

SINGLE-CHIP 16-BIT MICROCOMPUTERS Vol. 2

MITSUBISHI

MITSUBISHI SEMICONDUCTORS 1994

SINGLE-CHIP 16-BIT MICROCOMPUTERS Vol. 2

SINGLE-CHIP 16-BIT MICROCOMPUTERS Vol. 2

All values shown in this catalogue are subject to change for product improvement.

The information, diagrams and all other data included herein are believed to be correct and reliable. However, no responsibility is assumed by Mitsubishi Electric Corporation for their use, nor for any infringements of patents or other rights belonging to third parties which may result from their use.

1	GUIDANCE
2	MASK ROM/EXTERNAL ROM VERSION
2-1	M37710 GROUP
2-2	M37720 GROUP
3	PROGRAMMABLE ROM VERSION
3-1	M37710 GROUP
4	MELPS 7700 SOFTWARE
5	PRECAUTIONS
6	APPENDICES

1 GUIDANCE

GUIDANCE	Page
Index by Function	-3
Development Support Tools	-7
Documents 1-	-9
Ordering Information 1-	-10
Package Outlines	-11
Letter Symbols for The Dynamic Parameters1-	-15
Symbology 1-	-18
Quality Assurance and Reliability Testing	-21
Precautions in Handling MOS IC/LSIs1-	-28

2 MASK ROM/EXTERNAL ROM VERSION

2 - 1	M37710 Group Mask ROM/ External ROM Version							
	M37710 Group Overview	2-4						
	M37710M4BXXXFP	Single-Chip 16-Bit CMOS Microcomputer ······2-5						
	M37710M8BXXXFP	Single-Chip 16-Bit CMOS Microcomputer ······2-73						
	M37710M8LXXXHP	Single-Chip 16-Bit CMOS Microcomputer ······2-93						
	M37710S4BFP	16-Bit CMOS Microcomputer·····2-115						
2 - 2	M37720 Group External ROM Version							
	M37720 Group Overview							
	M37720S1AFP	16-Bit CMOS Microcomputer ·····2-185						

3 PROGRAMMABLE ROM VERSION 3 — 1

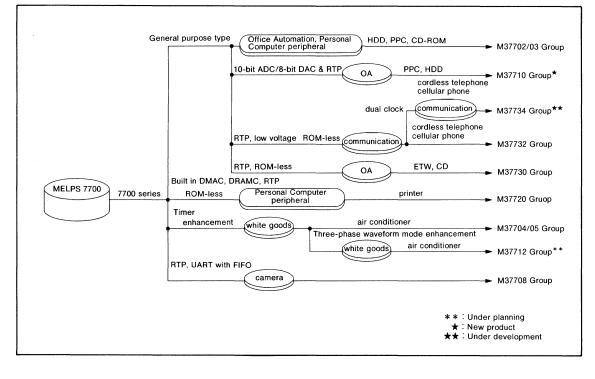
M37710 Group PROM Version		
M37710 Group Overview		3—4
M37710E4BXXXFP, M37710E4BFS	PROM Version of M37710M4BXXXFP ······	3-5
M37710E8BXXXFP, M37710E8BFS	PROM Version of M37710M8BXXXFP ······	3—33
M37710E8LXXXHP	PROM Version of M37710M8LXXXHP ······	3—59
	M37710 Group Overview M37710E4BXXXFP, M37710E4BFS M37710E8BXXXFP, M37710E8BFS	M37710 Group Overview M37710E4BXXXFP, M37710E4BFS PROM Version of M37710M4BXXXFP M37710E8BXXXFP, M37710E8BFS PROM Version of M37710M8BXXXFP

4 MELPS 7700 SOFTWARE

MELPS 7700 Addressing Modes4-3
MELPS 7700 Machine Instructions
MELPS 7700 Instruction Code Table4-60

5 PRECAUTIONS

6 APPENDICES


MELPS 7700 Mask ROM Ordering Method
MELPS 7700 PROM Ordering Method ······6-7
Mark Specification Form 6-11

GUIDANCE

INDEX BY FUNCTION

EACH PRODUCT FIELDS OF APPLICATION

SELECT MAP

Classification	Features	 Clock oscillating frequency 	 Minimum instruction exection time 	Timer (16 bit) (number)	Serial I/O	A-D conversion	D-A conversion	I/O ports	Pin count (number)	Group name	Main application	Appeara in Data Book
General	16K∼60K BOM	16	250	5+3	2	4	-	53	64	M37703	Copy machine, HDD, electronic musical instrument, data terminal, printing en- gine for page printer, automobile, port- able telephone, personal information machines and tools	
Purpose	IOK~OUK HUM	25	160	5+3	Ζ	8	-	68	80	M37702		
Motor Drive			250	5+3 2		8		68	68 80	M37704	inverter air conditioner, general pur- pose inverter, sewing machine for the	
Control	Phase detect function	25	160	5-2	1	0		53	64	M37705	manufacturing, washing machine	
General Purpose with Enhanced Ana- log I/O Function	Built-in 10-bit A-D converter	25	160	5+3	2	8	2	68	80	M37710	copy machine, HDD, data terminal, bar- code reader, electronic musical instru- ment, printing engine for page printer	Vol. 2
DRAM Con- troller Built-in	Built-in 24-bit DMA Controler (4ch) and DRAM Controler	16	250	5+3	2	8	-	53	100	M37720	serial printer, facsimile, image scanner,	
General Pur-				HDD, ODD, electronic typewriter, personal information								
pose of Ex-	Low price version	25	160	5+1	1		_	25	64	M37730	machines and tools, mobile communication machine and mobile phone, communication terminal tools	Vol. 1
	for basic peripher- al function	16	250	5+3	2	8		37	80	M37732	mobile phone, copy machine, printer, electronic typewriter, facsimile, person-	
		25	160	515	-	3		57	80	10137732	al information machines and tools	

Vol. 1 : 1994 MITSUBISHI SEMICONDUCTORS DATA BOOK (SINGLE-CHIP 16-BIT MICROCOMPUTERS) Vol. 1 Vol. 2 : 1994 MITSUBISHI SEMICONDUCTORS DATA BOOK (SINGLE-CHIP 16-BIT MICROCOMPUTERS) Vol. 2

GENERAL	PURPOSE (1)
---------	-------------

ROM RAM (V) (Ping (C) 16K 512 M37702M2A××FP 80P6N-A 4.5~5.5 -20~85 M37702M2L××GP 80P6S-A 2.7~5.5 -40~85 24K 1024 M37702M2L××GP 80P6N-A 4.5~5.5 -20~85 24K 1024 M37702M2L××GP 80P6N-A 2.7~5.5 -40~85 32K 24K 1024 M37702M4E××FP 80P6N-A 4.5~5.5 -20~85 M3702M4L××GP M37702M4E××FP 80P6N-A 2.7~5.5 -40~85 M3702M4L××GP 80P6N-A 4.5~5.5 -20~85 60K 2048 M37702M4E××FP 80P6N-A 4.5~5.5 -20~85 60K 2048 M3702M8B××FP ★ 4.5~5.5 -20~85 M3702M8B××FP M37702M8E××FP 80P6N-A 4.5~5.5 -20~85 60K 2048 M37702E2X×SP 80P6N-A 4.5~5.5 -20~85 M37702E2E1××FP 80P6N-A 4.5~5.5 -20~85 -20~85 M37702E2E1××FP <	Page	Operating temperature	Power supply voltage	Pakage	Type No.	Memory capacity (Byte)	Memory type
Mask ROM 16K 512 M3TT02M2E × × × FP M3TT02M2L × × × GP M3TT02M2L × × × GP 80P6N - A 4.5~5.5 -20~85 Mask ROM 24K 1024 M3TT02M2L × × × GP M3TT02M4E × × FP 80P6D - A 2.7~5.5 -40~85 32K 24K 1024 M3TT02M4E × × FP 80P6N - A 4.5~5.5 -20~85 Mask ROM 32K 24K M3TT02M4E × × FP 80P6N - A 4.5~5.5 -40~85 M3TT02M4E × × FP M3TT02M4E × × FP 80P6N - A 4.5~5.5 -40~85 48K 2048 M3TT02M4E × × FP 80P6N - A 4.5~5.5 -40~85 60K 2048 M3TT02M4E × × FP 80P6N - A 4.5~5.5 -20~85 60K 2048 M3TT02M4E × × FP 80P6N - A 2.7~5.5 -40~85 16K 512 M3TT02E4E × × FP 80P6N - A 4.5~5.5 -20~85 M3T702E2E × × FP 80P6N - A 4.5~5.5 -20~85 -20~85 M3T702E4 × × FP M3T702E4 × × FP 80P6N - A 4.5~5.5 -20~85 M3T702E4 × × FP	i aye			Гакауе		ROM RAM	
16K 512 M37702M2B×××FP 80P6D-A 2.7~5.5 -40~85 24K 1024 M37702M2L×××FP 80P6D-A 2.7~5.5 -40~85 24K 1024 M37702M2L×××FP 80P6D-A 2.7~5.5 -40~85 32K 24K 1024 M37702M4B×××FP 80P6N-A 4.5~5.5 -20~85 M37702M4E×××FP M37702M4E×××FP M37702M4E×××FP -40~85 -40~85 M37702M4E×××FP M37702M4E×××FP 80P6N-A 4.5~5.5 -20~85 48K 2048 M37702M6E××FP 80P6N-A 4.5~5.5 -20~85 60K 2048 M37702M8E××FP * 4.5~5.5 -20~85 60K 2048 M377022M8E××FP * 80P6D-A 2.7~5.5 -40~85 60K 2048 M377022BE××FP * * 80P6D-A 2.7~5.5 -20~85 700 E2L××KP M37702E2E××FP 80P6D-A 2.7~5.5 -40~85 70702E2L××KP M37702E4E××FP 80P6D-A 2.7~5.5 -40~85 <		00.95	4 E - E E		$M37702M2A \times \times \times FP$		
Mask ROM M37702M2L × × × GP 80P6S-A 2.7~5.5 -40~85 24K 1024 M37702M2L × × × HP 80P6D-A 2.7~5.5 -40~85 32K 24K 1024 M37702M4B × × × FP 80P6N-A 80P6N-A 4.5~5.5 -20~85 32K 2048 M37702M4E × × FP 80P6N-A 2.7~5.5 -40~85 M37702M4L × × SP M37702M4L × × SP 80P6N-A 2.7~5.5 -40~85 48K 2048 M37702M6L × × FP 80P6N-A 4.5~5.5 -20~85 60K 2048 M37702M6L × × FP 4.5~5.5 -20~85 2.7~5.5 -40~85 60K 2048 M37702M6L × × FP 4.5~5.5 -20~85 2.7~5.5 -40~85 M37702M6L × × FP M37702M8E × × FP 4.5~5.5 -20~85 2.7~5.5 -40~85 60K 2048 M37702E2A × × FP 80P6N-A 4.5~5.5 -20~85 M37702E2L × × GP 80P6N-A 2.7~5.5 -40~85 -40~85 32K 2048 M37702E4L × × FP 80P6N-		-20~85	4. 5~5. 5	OUPOIN-A	$M37702M2B \times \times \times FP$	101 510	
$ \begin{array}{ c c c c c c } & M37702M2L \times \times HP & 80P6D-A \\ \hline 24K & 1024 & M37702M3B \times \times FP \\ \hline 1024 & M37702M3B \times \times FP \\ \hline M37702M4L \times \times FP \\ \hline M37702M3B \times \times FP \\ \hline M37702E3B \times \times FP \\ \hline M37702E3B \times \times FP \\ \hline M37702E3B \times \times FP \\ \hline M37702E4B \times \times FP \\ \hline M37702E4A \times \times FP \\ \hline M37702E4B \times FP \\ \hline M37702E4B \times \times FP \\ \hline M37702E4B \times FP \\ \hline M37702E4B \times FP \\ \hline M3770$		40 - 9F	0.7.5.5	80P6S-A	$M37702M2L \times \times \times GP$	10K 512	Mask ROM
$ \begin{tabular}{ c c c c c } \hline \begin{tabular}{ c c c c } \hline \end{tabular} \\ Mask ROM \\ \hline \end{tabular} \\ 32 \end{tabular} \end{tabular} \\ \hline \end{tabular} \\ 32 \end{tabular} \\ \hline \end{tabular} \\ \hline \end{tabular} \\ 32 \end{tabular} \\ \hline tabula$		-40~85	2.1~5.5	80P6D-A	$M37702M2L \times \times \times HP$		
Mask ROM 32K 2048 M3TT02M4A×××FP 80P6N-A 4.5~5.5 -20~85 Mask ROM 32K 2048 M3TT02M4E××FP -40~85 -40~85 M3TT02M4L××FP M3TT02M4L××FP 80P6S-A 2.7~5.5 -40~85 48K 2048 M3TT02M6B××FP 80P6N-A 2.7~5.5 -40~85 60K 2048 M3TT02M6B××FP \$0P6N-A 2.7~5.5 -40~85 60K 2048 M3TT02M8B××FP \$0P6N-A 2.7~5.5 -40~85 60K 2048 M3TT02M8B××FP \$0P6N-A 2.7~5.5 -40~85 60K 2048 M3TT02EX××FP \$0P6N-A 2.7~5.5 -40~85 M3TT02E2EX××FP \$0P6N-A 4.5~5.5 -20~85 -40~85 M3TT02E2EX××FP \$0P6N-A 4.5~5.5 -20~85 -40~85 M3TT02E4E××FP \$0P6N-A 4.5~5.5 -20~85 -40~85 M3TT02E4E××FP \$0P6N-A 4.5~5.5 -20~85 -40~85 M3TT02E4E××FP \$0P6N-A 2.7~5.5 <t< td=""><td></td><td></td><td></td><td></td><td>$M37702M3B \times \times \times FP$</td><td>24K 1024</td></t<>					$M37702M3B \times \times \times FP$	24K 1024	
Mask ROM 32K 2048 M37702M4A×××FP 80P6N-A 4.5~5.5 -40~85 M37702M4E×××FP M37702M4E×××FP 80P6S-A 2.7~5.5 -40~85 48K 2048 M37702M4E××FP 80P6N-A 4.5~5.5 -20~85 48K 2048 M37702M6E××FP 80P6N-A 4.5~5.5 -20~85 60K 2048 M37702M6E××FP ★ 80P6D-A 2.7~5.5 -40~85 60K 2048 M37702M8E××FP ★ 80P6D-A 2.7~5.5 -40~85 M37702E2E××FP 80P6D-A 2.7~5.5 -40~85 -40~85 M37702E2E××FP 80P6D-A 2.7~5.5 -40~85 M37702E4E××FP 80P6D-A 2.7~5.5 -40~85 M37702E4E××FP 80P6D-A 2.7~5.5 -40~85 M37702E4E××FP 80P6N-A 4.5~5.5 -20~85 M37702E4E××FP 80P6N-A 4.5~5.5 -20~85 M37702E4E××FP 80P6N-A 2.7~5.5 -40~85 M37702E4E××FP 80P6N-A 4.5~5.5		2095			$M_{37702}MDB \times \times \times FP$	1024	
Mask ROM 32K 2048 M37702M4E×××FP -40~85 M37702M4L×××FP M37702M4L×××FP -40~85 M37702M4L×××FP 80P6S-A 2.7~5.5 -40~85 48K 2048 M37702M6E××FP 80P6N-A 4.5~5.5 -20~85 60K 2048 M37702M8E××FP ★ 80P6D-A 2.7~5.5 -40~85 60K 2048 M37702M8E××FP ★ 80P6D-A 2.7~5.5 -20~85 60K 2048 M37702M8E××FP ★ 80P6D-A 2.7~5.5 -40~85 M37702E2E××FP ★ 80P6D-A 2.7~5.5 -40~85 -20~85 M37702E2E××FP 80P6N-A 4.5~5.5 -20~85 -20~85 M37702E2E××FP 80P6D-A 2.7~5.5 -40~85 M37702E4E××FP 80P6D-A 2.7~5.5 -40~85 M37702E4E××FP 80P6N-A 4.5~5.5 -20~85 M37702E4E××FP 80P6N-A 2.7~5.5 -40~85 M37702E6E××FP M37702E6E××FP 4.5~5.5 -20~85		-20~85	4.5~5.5	PODON A	M37702M4A×××FP		
One time PROM 32K 2048 M37702M4L × × SPP M37702M4L × × SPP M37702M4L × × SPP 80P6S-A 4.5~5.5 -20~85 48K 2048 M37702M6B × × SPP M37702M6L × × SPP 80P6N-A 4.5~5.5 -20~85 60K 2048 M37702M8B × × SPP M37702M8B × × SPP ★ ★ 80P6D-A 2.7~5.5 -40~85 60K 2048 M37702M8B × × SPP M37702E2A × × SPP ★ ★ 80P6D-A 2.7~5.5 -40~85 16K 512 M37702E2A × × SPP M37702E2B × × SPP 80P6N-A 4.5~5.5 -20~85 M37702E4L × × GP 80P6D-A 2.7~5.5 -40~85 -40~85 M37702E4L × × SPP 80P6N-A 4.5~5.5 -20~85 60K 2048 M37702E8B × × FP				80P6N-A	$M37702M4B \times \times \times FP$	001/	
M37T02M4L×××GP 80P6S-A 2.7~5.5 -40~85 48K 2048 M37T02M6B××FP 80P6N-A 2.7~5.5 -20~85 60K 2048 M37T02M8B××FP ★ 80P6N-A 2.7~5.5 -40~85 60K 2048 M37T02M8B××FP ★ 80P6D-A 2.7~5.5 -40~85 60K 2048 M37T02M8L××FP ★ 80P6D-A 2.7~5.5 -40~85 60K 2048 M37T02E2A××FP \$0P6N-A 4.5~5.5 -20~85 M37T02E2A××FP 80P6D-A 2.7~5.5 -40~85 M37T02E2L×××GP 80P6N-A 4.5~5.5 -20~85 M37T02E4L××FP 80P6N-A 4.5~5.5 -20~85 M37T02E4L××FP 80P6N-A 4.5~5.5 -20~85 M37T02E4L××FP 80P6N-A 4.5~5.5 -20~85 M37T02E4L××FP 80P6N-A 4.5~5.5 -20~85 48K 2048 M37T02E6B××FP 80P6N-A 4.5~5.5 -20~85 60K 2048 M37T02E8B××FP 4.5~5.5		-40~85			$M37702M4E \times \times \times FP$	32K 2048	
M37702M4L×××GP 80P6S-A 4.5~5.5 -20~85 48K 2048 M37702M6E××FP 80P6N-A 2.7~5.5 -40~85 60K 2048 M37702M8E××FP ★ 80P6D-A 2.7~5.5 -20~85 60K 2048 M37702M8E××FP ★ 80P6D-A 2.7~5.5 -40~85 60K 2048 M37702E2A××FP ★ 80P6D-A 2.7~5.5 -40~85 M37702E2E××FP \$0P6N-A 4.5~5.5 -20~85 -20~85 -20~85 M37702E2E××FP \$0P6N-A 4.5~5.5 -20~85 -20~85 M37702E2E××FP \$0P6N-A 4.5~5.5 -20~85 M37702E4E××FP \$0P6N-A 4.5~5.5 -20~85 M37702E4E××FP \$0P6N-A 2.7~5.5 -40~85 M37702E4E××FP \$0P6N-A 4.5~5.5 -20~85 M37702E4E××FP \$0P6N-A 2.7~5.5 -40~85 48K 2048 \$0712E4E××FP \$0P6N-A 4.5~5.5 -20~85 M37702E4E××FP \$00F6N-A 2.7~5.5 <td></td> <td rowspan="2">-40~85</td> <td></td> <td></td> <td>$M37702M4L \times \times \times FP$</td> <td></td> <td></td>		-40~85			$M37702M4L \times \times \times FP$		
48K 2048 M37702M6L×××FP 80P6N-A 2.7~5.5 -40~85 60K 2048 M37702M8L×××FP ★ ★ 80P6D-A 2.7~5.5 -40~85 60K 2048 M37702M8L×××HP ★ ★ 80P6D-A 2.7~5.5 -40~85 60K 2048 M37702M8L×××HP ★ ★ 80P6D-A 2.7~5.5 -40~85 M37702E2A×××FP 80P6N-A 4.5~5.5 -20~85 -20~85 -20~85 M37702E2L×××GP 80P6D-A 2.7~5.5 -40~85 -40~85 M37702E2L×××GP 80P6D-A 2.7~5.5 -40~85 M37702E4L×××FP 80P6D-A 2.7~5.5 -40~85 M37702E4L×××FP 80P6N-A 4.5~5.5 -20~85 M37702E4L××FP 80P6N-A 2.7~5.5 -40~85 48K 2048 M37702E6B××FP 80P6N-A 2.7~5.5 -40~85 60K 2048 M37702E8B××FP ★ 4.5~5.5 -20~85 60K 2048 M37702E2BFS M37702E2BFS 4.5~5.5 -20~85			2. 1~5. 5	80P6S-A	M37702M4L $\times \times \times$ GP		
M37702M6L×××FP 80P6N-A 2.7~5.5 -40~85 60K 2048 M37702M8L×××FP ★★ 4.5~5.5 -20~85 M37702M8L×××HP ★★ 80P6D-A 2.7~5.5 -40~85 M37702M8L×××HP ★★ 80P6D-A 2.7~5.5 -40~85 M37702E2L×××HP ★★ 80P6D-A 2.7~5.5 -40~85 M37702E2D×××FP 80P6N-A 4.5~5.5 -20~85 M37702E2L×××GP 80P6D-A 2.7~5.5 -40~85 M37702E4L×××GP 80P6D-A 2.7~5.5 -40~85 M37702E4L×××FP 80P6N-A 4.5~5.5 -20~85 M37702E4L×××FP 80P6N-A 2.7~5.5 -40~85 M37702E4L×××FP 80P6N-A 2.7~5.5 -20~85 M37702E4L××FP 80P6N-A		-20~85	4.5~5.5		$M37702M6B \times \times \times FP$	1017 0010	
60K 2048 M37702M8L×××HP ★ 80P6D-A 2.7~5.5 -40~85 16K 512 M37702E2A×××FP 80P6N-A 4.5~5.5 -20~85 M37702E2L×××GP 80P6N-A 4.5~5.5 -20~85 M37702E2L×××GP 80P6D-A 2.7~5.5 -40~85 M37702E2L×××GP 80P6D-A 2.7~5.5 -40~85 M37702E2L×××GP 80P6D-A 2.7~5.5 -40~85 M37702E4L×××FP 80P6N-A 2.7~5.5 -40~85 M37702E4L×××FP 80P6N-A 4.5~5.5 -20~85 M37702E4L×××FP 80P6N-A 4.5~5.5 -20~85 M37702E4L××FP 80P6N-A 2.7~5.5 -40~85 M37702E4L××FP 80P6N-A 2.7~5.5 -40~85 48K 2048 M37702E6B××FP 4.5~5.5 -20~85 M37702E4L××FP 80P6N-A 2.7~5.5 -40~85 60K 2048 M37702E3B××FP 4.5~5.5 -20~85 M37702E3L××HP 80P6D-A 2.7~5.5 -40~85 4.5~5.5		-40~85	2.7~5.5	80P6N-A	$M37702M6L \times \times \times FP$	48K 2048	
MarrozMsL×××HP ★★ 80P6D-A 2.7~5.5 -40~85 MarrozEdL×××FP 80P6N-A 4.5~5.5 -20~85 MarrozEdL×××FP 80P6N-A 4.5~5.5 -20~85 MarrozEdL××GP 80P6N-A 2.7~5.5 -40~85 MarrozEdL××GP 80P6N-A 2.7~5.5 -40~85 MarrozEdL××FP 80P6N-		-20~85	4.5~5.5	-	M37702M8B×××FP ★★	0.01/	
M37702E2B×××FP 80P6N-A 4.5~5.5 -20~85 M37702E2L×××GP 80P6N-A 4.5~5.5 -40~85 M37702E2L×××GP 80P6D-A 2.7~5.5 -40~85 M37702E4L×××FP 80P6N-A 4.5~5.5 -20~85 M37702E4L×××FP 80P6N-A 2.7~5.5 -40~85 M37702E4L×××FP 80P6N-A 4.5~5.5 -20~85 M37702E4L×××FP 80P6N-A 2.7~5.5 -40~85 M37702E4L×××FP 80P6N-A 4.5~5.5 -20~85 M37702E4L×××FP 80P6N-A 2.7~5.5 -40~85 M37702E4L×××FP 80P6N-A 2.7~5.5 -40~85 M37702E6L×××FP 80P6N-A 2.7~5.5 -40~85 60K 2048 M37702E8B××FP 4.5~5.5 -20~85 M37702E8L××FP 80P6N-A 2.7~5.5 -40~85 60K 2048 M37702E8L××FP 80P6D-A 2.7~5.5 -40~85 M37702E8L××HP 80P6D-A 2.7~5.5 -40~85 4.5~5.5 -20~85 M37702E2AFS M37702E2AFS </td <td></td> <td>-40~85</td> <td>2.7~5.5</td> <td>80P6D-A</td> <td>M37702M8L×××HP ★★</td> <td>60K 2048</td> <td></td>		-40~85	2.7~5.5	80P6D-A	M37702M8L×××HP ★★	60K 2048	
International constraints In		2095		80 D C M A	M37702E2A $\times \times \times$ FP		
One time PROM 32K 2048 M37702E2L×××GP 80P6D-A 2.7~5.5 -40~85 M37702E1L×××HP 80P6D-A 2.7~5.5 -40~85 -20~85 -40~85 M37702E4A×××FP M37702E4B××FP 80P6N-A 4.5~5.5 -20~85 -40~85 M37702E4L××FP M37702E4L××FP 80P6N-A 2.7~5.5 -40~85 -40~85 M37702E4L××FP M37702E4L××FP 80P6N-A 2.7~5.5 -40~85 -40~85 M37702E4L××FP M37702E4L××FP 80P6N-A 2.7~5.5 -40~85 M37702E4L××FP 80P6N-A 2.7~5.5 -40~85 M37702E4L××FP 80P6N-A 2.7~5.5 -40~85 60K 2048 M37702E6B××FP 4.5~5.5 -20~85 60K 2048 M37702E8B××FP 1 4.5~5.5 -20~85 60K 2048 M37702E2BFS M37702E2AFS 4.5~5.5 -40~85 M37702E2BFS M37702E2BFS M37702E2BFS 1 -40~85		-20~85	4.5~5.5	80P6N-A	$M37702E2B \times \times \times FP$		
One time PROM 32K 2048 M37702E2L×××HP 80P6D-A M37702E4A×××FP M37702E4B××FP 80P6N-A M37702E4L××FP M37702E4L××FP M37702E4L××FP 2.7~5.5 M37702E4L××FP 80P6S-A 48K 2048 M37702E6L××FP 80P6S-A 48K 2048 M37702E6L××FP 80P6N-A M37702E6L××FP 80P6N-A 48K 2048 M37702E6L××FP 80P6N-A 60K 2048 M37702E8L××FP 4.5~5.5 M37702E8L××FP 4.5~5.5 M37702E8L××HP 80P6D-A 2.7~5.5 -40~85 4.5~5.5 -20~85 M37702E8L××HP 80P6D-A 2.7~5.5 -40~85 M37702E2BFS 4.5~5.5		-40~85		80P6S-A	$M37702E2L \times \times \times GP$	16K 512	
One time PROM 32K 2048 M37702E4B×××FP M37702E4L×××FP 80P6N-A 4.5~5.5 -20~85 M37702E4L×××FP M37702E4L×××FP 80P6N-A 2.7~5.5 -40~85 M37702E4L×××FP M37702E6B××FP 80P6N-A 2.7~5.5 -40~85 48K 2048 M37702E6B××FP 80P6N-A 2.7~5.5 -40~85 60K 2048 M37702E6B××FP 80P6N-A 2.7~5.5 -40~85 60K 2048 M37702E8B××FP * 4.5~5.5 -20~85 16K 512 M37702E2AFS M37702E2BFS 4.5~5.5 -40~85			- 2.7~5.5	80P6D-A	$M37702E2L \times \times \times HP$		
One time PROM 32K 2048 M37702E4B×××FP M37702E4L×××FP 80P6N-A 4.5~5.5 -40~85 M37702E4L×××FP M37702E4L×××FP 80P6S-A 2.7~5.5 -40~85 48K 2048 M37702E6B××FP 80P6N-A 2.7~5.5 -40~85 48K 2048 M37702E6B××FP 80P6N-A 2.7~5.5 -40~85 60K 2048 M37702E8B××FP ★ 4.5~5.5 -20~85 60K 2048 M37702E8B××FP ★ 80P6N-A 2.7~5.5 -40~85 60K 2048 M37702E8B××FP ★ 80P6D-A 2.7~5.5 -40~85 16K 512 M37702E2AFS 80P6D-A 2.7~5.5 -40~85	Note				M37702E4A $\times \times \times$ FP		
BROM 32K 2048 M37702E4E×××FP -40~85 M37702E4L×××FP M37702E4L×××FP 2.7~5.5 -40~85 M37702E4L×××GP 80P6S-A 2.7~5.5 -40~85 48K 2048 M37702E6E××FP 80P6S-A 2.7~5.5 -40~85 60K 2048 M37702E6E××FP 80P6N-A 2.7~5.5 -40~85 60K 2048 M37702E8E××FP ★ 4.5~5.5 -20~85 M37702E8E××FP ★ 80P6D-A 2.7~5.5 -40~85 M37702E8E××FP ★ 80P6D-A 2.7~5.5 -40~85 M37702E2BFS M37702E2BFS 80P6D-A 2.7~5.5 -40~85		-20~85	4.5~5.5	80P6N-A	$M37702E4B \times \times \times FP$		
M37702E4L×××FP 2.7~5.5 -40~85 M37702E4L×××GP 80P6S-A 2.7~5.5 -40~85 48K 2048 M37702E6B×××FP 80P6N-A 2.7~5.5 -40~85 60K 2048 M37702E6L×××FP 80P6N-A 2.7~5.5 -40~85 60K 2048 M37702E8B××FP ★ 80P6D-A 2.7~5.5 -40~85 16K 512 M37702E2AFS M37702E2BFS 80P6D-A 2.7~5.5 -40~85		-40~85			$M37702E4E \times \times \times FP$	32K 2048	
M37702E4L × × × GP 80P6S-A 48K 2048 M37702E6B × × FP 60K 2048 M37702E6L × × FP 60K 2048 M37702E8B × × FP M37702E8L × × HP ★ 80P6D-A 2.7~5.5 -20~85 M37702E8L × × HP ★ 80P6D-A 2.7~5.5 -40~85 M37702E8L × × HP ★ 80P6D-A 2.7~5.5 -40~85 M37702E2BFS		-40~85	2 7 5 5		M37702E4L $\times \times \times$ FP		PRUM
48K 2048 M37702E6L×××FP 80P6N-A 2.7~5.5 -40~85 60K 2048 M37702E8B×××FP ★ 4.5~5.5 -20~85 M37702E8L×××HP ★ 80P6D-A 2.7~5.5 -40~85 M37702E8L×××HP ★ 80P6D-A 2.7~5.5 -40~85 M37702E2AFS M37702E2AFS M37702E2BFS 4.5~5.5 -40~85			- 2.7~5.5	80P6S-A	M37702E4L $\times \times \times$ GP		
M37702E6L×××FP 80P6N·A 2.7~5.5 -40~85 60K 2048 M37702E8B×××FP ★ 4.5~5.5 -20~85 M37702E8L×××HP ★ 80P6D·A 2.7~5.5 -40~85 16K 512 M37702E2AFS ★ 80P6D·A 2.7~5.5 -40~85		-20~85	4.5~5.5		M37702E6B $\times \times \times$ FP		
60K 2048 M37702E8L×××HP ★ 80P6D-A 2.7~5.5 -40~85 16K 512 M37702E2AFS M37702E2BFS -40~85		-40~85	2.7~5.5	80P6N-A	$M37702E6L \times \times \times FP$	48K 2048	-
M37702E8L×××HP ★ 80P6D-A 2.7~5.5 -40~85 16K 512 M37702E2AFS M37702E2BFS M37702E2BFS		-20~85	4.5~5.5	Ì	M37702E8B×××FP ★		
16K 512 M37702E2BFS		-40~85	2.7~5.5	80P6D-A	M37702E8L×××HP ★	60K 2048	
EBROM M37702E2BFS					M37702E2AFS	1017 510	
EPROM				4	M37702E2BFS	16K 512	
M3(102E4AES)					M37702E4AFS		
Version with 32K 2048 M37702E4BFS 80D0 4.5~5.5 -20~85		-20~85	4.5~5.5	8000	M37702E4BFS	32K 2048	
window 48K 2048 M37702E6BFS					M37702E6BFS	48K 2048	window
60K 2048 M37702E8BFS ★				-	M37702E8BFS *	60K 2048	1
M37702S1AEP							
512 M37702\$1BFP 80P6N-A 4.5~5.5 -20~85		-20~85	4.5~5.5	80P6N-A		512	
External ROM - M3770251L GP 80P6S-A 2.7~5.5 -40~85		-40~85	2.7~5.5	80P6S-A		-	External ROM
M37702S4AEP							
2048 M37702S4BFP 80P6N-A 4.5~5.5 -20~85		-20~85	4.5~5.5	80P6N-A		2048	

