290 SW 43rg Street
Renton. WA 28055
206-251-6548

AppleTalk

Manager
Update

APDA# KMSAMU



-
o

e



APDA Macintosh AppleTalk Update
. Release Notes
February 25, 1987

The APDA Macintosh AppleTalk Update consists of one 400K diskette, a document
entitied "AppleTalk Manager Update, APDA Draft,” and these release notes. The disk
contains updates and additions to the current Macintosh AppleTalk utilities. The
document provides technical details of many of the changes. It is a “pre-release” of a
chapter to be published in /nside Macintosh volume 5; future updates to it will appear
there. These release notes are meant to summarize and supplement that document.

Disk Contents: The APDA Macintosh AppleTalk Update Disk includes the following:

(1) Version 4.0 of the AppleTalk High-Level ("Pascal) Interface for MPW. This
version is a maintenence release which fixes some known bugs.

(2) Version 48 of the AppleTalk drivers. This version, which is the one used in
the AppleShare server, provides many additional features over the version
provided in the MacPlus ROM (version 40).

(3) Version 1.1 of the new Extended Protoco! Package (XPP) driver. This
driver, used in the AppleShare workstation, implements the workstation side of
the AppleTalk Session Protocol (ASP).

(4) MPW Pascal and C interfaces to the XPP driver.

Each of these components is summarized in the following pages. Since the
distribution disk is an MFS volume, you may wish to copy it to an HFS volume before
installation.

Important: As stated in your APDA membership agreement, these utilities are provided
for development purposes only; no license to distribute in any way is implied. Please
contact Apple Software Licensing if you wish to distribute any of the enclosed material.



AppleTalk High-Level interface Version 4.0

Version 4.0 of the AppleTalk "Pascal” Interface is a maintenance release. It replaces
the current version, 3.4. There are three major changes to this version:

(1) elimination of the use of location $E0
(2) elimination of the ‘atpl’ ("{Libraries}AppleTalk") resource
(3) bug fixes.

Each of these changes is described below.- Note that there is no added support for any
of the new calls available in the new AppleTalk drivers (version 48). See the section
on “future plans.” :

Use of location $SEQ: Previous versions of the Pascal Interface used low memory
location $E0. This created a number of problems. The use of this location has been
eliminated.

JIhe ‘atpl’ resource: Previous versions of the Pascal Interface included a resource of
type ‘atpl' which had to be included in either the system file or the app's resource fork.
This resource was shipped as the file {Libraries}AppleTalk under MPW 1.0. It always
took up about 5K on disk and in memory, regardless of how much of it was needed.
Questions arose as to how to release the resource when it was no longer needed.
This resource was called by a small bit of glue linked into your application out of
Interface.o.

The current release eliminates the use of this resource altogether. The glue in
interface.o has been replaced with the actual code from the resource. Thus the actual
code is now linked directly into your application. Since the linker only includes that
code which is needed, in general only 1-2K will be added to the size of your
application's code. Since 5K will be deleted by the elimination of the ‘atpl’ resource,
there should be a net space savings, both on disk and in memory. Issues such as how
to free the resource are also eliminated.

Bug fixes: A number of small bugs have been fixed. These include:
(1) DDPRdCancel could crash if you tried to cancel a DDPRead that wasn't there

(2) ATPReqCancel and ATPRspCancel now ignore the async flag and always
execute synchronously. This is because the ABRecord passed in these calls is
the ABRecord of the call to be cancelled, not a new ABRecord for the cancel call.
Thus there is no way to indicate completion of the call itself if it were
asynchronous.

Installation procedure: included on the release disk, in folder "P14.0" is an MPW script
which replaces the current glue in {Libraries}interface.o with the new routines. It is

called "Newinterface". To execute it, just set the current directory to that folder (pi4.0)

and type Newinterface. This will copy the routines from file "ABPackage.o” into =
{Libraries}interface.o (note that executing Newinterface twice will result in a number of
warnings). Alternatively, you could just include the file ABPackage.o on your link -
command line before Interface.o. This will cause a number of duplicate label

warings, however.



Following installation, all programs using the Pascal Interface should be re-linked, and
the ‘atpl' resource can be removed from all disks.

Euture plans: We intend this to be the final release of the current-style interface. We
will continue to support this for some time. However, in the long run, we intend to move
to a more straightforward and simple interface design. This interface, which will also
support all of the new AppleTalk functionality, will be a parameter-block style interface,
much like the current low-level file system interface detailed in Inside Mac, volume 4.
Additional functionality will be added only where necessary to support operations that
can not be performed in a higher-level language (for instance socket listeners).

Developers will be free to continue to use the old style interface for MacPlus-style
AppleTalk functionality. However we believe in the long run it will be advantageous to
move to the new style interface.

We expect this new style interface to be initially available in 2-3 months. Most calls will
be essentially the same format as the high-level XPP calls included with this release.



AppleTalk Drivers Version 48 !

Version 48 of the AppleTalk drivers contains significant enhancements over the current . ™~
version (40 in the MacPlus ROMs, and 41 in system file 3.2). These enhancements
include new calls and additional resources (e.g. all dynamic sockets can be opened
simultaneously; more than one NBP request can be outstanding at any one time).

These drivers are used by the AppleShare server. We envision these drivers to be

used in place of the MacPlus ROM drivers in two circumstances: (1) where one or more

of the new calls is required and (2) in servers where additional resources are needed.

These new drivers are completely compatible with-the MacPlus ROM drivers, and-can

be used in any situation where the ROM drivers were used previously.

The developer should be aware however that use of these drivers on a MacPlus or
512Ke will result in the loss of about 11K of system heap, since they completely -
replace the ROM drivers and since more memory is required to provide the additional
resources. This may require the system heap to be grown depending on the
application. :

On an original ROM 512K Mac, these new drivers can be placed in the system file and

will ioad on the first _Open call. On a MacPlus or 512Ke, however, ROM drivers

supersede those in the system file, so the new drivers must be loaded in some other
method. This release provides a system file INIT resource, INIT 22, which, for MacPlus
ROMs, opens the new drivers out of a file called "AppleTalk” in the system folder. If the

file is not there, the INIT resource does nothing. Note that this INIT must be installed in

the system file so that it runs before any application INIT's (INIT 31's) which might open
AppleTalk and start up a request. Apple intends to ship this INIT as part of future
~ system files; however, for now, the developer must install it himself.

"These new drivers are distributed as five resources in the file "AppleTalk" within the
folder "newMPPATP". These are DRVR 9 and 10, and NBPC 1 and 2. In addition, this
file contains a resource of type 'mppc’. This is a new resource used to pass
information to the INIT. Its format will be specified in the future. This resource, as
provided, tells the INIT to open AppleTalk in server mode (i.e. pick a server node
number, a process which takes about 10 seconds). If you wish to have AppleTalk
opened in workstation mode, do not include this resource in the "AppleTalk" file.

The INIT 22 resource is also included in the "AppleTalk" file. To use the new AppleTalk
drivers for development purposes, you can install this INIT in your system file and copy
the file "AppleTalk" into your system foider, deleting the ‘'mppc’ resource if desired.

For development purposes, installation of the INIT resource can be done using ResEdit

or the equivalent. However, for shipping products, installation from the product disk

onto the user's disk should be.done using the Apple Installer. .-The current version of

that installer is provided in the "newMPPATP" foider, along with the installation script
“AppleTalk INIT Script™. This script, which should be run off the product disk

containing the "AppleTalk" file in the system folder, installs the INIT into the user's

system file, copies the "AppleTalk" file into the system folder, and sets the boot blocks

to a minimum of 58K (this is also the size used on the AppleShare workstation disk). )

Assembly !anguage equates for the new calls in these drivers are distributed in the file
*nATalkEqu.a” in the same folder. This file also contains assembly equates for the new
XPP driver.



XPP Version 1.1

The XPP (Extended Protocol Package) driver implements the workstation side of the
AppleTalk Session Protocol (ASP), and a small portion of the AppleTalk Filing Protocol
(AFP). It is installed in the system file and used in the same manner as the other
AppleTalk drivers. XPP is automatically installed by the AppleShare workstation
instalier. Developers wishing to use XPP without AppleShare workstation software will
have to install it in the system file themselves.

The XPP driver is resource DRVR 40, and is contained in the file XPP1.1 in the folder
"XPP". The assembly language interface to this driver is included in the file
*nAtalkEqu.a” in the folder "newMPPATP".

XPP High-Level Intertace

A high-level, parameter block style interface to XPP is provided for both MPW Pascal
and MPW C. ltis distributed in three files in the “XPP" folder. The files "nAppleTalk.p”
and "ncAppleTalk.h" are the Pascal and C interfaces, respectively, to the XPP driver.
The file nAppleTalk.a.o is the object file containing the actual interface code. This file
should be included on the link command line. Also included in this folder are two
example MPW tools: "exOpenSession.p” and "exOpenSession.c”. These tools simply
issue an OpenSession call to XPP, as specified by their arguments.






AppleTalk Manager Update

APDA Draft

Apple Technical Publications Department

January 23, 1987

Copyright © 1987 Apple Computer, Inc. All rights reserved.



AppleTalk Manager Update

VOO0 ANNULLLEWWNN = -

— b et ot ot o b b frand Pk
-ririricirir - iceiaia Y I T N N T N

23

APDA Draft i January 23, 1987

Table of Contents

Summary of Changes
Changes to the AppleTalk Manager
Picking a node address in the server range
Sending Packets to one's own node
AppleTalk Transaction Protocol Changes
Sending an ATP request through a specified socket
Aborting ATP SendRequests - -
Aborting Get Rm
Name Binding Protocol ges
Multiple Concurrent NBP Requests- -
Variable Resources )
New AppleTalk Protocols
Echo Protocol
AppleTalk Session Protocol
What ASP does
What ASP does not do
AppleTalk Filing Protocol
Extended Protocol Package Driver
Version
Error Reporting
AppleTalk Filing Protocol errors
.XPP driver functions overview
Using AppleTalk Name Binding Protocol
Opening and closing sessions '
Session maintenance
Commands on an open session
Getting server status information
Attention mechanism
The attention routine
Calling the XPP Driver
Using XPP
Allocating memory
Opening the XPP Driver
Example
Open errors
Closing the XPP driver
Close errors
Session control block -
How to access the XPP driver
Using Pascal :

General

AppleTalk Session Protocol
Note on result codes

AFP Implementation .
Mapping AFP commands
AFPCall function

- CCBsizes
XPP Driver Results Codes

Summary

N



APPLETALK MANAGER UPDATE ]

The AppleTalk Manager has been enhanced through the implementation of new protocols
and increased functionality of the existing interface. This ter describes these
enhancements beginning with a brief summary of the changes that have been made. The
remainder of the chapter provides detailed information about these changes.

summary of Changes

The AppleTalk Manager provides services that allow Macintosh programs to interact with
clients in devices connected to an AppleTalk network. The following is a brief summary of
the changes that have been made to the AppleTalk Manager interface.

e Atopen time, the MPP driver can be told to pick a node number in the server range.
This is a more time consuming but more thorough operation than selecting a node
number in the workstation range, and is required for devices acting as servers.

= Multiple concurrent NBP requests are now su (just as muitiple concurrent
ATP requests have been . The Kﬂlﬁ;ﬁmﬂmﬂ has been implemented
to abort an outstanding NBP request.

< ATP requests can now be sent through client-specified sockets, instead of having
ATP pick the socket itself.

