
I

I
(

~- ..

' .

(

APPLE
PROGRAMMER'S
AND OEVEl.OPER'S
ASSOCIATION

290 SW C3rd Street
Renton. WA eeoss
206-251-6SCS

Apple Talk
Manager
Update

APDA# KMSAMU

..
-..

'

-\

(

APDA Macintosh AppleTalk Update
Release Notes

February 25, 1987

The APOA Macintosh AppleTalk Update consists of one 400K diskette, a document
entitled •AppleTalk Manager Update, APDA Draft,• and these release notes. The disk
contains updates and additions to the current Macintosh AppleTalk utilities. The
document provides technical details of many of the changes. It is a •pre-release• of a
chapter to be pubfished in Inside Macintosh volume 5; future updates to it will appear
there. These release notes are meant to summartze and supplement that document.

Disk Contents: The APDA Macintosh AppleTalk Update Disk includes the following:

(1) Version 4.0 of the Apple Talk High-Level rPascar) Interface for MPW. This
version is a maintenence release which fixes some known bugs.

(2) Version 48 of the Apple Talk drivers. This version, which is the one used in
the AppleShare server, provides many additional features over the version
provided in the MacPlus ROM (version 40).

(3) Version 1.1 of the new Extended Protocol Package (XPP) driver. This
driver, used in the AppleShare workstation, implements the workstation side of
the AppleTalk Session Protocol (ASP).

(4) MPW Pascal and C interfaces to the XPP driver.

Each of these components is summarized in the following pages. Since the
distribution disk is an MFS volume, you may wish to copy it to an HFS volume before
installation.

Important: As stated in your APDA membership agreement, these utilities are provided
for development purposes only; no license to distribute in any way is implied. Please
contact Apple Software Licensing if you wish to distribute any of the enclosed material.

AppleTalk High-Level Interface Version 4.0

Version 4.0 of the AppleTalk "Pascar Interface is a maintenance release. It replaces
the current version, 3.4. There are three major changes to this version:

(1) elimination of the use of location SEO
(2) elimination of the 'atpr r{Ubraries}AppleTalk.) resource
(3) bug fixes.

Each of these changes is described. below .. -Note that there is no added support for any
of the new calls available in the new Apple Talk drivers (version 48). See the section
on •future plans.•

Use of location SEO: Previous versions of the Pascal Interface used low memory
location SEO. This created a number of problems. The use of this location has been
eliminated.

The 'atpr respurce: Previous versions of the Pascal Interface included a resource of
type 'atpl' which had to be included in either the system file or the app's resource fork.
This resource was shipped as the file {Libraries}AppleTalk under MPW 1.0. It always
took up about SK on disk and in memory. regardless of how much of it was needed.
Questions arose as to how to release the resource when it was no tonger needed.
This resource was called by a small bit of glue linked into your application out of
tnterface.o.

The current release eliminates the use of this resource altogether. The glue in
interface.o has been replaced with the actual code from the resource. Thus the actual
code is now linked directly into your application. Since the linker only includes that
code which is needed, in general only 1 ·2K will be added to the size of your
application's code. Since 5K will be deleted by the elimination of the 'atpl' resource,
there should be a net space savings, both on disk and in memory. Issues such as how
to free the resource are also eliminated.

Bug fixes; A number of small bugs have been fixed. These include:

(1) DDPRdCancel could crash if you tried to cancel a OOPRead that wasn't there

(2) ATPReqCancel and ATPRspCancel now ignore the async flag and always
execute synchronously. This is because the ABRecord passed in these calls is
the ABRecord of the call to be cancelled, not a new ABRecord for the cancel call.
Thus there is no way to indicate completion of the call itseH if it were
asynchronous.

lnstaHatjon prpcedure: Included on the release disk, in folder "Pl4.0" is an MPW script
which replaces the airrent glue in {Ubraries}lnterface.o with the new routines. It is
called •Newlnterface•. To execute it, just set the current directory to that folder (pi4.0)
and type Newlnterface. This will copy the routines from file "ABPackage.o· into
{Libraries}lnterface.o (note that executing Newlnterface twice will result in a number of
wamings). Alternatively, you could just include the file ABPackage.o on your link
command line before lnterface.o: This will cause a number of duplicate label
wamings, however.

..

(

(

Following installation, aH programs using the Pascal Interface should be re-linked. and
the 'atpl' resource can be removed from all disks.

Future plans: We intend this to be the final release of the current-style interface. We
will continue to support this for some time. However, in the long run, we intend to move
to a more straightforward and simple interface design. This interface, which will also
support all of the new AppleTalk functionality, will be a parameter-block style interface,
much tike the current low-level file system interface detailed in Inside Mac, volume 4.
Additional functionality wiU be added only where necessary to support operations that
can not be performed in a higher-level language (for instance socket 6steners).

Developers will be free to continue to use the old style interface for MacPlus-style
AppleTalk functionality. However we believe in the long run it will be advantageous to
move to the new style interface.

We expect this new style interface to be initially available in 2·3 months. Most calls will
be essentially the same format as the high-level XPP calls included with this release .

. .

AppleTalk Drivers Version 48 •

Version 48 of the AppleTalk drivers contains significant enhancements over the current ;-, .
1
•

version (40 in the MacPJus ROMs. and 41 in system file 3.2). These enhancements f ,
include new calls and additional resources {e.g. all dynamic .sockets can be opened
simultaneously; more than one NBP requeSt can be outstanding at any one time).
These drivers are used by the AppleShare server~ We envision these drivers to be
used in place of the MacPlus ROM drivers in two cirQJmstances: (1) where one or more
of the new calls is required and (2) in servers where additional resources are needed.
These new drivers are completely compatible with.the MacPJus ROM drivers, and-can
be used in any situation where-the ROM drivers·were used previously .. -

The developer should be aware however that use of these drivers on a MacPJus or
512Ke will result in the loss of about 11 K of system heap, since they completely
replace the ROM drivers and since more memory is required to provide the additional
resources. This may require the system heap to be grown, depending on the
application.

On an original ROM 512K Mac, these new drivers can be placed in the system file and
will load on the first _Open call. On a MacPlus or 512Ke, however, ROM drivers
supersede those in the system file, so the new drivers must be loaded in some other
method. This release provides a system file INIT resource, INIT 22, which, for MacPlus
ROMs, opens the new drivers out of a fiJe called •AppleTalk. in the system folder. If the
file is not there, the INIT resource does nothing. Note that this INIT must be installed in
the system file so that it runs before any application INIT's (INIT 31's) which might open
Apple Talk and start up a request. Apple intends to ship this INIT as part of future
system files; however, for now, the developer must install it himself.

· ... : .

"These new drivets are distributed as five resources in the file •AppleTalk• within the
folder •newMPPATP·. These are ORVR 9 and 10, and NBPC 1 and 2. In addition, this
file contains a resourc~ of type 'mppc'. This is a new resource used to pass
information to the INIT. Its format will be specified in the future. This resource, as
provided, tells the INIT to open Apple Talk in server mode (i.e. pick a server node
number, a process which takes about 10 seconds}. If you wish to have AppleTalk
opened in workstation mode, do not include this resource in the •AppleTalk• file.

The INIT 22 resource is also included in the •AppleTatk• file. To use the new Apple Talk
drivers for development purposes, you can install this INIT in your system file and copy
the file •AppleTalk• into your system folder, deleting the 'mppc' resource if desired.

For development purposes. installation of the INIT resource can be done using ResEdit
or the equivalent. However, for shipping products, installation from the product disk
onto the user's disk should be-done using the Apple lnstaUer. -The currentversion of
that installer is provided in the •newMPPATP.· folder, along with the installation script
·Apple Talk INIT Script". This script, which should be run off the product disk
containing the •AppleTaJk• file in the systern folder, installs the INIT into the user's
system file, copies the •AppleTafk• file into the system folder, and sets the boot blocks
to a minimum of SSK (this is also the size used on the AppleShare workstation disk).)

Assembly language equates for the new calls in these drivers are distributed in the file
•nATalkEqu.a• in the same folder. This file also contains assembly equates for the new
XPP driver.

'
(

XPP Version 1.1

The XPP (Extended Protocol Package) driver implements the workstation side of the
Apple Talk Session Protocol (ASP), and a small portion of the AppleTalk Filing Protocol
(AFP). It is installed in the system file and used in the same manner as the other
Apple Talk drivers. XPP is automatically installed by the AppleShare workstation
installer. Developers wishing to use XPP without AppleShare workstation software will
have to install it in the system file themselves.

The XPP driver is resource DRVR 40, and is contained in the file XPP1 .1 in the folder
·xpp·. The assembly language interface to this driver is included in the file
•nAtalkEqu.a• in the folder •newMPPATP·.

XPP High-Level Interface

A high-level, parameter block style interface to XPP is provided for both MPW Pascal
and MPW C. It is distributed in three files in the ·xpp• folder. The files •nAppleTalk.p"
and •ncAppleTalk.h. are the Pascal and C interfaces, respectively, to the XPP driver.
The file nAppleTalk.a.o is the object file containing the actual interface code. This file
should be included on the link command line. Also included in this folder are two
example MPW tools: ·exOpenSession.p• and ·exOpenSession.c". These tools simply
issue an OpenSession call to XPP, as specified by their arguments.

)

/)

)

AppleTalk Manager Update

APDA Draft

Apple Technical Publications Depanment

Januuy 23, 1987

i

(
Copyright C J 987 Apple Computer, Inc. All rights reserved.

(~ ...

j

AppleTalk. Manager Update

1
1
2
2
3
3
4
4
s
s
s
6
8
8
9
9
9
10
12
12
13
14
14
14
·14
14
lS
16
16
17
17
17
17
18
19
19
19
19
19
19
20
23
23
28
28
29
35
36
37

Table of Contents

Summary of Changes
Changes to the AppleTalk Manager

Pickin1 a node address in die 5a'Yef iange
Sending Packets to one's own node
AppleTallt Transaction Plotocol Cban1es

Sendina an ATP iequest lhrough a specified socket
Aboning ATP Send.Requests··
Aboning Get ReQuests

Name Binding Protocol Changes
Multiple Concmmat NBP Requests· ··

Variable Resources
New AppleTalk Protocols

Echo Protocol
AppleTalk Session Protocol
What ASP does
What ASP does not do
AppleTalk Filing Protocol

Extended Protocol Package Driver
Version
Errcr Reponing
AppleTalk Filing Protocol errors
.XPP driver functions overview

Using AppleTalk Name Binding Protocol
Opening and closing sessions
Session maintenance
Commands on an open session
Getting server status information
Attention mechanism
The attention routine

Callin& the XPP Driver
Using XPP

Allocating memory
Opening the XPP Driver
Example
Open errors
Ciosina the XPP driver
Ooseenors
Session conln>I block ·

How to access the XPP driver
Using Pascal
Oencra1

AppleTaDt Session Protocol
Noae on sesult codes

APP Implementation ·
Mapping AFP commands
AFPCall function

CCB sizes
XPP Driver Results Codes

Summuy

APDADra/t •

'

JtJllllllry 23, 19~7

'
(

APPLETALK MANAGER UPDATE

The Apple Talk Manap has been enhanced duough the implementation of new protocols
and increased funclionllity of the exisdn& intaface. This Cbapta' describes these
enhancements beainnin& with I brief snmnwry of the changes that have been made. The
remainder of the chapta provides deaailed information about lhese cbanps.

summary of Changes

The AppleTaDc Manager provides services that allow Macintosh popams 1D in1el'ICt with
clients in devices connected to an AppleTllk netwark. The following is a brief summary of
the changes that have been made to the AppleTalk Manager intaface.

• At open time. the .MPP driver can be 10ld to pick a node number in the server range.
This is a more time consuming but mare thorough operation than selecting a node
number in the workstation range, and is required far devices acting as servers.

• Multiple concurrent NBP requests are now supported (just as multiple concmrent
An> requests have been suppcned). The KillNBP command has been implemented
to abon an outstandin& NBP iequest.

• An> iequests can now be sent through client-specified sockets. instead of having
ATP pick the socket itself.