※EPROM versions with window are used for evaluation only. They must not be used for mass-production. ★ : New product ★★ : Under development

Note. Refer to "1994 MITSUBISHI SEMICONDUCTORS DATA BOOK (SINGLE - CHIP 16-BIT MICROCOMPUTERS) Vol. 1".

Memory type	Memory capacity (Byte)		Type No.	Package	Power supply voltage	temperature	Page
	ROM	RAM		, concego	(V)	rang (℃)	
	16K	512	$M37703M2A \times \times \times SP$				
	IOK	512	M37703M2B×××SP			- 20~85	
Mask ROM	24K	1024	$M37703M3B \times \times \times SP$	64P4B	4 5 F F		
	32K	1024	M37703MDB×××SP	04F4D	4. 5~5. 5		Note
		K 2048	M37703M4A × × × SP				
			$M37703M4B \times \times \times SP$				
	16K	512	$M37703E2A \times \times \times SP$			- 20~85	
			$M37703E2B \times \times \times SP$				
PROM			$M37703E4A \times \times \times SP$	64P4B	4.5~5.5		
THOM	32K	2048	$M37703E4B \times \times \times SP$				
			$M37703E4E \times \times \times SP$			-40~85	-
External		512	M37703S1ASP		4.5~5.5	- 20~85	
			M37703S1BSP	64P4B			
ROM	_	2049	M37703S4ASP	04140			
		2048	M37703S4BSP				

GENERAL PURPOSE (2)

MOTOR DRIVE CONTROL

Memory type	Memory capacity (Byte)		Type No.	Package	Power supply voltage	temperature	Page	
, ,,	ROM	RAM			(V)	rang (℃)	-	
	16K	512	M37704M2A $\times \times \times$ FP			- 20~85		
Mask R0M	ION	512	$M37704M2E \times \times \times FP$	80P6N-A	4, 5~5, 5	-40~85		
	24 K	1024	$M37704M3B \times \times \times FP$	OUF ON A	4. 5. ~ 5. 5	-20~85		
	32K	1024	$M37704M4B \times \times \times FP$			2083		
One time	16K	512	$M37704E2A \times \times \times FP$		4.5~5.5	- 20~85		
PROM	IUN	512	137704E2E × × × FP 80P6N - A	4.75~5.5	-40~85			
THOM	32K	1024	$M37704E4B \times \times \times FP$		4. 5~5. 5	-20~85		
EPROM Version	16K	512	M37704E2AFS	8000	4.5~5.5	-20~85		
with window	32K	1024	M37704E4BFS	0000	4. 5 - 5. 5	2005		
External ROM	- 512	E10	M37704S1AFP	80P6N-A	4.5~5.5	-20~85	Note	
		512	M37704S1EFP	OUF ON-A		-40~85		
Mask ROM	16K	164	512	$M37705M2A \times \times \times SP$		4, 5~5, 5	-20~85	NOLE
			$M37705M2E \times \times \times SP$	64P4B	4. 5 5. 5	-40~85	1	
	24K	1024	$M37705M3B \times \times \times SP$	04F4D	4, 5~5, 5	-20~85		
	32K	1024	$M37705M4B \times \times \times SP$		4. 5** 5. 5	- 20/ 85		
0	164	512	$M37705E2A \times \times \times SP$		4.5~5.5	-20~85		
One time PROM	16K	16K 512	$M37705E2E \times \times \times SP$	64P4B	4.75~5.5	-40~85		
	32K	1024	$M37705E4B \times \times \times SP$		4.5~5.5	-20~85		
EPROM Version with window	16K	512	M37705E2ASS	64S1B-E	4.5~5.5	- 20~85		
E		510	M37705S1ASP	CADAD	45.55	-20~85		
External ROM	-	512	M37705S1ESP	64P4B	4.5~5.5	-40~85		

%EPROM versions with window are used for evaluation only. They must not be used for mass-production.

★: New product ★★: Under development

Note. Refer to "1994 MITSUBISHI SEMICONDUCTORS DATA BOOK (SINGLE-CHIP 16-BIT MICROCOMPUTERS) Vol. 1".

Memory type Mask ROM	Memory capacity (Byte)		Type No.		Package	Power supply voltage	Operating temperature	Page
	ROM	RAM				(V)	rang (℃)	. ugo
	32K	1024	M37710M4B×××FP	*	80P6N-A	4.5~5.5	-20~85	2 - 5
Mask ROM	001/	0048	M37710M8B $\times \times \times$ FP	**	80P6N-A	2.7~5.5	-40~85	2 -73
	60K	2048	$M37710M8L \times \times \times HP$	**	80P6D-A	2.1~5.5	-40~85	2 -93
a	32K	1024	M37710E4B×××FP		80P6N-A	4.5~5.5	-20~85	3 - 5
One time PROM	COK	0040	M37710E8B×××FP	**	OUP DIN-A	0.7.5.5	10 05	3 - 33
FRUM	60K	2048	$M37710E8L \times \times \times HP$	**	80P6D-A	2.7~5.5	-40~85	3 - 59
EPROM Version	32K	1024	M37710E4BFS		8000	4, 5~5, 5	00 - 9F	3 - 5
vith window	60K	2048	M37710E8BFS	**	80D0	4. 5~5. 5	-20~85	3 - 33
External ROM	-	2048	M37710S4BFP	*	80P6N-A	4.5~5.5	- 20~85	2 -115

■GENERAL PURPOSE WITH ENHANCED ANALOG I/O FUNCTION

%EPROM versions with window are used for evaluation only. They must not be used for mass-production.

DMA CONTROLLER BUILT-IN

Memory type	Memory capacity (Byte)		Type No.	vpe No. Package	Power supply voltage	Operating temperature	Page
wemery type	ROM	RAM	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	. uonugo	(V)	rang (℃)	90
External ROM	-	512	M37720S1AFP	100P6S-A	4.5~5.5	-20~85	2 -185

GENERAL PURPOSE OF EXTERNAL ROM

Memory type	Memory capacity (Byte)		Type No.	Package	Power supply voltage	temperature	Page
	ROM	RAM		, usinge	(V)	rang (℃)	
	- 102	- 1024	M37730S2AFP	64P6N-A	4.5~5.5 	- 20~85	
External ROM			M37730S2BFP	64P6N-A			Note
External RUM			M37730S2ASP	64P4B			Note
			M37730S2BSP	64P4B			

GENERAL PURPOSE OF EXTERNAL ROM WITH PULSE OUTPUT PORT

Memory type	Memory capacity (Byte)		Type No.	Pakage	Power supply voltage	temperature	Page
	ROM	RAM			(V)	rang (℃)	
	_	- 2048	M37732S4AFP	80P6N-A	4.5~5.5	-20~85	Note
External DOM			M37732S4BFP				
External ROM			M37732S4LGP	80P6S-A	2. 7~5. 5	-40~85	
			M37732S4LHP	80P6D-A		-40/~85	

★ : New product ★★ : Under development Note. Refer to "1994 MITSUBISHI SEMICONDUCTORS DATA BOOK<SINGLE-CHIP 16-BIT MICROCOMPUTERS>Vol. 1"

DEVELOPMENT SUPPORT TOOLS

MELPS 7700 Development Support Tools (1)

Group	Type Name	ROM Type	Assembler	C Compiler	Simulator Debugger	ICE Debugger	Emulator	Emulation Pod	ROM-write Adapter
M37702	M37702M2AXXXFP	Mask ROM			00				
	M37702M2BXXXFP(#1)								
	M37702M2LXXXGP(#2)								
	M37702M2LXXXHP(#2)								
	M37702M3BXXXHP(#1)								
	M37702MDBXXXFP(#1)								
	M37702M4AXXXFP								
	M37702M4BXXXFP(#1)								
	M37702M4EXXXFP								
	M37702M4LXXXFP(#2)								
	M37702M4LXXXGP(#2)								
	M37702M6BXXXFP(#1)								
	M37702M6LXXXFP(#2)								
	M37702M8BXXXFP(#1)								
	M37702M8LXXXHP(#2)								
	M37702E2AXXXFP	One Time PROM							PCA4774G02
	M37702E2BXXXFP(#1)								
	M37702E2LXXXGP(#2)	1							PCA4775
	M37702E2LXXXHP(#2)	1							PCA4773
	M37702E4AXXXFP	1							PCA4774G02
	M37702E4BXXXFP(#1)								
	M37702E4EXXXFP								
	M37702E4LXXXFP(#2)								
	M37702E4LXXXGP(#2)	1							PCA4775
	M37702E6BXXXFP(#1)	1						M37702T-HPD	PCA4774G02
	M37702E6LXXXFP(#2)		RASM77					or	
	M37702E8BXXXFP(#1)		or	*3	*3	*3	*3	M37702TB-HPD	
	M37702E8LXXXHP(#2)	1	*3					or	PCA4775
	M37702E2AFS	EPROM with						M37702TL-HPD	
	M37702E2BFS(#1)	Window							
	M37702E4AFS								
	M37702E4BFS(#1)								
	M37702E6BFS(#1)								
	M37702E8BFS(#1)								
	M37702S1AFP	External ROM							
	M37702S1BFP(#1)								
	M37702S1LGP(#2)								
	M37702S4AFP								
	M37702S4BFP(#1)								
M37703	M37703M2AXXXSP	Mask ROM							
	M37703M2BXXXSP(#1)								
	M37703M3BXXXSP(#1)								
	M37703MDBXXXSP(#1)								
	M37703M4AXXXSP								
	M37703M4BXXXFP(#1)								
	M37703E2AXXXSP	One Time PROM							PCA4709
	M37703E2BXXXSP(#1)								
	M37703E4AXXXSP								
	M37703E4BXXXSP(#1)								
	M37703E4EXXXSP								
	M37703S1ASP	External ROM							
	M37703S1BSP(#1)								
	M37703S4ASP								
ł	M37703S4BSP(#1)								

*1.This MCU operates with a maximum clock frequency of 25 MHz. When using it at 25 MHz, the emulator system must be configured by a combination of the emulator and the M377XXTB-HPD or M377XXTL-HPD.

- %2.This MCU is designed to operate with a low voltage (2.7 to 3.3 V). When operating it with a low voltage, the emulator system must be configured by a combination of the emulator and the M377XXTL-HPD.
- %3. These tools are provided by the third parties. The third-party tools are sold and technical supported by each third party. Also note that Mitsubishi tools only are presented in this table. For particulars please apply to the local distributor.

DEVELOPMENT SUPPORT TOOLS

Group	Type Name	ROM Type	Assembler	C Complier	Simulator Debugger	ICE Debugger	Emulator	Emulation Pod	ROM-write Adapte
V 137704	M37704M2AXXXFP M37704M2EXXXFP M37704M3BXXXFP(*1) M37704M4BXXXFP	Mask ROM							
	M37704E2AXXXFP M37704E2EXXXFP M37704E4BXXXFP(#1)	One Time PROM							PCA4774G02
	M37704E2AFS M37704E4BFS(#1)	EPROM with Window						M37704T-HPD or	PCA4708G02
	M37704S1AFP M37704S1EFP	External ROM						M37704TB-HPD	
N 37705	M37705M2AXXXSP M37705M2EXXXSP	Mask ROM							
	M37705E2AXXXSP M37705E2EXXXFP	One Time PROM		-					PCA4709
	M37705E2ASS	EPROM with Window	1]					
	M37705S1ASP	External ROM	RASM77						
	M37705S1ESP		or	*3	*3	*3	*3		
// 37710	M37710M4BXXXFP(#1) M37710M8BXXXFP(#1)	Mask ROM	*3						
	M37710M8LXXXHP(#2)								
	M37710E4BXXXFP(#1)	One Time PROM	1						PCA4774G02
	M37710E8BXXXFP(#1)							M37710TL-HPD	
	M37710E8LXXXHP(#2)	1							
	M37710E4BFS(#1)	EPROM with	1						PCA4708G02
	M37710E8BFS(#1)	Window							
	M37710S4BFP(#1)	External ROM	1						
/37720	M37720S1AFP	External ROM	1					M37720T-HPD	
/37730	M37730S2AFP	External ROM	1					M37730T-HPD	
	M37730S2ASP							or	
	M37730S2BFP(#1)			1				M37730TB-HPD	
	M37730S2BSP(#1)								
V I37732	M37732S4AFP M37732S4BFP(#1)	External ROM						M37732T-HPD or	
	M37732S4LGP(#2)							M37732TB-HPD	
	M37732S4LHP(#2)							or	
			1	1				M37732TL-HPD	1

%1.This MCU operates with a maximum clock frequency of 25 MHz. When using it at 25 MHz, the emulator system must be configured by a combination of the emulator and the M377XXTB-HPD or M377XXTL-HPD.