« The ability to send packets to one's own node is supported (although this
functionality is, in the default case, disabled).

e Two new ATP abort calls have been added: KillSendReq and KillGetReq.
KillSendReq is functionally equivalent to RelITCB, although its arguments are
different. KillGetReq is a new call for aborting outstanding GetRequests.

« Additional machine-dependent resources have been added to support , for example,
more dynamic sockets and more concurrent ATP requests.

e A new protocol called the Echo Protocol (EP) is supported.

e A new driver, XPP has been added. The .XPP driver imrlements the workstation
side of the AppleTalk Session Protocol (ASP), and a small porton of the AppleTalk
Filing Protocol.

To determine if you are mnmng on a machine that sup these enhanced features, check

the version number of the .MPP driver (at offset Dcacgfgfm in the Device Control

dE:xin'y). A version number of 48 (NCVersion) or greater indicates the presence of the new
Vers.

Note: With the exception of the XPP calls, there is currently no high-level support for
any of the new calls. They can however, be accessed through appropriate PBControl
calls.



AppleTalk Manager Update

CHANGES TO THE APPLETALK MANAGER

Changes to the AppleTalk manager increase functionality and resourses. Picking a node
address in the server range, sending packets to one's own node, multiple concurrent NBP

requests, sending ATP requests through a specified socket and two new ATP calls are
discussed in this section. :

Picking a node address in the server range

Nommally upon opening, the node number picked by the AppleTalk manager will be in the
node number range ($01-$7F). It is possible to indicate that a node number in the server
range ($80-$FE) is desired. Picking a number in the server range is a more time
consuming but more thorough process and is required for server nodes, since it greatly
decreases the possibility of a node number conflict.

To open AppleTalk with a server node number, an extended open call is used. An
extended open call is indicated by having the immediate bit set in the Open trap itself. In
the extended open call, bit 7 of the extension longword field (ioMix) indicates whether a
server or workstation node number should be picked. Set this bit to 1 to request a server
node number. The rest of this field should be zero, as should all other unused fields in the
quiel;:; ‘ejl;]:mcm. A server node number can only be requested on the first Open call to the
N iver.

Sending packets to one's own node

Upon opening, the ability to send a packet to one's own node (intra-node delivery) is
disabled. This feature of the AppleTalk Manager can be manifulated through the
SetSelfSend function. Once enabled, it is possible, at all levels, to send packets to entities
within one'’s own node. An example of where this might be desirable is an application
sending data to a print spooler which is actually running in the background on the same
node.

Note that enabling (or disabling) this feature affects the entire node and should be
performed with care. For instance, a desk accessory may not expect to receive names
from within its own node as a response to an NBP lookup; enabling this feature from an
application could break the desk accessory. All future programsshould be written with this
feature in mind.

SetSelfSend function
Parameter Block ,
—> 26  csCodeword ; always SetSelfSend
—~> 28  NewSeclfFlag byte  ; new SelfSend flag
<— 29  OldSelfFlag byte ; old SelfSend flag
SetSelfSend enables or disables the intra-node delivery feature of the AppleTalk Manager.
If NewSelfFlag is non-zero, the feature will be enabled; otherwise it will be disabled. The
previous value of the flag will be returned in OldSelfFlag.

Result Codes noErmrr No error

APDA Draft 2 January 23, 1987

L



AppleTalk Manager Updaic

fppleTalk Transaction Protocol Changes
Sending an ATP request through a specified socket

ATP regucsts can now be sent through client-specified sockets. ATP previously would
open a dynamic socket, send the request through it, and close the socket when the request
completed. The client can now choose to a request through an already socket.
This also allows more than one request to be sent per socket. A new call, NSendRequest,
hasl;h:ncn&dded for this purpose. The function of the old SendRequest call itself remains
unchanged.

NSendRequest function

Parameter block
--> 18  userData longword suser bytes
<--- 22 reqTID word ;transaction ID used in requet
-—-> 26 csCode word ;always sendReguest
-> 28 atpSocket byte ssocket to send request on
<-> 29 atpFlags byte scontrol information
-> 30 Block  longword :destination socket address
-> 34 regLength word ;request size in bytes
--> 36  reqPointer  pointer spointer to request data
-> 40 bdsPointer inter spointer to response BDS
—-> 44 numOfBuffs gm snumber of responses expected
—-> 45 timeOutVal  byte stimeout interval
<—-— 46 numOf Resps byte ;number of responses received
<--> 47 retryCount  byte ;number of retries
<-- 48 intBuff word sused internally

The NSendRequest call is functionally equivalent to the SendRequest call, however
NSendRequest allows you to specify, in the atpSocket field, the socket through which the
request is to be sent. This socket must have been previously opened through an
OpenATPSkt request (otherwise a badATPSkt error will be returned). Note that
NSendRequest requires two additional bytes of memory at the end of the parameter block,
immediately following the retryCount. These bytes are for the internal use of the
AppleTalk Manager and should not be modified while the NSendRequest call is active.

There is a machine-dependent limit as to the number of concurrent NSendRequests that can
be active on a given socket. If this limit is exceeded, the error tooManyReqs will be
returned.

Note that one additional difference between Sendkéquest and NSendRequest is that an
NSendRequest can only be aborted by a KillSendReq call (see below), whereas a
SendRequest can be aborted by cither a ReITCB or KillSendReq call.

Result Codes noEmr No error
reqFailed Retry count exceeded
tooMany Regs Too many concurrent requests
noData Area Too many outstanding ATP calls
reqAborted  Request cancelled by user

APDA Draft 3 . January 23, 1987



AppleTalk Manager Update

Aborting ATP SendRequests

The RelTCB call is still supported, but only for aborting SendRequests. To abort
NSendRequests, a new call, KillSendReq has been added. This call will abort both
SendRequests and NSendRequests. KillSendReq's only argument is the queue element
pointer of the request to be aborted. The queue element pointer is passed at the offset of
the KillSendReq queue element specified by AKillQE1.

KillSendReq function

Parameter block
—-> 26 csCode word ; always KillSendReq
—-> 44 AKIlIQE! pointer ; pointer to queue element

KillSendReq is functionally equivalent to ReITCB, except that it takes different arguments
and will abort both SendRequests and NSendRequests. To abort one of these calls, place a
pointer to the queue element of the call to abort in AKIlIQEI and issue the KillSendReq call.

Result Codes noEmr No error
cbNotFound AKilIQEI does not point to a SendReq
or NSendReq queue element

Aborting Get Requests

ATP GetRequests can now be aborted through the KillGetReq call. This call looks and
works just like the KillSendReq call, and is used to abort a ific GetRequest call.
Previously it was necessary to close the socket to abort all GetRequest calls on the socket.

KillGetReq function

Parameter block
—> 26  csCode word ; always KillGetReq
-—> 44  AKIilQE! pointer ; pointer to queue element

KillGetReq will abort a specific outstanding GetRequest call (as opposed to closing the
socket which aborts all outstanding GetRequests on that socket). call will be
completed with a reqAborted error. To abort a GetRequest, place a pointer to the queue
element of the call to abort in AKilIQEI and issue the KillGetReq call.

Result Codes noErr Noemor
cbNotFound AKIillIQEI does not point to a GetReq
queue element

APDADraft 4 January 23, 1987



AppleTalk Manager Updaic

Nome Binding Protocol Changes
Multiple Concurrent NBP Requests

NBP now supports multiple concurrent active requests. Specifically, a number of
LookupNames, RegisterNames and ConfirmNames can all be active concurrently. The
maximum number of concurrent requests is machine dependent, if it is exceeded the error
tooManyRegs will be returned. Active requests can be aborted by the KilINBP call .

KilINBP function

Parameter block
-> 26  csCode word ; always KilINBP
-> 28 NKIillQE! pointer ; pointer to queue element

KilINBP is used to abort an outstanding LookupName, RegisterName or ConfirmName
request. To abort one of these calls, place a pointer to the queue element of the call to abort
in NKillQEI and issue the KilINBP call. The call will be completed with a ReqAborted
error.

Result Codes noErr No error
cbNotFound NKillQEI does not point to a valid
NBP queue element

Uariable resources

All dynamic sockets ($80 through $FE) can now be opened concurrently in addition to
twelve (12) static sockets.

The following resources have also been increased:

Number of protocols handlers (MPP)

Number of concurrent SendRequests (ATP)
Number of ATP sockets

Number of concurrent XO Send Responses (ATP)
Number of data areas (ATP)

Number of concurrent NBP requests

APDA Draft S January 23, 1987



AppleTalk Manager Update

NEW APPLETALK PROTOCOLS )

The following protocols have been added to the AppleTalk Manager:
 Echo Protocol ‘ ~
e AppleTalk Session Protocol (workstation side)
» AppleTalk Filing Protocol (small portion of the workstation side)

The AppleTalk system architecture consists of a number of protocols arranged in layers.
Each protocol in a specific layer provides services to higher-level layers (knowns as the
protocol’s clients) by building on the services provided by the lower-level layers. Figure 1
shows the AppleTalk Protocols and their corresponding network layers.

In Figure 1, the lines indicate the interaction between the protocols. Note that like the
Routing Table Maintenance Protocol, the Echo Protocol is not directly accessible to
Macintosh programs.

The details of these protocols are provided in /nside AppleTalk.

APDA Draft 6 January 23, 1987



' AppleTalk Manager Updatc

[Apple‘ralk Filing ProtoeolJ Presentation Layer

(Apple‘ralk Session Protocol | | Printer Access Protocol J -

Zone Information Session Layer
Protocol
' Transport Layer
leTalk — -
Echo %?:nsaction Name Binding m?r“'{;%;:gle
Protocol Protocol Protocol Protocol
4
( ‘ “Nefwork Layer
rd .
L Datagram Delivery Protocol )

Link Access Layer
(AppleTalk Link Access Protooog

‘ Physical Layer

] AppleTalk Hardware

Figure 1. AppleTalk Protocols and OSI Nework Layers

(w p APDA Drgaft 7 January 23, 1987



AppleTalk Manager Updaie

Echo Protocol

The Echo Protocol (EP) provides an echoing service through static socket number 4
known as the echoer socket. The echoer listens for packets received through this

socket. Any correctly formed packet sent to the echoer socket on a node, will be echoed
back to its sender.

This simple protocol can be used for two-impomnt purposes:

1. EP can be used by any Datagram Delivery Protocol (DDP) client to determine if a
particular node, (known to have an echoer) is accessible over an.internet.: -

2. EP is useful in determining the average time it takes for a packet to travel to a remote
node and back. This is very useful in developing client-dependent heuristics for - -
estimating the timeouts to be specified by clients of ATP, ASP and other protocols.

Programs can not access EP directly via the AppleTalk Manager. The EP implementation
exists solely to respond to EP requests sent by other nodes. EP is a DDP client residing on
statically-assigned socket 4, the echoing socket. Clients wishing to send EP requests (and
receive EP responses) should use the Datagram Delivery Protocol (DDP) to send the
appropriate packet.

AppleTalk Session Protocol

The AppleTalk Session Protocol (ASP) provides for the setting up, maintaining and
closing down of a session. A session is a logical relationship between two network
entities, a workstation and a server. The workstation tells the server what to do and the
server responds with the appropriate actions. ASP makes sure that the sessions dialog is
maintained in the correct sequence and that both ends of the conversation are properly

participating. :

ASP will generally be used between two communicating network entities where one is
providing a service to the other (i.c. a server is providing a service to a workstation) and
the service provided is state-dependent. That is, the response to a particular request from
an entity is dependent upon other previous requests from that entity. For example, a
request to read bytes from a file is dependent upon a previous request to open that file in the
first place. However, a request to return the time of day is independent of all such previous
requests. : -

When the service provided is state-dependent, requests must be delivered to the server in
the same order as generated by the workstation. ASP guarantees requests are delivered to
the server in the order in which they are issued, and that duplicate requests are never
delivered (another requirement of state-dependent service).

