
WD16
MICROCO.MPUTER

(Using MCP 3-Chip Microproc~r Set)

PROGRAMMER'S REFERENCE MANUAL

WESTERN !15 DIGITAL
C 0 RP 0 RAT I 0 N

DWM-00100-04

REVA

WD1600 MICROCOMPUTER

(Using MCP 3-Chip Microprocessor Set)

PROGRAMMER'S REFERENCE MANUAL

40CTOBER 1976

©1977-WESTERN DIGITAL CORP.
NEWPORT BEACH, CA. 92663

A-ML-10/81

TABLE OF CONTENTS

CHAPTER ONE - GENERAL
Abbreviations
Processor Status Word
Registers

CHAPTER TWO - INTRODUCTION
Addressing Modes
Stack Operations
Interrupt Lines
Priority Mask
External Status Register
Power Up Options
Halt Options
User Bootstrap Routine
System Error Traps
Reserved Core Locations

CHAPTER THREE - OP CODES
Format 1 Op Codes
Format 2 Op Codes
Format 3 Op Codes
Format 4 Op Codes
Format 5 Op Codes
Format 6 Op Codes
Format 7 Op Codes
Format 8 Op Codes
Format 9 Op Codes
Format 10 Op Codes
Format 11 Op Codes

APPENDIX A - Numeric Op Code Table
APPENDIX B - Assembler Notes
APPENDIX c - Programming Notes
APPENDIX D - Microm State Code Functions
APPENDIX E - Op Code Timings

PAGE
1.1

2.1

3.1

Al
Bl
Cl
Dl
El

CHAPTER 1 - GENERAL

The WD16~~ microcomputer is a 16 bit machine with both word and byte
addressing, an automatic push down hardware stack, vectored interrupt
handling, eight 16 bit registers, and PC relative addressing. A byte is
defined as 8 bits, and a word is defined as 2 bytes. A memory address
increment of one is an increment of 1 byte. An address increment of two
is an increment of 1 word. Word addresses always start on even bytes.
For any memory location the even byte is the least significant byte.
Bit 0 is defined as the LSB of a memory location.

(MSB) 15 8 7 0 (LSB)

l High Byte Low Byte J____,~'- ---v
Byte Address Byte Address

~(ODD) x (EVEN))
~

Word Address x (EVEN)

Unless otherwise stated, word addressing is implied. All addresses
and op codes are done in hex unless otherwise stated. All hex numbers
are enclosed within double quotes.

LEGEND OF ABBREVIATIONS

REG = Register

SRC Source Address

(SRC) Contents of Source Address

DST Destination Address

(DST) Contents of Destination Address

(SRC)B Contents of Source Byte Address

(DST)B Contents of Destination Byte Address

1

x = Ones Complement of x

-x = Twos Complement of x

/J. = Logical And

'\/ = Logical Or

SJ_ = Exclusive <>r

@ = Indirect

+ = Push

t = Pop

+ Destination Direction

+ Addition

- = Subtraction

* = Multiplication

I Division

= Double Precision Chain Link

PROCESSOR STATUS WORD

A 16 bit Processor Status (PS)
15 8 7
!Ext. Status Reg. I ALU

Word exists. The format is as follows:
4 3 2 1 ~

IN I z Iv I cl
Where bits 8-15 are the contents of the external status register

(see chapter 2), bits 4-7 are the status of the microprocessor ALU flags,
and bits ~ -3 are the status of the condition indicators at the time the
PS is formed. The ALU flags are of no use or concern to the programmer.
They are stored along with the condition indicators automatically as a func
tion of the micro-op. The four condition flags are updated during the exe
cution of IIK>st op codes, and are used by the branch instructions to test
for valid branch conditions. The exact status of each indicator is de
fined along with the descriptions of individual op codes in chapter 3.
In general, however, the indicators are set by the following conditions:

N = set if the MSB of the result is set.
z = set if the result is zero.
V set if arithmetic overflow (underflow) occurs during addition (subtraction).

Set to exclusive -or of N and C indicators otherwise.
C= set if carry (borrow) occurs during addition (subtraction) • Also set

to last bit shifted out during a shift operation.

2

REGISTERS

There are 8 registers in the WD1600. All are 16 bits long. Six
can be used as either accumulators or index registers, one is the
stack pointer (SP), and one is the program counter (PC). The registers
are numbered R~ - R7 with R6 = SP and R7 = PC. The register set is
usually referred to in the following manner: Rf(S - RS, SP, PC.

3

CHAPTER TWO - INTRODUCTION

ADDRESSING MODES

In general there are 8 addressing modes for both source and
destination addressing. Not all op codes accept all 8 modes (see
chapter 3) • Those that do use the following format: 3 bits for
the index register (~ - R5, SP, PC) and 3 bits for the xoode. The
xoode bits are the upper 3 bits of the 6 bit set. The xoodes are de
fined below. The numbers in parenthesis refer to notes that follow
the definitions.

MODE

f6
1
2

3

4

5

6

7

NAME SYMBOLIC

Direct Register
Indirect Register
Auto-increment

Auto-increment
deferred

Auto-decrement

Auto-decrement
deferred

Indexed register

Indexed register
deferred

REG
@REG
(REG)+

@(REG)+

-(REG)

@-(REG)

X(REG)

@X(REG)

DESCRIPTION

REG is or contains operand.
REG contains address of operand.
REG contains address of operand.
REG is post-incremented (1).
REG contains address of add
ress of operand. REG is post
incremen ted by 2.
REG is predecremented (1) • REG
then contains address of operand.
REG is predecremented by 2. REG
then contains address of address
of operand.
Contents of REG plus X is address
of operand (2).
Contents of REG plus X is address
of address of operand (2).

NOTE 1: For word operations the increment/decrement is 2. For byte
operations the increment/decrement is 1 unless the index register
is SP or PC. In this case the increment/decrement is always 2.

NOTE 2: The contents of REG remain unchanged.

MODE

2
3

6

7

When using PC as the index register the assembler accepts the
following 4 formats in place of the formats mentioned above for
ease of programming.

NAME

Inunediate
Absolute

Relative

SYMBOLIC

#N
@#N

A

Relative deferred @A

DESCRIPTION

Operand N follows op code.
Address of operand is N and it
follows the op code in meIOC>ry.
PC relative offset to address A,
which contains operand, follows
op code.
PC relative offset to address A,
which contains address of operand,
follows the op code.

The 8 xoodes are referred to as Source Mode ~ to Source Mode 7
(SMfcJ -SM7) and Destination Mode ~ to Destination Mode 7 (DMfcJ -DM7) • In
Chapter 3 these xoodes are referred to in general terms during op code def
initions as "SRC" and "DST".

1

STACK OPERATIONS

Although automatic stack operations are provided for, no
specific area of memory is set aside for the stack. The user must
assign an area of memory by loading the stack pointer with the top
address of the designated stack area. Stack operations are push
down pop-up operations with predecrements and post-increments of SP.
Stack operations may also be executed explicitly by using SP as an
index register with op codes that allow S~ - SM7 and/or DM~ - DM7
addressing.

When pushing the PS the word is formed just prior to the push.
When popping the PS the condition indicators and interrupt enable flag
are set to the status of the appropiate bits in the popped PS. Other
than that the popped PS goes nowhere. Unless otherwise stated popping
the PS from the stack performs the above mentioned operations and only
the above mentioned operations.

When pushing the PC onto the stack PC will be set to the address
of the op code that follows the op code that caused the push. There
are cases where some op code formats can alter this rule. They gen
erally involve advanced programming techniques. A few are :nentioned
in appendix C. In particular, system errors that are caused by pro
gramming errors and not real time error conditions will push a PC
that points to the op code that follows the op code that caused the
error. The stored PC must be decremented by two to get the address
of the offending op code.

INTERRUPT LINES

There are 4 interrupt lines available to the system. They are
labeled I~ - I3. These lines are assigned functions as follows:

I~ = Vectored interrupt line
Il = Nonvectored interrupt line
I2 = Enable/disable for I~ and IL
I3 = Halt switch

The priority among the lines is as follows:

I3, I1aI2, I~~I2.

Note that I3 is always enabled. Note also that the nonvectored inter
rupt has priority over the vectored interrupt. The system is currently
set up so that power fail and a real time clock can be assigned to Il,
and up to 16 devices assigned to I~.* The two interrupts operate as follows:
A) Nonvectored Interrupt (Il)

PS and PC are pushed onto the stack. I2 is disabled. The external
status register is tested for a power fail. If power fail is true
PC is fetched from location "14". If power fail is false PC is
fetched from location "2A", and a rnicrom state code is transmitted
to clear the line clock (see appendix D).

B) Vectored Interrupt (I~)

*

PS and PC are pushed onto the stack. I2 is disabled. An Interrupt
Acknowledge is executed, and the device code of the interrupting de
vice is read in and stripped to bits 1- 4. PC is fetched from location

NOTE: Al though only a 4 bit device code iSI currently used, a minor rnicrom
change can allow a device code of from 1-15 bits.

2

"28" and the device code is added to it. The contents of this inter
mediate location are read in and added to PC to form the final address.
Each intermediate location is a table entry that contains the PC rela
tive offset from the start of the device handler routine to itself. The
absolute address of the start of the table is in location "28".

PRIORITY MASK

Associated with the interrupts is a priority interrupt mask. This
is a 16 bit mask where each bit position represents a priority level.
Each priority level can be assigned to one or more devices. A one in any
bit position can represent an interrupt enable or disable for its associ
ated devices as the hardware dictates. The SAVS, RSTS, and MSKO op codes
each alter the mask. When the mask is altered it is written into location
"2E" for storage. While the mask is on the bus a microm state code is
transmitted (see appendix D) to signal the I/O devices that a new mask is
being transmitted. Each device can then look at its assigned mask bit
while the merrory write to location "2E" is taking place. Whether or not
the mask feature is actually used by the I/O devices in no way alters
the operations of the op codes mentioned above.

EXTERNAL STATUS REGISTER

As a part of the hardware external to the CPU the External Status
Register supplies the CPU, upon demand, with information about the status
of certain hardware areas. This register is gated onto the bus when its
associated microm state code is present (see appendix D). The format
of the register is as follows:

Bit 7 = Power Fail Status
Bit 6 = Bus Error (Time Out) Status
Bit 5 Parity Error Status
Bit 4 = I2 Interrupt Line Status
Bit 3 Halt Option Jumper #2
Bit 2 = Halt Option Jumper #1
Bit 1 = Power Up Option JuJII>er #2
Bit ~ = Power Up Option Jumper #1

Bits 8-15 are don't care. Bits 5-7 are real time error conditions that
also generate a system reset (see next section) • Bit 4 is the interrupt
enable status. The jumpers can be logic units, switches, or hard wired
jumpers as the user wishes. The various options associated with the 4
jumpers are discussed later.

POWER uP OPTIONS

A system reset indicate one of 4 conditions: power fail, bus error,
parity error, or power up. There are 2 levels of power fail possible in
this system (see appendix C): minor and major. Only a major power fail
generates a system reset. Both types set bit 7 in the External Status
Register •. The following steps are performed after a system reset.

Al) Trace and wait flags are reset if an.
A2) The external Status Register is fetched.

3

A3) The Line-clock-clear state code is transmitted.
A4) I2 is reset.
AS) If power fail bit is set go to Dl.
A6) If bus error bit is set go to Cl.
A7) If parity error bit is set go to Bl.
AS) Go to D2 otherwise.

Bl) Push PS and PC onto stack.
B2) Fetch PC from location "12"and begin execution.

Cl) Push PS and PC onto stack.
C2) Fetch PC from location "18" and begin execution.

Dl) Wait until power fail status = ~.
D2) Send a system reset microm state code.
D3) Wait 300 cycles.
D4) Execute power up option 1,2,3 or 4 per jumpers.

For a proper initial power up either bit 7 must be set or bits S-7 must
be reset when the system reset line is released.

The 4 power up options are as follows:

JUMPERS

l~
11

OPERATION

Execute user bootstrap routine.
Pick up ~-RS, SP, PC, and PS from memory
locations ~-"l~".
Execute selected halt option.
Fetch PC from location "16".

HALT OPTIONS

When the halt switch (I3) is set during program execution one of 4 halt
options is selected. The halt op code* and power up option #2 also select
the halt option specified. The options are as follows:

JUMPERS

l~
11

OPERATION

Execute user bootstrap routine.
Save R~-RS,SP,PC and PS in memory locations
~-"lW'. Wait until I3 = ~' then restore R~
RS,SP ,PC and PS from memory locations ~-"l~".
Lock up processor (requires a system reset to clear) •
Fetch new PC from location "16".

*NOTE: Conditional. See Chapter 3.

USER BOOTSTRAP ROUTINE

When the user bootstrap routine is selected as an option the system creates
the starting address by placing address "C~~~" in PC and then replacing
bits 8-13 with the contents of the 6 bit External Address Register. This
register is gated in with a microm status code (see appendix D).

4

It allows the user 64 different starting addresses in the range "C¢9J¢"
to "FF¢9J".

SYSTEM ERROR T:RAPS

With the exception of the major power fail error that is a function
of a system reset, all error conditions perform a common routine as outlined
below. A non-vectored interrupt and some op codes also use this routine.
The numbers in parenthesis refer to notes that follow the table.

