a. A compile time switch WITH DEBUGGING MODE.

b. An object time switch.

c. A USE FOR DEBUGGING statement.

d. A special register -- DEBUG-ITEM.

e. Debugging lines.

1.3~1 DEBUG-ITEM

The reserved word DEBUG-ITEM is the name for a special register generated
automatically by the implementor's code that supports the debugging facility.
Only one DEBUG-ITEM is allocated per program. The names of the subordinate
data items in DEBUG-ITEM are also reserved words.

1.3.2 A Compile Time Switch

The WITH DEBUGGING MODE clause is written as part of the SOURCE-COMPUTER
paragraph. It serves as a compile time switch over the debugging statements
written in the program.

When the WITH DEBUGGING MODE clause is specified in a program, all debugging
sections and all debugging lines are compiled as specified in this section of
the document. When the WITH DEBUGGING MODE clause is not specified, all
debugging lines and all debugging sections are compiled as if they were comment
lines.

XI-1

Debug - IntPoduation

1.3.3 An Object Time Switch

An object time switch dynamically activates the debugging code inserted by
the compiler. This switch cannot be addressed in the program; it is controlled
outside the COBOL environment. If the switch is 'on', all the effects of the
debugging language written in the source program are permitted. If the switch
is 'off' , all the effects described in paragraph 3.1 on page XI-4, .The USE FOR
DEBUGGING Statement, are inhibited. Recompilation of the source program is
not required to provide or take away this facility.

The object time switch has no effect on the execution of the object program
if the WITH DEBUGGING MODE clause was not specified in the source program at
compile time.

XI-2

2. ENVIRONMENT DIVISION IN THE DEBUG MODULE

2.1 THE WITH DEBUGGING f()DE CLAUSE

2. 1. 1 Function

Debug - WITH DEBUGGING MODE

The WITH DEBUGGING MODE clause indicates that all debugging sections and
all debugging lines are to be compiled. If this clause is not specified, all
debugging lines and sections are compiled as if they were comment lines•

2.1.2 General Format

SOURCE-COMPurER. computer-name (WITH DEBUGGING MODE) •

2.1.3 General Rules

(1) If the WITH DEBUGGING MODE clause is specified in the SOURCE-COMPurER
paragraph of the Configuration Section of a program, all USE FOR DEBUGGING
statements and all debugging lines are compiled.

(2) If the WITH DEBUGGING MODE clause is not specified in the SOURCE­
COMPurER paragraph of the Configuration Section of a program, any USE FOR
DEBUGGING statements and all associated debugging sections, and any debugging
lines are compiled as if they were comment lines.

XI-3

Debug - USE FOR DEBUGGING

3. PROCEDURE DIVIS ION_ IN THE DEBUG MODULE

3.1 THE USE FOR DEBUGGING STATEMENT

3.1.1 Function

The USE FOR DEBUGGING statement identifies the user items that are to be
monitored by the associated debugging section.

3.1.2 General Format

section-name SECTION [segment-number J •

USE FOR DEBUGGING ON

cd-name-2

cd-name-1
(ALL REFERENCES OF] identifier-I

f ile-name-1
procedure-name-I
ALL PROCEDURES

(ALL REFERENCES OF] identifier-2
file-name-2
procedure-name-2
ALL PROCEDURES

3.1.3 Syntax Rules

(1) Debugging section(s), if specified, must appear together immediately
after the DECLARATIVES header.

(2) Except in the USE FOR DEBUGGING statement itself, there must be no
reference to any non-declarative procedure within the debugging section.

(3) Statements appearing outside of the set of debugging sections must not
reference procedure-names defined within the set of debugging sections.

(4) Except for the USE FOR DEBUGGING statement itself, statements appear­
ing within a given debugging section may reference procedure-names defined
within a different USE procedure only with a PERFORM statement.

(5) Procedure-names defined within debugging sections must not appear with­
in USE FOR DEBUGGING statements.

(6) Any given(~dentifier, cd-name, file-name, orlprocedure-name may appear
in only one USE FOR DEBUGGING statement and may appear only once in that
statement.

(7) The ALL PROCEDURES phrase can appear only once in a program.

(8) When the ALL PROCEDURES phrase is specified, procedu~e-name-1,
procedure-name~2, ••• must not be specified in any USE FOR DEBUGGING statement.

XI-4

Debug - USE FOR DEBUGGING

(9) Identifier-I, identifier-2, ••• ,must not reference any data item
defined in the Report Section except sum counters.

(10) If the data description entry of the data item referenced by identi­
!ier-1, identifier-2, ••• , contains an OCCURS clause or is subordinate to a
data description entry that contains an OCCURS clause, identifier~!, identi­
fier-2, ••• ,must be specified without the subscripting or indexing normally
required.

(11) References to the special register DEBUG-ITEM are restricted to refer­
ences from within a debugging section.

3.1.4 General Rules

(1) In the following general rules all references to cd-name-1, identi­
fier-I, rocedure-name-1, and file-name-1 apply equally to cd-name-2,
identifier-2 procedure-name-2, and file-name- , respectively.

(2) Automatic execution of a debugging section is not caused by a state­
ment appearing in a debugging section.

(3) When file-name-1 is specified in a USE FOR DEBUGGING statement, that
debugging section is e~ecuted:

a. After the execution of.any OPEN or CLOSE statement that references
file-name-1, and

b. After the execution of any READ statement (after any other speci­
fied USE procedure) not resulting in the execution of an associated AT END or
INVALID KEY imperative statement, and

c. After the execution of any DELETE or START statement that refer­
ences file-name-1.

(4) When procedure-name-I is specified in a USE FOR DEBUGGING statement
that debugging section is executed:

a. Immediately before each execution of the named procedure;

b. Immediately after the execution of an ALTER statement which
references procedure-name-I.

(5). The ALL PROCEDURES phrase causes the effects described in general rule
4 to occur for every procedure-name in the program, except those appearing
within a debugging section.

(6) When the ALL REFERENCES OF identifier-I phrase is specified, that
debugging section is executed for every statement that explicitly references
identifier-1 at each of the following times:

a. In the case of a WRITE or REWRITE statementimmedi~tely before
the execution of that WRITE or REWRITE statement and after the execution of
any implicit move resulting from the presence of the FROM.phrase.

XI-5

Debug - USE FOR DEBUGGING

b. In the case of a GO TO statement with a DEPENDING ON phrase,
immediately before control is transferred and prior to the execution of any
debugging section associated with the procedure-name to which control is to be
transferred.

c. In the case of a PERFORM statement in which a VARYING, AFTER, or
UNTIL phrase references identifier-I, immediately after each initialization,
modification or evaluation of the contents of the data item referenced by
identifier-I.

d. In the case of any other COBOL statement, immediately after
execution of that statement.

If identifier-I is specified in a phrase that is not executed or
evaluated, the associated debugging section is not executed.

(7) When identifier-! is specified without the ALL REFERENCES OF phrase,
that debugging section is executed at each of the following times:

a. In the case of a WRITE or REWRITE statement that explicitly
references identifier-!, immediately before the execution of that WRITE or
REWRITE statement and after the execution of any implicit move resulting
from the presence of the FROM phrase.

b. In the case of a PERFORM statement in which a VARYING, AFTER or
UNTIL phrase references identifier-!, immediately after each initialization,
modification or evaluation of the contents of the data item referenced by
identifier-I.

c. Immediately after the execution of any other COBOL statement
that explicitly references and causes the contents of the data item referenced
by identifier-! to be changed.

If identifier-I is specified.in a phrase that is not executed or
evaluated, the associated debugging section is not executed.

(8) The associated debugging section is not executed for a specific
operand more than once as a result of the execution of a single statement,
regardless of the number of times that operand is explicitly specified. In
the case of a PERFORM statement which causes iterative execution of a refer­
enced procedure, 'the associated debugging section is executed once for each
iteration.

Within an imperative statement, each individual occurrence of an
imperative verb identifies a separate statement for the purpose of debugging.

(9) When cd-name-I is specified in a USE FOR DEBUGGING statement, that
debugging section is executed:

a. After the execution of any ENABLE, DISABLE, and SEND statement
that references cd-name-I,

b. After .the execution of a RECEIVE statement referencing cd-name-1
that does not result in the execution of the NO DATA imperative-statement, and

XI-6

Debug - USE FOR DEBUGGING

c. After the execution of an ACCEPT MESSAGE COUNT statement that
references cd-name-1.

(10) A reference tol file-name-1, identifier-1,jprocedure-name-1 lor cd-name-ll
as a qualifier does not constitute reference to that item for the debugging
described in the general rules above.

(11) Associated with each execution of a debugging section is the special
register DEBUG-ITEM, which provides information about the conditions that
caused the execution of a debugging section. DEBUG-ITEM has the following
implicit description:

01 DEBUG-ITEM.
02 DEBUG-LINE
02 FILLER
02 DEBUG-NAME
02 FILLER
02 DEBUG-SUB-1
02 FILLER
02 DEBUG-SUB-2
02 FILLER
02 DEBUG-SUB-3
02 FILLER
02 DEBUG-CONTENTS

PICTURE IS X(6).
PICTURE IS X VALUE SPACE.
PICTURE IS X(30).
PICTURE IS X VALUE SPACE.
PICTURE IS S9999 SIGN IS LEADING SEPARATE CHARACTER.
PICTURE IS X VALUE SPACE.
PICTURE IS S9999 SIGN IS LEADING SEPARATE CHARACTER.
PICTURE IS X VALUE SPACE.
PICTURE IS S9999 SIGN IS LEADING SEPARATE CHARACTER.
PICTURE IS X VALUE SPACE.
PICTURE IS X(n).

(12) Prior to each execution of a debugging section, the contents of the
data item referenced by DEBUG-ITEM are space-filled. The contents of data
items subordinate to DEBUG-ITEM are then updated, according to the following
general rules, immediately before control is passed to that debugging section.
The contents of any data item not specified in the following general rules
remains spaces.

Updating is accomplished in accordance with the rules for the MOVE
statement, the sole exception being the move to DEBUG-CONTENTS when the move
is treated exactly as if it was an alphanumeric to alphanumeric elementary
move with no conversion of data from one form of internal representation to
another.

(13) The contents of DEBUG-LINE is the implementor-defined means of iden­
tifying a particular source statement.

(14) DEBUG-NAME contains the first 30 characters of the name that caused
the debugging section to be executed.

All qualifiers of the name are separated in DEBUG-NAME by the word
'IN' or 'OF'. Subscripts/indices, if any, are not entered into DEBUG-NAME.

(15) If the reference to a data item that causes the debugging section to
be executed is subscripted or indexed, the occurrence number of each level is
entered in DEBUG-SUB-I, DEBUG-SUB-2, DEBUG-SUB-3 respectively as necessary.

(16) DEBUG-CONTENTS is a data item that is large enough to contain the
data required by the following general rules.

XI-7

Debug - USE FOR DEBUGGING

(I7) If the first execution of the first nondeclarative procedure in the
program causes the debugging section to be executed, the following conditions
exist:

a. DEBUG-LINE identifies the first statement of that procedure.

b. DEBUG-NAME contains the name of that procedure.

c. DEBUG-CONTENTS contains 'START PROGRAM'.

(18) If a reference to procedure-name-! in an ALTER statement causes the
debugging section to be executed, the following conditions exist:

a. DEBUG-LINE identifies the ALTER statement that references procedure-
name-1.

b. DEBUG-NAME contains procedure-name-I.

c. DEBUG-CONTENTS contains the applicable procedure-name associated
with the TO phrase of the ALTER statement.

(I9) If the transfer of control associated with the execution of a GO TO
statement causes the debugging section to be executed, the following conditions
exist:.

a. DEBUG-LINE identifies the GO TO statement whose execution transfers
control to procedure-name-!.

b. DEBUG-NAME contains procedure-name-I.

(20) If reference to procedure-name-I in the INPUT or OUTPUT phrase of a
SORT or MERGE statement causes the debugging section to be executed, the
following conditions exist:

a. DEBUG-LINE identifies the SORT or MERGE statement that references
procedure-name-1.

b. DEBUG-NAME contains procedure-name-I.

c. DEBUG-CONTENTS contains:

1. If the reference to procedure-name-I is in the INPUT phrase
of a SORT statement, ' SORT INPUT' •

2. If the reference to procedure-name-! is in the OUTPUT phrase
of a SORT statement, 'SORT OUTPUT' •

3. If the reference to procedure-name-I is in the OUTPUT phrase
of a MERGE statement,'MERGE OUTPUT'.

(21) If the transfer to control from the control mechanism associated with
a PERFORM statement caused the debugging section associated with procedure­
name-1 to be executed, the following conditions exist:

XI-8

Debug - USE FOR DEBUGGING

a. DEBUG-LINE identifies the PERFORM statement that references
proced~re-name-1.

b. DEBUG-NAME contains procedure-name-I.

c. DEBUG-CONTENTS contains 'PERFORM LOOP'.

(22) If procedure-name-I is a USE procedure that is to be executed, the
following conditions exist:

a. DEBUG-LINE identifies the statement that causes execution of the
USE procedure.

b. DEBUG~NAME contains procedure-name-I.

c. DEBUG-CONTENTS contains 'USE PROCEDURE'.

(23) If an implicit transfer of control from the previous sequential
paragraph to procedure-name-! causes the debugging section to be executed, the
following conditions exist:

a. DEBUG-LINE identifies the previous statement.

b. DEBUG-NAME contains procedure-name-I.

c. DEBUG-CONTENTS contains 'FALL THROUGH'.

(24) If references to file-name-1, cd-name-1 causes the debugging section
to be executed, then:

a. DEBUG-LINE identifies the source statement that references file­
. name-!, cd-name-1.

b. DEBUG-NAME contains the name of file-name-1, cd-name-1.

c. For READ, DEBUG-CONTENTS contains the entire record read.

d. For all other references to file-name-!, DEBUG-CONTENTS contains
spaces.

e. For any reference to cd-name-1, DEBUG-CONTENTS contains the
contents of the area associated with the cd-name.

(25) If a reference to identifier-I causes the debugging section to be
executed, then:

a. DEBUG-LINE identifies the source statement that references
identifier-I,

b. DEBUG-NAME contains the name of identifier-I, and

c. DEBUG-CONTENTS contains the contents of the data item referenced
by identifier-! at the time that control passes to the debugging section (see
general rules 6 and 7).

XI-9

Debug - Debugging Lines

3.2 DEBUGGING LINES

A debugging line is any line with a 'D' in the indicator area of the line.
Any debugging line that consists solely of spaces from margin A to margin R
is considered the same as a blank line.

The contents of a debugging line must be such that a syntactically correct
program is formed with or without the debugging lines being considered as
comment lines.

A debugging line will be considered to have all the characteristics of a
comment line, if the WITH DEBUGGING MODE clause is not specified in the
SOURCE-COMPUTER paragraph.

Successive debugging lines are allowed. Continuation of debugging lines
is permitted, except that each continuation line must contain a 'D' in the
indicator area, and character-strings may not be broken across two lines.

A debugging line is only permitted in the program after the OBJECT-COMPUTER
paragraph.

XI'!'"lO

Inter-Program Communiaation - Introduation

1. INTRODUCTION TO THE INTER-PROGRAM COMMUNICATION MODULE

1.1 FUNCTION

The Inter-Program Communication module provides a facility by which a pro­
gram can communicate with one or more programs. This communication is provided
by: (a) the ability to transfer control from one program to another within a
run unit and (b) the ability for both programs to have access to the same data
items.

1.2 LEVEL CHARACTERISTICS

Inter-Program Communication Level 1 provides a capability to transfer control
to one or more programs whose names are known at compile time and for the
sharing of data among such programs.

Additionally Inter-Program Communication Level 2 provides the capability to
transfer control to one or more programs whose names are not known at compile,
time as well as the ability to determine the availability of object time
memory for the program to which control is being passed.

XII-I

Inter-Program Communication - Linkage Section

2. DATA DIVISION IN THE INTER-PROGRAM COMMUNICATION MODULE

2.1 LINKAGE SECTION

The Linkage Section in a program is meaningful if and only if the object
program is to function under the control of a CALL statement, and the CALL
statement in the calling program contains a USING phrase.

The Linkage Section is used for describing data that is available through
the calling program but is.to be referred to in both the calling and the called
program. No space is allocated in the program for data items referenced by
data-names in the Linkage Section of that program. Procedure Division refer­
ences to these data items are resolved at object time by equating the reference
in the called program to the location used in the calling program. In the cas.e
of index-names, no such correspondence is established. Index-names in the
called and calling program always refer to separate indices.

Data items defined in the Linkage Section of the called program may be
referenced within the Procedure Division of the called program only if they
are specified as operands of the USING phrase of the Procedure Division header
or are subordinate to such operands, and the object program is under the
control of a CALL statement that specifies a USING phrase.

The structure of the Linkage Section is the same as that previously
described for the Working-Storage Section, beginning with a section header,
followed by data description entries for noncontiguous data items and/or
record description entries.

Each Linkage Section record-name and noncontiguous item name must be
unique within the called program since it cannot be qualified. Data items
defined in the Linkage Section of the called program must not be associated
with data items defined in the Report Section of the calling program.

Of those items defined in the Linkage Section only data-name-1, data-name-2,
••• in the USING phrase of the Procedure Division header, data items subordi­
nate to these data-names, and condition-names and/or index-names associated
with such data-names and/or subordinate data items, may be referenced in the
Procedure Division.

2.1.1 Noncontiguous Linkage Storage

Items in the Linkage Section that bear no hierarchic relationship to one
another need not be grouped into records and are classified and defined as
noncontiguous elementa~y items. Each of these data items is defined in a
separate data description entry which begins with the special level-number 77.

The following data clauses are required in each data description entry:

a. level-number 77
b. data-name
c. the PICTURE clause or the USAGE IS INDEX clause.

Other data description clauses are optional and can be used to complete the
description of the item if necessary.

Inter-Program Communiaation - Linkage Seation

2. 1. 2 Linkage Records

Data elements in the Linkage Section which bear a definite hierarchic
relationship to one another must be grouped into records according to the
rules for formation of record descriptions. Any clause which is used in an
input or output record description can be used in a Linkage Section.

2.1.3 Initial Values

The VALUE clause must no't be specified in the Linkage Section except in
condition-name en tries (level 88) •

XII-3

Inter-Program Corrununiaation - Proaedure Division

3. PROCEDURE DIVISION IN THE INTER-PROGRAM COMMUNICATION MODULE

3.1 THE PROCEDURE DIVISION HEADER

The Procedure Division is identifi-ed by and must begin with the follow­
ing header:

PROCEDURE DIVISION [USING data-name-1 (, data-name-21 •••] •

The USING phrase is present if and only if the object program is to func­
tion under the control of a CALL statement, and the CALL statement in the
calling program contains a USING phrase.

Each of the operands in the USING phrase of the Procedure Division header
must be defined as a data item in the Linkage Section of the program in which
this header occurs, and it must have a 01 or 77 level-number.

Within a called program, Linkage Section data items are processed according
to their data descriptions given in the called program.

When the USING phrase is present, the object program operates as if data­
name-1 of the Procedure Division header in the called program and data-name-1
in the USING phrase of the CALL statement in the calling program refer to a
single set of data that is equally available to both the called and calling
programs. Their descriptions must define an equal number of character posi­
tions; however, they need not be the same name. In like manner, there is an
equivalent relationship between data-name-2, ••• ,in the USING phrase of the
called program and data-name-2, ••• , in the USING phrase of the CALL state­
ment in the calling program. A data-name must not appear more than once in
the USING phrase in the Procedure Division header of the called program; how­
ever, a given data-name may appear mare than once in the same USING phrase of
a CALL statement.

If the USING phrase is specified, the INITIAL clause must not be present
in any CD entry. (See syntax rule 2 of the communication description entry
on page XIII-4.)

XII-4

Inter-ProgPam Communiaation - CALL

3.2 THE CALL STATEMENT

3.2.1 Function

The CALL statement causes control to be transferred from one object program
to another, within the run unit.

3.2.2 General Format

CALL {I i~entifier-ll} [USING data-name-1 (, data-name-2] •••]
~~ literal-I

I [; ON OVERFLOW imperative-statement J I
3.2.3 Syntax Rules

(1) Literal-1 must be a nonnumeric literal.

(2) Identifier-I must be defined as an alphanumeric data item such that
its value can be a program name.

(3) The USING phrase is included in the CALL statement only if there is
a USING·phrase in the Procedure Division header of the called program and the
number of operands in each USING phrase must be identical.

(4) Each of the operands in the USING phrase must have been defined as a
data item in the File Section, Working-Storage Section, Communication Section,
or Linkage Section, and must have a level-number of 01 or 77. Data-name-1,
data-name-2, ••• , may be qualified when they reference data items defined in
the File Section or the Communication Section.

3.2.4 General Rules

(l) The rrogram whose name is specified by the value of litera1-1G!J
I identif ier-1 is the called program; the program in which the CALL statement

appears is the calling program.

(2) The execution of a CALL statement causes control to pass to the called
program.

(3) A called ro ram is in its initial state the first time it is called
within a run unit and the first time it is called after a CANCEL to the
called program.

On all other entries into the called program, the state of the program
remains unchanged from its state when last exited. This includes all data
fields, the status and positioning of all files, and all alterable switch
settings.

(4) If during the execution of a CALL statement, it is determined that
the available portion of object time memory is incapable of accommodating the
program specified in the CALL statement and the -ON OVERFLOW phrase is speci­
fied, no action is taken and the imperative-statement is executed.

XII--5

Inter-Program Communication - CALL

If the above condition exists and the ON OVERFL:OW phrase is not speci­
fied, the effects of the CALL statement are defined by the implementor.

(5) Called programs 111ay contain CALL statements. However, a called pro­
gram must' not contain a CALL statement that directly or indirectly calls the
calling program.

(6) The data-names, specified by the USING phrase of the CALL statement,
indicate those data items available to a calling program that may be referred
to in the called program. The order of appearance of the data-names in the
USING phrase of the CALL statement and the USING phrase in the Procedure Divi­
sion header is critical. Corresponding data-names refer to a single set of
data which is available to the called and calling program. 'llle correspondence
is positional, not by name. In the case of index-names, no such correspon­
dence is established. Index-names in the called and calling program always
refer to separate indices.

(7) The CALL statement may appear anywhere wit~in a segmented program.
'llle implementor must provide all controls necessary to insure that the proper
logic flow is maintained.. Therefore, when a CALL statement appears in a sec­
tion with a segment-number greater than or equal to SO, that segment is in
its last used state when the EXIT PROGRAM statemetit returns control to the
calling program.

XII-6

Inter-Program Corrmu:niaation - CANCEL

3.3 THE CANCEL STATEMENT

3.3.1 Function

The CANCEL statement releases the memory areas occupied by the referred to
program.

3.3.2 General Format

CANCEL {
iden tifier-1 J
literal-!

3.3.3 Syntax Rules

[
', identifier-2]

literal-2 .

(1) Literal-!, literal-2, ••• , must each be a nonnumeric literal.

(2) Identifier-!, identifier-2, ••• , must each be defined as an alpha­
numeric data item such that its value can be a program name.

3.3.4 General Rules

(1) Subsequent to the execution of a CANCEL statement, the program referre
to therein ceases to have any logical relationship to the run unit in which
the CANCEL statement appears. A subsequently executed CALL statement naming
the same program will result in that program being initiated in its initial
state. The memory areas associated with the named programs are released so
as to be made available for disposition by the operating system.

(2) A program named in the CANCEL statement must not refer to any program
that has been called and has not yet executed an EXIT PROGRAM statement.

(3) A logical relationship to a cancelled subprogram is established only
by execution of a subsequent CALL statement.

(4) A called program is cancelled either by being referred to as
the operand of a CANCEL statement or by the termination of the run unit of
which the program is a member.

(5) No action is taken when a CANCEL statement is executed naming a pro­
gram that has not been called in this run unit or has been called and is at

·present cancelled. Control passes to the·next statement.

xn:..1

Inter-Program Communiaation - EXIT PROGRAM

3.4 THE EXIT PROGRAM STATEMENT

3.4.1 Function

The EXIT PROGRAM statement marks the logical end of a called program.

3.4.2 General Format

EXIT PROGRAM.

3.4.3 Syntax Rules

(1) The EXIT PROGRAM statement must appear in a sentence by itself.

(2) The EXIT PROGRAM sentence must be the only sentence in the paragraph.

3.4.4 General Rules

(1) An execution of an EXIT PROGRAM statement in a called program causes
control to be passed to the calling program. Execution of an EXIT PROGRAM
statement in a program which is not called behaves as if the statement were
an EXIT statement. (See page II-64, The EXIT Statement.)

XII-8

Communication - Introduction

1. INTRODUCTION TO THE COMMUNICATION MODULE

1.1 FUNCTION

The Communication module provides the ability to access, process, and
create messages or portions thereof. It provides the ability to communicate
through a Message Control System with local and remote communication devices.

1.2 LEVEL CHARACTERISTICS

Communication Level 1 does not provide the full COBOL facility for the CD
entry as specified in the formats for this module. In the Procedure Division,
Level 1 provides limited capabilities for the ENABLE, DISABLE, RECEIVE and
SEND statements, as specified in the formats of this module. There is also
a provision for determining the number of messages in an input queue.