APDA Draft 8 ‘ January 23, 1987



AppleTalk Manager Update

Ihet ASP does

ASP is an asymetric protocol, providing one set of services to the workstation and a
different set of services to the server.

ASP workstation clients initiate (open) sessions, send requests (commands) on that session
and close sessions down. ASP server clients receive and respond (through command
replies) to these requests. ASP guarantees that these requests are delivered in the same
order as they are made, and without duplication. ASP is also responsible for closing down
the session if one end dies or becomes unreachable and will inform its client (either server
or workstation) of the action. ,

ASP also provides various additional services, such as allowing a workstation to obtain
server status information without ing a session to a server, writing blocks of data from
the workstation to the server end of the session, and the ability for a server to send an
attention message to the workstation.

ASP assumes that the workstation client has a mechanism for looking up the network
address of the server with which it wants to set up a session (generally this is done using
the AppleTalk Name Binding Protocol).

Both ends of the session periodically check to see that the other end of the session is still
responsive. If one end dies or becomes unreachable the other end closes the session.

ASP is a client of ATP and calls ATP for transport services.

What RSP does not do

ASP does not:

« allow the server to send commands to the workstation. The server is allowed to alent
the workstation through the server's artention mechanism only.

o understand or interpret the syntax or the semantics of the commands sent to the server
by the workstation.

« provide a user authentication (password) mechanism.

 insure that consecutive commands complete in the order in which they were sent (and
delivered) to the server.

Note: The XPP driver does implement the workstation side of the AppleTalk Filing
Protocol login command.

AppleTalk Filing Protocol

The AppleTalk Fil‘inPgPProtocol (AFP) allows a workstation on an Apg}le‘l'alk network to
access files on an file server. AFP specifies a complex remote filing system
containing user authentication and an access control mechanism that supports volume and
folder-level access rights. For details of AFP, refer to the AFP Draft Proposal.

APDA Draft 9 January 23, 1987



AppleTalk Manager Update

EXTENDED PROTOCOL PACKAGE DRIVER

The Extended Protocol Package (XPP) driver is intended to implement several AppleTalk
communication protocols in the same package for ease of use. The XPP driver currently
consists of two modules that operate on two levels: the low-level implements the
workstation side of AppleTalk Session Protocol, and the high-level implements (a small
portion of) the workstation side of the AppleTalk Filing Protocol.

This driver adds functionality to the AppleTalk manager by providing services ﬁdiﬁonal to

those provided in the MPP and .ATP drivers. Figure 2 shows the Macintosh AppleTalk
drivers and the protocols accessible through each driver.

APDA Drgft 10 quuary 23,1987

N



AppleTalk Manager Update

[ Macintosh program

w

P s e S ey R B

(ﬂpple‘mt Filing Protocﬂ %
Gpplemk Session rrotoc(ﬂ
KPP Driver

p2

AL

Protocol

Epplemk Transaction Pmocﬂg ’

0

RIOpLanss i

ATP Driver

SERBR  SEECU R Pl e R cee e e S 1

4 _:Gnmgnm ?elwerg ProtocoD‘-
l

(npplemk Link Access Protocol

MPP Driver .

O IR PSR MRS EON SR SR e R o R S AR R R A

v

_/__RppleTalk Hardware

Figure 2. Macintosh AppleTalk Drivers

APDA Draft 1 January 23, 1987



ApplcTalk Manager Update

-

The .XPP driver maps an AFP call from the client workstation into one or more ASP calls.
XPP provides one client-level call for AFP.

The implementation of AFP in the XPP driver is very limited. Most calls are a very simple
one-to-one mapping from an AFP call to an ASP command without myim:Fpretatian of
the syntax of the command by the XPP driver. Refer to the Mapping AFP
commands section of this document for further information. -

Uersion
The .XPP driver supports ASP Version (hex) $100, as described in Inside AppleTalk .
Error reporting

Ea:}'lors are returned by the .XPP driver in the ioResult field of the Device Manager Control
calls. .
The error conditions reported by the .XPP driver may represent the unsuccessful
completion of a routine in more than just one ess involved in the interaction of the
session. System-level, .XPP driver, AppleTalk, and server errors can all turn up in the
ioResult field. Note that an ASP server error actually results from the activity of the
server end of the transaction but is reported through the XPP driver.

AFP calls also return codes indicating the unsuccessful completion of AFP commands in
the Command Result field of the parameter block (described below).

| An application using the XPP driver should respond appropriately to error conditions
reported from the different parts of the interaction. As shown in figure 3, the following
errors can be returned in the ioResult field:

1. System-level errors

System errors returned by the .XPP driver indicate such conditions as the driver not
being open or a specific system call not being supported. For a complete list of result
codes returned by the Macintosh system software, refer to Inside Macintosh,
Appendix A.

2. XPP errors (for example, session not opened)

The XPP driver can also return errors resulting from its own activity (for example,
the referenced session isn’t open). The possible .XPP driver errors returned are
listed in the XPP driver results codes section with each function that can return the
code

3. AppleTalk Errors (returned from lower-level protocols)

XPP may also return errors from lower-level protocol, (for example, socket not
open). ﬂ .

Possible error conditions and codes are described in Inside Macintosh, Volume 2,
Chapter 10, “The AppleTalk Manager™.

4. An ASP-specific error could be returned from an ASP server in response to a failed
OpenSession call. Errors of this type, returned by the server to the workstation, are

APDA Draft 2 January 23, 1987



AppleTalk Manager Updaie

. documented both in Inside AppleTalk Section 11, ""AppleTalk Session Protocoland
( in the XPP driver results code section of this document.

d
g:::mmn.u loResult Fleld

Error Types

1. System Error
. 2. XPP Error
M 3. Talk Error
- 4. ASP Server
Error
S. AFP Server Error

Figure 3. Error Reporting

AppleTolk Filing Protocol errors

In addition, the AppleTalk Filing Protocol defines errors that are returned from the server to
the workstation client. These errors are returned in the the CmdResult field of the
parameter block (error type S in Figure 3). This field is valid if no system-level error is
returned by the call. Note that at the ASP level, the CmdResult field is client-defined data
and may not be an error code.

APDA Draf: ‘ 13 January 23, 1987



AppleTalk Manager Update

JHPP driver functions overview

The paragraphs below describe the implementation of ASP in the .XPP driver. For more

detailed information about ASP, refer to Inside AppleTalk, Section 11, “AppleTalk Session
Protocol (ASP).”

Using AppleTalk Name Binding Protocol

A server wishing to advertise its service on the AppleTalk network calls ATP to open an
ATP responding socket known as the session listening socket (SLS). The server then
calls the Name Binding Protocol (NBP) to register a name on this socket. At this point, the
server calls the server side of ASP to pass it the address of the SLS. Then, the server
starts listening on the SLS for session opening requests coming over the network.

Opening and closing sessions

When a workstation wishes to access a server, the workstation must call NBP to discover
the SLS for that server. Then the workstation calls ASP to open a session with that server.

After determining the SLS (address) of the server, the workstation client issues an
OpenSession (or AFPLogin) call to open a session with that server. As a result of this
call, ASP sends a special OpenSession packet (an ATP request) to the SLS; this packet
carries the address of a workstation socket for use in the session. This socket is referred
to as the workstation session socket (WSS). If the server is unable to set up the session, it
returns an error. If the request is successful, the server returns no error and the session is
opened. The open session packet also contains a version number so that both ends ¢
verify that they are speaking the same version of ASP. '

The AbortOS function can be used to abort an outstanding OpenSession request before it
has completed. -

The workstation client closes the session by issuing a CloseSession (or AFPLogout). The
CloseSession call aborts any calls that are active on the session and closes the session.
The session can also be closed by the server or by ASP itself, such as when one end of the
session dies. The CloseAll call (which should be used with care) aborts every session that
the driver has active.

Session maintenance

A session will remain open until it is explicitly terminated by the ASP client at either end or
until one of the sessions ends dies or becomes unreachable.

Commands on an open session

Once a session has been opened, the workstation client can send a sequence of commands
over the session to the server end. The commands are delivered in the same order as they
are issued from the workstation end, and replies to the commands are returned to the
workstation end. :

Three types of commands can be made on an open session. These commands are
UserCommand, UserWrite, and AFPCall functions described in the following paragraphs.

APDA Drafi . M January 23, 1987



AppleTalk Manager Update

UserCommand calls are similar to ATP requests. The workstation client sends a command
(included in a variable size command block) to the server client requesting it to pesform a
particular function and send back a variable size command nnmplesofmch
commands vary from a request to open a particular file on a file server, t0 reading a certain
range of bytes from a device. In the first case, a small amount of reply data is retumned, in
the second case a multiple-packet reply might be generated.

The XPP driver does not interpret the command block or in any way participate in the
command’s function. lt:implyc:cnweystheemnu'xandl:lm:k.»im:ludeé):;u a higher-level
format, to the server end of the session, and returns the command reply to the workstation-
end client. The command reply consists of a four-byte command result and a variable size
command reply block.

UserWrite allows the workstation to convey blocks of data to the server. UserWrite is
nse;itomsfaavaﬁablc size block of data to the server end of the session and to receive a
reply. '

The AFPCall function provides a mechanism for passing an AFP command to the server
end of an open session and receiving a reply. The first byte of the AFPCall command
buffer contains the code for the AFP command that is to be passed to the server for
execution. Most AFP calls are implemented through a very simple one-to-one mapping that
takes the call and makes an ASP command out of it.

‘The AFPCall function can have one of four different formats. “These four formats, which
are basically all very similar,are described in detail below.

Getting server status information
ASP provides a service to allow its workstation clients to obtain a block of service status
information from a server without the need for opening a session. The GetSratus function

returns a status block from the server identified by the indicated address. ASP does not
i:;pgsc any structure on the status block. This structure is defined by the protocol above

APDA Draft 15 January 23, 1987



AppleTalk Manager Update
Attention mechanism

Attentions are defined in ASP as a way for the server to alert the workstation of some event
or critical piece of information. The ASP OpenSession and AFP login calls include a
pointer to an attention routine in their parameter blocks. This attention routine is called by
the .XPP driver when it receives an attention from the server and also when the session is
closing as described below.

In addition, upon receiving an OpenSession call, or AFPlogin call, the XPP driver sets the
first two bytes of the session control block (SCB) to zero. When the .XPP driver receives

an attention, the first two bytes of the SCB are set to the attention bytes from the packet
(which are always non-zero).

Note: A higher-level language such as Pascal may not wish to have a low-level attention
routine called. A Pascal program can poll the attention bytes, and if they are ever
nonzero, the program will know that an attention has come in (it would then set the
attention bytes back to zero). Of course, two or more attentions could be received
between successive polls and only the last one will be recorded.

The .XPP driver also calls the attention routine when the session is closed by either the

server, workstation, or ASP itself (that is, imeout). In these cases, the attention bytes in
the SCB are unchanged. o

The attention routine

The attention routine is called at interrupt level and must observe interrupt conventions.