• The ability to send packets to one's own node is supported (although this
functionality is. in the default case, disabled).

• Two new An> abon calls have been added: KillSendRcq and KilJOetRcq.
KillSendRcq is functionally equivalent to RerrCB, although its arguments are
different. JCillGetRcq is a new call far aborting outstanding GetRequestS.

• Additional machine-dependent resources have been added to suppon • for example,
more dynamic sockets and mare concurrent An> requests.

• A new protocol called the Echo Protocol (EP) is supported.
• A new driver, JCPP has been added. The JCPP driver imflements the workstation

side of the AppleTalk Session Protocol (ASP), and a srnal portion of the AppleTalk
Filing Protocol.

To determine if you are running on a machine that sup_ports these enhanced features. check
the version number of the .MPP driver (at offset DCtlQueue+ 1 in the Device Conirol
Entty). A version number of 48 (NCVersion) or greater indicates the presence of the new
drivers.

1

No~: With the exception of the XPP calls, there is currently no high-level suppon for
any of the new calls. They can however, be accessed through appropriate PBControl
calls.

AppleTalk Manager Update

CHANGES TO THE APPLETALK MANAGER

Changes to the AppJeTalk: manager inclease funclioaality and JaOUrSeS. Picking a node
address in the server range. sending packets to one's own node. multiple concurrent NBP
iequests, sending A 1P iequests tluough a specified socket and two new ATP calls are
discussed in tills section. .

Picking a node address In the seruer range

Nonnally upon opening, the node number picked by the AppleTalk: manager will be in the
node number range ($01-$7F). It is possible to indicate that a node number in the server
range ($80-SFE) is desired. Picking a number in the server range is a more time
consuming but more thorough process and is iequired for server nodes. since it greatly
decreases the possibility of a node number .confiict.

To open AppleTalk with a server node number, an extended open call is used. An
extended open call is indicated by having the immediate bit set in the Open np itself. In
the extended open call, bit 7 of the extension longwonl field (ioMix) indicates whether a
server or workstation node number should be picked. Set this bit to 1 to request a server
node number. The rest of this field should be zero, as should all other unused fields in the
queue element. A server node number can only be requested on the first Open call to the
.MPP driver.

sending packets to one's own node

Upon opening, the ability to send a packet to one's own node (inn-node delivery) is
disabled. This feature of the AppleTalk Manager can be manipulated through the
SetSelfSend function. Once enabled. it is possible, at all levels. to send packets to entities
within one's own node. An example of where this might be desirable is an application
sending data to a print spooler which is actually running in the background on the same
node.

Note that enabling (or disabling) this feature affects the entire node and should be
performed with care. For instance. a desk accessory may not expect to receive names
from within its own node as a response to an NBP lookup; enabling this feature from an
application could break the desk accessory. All future programsshould be written with this
feature in mind.

SetSelfSend function

Parameter Block

-> 26
-> 28
<- 29

csCodeword
NewSelfFlag byte
OldSelf'Flag byte

; always SetSelfSend
; new SelfSend flag
; old SelfSend flag

SetSelfSend enables or disables the inn-node deliVCJY feature of the Apple Talk Manager.
If NewSelfFlag is non-zero. the feature will be enabled; otherwise it will be disabled. The
previous value of the flag will be returned in OldSeltFlag.

Result Codes no Err No error

APDADraft 2 January23, J987

)

)

(

AppleTalk Manager Update

Roplelolk Tronsoctlon Protocpl Changes

Sending an RTP request through a specified socket

ATP requests can now be sent through client-specified sockets. ATP previously would
open a dynamic socket. send the request through it. and close the socket when the request
completed. The client can now choose to send a request through an already-opened socket.
lbis also allows more than one request 10 be sent per socket A new call, NSendRequest,
has been added for tJm purpose. The function of the old SendRequest call itself mnains
unchanged.

NSendRequest function

Paramescr block

--> 18 userData longword ;user bytes
<--- 22 reqTID word ;transaction ID used in requet
--> 26 cs Code word ;always senclRequest
---> 28 atpSocket byte ;socket to send request on
<--> 29 :t,Flags byte ;control information
--> 30 Block longword ;destination socket address
---> 34 reql.ength word ;request size in bytes
-> 36 reqPoinscr po!nter ;pointer to request data
-> 40 bdsPointer t;ter ;pointer to response BDS
-> 44 numOtBuffs ;number or responses expected
-> 45 timeOutVal byte ;dmeout intclVll
<- 46 numOf Resps byte ;number of responses received
<··> 47 retryCount byte ;number of retries
<-- 48 intBuff word ;used internally

The NSendRequest call is functionally equivalent to the SendRequest call, however
NSendRequest allows you to specify, in the atpSockct field. the socket thro11gh which the
request is to be sent. This socket must have been previously opened through an
OpcnA TPSkt request (otherwise a badA TPSkt emr wiD be returned). Note that
NSendRequest requires two additional bytes of memory at the end of the parameter block.
immediately following the rettyCount These bytes are for the internal use of the
AppleTalk Manager and should not be modified while the NSendRequest call is active.

There is a machine-dependent limit as to the number of concumnt NSendRequest.s that can
be active on a given socket. If this limit is exceeded, the error tooManyReqs will be
returned.

Note that one additional diff crence between SendRequest and NSendRequest is that an
NSendRequest can only be aborted by a KillSendReq call (see below), whereas a
SendRequest can be aborted by either a RelTCB or KillSendReq call.

Result Codes

APDADrll/l

noErr No error
reqFailed Reuy count exceeded
tooMany Reqs Too many concurrent requests
noData Area Too many outstanding ATP calls
reqAboncd Request cancelled by user

3 January23, 1987

AppleTallc Manager Updale

Aborting RTP SendRequests

The RelTCB call is still supponed. but only for aborting SendRequests. To abon
NSendRequem. a new call. KillSendReq has been ldded. 1bis call will abort both
SendRequests and NSendRequests. KillSendReq's only argument is the queue element
pointer of the request to be aborted. 1be queue element pointer is passed at the offset of
the KillSendReq queue element spedfied by AKillQEl.

KillSendReq function

Parameter block

-> 26 csCode
-> 44 AKillQEI

word
pointer

; always KillSendReq
; pointer to queue element

KillSendReq is functionally equivalent to RelTCB. except that it takes different arguments
and will abon both SendRequests and NSendRequests. To abort one of these calls, place a
pointer to the queue element of the call to abon in AKiUQEl and issue the KillSendReq call.

Result Codes noErr No error
cbNotFound AKillQEI does not point to a SendReq

or NSendReq queue element

Aborting Get Requests

A 1P GetRequests can now be aboned through the JCillOetReq call. This call looks and
works just like the KillSendReq call. and is used to abon a specific GetRequest call.
Previously it was neceSSll)' to close the socket to abon all OetRequest calls on the socket.

KillGetReq function

Parameter block

-> 26 csCode word ; always KillGetReq
-> 44 AKillQEl pointer ; pointer to queue element

KillGetReq wm abon a specific outstandin& GetRequest call (u opposed to closina the
socket which aborts all outstanding GetRequests on that socket). The call will be
completed with a reqAboned error. To abort a GetRequest. place a pointer to the queue
clement of the call to abort in AKillQEI and issue the KillGetReq call.

Result Codes

AP DA Draft

noErr No enor
cbNotFound AKillQEl does not point to a GetReq

queueelc~t

4 January23, J9.~7

.
'

(

C\
)

AppleTallr. Manager Updazi:

Nome Binding Prptocpl Changes

Multiple Concurrent NIP Requests

NBP now suppons multiple concunmt ICtiw requests. Specifically, a number of
LookupNames, RegisterNames and ConfinnNames can all be IClive c:oncmrently. The
maximum nmnber m concunmt ~ests is machine dependent; if it is exceeded the error
tooManyReqs wiD be retumed. Active requests can be abaned by the KillNBP call •

KillNBP function

Parameter block

·>
·>

26
28

cs Code
NKillQEJ

; always KiUNBP
; pointer to queue element

Kill?\'BP is used to abon an outstandin& LookupName, RegisterName or ConfumName
request. To abon one of these calls, place a pointer to the queue element of the call to abon
in NKillQEI and issue the KillNBP call. The call will be completed with a ReqAboned
error.

Result Codes noErr No em>r
cbNotFound NKillQEI does not point to a valid

NBP queue element

Uarieble resources

All dynamic sockets ($80 through SFE) can now be opened concunently in addition to
twelve {12) static sockets.

The following resources have also been increasm:

Number of protocols handlers (MPP)
Number of concUJrent SendRequests (ATP)
Number of ATP sockets
Number of concUJrent XO Send Responses (ATP)
Number of dam lftU (ATP)
Number of concunent NBP requests

APDADraft 5 JOIUJllry 23, 198i

AppleTallc Manager Update

NEW APPLETALK PROTOCOLS

The following protocols have been added to the AppleTalk Manager:
• Echo Protocol

• AppleTalk Session Protocol (workswion side)

• AppleTalk Filing Protocol (small ponion of the Workstation side)

The AppleTalk system architecture consists of a number of protOCOls manged in layers.
Each protocol in a specific layer provides services to higher-level layers (knowns as the
protocol's clients) by building on the services provide.cl by the ·lower-level layers. Figure 1
shows the AppJeTalk Protocols and their conesponding network layers.

In Figure 1. the lines indicate the interaction between the pn)tocols. Note that like the
Routing Table Maintenance Protocol. the Echo Protocol is not directly accessible»to
Macintosh programs.

The details of these protocols are provided in Inside AppleTalk.

APDADrqfi 6 January 2.3, 1987

..
')

)

· AppleTaJ/c Manager Update

(
r ""' Apple Talk Filing Protocol Presentation layer

\.. ..J
=i-
_l

~ r
AppleTatk Session Protocol)· I Printer · Access Protocol) · · ..

\.. ,J \. _,J

,
"" Zone Information Session Layer - Protocol

\..

Transport Layer ,
"" ,

"" Apple Talk
'Name Binding , ""'

Echo Transaction Routing Table

Protocol Protocol Protocol
Maintenance
Protocol

..J '"
\.. ~ \.. ,J

J

·Ne ~ork Layer
7) l Datagram Delivery Protocol

~

Link Access Layer

r J I AppleTalk Link Access Protocol
\.. ~

Physical Layer

J Apple Talk Hardware J)

Ficure I. AppleTalk Protocols and OSI Nework Layers

APDADrtft 7 }tl1UllJ1Y 23, 1987

AppleTalk Manager Update

Echo Protocol

The Echo Protocol (EP) provides an echoing service through static socket number 4
known as lhe echoer socket. The ecboer listens for packets received through this
socket. Any correctly formed packet sent to the echoer socket on a node, will be echoed
back to its sender.

This simple protocol can be used for tw0 important purposes:

1. EP can be used by any Dalagram Delivery Pn>locol (DDP) client to determine if a
panicular node, (known to have an echoer) is accessible over an.intemet.: ·

2. EP is useful in detennining the average time it takes for a packet to travel to a remote
node and back. This is very useful in developing client-dependent heuristics for· · ·
estimating the timeouts to be specified by dients of ATP, ASP and other pmtoc:ols.

Programs can not access EP directly via the AppleTalk Manager. The EP implementation
exists solely to respond to EP requests sent by other nodes. EP is a DDP client residing on
statically-assianed socket 4, the echoing socket. Clients wishina to send EP requests (and
receive EP responses) should use the Datagram Delivery Protocol (DDP) to send the
appropriate packet.

RppleTalk Session Protocol

The AppleTalk Session Protocol (ASP) provides for the setting up, maintaining and
closing down of a RS.lion. A session is a logical relationship between two network
entities, a workstation and a server. The workstation tells the server what to do and the
server responds with the appropriate actions. ASP makes sure that the sessions dialog is
maintained in the correct sequence and that both ends of the conversation are properly
participating.

