

Running a microprogram
on Rikke-MathiLda

This paper describes how to Load and execute
a microprogram on Rikke and MathiLda.

DAIMI MD-41, October 1980

FLemming Wibroe

Computer Science Department
AARHUS UNIVERSITY

Ny Munkegada - OK 8000 Aarhus C - DENMARK
Telephone: 06 - 128355

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I

I
I
I

I

I
I
I
I

Contents

1. PhysicaL configuration •••••••••••••••••••••••••••••••

2. The microprogram ••••••••••••••••••••••••••••••••••••• 2
2.1. Preparation ••••••••••• -.... ••••••••• •••••• •••••••• 2
2.2. Structure of the microprogram .~ •••••••••••••••••• 3

3. Microprogramming Rikke ••••••••••••••••••••••••••••••• 4
3.1. BCPL-Library functions ••••••••••••••••••••••••••• 4
3.2. ExampLe •• 6
3.3. Microcoded Library functions ••••••••••••••••••••• 7

4. Microprogramming MathiLda •••••••••••••••••••••••••••• 8
4.1. BCPL-Library functions ••••••••••••••••••••••••••• 8
4.2. ExampLe •• 12
4.3. Microcoded Library functions ••••••••••••••••••••• 14

5. Interactive execution of a microprogram •••••••••••••• 15

6. Restrictions on microprograms •••••••••••••••••••••••• 16

Appendix

A. References ••• 18

B. MathiLda monitor ••••••••••••••••••••••••••••••••••••• 19

-1-

The machine configuration i~ as foLLows:

Configuration

JI II
WSA OCD DC OCD

IA ;videStore 18 MSA

Mathilda OA Rikke MainStore
32K DB IA 32K

64-bit 64-bit 16-bi t OA 16-bit

~
18

lK CS

~ f?L 2K CS

fig. 1.1.

80th Rikke and MathiLda are connected to a 32K 64-bit memory caL
Led WideStore(WS). Data is transferred between Rikke an WS through
8 16-bits dataports, 4 for reading and 4 for writing, where a
speciaL writeoperation from Rikke aLLows writing of individuaL
16-bit groups in WS [6].
Data is transferred between MathiLda and WS through 2 64-bits
dataports.

WS is controLLed through OC/OCD-ports on Rikke, and through
WSA/OCD-ports on MathiLda, detaiLs are given in [6].

Rikke and MathiLda can communicate directLy through 2 16-bits
dataports IB/OB.
Rikke is furthermore connected to a 32K 16-bits LocaL memory caL
Led MainStore through IAIOA, where MSA is the address register.

The drawing in figure 1.1 does not represent the fuLL physicaL
Rikke/MathiLda system. Rikke is aLso connected to other
lID-devices, such as TTY, Lineprinter, papertape and Disk-controL
Ler, and the DEC-10-system, but for the purpose of this paper
these are Left out.

-2-

Preparation of a microprogram for Rikke or MathiLda is done using
the assembLers and simuLators on the DEC-10 [1J.
The foLLowing exampLe shows how to get the binary microprogram to
the Rikke fiLe-system.

Assuming the DEC-10-fiLe ADD.LUI is a source fiLe of a micropro
gram for MathiLda:
The assembLer wiLL produce 2 fiLes:

ADD.LPT
ADD.PTP

a Listning of the program
the binary microprogram

If the program is to be simuLated
Ly executed on MathiLda, the
ADD.MTS instead of ADD.PTP.

on the DEC-10 instead of actuaL
assembLer wiLL produce the fiLe

To be executed on MathiLda, the fiLe ADD.PTP must now be transpor
ted to the Rikke fiLe-system, where it must reside in a directory
with the extension .MAT (e.g under the name ADD.MAT) [2J.
This can be done in two ways:

1. Punch the fiLe on the DEC-10 papertape puncher, and use the
command 'readptr ADD.MAT' to read it into a directory on
Rikke.

2. Use the transmission-system between DEC-10 and Rikke to
transmit the fiLe. The transport must be initiated on both
machines:

on Rikke
on DEC-10

readdec ADD.MAT
copy RIKOUT: = ADD.PTP/I

The "II" after ADD.PTP is neccessary because of the DEC-10
fiLe-format for binary fiLes, and because the transmission
system can be used to send text-fiLes too.

So we have:

assembLer
ADD.LUI
I \

ADD.LPT ADD.PTP
I
I
v

ADD.MAT

DE C-1 0

fiLe-transmission

Rikke

If the fiLe is a microprogram for Rikke, it must be given the ex
tension .MIC on Rikke.