1) PS is pushed onto the stack
2) PC is pushed onto the stack
3) PC is fetched from location X where "X" is from the following table

(1) (2) (3) "12" for bus error PC
(1) (2) (3) "14" for nonvectored interrupt power fail PC
(1) (2) (3) "18" for parity error PC
(1) (2) (3) "lA" for reserved op code error PC
(1) (2) (3) "lC" for illegal op code format error PC
(1) (2) (3) "lE" for XCT error PC
(1) (2) "291" for XCT trace PC
(1) (2) (3) "2A" for nonvectored interrupt PC
(1) (2) "2C" for BPT PC

NOTE 1:
NOTE 2:

wait flag reset if on
trace flag reset if on

NOTE 3: interrupt enable (I2) reset if on

The meaning of the wait and trace flags is discussed in chapter 3. Note
that the nonvectored interrupt power fail PC is a minor power fail condition,
not a major one. See appendix C for full detail on how to include both
major and minor power fail conditions in the hardware.

RESERVED CORE LOCATIONS

The following is a complete list of memory locations that are re
served for specific system functions or options. Byte addresses are given.

LOCATIONS

9J - "11"
12" - "13"
14 - "15"
16" - "17"
18" - "19"
lA" -"lB"
lC" - "lD"
lE" - "lF"
29J" - "21"

"22" - "23"
"24" - "25"
"26" - "27"
"28"- "29"
"2A" - "2B"
"2C" - "20"
"2E" - 2F"
II 39'" - "3F"

RESERVED FUNCTION

Rf6 - RS, SP, PC and PS for power up/halt options
bus error PC
nonvectored interrupt power fail PC
power up/halt option power restore PC
parity error PC
reserved op code PC
illegal op code format PC
XCT error PC
XCT trace PC
SVCA table address
SVCB PC
SVCC PC
vectored interrupt (I9J) table address
nonvectored interrupt (Il) PC
BPT PC
I/O priority interrupt mask
reserved for floating point option

5

CHAPTER 3 - OP CODES

This chapter is divided into a number of sections, each repre
senting one class of op codes. At the beginning of each section there
is a detailed description of the format for that class. A list of op
codes and their base numeric values, less arguments, is also included.
A detailed description of each op code in the class then follows.

FORMAT 1 OP CODES

Single word - no arguments

15 12 11 8 7 4 3 0

L I OPC

There are 16 op codes in this class representing op codes "f6f6f6f6" to
"f6f6f6F". Each is a one word op code with no arguments with the exception
of the SAVS op code which is a two word op code. Word two of the SAVS
op code is the I/O priority interrupt mask. The op codes and their mnemoni's
are:

BASE OP CODE

f6f6f6f6
f6'1fll
flf'f12
flW3
f6flf14
f6{1{15
f6f6f66
f6f6f67
f6f6f68
f6f6f69
f6f6f6A
f6f6f6B
f6f6f6C
f6f6f6D
f6f6f6E
f6{1f6F

NOP

FORMAT:
FUNCTION:
INDICATORS:

RESET

FORMAT:
FUNCTION:
INDICATORS:

MNEMONIC

NOP
RESET
IEN
IDS
HALT
XCT
BPT
WFI
RSVC
RRTT
SAVE
SAVS
REST
RRTN
RSTS
RTT

NO OPERATION

NOP
No operations are performed
Unchanged

I/O RESET

RESET
An I/O reset pulse is transmitted
Unchanged

1

IEN

FORMAT:
FUNCTION:

INDICATORS:

IDS

FORMAT:
FUNCTION:

INDICATORS:

INTERRUPT ENABLE

IEN
The interrupt enable (I2) flag is set. Allows
one more instruction ~o execute before inter
rupts are recognized.
Unchanged

INTERRUPT DISABLE

IDS
The interrupt enable (I2) flag is reset.
This instruction can honor interrupts, but
the I2 bit in the PS that is stored on the stack
is reset if an interrupt occurs.*
Unchanged

*NOTE: On some machines I2 will be set or reset during the IEN or
IDS . If so the change will be valid immediately, not one op
code later.

HALT

FORMAT:
FUNCTION:

INDICATORS:

XCT

FORMAT:
OPERATION:

FUNCTION:

HALT

HALT
Tests the status of the Power Fail bit in the
external status register. If the bit is set it
is assumed that the HALT occured in a power fail
routine, and the following operations occur:
1) The interrupt enable (I2) flag is reset
2) The CPU waits until the Power Fail bit is reset
3) PC is fetched from location 11 16", and program

execution begins at this new location
If the power fail bit is reset then the CPU waits
until the halt switch (I3) is set. At that time
the selected halt option (see chapter 2) is executed.
The interrupt enable flag is also reset.
Unchanged

EXECUTE SINGLE INSTRUCTION

XCT
PC+- @SP, SP t
PS +- @SP, SP t
Trace flag set,execute op code
+SP, @SP +- PS
+SP, @SP +- PC
Trace flag reset
PC +- (loc 11 213 11) if no error
PC + (loc 11 1E") if error
PC and PS are popped from the stack, but I2 is not
altered. The trace flag, which disables all inter
rupts except I3, is set. The op code is executed
PS and PC are pushed back onto the stack, and PC
is fetched from location 11 2W'. The trace flag is
reset. If the program tries to execute a HALT , XCT,
BPT, or WFI the attempt is aborted, PS and PC are

2

pushed onto the stack, and PC is fetched from lor.ation "lE" instead.
I2 is also reset.
INDICATORS: Depends upon executed op code

BPT

FORMAT:
OPERATION:

FUNCTION:

INDICATORS:

WFI

FORMAT:
FUNCTION:

INDICATORS:

SAVE

FORMAT:
OPERATION:

FUNCTION:
INDICATORS:

SAVS

FORMAT:
OPERATION:

FORMAT:

INDICATORS:

REST

FORMAT:
OPERATION:

BREAKPOINT TRAP

BPT
+SP, @SP +PS
+SP, @SP +PC
PC + (loc "2C")
PS and PC are pushed onto the stack. PC is
fetched from location "2C"
Unchanged

WAIT FOR INTERRUPT

WFI
The CPU loops internally without accessing
the data bus until an interrupt occurs. Program
execution continues with the op code that follows
the WFI after the interrupt has been serviced.
The interrupt enable flag is also set.
Unchanged

SAVE REGISTERS

SAVE
~SP, @SP+ RS
~SP, @SP"'° R4
~SP, @SP+ R3
~SP, @SP+ R2
~SP, @SP+ Rl
~ SP I @SP + RJlJ
Registers RS to Rfl are pushed onto the stack.
Unchanged.

SAVE STATUS

SAVS MASK
SAVE
~ SP, @SP + (loc "2E")
(loc "2E") + Cloe "2E") V mask

MSKO
IEN
Registers RS to RJlJ and the priority mask in location
"2E" are pushed onto the stack. The old and new masks
are OREO together and placed in location "2E".
A mask out state code (see appendix D) is transmitted
and the interrupt enable (I2) flag is set.
Unchanged

RESTORE REGISTERS

REST
RPI+ @SP, SP t
Rl + @SP, SP t

R2 + @SP, SP t
3

R3 + @SP, SP t
R4 + @SP, SP t
R5 + @SP, SP t

FUNCTION: Registers R? to R5 are popped from the stack,
INDICATORS: Unchanged

RTT

FORMAT:
OPERATION:

FUNCTION:
INDICATORS:

RRTN

FORMAT:
OPERATION:

FUNCTION:

INDICATORS:

RRTT

FORMAT:
OPERATION:

FUNCTION:

INDICATORS:

RSTS

FORMAT:
OPERATION:

FUNCTION:

INDICATORS:

RSVC

FORMAT:
OPERATION:

RETURN FROM TRAP

RTT
PC +@SP, SP t
PS +@SP, SP t
PC and PS are popped from stack
N = Set per PS bit 3
z = Set per PS bit 2
v = Set per PS bit 1
c = Set per PS bit ~

RESTORE AND RETURN FROM SUBROUTINE

RRTN
REST
PC+ @SP, SPt
Registers R¢ to RS and PC are popped
from the stack
Unchanged

RESTORE AND RETURN FROM TRAP

RRTT
REST
RTT
Registers ~ to R5~ PC and PS are popped
from the stack.
Set per PS bits ~ - 3

RESTORE STATUS

RSTS
(LOC "2E") + @SP, SP t
MSKO
REST
RTT
The priority mask is popped from the stack and
restored to locaton "2E". A MASK OUT state code
(See Appendix D) is transmitted. Registers ~
to 10, PC and PS are popped from the stack·
Set per PS bits ~ - 3

RETURN FROM SUPERVISOR CALL (B or C)

RSVC
REST
SPl
RTT

4

FUNCTION:

INDICATORS:

Registers RjlJ to Rs, PC and PS are popped from
the stack with the saved SP bypassed.
Set per PS bits ~ - 3

5

FORMAT 2 OP CODES

SINGLE WORD - 3 BIT REGISTER ARGUMENT

15 12 11 8 7 3 2 0

OPC REG

There are 4 op codes in this class representing op codes "~fiH~"
to "~f12F". Each is a one word op code with a single 3 - bit register
argument. The op codes and their mnemonics are:

BASE OP CODE

~~l~
~~18
~f32f3
f3f328

IAK

FORMAT:
FUNCTION:

INDICATORS:

RTN

FORMAT:
OPERATION:

FUNCTION:

INDICATORS:

MSKO

FORMAT:
OPERATION:

FUNCTION:

INDICATORS:

PRTN

FORMAT:
OPERATION:

MNEMONIC

IAK
RTN
MSKO
PRTN

INTERRUPT ACKNOWLEDGE

IAK REG
An interrupt acknowledge (READ and !ACK) is
executed, and the 16 bit code that is returned
is placed in REG unmodified. Used with the
nonvectored interrupt when the user does
not wish to use the vectored format.
Unchanged

RETURN FROM SUBROUTINE

RTN
PC
REG

+
+

REG
REG
@SP,SP t

The linkage register is placed in PC and the
saved linkage register is popped from the stack.
The register used must be the same one that was
used for the subroutine call.
Unchanged

MASK OUT

MSKO REG
(LOC "2E") + REG

MSKO
The contents of REG are written into location
"2E" and a MASK OUT state code (see appendix D)
is transmitted.
Unchanged

POP STACK AND RETURN

PRTN REG
TMP + @SP
SP + SP+ (TMP*2)
RTN REG

6

FUNCTION:

INDICATORS:

Twice the value of the top word on
the stack is added to SP, and a standard
RTN call is then executed.
Unchanged

7

FORMAT 3 OP CODES

SINGLE WORD - 4 BIT NUMERIC ARGUMENT

15 12 11 8 7 4 3 f1 , ' f1 I OPC I ARG I
There is only one op code in this class representing op codes

"f1f13f1" to "flf13F". It is a one word op code with a 4-bit numeric argument.

BASE OP CODE

LCC

FORMAT:
FUNCTION:

INDICATORS:

MNEMONIC

LCC

LOAD CONDITION CODES

LCC ARG
The 4 indicators are loaded from bits fl-3
of the op code as specified.
N = Set per bit 3 of op code
Z = Set per bit 2 of op code
V = Set per bit 1 of op code
c = Set per bit fl of op code

8

FORMAT 4 OP CODES

SINGLE WORD - 6 BIT NUMERIC ARGUMENT

15 12 11 8 7 6 5

I OPC I ARG

There are 3 op codes in this class representing op codes
"11114~" to "l1$1FF". All 3 are supervisor calls • All 3 are one word
op codes with a 6-bit numeric argument.

BASE OP CODE

SVCA

FORMAT:
OPERATION:

FUNCTION:

INDICATORS:

SVCB
svcc

FORMAT:

OPERATION:

FUNCTION:

MNEMONIC

SVCA
SVCB
svcc

SUPERVISOR CALL "A"

SVCA ARG
+SP, @SP .+-ps;+ SP,@SP+ PC
PC + (LOC "22") + (ARG *2)
PC +PC + @PC
PS and PC are pushed onto the stack. The
contents of location "22" plus twice the value
of the argument (which is always positive) is placed
in PC to get the table address. The contents
of the table address is added to PC to get the
final destination address. Each table entry is the
relative offset from the start of the desired
routine to itself.
Unchanged

SUPERVISOR CALL "B"
SUPERVISOR CALL "C"

SVCB ARG
svcc ARG
TMPA + SP
+SP, @sp+ PS
+SP, @SP+ PC
TMPB +sp

-t SP, @SP+ TMPA
SAVE
Rl + TMPB
R5 + ARG*2
PC+ (LOC "24") if SVCB
PC+ (LOC II 2 6'') if svcc

PS and PC are pushed onto the stack. The value
of SP at the start of op code execution is the
pushed followed by registers R5 to ~. The address
of the saved PC is placed in Rl, and twice the value
of the 6-bit positive argument is placed in RS.

9

INDICA'l'ORS:

PC is loaded from location "24"
for SVCB or "26" for svcc.
unchanged.

10

FORMAT 5 OP CODES

SINGI.E WORD - 8 BIT SIGNED NUMERIC ARGUMENT

15 8 7
OPC I DISPLACEMENT

There are 15 op codes in this class representing op codes
"~l~~" to "~7FF" and "8~~~" to "87FF". All are branches with a
signed 8 bit displacement that represents the word offset from PC
(which points to the op code that follows) to the desired branch
location. The op codes consist on one unconditional branch, B
signed conditional branches, and 6 unsigned conditional branches.
No op code in this class modifies any of the indicator flags. Max
imum branch range is +128, -127 words from the branch op code.