Specifically, the interrupt routine can change registers A0 through A3 and DO through D3
and it must not make any Memory Manager calls.

It will be called with
« DO (word) equal to the SessRefnum for that session (see OpenSession Function)

» D1 (word) equal to the attention bytes passed by the server (or zero if the session is
closing)

Return with an RTS (return from subroutine) to resume normal execution.

The next section describes the calls that can be made to the XPP driver.

APDA Draft 16 ery 23,1987



“ - AppleTalk Manager Updatc

CALLING THE XPP DRIVER

This section describes how to use the XPP driver and how to call the XPP driver routines
from assembly language and Pascal.

lising KPP

‘l'l:c)ﬂ’?driver‘:ﬁlemcmsﬂnworkmﬁm side of ASP and provides a mechanism for the
workstation to AppleTalk Filing Protocol (AFP) commands to the server.

Allocating memory

Every call to the XPP driver requires the caller to pass in whatever memory is needed by
the driver for the call, generally at the end of the queue element. When a session is opened,

the memory required for maintenance of that session (i.e., the Session Control Block) is
also passed in.

For standard Device Manager calls, a queue element of a specific size equal to IOQEISize is
allocated. When issuing many calls to XPP, it is the caller’s responsibility to allocate a
queue clement that is large enough to accommodate the XPP driver’s requirements for
executing that call, as defined below. Once allocated, that memory can’t be modified until
the call completes.

Opening the HPP driver

To open the XPP driver, issue a Device Manager Open call. Refer to Inside Macintosh,
Volume 2, Chapter 6, “The Device Manager.” The name of the XPP driver is ‘. XPP".
Note that original Macintosh ROMs require that XPP be opened only once. With new
ROMs, the XPP unit number can always be obtained t}uougpm Open call. With old
ROMs only, the XPP unit number must be hard coded to UnitNum (40) since only
one open call can be issued to the driver.

The XPP driver cannot be opened unless AppleTalk is open. The application must ensure
that the MPP and ATP drivers are opened, as described in Inside Macintosh Volume 2,
pages 304-305. .

The XPPLoaded bit (bit 5) in the PortBUse byte in low memory indicates whether or not
the XPP driver is open.

APDA Draft 7 January 23, 1987



AppleTalk Manager Update

Example o
d‘lge following is an example of the procedure an application might use to open the XPP R
ver.

Routine: OpenXPP
Open the .XPP driver and return the driver refNum for it.

Exit: DO = error code (ccr's set)
Dl = XPP driver refNum (if no errors)

All other registers preserved

W8 % 4 % Ny w N W % S %

xppUnitNum EQU 40 ; default XPP driver aumber
xppTfRNum =~ EQU = (xppUnitNum+l)’ ; default XPP driver refNum
OpenXPP
MOVE.L AO0-Al/D2,~-(SP) ; save egisters
MOVE ROMBS, DO s Check ROM type byte
BPL.S €10 ;7 branch if >=128K ROMs
BIST #xpplLoadedBit,PortBUse; is the XPP driver open alreacy?
BEQ.S €10 ; if not open, then branch to Open code.
MOVE ¢xppTfRNum, D1 ; else use this as driver refnum.
MOVEQ 40,D0 ; set noErr.
BRA.S @90 ; and exit.
’ -
; XPP driver not open. Make an _Open call to it. If using a 128X ROM
; machine and the driver is already open, we will make another Open call to
s it Jjust so we get the correct driver refNum.
€10 SUB #icQElSize,SP ; allocate temporary param block.
MOVE.L SP,AO : A0 => param block.
LEA XPPName, Al ¢ Al => XPP (ASP/AFP) driver name.
‘MOVE.L Al,ioFileName (AOD) ; driver name into param block.
CLR.B ioPermssn (A0) : clear permissions byte
_Open
MOVE ioRefNum(AO),D1 ; Dl=driver refNum (invalid if error)
ADD ¢ioQE1Size,SP ; deallocate temp param block.
€90 MOVE.L (SP)+,A0-Al1/D2 : restore registers
TST Do ; error? (set ccr's)
RTS
XPPName DC.B 4 ; length of string.
DC.B ' . XPP' ;s driver name.

APDA Draft 18 January 23,1987 .



AppleTalk Manager Updatc

From Pascal, XPP can be opened through the OpenXPP call, which returns the driver's
reference number.

FUNCTION OpenXPP (VAR XPPRefnum: INTEGER): OSEr:r:

Open errors
¢ Errors returned by System

¢ portinUse is returned if the AppleTalk is in use by a driver other than AppleTalk
erit‘m:ple‘l'a.lkisnctopen.PP-le pot > pp

Closing the RPP driver
To close the XPP driver, call the Device Manager Close routine.

Caution: There is generally no reason to close the driver. Use this call sparingly, if at
all. This call should generally be used only by system level applications.

Close Errors
¢ Errors returned by System

¢ Closerr (new ROMs only) returned if you try to close the driver and there are
sessions active through that driver. When sessions are active, closerr is returned and
the driver remains open.

¢ On old ROM:s the driver is closed whether or not sessions are active and no error is
returned. Results are unpredictable if sessions are still active.

Session Control Block

The session control block (SCB) is a non-relocatable block of data passed by the caller to
XPP upon session opening. XPP reserves this block for use in maintaining an open
session. The SCB size is defined by the constant SCBMemSize. The SCB is a locked
block and as long as the session is open, the SCB can not be modified in any way by the
application. There is one SCB for each open session. This block can be reused once a

lc»scSess call is issued and completed for that session or when the session is indicated as
closed.

How to access the HPP driver

This section contains information for programmers using Pascal and aSsembly language
routines.

Most XPP driver routines can be executed either synchronously (meaning that the
application can't continue until the routine is completed) or asynchronously (meaning that
the application is free to perform other tasks while the routine is executing).

Using Pascal

Onasynchxonmucdlsﬂnunamypassaéanpleﬁonmﬁnepoimainmemmer
block, at offset IOCompletion. This routine will be executed upon completion of the call.
It is executed at interrupt level and must not make any memory manager calls. If it uses

APDA Draft » January 23, 1987



AppleTalk Manager Update

application globals, it must ensure that register AS is set up correctly; for details see
SetupAS and RestoreAS in the Operating System Utilities chapter of Inside Macintosh. If
no completion routine is desired, IOCompletion should be set to NIL.

Asynchronous calls return control to the caller with result code of noErr as soon as they are
queued to the driver. This isn't an indication of successful completion. To determine
when the call is actually completed, if you don't want to use a completion routine, you can
poll the ioResult field; this field is set to 1 when the call is made, and receives the actual
result code upon completion. -

As different XPP calls take different arguments in their parameter block, a Pascal variant
record has been defined to account for all the different cases. This parameter block is
detailed in figure 4. The first four fields (which are the same for all calls) are automatically
filled in by the device manager. The CSCode field is automatically filled in by Pascal,
depending on which call is being made. The caller must, however, set the ioRefnum field
to l:l‘s reference number, as returned in the OpenXPP call. The ioVRefnum field is
unused.

Note that the parameter block is defined so as to be the maximum size used by any call.
Different calls take different size parameter blocks, each call requiring a certain minimum
size. Callers are free to abbreviate the parameter block where appropriate.

General

With each routine, a list of the parameter block fields used by the call is also given. All
routines are invoked by Device Manager Control calls with the csCode field equal to the
code corresponding to the function being called. The number next to each field name
indicates the byte offset of the field from the start of the parameter block pointed to by AQ;
only assembly-language programmers need to be concerned with it. . An arrow next to
each parameter name indicates whether it’s an input, output, or input/output parameter:

Arrow Meaning
-> Parameter is passed
<-— Parameter is returned
<-->  Parameter is passed and returned

All Device Manager Control calls return an integer result code in the ioResult field.Each
routine description lists all the applicable result codes, along with a short description of
what the result code means. Refer to the section XPP Driver result codes for an
alphabetical list of result codes returned by the XPP driver.

Each routine description includes a Pascal form of the call. Pascal calls to the XPP Driver
are of the form:

FUNCTION XPPCall (Puamﬂlock:ﬂ’!?am}utz, async:BOOLEAN) : OSErr;
XPPCall is the name of the routine.

ParamBlock points to the actual /O queue element used in the _Control call, filled in by the
caller with the parameters of the routine.

APDA Draft 2 January 23, 1987

S



AppleTalk Manager Update
async indicates whether or not the call should be made asynchronously. If async is
TRUE, the call is executed asynchronously; otherwise the call is executed synchronously.
The routine returns an result code of type OSErr.

APDA Draft 21 January 23, 1987



AppleTalk Manager Update

XPPParamBlock = PACKED RECORD

qLink: QElemPir; { next queue entry )
qType: INTEGER; ( queue type )
ioTrap: INTEGER; { routine trap )
ioCmdAddr: Pir; ; { routine address )
ioCompletion: ProcPir; - =~ { completion routine )
ioResult: OSErr; ( result code )
CmdResult: LONGINT; { Command result (ATP user bytes) [long] )
ioVRefNum: INTEGER; { volume reference or drive number )
ioRefNum: INTEGER; { driver reference number )
csCode: INTEGER; { Call command code )
CASE XPPPrmBlkType OF
ASPAbortPrm:
(AbortSCBPir: Pir); : { SCB pointer for AbortOS [long] )
ASPSizeBlk:
(ASPMaxCmdSize: INTEGER; { For SPGetParms (word] ]
ASPQuantumSize: INTEGER; { For SPGetParms {word] )
NumSesss: INTEGER); { For SPGetParms [word] )
XPPPrmBIk:
(SessRefnum: INTEGER; ( Offset to session refnum [word] )
ASPTimeout: Bytc; { Timeout for ATP [byte] )
ASPRetry: Byte; ( Retry count for ATP [byte] }
CASE XPPSubPrmType OF
ASPOpenPrm:
(ServerAddr: LONGINT; { Server address block [longword] )
SCBPointer: Ptr; { SCB pointer [longword) )
AtnRoutine: Pitr); ( Attention routine pointer [long] )
ASPSubPrm:
(CBSize: INTEGER; { Command block size [word] )
CBPtr: Ptr; { Command block pointer {long] )
RBSize: INTEGER; ( Reply buffer size {word] )
RBP1r: Ptr; { Reply buffer pointer [long] )
CASE XPPEndPrmType OF
AFPLoginPrm:
(AFPAddrBlock: LONGINT; { Address block in AFP login [long] )
AFPSCBP1r: Pu; { SCB pointer in AFP login [long] )
AFPAunRoutine: Ptr); { Attn routine pointer in AFP login }
ASPEndPrm:
(WDSize: INTEGER; ( Write data size [word] )
WDPtr: Pir; { Write daua pointer [long] )

CCBStart: ARRAY[0..295) OF Byte))); (CCB memory for driver)
{Write max size(CCB) = 296; all other calls = 150)

Figure 4. XPP Driver Parameter Block Record

APDA Draft 2 January 23, 1987



.AppIeTaDc Manager Update

AppleTalk Sessfon Protocol Changes

This section contains descriptions of the XPP driver functions that you can call. Each
function daﬁuon shows the requi block fields, their offsets within the
parameter block and a brief definition of the field. Possible result codes are also described.

Note on result codes

An important distinction exists between the ASPParamErr and ASPSessClosed result
codes that may be retumed by the XPP driver.

‘When the driver returns ASPParamEzr to a call that takes as an input a session reference
number, the session reference number does not relate 1o a valid open session. There could
be several reasons for this, such as the workstation or server end closed the session or the
server end of the session died.