Communication Level 2 provides full facility for the CD entry as specified
in the formats of this module. Within the Procedure Division, full capabilities
are provided for the ENABLE, DISABLE, RECEIVE and SEND statements, as specified
in the formats for this module. The additional features available in Level 2
include: partial messages, segmented messages, multiple destination message
processing, and program invocation by the MCS as specified by the INITIAL CD.

XIII-!

Comnruniaation - Comnruniaation Seation

2. DATA DIVISION IN THE COMMUNICATION MODULE

2.1 COMMUNICATION SECTION

In a COBOL program the communication description entries (CD) represent the
highest level of organization in the Communication Section. The Communication
Section header is followed by a communication description entry consisting of
a level indicator (CD), a data-name and a series of independent clauses. These
clauses indicate the queues and sub-queues, the message date and time, the
source, the text length, the status and end keys, and message count of input.
These clauses specify the destination count, the text length, the status and
error keys, and destinations for output. The entry itself is terminated by a
period. These record areas may be implicitly redefined by user-specified
record description entries following the various communication description
clauses.

XIII-2

Communication - CD Entry Skeleton

2.2 THE COMMUNICATION DESCRIPTION - COMPLETE ENTRY SKELETON

2.2.1 Function

The communication description specifies the interface area between the MCS
and a COBOL program.

2.2.2 General Format

Format 1

CD cd-name;

FOR I [INITIAL] I INPUT

Format 2

CD cd-name; FOR OUTPUT

[(; SYMBOLIC QUEUE IS data-name-1)

[; SYMBOLIC SUB-QUEUE-1 IS data-name-2]

(; SYMBOLIC SUB-QUEUE-2 IS data-name-3]

(; SYMBOLIC SUB-QUEUE-3 IS data-name-4]

(; MESSAGE DATE IS data-name-5]

(; MESSAGE TIME IS data-name-6]

[; SYMBOLIC SOURCE IS data-name-7]

(; TEXT LENGTH IS data-name-8)

(; END KEY IS data-name-9]

[; STATUS KEY IS data-name-10]

[; MESSAGE COUNT IS data~name-11]]

[data-name-1, data-name-2, ••• , dat a-name-11 J

[; DESTINATION COUNT IS data-name-1]

[; TEXT LENGTH IS data-name-2]

[; STATUS KEY IS data-name-3]

(; DESTINATION TABLE OCCURS integer-2 TIMES

(;INDEXED BY index-name-1 (, indE!X>-llame-2] ••• 1]
[; ERROR KEY IS data-name-4]

(; SYMBOLIC DESTINATION IS data-name-5] •

XIII-3

•

Communiaation - CD Entry Skeleton

2.2.3 Syntax Rules

FORMAT 1

(1) A CD must appear only in the Connnunication Section.

(2) Within a single program, the INITIAL clause may be specified in only
one CD. The INITIAL clause must not be used in a program that specifies the
USING phrase of the Procedure Division Header. (See page XII-4, The Procedure
Division Header.}

(3) IExcept for the INITIAL clause,I the optional clauses may be written
in any order.

(4) If neither option in the format is specified, a level 01 data descrip­
tion entry must follow the CD description entry. Either option may be followed
by a level 01 data description entry.

(5) For each input CD, a record area of 87 contiguous standard data format
·characters is allocated. This record area is defined to the MCS as follows:

a,. The SYMBOLIC QUEUE clause defines data-name-1 as the name of an
elementary alphanumeric data item of 12 characters occupying positions 1-12
in the record.

b. The SYMBOLIC SUB-QUEUE-1 clause defines data-name-2 as the name
of an elementary alphanumeric data item of 12 characters occupying positions
13-24 in the record.

c. The SYMBOLIC SUB-QUEUE-2 clause defines data-name-3 as the name of
an elementary alphanumeric data item of 12 characters occupying positions
25-36 in the record.

d. The SYMBOLIC SUB-QUEUE-3 clause defines data-name-4 as the name of
an elementary alphanumeric data item of 12 characters occupying positions
37-48 in the record.

e. The MESSAGE DATE clause defines data-name-5 as the name of a data
item whose implicit description is that of an integer of 6 digits without an
operational sign occupying character positions 49-54 in the record.

f. The MESSAGE TIME clause defines data-name--6 as the name of a data
item whose implicit description is that of an integer of 8 digits without an
operational sign occupying character positions 55-62 in the record.

g. The SYMBOLIC SOURCE clause defines data-name--7 as the name of an
elementary alphanumeric data item of 12 characters occupying positions 63-74
in the record.

h. The TEXT LENGTH clause defines data-name-8 as the name of an
elementary data item whose implicit description is that of an integer-of 4
digits without an operational sign occupying character positions 75-78 in the
record.

XIII-4

Corrununication - CD Entry Skeleton

i. The END KEY clause defines data-name-9 as the name of an elementary
alphanumeric data item of 1 character occupying position 79 in the record.

j. The STATUS KEY clause defines data-name-10 as the name of an
elementary alphanumeric data item of 2 characters occupying positions 80-81
in the record.

k. The MESSAGE COUNT clause defines data-name-11 as the name of an
elementary data item whose implicit description is that of an integer of 6
digits without an operational sign occupying character positions 82-87 in
the record.

The second option may be used to replace the above clauses by a series
of data-names which, taken in order, correspond to the data-names defined by
these clauses.

Use of either option results in a record whose implicit description
is equivalent to the following:

IMPLICIT DESCRIPTION COMMENT

01 data-name-0.

02 data-name-1 PICTURE X(l2). SYMBOLIC QUEUE
02 data-name-2 PICTURE X(12). SYMBOLIC SUB-QUEUE-1
02 data-name-3 PICTURE X(12). SYMBOLIC SUB-QUEUE-2
02 data-name-4 PICTURE X(12). SYMBOLIC SUB-QUEUE-3
02 data-name-5 PICTURE 9(06). MESSAGE DATE
02 data-name-6 PICTURE 9 (08). MESSAGE TIME
02 data-name-7 PICTURE X(12). SYMBOLIC SOURCE
02 data-name-8 PICTURE 9(04). TEXT LENGTH
02 data-name-9 PICTURE X. END KEY
02 data-name-10 PICTURE XX. STATUS KEY
02 data-name-11 PICTURE 9(06). MESSAGE COUNT

NOTE: In the above, the information under 'COMMENT' is for
clarification and is not part of the description.

(6) Record description entries following an input CD implicitly redefine
this record and must describe a record of exactly 87 characters. Mul tip.le
redefinitions of this record are permitted; however, only the first redefini­
tion may contain VALUE clauses. However, the MCS will always reference the
record according to the data descriptions defined in syntax rule 5.

(7) Data-name-1, data-name-2, ••• , data-name-11 must be unique within the
CD. Within this series, any data-name may be replaced by the reserved word
FILLER.

FORMAT 2

(8) A CD must appear only in the Communication Section.

(9) If none of the optional clauses of the CD is specified, a level 01 data
description entry must follow the CD description entry.

XIII-5

Corrnnuniaation - CD Entry Skeleton

(10) For each output CD, a record area of contiguous standard data format
characters is allocated according to the following formula: (10 plus 13 times
integer-2).

a. The DESTINATION COUNT clause defines data-name-1 as the name of a
data item whose implicit description is that of an integer without an opera­
tional sign occupying character positions 1-4 in the record.

b. The TEXT LENGTH clause defines data-name-2 as the name of an
elementary data item whose implicit description is that of an integer of 4
digits without an operational sign occupying character positions 5-8 in the
record.

c. The STATUS KEY clause defines data-name-3 to be an elementary
alphanumeric data item of 2 characters occupying positions 9-10 in the record.

d. Character positions 11-23 and every set of 13 characters thereafter
will form table items of the following description:

1) The ERROR KEY clause defines data-name-4 as the name of an
elementary alphanumeric data item of 1 character.

Z) The SYMBOLIC DESTINATION clause defines data-name-5 as the
name of an elementary alphanumeric data item of 12 characters.

Use of the above clauses results in a record whose implicit
description is equivalent to the following:

IMPLICIT DESCRIPTION COMMENT

01 data-name-0.

02
02
02
02

data-name-! PICTURE 9(04). DESTINATION COUNT
data-name-2 PICTURE 9(04). TEXT LENGTH
data-name-3 PICTURE XX. STATUS KEY
data-name OCCURS integer-2 TIMES. DESTINATION TABLE

03 data-name-4 J?ICTURE X. ERROR KEY
03 data-name-5 PICTURE X(l2). SYMBOLIC DESTINATION

NOTE: In the above, the information under 'COMMENT' is for
clarification and is not part of the description.

(11) Record descriptions following an output CD implicitly redefine this
record. Multiple redefinitions of this record are permitted; however, only the
first redefinition may contain VALUE clauses. However, the MCS will always
reference the record according to the data descriptions defined in syntax rule 10.

(12) Data-name-1, data-name-2, ••• , data-name-5 must be unique within a CD.

(13) If the DESTINATION TABLE OCCURS clause is not specified, one (1) ERROR
KEY and one (!)_ SYMBOLIC DESTINATION area is assumed. In this case, neither
subscripting nor indexing is permitted when referencing these data items.

(14) If the DESTINATION TABLE OCCURS clause is specified, data-name-4 and
data-name-5 may only be referred to by subscripting or indexing.

XIII-6

Corronunication - CD Entry Skeleton

(15) In Level 1, the value of the data item referenced b data-name-1 and
integer-2 must be 1. In Level 2, there is no restriction on the value of the
data item referenced by data-name-I and integer-2.

2.2.4 General Rules

FORMAT 1

(1) The input CD information constitutes the cotnmunication between the MCS
and the program as information about the message being handled. This informa­
tion does not come from the terminal as part of the message.

(2) The contents of the data items referenced by data-name-2, data-name-3,
and data-name-4, when not being used must contain spaces.

(3) The data items referenced by data-name-I, data-name-2, data-name-3,
and data-name-4 contain symbolic names designating queues, sub-queues, •••
respectively. All symbolic names must follow the rules for the formation
of system-names, and must have been previously defined to the MCS.

(4) A RECEIVE statement causes the serial return of the 'next' message(£EJ
\a portion of a message\ from the queue as specified by the entries in the CD.

If during the execution of a RECEIVE statement, a message from a more
specific source is needed, the contents of the data item referenced by data­
name-1 can be made more specific by the use of the contents of the data items
referenced by data-name-2, data-name-3, and in turn data-name-4. When a
given level of the queue structure is specified, all higher levels must also
be specified.

If less than all the levels of the queue hierarchy are specified, the
MCS determines the 'next' message or portion of a message to be accessed.

After the execution of a RECEIVE statement, the contents of the data
items referenced by data-name-I through data-name-4 will contain the symbolic
names of all the levels of the queue structure.

(5) Whenever a program is scheduled by the MCS to process a message, the
symbolic names of the queue structure that demanded this activity will be
placed in the data items referenced by data-name-I through data-name-4 of the
CD associated with the INITIAL clause as applicable. In all other cases, the
contents of the data items referenced by data-name-I through data-name-4 of
the CD associated with the INITIAL clause are initialized to spaces.

The symbolic names are inserted or the initialization to spaces is
completed prior to the execution of the first Procedure Division statement.

The execution of a subsequent RECEIVE statement naming the same
contents of the data items referenced by data-name-1 through data-name-4 will
return the actual message that caused the program to be scheduled. Only at
that time will the remainder of the CD be updated.

(6) If the MCS attempts to schedule a program lacking an INITIAL clause,
the results are undefined.

XIII-7

Communiaation - CD Entry Skeleton

(7) Data-name-5 has the format 'YYMMDD' (year, month, day). Its contents
represent the date on which the MCS recognizes that the message is complete.

The contents of the data item referenced by data-name-5 are only
updated by the MCS as part of the execution of a RECEIVE statement.

(8) The contents of data-name-6 has the format 'HHMMSSTT' (hours, minutes,
seconds, hundredths of a second) and its contents represent the time at which
the MCS recognizes that the message is complete.

The contents of the data item referenced by data-name-6 are only
updated by the MCS as part of the execution of the RECEIVE statement.

(9) During the execution of a RECEIVE statement, the MCS provides, in the
data item referenced by data-name-7, the symbolic name of the communications
terminal that is the source of the message being transferred. However, if the
symbolic name of the communication terminal is not known to the MCS, the
contents of the data item referenced by data-name-7 will contain spaces.

(10) The MCS indicates via the contents of the data item referenced by
data-name-8 the number of character positions filled as a result of the
execution of the RECEIVE statement. (See page XIII-17.)

(11) The contents of the data item referenced by data-name-9 are set only
by the MCS as part of the execution of a RECEIVE statement according to the
following rules:

a. When the RECEIVE MESSAGE phrase is specified, then:

1. If an end of group has been detected, the contents of
the data item referenced by data-name-9 are set to 3;

2. If an end of message has been detected, the contents of the
data item referenced by data-name-9 are set to 2;

3. If less than a message is transferred, the contents of the
data item referenced by data-name-9 are set to O.

b. When the RECEIVE SEGMENT phrase is specified, then:

1. If an end of· group has been detected, the contents of
the data item referenced by data-name-9 are set to 3;

2. If an end of message has been detected, the contents of the
data item referenced by data-name-9 are set to 2;

3. If an end_ of segment has been detected, the contents of the
data item referenced by data-name-9 are set to l;

4. If less than a. message segment is transferred, the contents
of the data item referenced by data-name-9 are· set to O.

-"-

c. When more than one of the above conditions is satisfied simultan­
eously, the rU,le first satisfied in the ord~r listed -determines the contents
of thed~t,it~ referenced hr data-name~9. ,

XIII-8

Communication - CD Entry Skeleton

(12) The contents of the data item referenced by data-name-10 indicate the
status condition of the previously executed RECEIVE, ACCEPT MESSAGE COUNT,
ENABLE INPUT, or DISABLE INPUT statements.

The actual association between the contents of the data i tern referenced
by data-name-10 and the status condition itself is defined in the table on page
XIII-10.

(13) The contents of the data item referenced by data-name-11 indicate the
number of messages that exist in a queue9 sub-queue-1, •••• The MCS updates
the contents of the data item referenced by data-name-11 only as part of the
execution of an ACCEPT statement with the COUNT phrase.

FORMAT 2

(14) The nature of the output CD information is such that it is not sent
to the terminal, but constitutes the communication between the program and the
MCS as information about the message being handled.

(15) During the execution of a SEND, ENABLE OUTPUT, or DISABLE OUTPUT
statement, the contents of tne data item referenced by data-name-! will indicate
to the MCS the number of symbolic destinations that are to be used from the
area referenced by data-name-5.

The MCS finds the first symbolic destination in the first occurrence
of the area referenced by data-name-5, the second symbolic destination in the
second occurrence of the area referenced by data-name-5 ••• ,up to and includ­
ing the occurrence of the area referenced by data-name-5 indicated by the
contents of data-name-1.

If during the execution of a SEND, ENABLE OUTPUT, or DISABLE OUTPUT
statement the value of the data item referenced by data-name-1 is outside the
range of 1 !through integer-2,I an error condition is indicated and the execu­
tion of the SEND, ENABLE OUTPUT, or DISABLE OUTPUT statement is terminated.

(16) It is the responsibility of the user to insure that the value of the
data item referenced by data-name-1 is valid at the time of execution of the
SEND, ENABLE OUTPUT, or DISABLE OUTPUT statement.

(17) As part of the execution of a SEND statement, the MCS will interpret
the contents of the data item referenced by data-name-2 to be the user's
indication of the number of leftmost character positions of the data item
referenced by the associated SEND identifier from which data is to be trans­
ferred. (See page XIII-20 .)

(18) Each occurrence of the data item referenced by data-name-5 contains a
symbolic destination previously known to the MCS. These symbolic destination
names must follow the rules for the formation of system-names.

(19) The contents of the data item referenced by data-name-3 indicate the
status condition of the previously executed SEND, ENABLE OUTPUT 9 or DISABLE
OUTPUT statement.

The actual association between the contents of the data item referenced
by data-name-3 and the status condition itself is defined in the table on page
XIII-10-.

XIII-9

Communication - CD Entry Skeleton

(20) If, during the exe.cution of a SEND, an ENABLE OUTPUT, o.r a DISABLE
OUTPUT statement, the MCS determines that any specified destination is unknown,
the contents of the data item referenced by data-name-3 and all occurrences of
the data items referenced by data~name-4 are updated.

The contents of the data item referenced by data-name-4 when equal to
1 indicate that the associated value in the area referenced by data-name-5 has
not been previously defined to the MCS. Otherwise, the contents of the data
item referenced by data-name-4 are set to zero (0).

ALL FORMATS

(21) For Level 1, the table below indicates the possible contents of the
data items referenced by data-name-10 for Format 1 and by data-name-3 for
Format 2 at the completion of each statement shown. An 'X' on a line in a
statement column indicates that the associated code shown for that line is
possible for that statement.

E-1

~
,-.... ,-....

~
...:I

0 ~ u
1-1 1-1 µ::i

µ::i s E-1 s E-1 A
C.!) E-1 p 0
< E-1 µ::i p :::> µ::i P-1 u
ti) p E-1 P-1 P-1 E-1 E-1
ti) P-1 E-1 z p

~ ~
z .µ :::> 1-1 .µ 0
1-1 ;:J 0 ;:J ~

µ::i 0 µ::i 0 µ::i

i:i E-1 µ::i ..d µ:i ...:t ..d ...:I ti)

P-1 ...:I .µ ...:I l:Q .µ l:Q p
µ::i

~
µ::i l:Q •n i:Q < •n < ~ u u ~~ ~ ~~ ti)

µ::i µ::i u 1-1
~ ti) < µ::i µ:i A A ti)

x x x x x x x 00 No error detected. Action completed.

x 10 Destination is disabled. Action completed.

Destination unknown. No action taken for
x x x 20 unknown destination. Data-name-4 (ERROR KEY)

indicates unknown.

x x x x 20
One or more queues or sub-queues unknown.
No action taken.

,,

x x x 30
Content of DESTINATION COUNT invalid.
No action taken.

x x x x 40
Password invalid. No enabling/disabling
action taken.

Character count greater than length of x so sending field. No action taken.

Communication Status Key Condition in Level 1

XIII-10

Corrununiaation - CD EntP]J Skeleton

(22) For Level 2, the table below indicates the possible contents of the
data items referenced by data-name-10 for Format 1 and by data-name-3 for
Format 2 at the completion of each statement shown. An 'X' on a line in a
statement column indicates that the associated code shown for that line is
possible for that statement.

E-f z - -:::> ...:I ...:I
0 ~ ~ C,) - -H ...:I H ~ r::i::I
r::i::I ~ ~ E-f ~ E-f A

~ E-f E-f z :::> 0
E-f r::i::I E-f H :::> :::> r::i::I :::> H Pol C,)

ti) :::> E-f ~~ Pol Pol E-f ~s E-f
ti) Pol f;j z :::> ~ r::i::I z .µ z r::i::I H .µ H r::i::I 0
;:E:: H ::S H E-f 0 ::s E-f ~

r::i::I 0 r::i::I 0 r::i::I r::i::I
:> E-f r::i::I .c r::i::I .c r::i::I ...:I .c ...:I .c ...:I ti)

H Pol ...:I .µ ...:I .µ ...:I ~ .µ ~ .µ
~ :::>

r::i::I ~ r::i::I ~ •rl ~ •rl ~
< •rl < •rl' ~ C,) C,) z~ z~ ti) :J: ti) :J: ti)

r::i::I r::i::I C,) H...._,, H...._,, H E-f pe: ti) < r::i::I r::i::I r::i::I A A A ti)

x x x x x x x x x 00 No error detected. Action completed.

x 10
One or more destinations are
disabled. Action completed.

One or more destinations unknown.
Action completed for known destina-

x x x 20 tions. No action taken for unknown
destinations. Data-name-4 (ERROR
KEY) indicates known or unknown.

x x x x 20
One or more queues or sub-queues
unknown. No action taken.

x x 20
The source is unknown. No action
taken.

x x 30
Content of DESTINATION COUNT x invalid. No action taken.

x x x x x 40
Password invalid. No x enabling/disabling action taken ..

x 50
Character count greater than length
of sending field. No action taken.

Partial segment with either zero
x 60 character count or no sending area

l specified. No action taken.

Communication Status Key Condition in Level 2

XIII-11

Cormnunication - ACCEPE MESSAGE COUNT

3. PROCEDURE DIVISION IN THE COMMUNICATION MODULE

3.1 THE ACCEPT MESSAGE COUNT STATEMENT

3.1.1 Function

The ACCEPT MESSAGE COUNT statement causes the nwnber of messages in a
queue to be made available.

3.1.2 General Format

ACCEPT cd-name MESSAGE COUNT

3.1.3 Syntax Rules

(1) Cd-name must reference an input CD.

3.1.4 General Rules

(1) The ACCEPT MESSAGE COUNT statement causes the MESSAGE COUNT field
specified for cd-name to be updated to indicate the number of messages that
exist in a queue, sub-queue-I, •••

(2) Upon execution of the ACCEPT MESSAGE COUNT statement, the contents of
the area specified by a communication description entry must contain at least
the name of the symbolic queue to be tested. Testing the condition causes the
contents of the data items referenced by data-name-10 (STATUS KEY) and
data-name-11 (MESSAGE COUNT) of the area associated with the communication
entry to be appropriately updated. (See page XIII-3, The Communication
Description - Complete Entry Skeleton.)

XIII-12

Communication - DISABLE

3.2 THE DISABLE STATEMENT

3.-2.1 Function

The DISABLE statement notifies the MCS to inhibit data transfer between
specified output queues and destinations for output or between specified
sources and input queues for input.

3.2.2 General Format

DISABLE {INPUT I [TERMINAL) ') cd-name WITH KEY
(ouTPUT

3.2.3 Syntax Rules

{
identifier-I}
literal-I

(1) Cd-name must reference an input CD when the INPUT phrase is specified.

(2) Cd-name must reference an output CD when the OUTPUT phrase is specified.

(3) Literal-I or the contents of the data item referenced by identifier-I
must be defined as alphanumeric.

3.2.4 General Rules

(1) The DISABLE statement provides a logical disconnection between the MCS
and the specified sources or destinations. When this logical disconnection is
already in existence, or is to be handled by some other means external to this
program, the DISABLE statement is not required in this program. The logical
path for the transfer of data between the COBOL programs and the MCS is not
affected by the DISABLE statement.

(4) When the OUTPUT phrase is s ecified, the logical path for destination,
or the lo ical aths for all destinations specified by the contents of the
data item referenced by data-name-5 (SYMBOLIC DESTINATION) of the area refer­
enced by cd-name are deactivated.

(5) Literal-! or the contents of the data-name referenced by identifier-1
will be matched with a password built into the system. The DISABLE statement
will be honored only if literal-1 or the contents of the data item referenced
by identifier-I matches the system password. When literal-I or the contents
of the data item referenced by identifier-I do not match the system password,
the value of the STATUS KEY item in the area referenced by cd-name is update4.

XIII-13

Communication - DISABLE

The MCS must be capable of handling a password of from one to ten
characters inclusive.

(6) The MCS will insure that the execution of a DISABLE statement will
cause the logical disconnection at the earliest time the source or destination
is inactive. 11le execution of the DISABLE statement will never cause the
remaining portion of the message to be terminated during transmission to or
from a terminal.

XIII-14·

Communication - ENABLE

3.3 THE ENABLE STATEMENT

3.3.1 Function

The ENABLE statement notifies the MCS to allow data transfer between
specified output queues and destinations for output or between specified
sources and input queues for input.

3.3.2 General Format

ENABLE {INPUT I [TERMINAL] n cd-name WITH KEY

OUTPUT J
3.3.3 Syntax Rules

{identifier-I\
l_literal-1 J

(1) Cd-name must reference an input CD when the INPUT phrase is specified.

(2) Cd-name must reference an output CD when the OUTPUT phrase is specified.

(3) Literal-I or the contents of the data item referenced by identifier-1
must be defined as alphanumeric.

3.3.4 General Rules

(1) The ENABLE statement provides a logical connection between the MCS and
the specified sources or destinations. When this logical connection is already
in existence, or is to be handled by some other means external to this program,
the ENABLE statement is not required in this program. The logical path for the
transfer of data between the COBOL programs and the MCS is not affected by the
ENABLE statement.

(2) When the INPUT phrase with the optional word TERMINAL is specified,
the logical path between the source and all associated queues and sub-queues
which are already enabled is activated. Only the contents of the data item
referenced by data-name-7 (SYMBOLIC SOURCE) of the area referenced by cd-name
are meaningful to the MCS.

(3) When the INPUT phraselwithout the optional word TERMINALlis specified,
the· logical paths for all of the sources associated with the queue and sub­
queues specified by the contents of data-name-1 (SYMBOLIC QUEUE) through
data-name-4 (SYMBOLIC SUB-QUEUE-3) of the area referenced by cd-name are
activated.

(4) When the OUTPUT phrase is specified, the logical path for destination,
I or the logical paths for all destinations, I specified by the contents of the
data item referenced by data-name-5 (SYMBOLIC DESTINATION) of the area refer­
enced by cd-name are activated.

(5) Literal-I or the contents of the data item referenced by identifier-1
will be matched with a password built into the system. The ENABLE statement
will be honored only if literal-I or the contents of the data item referenced
by identifier-I match the system password. When literal-1 or the contents of

·· ·· XIII.,.15

Comrrruniaation - ENABLE

the data item referenced by identifier-I do not match the system password,
the value of the STATUS KEY item in the area referenced by cd-name is updated.