BASE OP CODE

~l~~
~2~~
~3~~
~4~~
~5~~
~6~~
~7~Si1
8Si1Si1~
81Si1Si1
82~Si1
83~Si1
84Si1~
85Si1~
86Si1~
87Si1~

BR

FORMAT:
OPERATION:
FUNCTION:

BNE

FORMAT:
OPERATION:

BEQ

FORMAT:
OPERATION:

BGE

FORMAT:
OPERATION:

MNEMONIC

BR
BNE
BEQ
BGE
BLT
BGT
BLE
BPL
BMI
BHI
BLOS
BVC
BVS
BCC, BHIS
BCS, BLO

BRANCH UNCONDITIONALLY

BR DEST
PC +PC+ (DISP *2)
Twice the value of the signed displacement
is added to PC •

SIGNED BRANCHES

BRANCH IF NOT EQUAL TO ZERO

BNE DEST
IF Z = ¢, PC + PC + (DISP *2)

BRANCH IF EQUAL TO ZERO

BEQ DEST
IF Z = 1, PC + PC + (DISP *2)

BRANCH IF GREATER THAN OR EQUAL TO ZERO

BGE DEST
IF ?RV = 9J, PC + PC + (DISP *2)

11

BLT

FORMAT:
OPERATION:

BGT

FORMAT:
OPERATION:

BLE

FORMAT:
OPERATION:

BPL

FORMAT:
OPERATION:

BMI

FORMAT:
OPERATION:

BHI

FORMAT:
OPERATION:

BLOS

FORMAT:
OPERATION:

BVC

FORMAT:
OPERATION:

BVS

FORMAT:
OPERATION:

BCC

BHIS

FORMAT:

OPERATION:

BRANCH IF LESS THAN ZERO

BLT DEST
IF N~V = 1, PC + PC + (DISP *2}

BRANCH IF GREATER THAN ZERO

BGT DEST
IF Z V(~) = ~' PC+ PC+ (DISP *2)

BRANCH IF LESS THAN OR EQUAL TO ZERO

B!.E DEST
IF ZV (WV) = 1, PC + PC + (DISP *2)

BRANCH IF PLUS

BPL DEST
IF N = ~' PC+ PC + (DISP *2)

BRANCH IF MINUS

BMI DEST
IF N = 1, PC + PC + (DISP *2)

UNSIGNED BRANCHES

BRANCH IF HIGHER

BHI DEST
IF CVZ = ¢, PC + PC + (DISP *2)

BRANCH IF LOWER OR SAME

BLOS DEST
IF CVZ = 1, PC + PC + (DISP *2)

BRANCH IF OVERFLOW CLEAR

BVC DEST
IF V = ¢, PC + PC + (DISP *2)

BRANCH IF OVERFLOW SET

BVS DEST
IF V = 1, PC + PC + (DISP *2)

BRANCH IF CARRY CLEAR

BRANCH IF HIG~R OR SAME

BCC DEST
BHIS DEST
IF C = ¢, PC + PC + (DISP *2)

12

BCS BRANCH IF CARRY SET
BLO BRANCH IF LOWER

FORMAT: BCS DEST
BLO DEST

OPERATION: IF C = 1, PC+ PC + (DISP *2)

13

FORMAT 6 OP CODES

S1NGLE WORD - SINGLE OPS - SPLIT FIELD - D.Mf/1 ONLY

15 9 8 6 5 4 3 0
I OPC BASE I REG I OPC I COUNT

There are 12 op codes in this class representing op codes "fl8flJflJ"
to "f69FF", "88flJf6" to "89FF", and "8EflJf6" to "8FFF". There are 4 inunedi
ate IOC>de op codes with a register as a destination, 4 multiple count
single register shifts, and 4 multiple count double register shifts.
In all op codes the actual count (or number in the case of the immedi
ates) is the value of bits fl - 3 plus one. Count is always a positive
number in the range 1 - "lflJ", but it is stored in the op code as flJ -
"F". All of these op codes are one word op codes with the op codes them
selves split between bits 9-15 and 4-5.

In the case of the double shifts the 32 bit number (REG+l)
(REG) is the operand. If REG = PC then (REG+l) = RrlJ.

BASE OP CODE

flJBflflJ
flJ8lf6
flJ82flJ
flJ83flJ
88flJflJ
88191
882flJ
88391
8EflJflJ
8Elf6
8E2flJ
8E3flJ

ADDI

FORMAT;
OPERATION:
FUNCTION:

INDICATORS:

SUBI

FORMAT:
OPERATION:
FUNCTION:

MNEMONIC

ADDI
SUBI
BICI
MOVI
SSRR
SSLR
SSRA
SSLA
SDRR
SDLR
SORA
SOLA

ADD IMMEDIATE

ADDI NUMBER, REG
REG + REG + COUNT + 1
The stored number plus one is added to the
destination register.
N = Set if bit 15 o~ the result is set
Z = Set if the result = flJ
V = Set if arithmetic overflow occurs; i.e. set
if both operands were positive and the sign of
the result is negative
C = Set if a carry was generated from bit 15
of the result

SUBTRACT IMMEDIATE

SUBI NUMBER, REG
REG+ REG - (COUNT +l)
The stored number plus one is subtracted from
the destination register.

14

INDICATORS:

BICI

FORMAT:
OPERATION:
FUNCTION:

INDICATORS:

MOVI

FORMAT:
OPERATION:
FUNCTION:

INDICATORS:

SSRR

FORMAT:
FUNCTION:

INDICATORS:

SSLR

FORMAT:
FUNCTION:

INDICATORS:

N ~ Set if bit is o~ the reault is set
z = Set if the result = ~
V = Set if arithmetic underflow occurs; i.e. set

if the operands were of opposite signs and
the sign of the result is positive

C = Set if a borrow was generate from bit 15
of the result

BIT CLEAR IMMEDIATE

BICI NUMBER, REG
REG +--REG A(COUNT + 1)
The stored number plus one js one's complemented
and ANDED to the destination register
N = Set if bit 15 of the result is set
Z = Set if the result = ~
V = Reset
c = Unchanged

IDVE IMMEDIATE

MOVI NUMBER, REG
REG + COUNT + 1
The stored number plus one is placed in
the destination register
N = Reset
z = Reset
V = Reset
C = Unchanged

SHIFT SINGLE RIGHT ROTATE

SSRR REG, COUNT
A 17-bit right rotate is done stored count+!
times on REG:C-Flag. The C-Flag is shifted into
bit 15 of REG, and the C-Flag gets the last bit
shifted out of REG bit~·
N = Set if bit 7 of REG is set
Z = Set if .REG = ~
V = Set to exclusive or of N and C flags
C = Set to the value of the last bit shifted
out of REG bit ~

SHIFT SINGLE LEFT ROUTINE

SSLR REG, COUNT
A 17-bit left rotate is done stored count+!
times on C-Flag:REG • The C-Flag is shifted
into bit fl of REG and the C-Flag gets the
last bit shifted out of REG bit 15.
N Set if bit 15 of REG is set
Z = Set if REG = ~
V = Set to exclusive or of N and C flags
C = Set to the value of the last bit shifted

out of REG bit 15.

15

SSRA

FORMAT:
FUNCTION:

INDICATORS:

SSLA

FORMAT:
FUNCTION:

INDICATORS:

SDRR

FORMAT:
FUNCTION:

INDICATORS:

SDLR

FORMAT:
FUNCTION:

INDICATORS:

SHIFT SINGLE RIGHT ARITHMETIC

SSRA REG, COUNT
A 17-bit right arithmetic shift is done
stored count+! times on REG: C-Flag. Bit
15 of REG is replicated. The C-Flag gets the
last bit shifted out of REG bit ~- Bits shifted
out of the C-Flag are lost.

N = Set if bit 7 of REG is set
z = Set if REG = j1
V= Set to exclusive or of N and C flags
c = Set to the value of the last bit shifted

out of REG bit~

SHIFT SINGLE LEFT ARITHMETIC

SSLA REG, COUNT
A 17-bit left arithmetic shift is done stored
count+l times on C-Flag:&gG. Zeros are shifted
into REG bit 91, and the C-FLAG gets the last bit
shifted out of REG bit 15. Bits shifted out of the
C-Flag are
N = Set if
z = Set if
v. = Set to
c Set to

out of

lost.
REG bit 15 is set
REG = 91
exclusive or of N and C flags
the value of the last bit shifted
REG bit 15

SHIFT DOUBLE RIGHT ROTATE

SDRR REG, COUNT
REG+l:REG:C-Flag is rotate right stored
count+l times. The C-Flag is shifted into
REG+l bit 15, REG+l bit ¢ is shifted into
REG bit 15, and REG bit ¢ is shifted into the C-Flag.
N = Set if bit 7 of REG is set
Z = Set if REG = 91
v = set to exclusive or of N and c flags
C Set to the value of the last bit shifted

out of REG bit ¢

SHIFT DOUBLE LEFT ROTATE

SDLR REG, COUNT
A 33 bit left rotate is done stored count+!
times on C-Flag:REG+l:REG. The C-Flag is
shifted into REG bit ,,, REG bit 15 is shifted
into REG+l bit ,,, and REG+! bit 15 is shifted
into the C-Flag
N = Set if REG+l bit l5 is set
Z = Set if REG+l = ¢
V = Set to exclusive or of N and C flags
C = Set to the value of the last bit shifted

out of REG+l bit 15.

16

SORA

FORMAT:
FUNCTION:

INDICATORS:

SOLA

FORMAT:
FUNCTION:

INDICATORS:

SHIFT DOUBLE RIGHT ARITHMETIC

SORA REG, COUNT
A right arithmetic shift is done stored
count+l times on REG+l:REG:C-Flag 1

Bit 15 of REG+l is replicated. Bit ¢ of
REG+l is shifted to bit 15 of REG. Bit
¢ of REG is shifted to the C-Flag. Bits
shifted out of the C-Flag are lost.
N = Set if bit 7 of REG is set
Z = Set if REG = ¢
v = Set to exclusive or of N and C flags
C = Set to the value of the last bit

shifted out of REG bit ¢

SHIFT DOUBLE LEFT ARITHMETIC

SOLA REG, COUNT
A left arithmetic shift is done stored
count+l times on C-Flag:REG+l:REG.
Zeros are shifted into REG bit 0, REG bit
15 is shifted to REG+l bit ~. REG+l
bit 15 is shifted to the C-Flag. Bits
shifted out of the C-Flag are lost.
N Set if REG+l bit 15 is set
Z Set if REG+l = ~
V Set to exclusive or of N and C flags
C Set to the value of the last bit shifted

out of REG+l bit 15

17

FORMAT 7 OP CODES

SINGLE OPS - ONE OR TWO WORDS - DM¢ TO DM7

15 6 5 3 2 0
OPC I MODE REG I

There are 32 op codes in this class representing op codes
"¢A¢¢" to "f6DFF" and "8Af6f6" to "8DFF". All addressing modes .from
¢ to 7 are available with all registers available as index regis
ters (see chapter two) • A one word op code is generated for ad
dressing modes ¢ to 5. A two word op code is generated for addres
sing modes 6 and 7 with the offset value in word two. For DM6 and
DM7 with PC as the index register PC is added to the offset from word
two after the offset is fetched from memory. The offset is there
fore relative to a PC that points to the op code that follows (i.e.
current op code + 4). Codes "8A¢¢" to "8CC¢" are BYTE ops.

BASE OP CODE

¢A¢¢
f6A4f6
¢A8f6
¢AC¢
f6B¢¢
¢B4¢
ft1B8{1
~BCft1
¢c¢¢
¢c4¢
¢ca¢
¢cc¢
¢D¢¢
¢D4¢
¢D8¢
¢DC¢

ROR

FORMAT:
FUNCTION:

INDICATORS:

ROL

FORMAT:
FUNCTION:

MNEMONIC BASE OP CODE MNEMONIC

ROR 8A¢¢ RORB
ROL 8A4f6 ROLB
TST 8A8¢ TSTB
ASL 8AC¢ ASLB
SET 8B¢¢ SETB
CLR 8B4¢ CLRB
ASR 8B8ft1 ASRB
SWAB SBC¢ SWAD
COM 8C¢¢ COMB
NEG 8C4¢ NEGB
INC 8C8¢ INCB
DEC sec¢ DECB
IW2 8D¢ft1 LSTS
SXT 8D4ft1 SSTS
TCALL 8D8¢ ADC
TJMP 8DC¢ SBC

WORD OPS

ROTATE RIGHT

ROR DST I

A 1-bit right rotate is done on (DST):C-Flag
The C-Flag is shifted into (DST) bit 15, and (DST)
bit ¢ is shifted into the C-flag.
N = Set if bit 7 of (DST) is set
Z = Set if (DST) = ¢
V = Set to exclusive or of N and C flags
C = Set to the value of the bit shifted out of (DST)

ROTATE LEFT

ROL DST
A 1-bit left rotate is done on C-Flag: (DST). The

18

INDICATORS:

TST

FORMAT:
OPERATION:
F'"TNCTION:

INDICATORS:

ASL

FORMAT:
FUNCTION:

INDICATORS:

SET

FORMAT:
OPERATION:
FUNCTION:
INDICATORS:

CLR

FORMAT:
OPERATION:
FUNCTION:
INDICATORS:

ASR

FORMAT:
FUNCTION:

C-Flag is shifted into (DST) bit¢, and (DST)
bit 15 is shifted into the C-Flag.
N = Set if bit 15 of (DST) is set
z Set if (DST) = ¢
v Set to exclusive or of N and C flags
c = Set to the value of the bit shifted out of (DST)

TEST WORD

TST DST
(DST) {:). (DST)
The indicators are set to reflect the destination
operand status.
N = Set if (DST) bit 15 is set
Z Set if (DST) = ¢
V = Reset
C = Unchanged

ARITHMETIC SHIFT LEFT

ASL DST
A 1-bit left arithmetic shift is done
zero is shifted into (DST) bit ¢, and
is shifted into the C-Flag.
N • Set if (DST) bit 15 is set
Z Set if (DST) = ¢

on (DST). A
(DST) bit 15

V = Set to exclusive or of N and C flags
C Set to the value of the bit shifted out of (DST)

SET TO ONES

SET DST
(DST) + "FFFF"
The destination operand is set to all ones
N Set
z Reset
V = Reset
C = Unchanged

CLEAR TO ZEROS

CLR DST
(DST)+- ¢
The destination operand is cleared to all zeros
N = Reset
Z Set
V = Reset
C Unchanged if DM,0. Reset if DM1-DM7.