2.1

-3-

The communication between a BCPL-program and a user microprogram
can be done through the Library functions, described in the next
sections:
This standard communication demands the parameters to be setup in
a vector, pvec, and has the foLLowing conventions about entry and
exit from the user microprogram:

At entry:

LR[LRP]
DS
VS

pvec,
pvec!O
pve c ! 1

the address of the parameter
, 1. pa r a me t e r
, 2. parameter

vector

At ex it:

DS

RB+1

resuLt, the contents of DS is written back
to the caller
must be used to return from the microprogram.
This indicates, that the vaLue of RBP before
exit must be the same as at entry, so the RB
stack must be used carefuLLy.
The RA-stack can be used freeLy.

Origin:
To avoid overwriting of system-microcode the origins for user
microprograms must be greater than:

on Rikke
on Mathilda

1024 (decimaL>,
100 (decimaL>,

400 (hexadecimaL)
64 (hexadecimaL)

An exampLe of a microprogram for MathiLda that obeys these ruLes
is the foLLowing ADD.LUI:

LOU ISE VERSION 1.7. PDP-10 17 OCTOBER 1980 ADD.LUI PAGE 1

LINENO CS ADDRESS

0:
1 :
2 :
3 :
4:
5:
6 :
7 :
8:
9:
10:
11 :
12 :
13 :
14:

**
• ADD: PROGRAM TO ADD 2 INTEGERS
• 3-9-80 FLEMMING WIBROE

**************************-**********************************
*RADIX 16
*ORIGIN = 109

109 ADD:
10 A
10B
10C

LR:=DS
AS:=VS
DS:=AL

ALF:=A+B

;
; RB+1

1 PARAMETER
2 PARAMETER
DS=RESULT
RETURN

**

*ENTRY=ADD

2.2

-4-

A microprogram can either be Loaded and caLLed under controL from
a user BCPL-program, or from an interactive system-program. The
interactive execution wiLL be described in section [5], here we
describe how to handLe a microprogram from a user BCPL-program.

The way in which microprograms are executed, differs somewhat on
Rikke and MathiLda, primariLy because Rikke is host for
I/O-nucLeus and the OCODE-machine, and secondariLy because of the
difference in datapath-width, 16-bit for Rikke and 64-bit for
Math iLda.
We start by describing how to run a microprogram on Rikke.

The Library is named "RCSLib.REL" and is Located in directory
">SysAdmin>SysUser>RikCS", together with the GET-fiLe
"RikHdr.GET". These 2 fiLes must be Linked to CurrentDirectory
before use.

RCSLib contains the foLLowing functions:

SetupRikkeCS[siLence]
LoadRikkeCS[fiLename]
DefineRikkeEntry[entry,offset]
CaLLRikkeCS[entry,pvec]
ResetRikkeEntry[entry]
ResetRikkeCS[]

RikHdr.GET contains the gLobpLs corresponding to these functions,
200-210, and the manifests used to communicate the resuLts of the
functions.

~~!~QBi~~~£~[§i1~D~~]
This routine must be caLLed before any Load of microcode to
initiate system-tabLes etc. The vaLue of siLence must be
NOSILENCE or SILENCE. If siLence=SILENCE, the warnings reported
by any of the routines in RCSLib wiLL be suppressed. The errors
detected by any of the routines wiLL aLways be reported regard
Less of si Lence.

LoadRi kkeCS[fnJ
--~-i~~~~T~n;-which Loads the microcode on fiLe fn.MIC in Current

Directory. If the microprogram contains any VALUE-statements,
these wiLL be executed by LoadRikkeCS.
The resuLt of the function is:

NOTFOUND fn.MIC is not in CurrentDirectory.

NOGOOD an overwrite of existing microcode was attempted,

3 .1

-5-

or format-error, sum-error or EOF on fn.MIC.

eLse an entry-point 'entry', which can be used by
CaLLRikkeCS[entry,pvecJ

In any of the two first cases, LoadRikkeCS dispLays an ap
propiate message on the consoLe before returning.

~§fiD~Bi~~~Eu!r~[~u!r~,Qff~~!J
In the current assembLer [1J it is onLy possibLe to specify one
entrypoint by "*ENTRY=nn". If, in a Large microprogram, an aL
ternative entrypoints is desired, this function can be used to
define a new entrypoint to be nn+offset.

The resuLt of DefineRikkeEntry is:

NOGOOD

eLse

offset does not specify an entrypoint insi
de the microprogram, referenced by 'entry'

as LoadRikkeCS.