The MCS must be capable of handling a password of from one to ten
characters inclusive.

XIII-16

Corronunication - RECEIVE

3.4 THE RECEIVE STATEMENT

3.4.1 Function

The RECEIVE statement makes available to the COBOL rogram a message,
message segment, or a portion of a message or se ment, and pertinent informa­
tion about that data from a queue maintained by the Message Control System.
The RECEIVE statement allows for a specific imperative statement when no
data is available.

3.4.2 General Format

RECEIVE cd-name f MESSAGE l INTO identifier-I [; NO DATA imperative-statement] ti SEGMENT IJ

3.4.3 Syntax Rules

(1) Cd-name must reference an input CD.

3.4.4 General Rules

(1) The contents of the data items specified by data-name-I (SYMBOLIC
QUEUE) through data-name-4 (SYMBOLIC SUB-QUEUE-3) of the area referenced by
cd-name designate the queue structure containing the message. (See page
XIII-3, The CD Entry.)

(2) The message,lmessage segment, or portion of a message or segment} is
transferred to the receiving character positions of the area referenced by
identifier-! aligned to the left without space fill.

(3) When during the execution of a RECEIVE statement, the MCS makes data
available in the data item referenced by identifier-!, control is transferred
to the next executable statement, whether or not the NO DATA phrase is
specified.

(4) When, during the execution of a RECEIVE statement, the MCS does not
make data available in the data item referenced by identifier-I:

a. If the NO DATA phrase is specified, the RECEIVE operation is
terminated with the indication that action is complete (see general rule 5),
and the imperative statement in the NO DATA phrase is executed.

b. If the NO DATA phrase is not specified, execution of the object
program is suspended until data is made available in the data item referenced
by identifier-!.

c. If one or more queues or sub-queues is unknown to the MCS, control
passes to the next executable stat~ment, whether or not the NO DATA phrase is
specified. (See page XIII-IO and XIII-11, Communication Status Key Condition.)

(5) The data items identified by the input CD are appropriately updated·
by the Message Control System at each execution of a RECEIVE statement. (See
page XIII-3, The CD Entry.)

XIII•17

Communication - RECEIVE

(6) A single execution of a RECEIVE statement never returns to the data
item referenced by identifier7I more than a single message (when the MESSAGE
phrase is used)jor a single segment (when the SEGMENT phrase is used). How­
ever, the MCS does not pass any portion of a message to the object program
until the entire message is available in the input queue, even if the SEGMENT
_E_hrase of the RECEIVE statement is s_Q_ecified.

(7) When the MESSAGE phrase is used, end of segment indicators are ignored,
and the following rules apply to the data transfer:

a. If a message is the same size as the area referenced by identifier-I,
the message is stored in the area referenced by identifier-I.

b. If a message size is less than the area referenced by identifier-I,
the message is aligned to the leftmost character position of the area refer­
enced by identifier-I with no space fill.

c. If a message size is greater than the area referenced by identi­
fier-I, the message fills the area referenced by identifier-I left to right
starting with the leftmost character of the message. In Level I2 the dis_Q_o-
si tion of the remainder of the messa_g_e is undefined.J In Level 2, the remain­
der of the message can be transferred to the area referenced by identifier-I
with subsequent RECEIVE statements referring to the same queue, sub-queue ••••
The remainder of the message, for the purposes of applying rules 7a, 7b, and
7c, is treated as a new message.

(8) When the SEGMENT phrase is used, the following rules apply:

a. If a segment is the same size as the area referenced by identifier~!,
the segment is stored in the area referenced by identifier-I.

b. If the segment size is less than the area referenced by identif~er-1,
the segment is aligned to the leftmost character position of the area referenced
by identifier-1 with no space fill.

c. If a segment size is greater than the area referenced by identifier-I,
the segment fills the area referenced by identifier-I left to right starting
with the leftmost character of the segment. The remainder of the segment can
be transferred to the area referenced by identifier-I with subsequent RECEIVE
statements calling out the same queue, sub-queue •••• The remainder of the
segment, for the purposes of applying rules 8a, 8b, and 8c, is treated as a
new segment.

d. If the text to be accessed by the RECEIVE statement has associated
with it an end of message indicator or end of group indicator, the existence
of an end of segment indicator associated with the test is implied and the
text is treated as a message segment according to general rule 8.

(9) Once the execution of a RECEIVE statement has returned a portion of
a message, only subsequent execution of RECEIVE statements in that run unit
can cause the remaining portion of the message to be returned.

XIII-18

Corrnnunication - RECEIVE

(10) After the execution of a STOP RUN statement, the disposition of a
remaining portion of a message partially obtained in that run unit is defined
by the implementor. (See page 11-85, The STOP Statement.)

Xlll-19

Corronuniaation - SEND

3.5 THE SEND STATEMENT

3.5.1 Function

The SEND statement causes a message, a message segment, or a portion of a
jmessage or segment(to be released to one or more output queues maintained by
the Message Control System.

3.5.2 General Format

Format 1

1·~ cd-name ~ identifier-1 I

Format 2

~
WITH identifier-2~

[FROM identif.ier-1] '-~-i-~--:-I_I ___ _

WITH EGI

SEND cd-name

. .

{ BEFOR~) AFrER J ADVANCING

3.5.3 Syntax Rules

! f ~dentifier-3)
llinteger J
S mnemonic-name)
l PAGE j

(1) Cd-name must reference an output CD.

[~~=:s]}

(2) Identifier-2 must reference a one character integer without an
operational sign.

(3) When identifier-3 is used in the ADVANCING phrase, it must be the
name of an elementary integer item.

(4) When the mnemonic-name phrase is used, the name is identified with a
particular feature specified by the implementor. The mnemonic-name is defined
in the SPECIAL-NAMES paragraph of the Environment Division.

(5) Integer or the value of the data item referenced by identifier-3 may
be zero.

3.5.4 General Rules

ALL FORMATS

(1) When a receiving communication device (printer, display screen, card
punch, etc.) is oriented to a fixed line size:

a. Each message pr message segmentlwill begin at the leftmost
character position of the physical line.

XIII-20

Communication - SEND

b. A messagelor message segmentlthat is smaller than the physical
line size is released so as to appear space-filled to the right.

c. Excess characters of a messagelor message segmentlwill not be
truncated. Characters will be packed to a size equal to that of the physical
line and then outputted to the device. The process continues on the next line
with the excess characters.

(2) When a receiving communication device (paper tape punch, another
computer, etc.) is oriented to handle variable length messages, each message

I or message segment I will begin on the next available character position of the
communications device.

(3) As part of the execution of a SEND statement, the MCS will interpret
the contents of the data item referenced by data-name-2 (TEXT LENGTH) of the
area referenced by cd-name to be the user's indication of the number of left­
most character positions of the data item referenced by identifier-I from
which data is to be transferred.

If the contents of the data item referenced by data-name-2 (TEXT LENGTH)
of the area referenced by cd-name- are zero, no characters of the data item
referenced by identifier-I are transferred.

If the contents of the data item referenced by data-name~2 (TEXT LENGTH)
of the area referenced by cd-name are outside the range of zero through the
size of the data item referenced by identifier-I inclusive, an error is
indicated by the value of the data item referenced by data-name-3 (STATUS KEY)
of the area referenced by cd-name, and no data is transferred. (See pages
XIII-10 and XIII-11, Communication Status Key Condition.)

(4) As part of the execution of a SEND statement, the contents of the data
item referenced by data-name-3 (STATUS KEY) of the area referenced by cd-name
is updated by the MCS. (See page XIII-3, The CD Entry.)

(5) The effect of having special control characters within the contents
of the data item referenced by identifier-I is undefined.

(6) A single execution of a SEND statement for Format I releases only a
single portion of a messa e or of a messa e se ment to the MCS.

A single execution of a SEND statement of Format 2 never releases to
the MCS more than a sin le messa e or a single message segment as indicated
b the contents of the data item referenced b identifier-2 or by the speci­
fied indicator ESI, EMI or EGI.

However, the MCS will not transmit any portion of a message to a
communications device until the entire message is placed in the output queue.

(7) During the execution of the run unit, the disposition of a portion of
a message not terminated by an EMI or EGI is undefined. However, the message
does not logically exist for the MCS and hence. cannot be sent to a destination.

After the execution of a STOP RUN statement, any portion of a message
transferred from the run unit via a SEND statement, but not terminated by an
EMI or EGI, is purged from the ~stem. Thus no_p_ortion of the message is sent.

XIII-21

Corronuniaation - SEND

(8) Once the executi,on.of a SEND statement has released a portion of a
message to the MCS, only subsequent execution of SEND statements in the same
run unit can cause the remainin_g__Qortion of the messa_g_e to be released.

FORMAT 2

(9) The contents of the data item referenced by identifier-2 indicate that
the contents of the data item referenced by identifier-I are to have associated
with it an end of segment indicator, an end.of message indicator or an end of
transmission indicator according to the following schedule:

If the content of the then the contents of
data item referenced data item referenced

which means by identifier-2 is by identifier-! have
associated with it

'0' no indicator no indicator

' 1' ES! an end of segment indicator

'2' EM! an end of message indicator

'3' EGI an end of group indicator

Any character other than 'l', '2', or '3' will be interpreted as 'O'.

If the content of the data item referenced by identif ier-2 is other
than '1' , '2' , or '3', and identifier-! is not specified, then an error is
indicated by the value in the data item referenced by data-name-3 (STATUS KEY)
of the area referenced by cd-name, and no data is transferred.

(10) I The ES! indicates to the MCS.that the message segment is complete.
The EM! indicates to the MCS that the message is complete.

The EGI indicates to the MCS that the group of messages is complete.
The implementor will specify the interpretation that is given to the EGI by
the MCS.

The MCS will recognize these indications and establish whatever is
necessary to maintain group, message,! and segment\control.

(11) The hierarchy of ending indicators is EGI EMI and ESI. An EGI need
not be preceded by anlESI orlEMI •__A=n"'-"EM==I"-"'n~e~e~d"-"'n~o~t;___,;;b~e"-"'..;:;..;;;~..=,;;;~..;;;..,J,._,;:;;a=n;.....;;;E~S~I~.~

(12) The ADVANCING phrase allows control of the vertical positioning of
each message or message segment on a communication device where vertical
positioning is applicable. If vertical positioning is not applicable on the
device, the MCS will ignore the vertical positioning specified or implied.

(13) If identifier-2 is specified and the content of the data item refer­
enced by identifier-2 is zero, the ADVANCING phrase is ignored by the MCS.

XIII-22

Communication - SEND

(i4) On a device where vertical positioning is applicable and the ADVANCING
phrase is not specified, automatic advancing will be provided by the implemen­
tor to act as if the user had specified AFTER ADVANCING 1 LINE.

(15) If the ADVANCING phrase is implicitly or explicitly specified and
vertical positioning is applicable, the following rules apply:

a. If identifier-3 or integer is specified, characters transmitted
to the communication device will be repositioned vertically downward the
number of lines equal to the value associated with the data item referenced by
identifier-3 or integer.

b. If mnemonic-name is specified, characters transmitted to the
communication device will be positioned according to the rules specified by
the implementor for that communication device.

c. If the BEFORE phrase is used, the message lor message segment! is
represented on the communication device before vertical repositioning
according to general rules 15a and 15b above.

d. If the AFTER phrase is used, the messagelor message segmentlis
represented on the communication device after vertical repositioning accord­
ing to general rules 15a and 15b above.

e. If PAGE is specified, characters transmitted to the communication
device will be represented on the device before or after (depending upon the
phrase used) the device is repositioned to the next page. If PAGE is specified
but page has no meaning in conjunction with a specific device, then advancing
will be provided by the implementor to act as if the user had specified BEFORE
or AFI'ER (depending upon the phrase used) ADVANCING 1 LINE.

XIII-23

History of COBOL

1. APPENDIX A: THE HISTORY OF COBOL

1.1 ORGANIZATION OF COBOL EFFORT

On May 28 and 29, 1959, a meeting was held in the Pentagon for the purpose
of considering both the desirability and the feasibility of establishing a
conman language for the programming of electronic computers for business-type
applications. Representatives from users, both in private industry and in
government, computer manufacturers, and other interested parties were present.
The group agreed that the project should be undertaken. · The COnference on
DAta SYstems .!!anguages (CODASYL) developed out of this meeting.

The original COBOL specification resulted from the work of a committee of
CODASYL. By September, 1959, this connnittee had specified a language which
they considered superior to existing language-compiler systems. This language
specification was further modified and by December, 1959, COBOL existed as a
language that was not identified with any manufacturer and therefore presented
advantages for both government and private industry users.

1.1.1 Initial Organization

The product of phase I of COBOL development was a report published in April
of 1960 by the Government Printing Office entitled "COBOL--A Report to the
Conference on Data Systems Languages, including Initial Specifications for a
Common Business Oriented Language (COBOL) for Programming Electronic Digital
Computers". The language described in this report has since become known as
COBOL-60.

1.1. 2 The COBOL Maintenance Cammi ttee

- The Executive Committee of CODASYL recognized that the task of defining
COBOL was a continuing one and that the language had to be maintained and
improved. To this end, the COBOL Maintenance Connnittee was created and charged
with the task of answering questions arising from users and implementors of the
language and making definitive modifications, including additions, clarifica­
tions, and changes to the language.

The Maintenance Cammi ttee was comprised of a Users Group and a Manufacturers
Group. These groups met together but voted on proposals separately.

In order to devote concentrated attention to publishing a revised and up­
dated "COBOL 60", the Executive Co-ttee created a Special Task Group. The
product of this task group was the COBOL-61 manual, which was published by
the Government Printing Office in mid-1961. ·

The next official COBOL publication was also the product of the Maintenance
Committee and was called COBOL-61 Extended; released in mid-1963.

1.1.3 The COBOL Committee

In January, 1964~ the COBOL Maintenance Coumittee was reorganized to pro­
vide a true industry· group and to broaden its scope of activities. The separate
user and manufacturer groups were coinbined into the COBOL Connnittee consist:(.ng
of three subcommittees: the Language Subcommittee, the Evaluation Subconnnittee,
and the Publication ,Subcommittee.

XIV-1

Histor]f of COBOL

The Language Subcommittee's function was much the same as was that of the
former COBOL Maintenance Committee, namely, the maintenance and further
development of COBOL. In addition it carried on liaison with the United
States of America St~dards Institute (USASI: formerly the American Standards
Association -- ASA) and the International Organization for Standardization (ISO)
in their work concerning the development of proposed COBOL Standards.

The Publication Subcommittee was charged with the production of official
COBOL publications and liaison with USASI as to the content of the COBOL
Information Bulletin (CIB). The CIB is a collection of material relating to
COBOL, distributed to the COBOL community by USASI.

The Evaluation Subcommittee's task was the analysis and evaluation of
compiler implementations and user surveys. This subconnnittee provided
information to the COBOL Committee regarding the use of COBOL.

The product of the COBOL Connnittee was the manual, "COBOL, Edition 1965".

1.1.4 Programming Language Conmittee

In July, 1968, the CODASYL Executive Committee adopted a revised constitu­
tion which accomplished certain needed organizational changes in an effort to
stabilize and improve the methods of achieving CODASYL objectives. CODASYL
now consists of four standing committees: the Executive Committee, the Pro­
gramming Language Committee, the Planning Committee, and the Systems Committee.

With the formation of the Programming Language Committee (PLC) the former
COBOL Language Subcommittee was elevated to full committee status, and its
chairman became a member of the Executive Committee.

The purpose and objectives of PLC include and extend those of the former
COBOL Language Subcommittee. The objectives are to make possible: compat­
ible, uniform, source programs and object results, with continued reduction
in the number of changes necessary for conversion or interchange of source
programs and data. The PLC concentrates its efforts in the area of tools,
techniques and ideas aimed at the programmer.

The Programming Language Committee is responsible for the presentation
of the COBOL Journal of Development.

1.2 EVOLUTION OF COBOL

1. 2. 1 COBOL-60

COBOL-60, the first version of the language published, proved that the
concept of a common business oriented language was indeed :iractical.

1. 2. 2 COBOL-61

COBOL-61, the second official version of COBOL, was not completely compat­
ibleWith COBOL-60. The changes were in areas such as organization of the
Procedure Division rather than the addition of any major functions. .nie
avowed goal of CODASYL in terms of successive versions of the language was to
make changes of an evolutionary rather than revolutio~ary nature. This
version was generally implemented and was the basis for many COBOL compilers.

XIV-2

History of COBOL

1.2.3 COBOL-61 Extended

This version of COBOL was generally compatible with COBOL-61. The term
'generally' must be used, not because of any basic changes in the philosophy
or organization of the language, but because certain arithmetic extensions
and general clarifications did make the syntax for certain statements and
entries different from those in COBOL-61.

COBOL-61 Extended, then, was.generally COBOL-61 with the following major
additions and modifications:

a. The addition of the Sort feature,

b. The addition of the Report Writer option,

c. The modification of the arithmetics to include multiple receiving
fields and to add the CORRESPONDING option to the ADD and SUBTRACT statements,
and

d. The inclusion of various clarifications.

1.2.4 COBOL, Edition 1965

This version of COBOL included COBOL-61 Extended plus certain additions and
modifications.

The major changes incorporated in COBOL, Edition 1965, were:

a. The inclusion of a series of options to provide for the reading,
writing and processing of mass storage files,

b. The addition of the Table Handling feature which includes indexing
and search options,

c. The modification of the specifications to delete the requirement for
specific error diagnost~c messages,

d. The deletion of the terms "Required" and "Elective", and

e. The-inclusion of various clarifications.

1.2.5 COBOL, 1968

This version of COBOL, published in the.Journal of Development, was based
on COBOL, Edition 1965, with certain additions and deletions.

The major changes incorporated in COBOL, 1968, were:

a. The inclusion of inter-program communication and the concept of a
run unit,

b. The elimination of redundant editing clauses and certain data clauses
more succinctly expressed by the PICTURE clause,

XIV-3

History of COBOL

c. An improved COPY specification for all divisions except the Identifi­
cation Division and the elimination of the INCLUDE statement,

d. The inclusion of a hardware independent means of specifying and testing
for page overflow conditions,

e. The elimination of type 4 abbreviations,

f. The elimination of the DEFINE statement,

g. The inclusion of a remainder option for the DIVIDE statement,

h. The deletion of NOTE and REMARKS in favor of a general comment capabil­
ity for all divisions,

i. The inclusion of the SUSPEND statement as additional means of control­
ling graphic display devices,

j. The inclusion of additional abbreviations,

k. A revision of the EXAMINE statement to allow the specification of
dynamic parameter values, and

1. The inclusion of various clarifications.

1.2.6 COBOL, 1969

This version of COBOL, published in the Journal of Development, is based on
COBOL, 1968, with certain additions and deletions.

The major changes incorporated in COBOL, 1969, are:

a. The deletion of the EXAMINE statement and the inclusion of a more
powerful statement, INSPECT, in its place,

b. The inclusion of a communication facility to permit input and output
with communications devices,

c. The inclusion of the STRING and UNSTRING statements, to facilitate
character string manipulation,

d. Deletion of the CONSTANT SECTION of the Data Division,

e. The inclusion of. a compile-time page ejection facility,

f. The inclusion of a facility to access the system's date and time,

g. The inclusion of a SIGN clause as a means of specifying the position
and mode of representation of the operational sign, and

h. The inclusion of various clarifications.

XIV-4

History of COBOL

1.2.7 COBOL, 1970

This version of COBOL, published in the Journal of Development, is based on
COBOL, 1969, with certain additions, deletions,- and modifications.

The major changes incorporated in COBOL, 1970, are:

a. The deletion of the RANGE clause,

b. The inclusion of the INITIALIZE statement, to facilitate setting data
items to values consistent with their data descr~ptions,

c. The inclusion of a debugging facility,

d. The inclusion of a merge facility,

e. A complete revision to the Report Writer function, and

f. The inclusion of various clarifications.

1.2.8. COBOL, 1973

This version of COBOL, published in the Journal of Development, is based on
COBOL, 1970, with certain additions, deletions, and modifications.

The major changes incorporated in COBOL, 1973, are:

a. A revision and extension to the mass storage facility,

b. A clarification and extension to the COBOL library facility,

c. An enhancement of the INSPECT statement,

d. A revision to the file control entry for a sort or merge file which
included the deletion of Format 3,

e. A revision to the RERUN facility,

f. The removal of the restriction on 77 level-numbers that they must
precede 01 level-numbers,

g. The inclusion of a page advan~ing feature as part of the WRITE
statement,

h. A clarification and enhancement of the COBOL language structure,

i. An enhancement of the LINAGE clause to permit specification of margins,
and

, j. The inclusion of various clarifications.

XIV-5

HistoT']J of COBOL

1.3 STANDARDIZATION OF COBOL

1.3.1 Initial Standardization Effort

American National Standards Committee on Computers and Information Pro­
cessing, X3, was established in 1960 under the sponsorship of the Business
Equipment Manufacturers Association. The X3 Committee in turn established the
X3-4 Subcommittee to pursue standards in the area of Common Programming Lan­
guages. Subsequently, Working Group X3.4.4 with the title "Processor Specifi­
cation and COBOL Standards 11 was established to pursue a-COBOL standard. Part
of the scope of X3.4.4 follows:

"Standardization of COBOL and its characteristics, establishment
of an X3.4 COBOL bulletin, publication of interpretations and
clarifications, and the definition of test problems."

On December 17, 1962, invitations to an organizational meeting of X3.4.4
were sent to manufacturers and user groups who might be interested in parti­
cipating in the establishment of a COBOL standard. The first meeting was held
on January 15-16, 1963, in New York and the following program of work was
accepted:

(1) Establish the X3.4 COBOL Information Bulletin (CIB) and provide for
its broad publication.

(2) Ascertain the features of existing or proposed COBOL processors.

(3) Refer ambiguities to the COBOL Maintenance Committee for interpretation.

(4) Publish these interpretations in the CIB.

(5) Write test problems to test specific and combinatorial features of
COBOL.

(6) Refer any new ambiguities which are revealed through the test problems
to the COBOL Maintenance Committee.

(7) When appropriate, write and publish in the X3.4 CIB a proposed draft
standard for COBOL and process it through the X3 Committee.

(8) When appropriate, publish proposed standard test problems for COBOL
and process them through the X3 Committee.

(9) Review and augment these standards as necessary.

(10) Maintain close liaison with other standards bodies interested in COBOL.

The objective of the X3.4.4 Working Group was to produce a document which
defined the American Standard""" or standards for COBOL. The resulting standard
language was to_be based upon the specifications set out in the,CODASYL publi­
cation.

* In August, 1966, the American Standards Association (ASA) became the USA
Standards Institute (USASI). Then in the fall of 1969, the USA Standards

Institute (USASI) became the American National Standards Institute (ANSI).

XIV-6

History of COBOL

The criteria used to consider and evaluate various language elements for
inclusion in the proposed standard included (not in order of importance):

(1) General usefulness, as determined by:
a. Degree of implementation
b. User acceptance
c. User desires
d. Experience

(2) Cost of implementation versus advantages of use.

(3) Functional capability of element, considering redundancy.

(4) Overall consistency of defined level.

(5) Upward compatibility.

(6) Processing system capability.

To accomplish its work, X3.4.4 was divided into the following four
subgroups:

X3.4.4.1 - Compiler Features Study Group
X3.4.4.2 - Audit Routine Group
X3.4.4.3 - COBOL Information Bulletin
X3.4.4.4 - Standard Language Specifications

1.3.2 USA Standard COBOL

On August 30, 1966, X3.4.4 completed its work and approved the content and
format for a proposed USA Standard COBOL. The proposed USA Standard COBOL was
composed of a nucleus and eight functional processing modules: Table Handling,
Sequential Access, Random Access, Random Processing, Sort, Report Writer,
Segmentation, and Library. The Nucleus and each of the eight modules were
divided into two or three levels. In all cases, the lower levels are proper
subsets of the higher levels within the same module. The minimum proposed
standard was defined as the low level of the nucleus plus the low level of
the table handling and sequential access modules. The highest levels of the
nucleus and the eight modules were defined as the full proposed USA Standard
COBOL.

The USA Standards Committee on Computer and Information Processing, X3,
authorized publication of the proposed USA Standard COBOL to elicit comment
and criticism from the data processing community in order that the final
standard reflect the largest public consensus. In April 1967, the proposed
USA Standard COBOL was published, as COBOL Information Bulletin #9, by the
Association for Computing Machinery, Special Interest Committee on Programming
Languages (SICPLAN) in the SICPLAN Notices.

X3 also authorized that concurrent with publication of-the proposed USA
Standard COBOL, a letter ballot be taken of the membership of the X3 committee
on the acceptability of the proposed USA Standard COBOL as a USA Standard.
The ballots and comments received with the ballots indicated that the X3
members were in favor of the proposed USA Standard COBOL. X3 voted to move

XIV-7

History of COBOL

the Random Processing module from the 'body of the proposed USA Standard COBOL
to an appendix and to forward the proposed standard on to the Information
Processing Systems Standards Board.

The USA Standard COBOL proposed by X3 was approved by the Information
Processing Systems Standards Board on August 23, 1968, as a USA Standard.
The specifications of the USA Standard COBOL were published in the USA
Standards document X3.23-1968.