ARITHMETIC SHIFT RIGHT

ASR DST
A 1-bit right arithmetic shift is done on (DST). Bit
15 of (DST) is replicated. Bit ¢ of (DST) is shifted
into the C-Flag.

19

INDICATORS:

SWAB

FORMAT:
OPERATION:
FUNCTION:
INDICATORS:

COM

FORMAT:
OPERATION
FUNCTION:
INDICATORS:

NEG

FORMAT:
OPERATION:
FUNCTION:
INDICATORS:

INC

FORMAT:
OPERATION:
FUNCTION:
INDICATORS:

DEC

FORMAT:
OPERATION:
FUNCTION:
INDICATORS:

N = Set if (DST) bit 7 is set
Z = Set if (DST) = ~
V = Set to exclusive or of N and C flags
C = Set to the value of the bit shifted out of (DST)

SWAP BYTES

SWAB DST
(DST) 15-8 °t (DST) 7-~
The upper and lower bytes of (DST) are exhanged.
N - Set if (DST) bit 7 is set
z = Set if (DST) lower byte = ~
V = Reset
C = Unchanged

COMPLEMENT

COM DST
(DST) + (DST)
The destination operand is one's complemented.
N = Set if (DST) bit 15 is set
Z = Set if (DST) = ¢
V = Reset
C =Set

NEGATE

NEG DST
(DST) + - (DST)
The destination operand is two's complemented.
N = Set if (DST) bit 15 is set
z = Set if (DST) = ¢
v = Set if (DST) = "8~f,J~"
c = Reset if (DST) = f.J

INCREMENT

INC DST
(DST) + (DST) + 1
The destination operand is incremented by one •
N = Set if (DST) bit 15 is set
z = Set if (DST) = f.J
v = Set if (DST) = "8!6~~11

c = Set if a carry is generated from (DST) bit 15

DECREMENT

DEC DST
(DST) + (DST) - 1
The destination operand is decremented by one~
N = Set if (DST) bit 15 is set
Z = Set if (DST) = ¢
V = Set if (DST) = "7FFF"
C = Set if a borrow is generated from (DST) bit 15

20

FORMAT:
OPERATION:
FUNCTION:
INDICATORS:

SXT

FORMAT:
OPERATION:

FUNCTION:
INDICATORS:

TCALL

FORMAT:
OPERATION:

FUNCTION:

INDICATORS:

TJMP

E'ORMAT:
OPERATION:

FUNCTION:

INDICATORS:

LSTS

FORMAT:
FUNCTION:

INDICATORS:

SSTS

FORMAT:
FUNCTION:
INDICATORS:

IW2 DST
(DST) + (DST) + 2
The destination operand is incremented by two.
N Set if (DST) bit 15 is set
z = Set if (DST) = !i1
v = Set if (DST) = "BJZl!i1!i1" or "BJZl!i11"
c = Set if a carry is generated from (DST) bit

SIGN EXTEND

SXT
IF N

DST
!i1, (DST)+ !i1

IF N 1, (DST; + "FFFF"

15

The N-Flag status is replicated in the destination operand
Unchanged

TABLED SUBROUTINE CALL

TCALL DST
-t SP , @SP + PC
PC~ PC + (DST)
PC+ PC + @PC
PC, which points to the op code that follows, is pushed
onto the stack. The destination operand is added to
PC. The contents of this intermediate table address is
also added to PC to get the final destination address.
Note that at least one op code must exist between the
TCALL and the table for a subroutine return.
Unchanged

TABLED JUMP

TJMP DST
PC+ PC + (DST)
PC+ PC + @PC
The destination operand is added to PC, and the contents
of this intermediate location is also added to PC to get
the final destination address•
Unchanged

LOAD PROCESSOR STATUS

LSTS DST
The four indicators and the interrupt enable (I2)
are loaded from the destination operand.
Set to the status of (DST) bits ~ - 3

STORE PROCESSOR STATUS

SSTS DST
'rhe processor status word is formed and stored in (DST).
Unchanged

21

ADC

FORMAT:
OPERATION:
FUNCTION:
INDICATORS:

SBC

FORMAT:
OPERATION:
FUNCTION:
INDICATORS:

ADD CARRY

ADC DST
(DST) + (DST} + C -flag
The carry flag is added to th..e destination operand
N= Set if (DST) bit 15 is set
Z = Set if (DST) = ~
V = Set to exclusive or of N and C flags
c = Set if a carry is generated from (DST) bit 15

SUBTRACT CARRY

SBC DST
(DST) + (DST) - c-Flag
The Carry flag is subtracted from the destination operand
N = Set if (DST) bit 15 is set
Z = Set if (DST) = ~
V = Set to exclusive or of N and C flags
C = Set if a borrow is generated from (DST) bit 15

BYTE OPS

For DM~ addressing only the lower byte of the destination register
is affected by a byte op code. For DM1-DM7 addressing only the speci
fied memory byte is affected by a byte op. For even memory addresses
the lower byte is altered, and for ddd memory addresses the upper byte
is altered.

RORB

FORMAT:
FUNCTION:

INDICATORS:

ROLB

FORMAT:
FUNCTION:

INDICATORS:

TSTB

F:ORMAT:
OPERATION:

ROTATE RIGHT BYTE

RORB DST
A 1-bit right rotate is done on (DST)B:C-Flag. Bit
~ of (DST)B is shifted into the C-Flag, and the C-Flag
is shifted into (DST)B bit 7.
N = Set if (DST)B bit 7 is set
Z = Set if (DST)B = ~
V = Set to exclusive or of N and C flags
C Set to the value of the bit shifted out of (DST)Bbit ~

ROTATE LEFT BYTE

ROLB DST
A 1-bit left rotate is done on C-flag :(DST)B. Bit 7
of (DST)B is shifted into the C-flag, and the c-flag
is shifted into (DST)B bit ~

N = Set if (DST)B bit 7 is set
z = Set if (DST)B = ~
v = Set to exclusive or of N and C flags
c = Set to the value of the bit shifted out of (DST)B bit

TEST BYTE

TSTB DST
(DST) B ~ (DST) B

22

7

FUNCTION:
INDICATORS:

ASLB

FORMAT:
FUNCTION:

INDICATORS:

The destination operand status sets the indicators.
N = Set if (DST)B bit 7 is set
Z = Set if (DST)B = ~
V Reset
C Unchanged

ARITHMETIC SHIFT LEFT BYTE

ASLB DST
A 1-bit left arithmetic shift is done on C-Flag:(DST)s
A zero is shifted into (DST)B bit ~. and (DST)B bit 7 is
shifted into the C-flag.
N set if (DST)B bit 7 is set
Z Set if (DST)B = ~
V Set to exclusive or of N and C flags
C Set to the value of the bit shifted out of (DST)B bit 7