ASP will generally be used between twO communicating network entities where one is
providing a service to the other (i.e. a server is providina a service to a workstation) and
the service provided is state-dependenz. 1bat is, the response to a panicular request from
an entity is dependent upon other previous requests from that entity. For example, a
request to read bytes from a file is dependent upon a previous request to open that tile in the
first place. However, a request to retum the time of day is independent of all such previous
requests. ·

.•
When the service provided is state-dependent, iequests must be delivered to the server in
the same order as generated by the workstation. ASP parantees requests are delivered to
the server in the order in which they are issued, and lhat duplicate requests are never
delivered (another requirement of srate-dependent SC1Vice).

APDADrt;l 8 ./OIUlllry 23. 1987

(

'

(

AppleTalk Manager Update

UJbet ISP do••

ASP is an asymeuic protocol, providina one set or services to the workstation and a
different set or services to the server.

ASP workstation clients initiale (open) sessions. send requests (commands) on that session
and close sessions down. ASP server clients receive and sapond (lhroup command
RJ>lies) to these requests. ASP guarantees that these requests are delivered in the same
order as they are made, and without duplication. ASP is also responsible for closing down
the session if one end dies or becomes unracbable and Will informiu-client (either server
or workstation) of the ICtion.

ASP also provides various additional services. such as allowing a workstation to obtain
server status informalion without opening a session to a server, wriling blocks of data from
the workstalion to the server end of the session, and the ability for a server to send an
attention message to ihe workstalion.

ASP assumes that the workstation client has a mechanism for looking up the network
address of the server with which it wants to set up a session (generally this is done using
the AppleTalk Name Binding Protocol).

Both ends of the session periodically check to see that the other end of the session is still
responsive. If one end dies or becomes unreachable the other end closes the session.

ASP is a client of ATP and calls ATP for transpon services.

What RSP does not do

ASP does not:
• allow the server to send commands to the workstation. The server is allowed to alen

the workstation through the server's attention mechanism only.

• understand or interpret the syntax or the semantics or the commands sent to the server
by the workstation.

• provide a user authenticalion (password) mechanism.
• insure that conseculive commands complete in the order in which they were sent (and

delivered) to the server.
Note: The XPP driver does implement the workstation side of the Apple Talk Filing
Protocol login command.

RppleTallc Fiiing Protocol

The AppleTalk Filing Protocol (AFP) allows a worlcstalion on an AppleTalk netwOrk to
access-files on an AFP file server. AFP specifies a complex remote filing system
containing user authentication and an access control mechanism that suppons volume and
folder-level access rights. For details of AFP. refer to ihe AFP Droft Proposal.

APDADrtft 9 }IUIJJll1'Y 23, 1987.

AppleTalk Manager Update

EXTENDED PROTOCOL PACKAGE DRIVER

The Extended Protocol Package (XPP) driver is intended to implement several Apple Talk
communication protocols in the same package for ease of use. The JCPP driver currently
consists of two modules that operate on two levels: the low-level implements the
workstation side of AppJeTalk Session Protocol, and the high-level implements (a small
portion of) the workstation side of the Apple Talk Filing Protocol.

This driver adds functionality to the AppleTalk manager by providing services additional to
those provided in the .MPP and .ATP drivers. figure 2 shows the Macintosh Apple Talk
drivers and the protoc<>ls accessible through each driver.

APDADrtft 10 January 23, 1987

AppleTallc Manager Updat''

(. Maclntosla program

~ ________________ __

\.. ~

'

) lppleTelt Hardware ()

Fipre 2. Madntosh AppleTalk Driven

APDADrtfl 11 January 2.3, 19tl7

AppleTallc Manager Update

The .xpp driver maps an AFP call fiom lhe client workstation into one or more ASP calls. \ ____ ,)·
XPP provides one client·level call for AFP.

The implementation of AFP in the -"PP driver is wry limited. Most calls are a wry simple
one-to-one mapping from an AFP call ID an ASP command without any interpretation of
the syntax of the AFP command by the JCPP driver. Refer ID the Mapping AFP
commands section of this document for funher information. -

Uerslon

The .xPP driver suppons ASP Version (hex) $100, as described in Inside AppleTalk.

Error reporting

Errors are returned by the XPP driver in the ioResult field of the Device Manager Control
calls.

The error conditions reported by the .XPP driver may represent tbe unsuccessful
completion of a routine in more than just one pzocess involved in the interaction or the
session. System-level. .XPP driver. AppleTalk, and server errors can all tum up in the
ioResult field. Note that an ASP server enor ICtUally results from the activity of the
server end of the transaction but is reponed through the JCPP driver.

AFP calls also return codes indicating the unsuccessful completion of AFP commands in
the Command Result field of the parameter block (described below). /~\

An application using the JCPP driver should respond appropriately to enor conditions , -'"
reported from the different pans of the interaction. As shown in figure 3, the following
enors can be renamed in the ioResult field:

1. System-level enors
System mors returned by the JCPP driver indicate such conditions as the driver not
being open or a specific system call not being supponed. For a complete list of result
codes returned by the Macintosh system software, refer to Inside Macintosh.
Appendix A.

2. XPP em>rs (for example, session ""'opened)
The JCPP driver can also return enors resullin1 from its own activity (for example.
the referenced session isn't open). The possible .xPP driver errors returned are
listed in the JCPP driver results codes section with each function that can return the
code.

3. AppleTalk Emn (returned from lower·levcl protocols)
XPP may also return enors from lower-level protocol, (for example, socket not
open). .
Possible error conditions and codes are described in Inside Macintosh, Volume 2,
Oaapter 10, WJbe AppleTalk Manapr".

4. An ASP·specific error could be returned from an ASP server in response to a failed
OpenSession call. Emn of this type, returned by the server to the workstation. are

APDADrt(t 12 /anulJl'Y 2J, 1987

AppkTalk Manager Updme
documented both in Inside AppleTalk Section 11, -AppleTalk Session Protocol"and
in the .xPP driver results code section of this document.

Command
Re•ult Field loRe•ult Fleld .

4~ 4

, 2

Workstation

~ 4~

3

Error Types

1. System Error
2. XPP Error
3. AppleTalk Error
4. ASP Server

Error
5. AFP Server Error

4
5
Server

Fipre 3. Error Reportina

AppleTelk Fiiing Protocol errors

In addition, the AppleTallc Filing Protocol defines enors that are returned from the server to
the workstation client. These errors are returned in the the CmdRaulr fidd of the
parameta block (enor type S in Figure 3). This field is valid if no system-levd error is
rel\111\e.d by the call. Note that at the ASP level, the CmdResulr field is client-defined data
and may not be an cnor code.

APDADnfl Jj JQIUlllry 23 I 1987

,HPP driver functions pvervlew

The puagraphs below describe the implementation of ASP in the XPP driver. For more
detailed informadon about ASP, lefer to Inside AppkTallc, Section 11, .. AppleTalk Session
Prococol (ASP}."

Using RppleTellc Name Binding Protocol

A server wishing 10 advertise its service on the AppleTalk network calls ATP 10 open an
ATP responding socket known as the session listening »elcel (SLS). Tiie server then
calls the Name Binding Protocol (NBP) 10 register a name on this socket. ·At this.point. the
server calls the server side or ASP to pass it the IClcRss of the SLS. Then, the server
stans listening on the SLS for session opening requests coming over the network.

Opening end closing sessions

When a workstation wishes to access a server, the wodcstation must call NBP to discover
the SLS for that server. Then the workstation calls ASP to open a session with that server.

After detennining the SLS (address) or the server, the workstation client issues an
OpenSession (or AFPLogin) call to open a session with that server. As a result of this
call, ASP sends a special OpenSession packet (an ATP request) to the SLS; this packet
carries the address of a workstation socket for use in the session. This socket is n:fCJTed
to as the workstation session socket (WSS). If the server is unable to set up the session. it
returns an error. If the request is successful. the server returns no error and the session is »
opened. The open session packet also contains a version number so that both ends can
verify that they are speaking the same version of ASP. · , .

The AbonOS function can be used to abon an outstanding OpenSession request before it
bas completed.

The workstation client closes the session by issuing a OoseSession (or AFPLogout}. The
CloseSession call abons any calls that are active on the session and closes the session.
The session can also be closed by the server or by ASP itself, such as when one end of the
session dies. Tiie CloseAll call (which should be used with care) aborts every session that
the driver has acdve.

-·
session melntenance

A session will remain open until it is explicitly terminated by the ASP client ll either end or
until one of the sessions ends dies or becomes unreachable.

Commands on en open session

Once a session has been .opened. the wcxtstation client can send a sequence of commands
over the session to the server end. 1be commands are delivered in the same order as they
are issued Crom the wcdtstation end. and replies to the commands are returned to the
workstation end.

Three types of commands can be made on an open session. These commands are
UserCommand, UserWrite, and AFPCall functions described in the following paragraphs.

APDADrtft 14 lllltUllt'Y 23, 1987

)

..

'

(

C:

Applnalk M11111111r Updare

UsaCommand calls are similar IO ATP n=quests. 'lbc Mllkstaiion client sends I command
(mcluded in a variable size command bJoclt) ID the server ctiem rapestina il to pafonn a
pmticullr function and send bid a vmiable size c:ammand n:ply. Examples ol IUCh
Commands vary from a request to open a pa1icuJar file an a file server, to mdina a certain
nnae mbytes flan a device. In die first cue. a small amount of Jq>ly data is mmned. in
the second case a multiple·plCket Rply mipt be pncnted.

'lbc .xpp chiw:r does not intelpRt tbe co•1mand block or in any way panicipare in the
command•s function; It simply conveys lbe command block. ·included in a hi&her·levd
format. to the la'Ya' end d the session, and returns the command ftP!y to the workstation­
cnd client. The command ieply consists of a four·byte ccmnnd result and a variable size
command reply bloct.

UserWrite allows the wmbtalian to convey blocks of data to the saver. UserWrite is
used to ttansfer a variable size block of data to the saver end of the session and to receive a
reply.

The AFPCaD function provides a mechanism far passin1 an AFP command to the server
end of an open session and receivin1 a reply. Tbe fll"St byte of the AFPCall command
buffer contains the code for the AFP command that is to be passed to the saver far
execution. Most AFP calls are implemented through a vay simple one-to-one mapping that
takes the call and makes an ASP command out of it.

1be AFPCall function can have one of four different fonnats. ·nae four formats, which
are basically all very similar .me described in dellil below.

Getting seruer status Information

ASP provides a savice to allow its workstation clients to obtain a block of savice status
information &om a server without the need far •ning a session. 1be GtrSratu.s function
mums a status block from the server identified by the indicated address. ASP does not
~ any structure on the status block. This suueture is defined by the protocol above

APDADnft January23, 1987

AppleTaJ/c Mt1fttller Updo.te

attention mechanism

Attentions are defined in ASP as a way for the server to aicn the workstation of some event
or critical piece of information. The ASP OpenSession and APP IOJin calls include a
pointer to an attention routine in their parameter blocks. 1bis attent10n routine is called by
the .xpp driver when it n:ceives an attention from the saver and also when the session is
closing as described below.

In addition, upon receiving an OpenSession call, or AFPlogin caD,' the JCPP drivei setS the
first two byies of the session conttol block (SCB) ID zero. When the JCPP driver n:ceivcs
an attention, the first two bytes of the SCB are set to the attention bytes from the packet
(which are always non-zero).

Note: A higher-level language such u Pascal may not wish to have a low-level attention
routine called. A Pascal program can poll the attention bytes, and if they are ever
nonzero, the program will know that an attention has come in (it would then set the
attention bytes back to zero). or course, two or more attentions could be received
between successive polls and only the last one will be recorded.

The .xpp driver also calls the attention routine when the session is closed by either the
server, workstation, er ASP itself (that is, timeout). In th'se cases. the attention bytes in
the SCB are unchanged.

The attention routine

The attention routine is called at interrupt level and must observe intenupt conventions.
Specifically, the intenupt routine can cban&e re&isters AO through A3 and DO through 03
and it must not make any Memory Manager calls.

It will be called with
• DO (word) equal to the SessRefnum for that session (see OpenSession Function)
• D 1 (word) equal to the attention bytes passed by the server (or zero if the session is

closing)

Return with an RTS (return from subroutine) to resume nonnal execution.

The next section describes the calls that can be made to the JCPP driver.

APDADrtft 16 January23, J987

)

..