&s11Bi~~~g§[~u!r~,e~§£J
CaLLs the microcode, identified by 'entry'. pvec is the address
of a communication-area in WideStore, which must be aLLocated
from the caLLing BCPL-program.
pvecli must contain the i'th parameter to the microprogram
[2.2 J.

The resuLt of CaLLRikkeCS is

NOGOOD

eLse

'entry' does not identify a Loaded microprogram

the resuLt of the microprogram, i.e the contents
of DS upon exit.

B~~~!Bi~~~ED!r~[~u!r~J
If 'entry' is the resuLt from LoadRikkeCS[fnJ, this routine
discards the microcode, specified by 'entry', i.e disabLes caL
Li~g of the microcode and aLLows Loading of new microcode in the
same ControLStore Locations.

Rea~.tBjkkil.cS[J
--Discards aLL Loaded microcode.

3.1

-6-

The foLLowing is an exampLe of a program, which can Load and caLL
the program ADD.MIA. This program is a Rikke equivaLent of ADD.LUI
[2.2].

RIKADD.BCPL:

get "SysHdr"
get "RikHdr"

manifest $(NUMBPARAMS

Let StartO be
$(S

Let add,pvec,res = 0,0,0

2 $)

Load["RC SL i b ", Cur rent Direct ory]

II initiate BCPL/microcode communication:
SetupRikkeCS[NOSILENCE]

II Load the microcode:
add:=LoadRikkeCS["ADD"]
switchon add into
$(sw

case NOTFOUND
case NOGOOD GiveUp["Load aborted"]

endcase

1/ BCPL-Library
II microcode Library

II Load the Library

II Load ADD.MIC

defauLt
$)sw

end case /I Loaded ok

II initiate pvec:
pvec:=NewVec[NUMBPARAMS-1]
pvec!0:=PromptN["1. operand - "]
pvec!1 :=PromptN["2. operand - "]

/I perform caLL:
res:=CaLLRik~eCS[add,pvec]

if res=NOGOOD then GilleUp["caLL aborted"]

II dispLay resuLt:
OutF[ConsoLe,"resuLt of %N+%N

1/ cLean up
ReturnVec[pvec,NUMBPARAMS-1]

$)S

%N*n",pvec!0,pvec!1,res]

The Library RCSLib.REL is Loaded by the program RIKADD.BCPL, but
the Load,addLoad,go construction, or the 'combine' program [2]
couLd be used instead.

3.2

-7-

Microcoded Library functions can be used from a user microprogram
via the XTERNAL decLaration [1J.

On Rikke 2 functions are avaiLabLe, the entry-points are specified
in hexadecimaL addresses:

WSREAD 21 read a 16 -b i t word from WideStore.
The address must be in AS,
the resuLt is on lB.
Destroys: AS(1S)S, I B, IBD, ALF, OCD and OC.

WSWRITE 22 w r i t e a 16 -b i t word to WideStore.
The address -must be in AS,
and the va L ue to w r i t·e in LR[LROPJ.
Destroys: AS(1S)S, OB, OB D, OCD and OC.

For both functions, the AS-address is a 16-bit-word address, as
used by the OCODE-machine, so addresses passed as parameters from
a BCPL-program can be used immediateLy (remember WideStore is a
64-bit memory). WSREAD and WSWRITE wiLL do the actuaL conversions
to 64-bit-word addresses and the seLection of the correct port
number.

This has as consequence, that WSREAD and WSWRITE onLy can be used
in the OCODE-machines address-space, the Lowest haLf of WideStore,
64K 16-bits words, which equaLs 16K 64-bits words.
Routines to access the upperhaLf of WideStore must be suppLied by
the user microprograms.

The routines are caLLed as subroutines, using the RA-stack, e.g

ST ART:

AS: = •••
CONTINUE: VS:=IB

RA! R-WSREAD

3.3

-8-

The routines for Loading and caLLing a microprogram in MathiLda
are basicaLLy identicaL to those of Rikke, however there are some
differences due to;

- the asynchrounous operation of the caLLing and
the caLLed processor

- the difference in datapath-width

Point 1 Leads to a sLightLy different caLLing-sequence, whereas
point 2 gives some compLications, when communicating parameters
and resuLts.

The Library is named "MCSLib.REL" and is Located in di rectory
">SysAdmin>SysUser>MatCS", together with the GET-fiLe
"MatHdr.GET". These 2 fiLes must be Linked to CurrentDirectory
before use.