The ASPSessClosed result code indicates that even though the session reference number
relates to a valid session, that particular session is in the process of closing down (although
the session is not yet closed).

OpenSess function

OpenSess initiates (opens) a session between the workstation and a server. Below is the
required parameter block. A brief definition of the fields follows.

FUNCTION ASPOpenSession (xParamBlock:XPPParmBlkPtzr;async:BOOLEAN): OSErr;
Parameter block

—> 26 csCode word ;always OpenSess

<-- 28 SessRefnum word ;session reference number

-—> 30 ASPTimeout byte ;retry interval in seconds

—-> 31 ASPRetry byte :number of retries

~> 32  ServerAddr long word  ;server socket address

—-—> 36 SCBPointer pointer ;pointer to session control block
—> 40  AtmnRoutine pointer spointer to attention routine

SessRefnum is a unique number identifying the open session between the workstation and
the server. The SessRefnum is returned when the function completes successfully and is
used in all calls to identify the session.

ASPTimeOut is the interval in seconds between retries of the open session request.
ASPRetry is the number of retries that will be attempted.
ServerAddr is the network identifier or address of the socket on which the server is

li 3 g. K

SCBpointer points to a non-relocatable block of data for the session control block (SCB)
that the XPP driver reserves for use in maintaining an open session. The SCB size is
defined by the constant SCBMemSize. The SCB is a locked block and as long as the
session is open, the SCB cannot be modified in any way by the application. There is one
SCB for each open session. This block can be reused when a CloseSess call is issued and

APDA Draft 23 January 23, 1987



AppleTalk Manager Update

completed for that session, or when the session is indicated as closed through return of an
ASPParamErr as the result of a call for that session.

AunRoutine is a pointer to a routine that is invoked if an attention from the server is
ll;eec_exv:i. :ir upon session closing. If this pointer is equal to zero, no attention routine will
inv .

Result codes ASPNoMoreSess  Driver cannot support another session
ASPParamErr Server returned bad (positive) error code -
ASPNoServers ~ No servers at that address '

- The server did not 10 the request.-
RegAborted OpenSess was by an AbortOS
ASPBadVersNum  Server cannot support the offered version number
ASPServerBusy Server cannot open another session

Note: The number of sessions that the driver is capable of supporting depends on the
machine that the driver is running on.

CloseSess function

CloseSess closes the session identified by the SessRefnum returned in the OpenSess call.
CloseSess aborts any calls that are active on the session, closes the session, and calls the
attention routine, if any, with an attention code of zero (zero is invalid as a real attention
code).

FUNCTION ASPCloseSession(xParamBlock:XPPParmBlkPtr;async:BOOLEAN) :

OSErr;
Parameter block
—> 26 csCode word - - ;always CloseSess
--> 28  SessRefnum word ;session reference number
Result codes ASPParamErr Parameter error, indicates an invalid session

reference number
ASPSessClosed Session already in process of closing

AbortOS function

AbortOS aborts a pending (not yet completed) OpenSess call. The aborted OpenSess call
will return a ReqAborted error.

FUNCTION ASPAbortOS (xParamBlock:XPPParmBlkPtr;async:BOOLEAN) : OSExr:
Parameter block

—-—> 26 csCode word ;always AbortOS ,
—> 28  AbontSCBPointer pointer spointer to session control block

AbortSCBPointer points to the original SCB used in the the pending OpenSess call.

APDA Draft 4 4 January 23, 1987



AppleTalk Manager Update

" Resultcodes cbNotFound SCB not found, no outstanding open session to be
;bcoged. Pointer did not point to an open session

GetParms function
GetParms returns three ASP parameters. This call does not require an open session.

FUNCTION ASPGetParms (xParamBlock:XPPParmBlkPtr;async:BOOLEAN): OSErr;
Parameter block

—> 26 c¢sCode word ;always GetParms

<-— 28 ASPMaxCmdSize word :maximum size of command block
<- 30 ASPQuantumSize  word ;maximum data size

<-- 32 NumSesss word ;number of sessions

ASPMaxCmdSize is the maximum size of a command that can be sent to the server.

ASPQuantumSize is the maximum size of data that can be transferred to the serverin a
Write request or from the server in a command reply.

NumSesss is the number of concurrent sessions supported by the driver.

CloseAll function

CloseAll closes every session that the driver has active, aborting all active requests and
invoking the attention routines where ided. This call should be used carefully.
CloseAll can be used as a system level resource for making sure all sessions are closed
prior to closing the driver.

FUNCTION ASPCloseAll (xParamBlock:XPPParmBlkPtr;async:BOOLEAN) : OSErr;
Parameter block

—> 26 csCode word ;always CloseAll
UserWrite function

UserWrite transfers data on a session. UserWrite is one of the two main calls that can be
used to transfer data on an ASP session. The other call that performs a similar data transfer
is UserCommand described below. The UserWrite command returns data in two different
laces. Four bytes of data are returned in the CmdResult field and a variable size reply
ffer is also returned.

FUNCTION ASPUserWrite (xParamBlock :)CPPP::mBl}th:: async:BOOLEAN) : OSErr:
Parameter block _
<— .18 CmdResult long word ;ASPcbtmnandresult
> 26 e¢sCode word :always UserWrite
word
byte

-> 28 SessRefnum ssession reference number
-—> 30  ASPTimeout ;retry interval in seconds

APDA Drgft 25 January 23, 1987



AppleTalk Manager Update

-—> 32 CBSize - word ;command block size

—-> 34 CBPr : pointer scommand block pointer

<--> 38 RBSize word reply buffer size and reply size
--> 40  RBPointer pointer ;eply buffer pointer

<> 4 WDSize word - swrite data size

—~—> 46 WDPr pointer swrite data pointer

<-— S50 CCBStn record sstart of memory for CCB

CmdResult is four bytes of data returned by the server.
SessRefnum is the session reference number returned in the OpenSess call.

ASPTimeOut is the interval in seconds between retries of the call. Notice that there is no
ASPRetry field (retries are infinite). The command will be retried at the prescribed interval
until completion or the session is closed.

CBSize is the size in bytes of the command data that is to be written on the session. The
size of the command block must not exceed the value of ASPMaxCmdSize returned by the
GetParms call. Note that this buffer is not the data to be written by the command but only
the data of the command itself.

CBPointer points to the command data.

RBSize is passed and indicates the size of the reply buffer in bytes expected by the
command. RBSize is also returned and indicates the size of the reply that was acutally
returned.

RBPointer points to the reply buffer.

WDSize is passed and indicates the size of the write data in bytes to be sent by the
command. WDSize is also returned and indicates the size of the write data that was acutally
written.

WDPointer points to the write data buffer.

CCBStar is the start of the memory to be used by the XPP driver for the command control
block. The size of this block is equal to a maximum of 296 bytes. To determine the exact
requirement, refer to the CCB Sizes section of this document.

Result codes ASPParam Invalid session number, session has been cléscd
ASPSizeEmr Command block size is bigger than MaxCmdSize
ASPSessClosed Session is closing

ASPBufTooSmall  Reply is bigger than response buffer -
Buffer will be filled, data will be truncated

UserCommand function
UserCo:mmnduusedwsendaeommandtothemonuesnon

FUNCTION ASPUserCommand (xParamBlock:XPPParmBlkPtr;async:BOOLEAN): OSErr:
Parameter block

<- 18 CmdResult longword  ;ASP command result

—-> 26 csCode word ;always UserCommand
—-—> 28 SessRefaum word ;session number

-—> 30 ASPTimeout = byte . ;retry interval in seconds
-> 32 CBSize word scommand block size

APDA Draft 2% January 23, 1987



‘AppleTalk Manager Update

—> 34 CBPx pointer scommand block pointer
<-> 38 RBSize word Jeply buffer and ‘x’cmply size
--> 40  RBPointer pointer sreply buffer pointer .
<-— S0 COCBStant record sstart of memory for CCB

SessRefnum is the session reference number rerurned in the OpenSess call.

ASPTimeOut isme‘intava'linsecondsbetwemrwiesofﬂuan. Notice that there is no
ASPRety field (retries are infinite). The command will be retried at the prescribed interval
until completion or the session is closed. =

CBSize is the size in of the block of data that contains the command to be sent to the

server on the session. The size of the command block must not exceed the value of
ASPMaxCmdSize returned by the GetParms call.

CBPointer points to the block of data containing the command that is to be sent to the
server on the session.

RBSize is passed and indicates the size of the reply buffer in bytes expected by the
command. RBSize is also returned and indicates the size of the reply that was actually
returned.

RBPointer points to the reply buffer.

CCBStart is the start of the memory to be used by the XPP driver for the command control
block. The size of this block is equal to a maximum of 150 bytes. To determine the exact
requirement refer to the CCB Sizes section of this document.

Result codes ASPParamErmr Invalid session number, session has been closed
ASPSizeErmr Command block size is bigger than MaxCmdSize
ASPSessClosed Session is closing
ASPBufTooSmall  Reply is bigger than response buffer

‘The buffer will be filled, data will be truncated

GetStatus function

GetStatus returns server status. This call is also used as GetServerInfo at the AFP level.
This call is unique in that it transfers data over the network without having a session open.
This call does not pass any data but requests that server status be returned.

FUNCTION ASPGetStatus (xParamBlock:XPPParmBlkPtr;async:BOOLEAN): OSEr:r;
Parameter block

~-> 26 csCode word - always GetStatus

—> 30  ASPTimeout byte * sretry interval in seconds
—-—> 31 ASPRetry byte snumber of retries

—-> 32 ServerAddr Jong word  ;server socket address
<-> 38 RBSize word eply buffer and reply size
—~> 40 RBPointer pointer sreply buffer pointer

<-— S0 CCBStun record sstart of memory for CCB

ASPTimeOut is the interval in seconds between retries of the call.
ASPRetry is the number of retries that will be attempted.

APDA Draft 7 January 23, 1987



AppleTalk Manager Update

"léiscrvc;Addr is the network identifier or address of the socket on which the server is
tening.

RBSize is passed and indicates the size of the reply buffer in bytes expected by the
comm:dnfi. RBSize is also returned and indicates the size of the reply that was actually
retumn,

RBPointer points to the reply buffer.

CCBStart is the start of the memory to be used by the XPP driver for the cofamand control
block. The size of this block is equal to a maximum of 200 bytes. “To deterniiné the exact
requirement refer to the CCB Sizes section of this document. - -

Result codes ASPBufTooSmall . Reply is bigger than: e buffer
Replysize is bigger than ReplyBuffsize.
ASPNoServer No response from server at address used in call
AFP implementation |

The AFPCall (AFPCommand) function passes a command to an AFP server. The first
bme AFodPCall command buffer (the AFP command byte) must contain a valid AFP
co code.

Note: Server information should be gotten through a GetStatus Vcal! (dcscﬁbcd above).

GetStatus is equivalent to the AFPGetSrvrinfo. Making an AFP GetSrvrinfo call using
AFPCommand, results in a error.

Mapping AFP commands

Most AFP calls are implemented by XPP through a very simple one-to-one mapping of an.
AFP call to an ASP call without interpretation or verification of the data.