•
(

(

(

c:i

': · AppleTalk M011111er Upd/Jlc

CALLING THE XPP DRIVER

This section describes how ID use the XPP driver and how ID call the XPP driver routines
from assembly language and Pascal.

Using HPP

1be XPP driver implements the wmtstation side of ASP and pmvides a mechanism for the
workstation 1D send AppleTalk Falin& Protocol (AFP) cammands 1D the .aver.

Rllocetlng memory

Every call ID the XPP driver requns the caller ID pass in whatever memory is needed by
the driver for the call, generally at the end of the (\Ueue elemeilL When a session is opened.
the memory required for maintenance of that semon (i.e •• the Session Conttol Block) is
also passed in.

For standard Device Manager calls, a queue element of a specific size equal ID IOQElSize i!\
allocated. When issuing many calls to XPP, it is the caller's responsibility to allocate a
queue element that is large enough ID accommodate the XPP driver's requirements for
executing that call. as defined below. Once allocated. that memory can't be modified until
lhe call completes.

_,penlng the HPP drluer

To open the XPP driver. issue a Device Manager Open call. Refer ID Inside Macintosh,
Volume 2, Oiaptcr 6. wibe Device Manager." The name of the XPP driver is • JCPP'.
Note that original Macintosh ROMs require that XPP be opened only once. With new
ROMs, the XPP unit number can always be obtained throu&h an O~n call. With old
ROMs only. the XPP unit number must be hard coded ID XPPUnitNum (40) since only
one open call can be issued to the driver.

The XPP driver cannat be opened unless AppleTalk is~· The application must ensure
&bat the MPP and ATP drivers are opened, as described m Inside Macintosh Volume 2.
pages 304-305.

The XPPLoaded bit (bit 5) in lhe PonBUse byte in low memory indicates whether or not
the .XPP driver is open.

APDADrtti 17 January23, 1987

AppleTalk MOll/llO' Update

£Hample

1'f!e following is an example of the procedure an applicarian might use to open lhe JCPP
driver.

:---·---------I
; Routine: OpenXPP

' I

;
:
;
;

:
xppUnitNum
xppTfRNu111

OpenXPP

Open tbe .xtP driver and return the driver ·reiNu• for it.

Exit : DO • err or code c ccr • a ••t >
01 • XPP driver refNu111 Uf no erroral

All other re9htera preserved

EQU
£OU

40
-cxppUnitNu111+11 ·

; default XPP driver nu11bltr
; default XPP driver refNum

MOVE. L AO•Al /D2. - • SPI ; HV• re9iatera
MOVE ROMl5. DO I Check ROM type byte
IPL.S 110 I branch if >•128K ROM•
ITST txppLoad•dlit.PortBUae; b the XPP driver open already?
IEQ.S 110 1 if not open. then brAnch to Open code.
MOVE txppTfRNum.Dl ; •l•• ua• this •• driver refnum.
MOVEO to.DO ••t no£rr.
BRA.S 190 ; and exit.

: XPP driver not open. Make an _open call to it. If uain9 a 128K ROM
machine and the driver i• already open. we will 111ake another Open call to

; it just ao ft .. t th• correct driver r•fNum.
;
110

00

XPPNa111e

APDADrqft

SUB tioQElSize,SP
llOVE.L IP.AO
LEA XPPNue. Al
MOVE.L Al,ioFileN.uieCAOI
CLR.B ioPermaanCAOI

Open
MOVE ioRefNumlAOl,Dl
ADD tioOElSize,SP
llOVE.L CSP)+,AO-Al/02
TST DO
RTS

DC.I 4
DC.I I .XPP'

; allocate temporary param block.
; AO -> paraa block.
I Al -> XfP CASPIAFPI driver name.
1 driver n ... into param block.
1 clear permiaaiona byte

; Dl•driver refNum Unvalid if error)
1 deallocate temp param block.
1 restore re9iatera
1 error? U•t ccr ••I

1 len9th of atrin9.
1 driver naH.

18 January2J, 1987

•

)

'

AppleTallc Manager Update

From Pascal. XPP can be opened through lbe OpenXPP call, which returns the driver's
refaence number.

!'UNC'J'ION OpenXPP (VAR XPPRefnum: DITEGER): OSErr;

Open erron
• Emn relUl'Ded by System

• ponlnUse is nmned if the ApplcTllk port is in use by a driver Olher than AppleTalk
ar if AppleTalk is not open. - -

Closing tbe HPP drluer

To close the XPP driver, CID the Device Manaaer Close mutine.

Caution: There is genenlly no teaSOll to close the driver. Use this call sparingly. if at
all. This call should generally be used only by system level applications.

Close Errors
• Emn returned by System

• 00SC1T (new ROMs only) returned if you tty to close the driver and there are
sessions active through lhat driver. When sessions are active, closerr is returned and
the driva remains open.

• On old ROMs the driver is closed whether or not sessions are active and no error is
returned. Results are unpredictable if sessions are still IClive.

Session Control Bloct
The session control block (SCB) is a non-relocatable block of data passed by the caller to
XPP upon session opening. XPP reserves this block for use in maintaining an open
session. The SCB size is defined by the constant SCBMemSizc. The SCB is a locked
block and as Jong as the session is open. the SCB can not be modified in any way by the
a_pplication. There is one SCB for each open session. This block can be reused once a
OoseSess call is issued and completed for dw session or when the session is indicated as
closed.

How to access the HPP drluer

This section contains infcnnation for programmers usin& Pascal and assembly language
n>utines.

Most XPP driver IOUtincs can be executed either iynchronously (meaning that the
application can't continue until the routine is completed) or asynchronously (meaning that
the application is free to perform other tasks while the 10utine is execu1in1).

Using Pascal

On asynchronous calls. the caDer may pass a completion JOUtine pointa in the parameter
block. at off set IOCompletion. This routine will be executed upon completion of the call.
It is executed at intm"Upt level and must not make any memory manager calls. If it uses

APDADrlft 19 January23, 1987

application globals, it must ensure that register M is set up correcdy; for details see ;<---"i
SetupM and RestareAS in the Operating System Utilities chapter of Inside Macintosh. If ,/
no completion routine is desired, IOCompledon should be set to NIL. '--,/"

Asynchronous calls retum control to die caller with result code of noErr u soon as they arc
queued to the driver. This isn't an indication of successful complnon. To de1ei mine
when the call is actually completed. if you don't want to use a completion rou1inc, you can
poll the ioResult field; this fiCJd is set to 1 when the call is mlde. and receives the actual
result code upon completion. ·

As different XPP calls take diffemlt argumems in their~ blOck. a Pascal variant
record bas been defined to account for an the different cases. This panmeter block is
detailed in figure 4. The first four fields (which are the same fer all calls) are automatically
filled in by the device manager. 1be CSCode field is autDmllically filled in by Pascal,
depending on which call is being made. The caller must. however, set the ioltcfnum field
to XPP·s reference number, u returned in the OpenXPP call. 1be ioVRefnum field is
unused.

Note that the parameter block is defined so as to be the maximum size used by any call.
Different calls take different size parameter blocks. each call requiring a certain minimum
size. Callers are free to abbreviate the parameter block where appropriate.

General

With each routine, a list or the parameter block fields used by the call is also given. All
routines are invoked by Device Manager Conuol calls with the csCode field equal to the
code conesponding to the function being called. 1be number next to each field name
indicates the byte offset of the field from the stan of the parameter block pointed to by AO;
only assembly-language programmers need to be concerned with k. • An arrow next to
each parameter name indicates whether it's an input, ouq>ut. er input/output parameter:

Arrow Meanina
-> Parameter is passed
<- Parameter is *1lmed

<-> Parameter is passed and retumed

All Device Manager Control calls return an inte&er result code in the ioResult field.Each
routine description lists all the applicable result codes, alon& with a short description of
what tbe result code means. Refer to the section XPP Driver rault coda for an
alphabetical list or result codes returned by the .xpp driver.

Each rou1ine description includes a Pascal form of the call. Pascal calls to the XPP Driver
are of the fonn:

l'UNCTION XPPCall(ParamBlock:XPPPazmBlkPtr,aaync:BOOLEAN): OSErr;

XPPCal1 is the name m the routine.

ParamBlock points to the actual llO queue element used in the _Conaol call, filled in by the
caller with the parameters or the maw.

l""""'Y 23, 19R7

I

AppleTallc Manager Updtllc

async indicates whether or not the call should be made asynchronousJy. If async is
TRUE. the call is executed asynchronously; otherwise the call is executed synchronousJy.

The routine returns an result code of type OSErr.

APDADr'* 21 January 23, 1987

App~Tallc Manager Updare

XPPParamBlock • PACKED RECORD
qLiok: QElemPtr;
qType: INTEOE.ll;
ioTrap: 1N'l'EOEll;
ioCmdAddr: Ptr:
ioCompletion: ProcPtr:
ioResult: OSErr;
CmdResult: LONGINT;
ioVRefNum: INTEGER:
ioRefNum: INTEGER;
csCode: INTEGER:
CASE XPPPrmBlkType OF

ASPAbonPrm:
(AbortSCBPtr: Ptr);

ASPSizeBlk:

{ next queue entry)
(queue type)
(routine trap)
{ routine address)
(completion routine
(result code)
(Command result (ATP user bytes) [long))
{ •olume reference or drive number)
(driver reference number)
(Call command code)

(SCB pointer for AbonOS (long])

(ASPMaxCmdSiLc: INTEGER;
ASPQuantumSize: JNTEOER;
NumSesss: INTEOER);

(For SPOetParms [word])
(For SPOetParms (word))
{ For SPOetParms (word))

>.1'PPrmBlk:

END:

(SessRefnum: INTEGER;
ASPTimeout: Byte;
ASPRetry: Byte;
CASE XPPSubPrmType OF

ASPOpenPrm:
(ServerAddr:
SCBPointer:
AttnRoutine:

ASPSubPrm:

LONG INT;
Ptr;
Ptr);

(CB Size: INTEGER;
CBPtr: Ptr:
RB Size: INTEGER;
RBPu: Ptr;
CASE XPPEndPrmType OF

AfPLoginPrm:

(Offset to session refnum [word]
(Timeout for ATP (byte))
(Retry count for ATP [byi.e) }

(Server address block [longword)
(SCB pointer [longword])
(Attention routine pointer [long]

(Command block size [word])
(Command block pointer [tong])
(Reply bu!fer size [word))
(Reply buffer pointer [long])

(AFPAddrBlock: LONGINT; { Address block in AfP login (long]
AFPSCBPtr: Pu'; (SCB pointer in AFP loain [long])
AFPAunllouline: Ptr); (Ann routine pointer in AfP login

ASPEndPrm:
(WOSiie: INTEGER: (Write data size [word))
WOPtr: Ptr: (Write data pointer (long])
CCBStan: ARRA Y[0 •• 295) OF Byte))): (CCB memory for driver}
(Write max size(CCB) • 296; all Olher calls • 150)

Fia:ure 4. .XPP Driver Parameter Block Record

APDAD,. 22 January23, J987

(

AppltTaDc Managu Update

Ronlelolk Session Protocol Changes

This section contains descriptions ol the XPP driver funciians that you can call. Each
function description shows the required parameter block fields, their offsets within the
parameter block and a tdef definition of the field. Possible result codes are also described.

Note on result codes

An important distincdon exists between 1he ASPParamFzr and ASPSessCosed leSUlt
codes that may be mumed by lbc XPP driwz.

When the dri'YCI" returns ASPParamEir to a call that takes as an input a session reference
number, the session reference number does not relate to a valid open session. Thetc could
be several reasons for this, such IS the workstation or server end closed the session or the
server end of lhe session died.

The ASPSessOosed result code indicates that even though the session reference number
relates to a valid session, that panicular session is in the process of closing down (allhough
the session is not yet closed).

OpenSess function

OpenSess initiates (opens) a session between the workstation and a server. Below is the
required parameter block. A brief definition of the fields follows.