MCSLib contains the foLLowing functions;

SetupMatCSCsiLence]
LoadMatCSCfiLename]
DefineMatEntryCentry,offsetJ
MatParVec[n]
SetMa~Par[pvec,i,v3,v2,v1,vO]
,eturnMatVec[pvec]
CaLLMatCS[entry,pvec]
ResetMatEntry[entry]
ResetMatCS[]
InMat64[buf]
OutMat64[buf]
MatDA[]
MatSA[]
MatDeadStart[]

MatHdr.GET contains the gLobaLs corresponding to thes~ functions,
110-130, and t~e manifests used to communicate the resuLts of the
functions.

Before communicating, MathiLda must be deadstarted, see [2J. The
deadstart-Loader Loads the bootstrap-Loader, and hands over con
troL to thfs. After normaLising MathiLda, the bootstrap-Loader is
ready to Load and execute another microprogram.

4.1

-9-

~~tYB~~!~§[~il~D£~]
The purpose of this routine is to initiaLise the communication
between Rikke and MathiLda, and to initiaLise the tabLes on Rik
ke administering the MathiLda ControLStore. The vaLue of siLen
ce must be NOSILENCE or SILENCE.
Before SetupMatCS is caLLed, MathiLda must be deadstarted.

To estabLish a communication between Rikke and MathiLda, a
microprogrammed monit~r, which can Load and execute user micro
programs, must be Loaded. SetupMatCS Loads this communic.tion
monitor.
The monito~ contains microprogrammed Library functions as
described in section 4.3, and assures, that the conventions for
communication from section "2.2 are obeyed. The text of the cur
rent (27J10-80) communication monitor can be found in appendix
B.

As with SetupRikkeCS, siLence=SILENCE suppresses the warnings
given by any of the routines in MCSLib, the errors are aLways
reported.

LoadMatCS[fn]
--A-f~~~tio~, which Loads the microcode on fiLe"fn.MAT in Current

Director-y. If the microcode contains any VALUE-statements, these
.wiLL be executed by LoadMatCS.
The result of the function is:

NOTFOUND fn.MAT is not in CurrentDi rectory.

NOGOOD an overwrite of existing microcode was attempted,
or format-error, sum-error or EOF on fn.MAT

eLse an entry-point 'entry', which can be used by
CaLLMatCS[ent~y,pvec]

In any of the two first cases, LoadMatCS dispLays anappropiate
message on the consoLe before returning.

QgfiD~~~!5D!r~[~U!r~,Qfl~~!]
equivaLent to DefineRikkeEntry

MatParVec[n]
--DeLi~e~s-a vector, pvec, of size 4*n, such that pvec rem 4 O.

§~!~~!E~r[B~~£,i,~~,~~,~l,~Q]
EquivaLent to

$(Let k = (i-1)*4
pvec!(k+3),pvec!(k+2),pvec!(k+1),pvec!k:=v3,v2,v1,vO

$)

R~!YrD~~!~~£[e~~£]
Returns the vector aLLocated by MatParVec.

4.1

-10-

~211~21~~[~D!r~,Q~~£]
Calls the microcode identified by 'entry'. pvec is the address
of the communi'cation area in WideStore as seen from Rikke:

Because of the difference in datapath-width on Rikke and Mathil
da, this communication-area is treated in a special way:

1. Parameters are seen as 64-bits words from Mathilda, but
must be handled as 4 16-bits words from Rikke.

2. The address of a parameter is a 64-bits word address
from Mathilda and a 16-bits address from Rikke, so
rikaddress=4*mataddress.

3. As a consequence of this, each parameter, which must be
setup from Rikke, consists of 4 16-bits words, where the
address of the first word must be divisible by 4.

The call pvec:= MatParVec[n] allocates a communication vector in
WideStore of size-4;~;-s~ch that pvec rem 4 = O.
The pvec must now be initialised as follows:

pvec!O bit 1 5 ••• 0 of 1 • parameter
pvec!1 bit 31. .16 of 1. pa rameter
pvec!2 bit 47 •• 32 of 1 • parameter
pvec!3 bit 63 •• 48 of 1. parameter

pvec!4 bit 1 5 ••• 0 of 2. parameter
pvec!5 bit 31. .16 of 2. parameter
pvec!6 bit 47 •• 32 of 2. parameter
pvec!7 bit 63 •• 48 of 2. parameter

pvec!8 bit 1 5 ••• 0 of 3. parameter

After the call CallMatCS[entry,pvec], the conventions of section
2.2 means that upon entry to the microprogram

LR
DS
VS

pvec/4,
1.parameter:
2.parameter:

the address of the parameter vector
pvec!3::pvec!2::pvec!1::pvec!0
pvec!7::pvec!6::pvec!5::pvec!4

CallMatCS(entry,pvec) does not wait for any result from the
Mathilda microprogram, it merely starts execution and waits only
for the Mathilda monitor to reply with an accept of the call to
ensure that the microprogram is started, and then returns to the
calling BtPL-program with the result ACCEPTED.
The result from the microprogram, the content of DS, can then be
obtained by calling InMat64.
If 'entry' does not identify a loaded microprogram, or
pvec rem 4 \=0, NOGOOD is returned.