The Working Group on Processor Specifications and COBOL, X3.4.4, which
developed the Standard, had the following personnel:

H. Bromberg, Chairman

G. F. Archer J. s. Meach
G. N. Baird H. s. Millman
P. A. Beard s. N. Naf taly
R. F. Bets cha P. B. Olshansky
H. w. Fisch beck R. s. Pettus
H. R. Fletcher E. D. Phillips
R. c. Fredette L. Rodgers
H. s. Gile R. E. Rountree, Jr
N. c. Godfrey J. G. Solomon
J. s. Grant R. L. Solt
w. D. Green .L. J. Soma
D. c. Harris M. Spratt
M. Hill L. Sturges
K. R. Jensen M. v. Vickers
A. N. McMahan L. J. Wilson

1.3.3 International Standardization of COBOL

Throughout the entire COBOL standardization activity of the X3.4.4
Working Group, close liaison was maintained with the various international
groups. As a result, American National Standard COBOL complies with the ISO
(International Organization for Standardization) Recommendation on COBOL.

The ISO Recommendation R-1989, Programming Language COBOL, was drawn up
by the Technical Committee ISO/TC 97, Computers and Information Processing,
the Secretariat of which is held by the American National Standards Institute
(ANSI). As a result of a six-year development period, the ISO Recommendation
reflected the requirements of the international data processing community.
The primary objective was to reflect a language rich enough to allow description
of a wide variety of data processing problems and to reflect accurately the
requirements of the Member Bodies of ISO •. Great care was. also taken to ensure
as far as possible identical interpretation with respect to the national COBOL
stand'ards known to be under development.

The Draft ISO Recommendation R-1989 was circulated to all the ISO member
bodies for inquiry in July, 19 70. The draft was approve.d, subject to a few
modifications of an editorial nature, by all but one of the ISO member bodies.
The Draft ISO Recommendation R-1989 was then submitted. to. the ISO Council,
which.accepted it as an ISO Recommendation.

XIV-8

Revision

2. APPENDIX B: THE REVISION OF AMERICAN NATIONAL STANDARD COBOL

2.1 THE ROLE OF X3J4

Technical Connnittee X3J4 evolved from Working Group X3.4.4 and its sub­
ordinate working groups, the bodies responsible for the development of the
first COBOL standard (X3.23-1968). X3J4 was charged with the responsibility
for the maintenance of the COBOL standard and in the period immediately
following the publication of X3.23-1968, the committee developed and put into
effect procedures to handle requests for information, clarification or inter­
pretation of that document.

X3J4 began the task of preparing a revision to the COBOL standard in 1969
with the development of criteria against which each candidate for inclusion
in the proposed revision was to be matched. The criteria used were:

(1) The general usefulness of an element or function in terms of:

a. The degree of implementation

b. Acceptance by users

c. The degree to which a function was required

(2) The overall functional capability of the language, considering such
things as redundancy.

(3) The state-of-the-art technology with regard to implementing the
language feature.

(4) The usefulness, in terms of application requirements, of language
capabilities within each level of a module.

(S) Compatibility with other standards.

(6) The cost of implementation versus advantages of use.

(7) Overall language consistency within a defined level or module.

(8) Upward compatibility of levels within a module.

Detailed work on· the proposed revision began in early 1970 and, with the
committee meeting every 4 to 6 weeks, a draft proposed revision was completed
in June 1972. The COBOL community was apprised of the nature of the proposed
changes through pub"iication, in the first half of 1972, of COBOL Information
Bulletins 14, 15, and 16.

American National Standards Committee X3 agreed, in July 1972, to accept the
draft proposal for publi,cation and subsequent letter ballot on the question of its
acceptance as a proposed American National Standard. The full text of the proposec
revision was made available to the COBOL community for review and comment in
September 1972.

XIV-9

Revision

2.2 INTERACTION WITH OTHER COBOL GROUPS

2.2.1 Programming Language Committee

The entire technical content of this revision to the COBOL standard was
drawn either from the existing COBOL standard (X3.23-1968) or from the CODASYL
COBOL Journal of Development (JOD). The Journal of Development is a publica­
tion of the CODASYL Program.ming Language Connnittee (PLC), the body responsible
for the continuing development of the COBOL language. Since the language, and
hence the JOD, is constantly changing, it was necessary to select the JOD of a
given date to serve as the base document for the revision process. This date,
known as the cutoff date, was December 31, 1971. Changes to the language
after that date were considered for inclusion in the revision only where they
were in response to X3J4 proposals or where they affected items whose final
disposition had been deferred by X3J4 pending specific PLC action.

Throughout the revision cycle, PLC gave priority in its agenda to X3J4
proposals and requests for language clarification. Their generous cooperation
during this period made the task of X3J4 considerably lighter ~nd contributed
significantly to the quality of the revised standard.

2.2.2 International Standardization Bodies

Close and continuous liaison was maintained with the international COBOL
connnunity during the work on the revision. This culminated in February 1972
with a meeting of representatives of X3J4, European Computer Manufacturers
Association Technical Connnittee 6 (ECMA TC6), and several ISO (International
Organization for Standardization) member organizations to review the proposed
changes and to resolve any differences of opinion that existed concerning the
technical content of the proposed revision.

ECMA TC6 played a very active part throughout the revision process and made
a number of significant contributions to the enhancement and clarification of
the revision.

2.3 DIFFERENCES BETWEEN X3.23-1968 AND THE REVISED STANDARD

2.3.1 Format of the Revised Standard

As was the case with X3.23-1968, the organization of the specifications in
the revised standard is based on a functional processing module concept with
each module divided into two or more levels. Unlike XJ.23-1968, however,
where a separate chapter was devoted to each processing leve·l, each module
in the revised document is covered in a single chapter. The high level
features are boxed and any restrictions in the low levels are covered by
additional rules.

The revision defines a Nucleus and eleven functional processing modules:
Table Handling, Sequential I-0, Relative I-0, Indexed I-0, Sort-Merge, Report
Writer, Segmentation, Lib,rary, Debu_g, Inter-Program Connnunication, and Connnuni­
cation. Nine modules contain a null set as their lowest level and in all cases,
the lower levels are proper subsets of the higher levels within the same module.

XIV-10

Module Overview

2.3.2 Overview of the Revised Modules

As in X3.23-1968, the Nucleus is divided into two levels. The major changes
introduced into the Nucleus are:

(1) The REMARKS paragraph and the NOTE statement have been deleted in
favor of a generalized comment facility. An * in character position 7 now
identifies any line as a comment line. A further refinement of this (a slash
'/' in character position 7) causes the line to be treated as a comment and
causes page ejection.

(2) The EXAMINE statement has been deleted in favor of the more general
and powerful INSPECT statement. The INSPECT statement provides the ability
to count (Format 1), replace (Format 2) or count and replace (Format 3)
occurrences of single characters or groups of characters in a data item.

(3) Level 77 items need no longer precede level 01 items in the Working­
Storage Section.

(4) The punctuation rules with regard to spaces have been relaxed, e.g.,
spaces may now optionally precede the comma, period or semicolon, and may
optionally precede or follow a left parenthesis.

(5) Two contiguous quotation marks may be used within a nonnumeric literal
to represent a single occurrence of the character quotation mark.

(6) A SIGN clause has been added that permits the specification of the
position that the sign is to occupy in a signed numeric item (either leading
or trailing) and/or that it is to occupy a separate character position.
Other changes in the Data Division permit the object of a REDEFINES clause to
be subordinate to a data item described with an OCCURS clause, set the maximum
size of a numeric field at 18 digits, permit the stroke '/' as an editing
character and specify some tightening of the rules concerning literals in the
VALUE clause (if the literal is signed, the data item must be described as
signed; if the data item is numeric edited, the literal must be nonnumeric).

(7) The ACCEPT statement has been expanded to provide access to internal
DATE, DAY and TIME.

(8) GIVING identifier series has been added to the arithmetic statements;
identifier series has been added to the COMPUTE statement; and INTO identifier
series has been added to the DIVIDE statement.

(9) The STRING statement has been added. This statement provides for the
juxtapositioning within a single data item of the partial or complete contents
of two or more data items. A companion statement, the UNSTRING, has also been
added. This statement causes contiguous data within a single data item to be
separated.and placed in multiple receiving fields.

(10) Certain ambiguities in abbreviated combined conditions with regard to
NOT and the use of parentheses have been eliminated. Where any portion of an
abbreviated combined condition is enclosed in parentheses, all subjects and
operators required for the expansion of that portion must be included within
the same set of parentheses.

XIV-11

Module Overview

(11) The PROGRAM COLLATING SEQUENCE clause was added, to permit specifica­
tion of the collating sequence used in nonnumeric comparisons. Native, ASCII,
implementor-defined and user-defined collating sequences may be specified.
This makes possible the processing of ASCII files without changing source
program logic.

The Table Handling module is divided into two levels; Level 1 contains
essentially all that appears in Levels 1 and 2 of X3.23-1968, and Level 3 of
X3.23-1968 becomes Level 2 in the revision. Among the more important changes
introduced into this module are:

(1) The left parenthesis enclosing subscripts need not be preceded by a
space. Commas are not required between subscripts or indices. Literals and
index-names may be mixed in a table reference.

(2) A data description entry that contains an OCCURS DEPENDING ON clause
may only be followed, within that record description, by data description
entries that are subordinate to it. Thus, the "fixed" portion of a record
must entirely precede any "variable" portion. The effect of the OGCURS
DEPENDING ON was clarified to state explicitly that internal operations
involving tables described with this clause reference only the portion of the
table that is "active" (i. e ~, the actual size as defined by the current value
of the operand of the DEPENDING ON phrase is used).

(3) An index may be set up or down by a negative value.

(4) The subject of the condition in the WHEN phrase of the SEARCH ALL
statement must be a data item named in the KEY phrase of the referenced table;
the object of this condition may not be such a data item. X3.23-1968 speci­
fied that either the subject or the object could be a data item named in the
KEY phrase.

As in X3.23-1968, the Sequential I-0 module is divided into two levels.
Among the significant changes introduced into this module are:

(1) The FILE-LIMITS clause, the MULTIPLE REEL/UNIT clause, and the integer
implementor-name phrase of the file control entry were deleted because it was
felt that these functions could be handled better outside of the COBOL
program.

(2) The SEEK statement was deleted because it was felt to be redundant (it
is implied by the READ, WRITE, etc.) and ineffective.

(3) OPEN REVERSED now positions a file at its end. OPEN EXTEND was added
to permit the addition of records at the end of an existing sequential file.

(4) USE AFTER STANDARD ERROR was changed to read USE AFTER STANDARD
ERROR/EXCEPTION; the function was expanded to permit invocation of the asso­
ciated procedure on both error (e.g., boundary violation) or exception (e.g.,
AT END) conditions.

(5) The AT END phrase of the READ statement was made optional; it must
appear, however, if no applicable USE procedure appears.

XIV-12

Module Overview

(6) The INVALID KEY phrase of the WRITE was deleted since there is no
user-defined key for sequential files. Error and/or exception conditions can
be monitored through appropriate USE statements.

(7) The FILE STATUS clause was added to permit the system to convey
information to the program concerning the status of I/O operations. Codes
for "error", AT END, etc., have been defined.

(8) The REWRITE statement was added to permit the explicit updating of
records on a sequential file.

(9) The LINAGE clause was added to permit programmer definition of logical
page size and of the size of top and bottom margins on the logical page.

(10) The PAGE phrase was added to the WRITE statement to permit presenta­
tion of a line before or after advance to the top of the next logical page.

(11) The facility of define, initialize and access user-defined labels has
been deleted.

(12) The CODE-SET clause has been added to provide for conversion of
sequential non-mass storage files encoded. in ASCII or implementor-specified
codes from/to the native character code.

The Random Access module of X3.23-1968 has been replaced by two new modules,
the Relative I-0 and Indexed I-0 modules. Both of the modules are composed of
three levels, the first of which is null. While there is much functional and
even syntactic similarity between the Relative I-0 module and the existing
Random Access module, the Indexed I-0 module has no functional equivalent in
the previous standard.

Among the major features of the Relative I-0 module are:

(1) An ORGANIZATION IS RELATIVE clause.

(2) A RELATIVE KEY clause.

(3) An ACCESS MODE clause which specifies random, sequential or dynamic
access. Dynamic access permits the file to be accessed both randomly and
sequentially.

(4) FILE STATUS and USE AFTER STANDARD ERROR/EXCEPTION as outlined in the
Sequential I-0 module. Here also the USE procedure may be used in place of
the AT END and INVALIDKEY phrases of the READ, WRITE, etc.

(5) In addition to OPEN, CLOSE, READ and WRITE, the DELETE, REWRITE, and
START verbs are provided. READ NEXT provides for the intermixing of sequen-:­
tial with random accesses of the file (when access mode is dynamic). START
provides the f acil.ity to position the file such that the next sequential READ
statement will reference a spe·cif ied record.

Among the major features of the Indexed I-0 module are:

(1) An ORGANIZATION IS INDEXED clause.

XIV-13

Module Overview

(2) An ACCESS MODE clause with characteristics similar to that of the
Relative I-0 module.

(3) FILE STATUS and USE procedures, as in the Relative I-0 module.

(4) The RECORD KEY clause specifies the data item that serves as the
unique identifier for each record. The data item is known as the prime record
key. The ALTERNATE KEY clause specifies additional (alternate) keys for the
file. All insertion, updating or deletion of records is done on the basis of
the prime record key. Retrieval, however, may be on the basis of either the
prime or alternate record keys, thus providing more than one access path
through the file.

(5) As i~ the Relative I-0 module, the new verbs DELETE, START and REWRITE
are available. READ NEXT and READ ••. KEY IS ••• are also available; the latter
provides the means of specifying the key upon which retrieval is to be based
(prime or alternate). The START statement also provides the means of speci­
fying whether the prime or alternate key is to be used for positioning the
file.

The Sort-Merge module contains three levels, one of which is null. The
major change to the Sort module of the previous standard has been the addition
of a MERGE statement to permit the combination of two or more identically
ordered files. The MERGE statement parallels the SORT statement in format,
except that no input procedure is provided. The COLLATING SEQUENCE phrase has
been added to permit overriding of the program collating sequence when execut­
ing a SORT or MERGE statement.

The Report Writer module has two levels, one of which is null (X3.23-1968
has two non-null levels). The Report Writer module was completely rewritten
in order to remove existing ambiguities and to provide a stronger and more
useful facility. Care was taken in the rewrite not to imply that reports had
to be presented on a printer (rather than on a type of graphic device).

The Segmentation module has three levels, the first of which is null. The
major changes introduced are:

(1) There is no logical difference between fixed and fixed overlayable
segments (X3.23-1968- placed certain restrictions on the range of PERFORM's
involving fixed overlayable segments).

(2) A PERFORM statement in a non-independent segment may have only one of
the following within its range: (1) non-independent segments or (2) sections
wholly contained in a single independent segment. A similar constraint applies
to a PERFORM in an independent segment, except that (2) reads "Sections wholly
contained in the same independent segment." Where a SORT or MERGE statement
appears in a segmented program, then any associated input/output procedures
are subject to the same constraints that apply to the range of a PERFORM
(e.g., where the SORT is in a non-independent .segment, the associated input/
output procedures must be either wholly contained in non-independent segments
or wholly contained in a single independent segment).

The Library module has a null level and two non-null levels. The major
changes introduced are:

XIV-14

Module Overview

(1) The COPY statement may appear anywhere in the program that a COBOL
word or separator may appear (X3.23-1968 permitted the COPY statement to
appear only in certain specified places).

(2) More than one library can be available.

(3) All occurrences of a given literal,.identifier, word or group of
words in the library text can be replaced. (X3.23-1968 did not permit
replacement of groups of words.)

(4) The matching and replacement process has been significantly clarified.

The new Debug module provides a means by which the programmer can specify
a debugging algorithm, including the conditions under which data items or
procedures are to be monitored during program execution. This module has a
null level and two non-null levels. The major features of this module are:

(1) A USE FOR DEBUGGING statement which permits full or selective proce­
dure and data-name monitoring; control is passed to the procedure when the
specified condition arises. Associated with the execution of each debugging
section (i.e. , the declarative procedure associated with the USE FOR DEBUGGING
statement) is the special register DEBUG-ITEM. This is updated by the system
each time a debugging section is executed with such information as the name
(with occurrence numbers if it should be the name of a table element) , that
caused the execution, the line number upon which the name appears, etc. The
USE FOR DEBUGGING statements and their associated declarative procedures are
treated as comment lines if the WITH DEBUGGING MODE clause does not appear in
the program. An object time switch is also provided, outside of the COBOL
program, through which the USE FOR DEBUGGING procedures can be "turned off"
without the need to recompile the program.

(2) Debugging lines. Any line with a "D" in the continuation area is a
debugging line and will be compiled and executed only if the WITH DEBUGGING
MODE clause appears in the program. Where this compile time switch does not
appear in the program, these lines are treated as comment lines. The setting
of the object time switch has no effect on the execution of debugging lines.
Through the debugging line facility, the programmer has at his disposal the
full power of the COBOL language for debugging purposes.

The new Inter-Program Communication module provides a facility by which a
program can communicate with one or more other programs. This communication
is provided by: (a) the ability to transfer control from one program to
another within a run unit and (b) the ability for both programs to have access
to the same data items. This module has three levels, the first of which is
null. The major features of this module are:

(1) The CALL statement causes control to be transferred from one object
program to another. The CALL statement can be "static" (i.e., the name of
the called program is known at compile time) or dynamic (i.e., the name of
the called program is not known until program execution time). The USING
phrase of the CALL statement names the data to be shared with the called
program; a USING phrase in the Procedure Division header of the called program
specifies the names by which this shared data is to be known in the called
program. The ON OVERFLOW phrase of the CALL statement will cause control to

xrv:...15

Substantive Changes

be transferred to an associated imperative statement if there is not enough
memory available at execution time to permit the loading of the called program.

(2) The CANCEL statement releases the areas occupied by called programs
that are no longer required to be in memory.

(3) The EXIT PROGRAM statement marks the logical end of a called program
and causes control to be returned to the calling program (i.e., the program
in which the CALL statement appears).

(4) The Linkage Section appears in a program that is to operate under the
control of a CALL statement. It is used in the called program to describe
data that is to be made available from the calling program through the CALL
USING facility described above.

The new Communication module provides the ability to access, process, and
create messages or portions thereof. It provides the ability to communicate
through a Message Control System with local and remote communication devices.
This new module has three levels, the first of which is null. Among the major
features of the module are:

(1) The communication description entry (CD) specifies the interface area
between the Message Control System (MCS) and a COBOL program. The CD specifies
the input message queue structure, the symbolic names of destinations for out­
put messages and such things as message date, message time and text length.

(2) The ENABLE and DISABLE statements notify the MCS to permit or inhibit
the transfer of data ·between specified output queues and destinations for
output or between sources and input queues for input.

(3) The RECEIVE statement makes available, from a queue maintained by the
Message Control System, to the COBOL program a message, or portion there~f,
and pertinent information about the message.

(4) The SEND statement causes a message or a portion of a message to be
released to one or more output queues maintained by the MCS.

(5) The ACCEPT MESSAGE COUNT statement causes the number of messages in a
queue to be made available.

(6) The FOR INITIAL INPUT clause of the CD entry.permits the MCS to
schedule a program for execution upon receipt of a message for that program.

In addition to the technical changes outlined above, a number of changes
were made in the definition of an implementation of American National Standard
COBOL. (See page I-4.)

2.3.3 Substantive Changes

The list beginning on page XIV-17 contains the changes of substance~that
have been included in thE;! revised standard. The code reflected under the
remarks column is as follows:

(1) Indicates the change will not impact existing programs. For example,
a new verb or an additional capability for an old verb.

XIV-16

Substantive Changes

(2) Indicates· the change could impact existing programs and some
re-programming may be needed. For example, where the semantics or syntax of
an existing verb were changed.

(3) Indicates that the change impacts an area that was implementor-defined
in the original standard. As such it may or may not affect existing programs.

Additions to the reserved word list that will impact existing programs are
not included in the list.

Language elements associated with the Report Writer module are not assigned
codes because the report writer specifications were completely rewritten and
comparison with the previous standard is therefore not meaningful.

SUBSTANTIVE CHANGE

1. Space may immediately precede or may
immediately follow a parenthesis
(except in a PICTURE character-string)~

2. Period, comma, or semicolon may be
preceded by a space.

3. Semicolon and comma are interchangeable.

4. An asterisk (*) in the continuation
area (seventh character position)
causes the line to be treated as a
comment by the compiler. The comment
line may appear in any division.

5. A stroke (slash, 'I', virgule) in the
continuation area (seventh character
position) of a line causes page ejec­
tion of the compilation listing. (The
line is treated as a comment.)

6. A phrase or clause (as well as a
sentence or entry) may be continued
by starting subsequent lines in
area B.

7. Two contiguous quotation marks may be
used to represent a single quotation
mark character in a nonnumeric literal.

8. Last line in program may be a comment
line.

9. Mnemonic-name must have at least one
alphabetic character.

XIV-17

MODULE
AFFECTED

1 NUC

1 NUC
1 TBL

1 NUC

1 NUC

1 NUC

1 NUC

1 NUC

1 NUC

1 NUC

REMARKS

(1) Relaxes punctuation
rules.

(1) Relaxes punctuation
rules.

(1)

(1) New feature; replaces
the NOTE statement and
REMARKS paragraph.

(1)

(1)

(1) New feature.

(1)

(3) X3.23-1968 had no
such restriction.

SUBSTANTIVE CHANGE
MODULE

AFFECTED

10. Number of qualifiers permitted is 2 NUC
implementor-defined, but must be at
least five.

11. Complete set of qualifiers for a name 2 NUC
may not be same as partial list of
qualifiers for another name.

12. REMARKS paragraph is deleted. 1 NUC

13. Continuation of Identification Division 1 NUC
comment-entries must not have a hyphen
in the continuation indicator area.

14. PROGRAM COLLATING SEQUENCE clause 1 NUC
specifies that the collating sequence
associated with alphabet-name is
used in nonnumeric comparisons.

15. SPECIAL-NAMES paragraph: 'L', '/', and 2 NUC
'=' may not be specified in the CURRENCY
SIGN clause.

16. Alphabet-name clause relates a user- 1 NUC
defined name to a specified collating
sequence or character code set (ANSI,
native, or implement9r-specified).

17. Alphabet-name clause: the literal 2 NUC
phrase specifies a user-defined
collating sequence.

18. Condition-name may be given the status 1 NUC
of an implementor-defined switch.
Switches are implementor-defined and
may be either software or hardware
switches.

19. All items which are immediately 1 NUC
subordinate to a group item must have
the same level-number.

20. Level 77 items need not precede level 1 NUC
01 items in the Working-Storage Section.

21. Level numbers 02-49 may appear anywhere 1 NUC
to the right of margin A. (Margin A
is defined as<being between character
positions 7 and 8.)

XIV-18

Suhstantive Changes

REMARKS

(2) X3.23-1968 specified
no such lower limit.

(2)

(2) Function was replaced
by the comment line.

(2)

(1) New feature.

(2) This restriction
did not exist in
X3.23-1968.

(1) New feature.

(1) New feature.

(1) X3.23-1968 specified
hardware switches only.

(2)

(1) New feature.

(1)

Substantive Changes

SUBSTANTIVE CHANGE

22. Object of a REDEFINES clause can be
subordinate to an item described with
an OCCURS clause, but must not be
ref erred to in the REDEFINES clause
with a subscript or an index.

23. REDEFINES: No entry with lower level­
number can appear between the redefined
and redefining items.

24. Multiple redefinition of same storage
area permitted.

25. As asterisk used as a zero suppression
symbol in a PICTURE clause and the
BLANK WHEN ZERO clause may not
appear in the same entry.

26. Alphabetic PICTURE character-string
may contain the character B.

27. The number of digit positions that can
be described by a numeric PICTURE
character-string cannot exceed 18.

28. Stroke (/) permitted as an editing
character.

29. PICTURE character-string is limited
to. 30 characters.

30. SIGN clause allows the specification
of the sign position.

31. A signed numeric literal cannot be
used in a VALUE clause unless it is
associated with a signed PICTURE
character-string.

32. If the item is numeric edited, the
literal in the VALUE clause must be
nonnumeric.

33. In the Procedure Division a section may
contain zero or more paragraphs and a
paragraph may contain zero or more
sentences.

34. The unary + is permitted in
arithmetic expressions.

XIV-19

MODULE
AFFECTED

1 NUC

l NUC

1 NUC

1 NUC

1 NUC

1 NUC

1 NUC

1 NUC

l NUC

l NUC

1 NUC

1 NUC

2 NUC

REMARKS

(1) New feature.

(2) X3.23-1968 had
no such restriction.

(3)

(2)

(1) New feature.

(2) X3.23-1968 had
no such rule.

(1) New feature.

(3) X3.23-1968 defines
limit as 30 symbols where
one symbol could have
been two characters.

(1) New feature.

(2)

(2)

(1) New feature.

(1) New feature.

SUBSTANTIVE CHANGE

35. The TO is not required in the
EQUAL TO of a relation condition.

36. In relation and sign conditions,
arithmetic expressions must
contain at least one reference
to a variable.

37. Comparison of nonnumeric operands;
If one of the operands is described as
numeric, it is treated as though it
were moved to an alphanumeric item of
the same size and the contents of this
alphanumeric item were then compared
to the nonnumeric operand.