SETB SET BYTE TO ONES
~~~~~~~~~~~ 

FORMAT: 
OPERATION: 
FUNCTION: 
INDICATORS: 

CLRB 

FORMAT: 
OPERATION: 
FUNCTION: 
INDICATORS: 

ASRB 

FORMAT: 
FUNCTION: 

INDICATORS: 

SWAD 

FORMAT: 
FUNCTION: 

INDICATORS: 

SETB DST 
(DST) B + "FF" 
The destination byte operand is set to all ones 
N Set 
Z Reset 
V Reset 
C Unchanged 

CLEAR BYTE TO ZEROS 

CLRB DST 
(DST) B + ~ 
The destination byte operand is cleared to all zeros. 
N Reset 
Z Set 
V Reset 
C Reset 

ARITHMETIC SHIFT RIGHT BYTE 

ASRB DST 
A 1-bit right arithmetic shift is done on (DST)B: 
C-flag. Bit 7 of (DST)B is replicated. Bit~ of 
(DST)B is shifted into the C-flag. 
N = Set if (DST)B bit 7 is set 
Z Set if (DST)B = ~ 
V Set to exclusive or of N and C flags 
C Set to the value of the bit shifted out of (DST)B bit~ 

SWAP DIGITS 

SWAD DST 
The two hex digits in the destination byte operand 
are exchanged with each other, 
N Set if (DST)B bit 7 is set 
Z Set if (DST)B = ~ 
V Set if (DST)B bit 7 is set 
C = Reset 

23 



COMB 

FORMAT: 
OPERATION: 
FUNCTION: 
INDICATORS: 

NEGB 

FORMAT: 
OPERATION: 
FUNCTION: 
INDICATORS: 

INCB 

FORMAT: 
OPERATION: 
FUNCTION: 
INDICATORS: 

DECB 

FORMAT: 
OPERATION: 
FUNCTION: 
INDICATORS: 

COMPLEMENT BYTE 

COMB DST 
(DST) B + (OS'r) B 
The destination byte operand is one's complemented 
N Set if (DST)B bit 7 is set 
Z = Set if (DST)B = ~ 
V = Reset 
C =Set 

NEGATE BYTE 

NEGB DST 
(DST) B + - (DST) B 
The destination byte operand is two's co~lernented 
N = Set if (DST)B bit 7 is set 
Z Set if (DST)B = ~ 
V = Set if (DST) B = "8~$1fil'' 
C = Reset if (DST)B = ~ 

INCREMENT BYTE 

INCB DST 
(DST) B + (DST) B + 1 
The destination byte operand is incremented by one 
N = Set if (DST)B is set 
Z = Set if (DST)B = ~ 
V = Set if (DST)B = "8~~~" 
C Set if a carry is generated from (DST)B bit 7 

DECREMENT BYTE 

DECB DST 
(DST) B +- (DST) B - 1 
The destination byte operand is decremented by one 
N Set if (DST)B bit 7 is set 
Z Set if (DST)B = ~ 
V • Set if (DST)B = "7FFF" 
C Set if a borrow is generated from (DST)B bit 7 

24 



FORMAT 8 OP CODES* 

DOUBLE OPS - SINGLE WORD - SMfJ AND D~ ONLY 

15 6 5 3 2 0 
OPC I s REG I DREG I 

There are 8 op codes in this class representing op codes 
".0EfJW' to ".0FFF". Only addressing mode .0 is allowed for both the 
source and destination. All are one word op codes, and all are block 
move instructions. The last 4 can be used as pseudo DMA ops in some 
hardware configurations. In all cases the source register contains 
the address of the first word or byte of memory to be moved, and the 
destination register contains the address of the first word or byte 
of memory to receive the data being moved. The number of words or 
bytes being moved is contained in R.0. The count ranges from 1-65536 
(,0 = 65536) words or bytes. The count in R.0 is an unsigned positive 
integer. None of the indicators are altered by these op codes. 

Each of these op codes is interruptable at the end of each word 
or byte transfer. If no interrupt requests are active the trans-
fers continue. PC is not incremented to the next op code until the 
op code is completed. This allows for complete interruptability 
as long as register integrity is maintained during the interrupt. 

BASE OP CODE 

fJE.0.0 
,0E4,0 
,0EB,0 
,0EC,0 
,0F,0.0 
.0F4.0 
,0F8,0 
,0FC,0 

* NOTE: These 

MBWU 

FORMAT: 
FUNCTION: 

MBWD 

FORMAT: 
FUNCTION: 

MNEMONIC 

MBWU 
MBWD 
MBBU 
MBBD 
MBWA 
MBBA 
MABW 
MABB 

op codes are all in the third microm. 

MOVE BLOCK OF WORDS UP 

MBWU SRC, DST 
The word string beginning with the word addressed 
by the source register is moved to successively 
increasing word addresses as specified by the des
tination register. The source and destination reg
isters are each incremented by two after each word 
is transferred. R.0 is decremented by one after each 
transfer, and transfers continue until R.0 = )3. 

MOVE BLOCK OF WORDS DOWN 

MBWD SRC, DST 
The word string beginning with the word addressed 
by the source register is moved to successively 

25 



INDICATORS: 

MBBU 

FORMAT: 
FUNCTION: 

INDICATORS: 

MBBD 

FORMAT: 
FUNCTION: 

INDICATORS: 

MBWA 

FORMAT: 
FUNCTION: 

INDICATORS: 

MBBA 

FORMAT: 
FUNCT?ON: 

INDICATORS: 

MABW 

FORMAT: 
FUNCTION: 

INDICATORS: 

MABB 

FORMAT: 
FUNCTION: 

INDICATORS: 

decreasing word addresses as specified by the des
tination register. The sou~ce and destination reg
isters are each decremented by two after each word is 
transferred. RS6 is decremented by one after each 
transfer, and transfers continue until RJ6 = ~. 
Unchanged 

MOVE BLOCK OF BYTES UP 

MBBU SRC, DST 
The byte string beginning with the byte addressed by 
the source register is moved to successively increas
ing byte addresses as specified by the destination_ 
register. The source and destination registers are 
each incremented by one after each byte is transfer
red. R/6 is decremented by one after each transfer, 
and transfers continue until RJ6 = ~-
Unchanged. 

MOVE BLOCK OF BYTES DOWN 

MBBD SRC, DST 
The byte string beginning with the byte addressed by 
the source register is moved to successively decreas
ing byte addresses as specified by the destination 
register. The source register, destination register, 
and R/6, are each decremented by one after each byte is 
transferred. Transfers continue until R~ = ~. 
Unchanged 

MOVE BLOCK OF WORDS TO ADDRESS 

MBWA SRC, DST 
Same as MBWU except that the destination register is 
never incremented. 
Unchanged 

MOVE BLOCK OF BYTES TO ADDRESS 

MBBA SRC, DST 
Same as MBBU e~cept that the destination register is 
never incremented. 
Unchanged 

MOVE ADDRESS TO BLOCK OF WORDS 

MABW SRC, DST 
Same as MBWU except that the source register is never 
incremented. 
Unchanged 

MOVE ADDRESS TO BLOCK OF BYTES 

MABB SRC, DST 
Same as MBBU except that the source register is never 
incremented. 
Unchanged 

26 



FORMAT 9 OP CODES 

DOUBLE OPS - ONE OR TWO WORDS - SM0, DM@ to DM7 

OPC I s REG I D MODE 
2 @ 

DREG I 
15 9 8 6 5 3 

There are 8 op codes in this class representing op codes 
"7¢0¢" to "7FFF". Source mode 0 addressing only is allowed, but des
tination modes 0 - 7 are allowed for all op codes except 3: JSR and 
LEA wit.~ DM@ will cause an illegal instruction format trap (see chap
ter 2), and SOB is a special format unique to itself. It is includ
ed here only because its destination field is 6 bits long. SOB is 
a branch instruction. Its 6 bit destination field is a positive 
word offset from PC, which points to the op code that follows, 
backwards to the desired address. Forward branching is not allowed. 
SOB is always a one word op code, and it is used for fast loop con
trol. All other op codes are one word long for DM@ to DMS addressing 
and two words long for DM6 or DM7 addressing. The rules for PC rel
ative addressing with DM6 or DM7 are the same as they are for the 
format 7 op codes. Preliminary decoding of all these op codes ex
cept SOB presets the indicator flags as follows: N = 1, z = ~, 

v = ¢, c = 1. 

BASE OP CODE 

7~00 
72@@ 

740~ 
7600 
78@¢ 
7A@0 
7C@0 
7E~@ 

JSR 

FORMAT: 
OPERATION: 

FUNCTION: 

INDICATORS: 

LEA 

FOP.MAT: 
OPERATION: 

MNEMONIC 

JSR 
LEA 
ASH 
SOB 
XCH 
ASHC 
MUL 
DIV 

JUMP TO SUBROUTINE 

JSR REG, DST 
+ SP , @SP + REG 
REG +PC 
PC +DST 
The linkage register is pushed onto the stack; PC, 
which points to the op code that follows, is placed 
in the linkage register; and the destination add
ress is placed in PC. DM0 is illegal. The assem
bler recognizes the format "CALL DST" as being 
equivalent to "JSR PC, DST". 
Preset 

LOAD EFFECTIVE ADDRESS 

LEA REG, DST 
REG+ DST 

27 



FUNCTION: 

INDICATORS: 

XCH 

FORMAT: 
OPERATION: 
FUNCTION: 

INDICATORS: 

SOB 

FORMAT: 
OPERATION: 

FUNCTION: 

INDICATORS: 

ASH 

FORMAT: 
FUNCTION: 

INDICATORS: 

ASHC 

FORMAT: 
FUNCTION: 

INDICATORS: 

The destination address is placed into the source 
register. D~ is illegal. The assembler recognizes 
the format "JMP DST" as being equivalent to "LEA PC,DST". 

Preset 

EXCHANGE 

XCH REG, DST 
REG ~(DST) 
The source register and destination contents are 
exchanged with each other. 
Preset 

SUBTRACT ONE AND BRANCH (IF r;* @) 

SOB REG, DST 
REG+ REG - 1 
IF REG 'F ~' PC+ PC -(OFFSET *2) 
The source register is decremented by one. If the 
result is not zero then twice the value of the des
tination offset is subtracted from PC. 
Unchanged 

ARITHMETIC SHIFT 

ASH REG, DST 
The source register is shifted arithmetically with 
the number of bits and direction specified by the 
destination operand. If (DST) = ~ no shifting occurs. 
If (DST) = -X then REG is shifted right arithmetically 
x bits as in an SSRA. If (DST) = +X then REG is shifted 
left arithmetically X bits as in an SSLA. Only an 8 
bit destination operand is used. Thus, DST is a byte 
address. For DM~ only the lower byte of the destin
ation register is used. 
Preset if (DST) = ¢ . Otherwise: 
N = Set if REG bit 15 is set 
Z Set if REG = $3 
V Set to exclusive or of N and C flags 
c Set to the value of the last bit shifted out of REG 

ARITHMETIC SHIFT COMBINED 

ASHC REG, DST 
Exactly the same as ASH except that the shift is done 
on REG+l:REG. All other comments apply. 
Preset if (DST) = ~. Otherwisea 
N Set if REG+! bit 15 is set 
Z = Set if REG+!: REG = ~ 
V = Reset 
C = Set to the value of the last bit shifted out 

28 



MUL 

FORMAT: 
OPERATION: 
FUNCTION: 

INDICATORS: 

DIV 

FORMAT: 
OPERATION: 

FUNCTION: 

INDICATORS: 

MULTIPLY 

MUL REG, DST 
REG+ 1: REG + REG * (DST) 
An unsigned multiply is performed on the source 
register and the destination operand. The unsigned 
32 bit result is placed in REG+l:REG. 
N Set if REG+l bit 15 is set 
Z = Set if REG+l:REG = 0 
V Reset 
C Indeterminate 

DIVIDE 

DIV REG, DST 
REG +[REG+l:REG/(DST)] 
REG+ 1 + REMAINDER 
An unsigned divide is performed on the 32 bit source 
operand REG+l:REG and the destination operand. The 
unsigned result is placed in REG, and the unsigned 
remainder is placed in REG+l.No divide occurs and the 
V-flag is set if REG+l is greater than or equal to (DST) 
since the result will not fit into 16 bits. If the 
divisor is zero both the V and C flags are set. 

If no division error: 
N Set if REG bit 15 is set 
Z = Set if REG = 0 
V Reset 
C = Indeterminate 
If division error: 
N = Reset 
Z Reset 
V Set 
C = set if (DST) ~ 

29 



FORMAT 10 OP CODES 

DOUBLE OPS - ONE TO THREE WORDS - SMl/J TO SM7, D~ TO DM7. 

15 12 11 9 8 6 5 
I OPC I s MODE I s REG I D MODE 

There are 12 op codes in this class representing op codes "1!6!6!6" 
to "6FFF" and "9!616'1" to "EFFF". Nine of the op codes are word ops. 
Three are byte ops. Full source and destination mode addressing with 
any register is allowed. A one word op code is generated for SMl/J-
SMS and DMl/J-DMS addressing. A two word op code is generated for either 
SM6-SM7 or DM6-DM7 addressing, but not both. For both SM6-SM7 and 
DME-DM7 addressing a three word op code is generated. For a two word 
op code with word #1 at location X: X + 2 contains the source or 
destination offset and PC = X + 4 if PC is the register that applies 
to the offset in location X + 2. For a three word op code with word 
#1 at location X: X + 2 contains the source offset and X + 4 contains 
the destination offset. If the source register is PC then PC = X + 4 
when added to the offset to compute the source address. If the destin
ation register is PC then PC = X + 6 when added to the offset to compute 
the destination address. 

BASE OP CODE 

1[6[6[6 
2[6[6[6 
316!6!6 
4[6[6f6 
5flf6f6 
6[6f6f6 
9f6f6f6 
~[6[6 
B[6[6f6 
Cf6[6[6 
D[6f6f6 
E<.J9Jf6 

ADD 

FORMAT: 
OPERATION: 
FUNCTION: 

INDICATORS: 

MNEMONIC 

ADD 
SUB 
AND 
BIC 
BIS 
XOR 
CMP 
BIT 
MOV 
CMPB 
MOVB 
BISB 

WORD OPS 

ADD 

ADD SRC, DST 
(DST) + CS.RC) + (DST) 
The source and destination operands are added to
gether, and the sum is placed in the destination. 
N = Set if (DST) bit 15 is set 
Z = Set if (DST) = f6 
V = Set if both operands were of the same sign and 
the result was of the opposite sign 
C = Set if a carry is generated from bit 15 of the 
result 

30 



SUB 

FORMAT: 
OPERATION: 
FUNCTION: 

INDICATORS: 

AND 

FORMAT: 
OPERATION: 