4.1

-11 -

~~~~!~2!5D!r~[~Dl[~J 
If 'entry' is the result of LoadMatCS[fnJ, this routine discards 
the microcode, specified by 'entry', i.e disables calling of the 
microcode and aLLows Loading of new microcode in the same Con
troLStore Locations. 

ResetMatCS[J 
--Di~~~rd~ aLL Loaded microcode. 

!D~2!Q~[t2!!!J 
Reads a 64-bit words, send from Mathilda through the direct con
nection between Rikke and MathiLda, to the 4-word vector 'buf' 
such that: 

buf!O 
buf! 1 
buf!2 
buf!3 

bit 15 ••• 0 
bit 31 •• 16 
bit 47 •• 32 
bit 63 •• 48 

This routine is used after CaLLMatCS to wait for the resuLt of 
the MathiLda microprogram. 
Note: MathiLda sends the word in 4 * 16-bits, so 'buf' need not 
be divisibLe by 4, as with pvec. 

Q!:!!.~2!.Q~[t2y!J 
Writes a 4*16-bits word to MathiLda through the direct connec
tion in the same format as InMat64. If Mathilda is not ready to 
read from Rikke, Rikke wiLL be hung up. 

~2!Q8[J 
A boolean functions, MathiLda Data AvaiLabLe, which is true, if 
MathiLda has send a word to Rikke through the direct connection, 
and Rikke has not read this value yet. 

MatSA[J 
--A-boolean function, 

MathiLda has read 
direct connection. 

MatDeadSta rt[] 

MathiLda Space AvaiLabLe, which is true, if 
the Last word send from Rikke through the 

--If--M~thilda' is in a weLLdefined state after having executed a 
user microprogram, it can be deadstarted from a BCPL-program by 
calling this routine, i.e unLoad the communication monitor and 
the user microprograms, and return controL to the bootstrap
Loader. 

This routine shouLd be caLLed upon normaL exit from the user 
BCPL-program. 

4.1 



-12-

The foLLowing is an exampLe of a program, which can Load and caLL 
the program ADD.LUI[2.2]. 

MATADD .BCPL: 

get "SysHdr" 
get "MatHdr" 

manifest $( NUMBPARAMS 

Let Start () be 
$(S 

Let add,res 0,0 
and pvec = 0 
and buf = vec 3 

2 $) 

Load[ "MCSL i b ", Cur rent Di rect ory] 

II initiate BCPL/microcode communication: 
SetupMatCS[NOSILENCE] 

II Load the microcode: 
add:=LoadMatCS["ADD"] 
switchon add into 
$(sw 

case NOTF OUND 
case NOGOOD 

defauLt 
$)sw 

GiveUp["Load aborted"] 
endcase 
endcase 

/I initiate communi cation ,area: 
pvec:=MatParVec[NUMBPARAMS] 

SetMatPar(pvec,1,0,0,1,0) 
SetMatPar(pvec,2, 0,0,0,1) 

II pe r for m caL L: 
res:=CaLLMatCS[add,pvec] 
switchon res into 
$(sw 

case NOGOOD GiveUp["caLL aborted"] 
endcase 

/I BCPL-Library 
II microcode Library 

II Load the Library 

/I Load ADD.MAT 

II Loaded ok 

II a vector of size 8 

II 1. pa i
II 2. pa r 

65536 
1 

case ACCEPTED 
defauLt 

endcase II MathiLda started 

$)sw 

GiveUp["system-error"]llshouLd not occur 
end case 

4.2 



$)S 

-13 -

II wait for MathiLda 
unt i L Mat DA[] do 
$( 

$) 

II Do some sensibLe work. This Loop need not be here, 
II since InMat64 wiLL.wait for MathiLda. 

II read the resuLt 
InMat64(buf) II the resuLt in 'buf' 

II dispLay resuLt: 
OutF[ConsoLe,"resuLt: %U: :%U: :%U: :%U*n",buf !3,buf !2,buf!1 ,buf !O]· 

1/ clean up: 
ReturnMatVec(pvec) 
Mat DeadSta rt [] 

4.2 



-14-

The foLLowing 4 functions are avaiLabLe in the standard com
munication monitor, and can be used from the user microprograms 