38. Abbreviated combined relation
condition: When any portion is
enclosed in parentheses, all subjects
and operators required for the expan­
sion of that portion must be included
within the same set of parentheses.

39. Abbreviated combined relation
condition: If NOT is immediately
followed by a relational operator,
it is interpreted as part of the
relational operator.

40. Class condition: The numeric test
cannot be used with a group item
composed of elementary items
described as signed.

41. In an arithmetic operation, the
composite of operands must not
contain more than 18 decimal digits.

42. ACCEPT identifier FROM DATE/DAY/TIME
allows the programmer to access the
date, day, and time.

43. ADD statement: the GIVING identifier
series.

44. COMPUTE statement: the identifier
series.

MODULE
AFFECTED

1 NUC

1 NUC

1 NUC

2 NUC

2 NUC

1 NUC_

1 NUC

2 NUC

2 NUC

2 NUC

45. DISPLAY statement: If the operand is a 1 NUC
numeric literal, it must be an unsigned
integer.

XIV-20

Substantive C'hanges

REMARKS

(1) X3.23-1968 required
the word TO.

(2)

(3)

(2) No such restriction
appeared in X3.23-1968.

(2) In X3.23-1968,
NOT was a logical
operator in such cases.

(3)

(2) X3.23-1968 specified
limits only for ADD _and
SUBTRACT.

(1) New feature.

(1) New feature.

(1) New feature.

(2)

Suhs~antive Changes

SUBSTANTIVE CHANGE
MODULE

AFFECTED

46. DIVIDE statement: the INTO identifier l NUC
series and the GIVING identifier series.

47. DIVIDE statement: the remainder item 2 NUC
can be numeric edited.

48. GO TO statement: the word TO is not
required.

1 NUC

49. EXAMINE statement and the special 1 NUC
register TALLY were deleted.

SO. INSPECT statement provides ability 1 NUC
to count or replace occurrences of
single characters or groups of
characters.

Sl. MOVE statement: A scaled integer item 1 NUC
(i.e., the rightmost character of the
PICTURE character-string is a P) may be
moved to an alphanumeric or alphanumeric
edited item.

S2. MULTIPLY statement: the BY identifier
series and the GIVING identifier series.

S3. PERFORM statement: Format 4 (PERFORM
••• VARYING, not using index-names)
identifiers need not be described as
integers.

2 NUC

2 NUC

54. PERFORM statement: Changing the FROM 2 NUC
var.iable during execution can affect
the number of times the procedures are
executed· in a Format 4 PERFORM if more
than one AFTER phrase is specified.

SS. PERFORM statement: There is no logical 1 NUC
difference to the user between fixed
and fixed overlayable segments.

56. A PERFORM statement in a non-indepen­
dent segment can have in its range
only one of the following:

a. Non-independent segment (fixed/
fixed overlayable)

b. . Sections, and/ or paragraphs
wholly contained in a single
indep·endent segment.

XIV-21

1 NUC
1 SEG

REMARKS

(2)

(1) New feature.

(1) X3.23-1968 requires
the word TO.

(2) Function was replaced
by the INSPECT statement.

(1) New feature.

(1) New feature.

(1) New feature.

(1) New feature.

(2)

(1) X3.23-1968 did not
permit fixed overlayable
segments to be treated
the same as a fixed
segment.

(3)

SUBSTANTIVE CHANGE

5 7. A PERFORM statement in an independent
segment can have in its range only
one of the following:

a. Non-independent segments (fixed/
fixed overlayab le) •

b. Sections and/or paragraphs wholly
contained in the same independent
segment as that PERFORM.

58. PERFORM statement: Control is passed
only once for each execution of a
Format 2 PERFORM statement. (i.e.,
an independent segment ref erred to
by such a PERFORM is made available
in its initial state only once for
each execution of that PERFORM
statement.)

59. STOP statement: If the operand is
numeric literal, it must be an
unsigned integer.

60. STRING statement provides for the
juxtaposition of the partial or
complete contents of two or more
data items into a single data item.

61. STRING: Delimiter identifiers need
not be fixed length items.

62.. SUBTRACT statement: the GIVING
identifier series.

63. UNSTRING statement permits contiguous
data in sending field to be separated
and placed into multiple receiving
fields.

64. Commas are not required between
subscripts or index-names.

65. Literal subscripts may be mixed
with index-names when referencing a
table item.

66,. The DEPENDING phrase is now. required
in' the Format 2 of the OCCURS clause.

67. Integer-I cannot be zero in the
Format z, of the OCCUR,8 c1ause.

XIV-22

MODULE
AFFECTED

1 NUC
1 SEG

1 NUC
1 SEG

1 NUC

2 NUC

2 NUC

2 NUC

2 NUC

1 TBL

1 TBL

2 TBL

2 TBL

Substantive Changes

REMARKS

(3)

(3)

(2)

(1) New feature.

(1)

(1) New feature.

(1) New feature.

(1)

(1) New feature.

(2) X3.23-l968 has no
restriction.

(2)

Substantive Changes

SUBSTANTIVE .CHANGE
MODULE

AFFECTED

68. A data description entry with an OCCURS 2 TBL
DEPENDING clause may be followed within
that record, only by entries subordi-
nate to it. (i.e., only the last part
of the record may have a variable
number of occurrences.)

69. When a group item, having subordinate 2 TBL
to it an entry that specifies Format 2
of the OCCURS clause, is referenced,
only that part of the table area that
is defined by the value of the operand
of the DEPENDING phrase will be used
in the operation. (i.e., the actual
size of a variable length item is
used, not the maximum size.)

70. If SYNCHRONIZED is specified for an I TBL
item containing an OCCURS clause,
any implicit FILLER generated for
items in the same table are generated
for each occurrence of those items.

7I. The results of a SEARCH ALL operation 2 TBL
are predictable only when the data in
the table is ordered as described by
the ASCENDING/DESCENDING KEY clause
associated with identifier-I.

72. The subject of the condition in the 2 TBL
WHEN phrase of the SEARCH ALL state-
ment must be a data item named in the
KEY phrase of the table; the object

· of this condition may not be a data
item named in the KEY phrase.

73. SEARCH ••• VARYING identifier-2: If 2 TBL
identifier-2 is an index data item,
it is incremented as the associated
index is incremented.

74. In Format 2 of the SET statement, 1 TBL
literal may be negative.

75. File control entry: The ASSIGN TO I SRT
implementor-name-I OR implementor-
name-n clause for the GIVING
file of a SORT statement was deleted.

76. MERGE statement 2 SRT

XIV-23

REMARKS

(2) This rule did not
appear in X3.23-I968.

(2)

(3)

(3)

(2) X3.23-I968 specified
that either the subject
or object could be a
data item named in the
KEY phrase.

(3) In X3.23-I968 the
data item is incremented
by same amount as
occurrence number, i.e.,
by one.

(1) New feature.

(2)

(1) New feature.

SUBSTANTIVE CHANGE

77. RELEASE .•• FROM identifier is placed
in Level 1 of Sort-Merge module.

78. RETURN ••• INTO identifier is placed
in Level 1 of Sort-Merge module.

79. SORT statement: the USING file-name
series.

80. SORT statement: semicolon deleted
from format.

81. SORT statement: COLLATING SEQUENCE
phrase provides the ability to
override the program collating
sequence.

82. No more than one file-name from
a multiple file reel can appear
in a SORT statement.

83. Where a SORT or MERGE statement
appears in a segmented program, then
any associated input/output procedures
are subject to the same constraints
that apply to the range of a PERFORM.

84. Segment-numbers permitted in
declaratives.

MODULE
AFFECTED

1 SRT

1 SRT

2 SRT

1 SRT

2 SRT

2 SRT

1 SRT
1 SEG

1 SEG

85. PAGE-COUNTER and LINE-COUNTER are RPW
described as unsigned integers that
must handle values from 0 through 999999.

86. The value in LINE-COUNTER must not be RPW
changed by the user.

87. LINE-COUNTER, PAGE-COUNTER and sum RPW
counters must not be used as subscripts
in the Report Section.

88. PAGE-COUNTER is always generated. RPW

89. PAGE-COUNTER does not need to be RPW
qualified in the Report Section.

90. LINE-COUNTER is always generated. RPW

91. LINE-COUNTER does not need to be RPW
qualified in the Report Section.

XIV-24

Suhstantive Changes

REMARKS

(1) Was a Level 2
feature.

· (1) Was a Level 2
feature.

(1) X3 • 2 3-19 6 8 allowed
only one file-name.

(2)

(1) New feature

(2)

(2) No such restriction
in X3.23-1968.

(1)

Substantive Changes

SUBSTANTIVE CHANGE
MODULE

AFFECTED

92. The words LINE and LINES are optional RPW
in the PAGE clause.

93. The DATA RECORDS clause and the REPORT RPW
clause are mutually exclusive.

94. A report may not be sent to more RPW
than one file.

95. RESET is no longer a clause; it is a RPW
phrase under the SUM clause.

96. Multiple SUM clauses may be specified RPW
in an item; multiple UPON phrases may
be specified.

97. Up to three hierarchical levels are RPW
permitted in a report group description.

98. A report group level 01 entry cannot RPW
be elementary.

99. An entry that contains a LINE NUMBER RPW
clause must not have a subordinate
entry that also contains a LINE
NUMBER clause.

100. An entry that contains a COLUMN NUMBER RPW
clause but no LINE NUMBER clause must be
subordinate to an entry that contains
a LINE NUMBER clause.

101. An entry that contains a VALUE clause RPW
must also have a COLUMN NUMBER clause.

102. In the CODE clause, mnemonic-name has RPW
been replaced by literal. (A two char­
acter nonnumeric literal placed in the
first two character positions of the
logical record.)

103. If the CODE clause is specified for any RPW
report in a file, it must be specified
for all reports in the same file.

104. Control data items may not be RPW
subscripted or indexed.

105. Each data-name in the CONTROL clause RPW
must identify a different data item.

XIV-25

REMARKS

SUBSTANTIVE CHANGE
MODULE

AFFECTED

106. The GROUP INDICATE clause may only RPW
appear in a DETAIL report group entry
that defines a printable item (contains
a COLUMN and PICTURE clause.)

107. LINE clause integers must not exceed RPW
three significant digits in length.

108. The NEXT PAGE phrase of the LINE clause RPW
is no longer legal in RH, PH, and PF
groups.

109. A relative LINE NUMBER clause can no RPW
longer be the first LINE NUMBER clause
in a PAGE FOOTING group.

110. A NEXT GROUP clause without a LINE RPW
clause is no longer legal.

111. Integer-2 in the NEXT GROUP clause must RPW
not exceed three significant digits in
length.

112. If the PAGE clause is omitted, only a RPW
relative NEXT GROUP clause may be
specified.

113. The NEXT PAGE phrase of the NEXT GROUP RPW
clause must not be specified in a
PAGE FOOTING report group.

114. The NEXT GROUP clause must not be RPW
specified in a REPORT FOOTING report
group.

115. The phrases of the PAGE clause may be RPW
written in any order.

116. In the PAGE clause, the maximum size RPW
of the integer is three significant
digits.

117. It is no longer possible to sum upon RPW
an item in another report.

118. Source-sum correlation is not required. RPW
(Operands of a SUM clause need not be
operands of a SOURCE clause in DETAIL
groups.)

119. TYPE clause data-names may not be RPW
subscripted or indexed.

XIV-26

Substantive Changes

REMARKS

Substantive Changes

SUBSTANTIVE CHANGE
MODULE

AFFECTED

120. PAGE HEADING and PAGE FOOTING report RPW
groups may be specified only if a
PAGE clause is specified in the corre­
sponding report description entry.

121. In CONTROL FOOTING, PAGE HEADING, PAGE RPW
FOOTING, and REPORT FOOTING report
groups, SOURCE clauses and USE state-
ments may not reference:

a. Group data items containing
control data items.

b. Data items subordinate to a
control data item.

c. A redefinition or renaming of any
part of a control data item.

In PAGE HEADING and PAGE FOOTING report
groups, SOURCE clauses and USE statements
must not reference control data-name.

122. In sunnnary reporting, only one detail RPW
group is allowed.

123. The description of a report must RPW
include at least one body group.

124. Report files must be opened with either RPW
the OPEN OUTPUT or OPEN EXTEND statement.

125. A file described with a REPORT clause RPW
cannot be referenced by any input-output
statement except the OPEN or CLOSE
statement.

126. The SUPPRESS statement RPW

127. If no GENERATE statements have been RPW
executed for a report during the
interval between the execution of an
INITIATE statement and a TERMINATE
statement for that report, the
TERMINATE statement does not cause the
Report Writer Control System to
perform any of the related processing.

128. A USE procedure may refer to a
DETAIL group.

XIV-27

RPW

REMARKS

SUBSTANTIVE CHANGE

129. FILE STATUS clause: data-name is
updated by the system at the com­
pletion of each input-output
operation.

130. ACCESS MODE IS DYNAMIC clause:
provides ability to access a file
sequentially or randomly in the
same program.

131. ALTERNATE RECORD KEY clause: allows
specification of multiple keys, any
of which can be used to access an ·
indexed file

132. ACTUAL KEY- clause deleted.

133. RELATIVE KEY clause added for
relative organization.

134. RECORD KEY clause added for
indexed organization.

135. FILE-LIMITS clause deleted.

136. PROCESSING MODE clause deleted.

137. FILE-CONTROL paragraph: except for
the ASSIGN clause, the order of
clauses following file-name is
optional.

138. ORGANIZATION IS RELATIVE clause

139. ORGANIZATION IS SEQUENTIAL clause

140. ORGANIZATION IS INDEXED clause

141. MULTIPLE REEL/UNIT clause deleted.

142. RESERVE ••• ALTERNATE AREAS deleted.

143. RESERVE integsr AREAS to allow the
user to specify the exact number
of areas to be used.

144. The file description entry for file­
name must be equivalent to that used
when this file was created.

XIV-28

MODULE
AFFECTED

1 SEQ
1 REL
1 INX

2 REL
2 INX

2 INX

1 REL

1 INX

1 SEQ
1 REL
1 INX

1 REL

1 SEQ

1 INX

1 SEQ
1 REL.
1 INX

1 SEQ
1 REL
1 INX

Suhstantive Changes

REMARKS

(1) New feature.

(1) New feature.

(1) New feature.

(2)

(1) New feature.

(1) New feature.

(2)

(2)

(1)

(2) New f =ature.

(2) New feature.

(2) New feature.

(2)

(2)

(1) New feature.

(3) No such rule in
X3.23-1968.

Substantive Changes

SUBSTANTIVE CHANGE

145. The data-name option of the LABEL
RECORDS clause was deleted.

146. Data-name in the VALUE OF clause
l'Dust be an implementor-name.

147. LINAGE clause permits programmer
definition of logical page size.

148. CLOSE ••• FOR REMOVAL statement.

149. DELETE statement.

150. OPEN REVERSED positions file at its
end.

151. OPEN INPUT or OPEN I-0 makes a record
area available to the program.

152. OPEN EXTEND statement: adds records
to an existing file.

153.

154.

155.

156.

The OPEN and CLOSE statements with the
NO REWIND phrase apply to all devices
that claim support for this function.

The OPEN REVERSED statement applies to
all devices that claim support for
this function.

READ statement: AT END phrase required
only if no applicable USE AFTER ERROR/
EXCEPTION procedure specified.

READ statement: INVALID KEY phrase
required only if no applicable USE
AFTER ERROR/EXCEPTION procedure
specified.

157. READ statement: INTO phrase placed in
Level 1.

MODULE
AFFECTED

1 SEQ
1 REL
1 INX

1 SEQ

2 SEQ

2 SEQ

1 REL
1 INX

2 SEQ

1 SEQ
1 REL
1 INX

2 SEQ

2 SEQ

2 SEQ

1 SEQ
1 REL
1 INX

1 REL
1 INX

1 SEQ
1 REL
1 INX

158. READ ••• NEXT statement: used to retrieve 2 REL
the next logical record from a file
when the· access mode is· dynamic.

XIV-29

REMARKS

(2) X3.23-1968 provided
for user-defined label
records.

(2) X3.23-1968 pro~ided
for user-defined field
in label records.

(1) New feature.

(1) New feature.

(1) New feature.

(2)

(1) New feature.

(1) New feature.

(1) X3.23-1968 restricted
the application of this
phrase.

(1) X3.23-1968 restricted
the application of this

, phrase.

(1) New feature.

(1) New feature.

(1) Level 2 feature in
X3.23-1968.

(1) New feature.

SUBSTANTIVE CHANGE

159. REWRITE statement

160. SEEK statement was deleted.

161. START statement: provides for logical
positioning within a relative or
indexed file for sequential retrieval
of records.

162. USE statement: the label processing
options were deleted.

163. USE .•. ERROR/EXCEPTION statement

164. Recursive invocation of USE procedures
prohibited.

165. WRITE statement: INVALID KEY phrase
deleted.

166. WRITE statement: INVALID KEY phrase
required only if no applicable USE
AFTER ERROR/EXCEPTION procedure
specified.

167. WRITE statement: FROM phrase placed
in Level 1.

168. WRITE statement: BEFORE/AFTER PAGE
phrase provides ability to skip to
top of a page.

169. WRITE statement: END-OF-PAGE phrase

170. Debugging line: defined by a 'D'
in the continuation column.

171. WITH DEBUGGING MODE clause: a
compile time switch; in addition an
object time switch can be used to
suppress coding at object time.

172. USE FOR DEBUGGING statement.

173. ·DEBUG-ITEM

XIV-30

MODULE
AFFECTED

1 SEQ
1 REL
1 INX

2 REL

1 SEQ
1 REL
1 INX

1 SEQ
1 REL
1 INX

1 SEQ
1 REL
1 INX

1 SEQ

1 REL
1 INX

1 SEQ
1 REL
1 INX

1 SEQ

2 SEQ

1 DEB

1 DEB

1 DEB

1 DEB

Substantive Changes

REMARKS

(1) New feature.

(2)

(1) New feature.

(2) X3.23-1968 provided
for the processing of
user-defined labels.

(1) New feature.

(2)

(2)

(1)

(1) Level 1 feature in
X3.23-1968.

(1)

(1) New feature.

(1) New feature.

(1) New feature.

(1) New feature.

(1) New feature.

Deleted Elements

MODULE
SUBSTANTIVE CHANGE AFFECTED REMARKS

174. Linkage Section 1 IPC (1) New feature.

175. Procedure Division header: the 1 IPC (1) New feature.
USING phrase.

176. CALL identifier statement. 1 IPC (1) New feature.

177. CALL identifier ON OVERFLOW statement. 2 IPC (1) New feature.

178. CANCEL statement 2 IPC (1) New feature.

179. EXIT PROGRAM statement 1 IPC (1) New feature.

180. COPY statement may appear anywhere 1 LIB (1) New feature.
a COBOL word may appear.

181. Identifier, COBOL word, or a group 2 LIB (1) New feature.
of COBOL words may be replaced.

182. Multiple libraries are permitted. 2 LIB (1) New feature.

183. Library-name is a user-defined word. 2 LIB (1) New feature.

184. Communication description entry (CD) 1 COM (1) New feature.

185. ACCEPT cd-name MESSAGE COUNT statement. 1 COM (1) New feature.

186. ENABLE statement 1 COM (1) New feature.

187. DISABLE statement 1 COM (1) New feature.

188. RECEIVE statement 1 COM (1) New feature.

189. SEND statement 1 COM (1) New feature.

2.3.4 Elements Deleted From X3.23-1968

The following elements were deleted from X3.23-1968 in the process of
revising the standard. Page numbers refer to pages in the document X3.23-1968.

REMARKS Paragraph (page 2-4). The REMARKS paragraph of the Identification
Division was deleted and the function replaced by the * comment line.

EXAMINE Statement (pages 2-33 and 2-85). The EXAMINE statement and the
special register TALLY were deleted in favor of the new more powerful
INSPECT statement.

NOTE Statement (pages 2-40 and 2-92). The NOTE statement was deleted and
the function replaced by the * comment line.

XIV-31

Excluded Elements

FILE-LIMITS Clause (pages 2-119 and 2-155). This clause was deleted from
the file control entry because the function could be handled better outside
the COBOL program.

SEEK Statement (page 2-164). This statement was redundant; it is implied
by the READ, WRITE, etc.

MULTIPLE REEL/UNIT Clause (page 2-119). This clause was deleted from the
file control entry because the function could be handled better outside the
COBOL program.

ACTUAL KEY Clause (page 2-156). This clause was replaced by the RELATIVE
KEY clause.

RESERVE integer ALTERNATE AREAS Clause (page 2-134). This clause was
replaced by the RESERVE integer AREAS clause.

OR implementor-name (page 2-138). This clause was deleted ftom the file
control entry because the function could be handled better outside the COBOL
program.

integer implementor-name (pages 2-119 and 2-155). This clause was deleted
from the file control entry because the function could be handled better
outside the COBOL program.

PROCESSING MODE IS SEQUENTIAL Clause (pages 2-119 and 2-155). This clause
was deleted from the file control entry as not being needed in a synchronous
environment.

USE ••• LABEL Statement (pages 2-150 and 2-180). An extensive revision to
label processing is currently underway to remove ambiguities and provide for
the processing of ANSI standard labels. This work was not completed in time
to be included in this revision. In order not to hinder the introduction of
this new facility, it was decided to define only a minimum label processing
capability in the revised standard.

LABEL RECORDS IS data-name Clause (pages 2-141 and 2-174). An extensive
revision to label processing is currently underway to remove ambiguities and
provide for the processing of ANSI standard labels. This work was not
completed in time to be included in this revision. In order not to hinder
the introduction of this new facility, it was decided to define only a minimum
label processing capability in the revised standard.

2.3.5 JOO Elements Not Chosen For Standardization

This list represents the language elements in the Journal of Development
at the cutoff date (December 31, 1971) which were not chosen for inclusion
in the revised standard. Many of these elements were previously excluded
from X3.23-1968. An asterisk indicates those elements not available for
consideration at the time the original standard was specified. The symbol +
represents an element which was in X3.23-1968 but was excluded from the
revised standard.

XIV-32

Excluded Elements

1. The figurative constants: UPPER-BOUND, UPPER-BOUNDS, LOWER-BOUND,
and LOWER-BOUNDS.

2. In the SOURCE-COMPUTER paragraph, SUPERVISOR CONTROL, MEMORY SIZE,
ADDRESS option, and implementor-name(s).

3. In the OBJECT-COMPUTER paragraph, SUPERVISOR CONTROL, MEMORY SIZE
(ADDRESS option), implementor-name(s), and ASSIGN OBJECT-PROGRAM.

4. In the file control entry, ORGANIZATION IS RELATIVE clause for files
referenced as the object of:

a. USING/GIVING phrase of a SORT or MERGE statement

b. file description entry containing the REPORT clause

5. In the file control entry, ORGANIZATION IS INDEXED clause for files
referenced as the object of:

a. USING/GIVING phrase of a SORT or MERGE statement

b. file description entry containing the REPORT clause

6. In the file control entry, the PROCESSING MODE clause.

7. In the I-0-CONTROL para~aph, the APPLY clause.

8. In the I-0-CONTROL paragraph, an indexed or relative file may be
specified in the ON clause of RERUN.

9. In the I-0-CONTROL paragraph, an indexed or relative file may be
specified in the END OF REEL/UNIT clause of RERUN.

+10. In the file description entry, the LABEL RECORDS IS data-name clause.

11. In the file description entry, the RECORDING MODE clause.

12. The saved area description entry.

13. In the PICTURE clause, the DEPENDING ON phrase and the character L.

14. In the USAGE clause, COMPUTATIONAL-n, DISPLAY-n, and INDEX-n.

15. The requirement of supporting more than five levels of qualification
for a data-name.

16. The complete set of qualifiers for a data-name may be the same as the
partial list of qualifiers for another data-name.

17. The relational operators: UNEQUAL TO, EQUALS; EXCEEDS.

18. In the COMPUTE statement, FROM and EQUALS.

19. In the DISPLAY statement, numeric literal may be signed and/or
noninteger.

XIV-33

Excluded Elements

20. The HOLD statement.

*21. The INITIALIZE statement.

22. In Format 3 of the INSPECT statement, the BEFORE/AFTER REPLACING phrase.

23. In the MOVE CORRESPONDING statement, the identifier series.

24. The PROCESS statement.

25. Dynamic redefinition of the collating sequence by means of the SET
- statement.

26. In the STOP statement, numeric literal may be signed and/or noninteger.

*27. The SUSPEND statement.

+28. In the USE statement, the LABEL option.

*29. In the USE statement, the RANDOM PROCESSING option.

*30. In the USE statement, recursive invocation of USE procedures.

XIV-34

Concepts

3. APPENDIX C: CONCEPTS

3.1 FEATURES OF THE LANGUAGE

COBOL offers many features which allow the user to obtain a necessary
function without programming the function in detail. In this appendix each
of these features and the concept of its use will be discussed.

3.2 RECORD ORDERING

The ability to arrange records into a particular order is a connnon require­
ment of the data processing user. The Sort and Merge features of COBOL provide
facilities to assist in meeting this requirement.

While both are concerned with record ordering, the functions and capabil­
ities of the SORT and MERGE statements are different in a number of respects.
The Sort will produce an ordered file from one or more files that may be
completely unordered in the sort sequence whereas the Merge can only produce
an ordered file from two or more files each of which is already ordered in
the specified sequence.