%2.This MCU is designed to operate with a low voltage (2.7 to 3.3 V). When operating it with a low voltage, the emulator system must be configured by a combination of the emulator and the M377XXTL-HPD.

%3. These tools are provided by the third parties. The third-party tools are sold and technical supported by each third party. Also note that Mitsubishi tools only are presented in this table. For particulars please apply to the local distributor.

DOCUMENTS

The documents tables of the 7700 series are described bellow.

Ask for these documents to the contact addresses on the end of this book.

USER'S MANUAL (Date : 16 Oct., 1993)

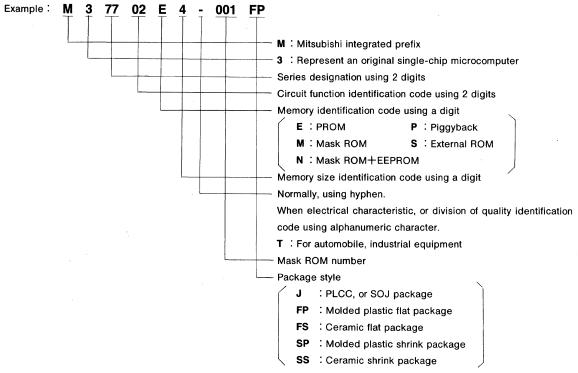
Docu	No.	
M37702 Group	USER'S MANUAL	H-EA004-A
M37703 Group		
M37710 Group	USER'S MANUAL	TBD
M37720 Group	USER'S MANUAL	Ask the contact ad-
(Preliminary)		dresses , directly.
M37732 Group	USER'S MANUAL	H-EB134-A
M37730 Group		

SOFTWARE MANUAL (Date : 16 Oct., 1993)

Doe	No.	
MELPS 7700	SOFTWARE MANUAL	H-E0112-A

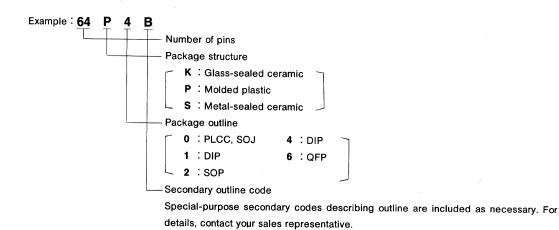
APPLICATION NOTES (Date : 16 Oct., 1993)

Documer	nt name	No.
M37704M2-XXXFP	MOTOR DRIVE	H-BA002-A
CONTROL APPLICA		

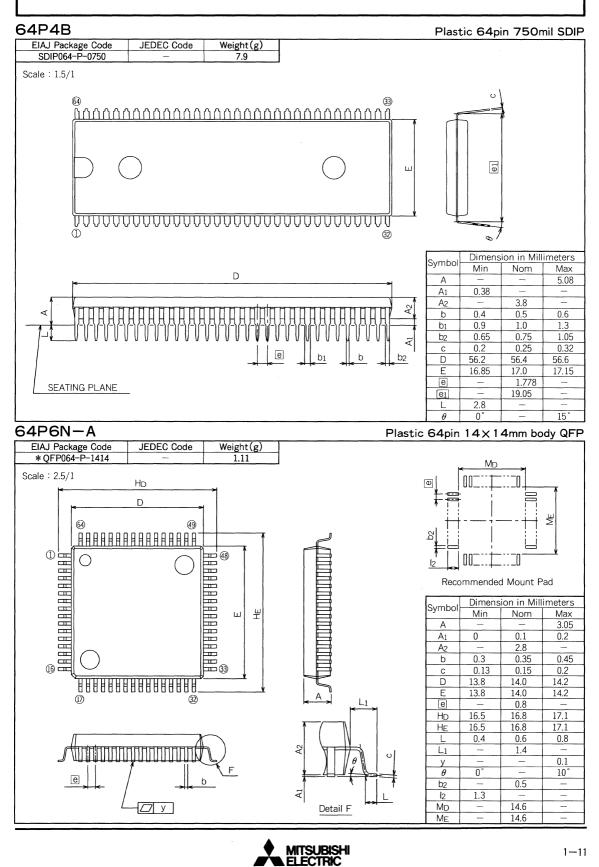


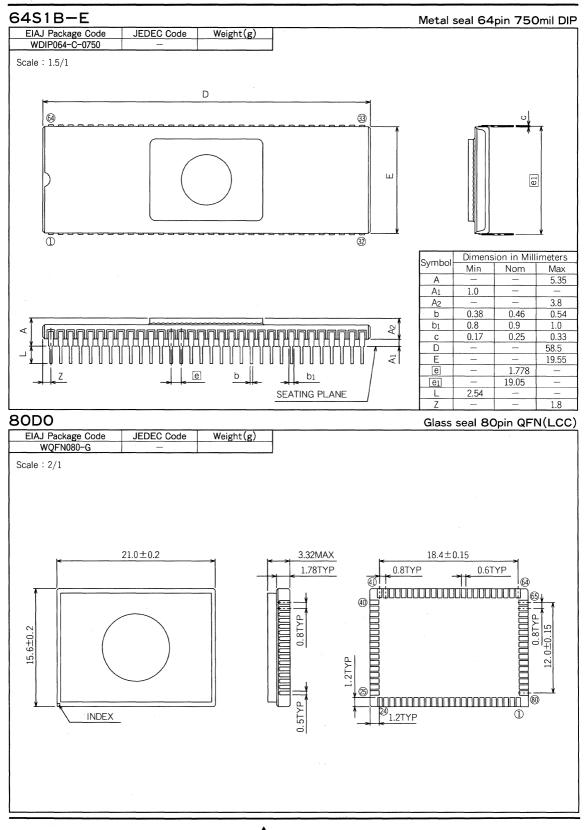
ORDERING INFORMATION

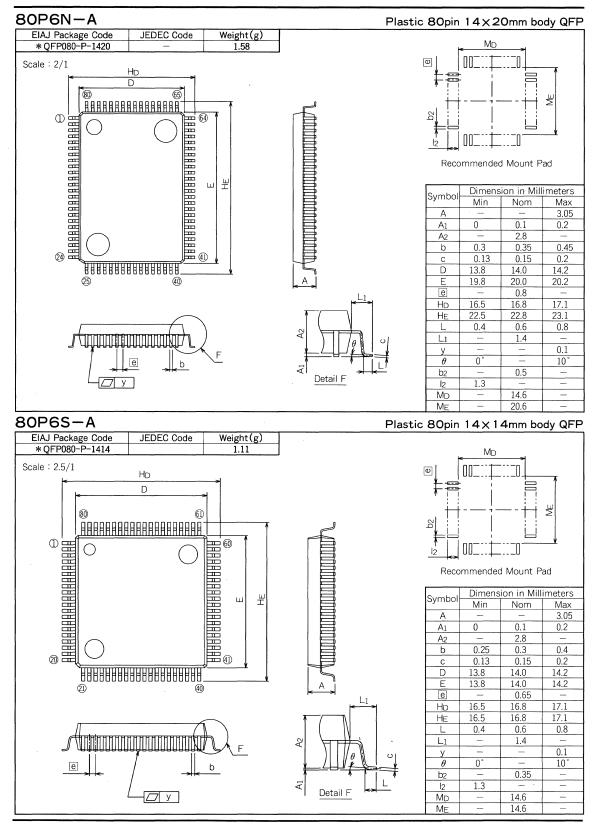
FUNCTION CODE

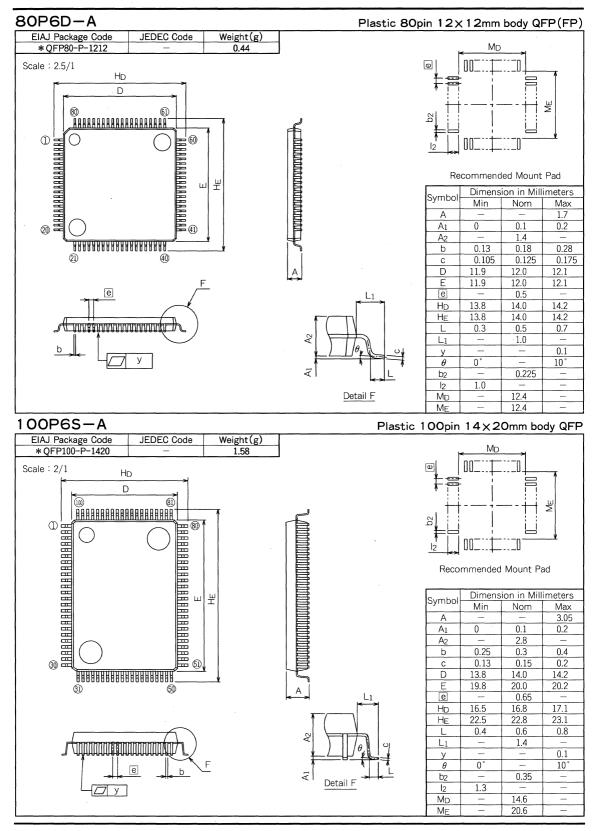

Mitsubishi integrated circuit may be ordered using the following simplified alphanumeric type-codes which define the function of the IC/LSIs and the package style.

For Mitsubishi Original Products




PACKAGE CODE


Package style may be specified by using the following simplified alphanumeric code.



LETTER SYMBOLS FOR THE DYNAMIC PARAMETERS

1. INTRODUCTION

A system of letter symbols to be used to represent the dynamic parameters of intergrated circuit memories and other sequential circuits especially for single-chip microcomputers, microprocessors and LSIs for peripheral circuits has been discussed internationally in the TC47 of the International Electrotechnical Committee (IEC). Finally the IEC has decided on the meeting of TC47 in February 1980 that this system of letter symbols will be a Central Office document and circulated to all countries to vote which means this system of letter symbols will be a international standard.

The system is applied in this LSI data book for the new products only. Future editions of this data book will be applied this system. The IEC document which describes "Letter symbols for dynamic parameters of sequential integrated circuits, including memories" is introduced below. In this data book, the dynamic parameters in the IEC document are applied to timing requirements and switching characteristics.

2. LETTER SYMBOLS

The system of letter symbols outlined in this document enables symbols to be generated for the dynamic parameters of complex sequential circuits, including memories, and also allows these symbols to be abbreviated to simple mnemonic symbols when no ambiguity is likely to arise.

2.1. General Form

The dynamic parameters are represented by the general symbol of the form:-

t_{A(BC-DC)F}(1)

where :

- Subscript A indicates the type of dynamic parameter being represented, for example; cycle time, setup time, enable time, etc.
- Subscript B indicates the name of the signal or terminal for which a change of state or level (or establishment of a state or level) constitutes a signal event assumed to occur first, that is, at the beginning of the time interval. If this event actually occurs last, that is, at the end of the time interval, the value of the time interval is negative.
- Subscript C indicates the direction of the transition and/or the final state or level of the signal represented by B. When two letters are used, the initial state or level is also indicated.

- Subscript D indicates the name of the signal or terminal for which a change of state or level (or establishment of a state or level) constitutes a signal event assumed to occur last, that is, at the end of the time interval. If this event actually occurs first, that is, at the beginning of the time interval, the value of the time interval is negative.
- Subscript E indicates the direction of the transition and/or the final state or level of the signal represented by D. When two letters are used, the initial state or level is also indicated.

Subscript F indicates additional information such as mode of operation, test conditions, etc.

Note 1 Subscripts A to F may each consists of one or more letters.

Subscripts D and E are not used for transition times.

3 The "-" in the symbol (1) above is used to indicate "to", hence the symbol represents the time interval from signal event B occuring to signal event D occuring, and it is important to note that this convention is used for all dynamic parameters including hold times. Where no misunder-standing can occur the hyphen may be omitted.

2.2. Abbreviated Form

The general symbol given above may be abbreviated when no misunderstanding is likely to arise. For example to :

$t_{A(B-D)}$	

- or t_{A(B)}
- or $t_{A(D)}$ often used for hold times
- or t_{AF} no brackets are used in this case
- or t_A
- or t_{BC-DE} often used for unclassified time intervals

2.3. Allocation of Subscripts

In allocating letter symbols for the subscripts, the most commonly used subscripts are given single letters where practicable and those less commonly used are designated by up to three letters. As far as possible, some form of mnemonic representation is used. Longer letter symbols may be used for specialised signals or terminals if this aids understanding.

3. SUBSCRIPT A (For Type of Dynamic Parameter)

The subscript A represents the type of dynamic parameter to be designated by the symbol and, for memories, the parameters may be divided into two classes :

 a) those that are timing requirements for the memory and

LETTER SYMBOLS FOR THE DYNAMIC PARAMETERS

b) those that are characteristics of the memory. The letter symbols so far proposed for memory circuits are listed in sub-clauses 3.1 and 3.2 below. All subscripts A should be in lower-case.

3.1. Timing Requirements

The letter symbols for the timing requirements of semiconductor memories are as follows:

Term	Subscript
Cycle time	с
Time interval between two signal events	d
Fall time	f
Hold time	h
Precharging time	рс
Rise time	r
Recovery time	rec
Refresh time interval	rf
Setup time	su
Transition time	t
Pulse duration (width)	w

3.2. Characteristics

The letter symbols for the dynamic characteristics of semiconductor memories are as follows :

Characteristic	Subscript
Access time	а
Disable time	dis
Enable time	en
Propagation time	Р
Recovery time	rec
Transition time	т
Valid time	V ⁻
Note Recovery time for use as a characteristic is limited to s	ense recovery time.

4. SUBSCRIPTS B AND D

(For Signal Name or Terminal Name)

The letter symbols for the signal name or the name of the terminal are as given below.

All subscripts B and D should be in upper-case.

Signal or terminal	Subscript
Address	Α
Clock	С
Column address	CA
Column address strobe	CAS
Data input	D
Data input/output	DQ
Chip enable	E

Erasure	ER
Output enable	G
Program	PR
Data output	Q
Read	R
Row address	RA
Row address strobe	RAS
Refresh	RF
Read/Write	RW
Chip select	S
Write (write enable)	w
Name 1. In the later combined for story to the state of the story of the state of the story of t	

Note 1. In the letter symbols for time intervals, bars over the subscripts, for example CAS, should not be used.

2. It should be noted, when further letter symbols are chosen, that the subscript should not end with H, K, V, X, or Z. (See clause 5)

3 If the same terminal, or signal, can be used for two functions (for example Data input/output, ReadWrite) the waveform should be labelled with the dual function, if appropriate, but the symbols for the dynamic parameters should include only that part of the subscript relevant to the parameter.

5. SUBSCRIPTS C AND E (For Transition of Signal)

The following symbols are used to represent the level or state of a signal :

Transition of signal	Subscript
High logic level	н
Low logic level	L
Valid steady-state level (either low or high)	v
Unknown, changing, or 'don't care' level	X
High-impedance state of three-state output	Z

The direction of transition is expressed by two letters, the direction being from the state represented by the first letter to that represented by the second letter, with the letters being as given above.

When no misunderstanding can occur, the first letter may be omitted to give an abbreviated symbol for subscripts C and E as indicated below.

C. . h

All subscripts C and E should be in upper-case.

	S	Subscript				
Examples	Full .	Abbreviate	ed			
Transition from high level to low level	HL	L				
Transition from low level to high level	LH	н				
Transition from unknown or changing state to valid state	xv	v				
Transition from valid state to unknown or changing state	vx	x				
Transition from high-impedance state to valid state	ZV	v				
Note: Since subscripts C and E may be abbrevi	ated, and since si	ubscripts B and	J D			

may contain an indeterminate number of letters, it is necessary to put the restriction on the subscripts B and D that they should not end with H, L, V, X, or Z, so as to avoid possible confusion.

LETTER SYMBOLS FOR THE DYNAMIC PARAMETERS

6. SUBSCRIPT F (For Additional Information)

If necessary, subscript F is used to represent any additional qualification of the parameter such as mode of operation, test conditions, etc. The letter symbols for subscript F are given below. Subscript F should be in upper-case.

Modes of operation	Subscript
Power-down	PD
Page-mode read	PGR
Page-mode write	PGW
Read	R
Refresh	RF
Read-modify-write	RMW
Read-write	RW
Write	w

FOR DIGITAL INTEGRATED CIRCUITS

New symbol	Former symbol	Parameter-definition
Cı		Input capacitance
C _o		Output capacitance
C _{1 0}		Input/output terminal capacitance
C _{I(\$\phi)}		Input capacitance of clock input
f		Frequency
f _(φ)		Clock frequency
ι(φ) Ι		Current-the current into an integrated circuit terminal is defined as a positive value and the current out of a terminal is defined as a negative value
Ion		Supply current from V _{BB}
I _{BB} I _{BB(AV)}		Average supply current from V _{BB}
IBB(AV)		Supply current from V _{CC}
		Avarage supply current from V _{CC}
		Power-down supply current from V _{CC}
I _{CC(PD)}		Supply current from V _{DD}
		Average supply current from V _{DD}
		Supply current from V _{GG}
		Average supply current from V _{GG}
I _{GG(AV)}		Input current
ч Ін		High-level input current—the value of the input current when V _{OH} is applied to the input considered
lin.		Low-level input current—the value of the input current when V _{OL} is applied to the input considered
пс І _{ОН}		High-level output current—the value of the output current when V _{OL} is applied to the output considered
юн I _{OL}		Low-level output current—the value of the output current when V _{OL} is applied to the output considered
loz		Off-state(high-impedance state)output current—the current into an output having a three-state capability with input condition so applied that
102		it will establish according to the product specification, the off(high-impedance)state at the output
I _{OZH}		Off-state(high-impedance state)output current, with high-level voltage applied to the output
I _{OZL}		Off-state(high-impedance state)output current, with low-level voltage applied to the output
I _{OS}		Short-circuit output current
I _{SS}		Supply current from V _{SS}
Pd		Power dissipation
N _{EW}		Number of erase/write cycles
N _{RA}		Number of read access unrefreshed
R		Input resistance
RL		External load resistance
R _{OFF}		Off-state output resistance
R _{ON}		On-state output resistance
ta		Access time-the time interval between the application of a specified input pulse during a read cycle and the availability of valid data signal at an output
t _{a(A)}	t _{a(AD)}	Address access time-the time interval between the application of an address input pulse and the availability of valid data signals at an output
ta(CAS)		Column address strobe access time
t _{a(E)}	t _{a(CE)}	Chip enable access time
t _{a(G)}	t _{a(OE)}	Output enable access time
ta(PR)		Data access time after program
ta(RAS)		Row address strobe access time
t _{a(s)}	t _{a(CS)}	Chip select access time
tc		Cycle time
t _{CR}	t _{C(RD)}	Read cycle time-the time interval between the start of a read cylce and the start of the next cycle
t _{CRF}	t _{C(REF)}	Refresh cycle time-the time interval between successive signals that are intended to restore the level in a dynamic memory cell to its original level
t _{CPG}	t _{C(PG)}	Page-mode cycle time
t _{CRMW}	t _{C(RMW)}	Read-modify-write cycle time-the time interval between the start of a cycle in which the memory is read and new data is entered, and the start of
l		the next cycle
t _{cw}	t _{C(WR)}	Write cycle time-the time interval between the start of a write cycle and the start of the next cycle

SYMBOLOGY

Former symbol	Parameterdefinition
	Delay time-the time between the specified reference points on two pulses
	Delay time between clock pulses-e.g., symbology, delay time, clock 1 to clock 2 or clock 2 to clock 1
	Delay time, column address strobe to row address strobe
td(cas wr)	Delay time, column address strobe to write
	Delay time, row address strobe to column address strobe
td(RAS-WR)	Delay time, row address strobe to write
tdis(R-DA)	Output disable time after read
t _{PXZ(CS)}	Output disable time after chip select
t _{PXZ(WR)}	Output disable time after write
	High-level to low-level delay time time interval between specified reference points on the input and on the output pulses when the output is
	Low-level to high-level delay time 🛛 going to the low (high)level and when the device is driven with a specified loading networks
t _{PZV(A-DQ)}	Output enable time atter address
t _{PZV(R-DQ)}	Output enable time after read
t _{PZX(CS⁻DQ)}	Output enable time after chip select
	Fall time
	Hold time-the interval of time during which a signal at a specified input terminal appears after an active transition occurs at another specified input terminal
th(AD)	Address hold time
th(AD-CE)	Chip enable hold time after address
th(AD-PRO)	Program hold time after address
	Column address hold time after column address strobe
th(cas-da)	Data-in hold time after column address strobe
th(cas-out)	Data-out hold time after column address strobe
	Row address strobe hold time after column address strobe
th(CAS-WR)	Write hold time after column address strobe
th(DA)	Data-in hold time
th(DA-PRO)	Program hold time after data-in
t _{h(CE)}	Chip enable hold time
th(CE-DA)	Data-in hold time after chip enable
th(CE-OE)	Output enable hold time after chip enable
t _{h(RD)}	Read hold time
	Column address hold time after row address strobe
	Column address strobe hold time after row address strobe
th(RAS-DA)	Data-in hold time after row address strobe
th(RAS-WR)	Write hold time after row address strobe
t _{h(cs)}	Chip select hold time
t _{h(wR)}	Write hold time
th(wr-cas)	Column address strobe hold time after write
th(wR-DA)	Data-in hold time after write
th(wR-RAS)	Row address hold time after write
	High-level to low-level propagation time the time interval between specified reference points on the input and on the output pulses when the output is going to the low (high)level and when the device is driven and loaded by typical devices
	Low-level to high-level propagation time of stated type
	Rise time
twr	Write recovery time-the time interval between the termination of a write pulse and the initiation of a new cycle
t _{R(PD)}	Power-down recovery time
	Setup time-the time interval between the application of a signal which is maintained at a specified input terminal and a consecutive active
	tarnsition at another specified input terminal
t _{SU(AD)}	Address setup time
t _{SU(AD-CE)}	Chip enable setup time before address
t _{SU(AD-WR)}	Write setup time before address
	Row address strobe setup time before column address
	td(RAS-WR) tdis(R-DA) tPXZ(CS) tPXZ(WR) tPXZ(WR) tPXZ(WR) tPZY(A-DQ) tPZX(CS^D

SYMBOLOGY

Now ownhol	Formor ownhold	Describer dell'Alter
New symbol	Former symbol	Parameter-definition
t _{su(D)}	tsu(da)	Data-in setup time
t _{su(D-E)}	t _{su(da-ce})	Chip enable setup time before data-in
t _{su(D-w)}	t _{SU(DA-WR)}	Write setup time before data-in
t _{su(E)}	t _{su(ce)}	Chip enable setup time
t _{SU(E-P)}	t _{SU(CE-P)}	Precharge setup time before chip enable
$t_{SU(G-E)}$	t _{SU(OE-CE)}	Chip enable setup time before output enable
t _{SU(P-E)}	t _{SU(P-CE)}	Chip enable setup time before precharge
t _{su(PD)}		Power-down setup time
t _{SU(R)}	t _{SU(RD)}	Read setup time
t _{su(r-cas)}	t _{SU(RA-CAS)}	Column address strobe setup time before read
t _{su(ra-cas)}		Cloumn address strobe setup time before row address
t _{su(s)}	t _{su(cs)}	Chip select setup time
t _{su(s-w)}	t _{su(cs-wr)}	Write setup time before chip select
t _{su(w)}	t _{SU(WR)}	Write setup time
t _{THL}		High-level to low-level transition time the time interval between specified reference points on the edge of the output pulse when the output is
t _{TLH}		A going to the low(high)level and when a specified input signal is applied through a specified network and Low-level to high-level transition time b the output is loaded by another specified network
t _{V(A)}	tdv(AD)	Data valid time after address
t _{V(E)}	t _{dv(CE)}	Data valid time after chip enable
t _{V(E)PR}	t _{V(CE)PR}	Data valid time after chip enable in program mode
t _{v(G)}	t _{V(OE)}	Data valid time after output enable
t _{V(PR)}		Data valid time after program
t _{v(s)}	t _{V(CS)}	Data valid time after chip select
tw		Pulse width (pulse duration) the time interval between specified reference points on the leading and training edges of the waveforms
t _{w(E)}	t _{w(CE)}	Chip enable pulse width
t _{w(EH)}	t _{w(CEH)}	Chip enable high pulse width
t _{w(EL)}	t _{w(EL)}	Chip enable low pulse width
t _{w(PR)}		Program pulse width
t _{W(R)}	t _{w(RD)}	Read pulse width
t _{w(s)}	t _{w(cs)}	Chip select pulse width
t _{w(w)}	t _{w(we)}	Write pulse width
t _{W(ø)}		Clock pulse width
та		Ambient temperature
Topr		Operating temperature
T _{stg}		Storage temperature
V _{BB}		V _{BB} supply voltage
V _{cc}		V _{CC} supply voltage
V _{DD}		V _{DD} supply voltage
V _{GG}		V _{GG} supply voltage
Vi		Input voltage
VIH	·	High-level input voltage—the value of the permitted high-state voltage at the input
VIL		Low-level input voltage-the value of the permitted low-state voltage at the input
Vo		Output voltage
V _{он}		High-level output voltage-the value of the guaranteed high-state voltage range at the output
V _{OL}		Low-level output voltage—the value of the guaranteed low-state voltage range at the output
V _{SS}		V _{ss} supply voltage
- 30		

MITSUBISHI MICROCOMPUTERS QUALITY ASSURANCE AND RELIABILITY TESTING

1 INTRODUCTION

IC & LSI have made rapid technical progress in electrical performances of high integration, high speed, and sophisticated functionality. And now they have got boundless wider applications in electronic systems and electrical appliances.