FUNCTION: 

INDICATORS: 

BIC 

FORMAT: 
OPERATION: 
FUNCTION: 

INDICATORS: 

BIS 

FORMAT: 
OPERATION: 
FUNCTION: 

INDICATORS: 

XOR 

FORMAT: 
OPERATION: 
FUNCTION: 

SUBTRACT 

SUB SRC, DST 
(DST) +·(DST) - (SRC) 
The two's complement of the source operand is added 
to the destination operand, and the sum is placed 
in the destination. 
N = Set if (DST) bit 15 is set 
Z = Set if (DST) = ~ 
V = Set if operands were of different signs and 
the sign of the result is the same as the sign 
of the source operand 
C = Set if a borrow is generated from bit 15 of the 
result 

AND 

SRC, DST AND 
(DST) + (SRC) /l (DST) 
The source and destination operand~ ~re logically 
ANDED together, and the result is placed in the 
destination. 
N = Set if {DST) bit 15 is set 
Z Set if (DST) = ~ 
V Reset 
C Unchanged 

BIT CLEAR 

BIC SR£L_DST 
(DST) + (SRC) fl (DST) 
The one's complement of the source operand is log
ically ANDED with the destination operand, and the 
result is placed in the destination. 
N Set if (DST) bit 15 is set 
Z Set if (DST) = ~ 
V Reset 
C Unchanged 

BIT SET 

BIS SRC, DST 
(DST) + (SRC) V (DST) 
The source and destination operands are logically 
ORED, and the result is placed in the destination. 
N = Set if (DST) bit 15 is set 
Z = Set if (DST) = ~ 
V = Reset 
C = Unchanged 

EXCLUSIVE OR 

XOR SRC, DST 
(DST) ~- (SRC) JJ.. (DST) 

The source and destination operands are logically EX
CLUSIVE ORED, and the result is placed in the destination. 

31 



INDICATORS: 

CMP 

FORMAT: 
OPERATION:· 
FUNCTION: 

INDICATORS: 

BIT 

FORMAT: 
OPERATION: 
FUNCTION: 

INDICATORS: 

MOV 

FORMAT: 
OPERATION: 
FUNCTION: 

INDICATORS: 

N = Set if (DST) bit 15 is set 
Z = Set if (DST) = ~ 
V = Reset 
C = Unchanged 

COMPARE 

CMP SRC, DST 
(SRC) - (DST) 
The destination operand is subtracted from the 
source operand, and the result sets the indicators. 
Neither operand is altered. 
N = Set if result bit 15 is set 
z = Set if result = ~ 
v = Set if operands were of opposite sign and the 
sign of the result is the same as the sign of (DST) 
c = Set if a borrow is generated from bit 15 of the 
result 

BIT TEST 

BIT SRC, DST 
(SRC) /j. (DST) 
The source and destination operands are logically 
ANDED, and the result sets the indicators. Neither 
operand is altered. 
N = Set if result bit 15 is set 
Z = Set if result = ~ 
V = Reset 
C = Unchanged 

MOVE 

MOV SRC, DST 
(DST) + (SRC) 
The destination operand is replaced with the source 
operand. 
N = Set if (DST) bit 15 is set 
Z = Set if (DST) = ~ 
V = Reset 
C = Unchanged 

BYTE OPS 

For s~ addressing only the lower byte of the source register is 
used as an operand. For SM1-SM7 addressing only the addressed memory 
byte is used as an operand. For D~ addressing only the lower byte 
of the destination register is used as an operand with one exception: 
MOVB will e~tend the sign through bit 15. For DM1-DM7 addressing only 
the addressed memory byte is used as an operand. 

CMPB COMPARE BYTE 

FORMAT: CMPB SRC, DST 
OPERATION: (SRC) B - (DST) B 

32 



FUNCTION: 

INDICATORS: 

MOVB 

FORMAT: 
OPERATION: 
FUNCTION: 

INDICATORS: 

BISB 

FORMAT: 
OPERATION: 
FUNCTION: 

INDICATORS: 

The destination operand is subtracted from the 
source operand, and the result sets the indicat
ors. Neither operand is altered. 
N = Set if result bit 7 is set 
z = Set if result = ~ 
v = Set if operands were of different signs and 
the sign of the result is the same as the sign 
of (DST)B. 
C = Set if a borrow is generated from result bit 7 

MOVE BYTE 

MOVB SRC, DST 
(DST) B + (SRC) B 
The destination operand is replaced with the source 
operand. If DM~ the sign bit (bit 7) is replicat
ed through bit 15. 
N Set if (DST)B bit 7 is set 
z =Set if (DST)B = ~ 
V = Reset 
C Unchanged 

BIT SET BYTE 

BISB SRC, DST 
(DST) B + (SRC) B \I (DST) B 
The source and destination operands are logically 
OREO, and the result .is placed in the destination. 
N Set if (DST)B bit 7 is set 
z = Set if (DST)a = ~ 
V Reset 
C = Unchanged 

When using auto incre:roonts or decrements in either the source 
or destination (or both) fields the user must remember the following 
rule: All increments or decrements in the source are fully completed 
before any destination decoding begins even if the same index regis
ter is used in both the source and destination. The two fields are 
totally independent. 

33 



FORMAT 11 OP CODES 

DOUBLE OPS - ONE WORD - FLOATING POINT. 

I 1111 
15 12 11 

I OPC 
8 7 6 
I I I SRC I I I DST 

4 3 2 

There are 16 OP Codes in this class representing OP Codes "Ffl/6/6" to 
"FFFF". Only five are currently defined. They res~de in the third 
microm along with the Format 8 OP Codes. The remaining 11 OP Codes 
are mapped to the fourth micxom for future expansion or customized 
user OP Codes. All are one word long. Two source and destination 
addressing modes are available. These two modes, FP~ and FPl, are 
unique to these OP Codes. Each consists of a 3-bit Register Desig
nation and a 1 bit indirect flag preceeding the register designator. 
For FP/6 the indirect bit is ~, and FPl it is one. Both the source and 
destination fields have both addressing modes. The modes are defined 
as follows: 

FPf6 The designated register contains the address of the operand. 

FPl The designated register contains the address of the address 
of the operand. 

FPf6 is the same as standard addressing mode 1, and FPl is the same 
as standard addressing mode 7 with an offset of zero. 

The computed address is the address of the first word of a 3 word 
floating point operand. The first word contains the sign, exponent, 
and high byte of the mantissa. The next higher address contains the 
middle two bytes of the maatissa, and the next higher address after 
that contains the lowest two bytes of the mantissa. This format is 
half way between single and double precision floating point formats, 
and it represents the most efficient use of microprocessor ROM and 
register space. The complete format is as follows: 

1. A 1 bit sign for the entire number which is zero for positive. 

2. An 8-bit base-two exponent in excess-128 notation with a range of 
+127, -128. The only legal number with an exponent of -128 is 
true zero (all zeros). 

3. A 40 bit mantissa with the MSB implied. 

Since every operand is assumed to be normalized upon entry and every 
result is normalized before storage in the destination addresses, 
and since a normalized mantissa has a MSB equal to one, then only 39 
bits need to be stored. The MSB is implied to be a one, and the 
bit position it normally occupies is taken over by the exponent to 
increase its range by a factor of two. The full format of a floating 
point operand is a follows: 

15 14 7 6 g 
LOCATION x: l s I EXPONENT I MANTISSA (HIGH) I 

15 8 7 fJ 
LOCATION X+2: ._I _...:MANT==IS::::.:S:;.:.A.:....-..._: _...:(MI=D;.::;D=LE=i)"-------'' 

15 8 7 {l 

34 



True zero is represente~ by a field of 48 zeroes. In effect, the CPU 
considers any number with an exponent of all zeroes (-128) to be a zero 
during.multiplication and division. For add and subtract the only legal 
number with an exponent of -128 is true zero. All others cause erroneous results. 
No registers are modified by any Format 11 OP Code. However, to make room 
internally for computations 4 registers are saved in memory locations 
"30" - "38" during the exelution of FADD, FSUB, FMUL and FDIV. These 
registers are retrieved at the completion of the OP Codes. The 
registers saved are: the destination address, SP, PC and ~. No 
Format 11 OP Code is interruptable (for obvious reasons) • FMUL uses 
location "38" for temporary storage of partial results. 

FLOATING POINT ERROR TRAPS 

Location "3E" is defined as the floating point error trap PC. When
ever an overflow, underflow, or divide by zero occurs a standard trap 
call is executed with PS and PC pushed onto the stack, and PC fetched 
from location "3E". I2 is not altered. The remaining memory locations 
that are reserved for the floating point option ("3A and "3C") are 
not currently used. The status of the indicator flags and destina
tion addresses during the 3 trap conditions are defined as follows: 

RESERVED TRAPS 

FOR UNDERFLOW (FADD, FSUB, FMUL, FDIV) 

N 1 Destination contains all zeroes 
z = f1 (true zero). 
v = 1 
c = f1 

FOR OVERFLOW (FADD, FSUB, FMUL) 

N = f6 Destination not altered in any way. 
z = f1 
v = 1 
c = f6 

FOR OVER FLOW (FDIV) 

N = f6 Destination not altered if overflow detected 
z = f6 during exponent computation. Undefined 
v = l otherwise. (Used to save unnormalized 
c = {1 partial results during a divide). 

FOR DIVIDE BY ZERO (FDIV) 

N = 1 
z = f6 
v = 1 
c = 1 

Destination not altered in any way. 

If the third microm is in the system and the fourth is not then the 
last 11 floating point OP codes are the only ones that will cause a 
reserved OP code trap if executed. If the third microm is not in the 
system then all Format 8 and 11 OP Codes will cause a reserved OP code 
trap if executed. However, since the Format 8 OP Codes are interrupt-

35 



able the PC is not advance until the conpletion of the moves. In 
all other cases PC is advanced when the OP Code is fetched. For 
these reasons the PC that is saved onto the stack will point to the 
offending OP Code during a reserved OP Code trap if and only if 
the offending OP Code is a Format 8 OP Code. For the Format 11 
OP Codes the saved PC will point to the OP Code that follows the 
offending OP Code. If the user wishes to identify which OP Code 
caused the reserved OP Code trap he must not preceed a Format 8 
OP Code with a Format 11 OP Code or a literal that looks like a 
Format 11 OP Code. 

BASE OP CODE 

Ff1c;1fd 
Flc;1fd 
F2f1f1 
F3f1f1 
F4f1fd 
FSflfd 
F6f1fd 
F7f1f1 
F8f1f1 
F9f1fd 
FAflfl 
FB(Jfl 
FC(Jfl 
FDf1f1 
FEfd(J 
FFfl(J 

FADD 

FORMAT: 
OPERATION: 

FUNCTION: 

INDICATORS: 

MNEMONIC 

FADD 
FSUB 
FMUL 
FDIV 
FCMJ? 

FLOATING POINT ADD 

FADD SRC,DST 
(DST) + (DST) + (SRC) 
The source and destination operands are added 
together, normalized, and the result is stored 
in place of the destination operand. 
(if no errors) 
N =Set if the result sign is negative (set). 
Z = Set if the result is zero 
V = Reset 
c = Reset 

FSUB FLOATING POINT SUBTRACT 

FORMAT: FSUB SRC, DST 
OPERATION: (DST) + (DST) - (SRC) 

FUNCTION: The source operand is subtracted from the 
destination operand. The result is normalized 
and stored in place of the destination operand. 

WARNING: THIS OP CODE COMPLEMENTS THE SIGN OF THE SOURCE OPERAND IN 
MEMORY AND DOES AN FADD. 

INDICATORS: (if no errors) 
N = Set if the result sign is negative (set) 
z = Set if the result is zero. 

36 



FMUL 

FORMAT: 
OPERATION: 

FUNCTION: 

INDICATORS: 

FDIV 

FORMAT: 
OPERATION: 

FUNCTION: 

INDICATORS; 

FCMP 

FORMAT: 
OPERATION: 

FUNCTION: 

INDICATORS: 

V Reset 
C = Reset 

FLOATING POINT MULTIPLY 

FMUL SRC, DST 
(DST) +(DST) * (SRC) 
The source and destination operands are multi
plied together, normalized, and the result is 
stored in place of the destination operand. 
(if no errors) 
N Set if the sign of the result is negative (set). 
Z Set if the result is zero 
V = Reset 
C Reset 

FLOATING POINT DIVIDE 

FDIV SRC, DST 
(DST) +(DST) I (SRC) 
The destination operand is divided by the source 
operand. The result is normalized and stored in 
place of the destination operand. 
(if no errors) 
N Set if the sign of the result is negative (set) . 
z = Set if the result is zero 
V = Reset 
C Reset 

FLOATING POINT COMPARE 

FCMP SRC, DST 
(SRC) - (DST) 
The destination operand is compared to the source 
operand, and the indicators are set to allow 
a SIGNED conditional branch. 
N = Set if result is negative 
Z = Set if result is zero 
V =Set if arithmetic underflow occurs.* 
C Set if a borrow is generated. * 

*NOTE: True if first words of both operands are not equal. 

CAUTION: The same physical operand may be used as both the source and 
destination operand for any of the above floating point OP 
Codes with no abnormal results except two. They are: 
1) If an error trap occurs the operand will probably be altered. 
2) An FSUB gives an answer of -2x, if x t ¢, instead of ¢. 