In many applications it is necessary to apply some special processing to
the contents of the sort or merge file(s) before or after sorting or merging.
This special processing may consist of addition, deletion, creation, altering,
editing, or other modification of the individual records in the file. The
COBOL Sort-Merge feature allows the user to express these procedures in the
COBOL language. A COBOL program may contain any number of sorts and merges,
and each of them may have its own independent special procedures. The Sort­
Merge feature automatically causes execution of these procedures in such a
way that extra passes over the sort or merge files are not required.

3. 3 REPORT WRITER

The Report Writer is a feature which places its emphasis on the organiza­
tion, format, and contents of an output report. Although a report can be
produced using the standard COBOL language, the Report Writer language
features provide a more concise facility for report structuring and report
production. Much of the Procedure Division programming which would normally
be supplied by the programmer is instead provided automatically by the Report
Writer Control System (RWCS). Thus the programmer is relieved of writing
procedures for moving data, constructing print lines, counting lines on a
page, numbering pages, producing heading and footing lines, recognizing the
end of logical data subdivisions, updating sum counters, etc. All these
operations are accomplished by the RWCS as a consequence of source language
statements that appear primarily in the Report Section of the Data Division
of the source program.

Data movement to a report is directed by the Report Section clauses SOURCE,
SUM, and VALUE. Fields of data are positioned on a print line by means of the
COLUMN NUMBER clause. The PAGE clause specifies the length of the page, the
size of the heading and footing areas, and the size of the area in which the
detail lines will appear. Data items may be specified to form a control hier­
archy. During the execution of a GENERATE statement, the Report Writer Control
System uses the control hierarchy to check automatically for control breaks.
When a control break occurs, sunnnary information (e.g. subtotals) can be presented.

XIV-35

Conaepts

3.4 TABLE HANDLING

Tables of data are common components of business data processing problems.
Although items of data tthat make up a table could be described as contiguous
data items, there are two reasons why this approach is not satisfactory.
First, from a documentation standpoint, the underlying homogeneity of the
items would not be readily apparent; and second, the problem of making avail­
able an individual element of such a table would be severe when there is a
decision as to which element is to be made available at object time.

Tables composed of contiguous data items are defined in COBOL by including
the OCCURS clause in their data description entries. This clause specifies
that the item is to be repeated as many times as stated. The item is considered
to be a table element and its name and description apply to each repetition
or occurrence. Since each occurrence of a table element does not have assigned
to it a unique data-name, reference to a desired occurrence may be made only
by specifying the data-name of the table element together with the occurrence
number of the desired table element. Subscripting and indexing are the two
methods that are used to specify the occurrence number of a desired table
element.

3.4.1 Table Definition

To define a one-dimensional table, the programmer uses an OCCURS clause as
part of the data description of the table element, but the OCCURS clause must
not appear in the description of group items which contain the table element.
Example 1 shows a one-dimensional table.

Example 1.

01 TABLE-1.
02 TABLE-ELEMENT OCCURS 20 TIMES.

03 NAME •••••••• -.
03 SSAN •••••••••

Defining a one-dimensional table within each occurrence of an element of
another one-dimensional table gives rise to a two-dimensional table. To
define a two-dimensional table, then, an OCCURS clause must appear in the data
description of the element of the table, and in the description of only one
group item which contains that table element. To define a three-dimensional
table, the OCCURS clause should appear in the data description of the element
of the table and in the description of 2 group items which contain the element.
In COBOL, tables of up to 3 dimensions are permitted. Example 2 shows a table
which has one dimension for CONTINENT-NAME, two dimensions for COUNTRY-NAME,
and three dimensions for CITY-NAME and CITY-POPULATION. The table includes
100,510 data items -- 10 for CONTINENT-NAME, 500 for COUNTRY-NAME, 50,000 for
CITY-NAME, and 50,000 for CITY-POPULATION. Within the table there are ten
occurrences of CONTINENT-NAME. Within each CONTINENT-NAME there are 50
occurrences of COUNTRY-NAME and within each COUNTRY-NAME there are one
hundred occurrences of CITY-NAME and CITY-POPULATION.

XIV-36

Con_oepts

Example 2.

01 CENSUS-TABLE.
05 CONTINENT-TABLE OCCURS 10 TIMES.

10 CONTINENT-NAME PIC XXXXXX.
10 COUNTRY-TABLE OCCURS 50 TIMES.

15 COUNTRY-NAME PIC XXXXXXXX.
15 CITY-TABLE OCCURS 100 TIMES.

20 CITY-NAME PIC XXXXXXXXXX.
20 CITY-POPULATION PIC 999999999999.

3. 4. 2 References to Table Items

Whenever the user refers to a table element, the reference must indicate
which occurrence of the element is intended. For access to a one-dimensional
table, the occurrence number of the desired element provides complete informa­
tion. For access to tables of more than one dimension, an occurrence number
must be supplied for each dimension of the table accessed. In Example 2 then,
a reference to the 4th CONTINENT-NAME would be complete, whereas a reference
to the 4th COUNTRY-NAME would not. To refer to COUNTRY-NAME, which is an
element of a two-dimensional table, the user must refer to, for example, the
4th COUNTRY-NAME within the 6th CONTINENT-TABLE.

One method by which occurrence numbers may be specified is to append one
or more subscripts to the data-name. A subscript is an integer whose value
specifies the occurrence number of an element. The subscript can be repre­
sented either by a literal which is an integer or by a data-name which is
defined elsewhere as a numeric elementary item with no character positions to
the right of the assumed decimal point. In either case, the subscript,
enclosed in parentheses, is written immediately following the name of the
table element. A table reference must include as many subscripts as there are
dimensions in the table whose element is being referenced. That is, there
must be a subscript for each OCCURS clause in the hierarchy containing the
data-name, including the data-name itself. In Example 2, references to
CONTINENT-NAME require only one subscript, reference to COUNTRY-NAME requires
two, and references to CITY-NAME and CITY-POPULATION require three.

When more than one subscript is required, they are written in order of
successively less inclusive dimensions of the data organization. When a
data-name is used as a subscript, it may be used to refer to items in many
different tables. These tables need not have elements of the same size. The
data-name may also appear as the only subscript with one item and as one of
two or three subscripts with another item. Also, it is permissible to mix
literal and data-name subscripts, for example: CITY-POPULATION(lO, NEWKEY, .. 42).

Another method of referring to items in a table is indexing. To use this
technique, the progrannner assigns one or more index-names to an item whose
data description contains an OCCURS clause. There is no separate entry to
describe the index-name since its definition is completely hardware-oriented
and it is not considered data per se. At object time the contents of the
index-name will correspond to an occurrence number for that specific dimension
of the table to which the index-name was assigned; however, the manner of
correspondence will be determined by the implementor. The initial value of
an index-name at object time is not determinable and the index-name must be
initialized by the SET statement before use.

\

XIV-37

Concepts

When a reference is made to a table element, or to an item within a table
element, and the name of the item is followed by its related index-name or
names in parentheses, then each occurrence number required to complete the
reference will be obtained from the respective index-name. The index-name
thus acts as a subscript whose value is used in any table reference that
specifies indexing.

When a reference requires more than one occurrence number for completeness,
the progrannner must not use a data-name subscript to indicate one occurrence
number and an index-name for another. Therefore, if indexing is to be used,
each OCCURS clause within the hierarchy (each dimension of the table) must
contain an INDEXED BY clause. The programmer may, however, mix literals and
index-names within one reference, just as he may mix literals and data-name
subscripts.

3.4.3 Table Searching

Data that has been arranged in the form of a table is very often searched.
In COBOL the SEARCH statement provides facilities, through its two options,
for producing serial and non-serial (for example, binary) searches. In using
the SEARCH statement, the programmer may vary an associated index-name or
data-name. This statement also provides facilities for execution of impera­
tive statements when certain conditions are true.

3. 5 HLE ORGANIZATION AND ACCESS METHODS

Magnetic tape, punched paper tape, and punched card files are normally
organized in a sequential manner and the Procedure Division of COBOL reflects
this use. Mass storage media can be used to store sequentially organized
files, and this technique has been provided; but, more significantly, mass
storage devices have been designed to provide nonsequential organization and
access capabilities.

3.5.1 Sequential Organization

A file whose organization is sequential can only be accessed in the
sequential mode. Records in such a file can be accessed in the sequence
established as a result of writing the records to the file. A sequential
mass storage file may be used for input and output at the same time. One file
maintenance method made possible by this facility is to read a record, process
it, and, if it is updated, return it, modified, to its previous position.

3. 5. 2 Re 1 ati ve Organization

A file whose organization is relative can be accessed either sequentially,
dynamically, or randomly. Sequential access provides the same results as if
the file were organized sequentially. Random access allows the sequence in
which the records are accessed to be controlled by the programmer. Each
record in a relative file is identified by an integer value greater than zero
which specifies the record's logical ordinal position in the file. The
desired record is accessed by placing its relative record number in a Relative
Key data item. Such a file may be thought of as a serial string of areas,
each capable of holding a logical record. Each of these areas is denominated
by a relative record number. Records are stored and retrieved based on this

XIV-38

Conaepts

number. For example, the tenth record is the one addressed by relative record
number 10 and is in the tenth record area, whether or not records have been
written in the first through the ninth record areas.

In the dynamic access mode, the programmer may change at will from sequen­
tial access to random access using appropriate forms of input-output statements.

3.5.3 Indexed Organization

A file whose organization is indexed can be accessed either sequentially,
dynamically, or randomly. Sequential access provides access to the records
in the ascending order of the record key values. The order of retrieval of
records within a set of records having duplicate record key values is the
order in which the records were written into the set.

In the random access mode, the sequence in which records are accessed is
controlled by the programmer. Each record in the file is identified by the
value of one or more keys within that record, and the desired record is
accessed by placing the value of its record key in a record key data item
before accessing the record.

In the dynamic access mode, the programmer may change at will from
sequential access to random access by using appropriate forms of input-output
statements.

3.6 RERUN

The RERUN feature of COBOL provides a facility for check restart. That is,
executing a RERUN takes a snapshot of the program status and stores the infor­
mation. It is then possible to restart the program from the point of the most
recent RERUN. The use of the RERUN clause protects the user from having to
start a program over from the beginning in the event of a hardware failure
while the job is running.

There are two basic parts to the RERUN clause. The user must designate a
medium to receive the data and a criterion from which the frequency of check­
points may be determined. The receiving medium may be specified by designating
a file name or a separate hardware device. The determination of frequency of
the dump may be made on the basis of a number of records of a particular file
having been processed, of the end of a reel of a particular file having been
reached, of the setting of a hardware switch or of a specified number of units
of an internal clock having been counted.

3.7 PROGRAM MODULARITY

Complex data processing problems are frequently solved by the use of
separately compiled but logically coordinated programs, which, at execution
time, form logical and physical subdivisions of a single run unit. This
approach lends itself to dividing a large problem into smaller, more manage­
able segments which can be programmed and debugged independently. At execute
time, control is transferred from program to program by the use of CALL and
EXIT PROGRAM statements.

XIV-39

Concepts

Under certain c~rcumstances, e.g., a shortage of computer storage, it is
desirable to subdivide a single program into physical segments, so that, at
execute time, it is not necessary to load the entire program into computer
storage at one time. This approach would permit the overlaying of some seg­
ments, with a corresponding saving in total computer storage required to
execute the program. This facility is called segmentation.

There are no special statements in COBOL for communication between segments
of such a program. There are, however, some special clauses used by the COBOL
programmer to specify how the object pro_gram is to be segmented.

3.7.1 Inter-Program Communication

In COBOL terminology, a program is either a source program or an object
program depending on context; a source program is a syntactically correct set
of COBOL statements; an object program is the set of instructions, constants,
and other machine-oriented data resulting from the operation of a compiler on
a source program; and a run unit is the total machine language necessary to
solve a data processing problem. It includes one or more object programs as
defined above, and it may include machine language from sources other than a
COBOL compiler.

When the statement of a problem is subdivided into more than one program,
the constituent programs must be able to communicate with each other. This
communication may take two forms: transfer of control and reference to common
data.

3.7.1.1 Transfer of Control

The CALL statement provides the means whereby control can be passed from
one program to another within a run unit. A program that is activated by a
CALL statement may itself contain CALL statements. However, results are
unpredictable where circularity of control is initiated; i.e., where program
A calls program B, then program B calls program A or another program that
calls program A.

When control is passed to a called program, execution proceeds in the normal
way from procedure statement to procedure statement beginning with the first
nondeclarati ve statement. If control reaches a STOP RUN statement, this sig­
nals the logical end of the run unit. If control reaches an EXIT PROGRAM
statement, this signals the logical end of the called program only, and control
then reverts to the point immediately following the CALL statement in the call­
ing program. Stated briefly, the EXIT PROGRAM statement terminates only the
program in which it occurs, and the STOP RUN statement terminates the entire
run unit.

If the called program is not COBOL then the termination of the run unit or
the return to the calling program must be programmed in accordance with the
language of the called program.

XIV-40

Concepts

3. 7 .1. 2 Inter-Program Data Storage

Program interaction requires that both programs have access to the same
data items. In the calling program the common data items are described along
with all other data items in the File Section, Working-Storage Section,
Communication Section, or Linkage Section. At object time memory is allocated
for the entire Data Division. In the called program, common data items are
described in the Linkage Section. At object time memory space is not allocated
for this section. Communication between the called program and the connnon data
items stored in the calling program is effected through USING clauses contained
in both programs. The USING clause in the calling program is contained in the
CALL statement and the operands are a list of common data-identifiers described
in its Data Division. The USING clause in the called program follows the
Procedure Division header and the operands are a list of common data identifiers
described in its Linkage Section. The identifiers specified by the USING clause
of the CALL statement indicate those data items available to a calling program
that may be referred to in the called program. The sequence of appearance
of the identifiers in the USING clause of the CALL statement and the USING
clause in the Procedure Division header is significant. Corresponding identi­
fiers refer to a single set of data which is available to the calling program.
The correspondence is positional, and not by name. While the called program
is being executed, every reference to an operand whose identifier appears in
the called program's USING clause is treated as if it were a reference to the
corresponding operand in the USING clause of the active CALL statement.

Once control leaves a called program its state is maintained until a CANCEL
is executed naming that program. Therefore, initialization of the program in
case of repetitive calls is not necessary.

Execution of the CANCEL statement allows the user to indicate that the
memory areas occupied by the called program(s) may be released. In addition,
the CANCEL guarantees that the program cancelled will be in its initial state
when called by a subsequent CALL statement.

3.7.2 Segmentation

The segmentation facility permits the user to subdivide physically the
Procedure Division of a COBOL object program. All source. paragraphs which
contain the same segment-number in their section headers will be considered
at object time to be one segment. Since segment-numbers can range from 00
through 99, it is possible to subdivide any object program into a maximum of
100 segments.

Program segments may be of three types: fixed permanent, fixed overlayable,
and independent as determined by the programer's assignment of segment numbers.

Fixed segments are always in computer storage during the execution of the
entire program, i.e., they cannot be overlayed except when the system is
executing another program, in which case fixed segments may be 'rolled out'
temporarily.

Fixed overlay able segments may be overlayed during program execution, but
any such overlaying is transparent to the user, i.e., they are logically
identical to fixed segments, but physically different from them.

XIV-41

Conaepts

Independent segments may be overlayed, but such overlaying will result in
the initialization of that segment. Therefore, independent segments are
logically different from fixed permanent/fixed overlayable segments, and
physically different from fixed segments.

3.8 COMMUNICATION FACILITY

The communication facility provides the ability to access, process, and
create messages or portions thereof. It provides the ability to communicate
through a Message Control System with local and remote communication devices.

3.8.1 The Message Control System

The implementation of the communication facility requires that a Message
Control Sy~tem (MCS) be present in the COBOL object program's operating envi­
ronment.

The MCS is the logical interface to the operating system under which the
COBOL object program operates. The primary functions of the MCS are the
following:

(1) To act as an interface between the COBOL object program and the network
of communication devices, in much the same manner as an operating system acts
as an interface between the COBOL object program and such devices as card
readers, magnetic tape and mass storage devices, and printers.

(2) To perform line discipline, including such tasks as dial-up, polling,
and synchronization.

(3) To perform device-dependent tasks, such as character translation and
insertion of control characters, so that the COBOL user can create device­
independent programs.

The first function, that of interfacing the COBOL object program with the
communication devices, is the most obvious to the COBOL user. In fact, the
COBOL user may be totally unaware that the other two functions exist. Messages
from communication devices are placed in input queues by the MCS while awaiting
disposition by the COBOL object program. Output messages from the COBOL object
program are placed in output queues by the MCS while awaiting transmission to
communication devices. The structures, formats, and symbolic names of the
queues are defined by the user to the MCS at some time prior to the execution
of the COBOL object program. Symbolic names for message sources and destina­
tions are also defined at that time. The COBOL user must specify in his COBOL
program symbolic names which are known to the MCS.

During execution of a COBOL object program, the MCS performs all necessary
actions to update the various queues as required.

3.8.2 The COBOL Object Program

Th.e COBOL object program interfaces with the MCS when it is necessary to
send data, receive data, or to interrogate the status of the various queues
which are created and maintained by the MCS. In addition, the COBOL object
program may direct the MCS to establish or break the logical connection

XIV-42

Concepts

between the communication device and a specified portion of the MCS queue
structure. The method of handling the physical connection is a function of
the MCS.

3.8.3 Relationship of the COBOL Program to the Message Control System
and Communication Devices

The interfaces which exist in a COBOL communication environment are esta­
blished by the use of a CD and associated clauses in the Communication Section
of the Data Division. There are two such interfaces:

(1) The interface between the COBOL object program and the MCS, and;

(2) The interface between the MCS and the communication devices.

The COBOL source program uses three statements to control the interface
with the MCS:

(1) The RECEIVE statement, which causes data in a queue to be passed to
the COBOL object program,

(2) The SEND statement, which causes data associated with the COBOL object
program to be passed to one or more queues, and;

(3) The ACCEPT statement with the COUNT phrase, which causes the MCS to
indicate to the COBOL object program the number of complete messages in the
specified queue structure.

The COBOL source program uses two statements to control the interface
between the MCS and the communication devices:

(1) The ENABLE statement, which establishes logical connection between
the MCS and one or more given communication devices, and;

(2) The DISABLE statement, which breaks a logical connection between the
MCS and one or more given communication devices.

These relationships are shown in Figure 1, COBOL Communication Environment,
which is located on page XIV-44.

XIV-43

COBOL Program

RECEIVE

0
~
en
c
0 ·g_

Message Control System
(MCS)

w
....J
CD
<(

Concepts

Communications
Devices

·5
en
Q)

'-~~~--1 (/) 1--~~~--1

0
en
c
0

·;;

'--~~~~~~--l 0 J--~~~--t--1

SEND
co
-~ c
::J
E
E
0

- -l-----""I u SEND

........
w
....J
CD

<(r-------..J
~ r------W

COBOL/MCS
Interface

MCS/Communications Device
Interface

Figure 1: COBOL Communication Environment

3.8.3.l Invoking the COBOL Object Program

There are two methods of invoking a COBOL communication object program:

(1) Schedule initiation

(2) MCS invocation

Regardless of the method of invocation, the only operating difference
between the two methods is that MCS invocation causes the areas referenced
by the symbolic queue and subqueue names in the specified CD to be filled.

3.8.3.1.1 Scheduled Initiation of the COBOL Object Program

A COBOL object program using the communication facility may be scheduled
for execution through the normal means available in the program's operating
environment, such as job control language. In that case, the COBOL program
can use three methods to determine what messages, if any, are available in
the input queues:

(1) The ACCEPT statement with the COUNT phrase,

(2) The RECEIVE statement with a NO DATA phrase, and

(3) The RECEIVE statement without a NO DATA phrase (in which case a program
wait is implied if no data is available).

XIV-44

Concepts

3.8.3.1.2 Invocation of the COBOL Object Program by the MCS

It is sometimes desirable to schedule a COBOL object communication program
only when there is work available for it to do; Such scheduling occurs if the
MCS determines what COBOL.object program is required to process the available
message and subsequently causes that program to be scheduled for execution.
Prior to the execution of the COBOL object program, the MCS places symbolic
queue and sub-queue names in the data items of the CD that specifies the FOR
INITIAL INPUT clause.

A subsequent RECEIVE statement directed to that CD will result in the
available message being passed to the COBOL object program.

3.8.3.1.3 Determining the Method of Scheduling

A COBOL source program can be written so that its object program can
operate with either of the two modes of scheduling. In order to determine
which method was used to load the COBOL object program, the following is one
technique that may be used:

(1) One CD must contain a FOR INITIAL INPUT clause.

(2) The Procedure Division may contain statements to test the initial
value of the symbolic queue name in that CD. If it is space-filled, job
control statements were used to schedule the COBOL object program. If not
space filled, the MCS has invoked the COBOL object program and replaced the
spaces with the symbolic name of the queue containing the message to be
processed.

3.8.4 The Concept of Messages and Message Segments

A message consists of some arbitrary amount of information, usually char­
acter data, whose beginning and end are defined or implied. As such, messages
comprise the fundamental but not necessarily the most elementary unit of data
to be processed in a COBOL communication environment.

Messages may be logically subdivided into smaller units of data called
message segments which are delimited within a message by means of end of
segment indicators (ESI). A message consisting of one or more segments is
delimited from the next message by means of an end of message indicator (EMI).
In a similar manner, a group of several messages may be logically separated
from succeeding messages by means of an end of group indicator (EGI). When a
message or message segment is received by the COBOL program, a communication
description interface area is updated by the MCS to indicate which, if any,
delimiter was associated with the text transferred during the execution of
that RECEIVE statement. On output the delimiter, if any, to be associated
with the text released to the MCS during execution of a SEND statement is
specified or referenced in the SEND statement. Thus the presence of these
logical indicators is recognized and specified both by the MCS and by the
COBOL object program; however, no indicators are included in the message text
processed by COBOL programs.

A precedence relationship exists between the indicators EGI, EMI and ESI.
EGI is the most inclusive indicator and ESI is the least inclusive indicator.
The existence of an indicator associated with message text implies the

XIV-45

Concepts

association of all less inclusive indicators with that text. For example, the
existence of the EGI implies the existence of EMI and ESI.

3.8.5 The Concept of Queues

Queues consist of one or more messages from or to one or more communication
devices, and as- such, form the data buffers between the COBOL object program
and the MCS. Input queues are logically separate from output queues.

The MCS logically places in queues or removes from queues only complete
messages. Portions of messages are not logically placed in queues until the
entire message is available to the MCS. That is, the MCS will not pass a
message segment to a COBOL object program unless all segments of that message
are in the input queue, even though the COBOL source program uses the SEGMENT
phrase of the RECEIVE statement. For output messages, the MCS will not trans­
mit any segment of a message until all its segments are in the output queue.
The number of messages that exist in a given queue reflects only the number of
complete messages that exist in the queue.

The process by which messages are placed into a queue is called enqueueing.
The process by which messages are removed from a queue is called dequeueing.

3.8.5.1 Independent Enqueueing and Dequeueing

It is possible that a message may be received by the MCS from a connnunica­
tion device prior to the execution of the COBOL object program. In this case
the MCS enqueues the message in the proper input queue until the COBOL object
program requests dequeueing with the RECEIVE statement. It is also possible
that a COBOL object program will cause the enqueueing of messages in an output
queue which are not transmitted to a communication device until after the
COBOL object program has terminated. Two common reasons for this occurrence
are:

(1) When data transfer between the specified' output queue and its destina­
tion is inhibited.

(2) When the COBOL object program creates output messages at a speed
faster than the destination can receive them.

3.8.5.2 Enabling and Disabling Logical Connectives

Usually, the MCS will logically connect and disconnect sources and destina­
tions based on time of day, message activity, or other factors unrelated to
the COBOL program. However, the COBOL program has the ability to perform
these functions through use of the ENABLE and DISABLE statements.

A key is required in both statements in order to prevent indiscriminate
use of the facility by a COBOL user who is not aware of the total network
environment, and who may therefore disrupt system functions by the untimely
issuance of ENABLE and DISABLE statements. However, this action never
interrupts a transmission.

XIV-46

Concepts

3.8.5.3 Enqueueing and Dequeueing Methods

In systems that allow the user to specify certain MCS functions, it may be
necessary that the user specify to the MCS, prior to execution of programs
which reference these facilities, the selection algorithm and other designated
MCS functions to be used by the MCS in placing messages in the various queues.
A typical selection algorithm, for example, would specify that all messages
from a given source be placed in a given input queue, or that all messages
to be sent to a given destination be placed in a given output queue.

Dequeueing is often done on a first in, first out basis. Thus, messages
dequeued from either an input or output queue are those messages which have
been in the queue for the longest period of time. However, the MCS can, upon
prior specification by the user, dequeue on some other basis, i.e., priority
queueing can be employed.

3.8.5.4 Queue Hierarchy

In order to control more explicitly the messages being enqueued and dequeued,
it is possible to define in the MCS a hierarchy of input queues, i.e., queues
comprising queues. In COBOL, four levels of queues are available to the user.
In order of decreasing significance, the queue levels are named queue,
sub-queue-1, sub-queue-2 and sub-qneue-3. The full queue structure is
depicted in Figure 2, Hierarchy of Queues, where queues and sub-queues have
been named with the letters A through O. Messages have been named with a
letter according to their source (X, Y, or Z) and with a sequential number.