The XPP driver maps AFP command codes to ASP commands according to the following
conventions:

AFP Command Code Comment .
$00 Invalid AFP command
$01-SBE (1-190) gglpposd to UserCommand (with the exceptions listed
ow
$BF (191) Mapped to UserCommand . Reserved for developers; will
never be used by Apple '
SFE (25F4D)092’253) Manbed io ‘é‘“{”vf!“ will be used by Appl
to UserWrite; will never pple
SFF (255) mAl’P command :
The following AFP calls are exceptions to the above conventions:
AFP Command
(Code/decimal) Comment
GetSrvrinfo (15) Mapped to GetStatus (Use GezStatus to make this call)
Login (18) Mapped to appropriate login dialog including OpenSess call

LoginCont (19) . Mapped to appropriate login dialog :

APDA Draft 2 January 23, 1987



AppleTalk Manager Updatc

Logout (20) Mapped to CloseSess
Write (33) ‘Mapped to UserWrite

NmethatthefdbwmgAFPulkmpassammdmﬂunanﬁthummmSm
bytes (8 ATP response packets) and may be broken up by XPP into multiple ASP calls.

AFP Command -

(Code/decimal) Comment
Read (27) Can return up to the number of bytes indicated-in ReqCount
Write (33) Canpassuptomennmberofbymmdacatedm t

AFPCall function

The AFPCall function can have one of the following command formats.
e General .
i l.ogin . R
» AFPWrite '
e AFPRead

General command format

The general command format for the AFPCall function passes an AFP command to the

server. This format is used for all AFP calls except AFPLogin, AFPRead and AFPWrite.

Note that from Pascal this call is know as AFPCommand.

FUNCTION AFPCommand (xParamBlock:XPPParmBlkPtr;async:BOOLEAN): OSErr:;
Parameter block

<- 18 CmdResult longword  ;AFP command result

—~> 26  csCode word ;always AFPCall

-—> 28 SessRefnum word ssession reference number

-—> 30 ASPTimeout byte sretry interval in seconds

—-> 32 CBSize word ;command buffer size

—-—> 34 CBPr pointer ;command buffer

<--> 38 RBSize word ;teply buffer size and reply sxze
—> 40  RBPointer pointer ;reply buffer pointer

<-> 44 WDSize word swrite data size

—-—> 46 WDPr pointer swrite data pointer

<- S0 CCBStant record sstart of memory for CCB

Cdecsulusfombymofdmmmedﬁunﬂ\e savaoonmmnganmdmum of the
result of the AFPcommand. .~ .

SessRefnum ud:emnonxefuencenumberremedmdzAFPlogmulL
ASPTimeOut is the interval in seconds between retries of the call by the driver.

CBSize is the size in of the block of data that contains the command to be sent to the
server on the session. size of the command block must not exceed the value of
ASPMaxCmdSize returned by the GetParms call.

APDA Draft 2 January 23, 1987



AppleTalk Manager Update

i’ W

CBPointer points to start of the block of data (command block) containing the command i
that is to be sent to the server on the session. The first byte of the command block must e
contain the AFP command byte. Subsequent bytes in the command buffer contain the

parameters assoicated with the command as defined in the AFP document. -

RBSize is passed and indicates the size of the reply buffer in bytes expected by the
command. RBSize is also returned and indicates the size of the reply that was acutally

RBPointer points to the reply buffer. :

WDSize is the size of data to be written to the server {only used if the command s one that
is mapped to an ASP UserWrite).

WDPointerlFoints to the write data buffer (only used if the command is one that is mapped
to an ASP UserWrite).

CCBStart is the start of the memory to be used by the XPP driver for the command control
block. The size of this block is equal to a maximum of 296 bytes.  To determine the exact
requirement refer to the CCB Sizes section of this document.

Result codes ASPParamErmr Invalid session number; session has been closed

ASPSizeEmr Command block size is bigger than MaxCmdSize

ASPSessClosed Session is closing

ASPBufTooSmall  Reply is bigger than response buffer
Buffer will be filled, data will be truncated

ParmError AFP command block size is equal to
zero. This error will also be returned if the
command byte in the command block is equal to 0 N
or $FF (255) or GetSrvrStatus (15). \

Login command format

The AFP login command executes a series of AFP operations as defined in the AFP Draft
Proposal. For further information, refer to the AFP document.

FUNCTION AFPCommand (xParamBlock:XPPParmBlkPtr;async:BOOLEAN): OSErz;

Parameter block

<-— 18 CmdResult longword  ;AFP command result

—-—> 26 c¢sCode word :always AFPCall

<— 28  SessRefnum word ssession reference number

—> 30  ASPTimeout byte ;retry interval in seconds

—-—> 31 ASPRetry byte snumber of retries

—-—> 32 CBSize word ~ ;command buffer size

-—> 34 CBPr pointer ;command buffer ‘

<-> 38 RBSize . word ;reply buffer size and reply size
—> ‘40 RBPr mnter ;reply buffer pointer

—> 44 AFPAddrBlock gword  ;server address block

<--> 48  AFPSCBPointer pointer -~ ;SCB pointer

<-> 52  AFPAmRoutine pointer ;attention routine pointer

<-—- 50 CCBStart record ;start of control block

CmdResult is four bytes of data returned from the server containing an indication of the
result of the AFP command. . ) ,

APDA Drgft X January 23, 1987



_ AppleTalk Manager Updare

SessRefnum is the session reference number (retumed by the AFPLogin call).
ASPTimeOut is the interval in seconds between retries of the call.
ASPRetry is the number of retries that will be attempted.

CBSize is the size in of the block data that contains the command to be sent to the
server on the session. size of the command block must not exceed the value of
ASPMaxCmdSize returned by the GetParms call.

CBPointergintswdae block of data (command block) containing the AFP login
command that is to be sent to the server on the session. The first byte of the command
block must be the AFP login command byte. Subsequent bytes in the command buffer
contain the parameters associated with the command.

RBSize is passed and indicates the size of the reply buffer in bytes expected by the
eommaf. RBSize is also returned and indicates the size of the reply that was acutally
returne

RBPointer points to the reply buffer.

lAquPS.avuAddr is the network identifier or address of the socket on which the server is
stening.

AFPSCBPointer points 1o a Jocked block of data for the session control block (SCB).The
SCB size is defined by SCBMemSize. The SCB is a locked block and as long as the
session is open, the SCB can not be modified in any way by the application. There is one
SCB for each open session.

AFPAunRoutine is a pointer to a routine that is invoked if an attention from the server is
received. When AFPAnnRoutine is equal to zero, no attention routine will be invoked.

CCBStart is the start of the memory to be used by the XPP driver for the command control
block. The size of this block is equal to a maximum of 150 bytes. To determine the exact
requirement refer to the CCB Sizes section of this document.

Note : In the parameter block, the AFPSCBPointer and the AFPAtmRoutine fields
overlap with the start of the CCB and are modified by the call.

Result codes ASPSizeErr Command block size is bigger than MaxCmdSize
ASPBufTooSmall  Reply is bigger than response buffer
Buffer will be filled, data will be truncated
ASPNoServer Server not responding
ASPServerBusy Server cannot open another session
ASPBadVersNum Sa'vgta cannot support the offered ASP version
pum| :
ASPNoMoreSess  Driver cannot support another session.

AFPWrite command format

‘The AFPWrite and AFPRead command formats allow the calling application to make AFP-
Jevel calls that read or write a data block that is larger than a single ASP-level call is capable
of reading or writing. The maximum number of bytes of data that can be read or written at
the ASP level is equal to QuantumSize. :

FUNCTION AFPCommand (xParamBlock:XPPParmBlkPtr;async:BOOLEAN): OSErr:

Parameter block

APDA Drgft 31 January 23, 1987



AppleTalk Manager Update

<--- 18 CmdResult longword  ;AFP command result o~
-> 26 c¢sCode word ;always AFPCall

-> 28 SessRefnum word isession number

> 30  ASPTimeout byte srerry interval in seconds

-—> 32 CBSiz word ;command buffer size

—> 34 CBPr pointer  ~ ;command buffer

<-> 38 RBSize --- - word - - xeply buffer size and reply size ~

—> 40 - RBPr - pointer = - reply bufferpointer - -

<--- 44 WDSize word s(used internally)

<-> 46 WDPr pointer - write data pointer (updated)
<~ S50 CCBStant ;start of memory for

|

CmdResult is four bytes of data returned from the server containing an indication of the
result of the AFP command.

SessRefnum is the session reference number returned in the AFPLogin call.
ASPTimeOut is the interval in seconds between retries of the call.

CBSize is the size in bytes of the block data that contains the command to be sent to the
server on the session. The size of the command block must not exceed the value of
ASPMaxCmdSize returned by the ASPGetParms call.

CBPointer points to the block of data (see command block structure below) containing the
AFP write command that is to be sent to the server on the session. The first byte of the
Command Block must contain the AFP write command byte.

RBSize is passed and indicates the size of the reply buffer in bytes expected by the
command. RBSize is also returned and indicates the size of the reply that was acutally
returned. ) . :
RBPointer points to the reply buffer.
WDSize is used internally.
Note: This command does not pass the write data size in the queue element but in the
command buffer. XPP will look for the size in that buffer.

WDPrr is a pointer to the block of data to be written. Note that this field will be updated by
XPP as it proceeds and will always point to that section of the data which XPP is currently
writing.

CCBStart is the start of the memory to be used by the XPP driver for the command control

block. The size of this block is equal to a maximum of 296 bytes. To determine the exact
requirement refer to the CCB Sizes section of this document.

Command bloék structure

The AFP write command passes several arguments to XPP in the command buffer itself.
The byte offsets are relative to the location pointed to by CBPointer.

-> 0 CmdByte byte +AFP call command byte
—-> 1 StantEndFlag byte :Start/end Flag .
<-> 4 RWOffset longword  ;offset within fork to write
<> 8 ReqCount longword  ;requested count

CmdByte is the AFP call command byte and must contain the AFP write command code.

APDA Draft 2 January 23, 1987



AppleTalk Manager Update

StartEndFlag is a one-bit flag (the high bit of the byte) indicating whether the RWOffset
field is relative 10 the beginning or the end of the fork (all other bits are zero).

0 = relative to the beginning of the fork

1 = relative to the end of the fork
RWOfTset is the byte offset within the fork at which the write is 1 begin.
ReqCount indicates the size of the data to be written and is returned as the actual size
written.
Note that the RWOffset and ReqCount fields are modified by XPP as the write proceeds
and will always indicate the current value of these fields. b

‘The Pascal structure of the AFP command buffer follows:

AFPCommandBlock = PACKED RECORD

CmdByte: Byte;
StartEndFlag: Byte: .
ForkRefNum: INTEGER; {Used by sexver)
RWOffset: LONGINT;
ReqCount: LONGINT;
NewlLineFlag: Byte; {Unused by write)
NevlineChar: CHAR; {Unused by write}
END;
Result codes ASPParamErr Invalid session number
ASPSizeEmr Command block size is bigger than MaxCmdSize

ASPSessClosed Session is closing
ASPBufTooSmall  Reply is bigger than response buffer
AFPRead command format

FUNCTION AFPCommand (xParamBlock:XPPParmBlkPtr;async:BOOLEAN) : OSEr:;
Parameter block

<- 18 CmdResult longword  ;ASP command result

-—> 26 csCode word :always AFPCall

—-> 28 SessRefnum word isession number

—> 30  ASPTimeout byte iretry interval in seconds

—-—> 32 CBSize word :command buffer size

-—> 34 CBPr pointer command buffer

—-> 38  RBSize word sused internally

<-> 40 RBPr pointer eply buffer pointer ( )
<- S50 CCBStant record sstart of memory for

CmdResult is four bytes of data retumed from the server containing an indication of the
result of the AFP command.