via the XTERNAL decLaration. The addresses are given in hexa
decimaL: 

WSREAD 8 

WSWRITE 9 

RIKREAD A 

RIKWRITE 8 

read a 64-bit word from WideStore. 
The address must be in AS, 
the resuLt is on lB. 
Destroys: ALF, WSA, OCD, IA 

write a 64-bit word to WideStore. 
The address must be in AS, 
and the vaLue to write in LRCLROPJ. 
Destroys: ALF, WSA, OCD, OA 

read a fuLL 64-bit word send from 
Rikke by OutMat64. 
The resuLt is on AL. 
Requires: LRIP=LROP 
Destroys: CA, ALF, LRCLRPJ, IB 

write a fuLL 64-bit word to Rikke, 
to be recieved by InMat64. 
The vaLue to write must be in VS. 
Destroys: CA, VS, 08 

The AS-addresses for WSREAD and WSWRITE are 64-bits-word WideStore 
addresses, so these two functions can be used to access the whoLe 
WideStore. 

The routines are caLLed as subroutines, using the RA-stack as 
described in section 3.3. 

4.3 



-15-

If the user onLy wants to Load and caLL a simpLe microprogram, i.e 
a program which onLy communicate with the caLLing BCPL-program and 
onLy give one vaLue, a word, as its resuLt, this can be done with 
the programs "Rikke" and "MathiLda". 

They consists of respectiveLy "RCSLib" and "MCSLib" together with 
some input/output routines, and a microprogram cataLog. 

The commands they accept are: 

Load 

caLL 

name: Load a microprogram from fiLe name.MIC (Rikke) 
or n a me. MAT (Ma t h i L d a) • 

name caL L 
asks 

of the 
for the 

microprogram 
number of 

'name'. The program 
parameters and the 

parameters. 
For Rikke, the parameters can onLy be given in 
decimaL. 
For MathiLda they can be given as: 

e.g 
decimaL 102 16-bit 
hexadec. XA7B42C 64-bit 
octaL 0713132 64-bit 
binary B101001 64-bit 

The resuLt of the microcode caLL is dispLayed in 
decimaL, and for MathiLda in hexadecimaL too. 

deLete name discards the microprogram 'name'. If 'name'=aLL 
aLL Loaded microprograms are discarded. 

List 

heLp 

end 

gives a List of aLL caLLabLe microprograms. 

type a heLp text on the ConsoLe. 

terminate the program. In case of MathiLda, a 
MatDeadStart[] wiLL be executed. 

The exampLe-programs ADD.MIA and ADD.LUI can both be executed by 
these two programs. 

The two programs reside in SystemDirectory, and are invoked as 
normaL systemprograms by typing their name [2]. 

5 



-16-

When run~ing a microprogram on Rikke or MathiLda, 
the enVlronment must be obeyed, especiaLLy on 
I/O-nucLeus and the OCODE-machine both are 
[3],[4], and therefore (possibLy) uses the same 
etc. as the user microprogram. 

some ruLes about 
Rikke, since the 

microprogrammed 
regi sters, masks 

Both Rikke and MathiLda must be Left in a normaLised state, when 
the user microprogram terminates. This means: 

MA[O] 
MA[1 ] 
MAP 
B SS 

LA[O] 
PA [1 ] 
LAP 
PGS 

CUALF A+B 

LB[O] 
PB[O] 
LBP 
CM 

PHD] 

PAP 

NOMASK 
FULLMASK 
PB P = 0 

(11 ••• 111) 
(00 ••• 000) 

If any of these are omitted, the processor ( Rikke or MathiLda) 
wiLL probabLy die, when trying to execute the next microprogram, 
which on Rikke is the OCODE-machine itseLf. 

On the other hand, the user microprograms may aLso assume, that 
both Rikke and MathiLda are normaLised, when entering the micro