QUEUE l
SUB-QUEUE (1)

SUB-QUEUE (2)

SUB-QUEUE (3)

MESSAGE

l
l
l H

Z1
X2

D

B

I J

X3 X1
X4 Y3
X5 Y5

Z5

E

K

Z6
Z7
Y6

Figure 2: Hierarchy of Queues

A

l

Y7
Y8

F

M

Y1
Y2

c

G

N

X6

Let us assume that the MCS is operating under the following queueing
algorithm:

(1) Messages are placed in queues according to the contents of some
specified data field in each message.

XIV-47

0

Z2
Z3
Z4
Y4

Conaepts

(2) With the RECEIVE statement, if the user does not specify a given sub­
queue level, the MCS will choose the sub-queue from that level in alphabetical
order, e.g., if sub-queue-I is not specified by the user, the,MCS will dequeue
from sub-queue-I B.

The following examples illustrate the ef feet of the algorithms shown in
Figure 2 on page XIV-47:

(1) The program executes a RECEIVE statement, specifying via the CD:

Queue A

MCS returns: Message Zl

(2) The program executes a RECEIVE statement, specifying via the CD:

Queue A

Sub-queue-1 C

MCS teturns: Message Y7

(3) The program executes a RECEIVE statement, specifying via the CD:

Queue A

Sub-queue-I B

Sub-queue-2 E

MCS returns: Message Xl

(4) The program executes a RECEIVE statement, specifying via the CD:

Queue A

Sub-queue-! C

Sub-queue-2 G

Sub-queue-3 N

MCS returns: Message X6

If the COBOL programmer wishes to access the next message in a queue,
regardless of which sub-queue that message may be in, he specifies the queue
name only. The MCS, when supplying the message, will return to the COBOL
object program, any applicable sub-queue names via the data items in the
associated CD. If, however, he desires the next message in a given sub-queue,
he must specify both the queue name and any applicable sub-queue names.

For output, the COBOL user specifies only the destination(s) of the message,
and the MCS places the message in the proper output queue structure.

There is no one-to-one relationship between a communication device and a
source/destination. A source or destination may consist of one or more
physical devices. The device or devices which comprise a source/ destination
are defined to the MCS.

XIV-48

Conaepts

3.9 DEBUGGING

To assist in error detection, COBOL provides the facility to monitor,
during program execution:

(1) transfers of control to user selected procedures and

(2) values of user selected data items.

The user statements required to accomplish this monitoring are included
in the source program and can be compiled or not according to the presence
or absence of one clause in the source program. Once compiled into the
program, these statements may be executed or ignored at run time according
to the setting of a run-time switch.

3.10 LIBRARY

The library feature provides the facility to copy source text from a
"library" of source text material that is available at compile time. A short
phrase can cause inclusion of large amounts of source library material into
the source program, thus saving repetitious coding. Once established, a
source library may be referenced many times by many programs.

XIV-49

'A' PICTURE symbol, II-20
Abbreviated combined relation conditions,

II-47
ACCEPT MESSAGE COUNT statement, XIII-12

USE FOR DEBUGGING statement, XI-7
ACCEPT statement, II-53

Imperative statement, I-102
Mnemonic-name, II-9
SPECIAL-NAMES paragraph, II-9

ACCESS MODE clause
DYNAMIC, V-5, VI-5
RANDOM, V-5, VI-5
SEQUENTIAL, IV-4, V-5, VI-5

Access modes, IV-1, V-1, VI-1
ADD statement, II-55

Composite of operands, II-51
COMPUTE statement, II-58
Conditional statement, I-101
CORRESPONDING (CORR), II-55
Data conversion, II-51
Decimal align~ent, II-51
Imperative statement, I-102
Maximum operand size, II-51
Multiple results, Il-51

ADD CORRESPONDING (ADD CORR) statement,
II-55

ADVANCING phrase, IV-34, XIII-20
AFTER phrase

INSPECT statement, II-68
PERFORM statement, 11-78
SEND statement, XIII-20
WRITE statement, IV-34

Algebraic sign, I-86
Alignment of data, I-86

ACCEPT statement, II-53
MOVE statement, II-74

ALL
INSPECT statement, II-68
SEARCH statement, III-7
USE FOR DEBUGGING statement, XI-4

ALL literal, I-Sil
DISPLAY statement, II-59
INSPECT statement, II-69
STOP statement, II-85
STRING statement, Il-86
UNSTRING statement, II-91

ALL PROCEDURES phrase, XI-4, XI-5
ALL REFERENCES OF phrase, XI-4, XI-5,

XI-6
Alphabet-name, I-52, I-77

CODE-SET clause, IV-12
MERGE statement, VII-8
SORT statement, VII-14

Alphabet-name clause, II-9
Alphabetic category, I-85, 11-18, II-75
Alphanumeric character, I-85
Alphabetic class, I-85, II-43

INDEX

XV-1

Alphanumeric edited category, 1-85
II-19, II-75

ALSO phrase, II-8
ALTER statement, II-57

GO TO statement, II-65
Imperative statement, I-102
MERGE statement, VII-10
Segmentation, IX-6
SORT statement, VII-16

Index

USE FOR DEBUGGING statement, XI-5,
XI-8

ALTERNATE RECORD KEY clause, VI-1, VI-5
AND, II-45

Abbreviated combined relation
condition, II-47

Combined condition, II-46
Connective, I-79
Hierarchy, II-48
Negated combined condition, II-46
SEARCH statement, III-7

Area B, I-105.
Arithmetic expression, II-39

COMPUTE statement, II-58
Relation condition, II-41
Sign condition, II-44

Arithmetic operator, II-39
Arithmetic statements, II-51
ASCENDING KEY phrase

MERGE statement, VII-8
OCCURS clause, IIl-2
SEARCH statement, III-9
SORT statement, VII-14

ASSIGN clause
Indexed I-0 module, VI-5
Relative I-0 module, V-5
Sequential I-0 module, IV-4
Sort-Merge module, VII-2

Asterisk (*) comment line, I-108
Asterisk (*) PICTURE symbol, II-21
AT END condition, IV-3, V-4, VI-4

READ statement, IV-29, V-24, VI-26
RETURN statement, VII-13
Status key, IV-2s V-2, VI-2
USE statement, IV-32, V-30, VI-32

AT END phrase
READ statement, IV-29, V-24, VI-26
RETURN statement, VII-13
SEARCH statement, III-7
USE statement, IV-32, V-30, VI-32

AUTHOR paragraph, I-94, II-2

'B' PICTURE symbol, II-20
BEFORE phrase

INSPECT statement, II-68
SEND statement, XIII-20
WRITE statement, IV-34

Binary arithmetic operators, II-39

Index

BLANK WHEN ZERO clause, II-14
PICTURE clause, II-18
USAGE IS INDEX clause, III-5
VALUE clause, II-37

BLOCK CONTAINS clause
Indexed I-0 module, VI-13
Relative I-0 module, V-12
Report Writer module, VIII-24
Sequential I-0 module, IV-11

Body group presentation rules table,
VIII-15

Braces, I-73
Brackets, I-73
BY

COPY statement, X-2
DIVIDE statement, II-61
INSPECT statement, II-68
MULTIPLY statement, II-77
PERFORM statement, II-78

CALL statement, XII-5
CANCEL statement, XII-7
Imperative statement, I-102
Linkage Section, XII-2
Procedure Division header, XII-4

Called program, I-53
Calling program, I-53
CANCEL statement, XII-7

CALL statement, XII-5
CLOSE statement, VI-19
EXIT program statement, XII-8
Imperative statement, I-102

Category of data, I-85
Editing, II-22
MOVE statement, II-75
Nonnumeric literal, I-80
Numeric literal, I-80
PICTURE clause, II-18
VALUE clause, II-36, II-37

Category of statements, I-103
CD entry, XIII-3
CD level indicator, I-107, XIII-3
Cd-name, I-77, XIII-3
CF (See CONTROL FOOTING)
CH (See CONTROL HEADING)
Character, 1-75

Alphabetic, I-52
Alphanumeric, I-52
Editing, 1-58
Numeric, 1-63
Punctuation, I-65, I-73, I-75
Relation, I-66
Special, I-70

Character representation, I-85
Character set, I-75
Character-string, I-76
Character substitution, I-75
CHARACTERS

OBJECT-COMPUTER paragraph, II-6
B~OCK CONTAINS clause, IV-11
RECORD CONTAINS clause, IV-18

Class condition, II-43
Class of data, I-85

Incompatible, II-52
Clause, I-53, I-72, I-107

XV-2

CLOSE statement
AT END condition, IV-30, V-25, VI-26
Imperative statement, I-102
Indexed I-0 module, VI-18
I-0 status, IV-2, V-2, VI-2
OPEN statement, IV-25, V-21, VI-22
READ statement, IV-30, V-25, VI-26
Relative I-0 module, V-17
Report Writer module, VIII-1
Sequential I-0 module, IV-20
TERMINATE statement, VIII-55
USE FOR DEBUGGING statement, XI-5

COBOL character set, I-54, I-75
COBOL development, XIV-1
COBOL Journal of Development, XIV-2
COBOL word, I-76
CODASYL, XIV-1
CODE clause, VIII-25
CODE-SET clause

Report Writer module, VIII-26
Sequential I-0 module, IV-12

COLLATING SEQUENCE clause, II-6
COLLATING SEQUENCE phrase

MERGE statement, VII-8
SORT statement, VII-14

COLUMN NUMBER clause, VIII-27
Combined condition, II-46
Comma, I-73

Connective, I-79
DECIMAL-POINT IS COMMA clause, II-8
Identifier, I-90
Indices, I-90
Interchangeable with semicolon, I-73

I-74
Library text-word, X-3
PICTURE symbol, II-21
Restriction, II-1
Series connective, I-79
Separator, I-75
Subscripts, I-89

Comment-entry, I-82, II-2
DATE-COMPILED paragraph, II-4

Comment line, I-108
Debugging line, XI-9
Library text, X-4
WITH DEBUGGING MODE clause, XI-3

Communication description entry, I-54
I-98, XIII-3

Communication module, XIII-1
Communication Section, XIII-2
COMP, II-35
Compiler directing sentence, I-101
Compiler directing statement, I-101
Complex condition, II-45
Composite language skeleton, I-111
COMPUTATIONAL (COMP), II-35
COMPUTE statement, II-58

Composite of operands, II-51
Conditional statement, I-101
Data conversion, II-51
Decimal alignment, II-51
Imperative statement, I-102
Maximum operand size, II-51
Multiple results; II-51

Computer-name, II-5, II-6

Concepts, XIV-35
Condition, II-41

Abbreviated combined relation
condition, II -4 7

Class condition, II-43
Combined condition, II-46
Complex condition, II-45
Condition-name condition, II-44
Evaluation rules, II-48
IF statement, II-66
Negated combined condition, II-46
Negated simple condition, II-45
PERFORM UNTIL statement, II-78, II-80
Relation condition, II-41
SEARCH statement, III-7
Sign condition, II-44
Simple condition, II-41
SIZE ERROR condition, II-50
Switch-status condition, II-44

Condition-name, I-77, I-91
Indexed, I-90
Level-number 88, I-84, II-17
Qualified, I-88
REDEFINES clause, II-28
RERUN clause, IV-6, V-7, VI-8
SEARCH statement, III-7
SPECIAL-NAMES paragraph, II-8
Subscripted, I-89
VALUE clause, II-36

Condition-name condition, II-44
Condition-name data description entry,

II-12, II-37
Conditional expression, II-41
Conditional sentence, I-101
Conditional statement, I-101
Conditional variable, I-55, II-44
Configuration Section, I-95
Connective, I-79

Logical, I-79, II-45
Qualifier, I-79
Restriction, II-1
Series, I-79

Continuation line, I-106
Continuation of lines, I-106

Connnent-entries, II-2, II-4
Comment lines, I-108
Debugging lines, XI-10
Library pseudo-text, X-2
Restriction, II-1

Continued line, I-106
CONTROL clause, VIII-28
Control break

CONTROL clause, VIII-28
GENERATE statement, VIII-51
GROUP INDICATE clause, VIII-31
TYPE clause, VIII-46

CONTROL FOOTING (CF), VIII-6, VIII-45
Body group presentation rules,

VIII-15, VIII-18, VIII~l9
Presentation rules table, VIII-9

CONTROL HEADING (CH), VIII-6, VIII-45
Body group presentation rules,

VII I - 15 , VI II -18 , VI II -19
Presentation rules table, VIII-9

COPY statement, X-2
Compiler directing statement, I-101

XV-3

CORR, II-74, II-89
CORRESPONDING (CORR) phrase, II-51

ADD statement, II-55
MOVE statement, II-74
SIZE ERROR phrase, II~5o

SUBTRACT statement, II-89
CR PICTURE symbol, II-21
Crossfooting, VIII-43, VIII-48
Currency PICTURE symbol, II-21

Index

Currency sign, I-56, II-10, II-21
CURRENCY SIGN clause, II-8, II-10, II-21
Currency symbol, I-56, II-10, II-21
Current record pointer

DELETE statement, V-19, VI-20
Indexed I-0 module, VI-2
OPEN statement, IV-26, V-22, VI-22
READ statement, IV-28, V~23, VI-25
Relative I-0 module, V-2
REWRITE statement, IV-31, V-27, VI-28
Sequential I-0 module, IV-1
START statement, V-28, VI-31
WRITE statement, VI-33, V-32, VI-33

Data description entry, I-57, II-12
Linkage Section, XII-2
Working-Storage Section, II-11

Data Division, I-97
Conununication module, XIII-2
Indexed I-0 module, VI-11
Inter-Program Communication module,

XII-2
Nucleus, II-11
Reference format, I-107
Relative I-0 module, V-10
Report Writer module, VIII-2
Sequential I~O module, IV-9
Sort-Merge module, VII-5
Table Handling module, III-2

Data-name, I-77, II-15, VIlI-30
Identifier, I-90

Indexed, I-90
Qualified, - I-88
Restriction, II-1
Subscripted, I-89

DATA RECORDS clause
Indexed I-0 module, VI-14
Relative I-0 module, V-13
Sequential I~O module, IV-13
Sort-Merge module, VII-6

DATE, II-53
DATE-COMPILED paragraph, II-4
DATE-WRITTEN paragraph, II-2
DAY, II-53
DB PICTURE symbol, II-21
DE (See DETAIL)
DEBUG-CONTENTS, XI-7
DEBUG-ITEM, XI-1, XI-5, XI-7
DEBUG-LINE, XI-7
Debug module, XI-1
DEBUG-NAME, XI-7
DEBUG-SUB-1, XI-7
DEBUG-SUB-2, XI-7
DEBUG-SUB-3, XI-7
Debugging line, XI-10

Library text, X-4

Index

DEBUGGING MODE clause, XI-l
Compile time switch, XI-1
Debugging lines, XI-10

Debugging section, XI-4
Decimal point

Actual, II-21
Alignment, I-86
Assumed, II-20

DECIMAL POINT IS COMMA clause, II-8
II-10, II-21

Declarative-sentence, I-57, I-100
Declaratives, I-99

Reference format, I-100, I-108
Segmentation, IX-4
USE BEFORE REPORTING statement, VIII-56
USE FOR DEBUGGING statement, XI-4
USE statement, IV-32, V-30, VI-32

Definitions, I-52
DELETE statement

Indexed 1-0 module, VI-20
OPEN mode, V-21, VI-22
Relative I-0 module, V-19
USE FOR DEBUGGING statement, XI-5

Delimiters
Character-string, I-76
Pseudo-text, I-65, I-76

DEPENDING phrase
GO TO statement, II-65
OCCURS clause, III-2

DESCENDING KEY phrase
MERGE statement, VII-8
OCCURS clause, III-2
SORT statement, VII-14

DESTINATION COUNT clause, XIII-3, XIII-6
DESTINATION TABLE OCCURS clause, XIII-3,

XIII-6
DETAIL (DE), VIII-45
DISABLE statement, XIII-13

USE FOR DEBUGGING statement, XI-6
DISPLAY in USAGE clause, II-35
DISPLAY statement, II-59

Figurative constant, I-82
Imperative statement, I-102
Mnemonic-name, II-9
SPECIAL-NAMES paragraph, II-9

DIVIDE statement, II-61
Composite of operands, II-51
COMPUTE statement, II-58
Conditional statement·, I-101
Data conversion, II-51
Decimal alignment, II-51
Imperative statement, I-102
Maximum operand size, II-51
Multiple results, II-51
SIZE ERROR phrase, II-50

Division, I-57, I-105
Format, I-106

Division header, I-58, I-106
DOWN BY, III-11
DUPLICATES phrase, VI-5

EDMA TC6, XIV-10
.Editing characters, I-58
Edi.ting rules, II-21
Editing sign, I-86
EGI, XIII-20

XV-4

Elementary item, I-84
Noncontiguous , II -11

Elements, I-72
Ellipsis, I-73
ELSE clause, II-66
EMI, XIII-20
ENABLE statement, XIII-15

USE FOR DEBUGGING statement, XI-6
END DECLARATIVES, I-99, I-108
END KEY clause; XIII-3, XIII-5
End of group indicator (EGI), XIII-22
End of message indicator (EMI), XIII-22
END-OF-PAGE phrase, IV-34
End of segment indicator (ESI), XIII-22
ENTER COBOL statement, II-63
ENTER statement, II-63
Entry, I-58
Environment Division, I-95

Debug module, XI-3
Indexed I-0 module, VI-5
Nucleus, II-5
Relative I-0 module, V-5
Segmentation module, IX-5
Sequential I-0 module, IV-4
Sort-Merge module, VII-2

EQUAL TO relation, II-41, II-42
EOP phrase, IV-34
ERROR KEY clause, XIII-3, XIII-6
ESI, XIII-20
Execution, I-99
EXIT statement, II-64

Imperative statement, I-102
EXIT PROGRAM statment, XII-8

CALL statement, XII-6
CANCEL statement, XII-7

Explicit, I-91
Exponentiation, II-39

FD level indicator, 1-107
Indexed I-0 module, VI-12
Relative I-0 module, V-11
Report Writer module, VIII-3
Sequential I-0 module, IV-10

Figurative constant, I-79, I-80, I-81
DISPLAY statement, II-59
INSPECT statement, II-69
Restriction, II-1
STOP statement, II-85
STRING statement, 11-86, II-87
UNSTRING statement, II-91
VALUE clause, II-37
VALUE OF clause, IV-19, VI-17, VIII-50

File control entry, I-96
Indexed 1-0 module, VI-5
Relative I-0 module, V-5
Sequential 1-0 module, IV-4
Sort-Merge module, VII-2

FILE-CONTROL paragraph
Indexed 1-0 module, VI-5
Relative I-0 module, V-5
Sequential I-0 module, VI-4
Sort-Merge module, VII-2

File description entry, I-59, I-98
Indexed I-0 module, VI-12
Relative I-0 module, V-11
Report Writer module, VIII-3
Sequential 1-0 module, IV-10

File-name, I-59, I-77
File Section, I-97

Indexed I-0 module, VI-11
Relative I-0 module, V-10
Report Writer module, VIII-2
Sequential I-0 module, IV-9
Sort-Merge module, VII-5

FILE STATUS clause
Indexed I-0 module, VI-5
Relative I-0 module, V-5
Sequential I-0 module, IV-4

FILE STATUS data item
Indexed I-0 module, VI-2
Relative I-0 module, V-2
Sequential I-0 module, IV-1

FILLER, II-15
FINAL

CONTROL clause, VIII-28
SUM clause, VIII-42
TYPE clause, VIII-45

FIRST, Il-68
FIRST DETAIL, VIII-36
Floating insertion editing, II-23
FOOTING, VIII-45
FOR, II-68
Format punctuation, I-73
FROM phrase

ACCEPT statement, II-53
PERFORM VARYING statement, II-78
RELEASE statement, VII-12
SUBTRACT statement, II-89
WRITE statement, IV-35, V-32, VI-33

General format, I-72
General rules, I-72
GENERATE statement, VIII-51

CONTROL clause, VIII-28
Data-name, VIII-30
Imperative statement, I-102
SUM clause, VIII-43
TERMINATE statement, VIII~55

Generic terms, I-73
GIVING phrase

ADD statement, II-55
DIVIDE statement, II-61
MERGE statement, VII-8
MULTIPLY statement, II-77
SORT statement, VII-14
SUBTRACT statement, II-89

Glossary Df COBOL terms, I-52
GO TO statement, II-65

ALTER statement, II-57
Imperative statement, I-102
MERGE statement, VII-10
PERFORM statement, II-80
SEARCH statement, III-9
Segmentation module, IX-6
SORT statement, VII-16
USE FOR DEBUGGING statement, XI-6,

XI-8
GREATER THAN relation, II-41, II-42
Group, I-84
GROUP INDICATE clause~ VIII-31

VALUE clause, II-37

HEADING~ VIII-45

XV-5

HIGH-VALUE/HIGH-VALUES, I-81
Restriction, II-1

History of COBOL, XIV-1

Identification Division, I-94, II-2
Identifier, I-90, I-99
IF statement, II-66

Conditional statement, I-101
Imperative statement, I-102

Imperative sentence, I-102

Index

Imperative statement, I-102
Implementation of the standard, I-4
Implementor-defined specifications, I-7
Implementor-name, I-59

Alphabet-name clause, II-8
ASSIGN clause, IV-4, V-5, VI-5, VII-2
RERUN clause, IV-6, V-7, VI-8
SPECIAL-NAMES paragraph, II-8
VALUE OF clause, IV-19, V-16, VI-17,

VIII-SO
Implicit, I-91
Implied relational operator, II-47
Implied subject, II-47
IN qualifier connective, I-79, I-88
Incompatible data, II-52
Indentation, I-107
Index, I-89
Index data item, III-5

Condition-name, II-13
CONTROL clause, VIII-28
Initial value, II-11
MOVE statement, II-74

Index-name, I-77, I-89
OCCURS clause, III-2
PERFORM statement, II-78
Relation condition, III-6
SEARCH statement, III-7
SET statement, III-11

Indexed file, VI-1
Indexed I-0 module, VI-1
Indexing, I-89

Condition-name, I-90
Conditional variable, I-91
CONTROL clause, VIII-28
DEBUG-NAME, XI-7
MOVE statement, II-74
OCCURS clause, III-2
Qualification, I-90
RETURN statement, VII-13
Subscripting, I-89

Indicator area, I-105
COPY statement, X-4
Debugging line, XI-10

INITIAL clause, XIII-3, XIII-4
INITIATE statement, VIII-53

GENERATE statement, VIII-52
Imperative statement, I-102
OPEN statement, VIII-1
SUM clause, VIII-44
TERMINATE statement, VIII-55
USE BEFORE REPORTING statement,

VIII-56
Input-Output Section, I-95

Indexed I-0 module, VI-5
Relative I-0 module, V-5
Sequential I-0 module, IV-4
Sort-Merge module, VII-2

Index

INPUT PROCEDURE phrase, VII-14
INSPECT statement·, II-68

Imperative statement, I-102
INSTALLATION paragraph, I-94, II-2
Integer, I-60
Inter-Program Communication module, XII-1
International Organization for

Standardization, XIV-8, XIV-10
INTO

DIVIDE statement, II-61
READ statement, IV-28, V-23, VI-25
RETURN statement, VII-13
STRING statement, II-86

INVALID KEY condition, V-4, VI-4
DELETE statement, V-19, VI-20
READ statement, V-23, VI-24
REWRITE statement, V-26, VI-28
START statement, V-28, VI-30
WRITE statement, V-32, VI-33

I-0-CONTROL paragraph, I-96
Indexed I-0 module, VI-8
Relative I-0 module, V-7
Sequential I-0 module, IV-6
Sort-Merge module, VII-3

ISO, XIV-8, XIV-10

Journal of Development, XIV-2
JUST, II-16
JUSTIFIED (JUST) clause, II-16

Condition-name, II-13
Figurative constant, I-82
Standard alignment, I-86
USAGE IS INDEX clause, III-5
VALUE clause, II-37

KEY data-names
MERGE statement, VII-8
SORT statement, VII-14

KEY phrase
DISABLE statement, XIII-13
ENABLE statement, XIII-15
Indexed I/O alternate record key, VI-5
OCCURS clause, III-2, III-3, III-4
READ statement, VI-24
Relative 1/0 relative key, V-5
SEARCH statement, III-8
START statement, VI-30

Key word, I-73, I-79

LABEL RECORDS clause
Indexed I-0 module, VI-15
Relative I-0 module, V-14
Report Writer module, VIII-32
Sequential I-0 module, IV-14

Language-name, II-63
LAST DETAIL, VIII-36
LEADING

INSPECT statement, II-68
SIGN clause, II-31

LEFT, II-33
LESS THAN relation, II-42
Level indicator, I-107
Level-number, I-84, II-13, II-17

Data description entry, II-12
Notation, I-73
Qualifier, I-87

XV-6

Level-number (continued)
Reference format, I-107
Report group description entry, VIII-6

Library module, X-1
Library-name, I-77, X-2
LINAGE clause, IV-15
LINAGE-COUNTER, IV-3, IV-16
LINE-COUNTER, VIII-1, VIII-5