To meet the above trend of expanding utilization of IC & LSI, Mitsubishi considers that it is extremely important to supply stable quality and high reliable products to customers.

Mitsubishi Electric places great emphasis on quality as a basic policy "Quality First", and has striven always to improve quality and reliability.

Mitsubishi has already developed the Quality Assurance System covering design, manufacturing, inventory and delivery for IC & LSI, and has supplied highly reliable products to customers for many years. The following articles describe the Quality Assurance System and examples of reliability control for Mitsubishi Single-chip 16-bit Microcomputer.

2. QUALITY ASSURANCE SYSTEM

The Quality Assurance System places emphasis on built-in reliability in designing and built-in quality in manufacturing. The System from development to delivery is summarized in Figure 1.

2.1 Quality Assurance in Designing

The following steps are applied in the designing stage for a new product.

- (1) Setting of perfomance, quality and reliability target for new product.
- (2) Discussion of performance and quality for circuit design, device structure, process, material and package.
- (3) Verification of design by CAD system to meet standardized design rule.
- (4) Functional evaluation for bread-board device to confirm electrical performance.
- (5) Reliability evaluation for TEG (Test Element Group) chip to detect basic failure mode and investigate failure mechanism.
- (6) Reliability test (In-house qualification) for new product to confirm quality and reliability target.
- (7) Decision of pre-production from the standpoint of performance, reliability, production flow/conditions, production capability, delivery etc.

2.2 Quality Assurance in Manufacturing

Quality assurance in manufacturing is performed as follows.

- (1) Environment control such as temperature, humidity and dust as well as deionized water and utility gases.
- (2) Maintenance and calibration control for automatized manufacturing equipments, automatic testing equipments, and measuring instruments.

- (3) Material control such as silicon wafer, lead frame, packaging material, mask and chemicals.
- (4) In-process inspections in wafer-fabrication, assembly and testing.
- (5) 100% final inspection of electrical characteristics, visual inspection and burn-in, if necessary.
- (6) Quality assurance test
 Electrical characteristics and visual inspection, lot by lot sampling

-Environment and endurance test, periodical sampling.

(7) Inventory and shipping control, such as storage environment, date code identification, handling and ESD (Electro Static Discharge) preventive procedure.

2.3 Reliability Test

To verify the reliability of a product as described in the Mitsubishi Quality Assurance System, reliability tests are performed at three different stages in new product development, pre-production and mass-production.

At the development of a new product the reliability test plan is fixed corresponding to the quality and reliability target of each product, respectively. The test plan includes in-house qualification test and TEG evaluation, if necessary. TEG chips are designed and prepared for new device structure, new process and new material.

After the proto-type product has passed the in-house qualification test, the product advances to the pre-production. In the pre-production stage, the specific reliability tests are programmed and performed again to verify the quality of pre-production product.

In the mass production, the reliability tests are performed periodically to confirm the quality of the mass production product according to the quality assurance test program.

Table 1 shows an example of reliability test program for plastic encapsulated IC & LSI.

Group Test Test condition Solderability 230℃, 5sec. Rosin flux 1 Soldering heat 260°C, 10sec. 2 -55°C, 125°C, 15cycles Thermal shock Temperature cycling -65°C, 150°C, 100cycles 3 Lead fatigue 250gr, 90°, 2arcs Shock 1500G, 0. 5msec. 20G. 100~2000Hz 4 Vibration X. Y. Z direction 4min./cycle, 4cycles/direction Constant acceleration 20000G, Y direction, 1min. Ta=125°C, Vccmax 5 Operation life 1000hours High temperature 6 T_a=150℃, 1000hours storage life High temperature and 85℃, 85%, 1000hours 7 high humidity 121°C, 100%, 100hours Pressure cooker

Table 1 TYPICAL RELIABILITY TEST PROGRAM FOR PLASTIC ENCAPSULATED IC & LSI

QUALITY ASSURANCE AND RELIABILITY TESTING

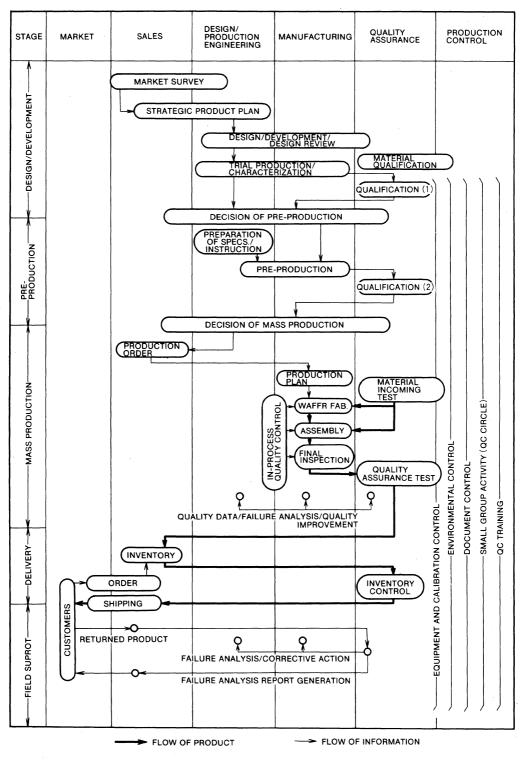
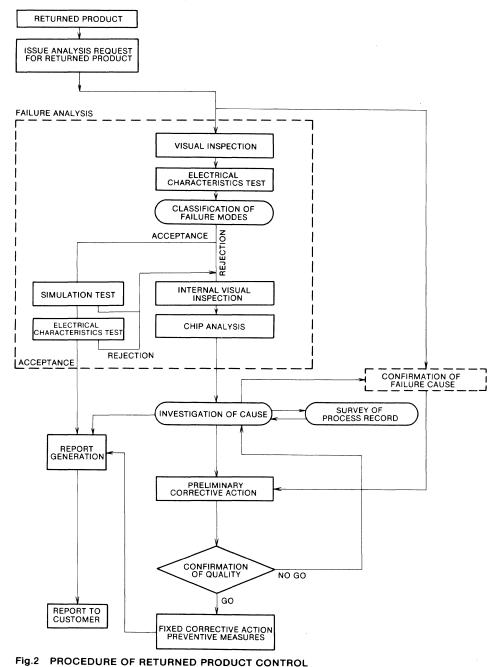


Fig.1 FLOW CHART OF QUALITY ASSURANCE SYSTEM



MITSUBISHI MICROCOMPUTERS QUALITY ASSURANCE AND RELIABILITY TESTING

2.4 Returned Product Control

When failure analysis is requested by a customer, the failed devices are returned to Mitsubishi Electric via the sales office of Mitsubishi using the form of "Analysis Request of Returned Product"

Mitsubishi provides various failure analysis equipments to analyze the returned product. A failure analysis report is generated to the customer upon completion of the analysis. The failure analysis result enforces taking corrective action for the design, fabrication, assembly or testing of the product to improve reliability and realize lower failure rate. Figure 2 shows the procedure of returned product control from customer.

MITSUBISHI MICROCOMPUTERS QUALITY ASSURANCE AND RELIABILITY TESTING

3 RELIABILITY TEST RESULTS

The reliability test results for Mitsubishi Single-chip 16-bit Microcomputers are shown in Table 2.

Table 2 shows the result of endurance tests of high temper-

ature operating life and high temperature storage test and the results of the environment tests of thermal stress, high temperature/high humidity and pressure cooker test for the single-chip 16-bit Microcomputer.

Test	Series	Type Number	Test Condition	Number of Samples	Device Hours (Hours)	Number of Failures
		M37702M4B $\times \times \times$ FP		38	38000	0
		M37703M2A $\times \times \times$ SP		38	38000	0
	MELPS 7700	M37720S1AFP		38	38000	0
High-temperature		M37730S2AFP	405%0 -14	38	38000	0
operating life		M37732S4LGP	125℃, 7V	38	38000	0
		M37702E4B $\times \times \times$ FP		38	38000	0
	Built-in PROM version	$M37704E2A \times \times \times FP$		38	38000	0
		$M37710E4B \times \times \times FP$		32	32000	0
		M37702M4B $\times \times \times$ FP		22	22000	0
High-temperature	MELPS 7700	M37703M2A $\times \times \times$ SP	150°C	22	22000	0
		M37720S1AFP		22	22000	0
		M37730S2AFP		22	22000	-0
storage		M37732S4LGP		22	22000	0
	Built-in PROM version	$M37702E4B \times \times \times FP$		22	22000	0
		$M37704E2A \times \times \times FP$		22	22000	0
		$M37710E4B \times \times \times FP$		32	32000	0
		M37702M4B $\times \times \times$ FP		22	22000	0
		M37703M2A $\times \times \times$ SP	1	22	22000	0
	MELPS 7700	M37720S1AFP	1	32	22000	0
High-temperature,		M37730S2AFP		22	22000	0
higf-humidity with bias		M37732S4LGP	85℃, 85%RH, 5. 5V	22	22000	0
		M37702E4B $\times \times \times$ FP	1.	22	22000	0
	Built-in PROM version	M37704E2A $\times \times \times$ FP	1	22	22000	0
		M37710E4B $\times \times \times$ FP	1	22	22000	0
Low-temperature	MELPS 7700	$M37702M4B \times \times \times FP$		22	22000	0
operating life	Built-in PROM version	M37702E4B×××FP	–55℃, 5.5V	22	22000	0

Table 2 ENVIRONMENTAL TEST RESULTS

Test	Series	Type Number	Test Condition	96Hours	240Hours	500Hours
		$M37702M4B \times \times \times FP$		0/22	0/22	0/22
		M37703M2A $\times \times \times$ SP		0/22	0/22	0/22
MELPS 7700	MELPS 7700	M37720S1AFP		0/22	0/22	0/22
Duran Carlon		M37730S2AFP	101% 100% DU	0/22	0/22	0/22
Pressure Cooker		M37732S4LGP		0/22	0/22	0/22
Built-in PROM vers		$M37710E4B \times \times \times FP$		0/22	0/22	0/22
	Built-in PROM version	$M37704E2A \times \times \times FP$		0/22	0/22	0/22
		$M37710E4B \times \times \times FP$		0/22	0/22	0/22

QUALITY ASSURANCE AND RELIABILITY TESTING

Test	Series	Type Number	Test Condition	10 Cycles	100 Cycles	300 Cycles
		$M37702M4B \times \times \times FP$		0/22	0/22	0/22
		$M37703M2A \times \times \times SP$]	0/22	0/22	0/22
	MELPS 7700	M37720S1AFP	_65℃~150℃	0/22	0/22	0/22
		M37730S2AFP		0/22	0/22	0/22
Temperature Cycling		M37732S4LGP		0/22	0/22	0/22
Built-in PROM v		$M37702E4B \times \times \times FP$	1	0/22	0/22	0/22
	Built-in PROM version	$M37704E2A \times \times \times FP$	1	0/22	0/22	0/22
		M37710E4B $\times \times$ FP	1	0/22	0/22	0/22

Test	Test Condition	Package							
		64P4B	84P0	80P6N	80P6	80P6S	80P6D	100P6D	128P6
Soldering Heat	260°C 10sec	0/22	0/38	0/66	0/22	0/22	0/22	0/22	0/22
Thermal Shock	-55°C/125°C 15cycle	0/22	0/38	0/66	0/22	0/22	0/22	0/22	0/22
Solderebility	230°C 5sec Using a rosin-type Flux	0/22	0/22	0/66	0/22	0/22	0/22	0/22	0/22
Free Fall	75cm onto a maple wood board 3times	0/22	0/22	0/44	0/22	0/22	0/22	0/22	0/22
Shock	1500G 0.5m sec X, Y, and Z directions	0/22	0/22	0/22	0/22	0/22	0/22	0/22	0/22
Vibration	20G X, Y, and Z directions 4times 100 ~2000Hz 4minutes/Cycle	0/22	0/22	0/22	0/22	0/22	0/22	0/22	0/22
Constant Acceleration	2000G Ydirection 1minute	0/22	0/22	0/22	0/22	0/22	0/22	0/22	0/22
Lead Integrity	250g(125g) 90° Berding 2times, *50g, 90° 500g(250g) Tension 30sec, *100g, 30sec	0/15 0/15	(0/15) (0/15)	(0/15) (0/15)	(0/15) (0/15)	(0/15) (0/15)	*0/15 *0/15	*0/15 *0/15	(0/15) (0/15)

MITSUBISHI MICROCOMPUTERS QUALITY ASSURANCE AND RELIABILITY TESTING

4 FAILURE ANALYSIS

Accelerated reliability tests are applied to observe failures casued by temperature, voltage, humidity, current, mechanical stress and those combined stresses on chips and packages.

Examples of typical failure modes are shown below.

- (1) Wire Bonding Failure by Thermal Stress
 - Figure 3, Figure 4 and Figure 5 are examples of a failure occured by high temperature storage test of 225° , 1000hours.

Au-Al intermetallic formation, so-called "Purple plague" by thermal overstress makes Au wire lift off from aluminum metallization. The activation energy of this failure mode is estimated at approximately 1.0eV and no failure has been observed so far in practical uses.

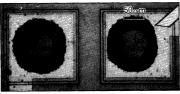
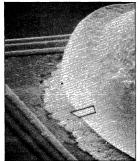



Fig.3 Micrograph of lifted Au ball trace on Al bonding pad

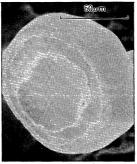


Fig.4 Au-Al plague formation on bonding pad

Fig.5 Lifted Au wire ball base

(2) Aluminum Corrosion Failure by Temperature/Humidity Stress.

Figure 6, Figure 7 and Figure 8 are examples of corroded failure of aluminum metallization of plastic encapsulated IC after accelerated temperature/humidity storage test (pressure cooker test) of 121°C, 100% RH, 1000hours duration.

Aluminum bonding pad is dissolved by penetrated water from plastic package, and chlorine concentration is observed on corroded aluminum bonding pad as shown in Figure 8.

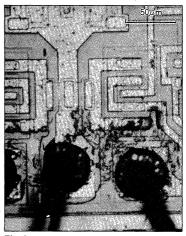


Fig.6 Micrograph of corroded Aluminum metallization

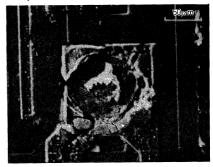


Fig.7 Enlarged micrograph of corroded Aluminum bonding pad

Fig.8 CI distribution on corroded Aluminum bonding pad

(3) Destructive Failure by Electrical Overstress Surge voltage marginal tests have been performed to reproduce the electrical overstress failure in field uses. Figure 9 and Figure 10 are examples of failure observed by surge voltage test. The trace of destruction is verified as the aluminum bridge by X-ray micro analysis.

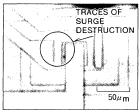
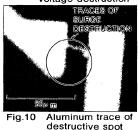



Fig.9 Micrograph of surge voltage destruction

(4) Aluminum Electromigration

Figure 11 shows an open circuit of aluminum metallization in high current density region caused by accelerated operation life test. This failure is due to aluminum electromigration. Voids and hillock have been formed in aluminum metallization by high current density operation.

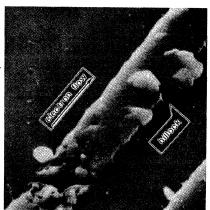


Fig.11 Voids and hillocks formation by Aluminum electromigration

5 SUMMARY

The Mitsubishi quality assurance system and examples of reliability control have been discussed. The customer's interests and requirements for high reliability IC & LSI are increasing significantly. To satisfy customer's expectancy. Mitsubishi as an IC vendor, would like to make perpetual efforts in the following areas.

- Emphasis on built-in reliability at design stage and reliability evaluation to investigate latent failure modes and acceleration factors.
- (2) Execution of periodical endurance, environment and mechanical test to verify reliability target and realize higher reliability.
- (3) Focus on development of advanced failure analysis techniques. Detail failure analysis, intensive corrective action and quick response to customer's analysis request.
- (4) Collection of customer's quality data in qualification, incoming inspection, production and field use to improve PPM, fraction defective and FIT, failure rate.

Mitsubishi would highly appreciate if the customer would provide quality and reliability data of incoming inspection or field failure rate essential to verify and improve the quality/ reliability of IC & LSI.

PRECAUTIONS IN HANDLING MOS IC/LSIs

A MOS transistor has a very thin oxide insulator under the gate electrode on the silicon substrate. It is operated by altering the conductance (g_m) between source and drain to control mobile charges in the channel formed by the applied gate voltage.

If a high voltage were applied to a gate terminal, the insulator-film under the gate electrode could be destroyed, and all Mitsubishi MOS IC/LSIs contain internal protection circuits at each input terminal to prevent this. It is inherently necessary to apply reverse bias to the P-N junctions of a MOS IC/LSI.

Under certain conditions, however, it may be impossible to completely avoid destruction of the thin insulator-film due to the application of unexpectedly high voltage or thermal destruction due to excessive current from a forward biased P-N junction. Therefore the following recommendations should be followed in handling MOS devices.

1. KEEPING VOLTAGE AND CURRENT TO EACH TERMINAL BELOW MAXIMUM RATINGS

- 1. The recommended ranges of operating conditions provide adequate safety margins. Operating within these limits will assure maximum equipment performance and quality.
- 2. Forward bias should not be applied to any terminal since excessive current may cause thermal destruction.
- Output terminals should not be connected directly to the power supply. Short-circuiting of a terminal to a power supply having low impedance may cause burn-out of the internal leads or thermal destruction due to excessive current.

2. KEEPING ALL TERMINALS AT THE SAME POTENTIAL DURING TRANSPORT AND STORAGE

When MOS IC/LSIs are not in use, both input and output terminals can be in a very high impedance state so that they are easily subjected to electrostatic induction from AC fields of the surrounding space or from charged objects in their vicinity. For this reason, MOS IC/LSIs should be protected from electrostatic charges while being transported and stored by conductive rubber foam, aluminum foil, shielded boxes or other protective precautions.

3. KEEPING ELECTRICAL EQUIPMENT, WORK TABLES AND OPERATING PERSONNEL AT THE SAME POTENTIAL

1. All electric equipment, work table surfaces and operat-

ing personnel should be grounded. Work tables should be covered with copper or aluminum plates of good conductivity, and grounded. One method of grounding personnel, after making sure that there is no potential difference with electrical equipment, is by the use of a wristwatch metallic ring, etc. attached around the wrist and grounded in series with a 1M Ω resistor. Be sure that the grounding meets national regulations on personnel safety.

 Current leakage from electric equipment must be prevented not only for personnel safety, but also to avert the destruction of MOS IC/LSIs, as described above. Items such as testers, curve-tracers and synchroscopes must be checked for current leakage before being grounded.

4. PRECAUTIONS FOR MOUNTING OF MOS IC/LSIs

- The printed wiring lines between input and output terminals of MOS IC/LSIs should not be close to or parallel to high-voltage or high-power signal lines. Turning power on while the device is short-circuited, either by a solder bridge made during assembly or by a probe during adjusting and testing, may cause maximum ratings to be exceeded, which can result in the destruction of the device.
- 2. When input/output, or input and/or output, terminals of MOS IC/LSIs (now open-circuits) are connected, we must consider the possibility of current leakage and take precautions similar to §2 above. To reduce such undesirable trouble, it is recommended that an interface circuit be inserted at the input or output terminal, or a resistor with a resistance that does not exceed the output driving capability of the MOS IC/LSI be inserted between the power supply and the ground.
- A filter circuit should be inserted in the AC power supply line to absorb surges which can frequently be strong enough to destroy a MOS IC/LSI.
- 4. Terminal connections should be made as described in the catalog while being careful to meet specifications.
- Ungrounded metal plates should not be placed near input or output terminals of any MOS IC/LSIs, since destruction of the insulation may result if they become electrostatically charged.
- 6. Equipment cases should provide shielding from electrostatic charges for more reliable operation. When a plastic case is used, it is desirable to coat the inside of the case with conductive paint and to ground it. This is considered necessary even for battery-operated equipment.