FUNCTION ASPOpenSesaion<xParamBlock:XPPParmBlkPtr;aaync:BOOLEAN): CSErr;

Parameter block

-> 26 csCode word ;always OpenSess
<-- 28 SessRefnum word ;session reference number
-> 30 ASPTuneout byte ;reay interval in seconds
-> 31 ASPReuy byte ;number of retties
-> 32 SaverAddr longword ;server socket address
-> 36 SCBPointer pointer ;pointer to session control block
-> 40 AanRouti.ne pointer ;pointer to attention mutinc

SessRefnum is a unique number identifying lhe open session between the workstation and
the server. The SessRefnum is returned when the function completes successfully and is
used in all calls to identify the session.
ASPllmcOut is the intcrVal in seconds between rettics of the open session request.

ASPRctry is the number of retries that will be attempted.
ScrverAddr is the network identif'ie:r or address ol the socket on which the server is
listenin1 ..

SCBpointer points to a nan-relocatable b1oct of data for the session conaol block CSCB)
that the XPP driva' reserves for use in maintainin' an open session. 1be SCB size is
defmcd by the constant SCBMemSize. The SCB 11 a locked block and IS long IS the
session is open, the SCB cannot be modified in any way by the application. There is one
SCB for each open session. This block can be reused when a CloseSess call is issued and

APDADrt:ft 23 January23, 1987

AppleTalk Manager Update

completed for that session, or when lhe session is indicated as closed through return of an
ASPParamErr as the result of a call fCI' that session. ,,, __)

AtmRoutine is a pointer to a routine that is invoked if an attention from the server is
received. or upon session closing. If Ibis pointer is equal to zero, no attention routine will
be invoked.

Result codes ASPNoMoreSess
ASPParamEtr
ASPNoServers

ReqAboned
ASPBadVersNum
ASPServerBusy

Driver cannot suppon another session
Server returned bad (positive) c:nor code ·
No servers at that address
The server did not respond to the-tequest;
OpenSess was aboned by an AbonOS
5erver cannot Suppolt the offered version number
Server cannot open another session

Note: The number of sessions that the driver is capable of supponing depends on the
machine that the driver is running on.

CloseSess function

CloseSess closes the session identified by the SessRefnum returned in the OpenSess call.
CoseSess abons any calls that are active on the session, closes the session, and calls the
anention routine, if any, with an attention code of zero (i.ero is invalid as a real attention
code).

FUNCTION ASPCloseSession(xParamBlock:XPPParmBlkPtr;async:BOOLEAN>:
OSErr;

Parameter block

-> 26
--> 28

cs Code
SessRefnum

Result codes ASPParamEtr

ASPSessCosed

AbortOS function

word··
word

;always CloseSess
;session reference number

Parameter error, indicates an invalid session
reference number
Session already in process of closing

AbonOS abons a pending (not yet completed) OpenSess call. The aboned OpenSess call
will return a ReqAborted em>r.

FUNCTION ASPAbortOS(JCllaramBlock:XPPParmBlkPtr;aaync:BOOI.EAN): OSErr:

Parameter block

-> 26
-> 28

csCode word
AbonSCBPointer pointer

';always AbanOS
;pointer to session control block

AbonSCBPointer points to the original SCB used in the the pending OpenSess call.

APDADra;ft 24 January 23, 1987

)

(

(

(

Result codes cbNotFound

GetParms fundion

AppleTollc Manager Update

SCB not found. no outstandin& open session to be
aborted. Pointer did not point to an open session
SCB.

GetParms returns 1hree ASP paramm::rs. This call does not require an open session.

l'UHCTION ASPGetPaxma(xParamBlock:XPPPaz:aBlkPtr;aaync:BOOLEAN): OSErr;

ParamelCr block

-> 26
<- 28
<- 30
<-- 32

cs Code
ASPMaXCmdSize
ASPQuantumSize
NumSesss

word ;always GetParms
word ;maximum size of command block
ward ;maximum dm size
word ;number of sessions

ASPMaxCmdSize is the maximum size of I command dw can be sent to the ~.

ASPQuantumSize is the maximmn sir.e of data that can be 11'1n5fened to the server in a
Write request or from the server in a command reply.

NumSew is dlc number of concmmit sessions supported by the driver.

CloseAll function

CoseAll closes evay session that the driver bas active.. abCl'ting all active requests and
invoking the attention routines where provided. This call should be used carefully.
OoseAll can be used as a system level 1esource for making sure all sessions are closed
prior to closing lhe driver.

FUNCTION ASPCloaeAll(xParamBlock:XPPParmllkPtr;aaync:BOOl.EAN): OSErr;

Parameter block

-> 26 cs Code

UserWrite function

word ;always~

UserWrite transfers data on a session. UserWrite is one of the two main calls that can be
used to transfer data on an ASP session. 1be other call that perf arms a similar data ttansfer
is UserCommand. described below. The UserWrite command returns data in two different
places. Four bytes of data are 1etumed in the CmdResult field and a variable size reply
buffer is also 1etumed.

l'UHCTION ASPUaerWrite(xParamBlock:XPPParmBlkPtr;a1ync:BOOLEAN): OSErr;

Parameter block

<- -18
--> 26
-> 28
-> 30

APDADrtfl

CmdResult
csCode
SessRefnum
ASPTuneout

long ward
word
word
byte

;ASP command result
;always UserWrite
;session refaence number
;retry interval in seconds

Janwuy 23.1987

App~Talk. Manager Update

-> 32 CB Siu word ;command block size
-> 34 CBPlr pointer ;command block pointer
<--> 38 RB Siu word ;reply buffer siu and reply size
--> 40 RB Pointer pointer ;reply buffer pointer
<--> 44 WDSiu word ;write data size
-> 46 WDPlr pointer ;write data pointer
<- so CCBScan recant ;start of memory for CCB

CmdResult is four bytes Of data returned by the server. .

SessRefnum is the session raerence number returned in the OpenSess call.

ASPTuneOut is the interval in.seconds between retries of the call. Nodce that there is no
ASPReuy field (relrics are infinite). The command will be retried at the prescribed interval
until completion er the session is closed.
CBSiu is the siu in bytes of the command data that is to be written on the session. The
size of the command block must not exceed the value of ASPMaxCmdSiu returned by the
GetPanns call. Note that this buffer is not the data to be written by the command but only
the data of the command iaself.

CB Pointer points to the command data.
RBSiu is passed and indicates the siu of the reply buffer in bytes expected by the
command. RBSiu is also returned and indicates the size of the reply that was acutally
returned.

RBPointer points to the reply buffer.

WDSize is passed and indicates the siu of the write data in bytes to be sent by the
command. WDSize is also returned and indicates the siu of the write data that was acutally
written.

WDPointer points to the write data buffer.

CCBStart is the stan of the memory to be used by the XPP driver for the command control
block. The size of Ibis block is equal to a maximum of 296 bytes. To determine the exact
requirement. refer to the CCB Sius section of this document

Result codes ASPParam
ASPSizeErr
ASPSessOosed
ASPBufl'ooSmall

UserCommand function

Invalid session number, session has been closed
Command block size is bigger than MaxCmdSiu
Session is closing
Reply is bigger than response buffer
Buffer will be filled, data will be truncated

UserCommand is used to send a command to the server on a session.

FUllC1'ION ASPtJaerCODDaDd(xParUIBlock:XPPParmBlkPtr;Hync:BOOLEAN): OSErr:

Parameter block

<- 18 CmdResult lon&word ;ASP command result
-> 26 csCode wont ;always UserCommand
-> 28 SessRefnum word ;session number
-> 30 ASPiameout byte . ;retry interval in seconds
-> 32 ·CBSize word ;command block size

APDADrt(t 3S JtlllU/lry 23, 1987

•

)

(.

-> 34.
<-> 38
-> «>
<- 50

CBPlr
RBS ix
RB Painter
a::BS1a11

.App/tTallc Manager Upd/Jle

;command block pointer
:reply buffer nt reply size
:reply buffer pointer ..
;mn of memory far CCB

SessRefnum is the session reference number raumed in 1he OpeaSca call.

ASPismeOut is lbe interval in seconds between mries of the call Nocice that there is no
ASPReuy field (reaies 1re infinite). Tbe cnmnpnd will be smied at the prescribed interval
antil completion ar the session is cloled.. ,
CBSize is the size in bytes of the block of data that contains the command to be sent to the
server on the session. The size of the command block must not exceed the value of
ASPMaxCmdSile raumed by the GetPmm call
CBPointcr points ID the block of data containing the command that is to be sent to the
server on the session.
RBSiz is passed and indicates the size of the reply buffer in bytes expected by the
command. RBSiz is also returned and indicates the size of the reply lhat was actually
returned.
RBPointer points to the reply buffer.
CCBStan is the Stan of the memory to be usal by the XPP driver for the command control
block. The size of Ibis block is equal to a maximum of 150 bytes. To determine the exact
requirement refer to the CCB Sizes SCC1ion of this document.

Result codes ASPParamEzr
ASPSizeErr
ASPSessOosed
ASPBufrooSmall

GetStatus function

Invalid session number, session has been closed
Command block size is biager than MaxCmdSiz
Session is closing
Reply is bigger than response buffer
The buffer will be filled. data will be tnmcated

OetStatus returns server status. This call is also used as OetServerlnfo at the AFP level
This call is unique in that it transfers data over the network without having a session open.
This call does not pass any data but requesu that server status be retmned.

l'UNC'l'ION ASPGetStatuaCxParasaBlock:XPPPazmBlkPtr:async:BOOLEAN): OSErr;

Parameter bloclc

-> 26 csCode ward ;always OetStatus
-> 30 ASPl"uneout = . ;retry interval in seconds
-> 31 AS~ ;number or re1ries
-> 32 Server. Jona word ;server socket address
<-> 38 RBSbe ward ;reply buffer and reply me
-> «> RBPoin1er pointer ;reply buffer painter
<- 50 CCBStan iscld ;111n of memmy far CCB

ASPl"uneOut is the interval in seconds between reuies of the call
ASPReuy is the number of mries that will be attemp1ed.

APDADrtft ZI January 23, 1987

-·Server Addr is tbc netwark identifier er address of the socket on which the server is
listening.

RBSize is passed wt indicates the size of lhe reply buffer in byres expected by the
command. RBSize is also mumed and indicates the size of lhe reply that was actually
returned.

RBPointer points 1D the Rply buffer.
CCBSmt is the Slllt of tbe memory ID be used by"tbe-XPP driver-ror tWcmntniiiif eonttol
block. 1he size of Ibis block is equal ID a maximum of·200 bytes. -~ ctetenmne the exact
iequimnent refer to the CCB Sizes recd.on of· this document. - ·

Result codes ASPBufl"ooSmall

ASPNoServer

~ly is bi11erthan :-.buffer ..
Replysize is biger than lpiyBuffsize.
No n:sponse fiOin server at address used in call

AF P lmplementotlon

The AfPCa11 (AFPCommand) funcdon passes a command to an AfP server. The first
byte of the AFPCall command buffer (the AfP command byte) must contain a valid AFP
command code.

Note: Server infannadon should be aoucn throuah a GetStatus call (described above).
OetStatus is equivalent to the AFPGetSrvrlnfo. Making an AfP OetSrvrlnfo call using
AfPCommand, results in a error.

Mapping AFP commands

Most AfP calls are implemented by XPP duough a very simple one-to-one mapp~g of an.
AFP call to an ASP call without interpretalion er verificadon of the data.

1bc XPP driver maps AfP command codes to ASP commands according ro the following
convendons:

AFP Command Code Comment

soo Invalid AfP command
$01-SBE (1-190) Mapped to UsezCommand (with the exceptions listed

below)
SBF (191) Mapped to UserCommand. Reserved for developers; will

never be used by ApPle ,
SCD-SFD (192-253) Mapped to UserWnte ·
SFE (254) MaPPed to UserWrite; will never be used by Apple
SFF (255) tnvilid AFP command ·

1be followin1 AFP calls are exceptians to the above conveadoas:

AFP Command
(Code/decimal)

OetSrvrlnfo (15)
Login(18)
LoginCont (19)

APDADrqft

Comment

Mapped to GetStatus (Use GetSwus to make this call)
Mapped to appropriate login dialog including OpenScss call
Mapped to appropriate 1oain dialo&

28 January 23, 1987

..