Final setting rules, VIII-13, VIII-15
VIII-18, VIII~23

Special register, I-80
Subscripting, I-89

LINE NUMBER clause, VIII-33
Notation, VIII~lO
Sequence substitution, VIII-11

Linkage Section, XII-2
VALUE clause, II-37

List of elements by module, I-10
List of elements showing disposition,

I-40
Literal, I-80

CURRENCY SIGN clause, II-8, II-10
STOP statement, II-85

Logical connective, I-79
Logical operator, II-45
LOW-VALUE/LOW-VALUES, I-81

Restriction, II-1

MEMORY SIZE clause, II-6
MERGE statement, VII-8

Imperative statement, I-102
OPEN statement, IV-24
Segmentation, IX-6
USE FOR DEBUGGING statement, XI-8

MESSAGE COUNT clause, XIII-3, XIII-4
MESSAGE DATE clause, XIII-3, XIII-4
MESSAGE TIME clause, XIII-3, XIII-4
Minus {-) PICTURE symbol, II-21
Mnemonic-name, I-78

ACCEPT statement, II-53
DISPLAY statement, II-59
SEND statement, XIII-20
SPECIAL-NAMES paragraph, II-8
WRITE statement, IV-34

MODULES, II-6
MOVE statement, II-74

CORRESPONDING (CORR), II-74
Imperative statement, I-102
Index data item, III-5
Overlapping operands, II-51

MOVE CORRESPONDING (MOVE CORR) statement,
Il-74

MULTIPLE FILE clause, IV-6, IV-8
Multiple results in arithmetics, II-51
MULTIPLY statement, II-77

Composite of operands, II-51
COMPUTE statement, II-58
Conditional statement, I-101
Data conversion, II-51
Imperative statement, I-102
Maximum operand size,· II-51
Multiple results, II-51
SIZE ERROR phrase, II-50

NATIVE phrase, II-8, II-9
Nat~ve character set, I-62
Native collating sequence, I-62

Negated combined condition, II-46
Negated simple condition, II-45
NEXT phrase

Indexed I-0 module, VI-24
Relative I-0 module, V-23

NEXT GROUP clause, VIII-35
Body group presentation rules, VIII-18
PAGE FOOTING presentation rules,

VIII-20
REPORT HEADING group presentation

rules, VIII-13
Saved next group integer, VIII-11

NEXT PAGE phrase
LINE NUMBER clause, VIII-33
NEXT GROUP clause, VIII-35

NEXT SENTENCE phrase
IF statement, II-66
SEARCH statement, III-7

NO DATA phrase; XIII-17
Noncontiguous elementary item, II-11

Level-number 77, II-17
Nonnumeric comparison, II-42
Nonnumeric literal, I-80

Continuation , I-106
NOT

Logical connective, I-79
Logical operator, II-45
Relational operator, II-41

Notation rules, I-72
Nucleus, II-1
Numeric category, I-85, II-18, II-75
Numeric character, I-63
Numeric class, I-85, II-43
Numeric comparison, II-42
Numeric edited category, I-85, II-19,

II-75
Numeric literal, I-80

OBJECT-COMPUTER paragraph, II-6
Occurrence number, III-3
OCCURS clause, III-2

CORRESPONDING phrase, II-51
MOVE statement, II-76
REDEFINES clause, II-27
RENAMES clause, II-29
SEARCH statement, III-7
SYNCHRONIZED clause, II-34
USE FOR DEBUGGING statement, XI-5
VALUE clause, II-36

OF qualifier connective, I-79, I-88
OFF STATUS phrase, II-8
ON SIZE ERROR phrase, II-50
ON STATUS phrase, II-8
OPEN statement

CLOSE statement, IV-22, V-18, VI-19
Imperative statement, I-102
Indexed I-0 module, VI-21
INITIATE statement, VIII-53
I-0 status, IV-1, V-2, VI-2
LINAGE clause, IV-16
READ statement, IV-28, V-23, VI-24
Relative I-0 module, V-20
REPORT clause, VIII-40
Report Writer module, VIII-1
REWRITE statement, IV-31, V-26, VI-28
Sequential I-0 module, IV-24

XV-7

OPEN statement (continued)
START statement, V-28, VI-30

Index

USE FOR DEBUGGING statement, XI-5
WRITE statement, IV-34, V-32, VI-33

Operands, II-41, II-51
Operational sign, I-86
Operator

Arithmetic, II-39
Logical, II-45
Relational, II-42

OPTIONAL phrase, IV-4
CLOSE statement, IV-23
READ statement, IV-29

Optional word, I-73, I-79
OR phrase, II-91, II-92
OR logical connective, I-79, II-45

Abbreviated combined relation
condition, II-47

Hierarchy, II-48
ORGANIZATION IS INDEXED clause, VI-5
ORGANIZATION IS RELATIVE clause, V-5
ORGANIZATION iS SEQUENTIAL clause, IV-4
OUTPUT PROCEDURE phrase, VII-8, VII-13
Overall language consideration, I-72
OVERFLOW phrase

CALL statement, XII-5
STRING statement, II-86
UNSTRING statement, II-91

Overlapping operands
Nucleus, II-51
Table Handling module, III-6

Overlays, IX-2

'P' PICTURE symbol, II-20
PAGE

SEND statement, XIII-20
WRITE statement, IV-36

PAGE clause, VIII-35
PAGE-COUNTER, VIII-1, VIII-4

Special register, I-80
Subscripting, I-89

PAGE FOOTING (PF), VIII-45
PAGE FOOTING presentation rules table,

VIII-20
PAGE HEADING (PH), VIH-45
PAGE HEADING group presentation rules

table, VIII-14
Paragraph, I-99, I-107
Paragraph header, I-107
Paragraph-name, I-77, I-99, I-107

Qualified, I-88
Parentheses, II-39

Condition, II-46
Indices, I-89
PICTURE clause, II-19
Separators, I-75
Subscripts, I-89

PERFORM statement, II-78
Imperative statement, I-102
USE FOR DEBUGGING statement, XI-4,

XI-6, XI-8
USE statement, IV-32, V-30, VI-32

Period, I-74, I-99
Separator, I-75

Period (.) PICTURE symbol, II-21
PF, VIII-45

Index

PH, VIII-45
Phrase, I-64, I-72
PIC clause, II-18
PICTURE character-string, I-82
PICTURE (PIC) clause, II-18

BLANK WHEN ZERO clause, II-14
COMPUTATIONAL clause, II-35
CURRENCY SIGN clause, II-10
DECIMAL POINT IS COMMA clause, II-10
Linkage Section, XII-2
SYNCHRONIZED clause, II-33
USAGE IS INDEX clause, III-5
Working-Storage Section, II-11

PLC, XIV-2, XIV-10
Plus (+) PICTURE symbol, II-21
POINTER phrase

STRING statement, II-86
UNSTRING statement, II-93

Precedence rules for PICTURE character­
string, II-24

Procedure, I-99
Procedure Division, I-99

Communication module, XIII-12
Debug module, XI-4
Indexed I-0 module, VI-18
Inter-Program Communication module,

XII-4
Nucleus, II-39
Relative I-0 module, V-17
Report Writer module, VIII-51
Sequential I-0 module, IV-20
Sort-Merge module, VII-8
Table Handling module, III-6

Procedure Division header, I-100, XII-4
Procedure-name, I-65

Qualifier, I-88
PROGRAM-ID paragraph, II-3
Program-name, I-77

CALL statement, XII-5
CANCEL statement, XII-7

Programming Language Committee (PLC),
XIV-2, XIV-10

PROGRAM COLLATING SEQUENCE clause,
II-6

Pseudo-text delimiters, I-76, X-2
Punctuation characters, ,l-65

Format punctuation, I-73
Separators, I-75

Qualification, I-87
CD entry, XIII-5, XIII-6
CONTROL clause, VIII-28
COPY statement, X-2
CORRESPONDING phrase, II-51
DEBUG-NAME, XI-7
LINE-COUNTER, VIII-5
Linkage Section, XII-2
MERGE statement, VII-8
OCCURS clause, III-2
PAGE-COUNTER, VIII-4
Qualifier connective, I-79
READ statement, VI-24
RELEASE statement, VII-12
RENAMES clause, II-29
Restriction, II-1
REWRITE statement, IV-31, V-26, VI-28
SORT statement, VII-14

XV-8

Qualification (continued)
START statement, V-28, VI-30
VALUE OF clause, IV-19, V-16, VI-17,

VIII-SO
Working-Storage Section, II-11
WRITE statement, IV-34, V-32, VI-33

Queue, I-65
Quotation mark

Separator, I-75
QUOTE/QUOTES, I-81, II-1

RD entry, VIII-2
RD level indicator, I-107, VIII-4
READ statement

CLOSE statement, IV-22
DELETE statement, V-19, VI-20
Indexed I-0 module, VI-24
OPEN statement, IV-25, V-21, VI-22
Relative I-0 module, V-23
REWRITE statement, V-26, VI-28
Sequential I-0 module, IV-28
USE FOR DEBUGGING statement, XI-5

RECEIVE statement, XIII-17
USE FOR DEBUGGING statement, XI-6

Record
Logical, I-83
Physical, I-83

RECORD CONTAINS clause
Indexed I-0 module, VI-16
Relative I-0 module, V-15
Report Writer module, VIII-39
Sequential I-0 module, IV-18
Sort-Merge module, VII-7

Record description entry, I-66, I-97,
I-98

Indexed I-0 module, VI-11
Relative I-0 module, V-10
Sequential I-0 module, IV-9

RECORD KEY clause, VI-1, VI-5, VI-7
Record-na~e, I-77
REDEFINES clause, II-27
REEL, IV-20
Reference format, I-105

Restriction, II-1
Text-words, X-4

Relation character, I-66
Relation condition, II-41

Abbreviated combined, II-47
Index data item, III-6
Index-name, III-6
MERGE statement, VI,I-9
Nonnumeric operands, II-42
Numeric operands, II-42
SORT statement, VII-15

Relational operator, II-41
Relative file, V-1
Relative indexing, I-89
Relative I-0 module, V-1
RELATIVE KEY phrase, V-5

READ statement, V-25
REWRITE statement, V-27
ST~RT statement, V-29
WRITE statement, V-33

Relative record number, V-1, V-6. V-33
RELEASE statement, VII-12

Imperative statement, I-102

I'--

REMAINDER phrase, II-61, II-62
RENAMES clause, II-29

Level-number, I-84, II-17
REPLACING phrase, II-68, X-2
REPORT clause, VIII-40
Report description entry, I-67, VIII-:2,

VIII-4
REPORT FOOTING (RF), VIII-45
REPORT FOOTING presentation rules table,

VIII-21, VIII-22
Report group description entry, I-67,

VIII-2, VIII-6
REPORT HEADING (RH), VIII-45
REPORT HEADING group presentation rules

table, VIII-11, VIII-12
Report-name, I-77
Report Section, I-107, VIII-2
Report Writer module, VIII-1
RERUN clause

Indexed I-0 module, VI-8
Relative I-0 module, V-7
Sequential I-0 module, IV-6

RESERVE AREA/AREAS clause
Indexed I-0 module, VI-5
Relative I-0 module, V-5
Sequential I-0 module, IV-4

Reserved word, I-79, I-109
Reserved word list, I-109
RESET phrase, VIII-42
RETURN statement, VII-13

Conditional statement, I-101
Revision history, XIV-9
REWRITE statement

Indexed I-0 module, VI-28
OPEN statement, IV-25, V-21, VI-22
Relative I-0 module, V-26
Sequential I-0 module, IV-31
USE FOR DEBUGGING statement, XI-5,

XI-6
RF, VIII-45
RH, VIII-45
RIGHT, II-16, II-33
Rolling forward, VIII-43, VIII-48
ROUNDED phrase, II-50
Routine-name, I-77, II-63
RUN, II-85

'S' PICTURE symbol, II-20
SAME AREA clause

Indexed I-0 module, VI~8
Relative I-0 module, V-7
Sequential I-0 module, IV-6

SAME RECORD AREA clause
Indexed I-0 module, VI-8
Relative I-0 module, V-7
Sequentiai I-0 module, IV-6
Sort-Merge module, VII-3

SAME SORT AREA clause, VII-3
SAME SORT-MERGE AREA clause, VII-3
SD level indicator, I-107, VII-5
SEARCH statement, III-7

Conditional statement, I-101
USAGE IS INDEX clause, III-5

Section, I-99, I-106
Section header, I-106
Section-name, I-77

XV-9

SECURITY paragraph, II-2
Segment, IX-2
SEGMENT-LIMIT clause, IX-5
Segment-number, 1-77, IX-4
SEGMENT phrase, XIII-17
Segmentation, IX-2

CALL statement, XII-6
MERGE statement, VII-10
SORT statement, VII-17

Segmentation module, IX-1
SELECT clause

Indexed I-0 module, VI-5
Relative I-0 module, V-5
Sequential I-0 module, IV-4
Sort-Merge module, VII-2

Semicolon
Connective, I-79
Interchangeable with comma, r'-73
Library text-word, X-3
Punctuation character, I-73
Restriction, II-1

SEND statement, XIII-20
SPECIAL-NAMES paragraph, II-9
USE FOR DEBUGGING statement, XI-6

Sentence, I-99, I-101, I-102
Separator, I-75

Restriction, II-1
SEQUENCE clause, II-6
Sequence number, I-106
Sequential file, IV-1
Sequential I-0 module, IV-1
Series connective, I-79
SET statement, III-11

Index

Imperative statement, I-102
Overlapping operands, II-51, III-6
SEARCH statement, III-10
U&AGE IS INDEX claese, III-5

SIGN clause, II-31
Class condition, II-43
MOVE statement, II-75
Operational sign, I-86
PICTURE clause, II-20

Sign condition, II-44
Simple condition, II-41
SIZE ERROR phrase, II-50

Conditional statement, I-101
SORT statement, VII-14

Imperative statement, I-102
OPEN statement, IV-24
Segmentation, IX-7
USE FOR DEBUGGING statement, XI-8

Sort-merge file description entry, I-69,
VII-5

Sort-Merge module, VII-1
SOURCE clause, VIII-41
SOURCE-COMPUTER paragraph, II-5

WITH DEBUGGING MODE phrase, XI-3
Source program, I-69, I-105

COPY statement, X-2
Space

Library text-word, X-3
Separator, I-75

SPACE/SPACES, I-81
Restriction, II-1

Special character, I-70, 1~74

Special-character words, I-80

Index

SPECIAL-NAMES paragraph, II-8
ACCEPT statement, II-53
Condition-name, I-78
DISPLAY statement, II-59
Mnemonic-name, I-78
Switch-status condition, II-44
WRITE statement, IV-34

Special registers, I-80
DEBUG-ITEM, XI-1
LINAGE-COUNTER, IV-3
LINE-COUNTER, VIII-1
PAGE-COUNTER, VIII-1

Standard alignment rules, I-86
Standard data format, I-70, I-82
STANDARD-! phrase, II-8, II~9

START statement
Indexed I-0 module, VI-30
OPEN statement, V-21, VI-22
READ statement, V-25, VI-26
Relative I-0 module, V-28
USE FOR DEBUGGING statement, XI-5

Statement, I-72, I-99, I-101, I-102
Status key

Indexed I-0 module, VI-2
Relative I-0 module, V-2
Sequential I-0 module, IV-2

STATUS KEY clause, XIII-3, XIII-5
ENABLE statement, XIII-16
SEND statement, XIII-21

STOP statement, II-85
Figurative constant, I-82
Imperative statement, I-102

STRING statement, II-86
Figurative constant, I-82
Imperative statement, I-102
Overlapping operands, II-51

SUB-QUEUE, XIII-3
Subscripting, I-89

Condition-name, I-91
Conditional variable, I-91
CONTROL clause, VIII-28
Qualification, I-88

Subtotalling, VIII-43
SUBTRACT statement, II-89

Composite of operands, II-51
COMPUTE statement, II-58
Conditional statement, I-101
CORRESPONDING (CORR), II-89
Data conversion, II-51
Decimal alignment, II-51
Imperative statement, I-102
Maximum operand size, II-51
Multiple results, II-51

SUBTRACT CORRESPONDING (SUBTRACT CORR),
II-89

SUM clause, VIII-42
Sum counter, VIII-42

INITIATE statement, VIII-53
USE FOR DEBUGGING statement, XI-5

SUPPRESS statement, VIII-54
Imperative statement, I-102

Switch-status condition, II-44
SYMBOLIC DESTINATION clause, XIII-3,

XIII-6
DISABLE statement, XIII-13
ENABLE statement, XIII-15
RECEIVE statement, XIII-17

XV-10

SYMBOLIC SOURCE clause, XIII-3, XIII-4
SYMBOLIC SUB-QUEUE-!, XIII-3, XIII-4
SYMBOLIC SUB-QUEUE-2, XIII-3, XIII-4
SYMBOLIC SUB-QUEUE-3, XIII-3, XIII-4
SYNC clause, II-33
SYNCHRONIZED (SYNC) clause, II-33

Elementary data item, II-13
USAGE IS INDEX clause, III-5

Syntax rules, I-72
System-name, I-78

Table Handling module, III-1
TALLYING phrase

INSPECT statement, II-68
UNSTRING statement, II-91

TERMINAL phrase, XIII-13, XIII-15
TERMINATE statement, VIII-55

GENERATE statement, VIII-52
Imperative statement, I-102
INITIATE statement, VIII-53
Sequential I-0 module, VIII-1
SUM clause, VIII-43
TYPE clause, VIII-47, VIII-49
USE statement, VIII-56

TEXT LENGTH clause, XIII-3, XIII-4
Text-name, I-77, X-2

Qualified, I-88
THROUGH (THRU)

MERGE statement, VII-8
PERFORM statement, II-78
RENAMES clause, II-29
SORT statement, VII-14
VALUE clause, II-36

THRU (See THROUGH)
TIME; II-53
TIMES, II-78
TRAILING, II-31
TYPE clause, VIII-45

Unary arithmetic operator, II-39
Unary minus, II-39
Unary plus, II-39
UNIT, IV-20
UNSTRING statement, II-91

Figurative constant, I-82
Imperative statement, I-102
Overlapping operands, II-51

UNTIL phrase, II-80
UP BY, III-11
UPON phrase

DISPLAY statement, II-59
SUM clause, VIII-42

USAGE clause, II-35
Class condition, II-43
INSPECT statement, II-69
Relation condition, II-41
SIGN clause, II-31
STRING statement, II-86
UNSTRING statement, II-91

USAGE IS INDEX clause, 111-5
CORRESPONDING phrase, 11-51
MOVE statement, II-74
SEARCH statement, IlI-8
Working-Storage Section, II-11

USE statement
Compiler directing statement, 1-101
Declarative statement, 1-99

USE statement (continued)
DELETE statement, V-19, VI-20
Indexed I-0 module, VI-32
INVALID KEY condition, V-2, VI-4
READ statement, IV-29, V-23, VI-24
Relative I-0 module, V-30
REWRITE statement, V-26, VI-28
Sequential I-0 module, IV-32
START statement, V-28, VI-30
WRITE statement, IV-37, V-32, VI-33

USE BEFORE REPORTING statement, VIII-56
USE FOR DEBUGGING statement, XI-4
User-defined words, I-76
USING phrase

CALL statement, XII-5
Linkage Section, XII-2
MERGE statement, VII-8
Procedure Division header, XII-4
SORT statement, VII-14

'V' PICTURE symbol, II-20
VALUE clause, II-36
VALUE OF clause

Indexed I-0 module, VI-17
Relative I-0 module, V-16
Report Writer module, VIII-50
Sequential I-0 module, IV-19

VARYING phrase
PERFORM statement, II-81
SEARCH statement, III-9

Verbs, I-79

WHEN, III-7
Word, I-76
Working-Storage Section, I-97, II-11
WRITE statement

Conditional statement, I-101
Imperative statement, I-102

XV-11

Index

WRITE statement (continued)
Indexed I-0 module, VI-33
OPEN statement, IV-25, V-21, VI-22
Relative I-0 module, V-32
Sequential I-0 module, IV-34
SPECIAL-NAMES paragraph, II-9
USE FOR DEBUGGING statement, XI-5, XI-6

'X' PICTURE symbol, II-20
X3J4 technical committee, XIV-9
X3.4.4 working group, XIV-6
X3.23-1968 document, XIV-8

'Z' PICTURE symbol, II-20
ZERO/ZEROS/ZEROES, I-81

Restriction, II-1

;O' PICTURE symbol, II-21
'9' PICTURE symbol, II-20
'66' RENAMES data description entry,
'77' item description entry, II-11
'88' condition-name data description

entry, II-12,

> relation, II-41
< relation, II-41

relation, II-41
+ operator, II-39

II-13,

+ PICTURE symbol, II-21
continuation line, I-106
operator, II-39
PICTURE symbol, II-21

* connnent line, I-108
* operator, II-39
* PICTURE symbol, II-21
I comment line, I-108
I operator, II-39
/ PICTURE symbol, II-21

** operator, II-39

II-17

pseudo-text delimiter, I-65

II-29

American National Standards
on Computers
and Information Processing

X3.1-1976 Synchronous Signaling Rates for Data Transmission

X3.2-1970 (R1976) Print Specifications for Magnetic Ink Char­
acter Recognition

X3.3-1970 (R1976) Bank Check Specifications for Magnetic
Ink Character Recognition

X3.4-1968 Code for Information Interchange

X3.5-1970 Flowchart Symbols and Their Usage in Information
Processing

X3.6-1965 (R1973) Perforated Tape Code for Information
Interchange

X3.9-1966 FORTRAN

X3.10-1966 Basic FORTRAN

X3.11-1969 Specification for General Purpose Paper Cards for
Information Processing

X3.12-1970 Vocabulary for Information Processing

X3.14-1973 Recorded Magnetic Tape for Information Inter­
change (200 CPI, NRZI)

X3.15-1976 Bit Sequencing of the American National Standard
Code for Information Interchange in Serial-by-Bit Data Trans­
mission

X3.16-1976 Character Structure and Character Parity Sense for
Serial-by-Bit Data Communication in the American National
Standard Code for Information Interchange

X3.17-1974 Character Set and Print Quality for Optical Char­
acter Recognition (OCR-A)

X3.18-1974 One-Inch Perforated Paper Tape for Information
Interchange

X3.19-1974 Eleven-Sixteenths-Inch Perforated Paper Tape for
Information Interchange

X3.20-1967 (R1974) Take-Up Reels for One-Inch Perforated
Tape for Information Interchange

X3.21-1967 Rectangular Holes in Twelve-Row Punched Cards

X3.22-1973 Recorded Magnetic Tape for Information Inter­
change (800 CPI, NRZI)

X3.23-1974 Programming Language COBOL

X3.24-1968 Signal Quality at Interface between Data Proces­
sing Terminal Equipment and Synchronous Data Communica·
tion Equipment for Serial Data Transmission

X3.25-1976 Character Structure and Character Parity Sense
for Parallel-by-Bit Communication in the American National
Standard Code for Information Interchange

X3.26-1970 Hollerith Punched Card Code

X3.27-1969 Magnetic Tape Labels for Information Inter­
change

X3.28-1976 Procedures for the Use of the Communication
Control Characters of American National Standard Code for
Information Interchange in Specified Data Communication
Links

X3.29-1971 Specifications for Properties of Unpunched Oiled
Paper Perforator Tape

X3.30-1971 Representation for Calendar Date and Ordinal
Date for Information Interchange

X3.31-1973 Structure for the Identification of the Counties
of the United States for Information Interchange

X3.32-1973 Graphic Representation of the Control Charac­
ters of American National Standard Code for Information
Interchange

X3.34-1972 Interchange Rolls of Perforated Tape for Infor­
mation Interchange

X3.36-1975 Synchronous High-Speed Data Signaling Rates be­
tween Data Terminal Equipment and Data Communication
Equipment

X3.37-1974 Programming Language APT

X3.38-1972 Identification of States of the United States
(Including the District of Columbia) for Information Inter­
change

X3.39-1973 Recorded Magnetic Tape for Information Inter­
change (1600 CPI, PE)

X3.40-1976 Unrecorded Magnetic Tape for Information Inter­
change (9-Track 200 and 800 CPI, NRZI, and 1600 CPI, PE)

X3.41-1974 Code Extension Techniques for Use with the 7-
Bit Coded Character Set of American National Standard Code
for Information Interchange

X3.42-1975 Representation of Numeric Values in Character
Strings for Information Interchange

X3.44-1974 Determination of the Performance of Data Com­
munication Systems

X3.45-1974 Character Set for Handprinting

X3.46-1974 Unrecorded Magnetic Six-Disk Pack (General,
Physical, and Magnetic Characteristics)

X3.49-1975 Character Set for Optical Character Recognition
(OCR-B)

X3.50-1976 Representations for U.S. Customary, SI, and
Other Units to Be Used in Systems with Limited Character
Sets

X3.51-1975 Representations of Universal Time, Local Time
Differentials, and United States Time Zone References for
Information Interchange

X3.52-1976 Unrecorded Single-Disk Cartridge (Front Loading,
2200 BPI), General, Physical, and Magnetic Requirements

X3.53-1976 Programming Language PL/I

X3.54-1976 Recorded Magnetic Tape for Information Inter­
change (6250 CPI, Group Coded Recording)

For a free and complete list of all American National Standards, write:

American National Standards Institute, Inc
1430 Broadway
New York, N.Y. 10018