MASK ROM/EXTERNAL ROM VERSION

M37710 GROUP

2

M37720 GROUP

M37710 GROUP MASK ROM/EXTERNAL ROM VERSION

2-1

MITSUBISHI MICROCOMPUTERS M37710 Group

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

M37710 GROUP

The M37710 group is a general purpose microcomputer and a higher group in rank than the M37702 group. This group has enhanced peripheral functions of the M37702 group. Especially, the following were added:

10-bit A-D converter

- 8-bit D-A converter
- Pulse output port

The M37710 group suits to needs of industrial and public welfare equipments in recent years and can realize a high-level control.

FEATURES

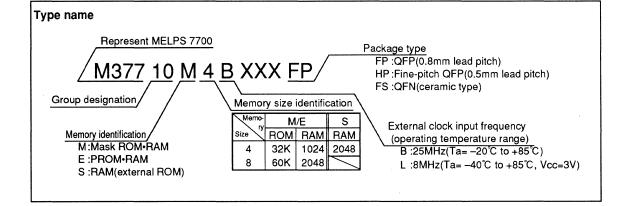
•Choice of low supply voltage ; 2.7V—5.5V, wide operating temperature range ("L" version)

- Choice of large internal memory
- Available one time PROM version and windowed EPROM version
- Peripheral functions

•I/O port	
•Interrupt	
•Multiple function 16-bit timer	5+3
•Serial I/O (clock synchronous / asynch	
•10-bit A-D converter	8-channel inputs
•8-bit D-A converter	2
 12-bit watchdog timer 	
•Pulse output port	4 bits \times 2 channels

APPLICATION

Control devices such as Copier, HDD, Data terminal, Print engine for page printer, Cellular radio telephone, Cordless telephone, Radio communication, Personal information equipment, Electronic music instrument


M37710 group expansion

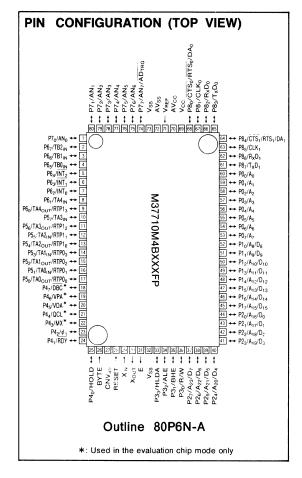
ROM	Group name	Memo	y size	Frequen	cy•Temp.	Package
type	+ Memory	(By	(Byte)		oply Vol.	(Note 1)
	identification	ROM	RAM	В	L	
Mask	M37710M4	32K	1024	☆	—	
ROM	M37710M8	60K	2048	☆☆	☆☆	80-pin
One time	M37710E4	32K	1024	•		QFP (80P6N-A)
PROM	M37710E8	60K	2048	**	☆☆	
Windowed	WI37710E4	32K	1024	•	—	80-pin LCC
(Note 2)	M37710E8	60K	2048	☆☆		(80D0)
External ROM	M37710S4		2048	☆		80-pin QFP (80P6N-A)

●:NOW ☆:NEW ☆☆:UNDER DEVELOPMENT

Note 1. "L" version's package is 80P6D-A. Confirm its package on the following pages.

- 2. Do not use the windowed EPROM version for mass production, because it is a tool for program development (for evaluation).
- * About PROM version, refer to "Chapter 3 PROM VER-SION".

MITSUBISHI MICROCOMPUTERS


SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

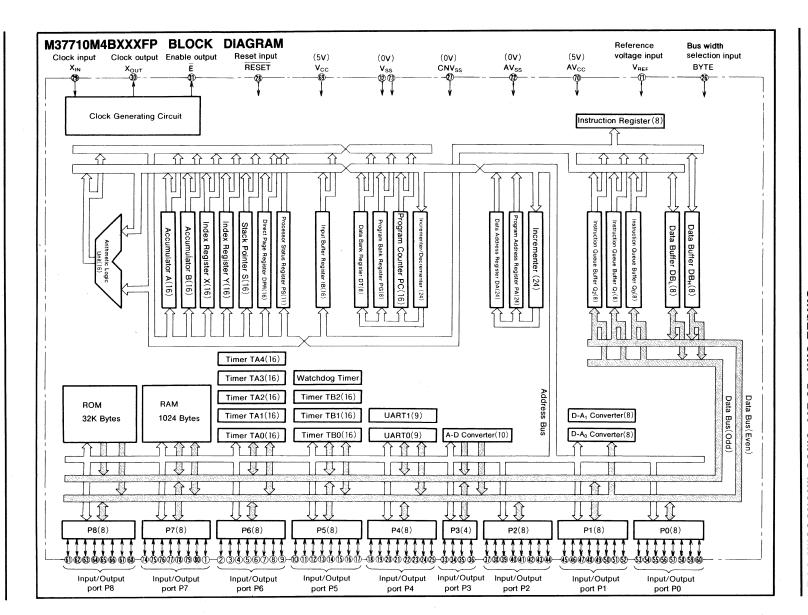
DESCRIPTION

The M37710M4BXXXFP is a single-chip microcomputer designed with high-performance CMOS silicon gate technology. This is housed in a 80-pin plastic molded QFP. This single-chip microcomputer has a large 16M bytes address space, three instruction queue buffers, and two data buffers for high-speed instruction execution. The CPU is a 16-bit parallel processor that can also be switched to perform 8bit parallel processing. This microcomputer is suitable for office, business, and industrial equipment controller that require high-speed processing of large data.

FEATURES

٠	Number of basic	instructions 103
٠	Memory size	ROM ······32K bytes
		RAM 1024 bytes
٠	Instruction exect	ution time
		uction at 25MHz frequency 160ns
٠	Single power su	pply5V±10%
۲	Low power dissi	pation (at 25MHz frequency)
		······ 95mW (Typ.)
٠		······19 types 7 levels
٠	Multiple function	16-bit timer
	(Pulse motor dri	ve waveform can be output.)
٠	UART (may also	be synchronous)2
٠	10-bit A-D conve	erter ······ 8-channel inputs
٠	8-bit D-A conver	ter2-channel outputs
٠	12-bit watchdog	timer
٠	Programmable in	nput/output
	(ports P0, P1, P2	2, P3, P4, P5, P6, P7, P8) ······ 68

APPLICATION


Control devices for office equipment such as copiers, printers, typewriters, facsimiles, word processors, and personal computers

Control devices for industrial equipment such as communication and measuring instruments

NOTE

Refer to "Chapter 5 PRECAUTIONS" when using this microcomputer.

MITSUBISHI MICROCOMPUTERS

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

2—6

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

FUNCTIONS OF M37710M4BXXXFP

Parameter		Functions	
Number of basic instructions		103	
Instruction execution time		160ns (the fastest instruction at external clock 25MHz frequency)	
M	ROM	32K bytes	
Memory size	RAM	1024 bytes	
1	P0~P2, P4~P8	8 -bit×8	
Input/Output ports	P3	4 -bit×1	
N.4. (1) 6	TA0, TA1, TA2, TA3, TA4	16-bit× 5	
Multi-function timers	TB0, TB1, TB2	16-bit× 3	
Serial I/O		(UART or clock synchronous serial I/O)X2	
A-D converter		10-bit×1(8 channels)	
D-A converter		8 -bit×2	
Watchdog timer		12-bit× 1	
Interrupts		3 external types, 16 internal types	
		(Each interrupt can be set the priority levels to $0 \sim 7$.)	
Clock generating circuit		Built-in(externally connected to a ceramic resonator or quartz crystal resonator)	
Supply voltage		5 V±10%	
Power dissipation		95mW(at external clock 25MHz frequency)	
	Input/Output voltage	5 V	
Input/Output characteristic	Output current	5 mA	
Memory expansion		Maximum 16M bytes	
Operating temperature range	9	-20~85°C	
Device structure		CMOS high-performance silicon gate process	
Package		80-pin plastic molded QFP	

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

PIN DESCRIPTION

Pin	Name	Input/Output	Functions
V _{CC} , V _{SS}	Power supply		Supply 5 V \pm 10% to V _{CC} and 0 V to V _{SS} .
CNV _{SS}	CNV _{SS} input	Input	This pin controls the processor mode. Connect to V_{SS} for single-chip mode, and to V_{CC} for external ROM types.
RESET	Reset input	Input	To enter the reset state, this pin must be kept at a "L" condition which should be maintained for the re- quired time.
X _{IN}	Clock input	Input	These are I/O pins of internal clock generating circuit. Connect a ceramic or quartz crystal resonator be- tween X_{IN} and X_{OUT} . When an external clock is used, the clock source should be connected to the X_{IN} pin
X _{OUT}	Clock output	Output	and the X _{OUT} pin should be left open.
Ē	Enable output	Output	Data or instruction read and data write are performed when output from this pin is "L".
BYTE	Bus width selection input	Input	In memory expansion mode or microprocessor mode, this pin determines whether the external data bus is 8-bit width or 16-bit width. The width is 16 bits when "L" signal inputs and 8 bits when "H" signal inputs.
AV _{CC} AV _{SS}	Analog supply input		Power supply for the A-D converter. AV_{SS} is also used for D-A converter. Connect AV_{CC} to V_{CC} and AV_{SS} to V_{SS} externally.
V _{REF}	Reference voltage input	Input	This is reference voltage input pin for the A-D converter and the D-A converter.
P0 ₀ ~P0 ₇	I/O port P0	I/O	In single-chip mode, port P0 becomes an 8-bit I/O port. An I/O direction register is available so that each pin can be programmed for input or output. These ports are in input mode when reset. Address($A_7 \sim A_0$) is output in memory expansion mode or microprocessor mode.
P1 ₀ ~P1 ₇	I/O port P1	1/0	In single-chip mode, these pins have the same functions as port P0. When the BYTE pin is set to "L" in memory expansion mode or microprocessor mode and external data bus is 16-bit width, high-order data $(D_{15}\sim D_8)$ is input or output when \overline{E} output is "L" and an address $(A_{15}\sim A_8)$ is output when \overline{E} output is "H". If the BYTE pin is "H" that is an external data bus is 8-bit width, only address $(A_{15}\sim A_8)$ is output.
P2 ₀ ~P2 ₇	I/O port P2	1/0	In single-chip mode, these pins have the same functions as port P0. In memory expansion mode or microprocessor mode low-order data($D_7 \sim D_0$) is input or output when \overline{E} output is "L" and an address($A_{23} \sim A_{16}$) is output when \overline{E} output is "H".
P3₀~P3₃	I/O port P3	1/0	In single-chip mode, these pins have the same functions as port P0. In memory expansion mode or microp- rocessor mode, R/W, BHE, ALE, and HLDA signals are output.
P4₀~P4 ₇	I/O port P4	I/O	In single-chip mode, these pins have the same functions as port P0. In memory expansion mode or microprocessor mode, P4 ₀ and P4 ₁ become \overline{HOLD} and \overline{RDY} input pin respectively. Functions of other pins are the same as in single-chip mode. In single-chip mode or memory expansion mode, port P4 ₂ can be programmed for ϕ_1 output pin divided the clock to X _{IN} pin by 2. In microprocessor mode, P4 ₂ always has the function as ϕ_1 output pin.
P5₀~P5 ₇	I/O port P5	I/O	In addition to having the same functions as port P0 in single-chip mode, these pins also function as I/C pins for timer A0, timer A1, timer A2 and timer A3. $P5_0 \sim P5_6$ also function as output pins for pulse motor drive waveform.
P6 ₀ ~P6 ₇	I/O port P6	1/0	In addition to having the same functions as port P0 in single-chip mode, these pins also function as I/C pins for timer A4, external interrupt input $\overline{INT_0}$, $\overline{INT_1}$ and $\overline{INT_2}$ pins, and input pins for timer B0, timer B1 and timer B2. P6 ₀ also functions as output pin for pulse motor drive waveform.
P7₀~P7 ₇	I/O port P7	I/O	In addition to having the same functions as port P0 in single-chip mode, these pins also function as analog input $AN_0 \sim AN_7$ input pins. P7 ₇ also has an A-D conversion trigger input function.
P8 ₀ ~P8 ₇	I/O port P8	1/0	In addition to having the same functions as port P0 in single-chip mode, these pins also function as R_XD T _X D, CLK, CTS/RTS pins for UART 0 and UART 1, and output pins for D-A converter.

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

BASIC FUNCTION BLOCKS

The M37710M4BXXXFP contains the following devices on a single chip: ROM and RAM for storing instructions and data, CPU for processing, bus interface unit (which controls instruction prefetch and data read/write between CPU and memory), timers, UART, A-D converter, D-A converter, and other peripheral devices such as I/O ports. Each of these devices are described below.

MEMORY

The memory map is shown in Figure 1. The address space is 16M bytes from addresses 0_{16} to FFFFF₁₆. The address space is divided into 64K bytes units called banks. The banks are numbered from 0_{16} to FF₁₆.

Built-in ROM, RAM and control registers for built-in peripheral devices are assigned to bank $0_{16}.\,$

The 32K bytes area from addresses 8000_{16} to FFFF₁₆ is the built-in ROM. Addresses FFD6₁₆ to FFFF₁₆ are the RESET and interrupt vector addresses and contain the interrupt vectors. Refer to the section on interrupts for details.

The 1024 bytes area from addresses 80_{16} to $47F_{16}$ contains the built-in RAM. In addition to storing data, the RAM is used as stack during a subroutine call, or interrupts.

Assigned to addresses 0_{16} to $7F_{16}$ are peripheral devices such as I/O ports, D-A converter, A-D converter, UART, timer, and interrupt control registers.

A 256 bytes direct page area can be allocated anywhere in bank 0_{16} using the direct page register DPR. In direct page addressing mode, the memory in the direct page area can be accessed with two words thus reducing program steps.

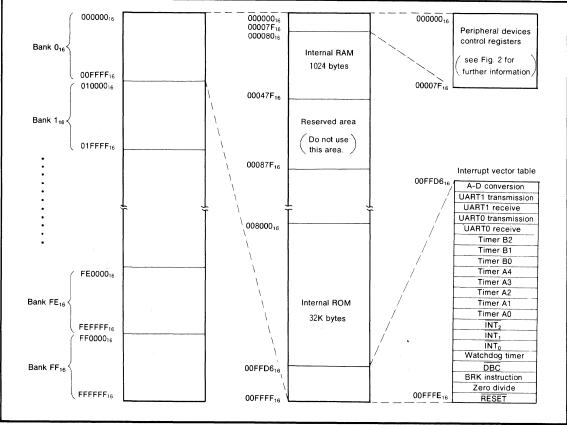


Fig. 1 Memory map

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

000000	
000001	
000002	Port P0
000003	Port P1
000004	Port P0 data direction register
000005	Port P1 data direction register
000006	Port P2
000007	Port P3
000008	Port P2 data direction register
000009	Port P3 data direction register
00000A	Port P4
00000B	Port P5
00000C	Port P4 data direction register
00000D	Port P5 data direction register
00000E	Port P6
00000F	Port P7 Pert D6 data dispetien register
000010	Port P6 data direction register
000011	Port P7 data direction register
000012	Port P8
000013	Dert D9 date direction an eleter
000014	Port P8 data direction register
000015	
000016	
000017	
000018	
000019	D A se sister 0
00001A 00001B	D-A register 0
	D A subjeture 1
00001C	D-A register 1
00001D	A D control register 0
00001E	A-D control register 0
00001F	A-D control register 1
000020	A-D register 0
000022 000023	A-D register 1
000023	
000024	A-D register 2
000026	
000020	A-D register 3
000027	
000028	A-D register 4
000023 00002A	
00002A	A-D register 5
00002B	
00002C	A-D register 6
00002D	
00002E	A-D register 7
000030	UART 0 transmit/receive mode register
000031	UART 0 bit rate generator
000032	
000032	UART 0 transmission buffer register
000034	UART 0 transmit/receive control register 0
000034	UART 0 transmit/receive control register 0
000036	
000038	UART 0 receive buffer register
000037	UART 1 transmit/receive mode register
000038	UART 1 bit rate generator
000039 00003A	
00003A	UART 1 transmission buffer register
00003D	UART 1 transmit/receive control register 0
00003C	UART 1 transmit/receive control register 1
00003D	Contra r transmit receive control register i
00003E	UART 1 receive buffer register

0040	Count start flag
0040	
00042	One-shot start flag
043	
)44	Up-down flag
045	
046	Times A0
047	Timer A0
048	Timer A1
)49	Timer A1
04A	Timer A2
)4B	
)4C	Timer A3
94D	
04E	Timer A4
4F	
050	Timer B0
051	
052	Timer B1
053	
)54)55	Timer B2
055 056	Timer A0 mode register
056	Timer At mode register
)57)58	Timer A2 mode register
)58)59	Timer A3 mode register
)5A	Timer A4 mode register
05B	Timer B0 mode register
05C	Timer B1 mode register
05D	Timer B2 mode register
5E	Processor mode register 0
05F	Processor mode register 1
060	Watchdog timer
061	Watchdog timer frequency selection flag
062	Waveform output mode register
063	
064	Pulse output data register 1
065	Pulse output data register 0
066	Reserved area (Note)
067	
068	
069	
06A	
06B	
06C	
06D	
06E	1
06F	A D conversion interrupt control register
070	A-D conversion interrupt control register
071 072	UARTO transmission interrupt control register
072 073	UART0 receive interrupt control register
073	UART1 transmission interrupt control register UART1 receive interrupt control register
074	Timer A0 interrupt control register
075	Timer A1 interrupt control register
077	Timer A2 interrupt control register
078	Timer A3 interrupt control register
079	Timer A4 interrupt control register
07A	Timer B0 interrupt control register
07B	Timer B1 interrupt control register
07C	Timer B2 interrupt control register
07D	INT ₀ interrupt control register
7E	INT ₁ interrupt control register
	INT ₂ interrupt control register

Note : Do not write to this address.

Location of peripheral devices and interrupt control registers Fig. 2.

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

CENTRAL PROCESSING UNIT (CPU)

The CPU has ten registers and is shown in Figure 3. Each of these registers is described below.

ACCUMULATOR A (A)

Accumulator A is the main register of the microcomputer. It consists of 16 bits and the lower 8 bits can be used separately. The data length flag m determines whether the register is used as 16-bit register or as 8-bit register. It is used as a 16-bit register when flag m is "0" and as an 8-bit register when flag m is "1". Flag m is a part of the processor status register (PS) which is described later.

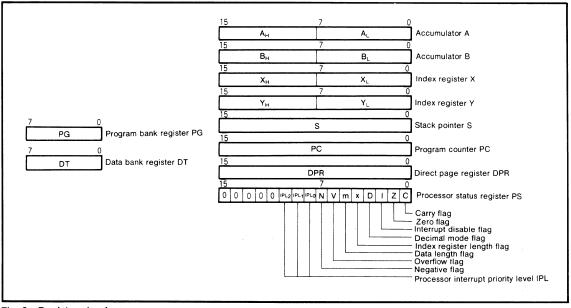
Data operations such as calculations, data transfer, input/ output, etc., is executed mainly through the accumulator.

ACCUMULATOR B (B)

Accumulator B has the same functions as accumulator A, but the use of accumulator B requires more instruction bytes and execution cycles than accumulator A.

INDEX REGISTER X (X)

Index register X consists of 16 bits and the lower 8 bits can be used separately. The index register length flag x determines whether the register is used as 16-bit register or as 8-bit register. It is used as a 16-bit register when flag x is "0" and as an 8-bit register when flag x is "1". Flag x is a part of the processor status register (PS) which is described later. In index addressing mode, register X is used as the index register and the contents of this address is added to obtain the real address.


Also, when executing a block transfer instruction MVP or MVN, the contents of index register X indicate the loworder 16 bits of the source data address. The third byte of the MVP and MVN is the high-order 8 bits of the source data address.

INDEX REGISTER Y (Y)

Index register Y consists of 16 bits and the lower 8 bits can be used separately. The index register length flag x determines whether the register is used as 16-bit register or as 8-bit register. It is used as a 16-bit register when flag x is "0" and as an 8-bit register when flag x is "1". Flag x is a part of the processor status register (PS) which is described later.

In index addressing mode, register Y is used as the index register and the contents of this address is added to obtain the real address.

Also, when executing a block transfer instruction MVP or MVN, the contents of index register Y indicate the loworder 16 bits of the destination address. The second byte of the MVP and MVN is the high-order 8 bits of the destination data address.

Fig. 3 Register structure

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

STACK POINTER (S)

Stack pointer (S) is a 16-bit register. It is used during a subroutine call or interrupts. It is also used during stack, stack pointer relative, or stack pointer relative indirect indexed Y addressing mode.

PROGRAM COUNTER (PC)

Program counter (PC) is a 16-bit counter that indicates the low-order 16 bits of the next program memory address to be executed. There is a bus interface unit between the program memory and the CPU, so that the program memory is accessed through bus interface unit. This is described later.

PROGRAM BANK REGISTER (PG)

Program bank register is an 8-bit register that indicates the high-order 8 bits of the next program memory address to be executed. When a carry occurs by incrementing the contents of the program counter, the cotents of the program bank register (PG) is incremented by 1. Also, when a carry or borrow occurs after adding or subtracting the offset value to or from the contents of the program counter (PC) using branch instruction, the contents of the program bank register (PG) is incremented or decremented by 1 so that programs can be written without worrying about bank boundaries.

DATA BANK REGISTER (DT)

Data bank register (DT) is an 8-bit register. With some addressing modes, a part of the data bank register (DT) is used to specify a memory address. The contents of data bank register (DT) is used as the high-order 8 bits of a 24-bit address. Addressing modes that use the data bank register (DT) are direct indirect, direct indexed X indirect, direct indexed Y, absolute bit, absolute indexed X, absolute indexed Y.

DIRECT PAGE REGISTER (DPR)

Direct page register (DPR) is a 16-bit register. Its contents is used as the base address of a 256-byte direct page area. The direct page area is allocated in bank 0_{16} , but when the contents of DPR is FF01₁₆ or greater, the direct page area spans across bank 0_{16} and bank 1_{16} . All direct addressing modes use the contents of the direct page register (DPR) to generate the data address. If the low-order 8 bits of the direct page register (DPR) is "00₁₆", the number of cycles required to generate an address is minimized. Normally the low-order 8 bits of the direct page register (DPR) is set to "00₁₆".

PROCESSOR STATUS REGISTER (PS)

Processor status register (PS) is an 11-bit register. It consists of a flag to indicate the result of operation and CPU interrupt levels.

Branch operations can be performed by testing the flags C, Z, V, and N.

The details of each processor status register bit are described below.

1. Carry flag (C)

The carry flag contains the carry or borrow generated by the ALU after an arithmetic operation. This flag is also affected by shift and rotate instructions. This flag can be set and reset directly with the SEC and CLC instructions or with the SEP and CLP instructions.

2. Zero flag (Z)

This zero flag is set if the result of an arithmetic operation or data transfer is zero and reset if it is not. This flag can be set and reset directly with the SEP and CLP instructions.