37 



APPENDIX A 

NUMERIC OP CODE TABLE 

OP CODE MNEMONIC 

.0.0¢.0 .0¢.0.0 .0¢13.0 13¢13¢ NOP 
¢¢¢13 13¢1313 .0.0.0.0 .0.0.01 .RESET 
.0¢.0.0 .0¢.0.0 .0.0.0.0 .0.01.0 IEN 
13¢.0.0 .0.0.0¢ .0¢¢13 13.011 IDS 
.0¢.0.0 .013.0.0 13¢13¢ .011313 HALT 
1313.0.0 .01313.0 .0.0.0.0 .01.01 XCT 
.0.0.0.0 .01313¢ 13¢1313 ~11.0 BPT 
.0.0.0.0 .0.0¢.0 .0.0.0¢ .0111 WFI 
¢¢.013 .0.0¢.0 .0.0.0.0 1.0.0.0 RSVC 
.0.0.0¢ .0¢.0.0 ¢¢.0¢ 113.01 RRTT 

.013.0.0 .0¢.0.0 .0.0.0.0 l.0lli' SAVE 

.0.0.0.0 .0.0.0li' 13.0.0.0 1¢11 SAVS 

.0.0.0.0 .0.0.0.0 .0.0.0.0 11.0.0 .REST 

.0.0.0.0 .0.0.0.0 .0.0.0.0 11.01 RRTN 

.0¢.0.0 .0.0¢.0 ¢.0¢¢ 111¢ RSTS 
¢¢.0¢ .0.0.0.0 .0.0.0¢ 1111 RTT 
.0.0.0.0 .013.0.0 .0.0.01 {a.REG IAK 
.0.0¢.0 ¢¢.0.0 .0.0.01 l.REG RTN 
.0.0.0.0 .0¢.0.0 .0¢1¢ {a.REG MSKO 
.0.0.0.0 .0¢.0.0 .0.01.0 lREG PRTN 
¢¢.0.0 .0.0.0.0 .0.011 ARGU LCC 
.0.0¢.0 ¢.0.0.0 f61AR GUME SVCA 
.0.0.0.0 .0.0.0¢ l{aAR GUME SVCB 
¢¢.0¢ .0.0.0.0 llAR GUME svcc 
.0.0.0.0 .0.01D 1 DISP LACE BR 
.0i0¢.0 .0IOW DISP LACE BNE 
.0.0¢¢ ¢¢11 DISP LACE BEQ 
.0.0.0¢ ¢1¢.0 DISP LACE BGE 
.0¢.0¢ ¢1¢1 DISP LACE BLT 
.01D.0.0 .011.0 DISP LACiil BGT 
¢¢¢¢ .0111 DISP !ACE BLE 
¢¢¢¢ 1$i5¢R EG¢¢ VALU ADDI 
.0¢¢.0 lf,lf,lR EG¢1 VALU SUBI 
¢¢¢¢ 1¢¢R EG1$i5 VALU BICI 
.0.0.0¢ 1¢¢R EGll VALU MOVI 
.0.0¢.0 lf.llli' .0.0MO DREG ROR 
.0¢.0.0 1.01.0 _01M.) DREG ROL 
.0.0.0.0 1.01.0 lf,lMO D.REG TST 
.0.0.0.0 1.01.0 llMO DREG ASL 
.0.0.0.0 1.011 f,ljiJMO D.REG SET 
¢¢¢¢ 1¢11 ¢1MO DREG CLR 
¢¢¢¢ 1¢11 ljiJMO DREG ASR 
¢¢¢¢ 1¢11 llMO DREG SWAB 
flflfllil 11¢.0 ¢¢MO DREG COM 
¢¢¢13 11¢¢ .01MO D.REG NEG 
13¢¢¢ 11.013 lf,lMO D.REG INC 
¢.0¢.0 11¢13 llMO D.REG DEC 

1 



OP CODE MNEMONIC 

f6f6f6f1 119Jl flf6MO DREG IW2 
flflf6f6 119Jl f11MO DREG SXT 
f6flflfl 11111 1{6MO DREG TCALL 

f6f1!1!1 llfll llMO DREG TJMP 
flf6flf1 1119J f6f1SR CDST MBWU 
!6!1!1!1 111(6 fllSR CDST MBWD 
flflf6f1 111(6 lflSR CDST MBBU 
f6f6f6f6 111(6 llSR CDST MBBD 
f6f6f6f6 1111 f6f6SR COST MBWA 
f6flflf6 1111 f61SR CDST MBBA 
flflflfl 1111 lf6SR COST MABW 
f6flf6f6 1111 llSR CDST MABB 
flf6f61 SRCR EGOS TREG ADD 
(1(61(1 SRCR EGOS TREG SUB 
f6flll SRCR EGOS TREG AND 
f61f6f6 SRCR EGDT TREG BIC 
(llJlJI SRCR EGDT TREG BIS 
f611f6 SRCR EGOS TREG XOR 
fllll flflflR RRDS TREG JSR 
f6111 flf61R RRDS TREG LEA 
f6111 f6lf6R RRDS TREG ASH 
(1111 {lllR RR.OF FSET SOB 
f6111 lfl(IR RRDS TREG XCH 
f6111 l(llR RRDS TREG ASHC 
f6111 11/6R RRDS TREG MUL 

f6111 lllR RRDS TREG DIV 
lf6flf6 f6f6f6f6 DISP LACE BPL 
lf6f1J6 flflfll DISP LACE BMI 
1/6/616 f6f61f6 DISP LACE BHI 
lf6f6f6 f6f611 DISP LACE BLOS 
lf6f6f6 {llfl/6 DISP LACE BVC 
l{lf6f6 f61f61 DISP LACE BVS 
lf6f6f6 f61lf6 DISP LACE BCC, BHIS 
lf6f6f6 {1111 DISP LACE BCS, BLO 
lf6f6f6 1/6/6R EGf6f6 VALU SSRR 
lf6flf6 lf6f6R EGf61 VALU SSLR 
li1f6f6 lf6f6R EG1f6 VALU SSRA 

l{lf6f6 lf6f6R EGll VALU SSLA 
lf6f6J6 lfllf6 flf6MO DREG RORB 
lf6f6f6 lf61f6 /61MO DREG .ROLB 
lf6f6f6 lf61f6 lf6MO DREG TSTB 
lf6f6f6 lf61f6 llMO DREG ASLB 
lflf6f6 Ifill f6f6MO DREG SETB 
lf6f6fl 1(611 911MO DREG CLRB 
19191!1 19111 lflMO DREG ASRB 
lf691f6 1(611 llMO DREG SWAD 
lflf6f6 llf6fl ~f6MO DREG COMB 
19191!1 119Jfl 911MO DREG NEGB 
lfif f6f6 llf6f6 1/6.MO DREG INCB 
If6f6f6 1lf6fl llMO DREG DECB 

2 



OP CODE MNEMONIC 

l{i1¢¢ 11¢1 ¢¢MO DREG LSTS 
1¢¢¢ 11¢1 f61MO DREG SSTS 
1{3¢¢ 11{31 lf6MO DREG ADC 
1¢¢!0 11¢1 llMO DREG SBC 
1¢¢!0 lllR EG¢¢ VALU SDRR 

lf3¢f3 lllR Ecyl VALU SDLR 
1¢¢¢ lllR EGljO VALU SDRA 
1¢¢¢ lllR EGll VALU SDLA 
1¢{31 SRCR EGDS TREG CMP 
1¢1¢ SRCR EGDS TREG BIT 
1¢11 SRCR EGDS TREG MC)V 
11¢!0 SRCR EGDS TREG CMPB 
11¢1 SRCR EGDS TREG MOVB 
111¢ SRCR EGDS TREG BISB 
1111 !0!0¢¢ ISRC IDST FADD 
1111 ¢¢¢1 ISRC IDST FSUB 
1111 ¢¢1¢ ISRC IDST FMUL 
1111 ¢¢11 ISRC IDST FDIV 
1111 ¢1¢¢ ISRC IDST FCMP 
1111 !01¢1 ISRC IDST 
1111 ii"ll!O ISRC IDST 
1111 ~111 ISRC IDST 
1111 1¢0!0 ISRC IDST 
1111 1{3¢1 ISRC !DST 
1111 ljO ljO ISRC IDST 
1111 1!011 ISRC IDST 
1111 11!0!0 ISRC IDST 
llll llf31 ISRC IDST 
1111 111¢ ISRC IDST 
1111 1111 ISRC IDST 

3 



APPENDIX B 

ASSEMBLER NOTES 

FORMAT 1 OP CODES 

All are one word op codes except SAVS which is a two word op 
code. The second word of the SAVS op code is an absolute value. 

FORMAT 2 OP CODES 

All are one word with a 3 bit register argument 

FORMAT 3 OP CODE 

A one word op code with a 4 bit numeric argument 

FORMAT 4 OP CODES 

All are one word with a 6 bit numeric argument 

FORMAT 5 OP CODES 

All are one word with an 8 bit signed PC relative word dis
placement. The displacement is relative to op code+2. Maximum 
displacement from the op code is +128, -127 words. 

FORMAT 6 OP CODES 

All are one word with a 3 bit register and a 4 bit numeric argu
ment. The stored numeric argument is a positive number from ~ -"F" 
that equals the actual numeric argument (1-"l~") minus one. 

FORMAT 7 OP CODES 

All are one word op codes for OM~ - DM5 addressing and two word 
op codes for DM6 - DM7 addressing. For DM6- DM7 addressing the off
set is in the second word. If the index register is PC with DM6 -
DM7 the offset is relative to op code+4. 

FORMAT 8 OP CODES 

All are one word with a 3 bit source and a 3 bit destination reg
ister argument. The count register is implied to be R~. 

FORMAT 9 OP CODES 

All have a 3 bit register argument with a 6 bit destination argu
ment that allows DM{6 - DM7 addressing. For DM[6 - DM5 a one word op code 
is generated. For DM6 - DM7 a two word op code is generated with the 
offset in word two. If the index register is PC with DM6-DM7 then the 
offset is relative to op code+4. 

1 



FORMAT 10 OP CODES 

All have a 6 bit source and a 6 bit destination argument that 
allow SMfl - SM7 and DMfl - DM7 addressing. For SMSI - SHS and DMSI -
DM5 coni>ined addressing a one word op code is generated. For SM6-
SM7 or DM6 - DM7 but not both a two word op code is generated with 
the offset in word two. If the field with mode 6 or 7 addressing 
uses PC as the index register then the offset is relative to the op 
code + 4. For SM6 - SM7 and DM6 - DM7 combined addressing a 3 word 
op code is generated. Word two contains the source offset, and 
word 3 contains the destination offset. For SM6 • SM7 with PC the 
offset is relative to the op code + 4. For DM6 - DM7 with PC the 
offset is relative to the op code + 6. 

Any autoincrements/decrements in the source are fully comple-
ted before any destination decoding begins. 

FORMAT 11 OP CODES 

All are one word op codes with a 4 bit source and a 4 bit des
tination argument. Each argument consists of a 3 bit register ar
gument preceeded by a 1 bit indirect argument. 

2 



APPENDIX C 

PROGRAMMING NOTES 

Several of the op codes and addressing modes have person
ality peculiarities that the user should be aware of. Most of 
these can be put to good use in particular situations. This 
appendix atterrpts to list most of them. 

IEN: This instruction allows one more instruction to begin ex
ecution before enabling I2. 

IDS: This instruction allows one more instruction to begin ex
ecution before disabling I2. IDS is therefore interruptable. 
If such a situation occurs the status of I2 that is included 
in the pushed PC will equal ~-

HALT: There is no halt in the microcode. A selection of op
tions is therefore given that allows the user to define HALT for 
himself. 

ADDRESSING MODES 

In order to clarify the function of the various address
ing modes several programming examples are given. In each case 
assume that the first word of the op code is at location x. 

SET RJi1 

Register R~ is set to all ones. 

CLR @R2 

The memory location pointed to by R2 is cleared to zeros. If R2 
contained a "fiH¢¢" the memory word address "¢1¢¢" would be cleared. 

INC (R3)+ 

The memory location pointed to by R3 is incremented by one. R3 is 
then incremented by 2. 

DEC (PC)+ 

Location X + 2 is decremented by one, and program control is ad
vanced to location X + 4. This allows for in-line literals in a 
program, a method that saves a word of memory in most cases. 

SWAB @(R4)+ 

If R4 contains a "¢1¢~" and location "JiH¢¢" contains a "¢2¢¢" then 
the two bytes in location "(62(6¢" are swapped and R4 is incremented 
to "¢1¢2". 

1 



COM -(RS) 

RS is decremented by two. The address specified by the altered RS 
is one's complemented. 

NEG -(PC) 

A BOZO no-no since location X is the location negated and program 
control is again transferred to location X after the negation is 
completed. 

TST @- (Rl) 

If R = "f0lf04" and location "f01¢2" contains a "l¢f0¢" then the following 
sequence occurs: (1) Rl is decremented by 2 to "¢1¢2". ( 2) The contents 
of location ",01,02" (i.e. "1¢¢¢") becomes the address of the operand 
to be tested. 

ROR 4 (R4) 

The contents of memory location R4 + 4 is rotated right. R4 is not 
altered. Word two of this op code contains a 4. Program control is 
advanced to location X + 4 at the completion of the rotate. 

ROL @6(SP) 

The contents of memory location SP + 6 contains the address of the 
operand to be rotated. Word two of this op code contains a 6. Pro
gram control is advanced to location X + 4 at the completion of the 
rotate. 

JSR PC,TAG 

Location X + 2 contains the byte offset from location "TAG" to location 
X + 4. The address of location X + 4 is pushed onto the stack, and the 
address of location "TAG" is placed in PC. 

JSR RS,TAG 

Location X + 2 contains the byte offset from location "TAG" to location 
X + 4. The content of register RS is pushed onto the stack, the ad
dress of location X + 4 is placed in RS, and the address of location 
"TAG" is placed in PC. 

JSR PC, (R4) + 

Location X + 2 is pushed onto the stack, R4 is moved to PC, and R4 is 
incremented by two. 

JSR PC,@ (~P) + 

This is a co-routine call. Pay attention: 
1) The contents of the location pointed to by SP is saved in CPU 

register "TMPA". 

2 



2) SP is incremented by two. 
3) The address of location X + 2 is pushed onto the stack 
4) CPU register "TMPA" is moved to PC 

The effect of all this is to swap the top word on the stack 
with the address of location X + 2 without altering SP or stack size. 

Consider the following routine. 
SUBR: JSR PC, 2 (PC) 
TAGA: JSR PC,@(PC) 
TAGB: 

RTN PC 

The first JSR places the address of TAGA on the stack and exe
cutes the routine starting at TAGB. The RTN PC transfers control 
to location TAGA when it is executed. The second JSR places address 
TAGB onto the stack nnd into PC, effectively leaving PC unaltered. 
The second time the RTN PC is executed program control passes to lo
cation TAGB. The third time the RTN PC is executed program control 
passes back to the routine that call subroutine SUBR. Since TAGA 
and TAGB are never addressed explicitly both of the labels could be 
eliminated from the program. If left in then the "2(PC)" could be 
replaced with "TAGB". 

CMP (R¢)+, (R,¢}+ 

If Rf{1 = "li'lfi1${1" then the contents of location "¢lli'¢" is compared to 
the contents of location "¢1$i12" , and Rli' is incremented to "¢1¢4". 
All source auto increments or decrements are completed before destin
ation decoding begins. 

MOV @R2,- (R2} 

If R2 = "li'l¢6" then the contents of location "$i11$i16" is moved to lo
cation "li'l¢4", and R2 is decremented to "li'l¢4". 

BIT #2,@#4 

The contents of absolute memory location 4 is tested against the lit
eral value 2. This is a three word op code with word two containing 
a 2 and word three containing a 4. This op code works on location 4 
from anywhere in memory. 

CMP (PC)+,TAG 

This won't work. The assembler generates a two word op code for this 
with the destination offset in word two. The execution of the op 
code, however, uses word two as a literal and word three (which does 
not exist) as the destination offset. By swapping the source and 
destinations around then an in-line literal could be used for word 
three, and word two would contain a valid source offset. 

3 



J.SR PC, (PC)+ 

The address of location X + 4 is pushed onto the stack, and PC gets 
the address of location X + 2. 

JSR R5, (PC)+ 

The contents of R5 are pushed onto the stack, R5 gets the address of 
location X + 4, and PC gets the address of location x + 2. 

MOVB (RJ1) +, (R¢) + 

If ~ = "lifl$12" then the contents of memory byte location "¢1¢2" is moved 