(

AppleTalk MOllllger_ Update

Logout (20) ~to CJoseSess
Wrilc (33) . Maj>ped to UserWrite .

Note that the fallowing AFP calls CID pass ar return more data than CID fit in QuantumSize
bytes (8 ATP response packets) and may be broken up by XPP into mulciple ASP calls.

AFP Command
(Codeldedmal) Comment

Read (27)
Wrilc (33)

Can return up to the number of bytes indicatecf:in RcqCount
Can pass up ID the number of bytes indicated in ReqO>unt

RFPCell function

The AFPCal1 function can have one of the following command fcrmats.
• General

• Login

• AFPWrite

• AFPRead

General command format

The general command fonnat fm the AFPCal1 function passes an AFP command to the
server. This format is used for all AFP calls except AFPLogin. AFPRead and AFPWrite.
Note that from Pascal this call is know u AFPCommand.

l'tJNCTION AFPCOllllland(xParamBlock:XPPParmBlkPtr;async:BOOLEAN): OSErr;

Parameter block

<- 18 CmdResult longword ;AFP command result
-> 26 cs Code word ;always AFPCal1
--> 28 SessRefnum word ;session reference number
-> 30 ASPI'imeout byte ;retry interval in seconds
-> 32 CBSize word ;command buffer size
-> 34 CBPtt pointer ;command buffer
<-> 38 RB Size ward ;reply buffer size and reply size
-> 40 RB Pointer pointer ;reply buffer pointer ·
<··> 44 WDSiz.e word ;write data size
-> 46 WDPtt • ter ;write data pointer
<- 50 CCBStan =:m ;stan of memmy for CCB

OndResult is four bytes or data Jetmned from the server containing an indication of the
result of the AfP colnmand. . - - . . . -.
SessRefnum is the session reference number remmed in the AfPI.opl call
ASPruneOut is the intetVll in seconds between retties of the call by the driver.
CBSi.U is the size in bytes m the block of data that contains the command to be sent to the
server on the session. 1he size of the command block must not exceed the value of
ASPMaxCmdSize returned by the GetParms call.

APDADrq/l 29 JOIUlll1)' 23, 1987

AppkTalk Manager lJpdme

CBPointer points to start of the block_ of data (command block) containin& the command
that is to be sent to the server on the sesSion. The first byte of the command block must
contain the AfP command byte. Subsequent bytes in the command buffer contain the
parameters usoiClted with the command IS defined in the AFP documenl ..

RBSize is passed and indicates the size tS the reply buffer in bytes expected by the
command. RBSize is also returned and indicates die size of die reply that wu 1mtally
returned. - . . -

RBPointer points to the ieply buffet. .·

WDSize is lhe size of data to be wriuen to the server {only used if die command is one that
is mapped to an ASP UserWrite).
WDPointer points to the write data buffer (only used if the command is one that is mapped
to an ASP UserWrite).
CCBStan is the stan of the memory to be used by the XPP driver for the command control
block. The size of this block is equal to a maximum of 296 bytes. To detennine the exact
requirement refer to the CCB Sizes section of this document

Result codes ASPParamErr
ASPSizeErr
ASPSessOosed
ASPBuITooSmall

ParmError

Lo1in command format

Invalid session number; session has been closed
Command block size is bigger than MaxCmdSizc
Session is closing
Reply is bigger dian response buffer
Buffer will be filled. data will be wncatcd
AFP command block size is equal to
mo. This aror will also be returned if the
command byte in die command block is equal to 0
or $FF (2SS) or GetSrvrStatus (15).

··. .

The AFP login command executes a series of AFP operations as defined in die AFP Draft
Proposal. For funher information. refer to die AFP document.

FUNCTION AFPConaand(x.ParamBlock:XPPParrnBlkPtr;async:BOOLEAN): OSErr;
.,

Parameter block

<- 18 CmdResult lon1word ;AFP command result
-> 26 cs Code word . ;always AFPCall
<- 28. SessRefnum word ;session reference number
-> 30 ASPTuneout E ;retry interYal in seconds
-> 31 ASPRetty ;number of reuies
-> 32 CB Size ;command buffer size
-> 34 CBPtt • tel' ;command buffer
<-> 38 RB Size ~ ;reply buffer size and reply size
-> ·40 RBPtt c:= ;reply buffer pointer
-> 44 AFPAddrBlock I word ;server address block
<-> 48 AFPSCBPointer · pointer ;SCB pointer . .
<-> 52 AFPAanRoutine pointer. . ;lttenb.O~tcr
<- .so CCBStan leccxd ;stan of . conaol block

CmdResult is four bytes of data retmned fmm die server containing an indication of die
result of the AfP command.

APDADrt¥1 Jtl/UJJJry 23, 1987

\

)

(

AppltTalk Managtr Update

SessRefnum is the session reference number (retumed by the AFPLogin call).
ASPTuneOut is die inlerval in seconds between retries of the call.

ASPRetry is lbe number of reuies that will be auempted.

CBSize is lhe size in byres of lbe block data dw conmns the comn•nd ID be 1mt ID the
server on the session. 1be me m the command block must not exceed the value of
ASPMaxCmdSU.C remmed by the GelPm call.

CBPointer poims 1D lbe block of data (command block) comainin& the AFP Jolin
command dw is to be tent ID die server on the session. 1be first byte of the command
block must lie tbe AFP Joain conmand byte. Subsequent bytes in the command buffer
contain the parameters usociated with the command.
RBSize is passed and indicates the size of the reply buffer in bytes expected by the
command. RBSize is also returned IDd indicates the sm of the reply that was acutally
mum ed.
RBPointer points ID the reply buffer.
AFPServerAddr is the network identifier er address of the socket on which the server is
listening.

AFPSCBPoinier points 10 a locked block of data fer the session conuol block (SCB).The
SCB size is def'med by SCBMemSize. 1be SCB is a locked block and u Jong u the
session is open, the SCB ~ not be modified in any way by the application. There is one
SCB for each open session. .
AFPAttnRoutine is I pointer ID a routine that is invoked if an attention from the server is
received. When AFP AnnRoutine is equal ID zero. no attention t;auline will be invoked.

CCBStan is 1he start of the memory ID be used by the XPP driver for the command control
block. The size of this block is equal ID a maximum of ISO bytes. To determine the exact
requirement refer ID the CCB Sizes seed~ of this document ..

Nou : Jn the parameter block, the AFPSCBPointer and the AFPAunRouline fields
overlap with the stan of the CCB and me modified by the call.

Result codes ASPSizeErr
ASPBuITooSmall

ASPNoServer
ASPServerBusy
ASPBadVersNum

ASPNoMoreSess

AFPWrite command format

Command block size is biger than MaxCmdSize
Reply is biger than response buffer
Buffer will be filled, data will be ttuncated
Server not responding
Server cannoc open another session
Saver cannot suppon the offered ASP version
number
Driver cannot suppon another session.

Tbe AFPWrite IDd AFPRQd command formats allow the camn, applicadon ID make AFP­
lcvel calls that read or write a data block that is· Jaraer than a single ASP·level call is capable
of reading er writing. Tbe maxhnmn number of bytes of data that can be read or written at
the ASP level is equal ID QuantumSize. ·

FUNCTION AFPComnand(xParaJllBlock:XPPPa~lkPtr;aaync:BOOLEAN): OSErr;

Parameter block

APDADn;t JI January 23.1987

AppleTaJ/c Manager Update

18 CmdResult <--- Jong word ;AFP command result
--> 26 csCode word ;always AFPCall
---> 28 SessRefnum word ;session number
---> 30 ASPl'"uncout byte .;retry interval in seconds
-> 32 CB Size word ;command buffer size
-> 34 CBPtt pointer ;ccmmand buffer
<--> 38 RB Size - . - word - -- · ;reply buffer size and reply size
-> 40 ' RBPtt pOinter . ' ' ~ly buffer pointer · - ·
<-- 44 WDSize word ;(used intcmally)
<--> 46 WDPtt pointer · · ;write data pointer (~ted)
<- so CCBStan n:cmd ;stmt oC memoiy for

Cmd.Result is four bytes or data retumed from the server containing an indication oC the
result of the AFP command.

SessRefnum is the session reference number returned in the AFPI..o&in call. ·
ASPruneOut is the interval in seconds between reaies of the call.

CBSize is the size in bytes of the block data that contains the command to be sent to the
server on the session. 1be size of the command block must not exceed the value of
ASPMaxCmdSize returned by the ASPQetParms call.

CBPointer points to the block of data (see command block structure below) containing the
AfP write command that is to be sent to the server on the session. The fll'Sl byte of the
Command Block must contain the AFP write~ byte.

RBSize is passed and indicates the size of the reply buffer in byteS expected by the
command. RBSize is also returned and indicates the size of the reply that was acutally
teturned.

RBPointer points to the reply buffer.
WDSize is used internally.

Note: This command does not pass the write data size in the queue element but in the
command buffer. XPP will look for the size in that buffer.

WDPtr is a pointer to the block of data to be written. Note that this field will be updated by
XPP as it proceeds and will always point to that section of the data which XPP is currently
writing.

CCBStan is the Stan of the memory to be used by the XPP driver for the command control
block. The size of this block is equal to a maximum of 296 bytes. To determine the exact
requirement refer to the CCB Sizes section of this dccumenL

Command block st,,,etur•

The AFP write command passes several arguments to XPP in the command buffer itself.
1be byte oft'sets are relative to the location pointed to by CBPointer.

-> 0 CmdByte byte ;AFP call command byre
-> 1 StanEndf'lag byte ;Start/end Flag
<-> 4 RWOffset long word ;offset within fork to write
<··> I ReqCount long word ;requested count

CmdByte is the AFP call command byte and must contain the AFP write command eode.

APDADrtft /QltJIQry 23, 1987

- •
)

)

)

StartEndFlaJ is a one-bit flag (the high bit of the byle) indicatin~bether the RWOffset
field is ldadve 1D die bepnnin& ar die end of die fork (all alba' · are mo).

0 • ie1a1ive 1D die be&hmin& of die fmt
1 • ielaliw 10 die end of die fmt

RWOffset is die byte afrset widdn die bt 11wbicbdiewri1eis1D lqin.

ReqCount indicttes 1be size of the data 1D be wrilleD IDd is ntumed u the IClllal size
written.

Nace that the RWOffset and ReqCoum fields are mocfifted by XPP u the write proceeds
and will always indk:ate the cunmt value of lhese fields.

1be Pascal Sll'UC1Ule of the AFP m••mand buffer follows:

AFPComnandBlock • PACKED UCORD
QndByte: Byte:
StartEndFla9: Byte;
ForkbfNum: INTEGEI\; (UHd by aerver}
l\WOffaet: IDllGINT;
ReqCount: IDllGINT;
NewLineFla9: Byte;
NewLineChar: CHAR;

Result codes ASPParamEIT
ASPSizeErr
ASPSessOoscd
ASPBuffooSmall

AFPRead command format

(Unuaed by write)
(VnuHd by write)

Invalid session number
Ccmmand block me is biger than MuCmdSize
Session is closing
Reply is bigger than raponse buffer

FUN~ION AFPConnand(aParaaBlock:XPPPal:lllBlkl'tr:aaync:BOOLEAN): OSErr;

Parameter block

<- 18 CmdResult longword ;ASP command result
-> 26 csCode word ;always AFPCall
-> 28 SessRefnmn ward ;session number
-> 30 ASPlimeout :s ;retry interval in seconds
-> 32 CB Size ;conDnand bufl'e:r size
-> 34 CBPlr poinu:r iCQllUDIDd buffer
-> 38 RBSize Won! ;med imcrnally
<-> «> RBPlr _poinu:r =:mr~~) <- 50 CCBStan iecmd

OndResult is four bytes of dala returned ficln the server c:oiltaining an indicadon of ttie
result d the AFP command.
SessRefnum is the session reference number mumed in the AfPLoain call.

ASPT"uneOut is the interval in seconds between retries of the call.