SessRefnum is the session reference number returned in the AFPLogin call.
ASPTimeOut is the interval in seconds between retries of the call.

APDA Draft 33 January 23, 1987



AppleTalk Manager Update

CBSize is the size in bytes of the block data that contains the command 1o be sent to the
server on the session. The size of the command block must not exceed the value of
ASPMaxCmdSize returned by the GetParms call. e '

CBPointer points to the block of data (command block) containing the AFP read command
that is to be sent to the server on the session. The first byte of the command block must
contain the AFP read command byte. The command block structure is shown below.
Note: This command does not pass the read size in the queue element but in the
command buffer. XPP will look for the size in that buffer. , '
RBPointer points to the reply buffer. Note that this field will be updated by XPP as it
proceeds and will always point to that part of the buffer that XPP is currently reading into.
CCBStart is the start of the memory to be used by the XPP driver for the command control

block. The size of this block is equal to a maximum of 150 bytes. To determine the exact
requirement refer to The CCB Sizes section . . '

Command block structure

The AFP read command passes several arguments to XPP in the command buffer itself.
The byte offsets are relative to the location pointed to by CBPointer.

-> 0 CmdByte byte ;AFP call command byte
<-> 4 RWOffset long word  ;offset within fork to read
<-> 8 ReqCount long word  ;requested count

-> 12 NewLineFlag byte ;Newline Flag

—-—> 13 NewLineChar  byte :Newline Character

CmdByte is the AFP call command byte and must contain the AFP read command code.
RWOffset is the byte offset within the fork at which the read is to begin. .
ReqCount indicates the size of the read data buffer and is returned as the actual size read.

Note that the RWOffset and ReqCount fields are modified by XPP as the read proceeds and
will always indicate the current value of these fields.

NewLineFlag is a one-bit flag (the high bit of the byte) indicating whether or not the read is
to terminate at a specified character (all other bits are zero).

0 = no Newline Character is specified

1 = a Newline Character is specified :
NewLineChar is any character from $00 to $FF (inclusive) which when encountered in
reading the fork, causes the read operation to terminate.
The Pascal structure of the AFP command buffer follows:

AFPCommaridBlock = PACKED RECORD

CmdByte: . Byte; - : -
StartEndrlag: Byte:; {Unused for read}
ForkRefNum: INTEGER; {Used by server}
RWOffset: LONGINT; : : :
RegCount: LONGINT;

NewlLineFlag: Byte; )

NewlineChar: CHAR;

END;

APDA Draft 3 - January 23, 1987



" AppleTalk Manager Update

Result codes ASPP_nramErr Invalid session number
ASPSizeErr Command block size is bigger than MaxCmdSize
ASPSessClosed Session is closing

ASPBufTooSmall  Reply is bigger than response buffer

LCB sizes

The XPP driver uses the memory provided at the end of the UserWrite, UserCommand and
GetStatus parameter blocks as an internal command control block (CCB). Using the
maximum block sizes ified in the call descriptions will provide uate space for the
call to execute successfully. However, this section is ided for developers who wish to
minimize the amount of memory taken up by the CCB in the queue element.

Specifically, this memory is used for creating data structures to be used in making calls to
the ATP driver. This includes parameter blocks and buffer data structures (BDS's -
detailed in the AppleTalk Manager chapter of Inside Macintosh). The exact size of this

memory depends on the size of the response expected, and, in the case of UserWrite, on
the size of data to be written.

In the UserCommand and GetStatus cases (along with all AFP calls which map to
UserCommand), a BDS must be set up to hold the response information. The number of
entries in this BDS is equal to the size of the response buffer divided by the maximum
number of data bytes per ATP response packet (578), rounded up. Note that as described
in the ASP document in /nside AppleTalk, ASP must ask for an extra response in the case
where the response buffer is an exact multiple of 578. Of course, no BDS can be more
than eight elements big. XPP also needs bytes for the queue element to call ATP with, so
the minimum size of a CCB, as a function of the response buffer size (RBSize) is:

BDSSize = MIN (((RBSize DIV §78) + 1),8) * BDSEntrySz
CCBSize = JOQEI!Size + 4 + BDSSize

In the UserWrite (and AFP calls mapping to UserWrite) case, XPP needs to create an
additional BDS and queue element to use in sending the write data to the server. Thus the
minimum size of a UserWrite CCB, as a function of the response buffer and write data
sizes (RBSize and WDSize) is:

WrBDSSize = MIN (((WDSize DIV 578) + 1),8) * BDSEntrySz
WrCCBSize = (2 * JOQEISize) + 4 + BDSSize + WrBDSSize

Note: BDSEntrySz is equal to 12. IOQEISize is equal to S0.

APDA Draft 33 January 23, 1987



AppleTalk Manager Update

APDA Draft

HBPP Driver Result Codes
Result Code Comment Returned by
ASPBadVersNum  Server cannot support the OpenSess
offered version number - - = (Login)
ASPBufTooSmall - Reply is bigger than response buffer - - UserWrite' -
Buffer will be filled, data may be truncated. UserCommand
GetStatus -
AFPCall
ASPNoMoreSess  Driver cannot support another session penSess
(Login)
ASPNoServers _I;I_‘c: servers zd that address th GetStatus
e server did not respond to the request. ess
ABPCaT ogin)
ASPParamErmr Parameter error mss
server returned bad (positive) error code S
Invalid Session Reference Number UserWrite
UserCommand
. AFPCall
- ASPServerBusy Server cannot open another session OpenSess
AFPCall (Login)
ASPSessClosed Session already in process of closing CloseSess
UserWrite
UserCommand
AFPCall :
ASPSizeEmr Command block size is bigger than UserWrite
MaxParamSize UserCommand
AFPCall
cbNotFound ~ SCB not found, no outstanding AbontOS
open session to be aborted. Pointer did
not point to an open session SCB.
ParmError AFP Command Block size is less thanor AFPCall
equal to zero. Command byte in
the Command block
is equal to 0 or SFF (255)
or GetSrvrStatus (15).
Aborted n session was aborted by an OpenSess
Req Abort Open Session AFPCall (Login)
36 January 23, 1987



AppleTalk Manager Update

( SUMMARY
SetSelfSend function
Parameter Block
2 E ot i
-—> wSe
<-- 29 OldSelfFlag
ApnpleToalk Transaction Protocol
NSendRequest function
~ Parameter block
-—-> 18  UserData longword
< 22 TID word
-> 26 csCode word
—-> 28 atpSocket byte
<> 29 :E;‘_lags byte
-> 30 Block  longword
-—~> 34  reqlength  word
—> 36 reqPointer  pointer
. . -> 40 bdsPointer inter
o —-> 44 numOfBuffs
( ’ > 45  tmeQutVal byte
: <-- 46  numOfResps byte
<-> 47 retryCount  byte
<--- 48 intBuff word

Kill[SendReq function

Parameter block
—-—> 26 csCode word
—-—> 44 AKillQEIl pointer

KillGetReq function

Parameter block
—> 26  csCode word
—> 44 AKillQEl  pointer

(, APDA Drdx : 37.

SetSelfSend

snew SelfSend flag -
byte . ; old SelfSend flag

suser bytes

;transaction ID used in requet

;always sendRequest

ssocket to send request on

;control information

;destination socket address
uest size in bytes

spointer to request data

spointer to response BDS

snumber of responses expected

stimeout interval

snumber of responses received

snumber of retries

;used internally

; always KillSendReq
; pointer to queue element

- ; always KillGetReq

s pointer to queue element

January 23, 1987



AppleTalk Manager Update

Nome Binding Protocol
KilINBP function
Parameter block
—-> 26 csCode word : always KilINBP
—-> 28 NKillQEl - pointer ; pointer to queuve element
XPPParamBlock = PACKED RECORD _
gLink: QElemPtr; { next queve entry )
qType: INTEGER; { queue type )
ioTrap: INTEGER; { routine trap )
ioCmdAddr: Ptr; { routine address )
ioCompletion: ProcPir; ( completion routine )
ioResult: OSErr; { result code }
CmdResult: LONGINT; { Command result(ATP user bytes)[long])
ioVRefNum: INTEGER; { volume reference or drive number )
ioRefNum: INTEGER; ( driver reference number )
csCode: INTEGER; { Call command code )
CASE XPPPmBIType OF .
ASPAbortPrm:
(AbortSCBP1r: Ptr); ( SCB pointer for AbortOS [long] }
ASPSizeBlk: :
(ASPMaxCmdSize: INTEGER; { For SPGetParms [word] )
ASPQuantumSize: INTEGER; { For SPGetParms [word] )
NumSesss: INTEGER); { For SPGetParms [word] )
XPPPmBIk:
(SessRefnum: INTEGER; { Offset to session refnum (word] )
ASPTimeout: Byte; { Timeout for ATP [byte] )
ASPRetry: Byte; { Retry count for ATP [byte] )
CASE XPPSubPrmType OF
ASPOpenPrm: '
(ServerAddr: LONGINT; { Server address block [longword] )
SCBPointer: Ptr; { SCB pointer [longword] )
AunRoutine: Pitr); ( Attention routine pointer [long] )
ASPSubPrm:
(CBSize: INTEGER; { Command block size [word] )
CBP1r: Pir; ( Command block pointer [long] )
RBSize: INTEGER; { Reply buffer size [word] )
RBP1r: Ptr; { Reply buffer pointer [long] )
CASE XPPEndPrmType OF -
AFPLoginPrm:
(AFPAddrBlock: LONGINT; { Address block in AFP login [long] )
AFPSCBP1r: Py { SCB pointer in AFP login (long] )
AFPAunRoutine: Ptr); { Attn routine pointer in AFP login )
ASPEndPrm:
(WDSize: INTEGER; - { Write data size (word] )
WDPtr: Pir; { Write data pointer [long] )

CCBStan: ARRAY(0..295) OF Byte))); { CCB memory for driver }

APDA Draft B January 23, 1987

\
Y



AppleTalk Manager Update

AFPCommandBlock = PACKED RECORD

CmdByte: Byte:
StartEndFlag: Byte; {Unused for read}
ForkRefNum: INTEGER: {Used by server)
RWOffset: LONGINT;
ReqgCount : LONGINT;
NewlineFlag: Byte: {Unused by write]
NewlineChar: CHAR; {Unused by write)
END;
fAppleTalk Session Protocol

FUNCTION ASPOpenSession(xParamBlock:XPPParmBlkPtr;async:BOOLEAN) OSErr;
Parameter block

—-> 26 csCode word ;always OpenSess

<-- 28 SessRefnum word ssession reference number

--> 30  ASPTimeout byte * ;retry interval in seconds

-> 31 ASPRetry byte ;number of retries

—-> 32 ServerAddr longword  ;server socket address (SLS)

—~> 36  SCBPointer pointer spointer to session control block
-> 40 AmnRoutine pointer spointer to attention routine

FUNCTION ASPCloseSession(xParamBlock:XPPParmBlkPtz;async:BOOLEAN) OSErr;
Parameter block

—-> 26 csCode word ;always CloseSess
-> 28 SessRefnum word :session reference number

FUNCTION ASPAbortOS (xParamBlock:XPPParmBlkPtr;async:BOOLEAN) OSErr;
Parameter block

-~> 26 csCode word ;always AbortOS
—-> 28 AbontSCBPrr pointer spointer to session control block