3. Interrupt disable flag (1)

When the interrupt disable flag is set to "1", all interrupts except watchdog timer, DBC, and software interrupt are disabled. This flag is set to "1" automatically when there is an interrupt. It can be set and reset directly with the SEI and CLI instructions or SEP and CLP instructions.

4. Decimal mode flag (D)

The decimal mode flag determines whether addition and subtraction are performed as binary or decimal. Binary arithmetic is performed when this flag is "0". If it is "1", decimal arithmetic is performed with each word treated as two or four digit decimal. Arithmetic operation is performed using four digits when the data length flag m is "0" and with two digits when it is "1". (Decimal operation is possible only with the ADC and SBC instructions.) This flag can be set and reset with the SEP and CLP instructions.

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

5. Index register length flag (x)

The index register length flag determines whether index register X and index register Y are used as 16-bit registers or as 8-bit registers. The registers are used as 16-bit registers when flag x is "0" and as 8-bit registers when it is "1". This flag can be set and reset with the SEP and CLP instructions.

6. Data length flag (m)

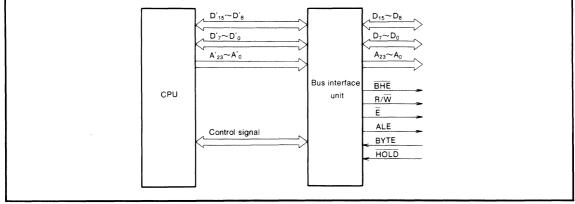
The data length flag determines whether the data length is 16-bit or 8-bit. The data length is 16-bit when flag m is "0" and 8-bit when it is "1". This flag can be set and reset with the SEM and CLM instructions or with the SEP and CLP instructions.

7. Overflow flag (V)

The overflow flag has meaning when addition or subtraction is performed a word as signed binary number. When the data length flag m is "0", the overflow flag is set when the result of addition or subtraction is outside the range between -32768 and +32767. When the data length flag m is "1", the overflow flag is set when the result of addition or subtraction is outside the range between -128 and +127. It is reset in all other cases. The overflow flag can also be set and reset directly with the SEP, and CLV or CLP instructions.

8. Negative flag (N)

The negative flag is set when the result of arithmetic operation or data transfer is negative (If data length flag m is "0", when data bit 15 is "1". If data length flag m is "1", when data bit 7 is "1".) It is reset in all other cases. It can also be set and reset with the SEP and CLP instructions.


9. Processor interrupt priority level (IPL)


The processor interrupt priority level (IPL) consists of 3 bits and determines the priority of processor interrupts from level 0 to level 7. Interrupt is enabled when the interrupt priority of the device requesting interrupt (set using the interrupt control register) is higher than the processor interrupt priority. When interrupt is enabled, the current processor interrupt priority level is saved in a stack and the processor interrupt priority level is replaced by the interrupt priority level of the device requesting the interrupt. Refer to the section on interrupts for more details.

BUS INTERFACE UNIT

The CPU operates on an internal clock frequency which is obtained by dividing the external clock frequency $f_{(X_{IN})}$ by two. This frequency is twice the bus cycle frequency. In order to speed-up processing, a bus interface unit is used to pre-fetch instructions when the data bus is idle. The bus interface unit synchronizes the CPU and the bus and prefetches instructions. Figure 4 shows the relationship between the CPU and the bus interface unit. The bus interface unit has a program address register, a 3-byte instruction queue buffer, a data address register, and a 2-byte data buffer.

The bus interface unit obtains an instruction code from memory and stores it in the instruction queue buffer, obtains data from memory and stores it in the data buffer, or writes the data from the data buffer to the memory.

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

The bus interface unit operates using one of the waveforms (1) to (10) shown in Figure 5. The standard waveforms are (1) and (2).

The ALE signal is used to latch only the address signal from the multiplexed signal containing data and address.

The \overline{E} signal becomes "L" when the bus interface unit reads an instruction code or data from memory or when it writes data to memory. Whether to perform read or write is controlled by the R/\overline{W} signal. Read is performed when the R/\overline{W} signal is "H" state and write is performed when it is "L" state.

Waveform (1) in Figure 5 is used to access a single byte or two bytes simultaneously. To read or write two bytes simultaneously, the first address accessed must be even. Furthermore, when accessing an external memory area in memory expansion mode or microprocessor mode, set the bus width selection input pin BYTE to "L". (external data bus width to 16 bits) The internal memory area is always treated as 16-bit bus width regardless of BYTE.

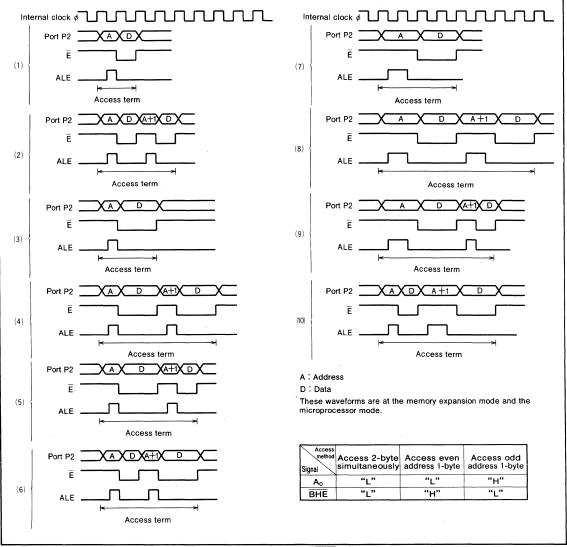


Fig. 5 Relationship between access method and signals A_0 and \overline{BHE}

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

When performing 16-bit data read or write, if the conditions for simultaneously accessing two bytes are not satisfied, waveform (2) is used to access each byte one by one. However, when prefetching the instruction code, if the address of the instruction code is odd, waveform (1) is used, and only one byte is read in the instruction queue buffer.

The signals A_0 and \overrightarrow{BHE} in Figure 5 are used to control these cases: 1-byte read from even address, 1-byte read from odd address, 2-byte simultaneous read from even and odd addresses, 1-byte write to even address, 1-byte write to odd addresses, or 2-byte simultaneous write to even and odd addresses. The A_0 signal that is the address bit 0 is "L" when an even number address is accessed. The \overrightarrow{BHE} signal becomes "L" when an odd number address is accessed.

The bit 2 of processor mode register 0 (address $5E_{16}$) is the wait bit. When external memory area is accessed in memory expansion mode or microprocessor mode with this bit set to "0", the width of \overline{E} signal is extended and access time can be extended.

There are two ways to extend the access time and they are selected with the processor mode register 1 (address $5F_{16}$) bit 0.

When this bit is set to "1", the "L" width of \overline{E} signal in (1) becomes twice as long as in (3) and the access time becomes 1.5 times (wait 1). When this bit is set to "0", the ALE signal in (1) and \overline{E} signal are extended as in (7) and the access time is doubled (wait 0).

However, these signals are not extended when accessing internal memory area.

When the wait bit is set to "1", these signals are not extended when accessing either memory area regardless of the value of processor mode register 1 bit 0.

Waveform (4), (5), and (6) show the entire waveform, first half, and last half respectively of waveform (2) for wait 1.

Waveform (8), (9), and (10) show the entire waveform, first half, and last half respectively of waveform (2) for wait 0. Instruction code read, data read, and data write are described below.

Instruction code read will be described first.

The CPU obtains instruction codes from the instruction queue buffer and executes them. The CPU notifies the bus interface unit that it is requesting an instruction code during an instruction code request cycle. If the requested instruction code is not yet stored in the instruction queue buffer, the bus interface unit halts the CPU until it can store more instructions than requested in the instruction queue buffer. Even if there is no instruction code request from the CPU, the bus interface unit reads instruction codes from memory and stores them in the instruction queue buffer when the instruction queue buffer is empty or when only one instruction code is stored and the bus is idle on the next cycle. This is referred to as instruction pre-fetching. Normally, when reading an instruction code from memory, if the accessed address is even the next odd address is read together with the instruction code and stored in the instruction queue buffer.

However, in memory expansion mode or microprocessor mode, if the bus width switching pin BYTE is "H", external data bus width is 8 bits and the address to be read is in external memory area is odd, only one byte is read and stored in the instruction queue buffer. Therefore, waveform (1), (3) or (7) in Figure 5 is used for instruction code read. Data read and write are described below.

The CPU notifies the bus interface unit when performing data read or write. At this time, the bus interface unit halts the CPU if the bus interface unit is already using the bus or if there is a request with higher priority. When data read or write is enabled, the bus interface unit uses one of the waveforms from (1) to (10) in Figure 5 to perform the operation.

During data read, the CPU waits until the entire data is stored in the data buffer. The bus interface unit sends the address received from the CPU to the address bus. Then it reads the memory when the \overline{E} signal is "L" and stores the result in the data buffer.

During data write, the CPU writes the data in the data buffer and the bus interface unit writes it to memory. Therefore, the CPU can proceed to the next step without waiting for write to complete. The bus interface unit sends the address received from the CPU to the address bus. Then when the \overline{E} signal is "L", the bus interface unit sends the data in the data buffer to the data bus and writes it to memory.

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

INTERRUPTS

Table 1 shows the interrupt types and the corresponding interrupt vector addresses. Reset is also treated as a type of interrupt and is discussed in this section, too.

DBC is an interrupt used during debugging.

Interrupts other than reset, $\overline{\text{DBC}}$, watchdog timer, zero divide, and BRK instruction all have interrupt control registers. Table 2 shows the addresses of the interrupt control registers and Figure 6 shows the bit configuration of the interrupt control register.

Use the SEB and CLB instructions when setting each interrupt control register.

The interrupt request bit is automatically cleared by the hardware during reset or when processing an interrupt. Also, interrupt request bits other than \overrightarrow{DBC} and watchdog timer can be cleared by software.

 INT_2 to INT_0 are external interrupts and whether to cause an interrupt at the input level (level sense) or at the edge (edge sense) can be selected with the level sense/edge sense selection bit. Furthermore, the polarity of the interrupt input can be selected with polarity selection bit.

Timer and UART interrupts are described in the respective section.

The priority of interrupts when multiple interrupts are caused simultaneously is partially fixed by hardware, but, it can also be adjusted by software as shown in Figure 7. The hardware priority is fixed the following:

reset $> \overline{\text{DBC}} >$ watchdog timer > other interrupts

Table 1. Interrupt types and the interrupt vector addresses

Interrupts	Vector a	ddresses
A-D conversion	00FFD616	00FFD7 ₁₆
UART1 transmit	00FFD816	00FFD9 ₁₆
UART1 receive	00FFDA ₁₆	00FFDB ₁₆
UART0 transmit	00FFDC ₁₆	00FFDD ₁₆
UART0 receive	00FFDE ₁₆	00FFDF ₁₆
Timer B2	00FFE016	00FFE1 ₁₆
Timer B1	00FFE216	00FFE316
Timer B0	00FFE416	00FFE516
Timer A4	00FFE616	00FFE716
Timer A3	00FFE816	00FFE9 ₁₆
Timer A2	00FFEA ₁₆	00FFEB ₁₆
Timer A1	00FFEC16	00FFED ₁₆
Timer A0	00FFEE16	00FFEF16
INT ₂ external interrupt	00FFF0 ₁₆	00FFF1 ₁₆
INT ₁ external interrupt	00FFF2 ₁₆	00FFF3 ₁₆
INT ₀ external interrupt	00FFF4 ₁₆	00FFF5 ₁₆
Watchdog timer	00FFF6 ₁₆	00FFF7 ₁₆
DBC (unusable)	00FFF8 ₁₆	00FFF9 ₁₆
Break instruction	00FFFA ₁₆	00FFFB ₁₆
Zero divide	00FFFC ₁₆	00FFFD ₁₆
Reset	00FFFE ₁₆	00FFFF ₁₆

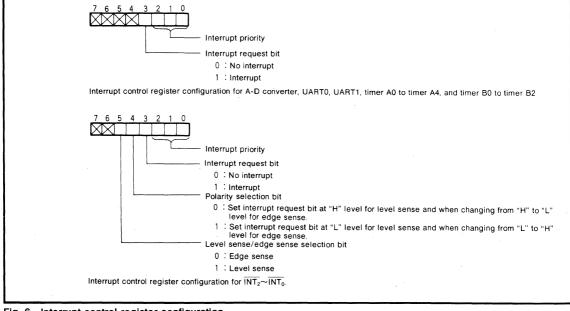


Fig. 6 Interrupt control register configuration

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

Table 2. Addresses of interrupt control registers

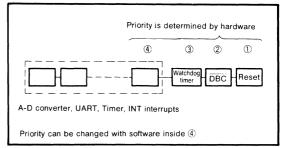
Interrupt control registers	Addresses
Interrupt control registers	Addresses
A-D conversion interrupt control register	000070 ₁₆
UART0 transmit interrupt control register	000071 ₁₆
UART0 receive interrupt control register	000072 ₁₆
UART1 transmit interrupt control register	000073 ₁₆
UART1 receive interrupt control register	000074 ₁₆
Timer A0 interrupt control register	000075 ₁₆
Timer A1 interrupt control register	000076 ₁₆
Timer A2 interrupt control register	000077 ₁₆
Timer A3 interrupt control register	000078 ₁₆
Timer A4 interrupt control register	000079 ₁₆
Timer B0 interrupt control register	00007A ₁₆
Timer B1 interrupt control register	00007B ₁₆
Timer B2 interrupt control register	00007C ₁₆
INT ₀ interrupt control register	00007D ₁₆
INT ₁ interrupt control register	00007E ₁₆
INT ₂ interrupt control register	00007F ₁₆

Interrupts caused by a BRK instruction and when dividing by zero are software interrupts and are not included in this list.

Other interrupts previously mentioned are A-D converter, UART, Timer, INT interrupts. The priority of these interrupts can be changed by changing the priority level in the corresponding interrupt control register by software.

Figure 8 shows a diagram of the interrupt priority resolution circuit. When an interrupt is caused, the each interrupt device compares its own priority with the priority from above and if its own priority is higher, then it sends the priority below and requests the interrupt. If the priorities are the same, the one above has priority.

This comparison is repeated to select the interrupt with the highest priority among the interrupts that are being requested. Finally the selected interrupt is compared with the processor interrupt priority level (IPL) contained in the processor status register (PS) and the request is accepted if it is higher than IPL and the interrupt disable flag I is "0". The request is not accepted if flag I is "1". The reset, DBC, and watchdog timer interrupts are not affected by the interrupt disable flag I.


When an interrupt is accepted, the contents of the processor status register (PS) is saved to the stack and the interrupt disable flag I is set to "1".

Furthermore, the interrupt request bit of the accepted interrupt is cleared to "0" and the processor interrupt priority level (IPL) in the processor status register (PS) is replaced by the priority level of the accepted interrupt.

Therefore, multi-level priority interrupts are possible by resetting the interrupt disable flag I to "0" and enable further interrupts.

For reset, DBC, watchdog timer, zero divide, and BRK instruction interrupts, which do not have an interrupt control register, the processor interrupt level (IPL) is set as shown in Table 3. Priority resolution is performed by latching the interrupt request bit and interrupt priority level so that they do not change. They are sampled at the first half and latched at the last half of the operation code fetch cycle.

Because priority resolution takes some time, no sampling pulse is generated for a certain interval even if it is the next operation code fetch cycle.

Fig. 7 Interrupt priority

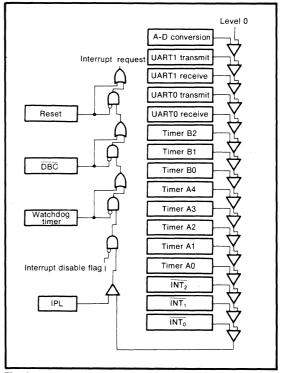


Fig. 8 Interrupt priority resolution

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

As shown in Figure 9, there are three different interrupt priority resolution time from which one is selected by software. After the selected time has elapsed, the highest priority is determined and is processed after the currently executing instruction has been completed.

The time is selected with bits 4 and 5 of the processor mode register 0 (address $5E_{16}$) shown in Figure 10. Table 4 shows the relationship between these bits and the number of cycles. After a reset, the processor mode register is initialized to "00₁₆" and therefore, the longest time is selected.

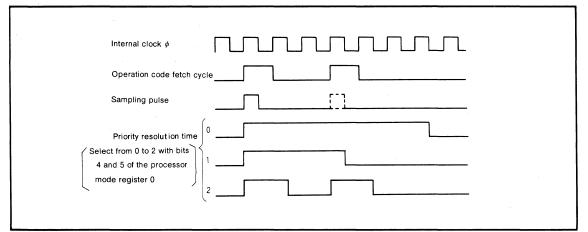

However, the shortest time should be selected by software.

Table 3. Value set in processor interrupt level (IPL) during an interrupt

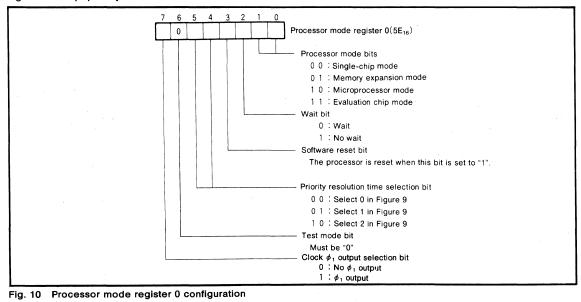

Interrupt types	Setting value
Reset	0
DBC	7
Watchdog timer	7
Zero divide	Not change value of IPL.
BRK instruction	Not change value of IPL.

 Table 4. Relationship between priority level resolution time selection bit and number of cycles

Priority level resolution time selection bit		Number of sucles	
Bit 5 Bit 4		Number of cycles	
0	0	7 cycles of ϕ	
0	1	4 cycles of ϕ	
1	0	2 cycles of ϕ	

Fig. 9 Interrupt priority resolution time

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

TIMER

There are eight 16-bit timers. They are divided by type into timer A(5) and timer B(3).

The timer I/O pins are shared with I/O pins for port P5 and P6. To use these pins as timer input pins, the data direction register bit corresponding to the pin must be cleared to "0" to specify input mode.

TIMER A

Figure 11 shows a block diagram of timer A.

Timer A has four modes; timer mode, event counter mode, one-shot pulse mode, and pulse width modulation mode. The mode is selected with bits 0 and 1 of the timer Ai mode register (i = 0 to 4). Each of these modes is described below.

(1) Timer mode [00]

Figure 12 shows the bit configuration of the timer Ai mode register during timer mode. Bits 0, 1, and 5 of the timer Ai mode register must always be "0" in timer mode. Bit 3 is ignored if bit 4 is "0".

Bits 6 and 7 are used to select the timer counter source. The counting of the selected clock starts when the count start flag is "1" and stops when it is "0".

Figure 13 shows the bit configuration of the count start flag. The counter is decremented, an interrupt is caused and the interrupt request bit in the timer Ai interrupt control register is set when the contents becomes 0000_{16} . At the same time, the contents of the reload register is transferred to the counter and count is continued.

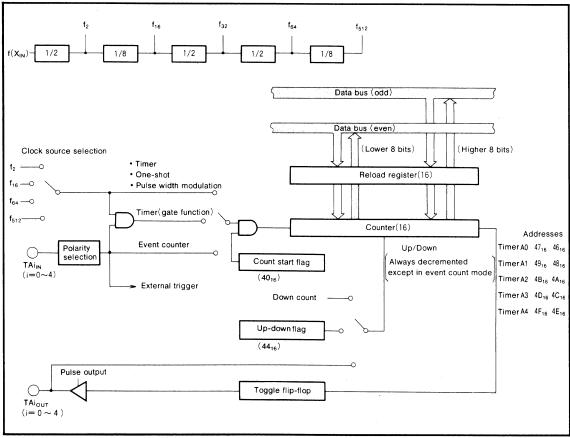


Fig. 11 Block diagram of timer A

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

When bit 2 of the timer Ai mode register is "1", the output is generated from TAi_{OUT} pin. The output is toggled each time the contents of the counter reaches to 0000_{16} . When the contents of the count start flag is "0", "L" is output from TAi_{OUT} pin.

When bit 2 is "0", TAi_{OUT} can be used as a normal port pin. When bit 4 is "0", TAi_{IN} can be used as a normal port pin.

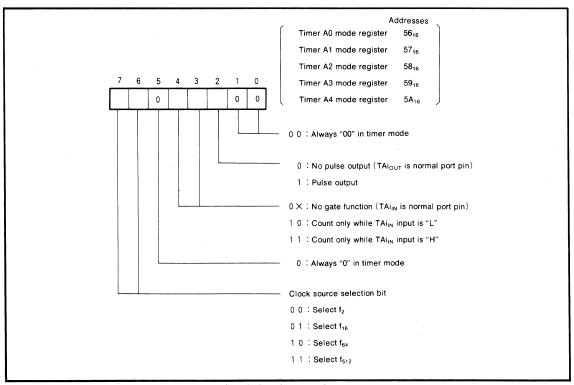
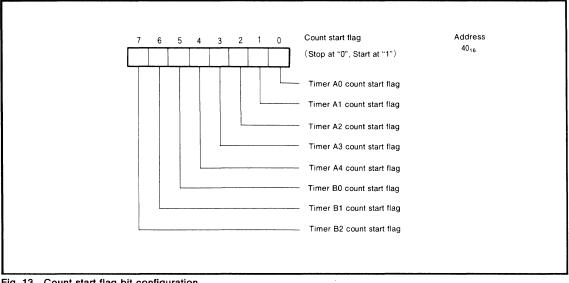
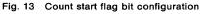
When bit 4 is "1", counting is performed only while the input signal from the TAi_{IN} pin is "H" or "L" as shown in Figure 14. Therefore, this can be used to measure the pulse width of the TAi_{IN} input signal. Whether to count while the input signal is "H" or while it is "L" is determined by bit 3. If bit 3 is "1", counting is performed while the TAi_{IN} pin input

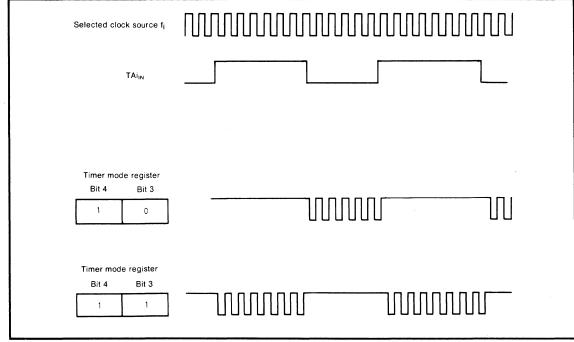
signal is "H" and if bit 3 is "0", counting is performed while it is "L".

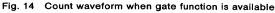
Note that the duration of "H" or "L" on the TAi_{IN} pin must be two or more cycles of the timer count source.