APDADrtft January 23, 1987

AppleTalk Manag•r Update

CBSize is lhe size in byacs of lhe block daaa 11111 eontains the command ID be sent to the
server on the session. The size of the cormnand block must noc exceed lhe value of
ASPMaxCmdSize mumed by the GetPwms call.

CBPointer points to the block of data (command block) containing the APP read command
lbat is ID be sent to the saver on the msion. The first byte of the command block must
contain the AFP rad command byte. 1be command block~ is shown below.
RBSize is used intemally. -· · - · · · - · ·· ·

Nace: This command does not pass the Jad·size in the queue element but in the
command buffer. XPP will loQk for lhe size in that buffer. . . ·

llBPointer points to the reply buffer •. Note that this field will be ~by XPP as it
prol"eeds and will always point to 11111 pan of the buffer that XPP as CUJKndy reading into.
CCBStan is the stlrt of the memory to be used by the XPP driver for the command control
block. The size of this block is equal to a maximum of lSO bytes. To detennine the exact
requbement refer to The CCB Sizes section •

Commt111d block structur•

The AFP read command passes several arpments to XPP in the command buffer itself.
The byte offsets are relative to the location pointed to by CBPointer.

--> 0 CmdByte byte ;AFP call command byte
<·-> 4 RWOffset long word ;offset within forlc to read
<-> 8 ReqCount long word ;requested count
--> 12 NewUneFlag ~ ;Newline t=Ja1
-> 13 NewUneChar VJ- ;Newline Character

CmdByte is the AFP call command byte and must contain the AFP read command code.

RWOffset is the byte offset within the fork at which the read is to begin.
ReqCount indicates the size of the read data buffer and is returned as the actual size read.

Note that the RWOffset and ReqCount fields are modified by XPP as the read proceeds and
will always indicate the current value of these fields.
Newl..ineflaa is a one-bit flag (the hip bit of the byte) indicating whether er not the read is
to terminate at a specified character (all ocher bits are mo).

0 •no Newline Oaracter is specif'ied
1 •a Newline Omacter is specified

NewLineOm is any character from $00 to SFF (mclusive) which when encountered in
rading the fork, causes the read operation to terminate.

1be Pascal suucnue of the AFP command buffer follows:

AFPComaridBlock • PACKED atcom
Oldllyte: ttyte;
Startbdl'la9: ayte:
l'orka.fll1ml: Dl'l'EGEll;
llllOffset: LOllGXllT;
llleqCount: J.ONGIN'l';
NewLineFla9: Byte;
llewLin.Cbar: CRAil:

APDADrtft

(Vnueed for read)
(Used by server)

January 23, 1987

,/''•,

il''l ... _ ,:'

•
(~

'

AppleTallr. Manager Update

Invalid session number Result codes ASPParamEJT
ASPSizeEtr
ASPSessOosed
ASPBuITooSmall

Command block size is bigs than MaxCmdSi7.C
Session is closing
Reply is biager than response buffer

CCR sizes

The XPP driver uses the memory~ at the end of the UmWrite; UsaCommand and
OetStatus parameter blocks u an mtemal c:msmand control block (CCB). Using the
maximum block sizes specified in the call desaiptions will: ~vide adeQuate space for the
call to execute successfully. However. this seclion is provided for developers who wish to
minimize the amount or memory llken up by the CCB in the queue element.

Specifically. this memory is used fer creating data structures to be used in making calls to
the ATP driver. This includes parameter blocks and buffer data strUCtures (BDS's -
detailed in the Apple Talk Manager chapter of lnslM MacintDsh). The exact size of this
memory depends on the size of the response expected. and. in the case of UserWritc, on
the siz.e of data to be written.

Jn the USCJCommand and GetStatus cases (along with all AFP calls which map to
Use!Command). a BDS must be set up to hold the response information. The number of
entries in this BOS is equal to the size or the teSponse buffer divided by the maximum
number of data bytes per ATP response packet (S78). rounded up. Note that as described
in the ASP document in Inside AppleTallc, ASP must ask for an extta response in the case
where the response buffer is an exact multiple of S18. Of course, no BOS can be more
than eight elements big. XPP also needs bytes foe the queue element to call ATP wilh, so
the lllinimum size of a CCB, as a function of lhe response buffer sii.e (RBSize) is:

BDSSize •MIN (((RBSize DIV 578) + 1),8) • BDSEnttySz
CCBSize • JOQEJSizc + 4 + BDSSize

In the UserWrite (and AFP calls mapping to UserWritc) case, XPP needs to create an
additional BDS and queue element to use in sending lhe write data to the server. Thus the
minimum size or a UserWrite CCB. IS a function of the response buffer and write data
sizes (RBSize and WDSize) is:

WrBDSSize •MIN (((WDSize DIV S78) + 1),8) • BDSEnaySz
WrCCBSize • (2 • JOQEISize) + 4 + BDSSize + WrBDSSize

Nott: BDSEntrySz is equal to 12. IOQEISii.e is equal to SO.

APDADrlVt 35 Jll/IJIDry 23, 1987

AppleTalk 14""'*1' Update

c'-~·
!'

\,,J'
,.

Bl!E DCllHH: 8111111 Clldll

Result Code Comment Returned by

ASPBadVersNum Server cannot suppan the
=ss(l..opi)' offered version number - -·

ASPBuffooSmall · · Reply is bi~ than response buffet . - - .. UserWriur ·
Buffer will filled. dacl may be ll'UnClled. UserCommand

GetSwus .
AFPCaD

ASPNoMoreSess Driver cannot support IDOthcr session
=SS (1.Qgin)

ASPNoServers No servers at that lddms GetSwus
The server did not respond to the request. ~ess 1 (1.Qgin)

ASPParamEtT Parameter cnor == server returned bad (positive) error code
Invalid Session Reference Number UserWrite

UsaCommand
AfPCall

~~=)
·ASPSezverBusy Server cannot open another session ~(Login)
ASPSessCosed Session already in process of closing CloseSess

UserWrite
UsaCommand
AFPCa1l

ASPSizeErr Command block six is bi&&er than UserWrite
MaxParamSize UserCommand

-AFPCall

cbNotFound . SCB not found. no outstandin1 AbonOS
open session to be aborted. Pointer did
not point to an open session sea.

ParmError AFP Command Block size is Jess than or AFPCa1l
equal to zero. Command byte in
the Command block is= to 0 or SFF (255)
or rvrStatus (15).

ReqAbaftcd =session wu aboned by an
Open Session

O~s A (Login)

)

APDADnft IOlllllUY 23, 1987

(

{

()
·.

AppleTalk M1111Qger Update

SUMMARY

SetSelfSend function

Parameter Block

-> 26
-> 28

csCode word ; always SetSelfSend
NewSelfFlag byte ; new SelfSend Oag
OldSelfFlag byte . ; old Se1fSend Oag <- 29

Rpplelolk Transaction prptpcpl

NSendRequest function

Parameter block

·-> 18 UserData longword
<·- 22 ~ word
-> 26 word
-> 28 alpSocket byte
<-> 29 :zu.Flags byte
-> 30 Block Jonpord
·-> 34 seq Length word
-> 36 reqPointer pointer
·-> 40 bdsPointer

=ter -> 44 numOfBuffs
-> 4S dmeOutVal byte
<·- 46 numOf' Resps byte

rettyCount byte <-> 47
<·- 48 imBuff word

KillSendReq function

Parameter block

-> 26 csCode
-> 44 AKillQEl

KillGetReq function

Parameter block

-> 26 csCode
-> 44 AKiDQEI

APDADrl:fl

word
pointer

;user bytes
;ttansacdon ID used in requet
;always sendRequest
;socket to send request on
;control inf'armatian
;destination socket address
;request size in bytes
;pointer to request data
;pointer to response BDS
;number of responses expected
;limeout intemal
;number of responses received
;number of retries
;used inlemally

; always KillSendReq
; pointer to queue element

. . ; always KillOetReq
; pointer to queue element

A/Ji*Tallc M..,er Updale

Nome Binding Prptocol

KlllNBP function

Parameter block

-> 26
-> 28

Doto Iypes

csCode
NKillQEl

XPPParamBlock • PACKED RECORD
qLink: QElemPtr;
4Type: INTEOER;
ioTrap: INTEGER;
ioCmdAddr: Ptr;
ioCompletion: ProcPtr;
ioResuh: OSErr;
CmdResult: LONOINT:
ioVRefNum: INTEOER;
ioRefNum: INTEOER;
csCode: INTEOER;
CASE XPPPrmBJkType OP

ASPAbonPrm:
(AbonSCBPtr: Pu);

ASPSizeBlk:

word
pointer

(ASPMuCmdSize: INTEOER;
ASPQuantumSize: INTEGER:
NumSesss: INTEGER):

XPPPlmBlk:
(SessR.efaum: INT.EGER:
ASPTimeout: Byie;
ASPRetry: Byte;
CASE XPPSubPrmType OF

ASPOpenPrm:
(ServerAddr: LONOINT;
SCBPointer: Ptr:
AttnRouthie: Ptr);

ASPSubPrm:
(CB Size: tNl'EOBl:
CBPtr: Ptr;
RB Sue: IN'J'IOER:
RBPtr: Pu;
CASE XPPEndPrmType OP

AfPLoainPrm:

; always ICillNBP
; pointer to qoem element

.....

(MXl queue entry)
(queue type)
(routine vap)
(routine address }
(completion routine)
(result code)
(Command result(ATP user bytes)[long])
(volume reference or drive number)
(driver reference number)
{ Call cormnand code)

(SCB pointer for AbortOS Pong]) .

(For SPOetParms [word))
(For SPOelParms [word] J
(Par SPOllParms [word])

(Offset to session refnum [word])
(Timeout for ATP [byte])
(1lelry count for ATP (byte])

(Server address block [lonaword])
(SCB pointer ClonswordJ J
(Attention routine pointer PonsJ)

(Command block size [word))
(Command block pointer [laaa])
(Reply buffer size (word])
(Reply buffer pointer Pon&])

(APPAddrBloct: LONOJNT; (Address block in AfP lo&in [Ion&])
APPSCBPtr: 'Plr; (SCB poimer in A.Fl lo&in Poa1J)
AFPAtualt.outiae: Pu); { Ann routine pointer in AfP loain)

ASPEndPrm:
(WDSize: ln'EOER; (Write da&a size (word) }
WDPtr: Pu; (Write da&a pointer Pons])
CCBSwt: ARR.A Y[0 •• 295) OF Byte))); { CCB memory for driver)

END;

• APDADrt(t 38 ltlllllll1Y 23, 1987

}

('

(

AppleTaB: Manager Update

AFPCOlllllandBlock • PACKED RECORD
ClldByte: Byte:
StartEndFla;: Byte: (Unused for read)
ForkRefNum: lll'l'EGER; (Used by server)
awoffHt: LONGIN'?;
Reqeount : LOHGIN'l';
llevLineFla9: Byte; (Unuaed by write)
JlevLineChar: CllAlt; (Unused by write)

END;

Rpplelolk Se11lpn Prptpcpl

l'UNC'l'ION ASPOpenSeaaion(xParamBlock:Xl'PPaJ:lllBlkPtr;aaync:900LEAJI) OSErr:

Parameter block

-> 26 cs Code word ;always OpenSess
<-- 28 SessRefnum word ;session reference number
--> 30 ASP'Iimcout byte · ;retry interVal in seconds
--> 31 ASPRetry byte ;number of retries
-> 32 ServerAddr longword ;server socket address (SLS)
-> 36 SCBPointer pointer ;pointer to session conll'Ol block
--> 40 Aanlloutine pointer ;pointer to allenUClll JOWinC

FUNCTION ASPCloaeSeaaion(xParamBlock:XPPPazmBlkPtr;aaync:BOOJ.EAN) OSErr;

-> 26
-> 28

csCode
SessRefnum

word
word

;always CloseSess
;session reference number

l'UNC'l'ION ASPAbortOS(xParamBlock:Xl'PPaJ:mBlkPtr;async:BOOLEAN) OSErr;

Parameter block

-> 26
-> 28

csCode
AbanSCBPlr

word
poina

;always AlatOS
;pointer to session control block

FUNCTION ASPGetParms(xParamBlock:XPPParm8lkPtr:aaync:900LEAN) OSErr;

Parameter block

-> 26
<- 28
<- 30
<- 32

csCode
ASPMaxCmdSizc
ASPQuantudizc
NumSesss

word ;always OetParms
word iDWdmum size of command block
word ;maximum data size
word ;number of sessions ..