FUNCTION ASPGetParms (xParamBlock:XPPParmBlkPtr;async:BOOLEAN) OSErc;
Parameter block .
—~> 26  csCode word ;always GetParms
<-- 28 ASPMaxCmdSize  word ;maximum size of command block
<- 30 ASPQuantumSize  word ;maximum data size
< 32 NumSesss word ;number of sessions -
FUNCTION ASPCloseAll (xParamBlock:XPPParmBlkPtr;async:BOOLEAN) OSErcr;
Parameter block

-> 26 csCode word ;always CloseAll

APDA Draft ¥ January 23, 1987



AppleTalk Manager Update "

. ¥
FUNCTION ASPUserWrite (xParamBlock:XPPParmBlkPtr;async:BOOLEAN) OSErr: / a
Parameter block -

<--- 18  CmdResult long word  ;ASP command result

—~> 26  c¢sCode word salways UserWrite

-—=> 28  SessRefnum  word ;session reference number

-—~> 30  ASPTimeout byte sretry interval in seconds
L ee> 32 CBSize “word scommand block size-

—-> 34 CBPr pointer yeommand block pointer

<--> 38  RBSize word ;reply buffer size and reply size

—-—> 40 RBPr pointer eply buffer pointer

<-> 44  WDSize word swrite data size -

-> 46 WDPr pointer swrite data pointer

<- 50 CCBStart record ;start of memory for CCB

FUNCTION ASPUserCommand (xParamBlock:XPPParmBlkPtr:;async:BOOLEAN) OSErr;

Parameter block

<-- 18  CmdResult longword  ;ASP command result

-—> 26 c¢sCode word :always UserCommand

-> 28 SessRefnum word ;session number

--> 30  ASPTimeout byte ;retry interval in seconds

-> 32 CBSize word scommand block size

-> 34 CBPr pointer ;command block pointer ’)

<--> 38 RBSize word ;reply buffer and reply size o

-—-> 40 RBPr pointer ;reply buffer pointer

<- 50 CCBStart record . ;start of memory for CCB

FUNCTION ASPthStltus(xPa:amBlock:XPPPa:mBlth::lsync:BOOLBAN) OSErcr;
Parameter block

—-—> 26 csCode word ;always GetStatus

-—-> 30  ASPTimeout byte ;retry interval in seconds
—-> 31 ASPRetry byte ;number of retries

—-—> 32 ServerAddr long word  ;server socket address
<-> 38 RBSize word sreply buffer and reply size
—> 40 RBPr pointer ;reply buffer pointer

<-- 50 CCBStan record ;start of memory for CCB

APDA Draft 40 January 23, 1987 S



fppleTolk Filing Protocol

AFPCall Function
General command format

AppleTalk Manager Update

FUNCTION AFPCommand (xParamBlock :XPPParmBlkPtx:;async:BOOLEAN) OSEzr;

Parameter block
<- 18 CmdResult
—-> 26 csCode
—-> 28 SessRefnum
—-—> 30 ASPTimeout
—-> 32 CBSize
—-> 34 CBPux
<--> 38 RBSize
-> 40 RBPr
<--> 44 WDSize
—-—> 46 WDPr
<-- 50 CCBStan

Login command format

g

word
word
byte
word
poin
word

g word

pointer

word

inter

g’S

+AFP command result
;always AFPCall

ssession reference number
setry interval in seconds
;command buffer size
;command buffer

;reply buffer size and reply size
;eply buffer pointer
write m size

swrite pointer

;start of memory for CCB

FUNCTION AFPCommand (xParamBlock:XPPParmBlkPtr;async:BOOLEAN) OSErcz:;

~ Parameter block
<- 18 CmdResult long word
-> 26 csCode word :
<--- 28 SessRefnum word
=Sl
—> Ty
—-—> 32 CBSize word
-—-> 34 CBPr pointer
<-> 38 RBSize word
-> 40 RBPr inter
—-—> 44 AFPAddrBlock g word
<--> 48 AFPSCBPointer pointer
<-> 52 AFPAunRoutine pointer
<- 50 CCBStant record

AFPWrite command format

;AFP command result
:always AFPCall’
;session reference number
;retry interval in seconds
:number of retries
;command buffer size
;command buffer
;reply buffer size and reply size
;Teply buffer pointer
iserver address block
:SCB pom
:attention routine pointer
;start of control block

FUNCTION AFPCommand (xParamBlock:XPPParmBlkPtr;async:BOOLEAN) OSEzrx;

Parameter block - .
<- 18 CmdResult
—-> 26 csCode
—-> 28 SessRefnum
—-> 30 ASPTimeout
—-> 32 CBSize
-—> 34 CBPr

APDA Draft

5
i

744

-3
]

4]

;AFP command result
:always AFPCall
;session number

Jetry interval in seconds
scommand buffer size
;command buffer

January 23, 1987



AppleTalk Manager Update

<--> 38 RBSize word ;reply buffer size and reply size
-> 40 RBPr pointer :reply buffer pointer

<--- 44 WDSize word +(used internally)

<-> 46 WDPr pointer ;write data pointer (updated)
<- 50 CCBStant record ;start of memory for

Command block structure

—> 0 CmdByte - byte +AFP call command byte
—-—> 1 StartEndFlag byte :Start/end Flag :
<-> 4 RWOffset long word  ;offset within fork to write
<-> 8 ReqCount longword  ;requested count

AFPRead command format

FUNCTION AFPCommand(xParamBlock:XPPFParmBlkPtr;async:BOOLEAN) OSErr:;

Parameter block
<-—- 18 CmdResult longword  ;ASP command result
-> 26 csCode word ;always AFPCall
-> 28 SessRefnum word ;session number
-> 30 ASPTimeout byte ;retry interval in seconds
-—> 32 CBSize word ;command buffer size
-> 34 CBPr pointer scommand buffer
-—> 38 RBSize word ;used internally
<-> 40 RBPtr ‘ pointer ;reply buffer pointer (updated)

<- 50 CCBStart record ;start of memory for C

Command block structure

The AFP read command passes several arguments to XPP in the command buffer itself.
The byte offsets are relative to the location pointed to by CBP1r.

—-> 0 CmdByte byte +AFP call command byte
<--> 4 RWOffset long word  ;offset within fork to read
<-> 8 ReqCount Jongword  ;requested count

-> 12 NewLineFlag byte :Newline Flag

—-> 13 NewLineChar  byte :Newline Character

AppleTalk Session Protocol Constants
Offsets in user bytes '

ASPCmdCode EQU 0 ; Offset to command field

ASPWSSNum EQU 1 ; WSS number in OpenSessions
ASPVersNum EQU 2 ¢ ASP version number in OpenSessions
ASPSSSNum EQU 0 ; SSS number in OpenSessReplies
ASPSessID EQU 1 ; Session ID (requests &OpenSessReply)
ASPOpenErr EQU 2 : OpenSessReply error code

ASPSegNum QU 2 : Sequence number in requests

APDA Draft Q January 23, 1987 o



L4

AppleTalk Manager Update

ASPAttnCode EQU 2 : Attention bytes in attentions
Offsets in ATP data part

ASPWrBSize EQU 0 ;0ffset to write buffer size (WriteData)
ASPWrHdrSz BQU ASPWrBSize+2 ; Size of data part

ASP command codes

ASPCloseSess EQU b ; Close session

ASPCommand EQU 2 ; User-command

ASPGetStat EQU 3 : Get status

ASPOpenSess EQU 4 : Open session

ASPTickle EZQU L) ; Tickle

ASPWrite EQU 6 : Wzite

ASPDataWrite EQU 7 ; WriteData (from server)
ASPAttention EQU 8 : Attention (from server)
ASP miscellaneous

ASPVersion EQU $0100 ; ASP version number
MaxCmdSize EQU ATPMaxData ; Maximum command block size
QuantumSize EQU ATPMaxData*ATPMaxNum ; Maximum reply size
XPPLoadedBit EQU ATPLoadedBit+l ; XPP bit in PortBUse
XPPUnitNum EQU 40 ; Unit number for XPP (o0ld ROMs)
ASP errors codes

ASPBadVersNum EQU -1066 ; Server cannot support this ASP version
ASPBufTooSmall EQU =-1067 ; Buffer too small

ASPNoMoreSess EQU -1068 ; No more sessions on server
ASPNoServers EQU «1069 : No servers at that address
ASPParamErr EQU 1070 ; Parameter error

ASPServerBusy EQU «1071 ; Server cannot open another session
ASPSessClosed EQU =1072 ; Session closed

ASPSizeEr:x EQU =1073 ; Command block too big

Control codes

OpenSess EQU 285 : Open session

CloseSess EQU 254 ; Close session

UserCommand EQU 253 ; User command

UserWrite EQU 252 : User write

GetStatus EQU 251 : Get status

AFPCall EQU 250 ;: AFP command (buffer has command code)
GetParms EQU 249 :; Get parameters

Abort0S EQU 248 : Abort open session request
CloseAll QU 247 ; Close all open sessions

ASP queue element standard structure: arguments passed in the CSParam
area

SessRefnum EQU CSParam ; Offset to session refnum (word)
ASPTimeocut EQU SessRefnum+2 ; Timeout for ATP ([byte)
ASPRetry EQU ASPTimeout+l ; Retry count for ATP (byte]
ServerAddr EQU ASPRetry+l ; Server address block [longword]

APDA Draft 4 January 23, 1987



AppleTalk Manager Update

SCBPointer
AttnRoutine

CBSize
CBPtr
RBSize
RBPtr
WDSize
WDPt<r
CCBStart

ASPMaxCmdSize
ASPQuantumSize
Abort SCBPtrx
CmdResult
AFPAddrBlock
AFPSCBPtr
AFPAttnRoutine

SCBMemSize

EQU
EQU

EQU
EQU
EQU
EQU
EQU
EQU
EQU

EQU
EQU
EQU
EQU
EQU
EQU
EQU

EQU

ServerAddr+4 ; SCB pointer [longword]

SCBPointer+4 ; Attention routine pointer [long)
ASPRetry+l ; Command block size ([word)
CBSize+2 ; Command block pointer [long)
CBPtr+4 ; Reply buffer size [word)
RBSize+2 ; Reply buffer pointer [long]
RBPtz+4 ; Write data size (word]
WDSize+2 ; Write data pointer l[long]

- WDPtr+4 : Start of memory for CCB
CSParam : For SPGetParms ([word]
ASPMaxCmdSize+2 ; For SPGetParms ([word)
CSParam ; SCB pointer for AbortOS [long)

UserData ; Command result (ATP user bytes) [long]
RBPtr+4 ; Address block in AFP login[long]

AFPAddrBlock+4 ; SCB pointer in AFP login [long]
AFPSCBPtr+4 ; Attn routine pointer in AFP login

$Co ; Size of memory for SCB

AFPCall command codes

AFPLogin
AFPContlLogin
AFPLogout
AFPRead
AFPWrite

EQU
EQU
EQU
EQU
EQU

18;
19;
20;
27;
33;

Offsets for certain parameters in Read/Write calls

StartEndFlag
RWOffset
ReqgCount
NewlineFlag
NewlineChar
LastWritten

Miscellaneous

AFPUseWrite

APDA Draft

EQU
EQU
EQU
EQU
EQU
EQU

EQU

Write only; offset relative to start or end
Offset at which to start read or write
Count of bytes to read or write
2 ; Read only; newline character flag
3 ; Read only; newline character

; Write only; last written (returned)

we Wo “o

1
4
8
1
1l
0

§C0; first call in range that maps to an ASPWrite

January 23, 1987

- ——