When data is written to timer Ai register with timer Ai halted, the same data is also written to the reload register and the counter. When data is written to timer Ai which is busy, the data is written to the reload register, but not to the counter. The counter is reloaded with new data from the reload register at the next reload time. The contents of the counter can be read at any time.

When the value set in the timer Ai register is n, the timer frequency dividing ratio is 1/(n+1).


Fig. 12 Timer Ai mode register bit configuration during timer mode



SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

(2) Event counter mode [01]

Figure 15 shows the bit configuration of the timer Ai mode register during event counter mode. In event counter mode, the bit 0 of the timer Ai mode register must be "1" and bit 1 and 5 must be "0".

The input signal from the TAi_{IN} pin is counted when the count start flag shown in Figure 13 is "1" and counting is stopped when it is "0".

Count is performed at the fall of the input signal when bit 3 is "0" and at the rise of the signal when it is "1".

In event counter mode, whether to increment or decrement the count can be selected with the up-down flag or the input signal from the TAi_{OUT} pin.

When bit 4 of the timer Ai mode register is "0", the updown flag is used to determine whether to increment or decrement the count (decrement when the flag is "0" and increment when it is "1"). Figure 16 shows the bit configuration of the up-down flag.

When bit 4 of the timer Ai mode register is "1", the input signal from the TAi_{OUT} pin is used to determine whether to increment or decrement the count. However, note that bit 2 must be "0" if bit 4 is "1" because if bit 2 is "1", TAi_{OUT} pin becomes an output pin with pulse output.

The count is decremented when the input signal from the TAi_{OUT} pin is "L" and incremented when it is "H". Determine the level of the input signal from the TAi_{OUT} pin before valid edge is input to the TAi_{IN} pin.

An interrupt request signal is generated and the interrupt request bit in the timer Ai interrupt control register is set when the counter reaches 0000_{16} (decrement count) or FFFF₁₆ (increment count). At the same time, timers A0 and A1 transfer the contents of the reload register to the counter and continue counting.

Timers A2, A3, and A4 transfer the contents of the reload register to the counter and continue count when bit 6 of the corresponding timer Ai mode register is "0", but when bit 6 is "1", they continue counting without transferring the contents of the reload register to the counter.

When bit 2 is "1", the waveform reversing polarity is output from TAi_{OUT} pin each time the counter reaches 0000_{16} (decrement count) or FFFF₁₆ (increment count). If bit 2 is "0", TAi_{OUT} pin can be used as a normal port pin. However, if bit 4 is "1" and the TAi_{OUT} pin is used as an output pin, the output from the pin changes the count direction. Therefore, bit 4 must be "0" unless the output from the TAi_{OUT} pin is not to be used to select the count direction.

Data write and data read are performed in the same way as for timer mode. That is, when data is written to timer Ai which is halted, it is also written to the reload register and the counter.

When data is written to timer Ai which is busy, the data is written to the reload register, but not to the counter. The counter is reloaded with new data from the reload register at the next reload time and continues counting. For timer

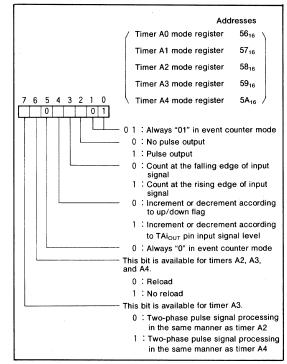


Fig. 15 Timer Ai mode register bit configuration during event counter mode

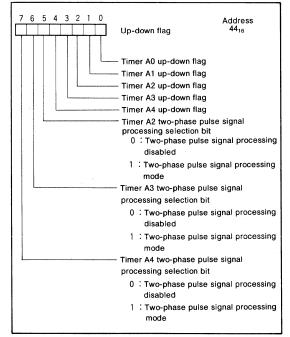


Fig. 16 Up-down flag bit configuration

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

A2, A3, and A4, the contents of the reload register are not reloaded in the counter when bit 6 of the corresponding timer Ai mode register is "1". The contents of the counter can be read at any time.

Furthermore, in event counter mode, whether to increment or decrement the counter can also be determined by supplying two-phase pulse input with phase shifted by 90° to timer A2, A3, or A4. There are two types of two-phase pulse processing operations. One uses timer A2 and the other uses timer A4. Timer A3 can select one of these two operations with bit 7 of the timer A3 mode register. In either processing operation, two-phase pulse is input in the same way, that is, pulses out of phase by 90° are input at the TAj_{OUT} (j = 2 to 4) pin and TAj_{IN} pin.

When timer A2 is used, as shown in Figure 17, the count is incremented when a rising edge is input to the $TA2_{IN}$ pin after the level of $TA2_{OUT}$ pin changes from "L" to "H", and when the falling edge is input, the count is decremented.

For timer A4, as shown in Figure 18, when a phase related pulse with a rising edge input to the TA4_{IN} pin is input after the level of TA4_{OUT} pin changes from "L" to "H", the count is incremented at the respective rising edge and falling edge of the TA4_{OUT} pin and TA4_{IN} pin. When a phase related pulse with a falling edge input to the TA4_{OUT} pin is input after the level of TA4_{IN} pin changes from "H" to "L", the count is decremented at the respective rising edge and falling edge of the TA4_{IN} pin and TA4_{IN} pin.

When performing this two-phase pulse signal processing, timer Aj mode register bit 0 and bit 4 must be set to "1" and bits 1, 2, 3, and 5 must be set to "0" as shown in Figure 19.

Bit 7 is used to select whether to perform two-phase pulse signal processing for timer A3 in the same manner as timer A2 or as timer A4. When this bit is "0", two-phase pulse signal processing for timer A3 is performed in the same manner as timer A2 and when it is "1", it is performed in the same manner as timer A4. This bit is ignored for timer A2 and A4.

Note that bits 5, 6, and 7 of the up-down flag (address 44_{16}) are the two-phase pulse signal processing selection bit for timer A2, A3, and A4 respectively.

Each timer operates in normal event counter mode when the corresponding bit is "0" and performs two-phase pulse signal processing when it is "1".

Count is started by setting the count start flag to "1". Data write and read are performed in the same way as for normal event counter mode. Note that the direction register of the input port must be set to input mode because twophase pulse signal is input. Also, there can be no pulse output in this mode.

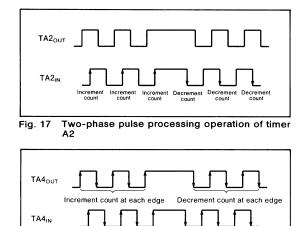


Fig. 18 Two-phase pulse processing operation of timer

Decrement count at each edge

Increment count at each edge

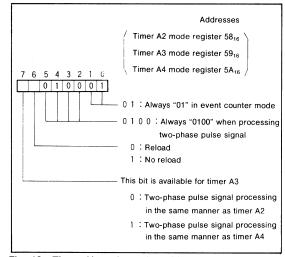


Fig. 19 Timer Aj mode register bit configuration when performing two-phase pulse signal processing in event counter mode

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

(3) One-shot pulse mode [10]

Figure 20 shows the bit configuration of the timer Ai mode register during one-shot pulse mode. In one-shot pulse mode, bit 0 and bit 5 must be "0" and bit 1 and bit 2 must be "1".

The trigger is enabled when the count start flag is "1". The trigger can be generated by software or it can be input from the TAi_{IN} pin. Software trigger is selected when bit 4 is "0" and the input signal from the TAi_{IN} pin is used as the trigger when it is "1".

Bit 3 is used to determine whether to trigger at the fall of the trigger signal or at the rise. The trigger is at the fall of the trigger signal when bit 3 is "0" and at the rise of the trigger signal when it is "1".

Software trigger is generated by setting the bit in the oneshot start flag corresponding to each timer.

Figure 21 shows the bit configuration of the one-shot start flag.

As shown in Figure 22, when a trigger signal is received, the counter counts the clock selected by bits 6 and 7.

If the contents of the counter is not 0000_{16} , the TAi_{OUT} pin goes "H" when a trigger signal is received. The count direction is decrement.

When the counter reaches 0001_{16} , The TAi_{OUT} pin goes "L" and count is stopped. The contents of the reload register is transferred to the counter. At the same time, an interrupt request signal is generated and the interrupt request bit in the timer Ai interrupt control register is set. This is repeated each time a trigger signal is received. The output pulse width is

1 pulse frequency of the selected clock

 \times (counter's value at the time of trigger). If the count start flag is "0", TAi_{OUT} goes "L". Therefore, the value corresponding to the desired pulse width must be written to timer Ai before setting the timer Ai count start flag.

As shown in Figure 23, a trigger signal can be received before the operation for the previous trigger signal is completed. In this case, the contents of the reload register is transferred to the counter by the trigger and then that value is decremented.

Except when retriggering while operating, the contents of the reload register is not transferred to the counter by triggering.

When retriggering, there must be at least one timer count source cycle before a new trigger can be issued.

Data write is performed to the same way as for timer mode. When data is written in timer Ai halted, it is also written to the reload register and the counter.

When data is written to timer Ai which is busy, the data is written to the reload register, but not to the counter. The counter is reloaded with new data from the reload register at the next reload time. Undefined data is read when timer Ai is read.

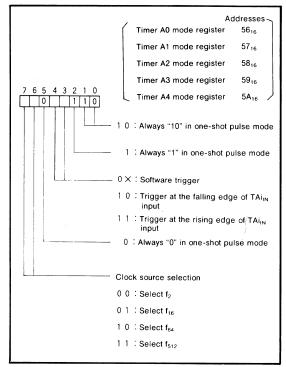


Fig. 20 Timer Ai mode register bit configuration during one-shot pulse mode

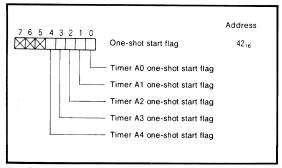


Fig. 21 One-shot start flag bit configuration

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

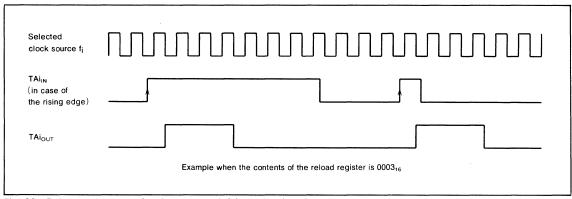


Fig. 22 Pulse output example when external rising edge is selected

Selected clock source f _i	
TAi _{IN} (in case of the rising edge)	
TAi _{out}	
	Example when the contents of the reload register is 0004 ₁₆

Fig. 23 Example when trigger is re-issued during pulse output

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

(4) Pulse width modulation mode [11]

Figure 24 shows the bit configuration of the timer Ai mode register during pulse width modulation mode. In pulse width modulation mode, bits 0, 1, and 2 must be set to "1". Bit 5 is used to determine whether to perform 16-bit length pulse width modulator or 8-bit length pulse width modulator. 16-bit length pulse width modulator is performed when bit 5 is "0" and 8-bit length pulse width modulator is performed when it is "1". The 16-bit length pulse width modulator is described first.

The pulse width modulator can be started with a software trigger or with an input signal from a TAi_{IN} pin (external trigger).

The software trigger mode is selected when bit 4 is "0". Pulse width modulator is started and pulse is output from TAi_{OUT} when the timer Ai start flag is set to "1".

The external trigger mode is selected when bit 4 is "1". Pulse width modulator starts when a trigger signal is input from the TAi_{IN} pin when the timer Ai start flag is "1". Whether to trigger at the fall or rise of the trigger signal is determined by bit 3. The trigger is at the fall of the trigger signal when bit 3 is "0" and at the rise when it is "1".

When data is written to timer Ai with the pulse width modulator halted, it is written to the reload register and the counter.

Then when the timer Ai start flag is set to "1" and a software trigger or an external trigger is issued to start modulation, the waveform shown in Figure 25 is output continuously. Once modulation is started, triggers are not accepted. If the value in the reload register is m, the duration "H" of pulse is

 $\frac{1}{\text{selected clock frequency}} \times m$ and the output pulse period is

 $\frac{1}{\text{selected clock frequency}} \times (2^{16} - 1).$

An interrupt request signal is generated and the interrupt request bit in the timer Ai interrupt control register is set at each fall of the output pulse.

The width of the output pulse is changed by updating timer data. The update can be performed at any time. The output pulse width is changed at the rise of the pulse after data is written to the timer.

The contents of the reload register are transferred to the counter just before the rise of the next pulse so that the pulse width is changed from the next output pulse.

Undefined data is read when timer Ai is read.

The 8-bit length pulse width modulator is described next. The 8-bit length pulse width modulator is selected when the timer Ai mode register bit 5 is "1".

The reload register and the counter are both divided into 8bit halves. The low order 8 bits function as a prescaler and the high order 8 bits function as the 8-bit length pulse width modulator. The prescaler counts the clock selected by bits 6 and 7. A pulse is generated when the counter reaches 0000_{16} as shown in Figure 26. At the same time, the contents of the reload register is transferred to the counter and count is continued.

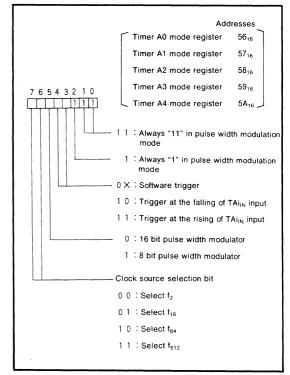


Fig. 24 Timer Ai mode register bit configuration during pulse width modulation mode

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

Therefore, if the low order 8-bit of the reload register is n, the period of the generated pulse is

the length is 8 bits. If the high order 8-bit of the reload register is m, the duration "H" of pulse is

selected clock frequency
$$\times (n+1)$$

1

The high order 8-bit function as an 8-bit length pulse width modulator using this pulse as input. The operation is the same as for 16-bit length pulse width modulator except that selected clock frequency $\times (n+1) \times m$.

And the output pulse period is

1

1 selected clock frequency $\times (n+1) \times (2^8-1)$.

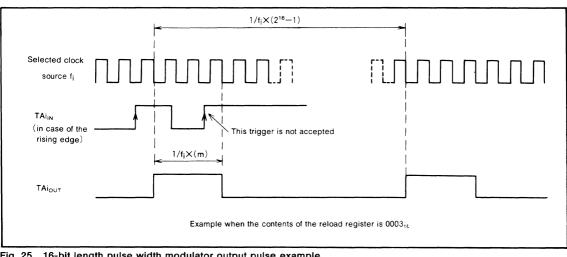
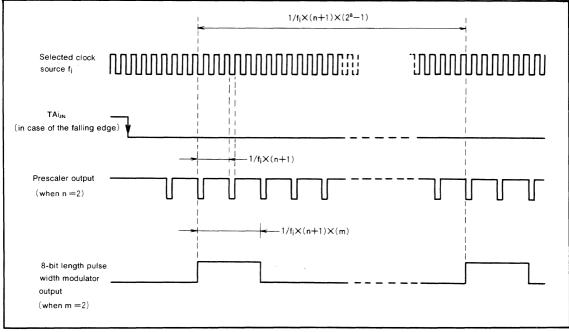
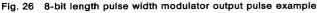




Fig. 25 16-bit length pulse width modulator output pulse example

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

TIMER B

Figure 27 shows a block diagram of timer B.

Timer B has three modes; timer mode, event counter mode, and pulse period measurement/pulse width measurement mode. The mode is selected with bits 0 and 1 of the timer Bi mode register (i = 0 to 2). Each of these modes is described below.

(1) Timer mode [00]

Figure 28 shows the bit configuration of the timer Bi mode register during timer mode. Bits 0, and 1 of the timer Bi mode register must always be "0" in timer mode.

Bits 6 and 7 are used to select the clock source. The counting of the selected clock starts when the count start flag is "1" and stops when "0".

As shown in Figure 13, the timer Bi count start flag is at the same address as the timer Ai count start flag. The count is decremented, an interrupt occurs, and the interrupt request bit in the timer Bi interrupt control register is set when the contents becomes 0000_{16} . At the same time, the contents of the reload register is stored in the counter and count is continued.

Timer Bi does not have a pulse output function or a gate function like timer A.

When data is written to timer Bi halted, it is written to the reload register and the counter. When data is written to timer Bi which is busy, the data is written to the reload register, but not to the counter. The counter is reloaded with new data from the reload register at the next reload time. The contents of the counter can be read at any time.

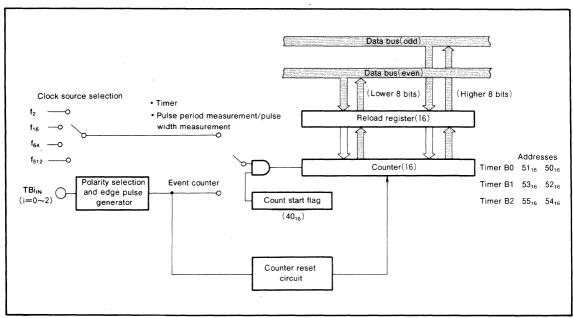


Fig. 27 Timer B block diagram

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

(2) Event counter mode [01]

Figure 29 shows the bit configuration of the timer Bi mode register during event counter mode. In event counter mode, the bit 0 in the timer Bi mode register must be "1" and bit 1 must be "0".

The input signal from the $\mathsf{TBi}_{\mathsf{IN}}$ pin is counted when the count start flag is "1" and counting is stopped when it is "0". Count is performed at the fall of the input signal when bits 2, and 3 are "0" and at the rise of the input signal when bit 3 is "0" and bit 2 is "1".

When bit 3 is "1" and bit 2 is "0", count is performed at the rise and fall of the input signal.

Data write, data read and timer interrupt are performed in the same way as for timer mode.

(3) Pulse period measurement/pulse width measurement mode [10]

Figure 30 shows the bit configuration of the timer Bi mode register during pulse period measurement/pulse width measurement mode.

In pulse period measurement/pulse width measurement mode, bit 0 must be "0" and bit 1 must be "1". Bits 6 and 7 are used to select the clock source. The selected clock is counted when the count start flag is "1" and counting stops when it is "0".

The pulse period measurement mode is selected when bit 3 is "0". In pulse period measurement mode, the selected clock is counted during the interval starting at the fall of the input signal from the TBi_{IN} pin to the next fall or at the rise of the input signal to the next rise and the result is stored in the reload register. In this case, the reload register acts as a buffer register.

When bit 2 is "0", the clock is counted from the fall of the input signal to the next fall. When bit 2 is "1", the clock is counted from the rise of the input signal to the next rise.

In the case of counting from the fall of the input signal to the next fall, counting is performed as follows. As shown in Figure 31, when the fall of the input signal from TBi_{IN} pin is detected, the contents of the counter is transferred to the reload register. Next the counter is cleared and count is started from the next clock. When the fall of the next input signal is detected, the contents of the counter is transferred to the reload register once more, the counter is cleared, and the count is started. The period from the fall of the input signal to the next fall is measured in this way.

After the contents of the counter is transferred to the reload register, an interrupt request signal is generated and the interrupt request bit in the timer Bi interrupt control register is set. However, no interrupt request signal is generated when the contents of the counter is transferred first time to the reload register after the count start flag is set to "1".

When bit 3 is "1", the pulse width measurement mode is selected. Pulse width measurement mode is similar to pulse period measurement mode except that the clock is counted from the fall of the TBi_{IN} pin input signal to the next rise or from the rise of the input signal to the next fall as shown in Figure 32.

When timer Bi is read, the contents of the reload register is read.

Note that in this mode, the interval between the fall of the TBi_{IN} pin input signal to the next rise or from the rise to the next fall must be at least two cycles of the timer count source.

Timer Bi overflow flag which is bit 5 of timer Bi mode register is set to "1" when the timer Bi counter reaches 0000_{16} . This flag is cleared by writing to corresponding timer Bi mode register. This bit is set to "1" at reset.

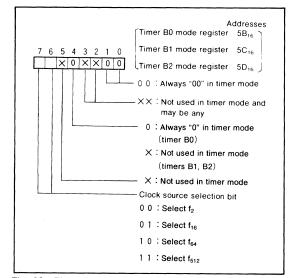


Fig. 28 Timer Bi mode register bit configuration during timer mode

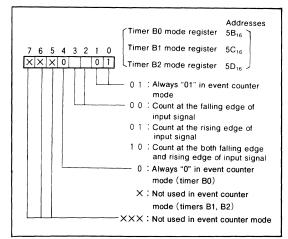


Fig. 29 Timer Bi mode register bit configuration during event counter mode

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

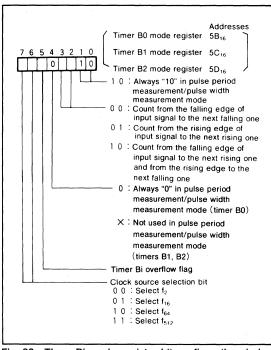


Fig. 30 Timer Bi mode register bit configuration during pulse period measurement/pulse width measurement mode

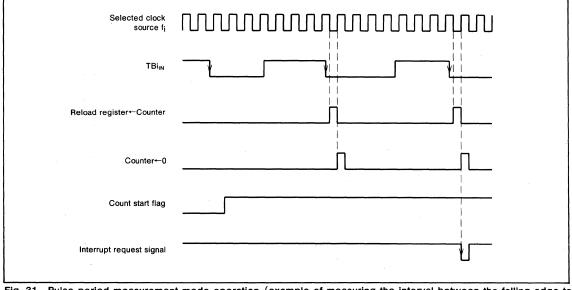
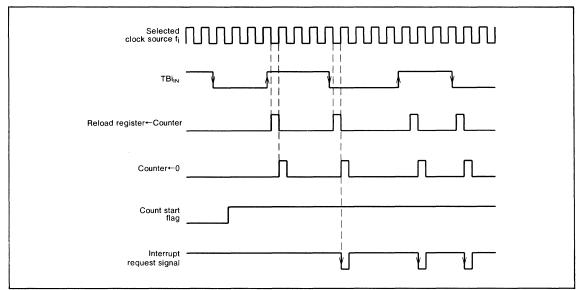
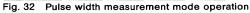




Fig. 31 Pulse period measurement mode operation (example of measuring the interval between the falling edge to next falling one)

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

PULSE OUTPUT PORT MODE

The M37710 can use several built-in timer As to output pulse motor drive waveform. This mode is described below. Figure 33 shows a block diagram for pulse output port mode. In the pulse output port mode, two pairs of 4-bit pulse output ports are used. There are three combinations of pulse output ports. When bit 0 of the waveform output selection bit in waveform output mode register (address 62₁₆) shown in Figure 34 is set to "1" and bit 1 is set to "0", RTP1₃, RTP1₂, RTP1₁, and RTP1₀ become pulse output ports. When bit 1 of waveform output selection bit in waveform output selection bit in waveform output selection bit 1 of waveform output selection bit in waveform output mode register is set to "1" and bit 0 is set to "0", RTP0₃, RTP0₂, RTP0₁, and RTP0₀ become pulse output

ports. The ports not used as pulse output ports can be used as normal parallel ports or timer input pins. When bit 0 and bit 1 of pulse output selection bit are set to "1", the two four-line sets RTP1₃, RTP1₂, RTP1₁, and RTP1₀ and RTP0₃, RTP0₂, RTP0₁, and RTP0₀ become pulse output ports. In the pulse output port mode, set timers A2 and A0 to timer mode as timers A2 and A0 are used. In addition, set bit 2 of the corresponding timer Ai mode register to "1" when using RTP0₀, RTP0₂, RTP1₀, RTP1₂, and RTP1₃ as pulse output port because they are shared with TAi_{OUT} (i = 0 to 4). Figure 35 shows the bit configuration of timer A0, A2 mode registers in pulse output port mode.