FUNCTION ASPCloseA11CxParam91ock:XPPPaJ:lllBlkPtr;aaync:900LEAN) OSErr;

Parameter block

. -> 26 cs Code word ;always CloseAll

APDADrtft Jtlllllllry 23 f 1987

FUNCTION ASPuserWrite(xParamBlock:XPPPa%1118lkPtr;async:BOOLEAN) OSErr:
(,--,~·
\
~ -d''
-~

Parameter block

<- 18 CmdResult longword ;ASP command result
-> 26 csCode word ;always UrerWrite
·-> 28 ScssRefnum word ;session tef'erence number
-> 30 ASPnmeout byte ;retry interval in seconds ..

. -> 32 CB Size ·wonf ;conmand blodc,size·
-> 34 CBPlr pointer ;cormand block pointer ·
<··> 38 RBSiJ.e word ;reply buffer size and reply size
-> 40 RBPlr pointer ~ly buff ea: pointer
<-> 44 WDSm want ;wnsc dala 111.e .. ~
-> 46 WDPlr pointer ;wrisc data pointer
<·- so CCBStan ncord ;stan of memory for CCB

FUNCTION ASPUserCommand(xParamBlock:XPPPa%1118lkPtr:async:BOOLEAN) OSErr:

Parameter block

<- 18 CmdResult longword ;ASP command result
--> 26 csCode word ;always UserCommand
-> 28 SessRefnum word ;session number
-> 30 ASP'iuneout byte ;retry interVal in seconds
--> 32 CB Size word ;command block size
-> 34 CBPlr pointer ;command block pointer /J <··> 38 RB Size word ;reply buffer and ~ly size
-> 40 RBPtr • tel' ;reply buffer pointer
<- so CCBStan ~ . ;stan of memory for CCB

FUNCTION ASP~tStatus(xParamBlock:XPPPa%1118lkPtr:async:BOOLEAN) OSErr;

Parameter block

-> 26 cs Code word ;always OetStatus
-> 30 ASPTimeout = ;reay interVal in seconds
-> 31 ~~ ;number of retries
-> 32 1on1word ;server socket address
<··> 38 RB Size word ;reply buffer and ~ly size
-> 40 RBPlr • ter ;reply buffer pointer
<·- so CCBStan ~ ;stan of memory for CCB

)

APDADn(t JQlllllJ1'y 23, 19R7

I

(

(

(~

Rnplelolk Elling Prptpcpl

AFPCall Function
General command format

AppleTalk Manager Update

FUNCTION A!'PCommand(xParamBlock:XPPParmBlkPtr;async:BOOLEAN> OSErr;

Parameter bJock

<- 18 OndResult Iona word ;AFP command result
-> 26 csCode word ;always AFPCall
-> 28 SessRefnum word ;session Jeference number
-> 30 ASPTuneout byte ;retry intaYal in seconds
-> 32 CB Size word ;command buffer size
-> 34 CBPtt pointer ;command buffer
<--> 38 RB Size word ;reply buffer size and reply size
-> 40 RBPtt pointer ;reply buffer pointer
<--> 44 WDSize word ;write data size
-> 46 WDPtt pointer ;write data pointer
<-- so CCBStan record ;stan of memory for CCB

Login command format

FUNCTION AFPConnand(xParamBlock:XP,Pazm&lkPtr;async:BOOI.EAN) OSErr;

Parameter block

<-- 18 CmdResult longword ;AFP command result
--> 26 cs Code word ;always AFPCall ·
<- 28 SessRefnum word ;session reference number
-> 30 ASPTimeout byte ;retry intel'Yll in seconds
-> 31 ASPReD')' byte iDUmber of retries
-> 32 CB Size word ;command buffer size
--> 34 CBPtt pointer ;command buffer
<·-> 38 RB Size word ;reply buffer size and reply size
--> 40 RBPtt f:ter

;reply buffer pointer
--> 44 AFPAddrBlock gword ;server address block
<--> 48 AFPSCBPointcr • tel' ;SCB pointer . - . J'O!D
<-> 52 AFPAttnRoutine pointer ;attenuon routine pmnter
<- 50 CCBStan m:old ;start of command control block

AFPWrite command format

FUNCTION A!'PComnand(xParamBlock:XPPParmBlkPtr;async:BOOLEAN) OSErr;

Parameter black --·

<- 18 CmdR.esu1t Iona word ;AFP command resUlt
-> 26 csC.ode ward ;always AFPCall
-> 28 SessRefnmn word ;session number
-> 30 ASPTuneout ~ ;retry intel'Yll in seconds
-> 32 CB Size ;command buffer size
-> 34 CBPtr pointer ;command buffer

APDADrt/l 41 JanuDry 23, 1987

AppleTalk Manager Update

<--> 38
--> 40
<-- 44
<--> 46
<-- so

RB Size
RBPtt
WDSizc
WDPlr
CCBStan

Command block structure

-> 0
-> 1
<--> 4
<--> 8

CmdByte .·
StanEndFlag
RWOffset
ReqCount

AFPRead command format

word
pointer
word
pointer
record

= longword
longword

;reply buffer size and reply size
;reply buffer pointer
;(used intemally)
;write data pointer (updated)
;stan of memory for CCB

;AFP call command byte
;Start/end flag .
;offset within fork to write
;requested count

FUNCTION AFPCommand(xParamBlock:XPPParmBlkPtr;async:BOOLEAN> OSErr;

Parameter block

<-- 18 CmdResult longword ;ASP command result
--> 26 cs Code word ;always AFPCall
---> 28 SessRefnum word ;session number
--> 30 ASPlimcout byte ;retry interval in seconds
--> 32 CB Size word ;command buffer size
-> 34 CBPtt pointer ;command buffer
--> 38 RB Size word ;used intemally
<--> 40 RBPtt pointer ;reply buffer pointer (updated)
<-- so CCBStan record ;stan of memory for CCB

Command block structure

The AFP read command passes several arguments to XPP in the command buffer itself.
The byte offsets are relative to the location pointed to by CBPtr.

--> 0
<--> 4
<--> 8
-> 12
-> 13

CmdByte
RWOffset
ReqCount
NewUneFlag
NewUneChar

byte
longword
longword =

;AFP call command byte
;offset within fork to read
;requested count
;Newline Flag
;Newline Omacter

8ppleTallc Session Protocol Constants

Offsets in user bytes

ASPCmdCode
ASPWSSNum
ASPVersNwn
ASPSSSNum
ASPSessID
ASPOpenErr

ASPSeqNum

APDADrtft

EQU
EQU
EQU
ZQU
EQU
J:QU

EQU

0
1
2
0
1
2

2

1 Off set to co.nand field
; WSS number in OpenSessions
; ASP version number in OpenSessions
; SSS number in OpenSessReplies
; Session ID (requests 'OpenSessReplyl
; OpenSessReply error code

; .Sequence number in requests

42 JanuJJry 23. 1987

·,

-~

. ,

(

(~~

ASPAttnCode EQU

Ofl'sets in ATP data part

ASPWrBSize
ASPWrHdrSz

ASP command codes

ASPCloseSees EQU
ASPCOllllland EQU
ASPGetStat ZOU
ASPOpenSess EQU
ASP'l'ickle &QU
ASPWdte EQU
ASPDataWrite EQU
ASP Attention EOU

ASP miscellaneous

ASPVersion EQU
MaxCmdSize EQU
Quant wnSi ze EQU
XPPLoadedBit EQU
XPPUnitNum EQU

ASP errors codes

ASPBadVersNum EQU
ASPBufTooSmall EQU
ASPNoMoreSess EQU
ASPNoServers EQU
ASPParamErr EQU
ASPServerBusy EQU
ASPSessClosed £QU
ASPSizeErr EQU

Control codes

OpenSess EQU
Close Seas EQU
tJaerCommand EQU
tJserWrite EOU
GetStatua sou
&FPCall EQU
GetPa:ms &QU
Abort OS sou
Close.All aou

AppleTalk Manager Update

2 ; Attention bytes in attentions

0 ;Offset to write buffer aize (WriteData>
ASPWrBSiae+2 : Size of data part

1 : Cloae aeaaion
2 : lJaer•com:nand
3 . Get atatus •
4 . Open aeaaion •
5 'fickle

' . Write •
7 ; WriteData (from server)
I ; Attention (from server)

$0100 : ASP version number
ATPMaxData : Haxiawn command block size
ATPMaxData*ATPMaxNwn : Maximum reply size
ATPLoadedBit+l ; XPP bit in PortBUae
40 ; Unit n\Ullber for XPP (old ROMS)

-1066 ; Server cannot support this ASP version
-1061 ; Buffer too small
-1068 ; No more sessions on server
-1069 1 No aervera at that address
-1070 . Parameter error ' -1071 ; Server cannot open another aeasion
-1072 I Session closed
-1073 I Command block too big

255 ; Open session
254 Close session
253 1 User coanand
252 ; User write
251 1 Get status
250 I AFP command (buffer has command code)
249 I Get parameters
248 ; Abort open session request
247 1 Close all open sessions

ASP queue element standard structure: arcuments passed in the· CSParam
area

SeaaRef nwn EQU CSP a ram ; Off set to session refnwn [word)
ASPTi.Jlleout l:QU SessRefnum+2 . TiJneout for ATP (byte) ' ASPRetry &QU ASPT.iaeout+l . Retry count for ATP (byte] ' ServerAddr EQU ASPRetry+l ; Server address block [longword)

APDADrtli 43 January 23, 1987

SCBPointer
At.t.nl\outine

CBSize
CBPtr
RBSize
RBPtr
11DSize
llDPtr
CCBStart

sou
EQU

EQU
BQU
sou
BQU
&QU
sou
&QU

ASPMaxCllldSiae &QU
ASPQuantumlize EQU
AbortSCBPtr EQU

EQU

AFPAddrBlock EQU
AFPSCBPtr EQU
AFPAttnRoutine EQU

EQU

ServerAddr+4 ; SCB pointer tlongword)
SCBPointer+4 ; Attention rout.f.De pointer {long)

ASPRetry+l
CBSize+2
CBPtr+4
MSize+2
MPtr+4
llDSize+2
11DPtr+4 ·

CSParua
ASPMazCmdSize+2
CSParua

; Coaaand block size [word)
; Command block pointer (lonql
1 a.ply buffer size (word]
: a.ply buffer pointer (lonq]
; Write data aize (word]
; Write data pointer tlonq]
1 Start of ...Ofy for CCB

1 For SPGetPaaDS (word)
; For SPGetPaaDS (word]
; SCB pointer for AbortOS (long)

UserData ; Command result (ATP user bytes) (long)

RBPtr+4 ; Address block in AFP loqin[long]
AFPAddr8lock+4 ; SCB pointer in AFP loqin [long]
AFPSCBPtr+4 ; Attn routine point.er in AFP loqin

$CO 1 Size of llllllllOry for SCB

AFPCall command codes

AFPLoqin
AFPContI.oqin
AFPI.09out
AFPRead
AFPllrite

EQU 18;
EQU 19;
EQU 20;
EQU 27;
EQU 33;

Offsets for certain parameters In Read/Write calls

StartEndFlag
RWOf faet
ReqCowit
NewI.ineFla9
NewI.ineChar
LaatWritten

Miscellaneous

Al'PUseWrit•

APDADrtft

EQU
EQU
EQU
EQU
EQU
EQU

EQU

1 ; Write only; offset relative to start or end
4 ; Off set at which to start read or write
8 : Cowit of byte• to read or write
12 ; Read only; newline character flaq
13 ; Read only; newline character
0 ; Write only; last written (returned)

$CO; first call in ran99 t.hat maps to an ASPWrite

JIJllll/Jry 23.1987

•
' \

. ' /- "''1