to memory byte location "$11$13", and Rfl is incremented to "$11¢4". 

MOVB (SP)+,Rl 

The contents of the memory byte addressed by SP is moved to the lower 
byte of Rl, the sign bit (bit 7) is replicated through bit 15 of Rl, 
and SP is incremented by 2. SP is always autoincremented or autode
cremented by two. 

CLRB (PC)+ 

The contents of the lower byte memory location X + 2 is cleared to 
zeros. The upper byte (X + 3) is not affected. PC is incremented 
by two. PC is always autoincremented or autodecremented by two. 

BISB ~' Rl 

The lower bytes of register Rfl is logically ORED with the lower byte 
of register Rl. The upper byte of Rl is not altered. 

MOVB @(R2)+,@-(R3) 

If R2 contains a "$11¢¢" and R3 contains a "¢2¢¢" then location "f(Jlflf(J" 
contains the byte address of the source operand and location "f(JlFE" 
contains the address of the destination byte that is to receive the 
source byte. R2 is incremented by two, and R3 is decremented by two 
since they point to addresses of (16 bit) addresses. 

JSR SP, TAG 

Not recommended since the value of the stack is lost. Perfectly le
gal however. 

SAVS and RSTS 

Although designed to be used for automatic register and I/0 priority 
level saving and restoring, the lack of hardware priority masking 
does not alter the operation or the op codes. The SAVS op code is 
usually the first instruction executed in a device interrupt routine, 
and the RSTS is the last. The priority mask can use a one bit as an 
enable or disable with bit fl the highest or lowest priority level. 
Such decisions are made by the hardware. 

4 



POWER FAIL 

Two levels of power fail are provided for in the firmware. The 
hardware may use two, one, or no levels of power fail.'Ihe three 
modes are discussed in increasing order of complexity. 

NO LEVELS: External address register bit 7 is hardwired to ~. 
and a prayer is offered. 

ONE LEVEL: The detection of a power fail sets bit 7 of the exter
nal status register and the CPU RESET line. When the 
power fail disappears the CPU RESET line is reset, but 
bit 7 of the external status register remains set. The 
Line Clock Clear State Code (see appendix D) clears 
bit 7 of the external status register (and bits 5, 6 
if used). A system power up is then executed. 

TWO LEVELS: This req~ires two hardware functions, AC LOW and DC 
LOW, plus two levels of power fail; AC and DC. It 
all works like this: If AC power begins to deterior
ate AC LOW is set first. This sets bit 7 of the ex
ternal status register and generates an interrupt via 
I~ or Il. If AC power does not deteriorate too far then 
nothing else happens except that bit 7 of the external 
status register is reset when power is restored. If 
AC power continues to deteriorate then eventually DC 
power will begin to deteriorate. When this happens 
DC LOW is set and DC LOW sets CPU RESET. AC tow is 
still set and it maintains bit 7 of the external status 
register. When power is restored DC LOW is reset. This 
resets CPU RESET. A power up sequence is initiated, and 
the Line Clock Clear State (see appendix D) clears The 
External Status Register bit 7 (plus 5 and 6 if they are 
used) . If the user wishes to be able to execute a pro
grammed power fail routine even during a sudden and com
plete power failure then the DC power supply must be 
strong enough to run the CPU and MEMORY for at least 2 
milliseconds. The power fail interrupt must also be 
programmed, and the interrupts enabled. 

The use of the Line Clock Clear State Code to clear bits 5-7 on 
a CPU RESET function (plus the line clock of course) should have no 
effect on normal system operation. Should an error occur during a 
non-vectored interrupt the error would be cleared momentarily and then 
set again as CPU RESET obviously could not have been generated. If it 
had been then the system could not be in the non-vectored interrupt 
routine. 

PARITY AND BUS ERRORS 

These functions are also part of the CPU RESET function along with 
power fail/up. In order to get only one or the other then bit 7 of 
the external status register must be reset when the CPU RESET function 

5 



is activated. In order to generate a valid CPU RESET the CPU 
RESET line must be held active for three clock cycles. Longer is 
fine, but the CPU goes into a wait state until the CPU RESET is 
reset. If xoore than one error exists at one time then the highest 
priority error is the one honored The priority, from highest to 
lowest, is: 

Power Fail 
Bus Error 
Parity Error 

If all 3 functions are reset a power up is assumed. All 3 functions 
have a bit associated with them in the external status register. On~e 

set these bits stay set until cleared by the Line Clock Clear State 
Code (see appendix D) that is generated during the first phases of 
the reset routine. See chapter two "Power Up Options". 

6 



APPENDIX D 

MICROM STATE CODE FUNCTIONS 

Below is a list of MICROM STATE CODE FUNCTIONS for the WD1600 with a 
brief de~cription of what each does. More elaborate descriptions, 
where necessary, follow the table. 

CODE 

f6f6fll 
flf6 lf6 
f6f611 
fllf6f6 
f6lf61 
(lllf6 
(1111 
lflf6f6 
lf6(11 
l(llf6 
1(111 
llf6fl 
11(11 
lllf6 
1111 

MNEMONIC 

PMSK 
RUN 
IORST 
INTEN 
INTDS 
ESRR 
SRS 
BYTE 
RMWW 
RMWB 
RLCI 
EARR 

FUNCTION 

Priority mask out 
Macro instruction fetch 
I/O reset 
I2 set 
I2 reset 
External status register request 
System reset 
Read byte operation 
Read-modify-write word 
Read-modify-write byte 
Reset line clock interrupt 
External address register request 
Duplicate of "BYTE" 
Duplicate of "RMWW" 
Duplicate of "RMWB" 

PMSK: The state code is generated on an OUTPUT WORD instruction when 
a new mask is written into location "2E". It signals the I/O 
devices that a new interrupt mask is on the DAL. 

RUN: Generated during macro instruction fetch for a run light. 

IORST: Generated during a RESET macro op code to reset I/O devices to 
some preset state. 

INTEN: Enables the interrupt enable line -I2. 

INTDS: Disables the interrupt enable line -I2. 

ESRR: Generated during an INPUT STATUS BYTE micro op code to indicate 
that the external status register is being requested. See note 1. 

SRS: Generated during a power up for a master system reset. This code 
is followed by a 300 cycle wait to allow time for any reset func
tions the hardware generates to be completed before any DAL re
quests a~e generated. 

BYTE: Generated during an INPUT BYTE micro op code to indicate a read 
byte operation without a read-modify-write. 

RMWW: Generated during an INPUT WORD micro op code with RMW active to 
indicate a read-modify-write word sequence. 

RMWB: Generated during an INPUT BYTE micro op code with RMW active to 
indicate a read-modify-write byte sequence. 

1 



RLCI: Generated during a CPU RESET or a non~vectored interrupt with
out a power fail to clear both the line clock interrupt and ex
ternal status register bits 5-7. 

EARR: Generated during an INPUT STATUS BYTE micro op code to indicate 
a request for the external address register during the user boot
strap routine. 

CODES "D" - "F": Duplicates of codes "8" - "A" respectively except that 
these codes appear as a part of the READ micro op codes 
instead of as a part of the INPUT micro op codes. Either 
or both may be used by the hardware as is convenient. 
These codes preceed the others. They are generated only 
once, however, instead of repeating in the event of a 
wait state as the others do. 

NOTE 1: INPUT STATUS BYTE is not a function of reply and does not gen
erate a SYNC. For these reasons the DAL must be tri-stated if 
a DMA device also exists. The data is always gated onto the low
er byte. The upper byte is ignored. 

NOTE 2: Lack of state codes 11 8 11 - "A" or "D" - "F" during a READ - INPUT 
sequence implies a read word operation without read-modify-write. 

2 



APPENDIX E 

OP CODE TIMINGS 

All times are in cycles. Timings include all OP Code fetches, 
memory reads, and memory writes applicable to each. Timings 
assume that the meioory is running with full speed with respect to 
the CPU. This requires a 16 Bit access time = 1 CPU cycle, and a 
16 Bit memory read/write cycle time = 2 CPU .cycles. One CPU cycle = 
300 NS @ 3.3 MHZ, U!1!1 NS @ 2.5 MHZ, and 500 NS @ 2 MHZ clock rates. 
Timings are included for SM!1 and DMPJ as basic with additions as 
necessary in tables that follow the OP Codes for SMl-7 and DMl-7 
timings. 

OP CODE 

NOP 
RESET 
IEN 
IDS 
HALT 
XCT 
BPT 
WFI 
RSVC 
RRTT 
SAVE 
SAVS 
REST 
RRTN 
RSTS 
RTT 

OP CODE 

IAK 
RTN 
M?KO 
PRTN 

LCC 
SVCA 
SVCB 
svcc 

# CYCLES 

111 
111 
111 
111 
16+ 

FORMAT ONE OP CODES 

44 + OP CODE EXECUTED 
24 
16+ 
62 
60 
46 
65 
48 
52 
64 
13 

# CYCLES 

111 
12 
1!1 
22 

7 
37 
73 
71 

FORMAT TWO-FOUR OP CODES 

FORMAT FIVE OP CODES 

All branches = 9 cycles if branch occurs or not. 

1 



FORMAT SIX OP CODES 

OP CODE # CYCLES 

ADDI 9 
SUBI 9 
BICI 9 
MOVI 9 
SSRR 8 + (5 x # bits shifted} 
SSLR 8 + (5 x # bits shifted} 
SSRA 8 + (7 x # bits shifted} 
SSLA 8 + (5 x # bits shifted) 
SDRR 20 + (7 x # bits shifted} 
SDLR 20 + (7 x # bits shifted} 
SORA 20 + (9 x # bits shifted} 
SOLA 20 + (7 x 3 bits shifted} 

FORMAT 7 OP CODES - DM~ 

OP CODES # CYCLES OP CODES # CYCLES 

ROR 1{6 RORB 9 
ROL l~ ROLB 9 
TST 1{6 TSTB 9 
ASL l~ ASLB 9 
SET 1{6 SETB 1{6 
CLR 1{6 CLRB 9 
ASR 12 ASRB 11 
SWAB 1{6 SWAP 21 
COM 1{6 COMB 9 
NEG l~ NEGB 9 
INC 1{6 INCB 9 
DEC l~ DECB 9 
IW2 l~ LSTS 15 
SXT 12 SSTS l~ 
TCALL 21 ADC 11 
TJMP 16 SBC 11 

FOR WORD OPS AND: FOR BYTE OPS AND: 

DMl ADD 4 DMl ADD 3 
DM2 ADD 4 DM2 ADD 3 * 
DM3 ADD 8 DM3 ADD 7 
DM4 ADD 6 DM4 ADD 5 * 
DM5 ADD l~ DM5 ADD 9 
DM6 ADD 1{6 DM6 ADD 9 
DM7 ADD 14 DM7 ADD 13 

For DMl - DM7 and: 

CLR subtract 1 cycle 
SWAB subtract 1 cycle *NOTE: Add 2 more if SP or PC. 

2 



OP CODE 

MBWU 
MBWD 
MBBU 
MBBD 
MBWA 
MBBA 
MABW 
MABB 

OP CODE 

JSR* 
LEA* 
ASH 
SOB 
XCH 
ASHC 
MUL 
DIV 

FORMAT 8 OP CODES 

# CYCLES 

17 + (16 x 
15 + (16 x 
17 + (15 x 
15 + (15 x 
19 + (16 x 
19 + (15 x 
19 + (16 x 
19 + (15 x 

FORMAT 

# 

22 
15 

CYCLES 

(ASSUMES NO INTERRUPTS) 

# words moved) 
# words moved) 
# bytes moved) 
# bytes moved) 
# words moved) 
# bytes moved) 
# words moved) 
# bytes moved) 

9 OP CODES - D,w:1 

19 if DST = ~; 22 + (5 X count) if DST>¢; 25+ (7 X count) if DST< ¢. 
l~ if no branch, 13 if brancn 
23 
19 if DST = ~; 38 + (7 x count) if DST>¢; 38+(9 x count) if DST< ¢ 
183 
29 if divisor error, 2~2 if no divisor error 

*NOTE: DM~ illegal. Used as base figure only. 

FOR ALL OP CODES EXCEPT SOB AND: 

DMl add ~ 
DM2 add 2 
DM3 add 2 
DM4 add 2 
DM5 add 4 
DM6 add 4 
DM7 add 8 

FORMAT l~ OP CODES - S~ AMO D¥~ 

OP CODE # CYCLES 

ADD 11 
SUB 11 
AND 11 
BIC 11 
BIS 11 
XOR 11 
CMP 11 
BIT 11 
MOV 11 
CMPB 11 
MOVB 12 
BISB 11 

3 



For SMl: add 3 for word ops, 1 for byte ops. 
For SM2: add 4 for word ops, 2 for byte ops. * 
For SM3; add 7 for word ops, 5 for byte ops. 
For SM4; add 5 for word ops, 3 for byte ops. * 
For SM5; add 9 for word ops, 7 for byte ops. 
For SM6·; add 9 for word ops, 7 for byte ops. 
For SM7; add 13 for word ops, 11 for byte ops. 

For DMl;add 4 for word ops, 3 for byte ops. 
For DM2;add 4 for word ops, 3 for byte ops. * 
For DM3;add 8 for word ops, 7 for byte ops. 
For DM4;add 6 for word ops, 5 for byte ops. * 
For DM5;add l~for word ops, 9 for byte ops. 
For DM6;add l~for word ops, 9 for byte ops. 
For DM7;add 14for word ops, 13 for byte ops. 

For MOVB and DM1-DM7 subtract 1 cycle. 

*NOTE: Add 2 if SP or PC 

FORMAT 11 OP CODES - ALL ADDRESSING MODES 

FADD: If exponent difference > 39 138-145 
Worst Case 638 
Typical 180-420 

FSUB: If exponent difference > 39 141-148 
Worst Case 641 
Typical 190-430 

FMUL: If either operand = r,I 108-111 
Worst Case 805 
Typical 590-780 

FDIV: If divide by 0 96 
If divide into r,I 118 
Worst Case 1596 
Typical 280-1210 

FCMP: 49-86 

4 


	000
	001
	002
	1-01
	1-02
	1-03
	2-01
	2-02
	2-03
	2-04
	2-05
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	3-31
	3-32
	3-33
	3-34
	3-35
	3-36
	3-37
	A-01
	A-02
	A-03
	B-01
	B-02
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	D-01
	D-02
	E-01
	E-02
	E-03
	E-04