program. 

On MathiLda a user microprogram can use aLL the resources in the 
machine, the register groups, pointers etc, with the exceptions as 
mentioned above, and assume that the vaLues are unchanged, when 
re-entering the microprogram from the BCPL-system, except for the 
foLLowing, which are used by the Library routines and the com
munication monitor: 

ALF 
AS 
IB 
OCD 

CA 
DS 
IB 
WSA 

CB 
VS 
OA 

LRP 
OC 
OB 

LR [1 ] 

SA 

On Rikke the user microprograms are more restricted. The 
I/O-nucLeus and the OCODE-machine uses some permanent resources, 
and these must not be changed by the user microprograms. These 
are: 

WACO] 
WA[11 ]-WA[13] 

WB[O] 0-15 = 
WB[2] 
WB[4J - WB[7J 

MB:5-9 
MB:12-14 
LA:14-15, 

the OCODE-machine registers 
used by I/O-nucLeus 

0,1,2,3",14,-1 , the constants 
used by the disk-controLLer 
used for OCODE-decoding 

used by the disk-controLLer 
used by I/O~nucLeus and OCODE-machine 
used by the OCODE-machine 

6 



-17 -

MainStore: 
MS: 0-256 used by I/O-nucleus 

Apart from these, the I/O-nucleus and the OCODE-machine uses some 
resources, when running, so these cannot be assumed to be un
changed, when re-entering a user microprogram. The following 
resources are not used, and can be assumed to be left unchanged by 
the I/O-nucleus and the OCODE-machine: 

ALSG [5] - [15] 
BSSG [5] - [15] 
CASG [5] - [15] 
LA [5] - [13] 
MA [5] - [15] 
P A [5] - [1 5] 
PMSG [5] - [15] 
MSASG[5] - [15] 

The free WA-groups 
I/O-nucleus also uses 
needed, it must be 
BCPL-program: 

AVDSG [5] - [15] 
BMSG [5] - [15] 
CBSG [5] - [15 J 
LB [5] - [1 5J 
MB [1 J - [4] 
PB [5J - [15J 
PGSG [5J - [15J 
WB [8J - [15J 

must not be used uncontrolled, since the 
these for device-records. If a WA-group is 
allocated and deallocated by the calling 

group := AllocDB[J 
DeAllocDB[groupJ 

II allocate 
II deallocate 

For both Rikke and Mathilda, using VALUE-statements on any of the 
above permanent resources or the resources concerning the nor
malised machine, will of course have disastrous consequences too. 

Furthermore it should be noted, that VALUE-statements are executed 
by LoadRikCS and LoadMatCS, see 3.1 and 4.1, and that this ex
ecution uses some pointers and registers, when initialising the 
register-group and pointers. 

This means, that all the microcode for a user microprogram should 
be loaded, before calling any of the microcode, if the microcode 
assumes any register-group or pointer to be left unchanged by the 
BCPL-system. 

6 



-18-

[1]: I.H.S¢rensen, E.KresseL: 
Rikke-MathiLda microassembLers and simuLators 
D A I M I M D - 2 8, Dec em b e r 1 977 

[2]: J.K.Kjrergaard and FLemming Wibroe 
The RIKKE-BCPL system 
DAIMI MD-38, September 1980 

[3]: E.KresseL, I.H.S¢rensen 
The I/O-nucLeus on RIKKE-1 
DAIMI MD-21, October 1975 

[4]: O.S¢rensen 
The emuLated OCODE-machine for the support of BCPL 
DAIMI PB-45, April 1975 

[5]: P.Kornerup,B.Shriver 
A description of the MATHILDA system 
DAIMI PB-52, September 1980 

[6]: J.K.Kjrergaard 
The RIKKE-MATHILDA WideStore 
DAIMI MD-42, November 1980 

[7]: J.K.Kjrergaard, I.H.S¢rensen 
The RIKKE-BCPL compiLer 
DAIMI MD-36, August 1980 

[8]: J.K.Kjrergaard, I.H S¢r~nsen 
The RIKKE editor 
DAIMI MD-37, August 1980 

Appendix A 



-19-

The foLLowing is 
moni t or as of 
LikeLy to change 
unchanged. 

the source text for the MathiLda communication 
27/10-80. The text, and thereby the addresses is 
in the future, but the functions shouLd remain 

The source text of the Rikke and MathiLda bootstrap Loaders can be 
found in [1]. 

LOUISE VERSION 1.7. PDP-1C 27 OCTOBER 1980 12:38:53 LOMER.LUI P ~GE 1 

lDENO ADDRESS 

" 2, 
3, 
4' 
5, 
6' 
7, 
S, 
9, 
10: 
11: 
12: 
13: 
11.: 
15: 
16: 
17: 
18: 

19: 

21: 
Z2 : 
23: 
24: 
25: 
26: 
27: 
28; 
29: 
30: 

.3<': 
33: 
;$4: 
35: 
36: 
37; 
38: 
39; 
40: 
41: 
42: 
43: 
44: 
45: 
46: 
47: 
48: 
49: 
50: 

51: 
52: 
53: 
54: 

10 
11 

" 13 
14 
15 
16 
17 
18 

19 
1A 

" H 

'" 1E 
1F 
20 
21 
12 
13 
l4 

MATH lL DA M ICR O-PR OG RAMS RU N-Tl ME ~NV IRONMENT 

9-2-79: E xe c: LR [OJ un~ h ~nged, LRP=:l 
LR[1J =: poulter to parameter 

*0=16 

CSLOAD 
(B-1 

CONTROl" AND PAR~r~ETER TRAtJSfER MDULE. 
UPON ACTIVATIOI; OF USER IHCRO-PROGRAfolS 

lR 
os 

" 

R-READ 
R-READ 

SA 

• START-ADDRESS 
.LOAD-COUNT 
.fIRST WORD 

IF C8 THEN RB+l .RETURN TO [He 
R-READ ."EXT WORD 

R-NEWLOAO 

USER-SPECIfIED FIRF·WARE FUNCTioN 
AUTOMATICALLY 

EXEC: 

; 
AS,LR:=AL; 
VS:=ALLOS; 

OS:=1A 
AS;=AL 

VS:"DS 

RA! 
RA! 

RB! 
RA! 

CALLING SYSTEI1 ROUTINE, AS 
TO BE THE RESULT OF THE 

LRPC 
LRP+1 
SA:=SB 

SETALf+1 

IF KA TH E ~ HERE 
R~R E AD • ST ART~ AO OR E S S 
R~RE AD • PARAMETER VECTOR 

R-WRITE .ACCEPT TO RIKKE 
R~f"EMR E AI> .1.PARAMETER 

R~~IE MR E AD .2.PARAMETER 
IF KA THEN HERE 
SA 
R-WRITE 
R-EXEr 

Appendix B 



-20-

LOUl5E V·ERSlOIJ 1.7. poP-tO 27 OCTOBER 1980 12 :38: 57 LOADER.LUI 

LIIUl(; C5 
55: 
56: 
57: 
Sb: 
5'1: 
6G: 
61: 
62: 
63: 25 
64: 26 
65: n 
66: 28 
67: "l9 
6.'): 2A 
69; 
70; 
71: 
72: 
73: 
74: 28 
75: 2e 
76: ';:0 
77: 
7;;: 
79: 
80: 
81: 
82: 2E 
83: 2F 
84: 30 
85: 31 
86: 
87: 
88: 
89: 
90: 
91: 32 
92: 33 
93: 34 
94: 35 
95: 
96, 
97: 
'18: 
99: 
100 
101 
102 
103 
104 
105 
106 
107 
10S 
109 
110 
111 
112 
113 

LIBRARY ROUTlI~ES 

READ A fULL 64 BIT WORD SEIIIO fRO~1 A BePL PROGRAr1 ON RIKKE 

/lLLOS 

'" LR : ~ I r, ; (A-1, IBA 

WR1TE A FULL 64 Ell WORD re· /I IHPL PROGRAM ON RIKKE 

WRIH.: eA:= 

V5,OB:"V$,<16; CA-1, OBA 

WIOESTGRE REA[) FUNCTlOt;: IA:=WS[AS] 

SETALFB rlEr~ READ: 

" WSA:=SB,IAA, OeD:=.5 
OCAt 

WIPESTORE WRITE ROUTINE: WS[AS] :=LR 

~1EMWRI TE: 

" 
OA::AL 

SETAUB 
IOSA:=S8, OCD:;:: 
OCA1, SElALFA 
pAA1 

lHESE ROUTlNES A CALLABLE THROUGH A TABLE: 

*0=8 

RUREAD: 
RIKWRllE: 
WSREAO: 
WSWRlTE: 

"ENTRY = EXEC 

ASSEMBLY CORRECT 

If IBDA THEN HERE+t ELSE HERE 
IF C/. THEN HERE+1 ELSE R-2 
RA+1 

IF OBSI, THEN HERE+1 ELSE HERE 
IF CIt THEN RA+1 ELSE HERE-1 

NOT OeSA THEN HERE 

IF 1 AO~ THEN RA+1 ELSE HERE 

IF NOT OCS~ THEN HERE 
If NOT OaSA THEN HERE 

RA+1 

R-READ 
R-WRITE 
R-MEMAEAD 

PAGE 2 

Appendix B 



Micro 
Archives 
4-30 

Running a microprogram on Rikke-Mathilda 

Wibroe, Flemming. 
Running a microprogram on Rikke-Mathilda / 

Flemming Wibroe.-- Aarhus, Denmark: Com
puter Science Department, Aarhus Univer
sity, 1980. 

(DAIMI; MD-41) 

1. Title. 