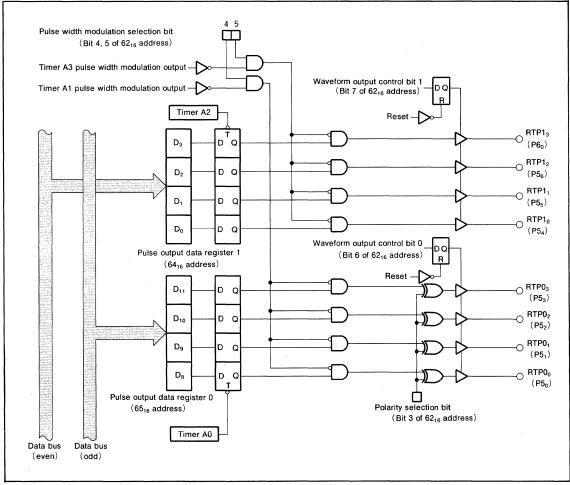


Fig. 33 Block diagram for pulse output port mode

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

Data can be set in each bit of the pulse output data register corresponding to four ports selected as pulse output ports. Figure 36 shows the bit configuration of the pulse output data register.

The contents of the pulse output data register 1 (low-order four bits of address 64_{16}) corresponding to ports RTP1₃, RTP1₂, RTP1₁, and RTP1₀ are output to the ports each time the counter of timer A2 becomes 0000_{16} . The contents of the pulse output data register 0 (low-order four bits of address 65_{16}) corresponding to ports RTP0₃, RTP0₂, RTP0₁, and RTP0₀ are output to the ports each time the counter of timer A0 becomes 0000_{16} .

Each timer starts counting when the content of the corresponding timer count start flag (address 40_{16}) is set to "1" and stops counting when it is set to "0". When "0" is written to a specified bit of the pulse output data register, "L" level is output to the corresponding pulse output port when the counter of corresponding timer becomes 0000_{16} , and when "1" is written, "H" level is output to the pulse output to the pulse output port. Pulse width modulation can be applied to each pulse output port. Since pulse width modulation involves the use of timers A3 and A1, activate these timers in pulse width modulation mode. When a certain bit of the pulse output register is "1", pulse width modulation is output from the pulse output port when the counter of the corresponding timer becomes 0000_{16} .

Ports RTP1₃, RTP1₂, RTP1₁, and RTP1₀ are applied pulse width modulation by setting the pulse width modulation selection bit by timer A3 (bit 5) of the waveform output mode register to "1".

Ports RTP0₃, RTP0₂, RTP0₁, and RTP0₀ are applied pulse width modulation by setting the pulse width modulation selection bit by timer A1 (bit 4) of the waveform output mode register to "1".

When outputting to pulse output ports $RTP0_3$, $RTP0_2$, $RTP0_1$, and $RTP0_0$, the output data can be reversed by the polarity selection bit (bit 3) of the waveform output mode register. When the polarity selection bit is "0", the contents of the pulse output data register 0 is output unchanged. When the polarity selection bit is "1", the reversed data of the contents of the pulse output data register 0 is output. When pulse width modulation is applied, likewise the polarity reverse to pulse width modulation can be selected by the polarity selection bit. Figure 37 shows example of waveforms in pulse output port mode.

Ports selecting pulse output port mode can control the output of RTP0₃, RTP0₂, RTP0₁, and RTP0₀ with the waveform output control bit 0 (bit 6) and the output of RTP1₃, RTP1₂, RTP1₁, and RTP1₀ with waveform output control bit 1 (bit 7). When the waveform output control bit is set to "1", waveform is output from the corresponding port. When it is set to "0", the waveform output from the corresponding port is stopped and the port becomes floating. These bits can be cleared with an instruction and cleared by reset.

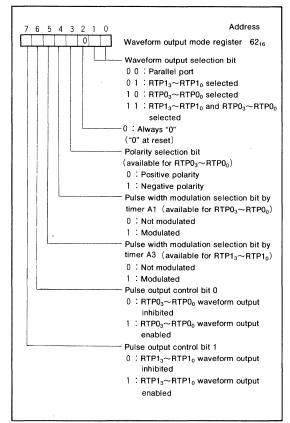


Fig. 34 Waveform output mode register bit configuration

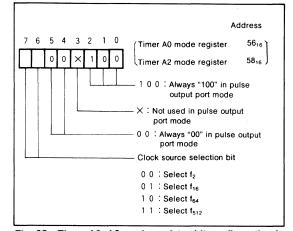


Fig. 35 Timer A0, A2 mode register bit configuration in pulse output port mode

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

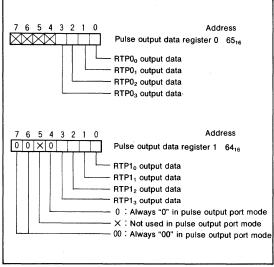


Fig. 36 Pulse output data register bit configuration

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

	Example of pulse output port (RTP1 ₃ , RTP1 ₂ , RTP1 ₁ , RTP1 ₀)
Output signal at each time when timer A2 becomes 0000 ₁₆	
RTP1 ₃ (Port P6 ₀)	
RTP1 ₂ (Port P5 ₆)	
RTP1 ₁ (Port P5 ₅)	
RTP1₀ (Port P5₄)	
	Example of the above pulse output port when pulse width modulation is applied by timer A3.
Output signal at each time when timer A2 becomes 0000 ₁₆	
RTP1 ₃ (Port P6 ₀)	
RTP1 ₂ (Port P5 ₆)	
RTP1, (Port P5 ₅)	
RTP1₀ (Port P5₄)	
	Example of pulse output port (RTP0 ₃ , RTP0 ₂ , RTP0 ₁ , RTP0 ₀) when pulse
Output signal at each	width modulation is applied by timer A1 with polarity selection bit="1"
time when timer A0 becomes 0000 ₁₆	
RTP0 ₃ (Port P5 ₃)	
RTP0 ₂ (Port P5 ₂)	
RTP0 ₁ (Port P5 ₁)	
RTP0 ₀ (Port P5 ₀)	

Fig. 37 Example of waveforms in pulse output port mode

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

SERIAL I/O PORTS

Two independent serial I/O ports are provided. Figure 38 shows a block diagram of the serial I/O ports.

Bits 0, 1, and 2 of the UARTi (i = 0, 1) Transmit/Receive mode register shown in Figure 39 are used to determine whether to use port P8 as parallel port, clock synchronous serial I/O port, or asynchronous (UART) serial I/O port using start and stop bits.

Figures 40 and 41 show the connections of receiver/transmitter according to the mode.

Figure 42 shows the bit configuration of the UARTi transmit/ receive control register.

Each communication method is described below.

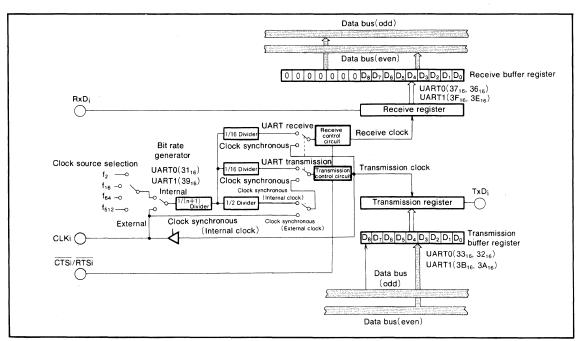


Fig. 38 Serial I/O port block diagram

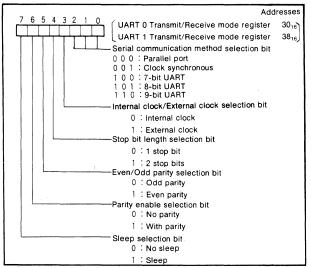
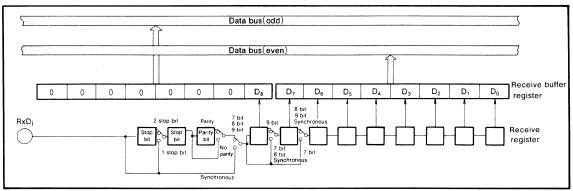



Fig. 39 UART i Transmit/Receive mode register bit configuration

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

Fig. 40 Receiver block diagram

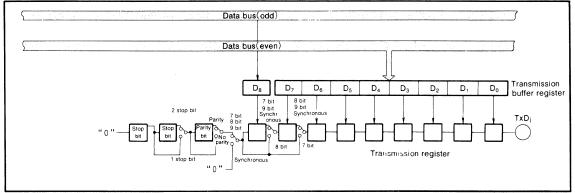
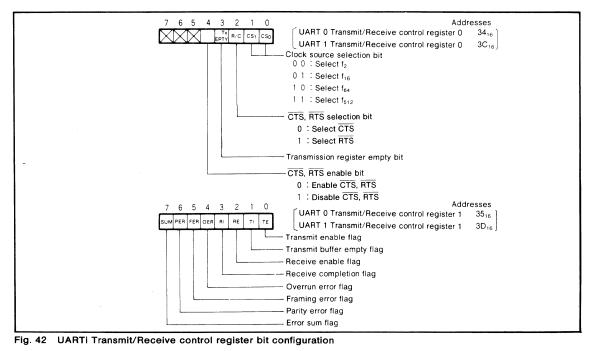



Fig. 41 Transmitter block diagram

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

CLOCK SYNCHRONOUS SERIAL COMMUNICATION

A case where communication is performed between two clock synchronous serial I/O ports as shown in Figure 43 will be described. (The transmission side will be denoted by subscript j and the receiving side will be denoted by subscript k.)

Bit 0 of the UARTj transmit/receive mode register and UARTk transmit/receive mode register must be set to "1" and bits 1 and 2 must be "0". The length of the transmission data is fixed at 8 bits.

Bit 3 of the UARTj transmit/receive mode register of the clock sending side is cleared to "0" to select the internal clock. Bit 3 of the UARTk transmit/receive mode register of the clock receiving side is set to "1" to select the external clock. Bits 4, 5 and 6 are ignored in clock synchronous mode. Bit 7 must always be "0".

The clock source is selected by bit 0 (CS_0) and bit 1 (CS_1) of the clock sending side UARTj transmit/receive control register 0. As shown in Figure 38, the selected clock is divided by (n + 1), then by 2, passed through a transmisson control circuit, and output as transmisson clock CLKj. Therefore, when the selected clock is fi,

Bit Rate=fi/{ $(n+1)\times 2$ }

On the clock receiving side, the CS_0 and CS_1 bits of the UARTk transmit/receive control register are ignored because an external clock is selected.

The bit 2 of the clock sending side UARTj transmit/receive control register 0 is cleared to "0" to select $\overline{\text{CTS}_j}$ input. The bit 2 of the clock receiving side is set to "1" to select $\overline{\text{RTS}_k}$ output.

Whether to use the $\overline{\text{CTS}}$ and $\overline{\text{RTS}}$ signals is determined by bit 4 of the UART transmit/receive control register 0. Set bit 4 to "0" when $\overline{\text{CTS}}$ and $\overline{\text{RTS}}$ signals are used, and to "1" when they are not used.

When $\overline{\text{CTS}}$ and $\overline{\text{RTS}}$ signals are not used, the CTS/RTS pin can be used as normal port. The following describes the case when the $\overline{\text{CTS}}$ and $\overline{\text{RTS}}$ signals are used. If $\overline{\text{CTS}}$ and $\overline{\text{RTS}}$ signals are not used, the $\overline{\text{CTS}}_j$ input condition is unnecessary and there is no $\overline{\text{RTS}}_k$ output.

Transmission

Transmission is started when the bit 0 (TEj flag) of UARTj transmit/receive control register 1 is "1", bit 1 (TIj flag) of one is "0", and $\overline{\text{CTSj}}$ input is "L". As shown in Figure 44, data is output from TxDj pin when transmission clock CLKj changes from "H" to "L". The data is output from the least significant bit.

The TIj flag indicates whether the transmission buffer register is empty or not. It is cleared to "0" when data is written in the transmission buffer register and set to "1" when the contents of the transmission buffer register is transferred to the transmission register. When the transmission register becomes empty after the contents has been transmitted, data is transferred automatically from the transmission buffer register to the transmission register if the next transmission start condition is satisfied. If the bit 2 of UARTj transmit/receive control register 0 is "1", $\overline{\text{CTS}}$ input is ignored and transmission start is controlled only by the TEj flag and TIj flag. Once transmission has started, the TEj flag, TIj flag, and $\overline{\text{CTS}}$ ignals are ignored until data transmission completes. Therefore, transmission is not interrupt when $\overline{\text{CTS}}$ input is changed to "H" during transmission.

The transmission start condition indicated by TEj flag, TIj flag, and $\overline{\text{CTS}j}$ is checked while the T_{ENDj} signal shown in Figure 44 is "H". Therefore, data can be transmitted continuously if the next transmission data is written in the transmission buffer register and TIj flag is cleared to "0" before the T_{ENDj} signal goes "H".

The bit 3 (TxEPTYj flag) of UARTj transmit/receive control register 0 changes to "1" at the next cycle after the T_{ENDj} signal goes "H" and changes to "0" when transmission starts. Therefore, this flag can be used to determine whether data transmission has completed.

When the Tlj flag changes from "0" to "1", the interrupt request bit in the UARTj transmission interrupt control register is set to "1".

Receive

Receive starts when the bit 2 (RE_k flag) of UART_k transmit/receive control register 1 is set to "1".

The $\overline{RTS_k}$ output is "H" when the RE_k flag is "0" and goes "L" when the RE_k flag changed to "1". It goes back to "H" when receive starts. Therefore, the $\overline{RTS_k}$ output can be used to determine whether the receive register is ready to receive. It is ready when $\overline{RTS_k}$ output is "L".

The data from the RxDk pin is retrieved and the contents of the receive register is shifted by 1 bit each time the transmission clock CLKj changes from "L" to"H". When an 8-bit data is received, the contents of the receive register is transferred to the receive buffer register and the bit 3 (RIk flag) of UARTk transmit/receive control register 1 is set to "1". In other words, the setting of the RIk flag indicates that the receive buffer register contains the received data. At this point, RTSj output goes "L" to indicate that the next data can be received. When the RIk flag changes from "0" to "1", the interrupt request bit in the UARTk receive interrupt control register is set to "1". Bit 4 (OERk flag) of UARTk transmit/receive control register is set to "1" when the next data is transferred from the receive register to the receive buffer register while RIk flag is "1", and indicates that the next data was transferred to the receive register before the contents of the receive buffer register was read. RIk and OERk flags are cleared automatically to "0" when the low-order byte of the receive buffer register is read. The OERk flag is also cleared when the REk flag is

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

cleared. Bit 5 (FER_k flag), bit 6 (PER_k flag), and bit 7 (SUM_k flag) are ignored in clock synchronous mode. As shown in Figure 38, with clock synchronous serial communication, data cannot be received unless the transmitter is operating because the receive clock is created from the transmission clock. Therefore, the transmitter must be operating even when there is no data to be sent from UART_k to UARTj.

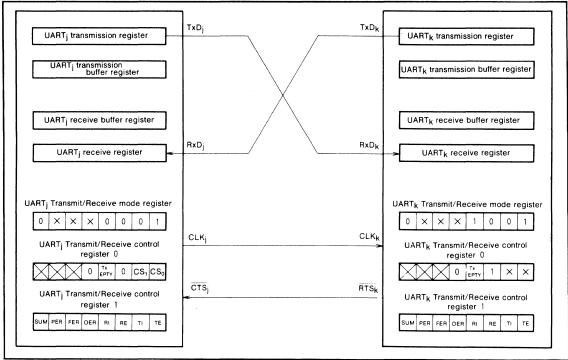


Fig. 43 Clock synchronous serial communication

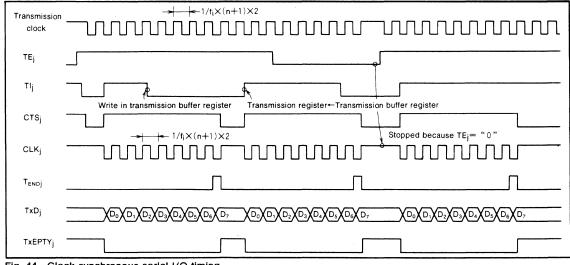


Fig. 44 Clock synchronous serial I/O timing

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

ASYNCHRONOUS SERIAL COMMUNICATION

Asynchronous serial communication can be performed using 7-, 8-, or 9-bit length data. The operation is the same for all data lengths. The following is the description for 8-bit asynchronous communication.

With 8-bit asynchronous communication, the bit 0 of UARTi transmit/receive mode register is "1", the bit 1 is "0", and the bit 2 is "1".

Bit 3 is used to select an internal clock or an external clock. If bit 3 is "0", an internal clock is selected and if bit 3 is "1", then external clock is selected. If an internal clock is selected, the bit 0 (CS_0) and bit 1 (CS_1) of UARTi transmit/ receive control register 0 are used to select the clock source. When an internal clock is selected for asynchronous serial communication, the CLKi pin can be used as a normal I/O pin.

The selected internal or external clock is divided by (n+1), then by 16, and passed through a control circuit to create the UART transmission clock or UART receive clock.

Therefore, the transmission speed can be changed by changing the contents **n** of the bit rate generator. If the selected clock is an internal clock fi or an external clock f_{EXT} ,

Bit Rate = $(f_i \text{ or } f_{EXT}) / \{ (n+1) \times 16 \}$

Bit 4 is the stop bit length selection bit to select 1 stop bit or 2 stop bits.

The bit 5 is a selection bit of odd parity or even parity.

In the odd parity mode, the parity bit is adjusted so that the sum of the 1's in the data and parity bit is always odd.

In the even parity mode, the parity bit is adjusted so that the sum of the 1's in the data and parity bit is always even.

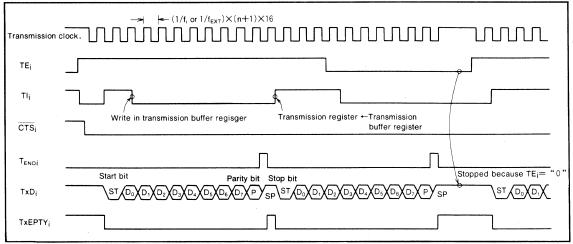


Fig. 45 Transmit timing example when 8-bit asynchronous communication with parity and 1 stop bit is selected

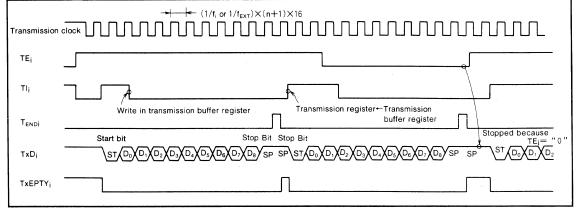


Fig. 46 Transmit timing example when 9-bit asynchronous communication with no parity and 2 stop bits is selected

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

Bit 6 is the parity bit selection bit which indicates whether to add parity bit or not.

Bits 4 to 6 should be set or reset according to the data format of the communicating devices.

Bit 7 is the sleep selection bit. The sleep mode is described later.

The UART_i transmit/receive control regisger 0 bit 2 is used to determine whether to use $\overline{\text{CTS}_i}$ input or $\overline{\text{RTS}_i}$ output. $\overline{\text{CTS}_i}$ input is used if bit 2 is "0" and $\overline{\text{RTS}_i}$ output is used if bit 2 is "1".

If $\overline{\text{CTS}}_i$ input is selected, the user can control whether to stop or start transmission by external $\overline{\text{CTS}}_i$ input.

Whether to use the $\overline{\text{CTS}}$ and $\overline{\text{RTS}}$ signals is determined by bit 4 of the UART transmit/receive control register 0. Set bit 4 to "0" when $\overline{\text{CTS}}$ and $\overline{\text{RTS}}$ signals are used, and to "1" when they are not used.

When $\overline{\text{CTS}}$ and $\overline{\text{RTS}}$ signals are not used, the $\overline{\text{CTS}}/\overline{\text{RTS}}$ pin can be used as normal port. The following describes the case when the $\overline{\text{CTS}}$ and $\overline{\text{RTS}}$ signals are used. If $\overline{\text{CTS}}$ and $\overline{\text{RTS}}$ signals are not used, the $\overline{\text{CTS}}_i$ input condition is unnecessary and there is no $\overline{\text{RTS}}_i$ output.

Transmission

Transmission is started when the bit 0 (TEi flag) of UART_i transmit/receive control register 1 is "1", the bit 1 (TI_i flag) is "0", and $\overline{\text{CTS}_i}$ input is "L" if $\overline{\text{CTS}_i}$ input is selected. As shown in Figure 45 and 46, data is output from the TxD_i pin with the stop bit and parity bit specified by the bits 4 to 6 of UART_i transmit/receive mode register. The data is output from the least significant bit.

The TI_i flag indicates whether the transmission butter is empty or not. It is cleared to "0" when data is written in the transmission buffer and set to "1" when the contents of the transmission buffer register is transferred to the transmission register. When the transmission register becomes empty after the contents has been transmitted, data is transferred automatically form the transmission buffer register to the transmission register if the next transmission start condition is satisfied.

Once transmission has started, the TE_i flag, TI_i flag, and $\overline{\text{CTS}_i}$ signal (if $\overline{\text{CTS}_i}$ input is selected) are ignored until data transmission is completed.

Therefore, transmission does not stop until it completes even if the TE_i flag is cleared during transmission.

The transmission start condition indicated by TE_i flag, TI_i flag, and $\overline{\text{CTS}_i}$ is checked while the T_{ENDi} signal shown in Figure 45 is "H". Therefore, data can be transmitted continuously if the next transmission data is written in the transmission butter register and TI_i flag is cleared to 0 before the T_{ENDi} signal goes "H".

The bit 3 (TxEPTY; flag) of UART; transmit/receive control register 0 changes to "1" at the next cycle after the T_{ENDi} signal goes "H" and changes to "0" when transmission starts. Therefore, this flag can be used to determine whether data transmission is completed.

When the Tl_i flag changes from "0" to "1", the interrupt request bit in the UART_i transmissoin interrupt control register is set to "1".

Receive

Receive is enabled when the bit 2 (REi flag) of UARTi transmit/receive control register 1 is set. As shown in Figure 47, the frequency divider circuit at the receiving end begin to work when a start bit is arrived and the data is received.

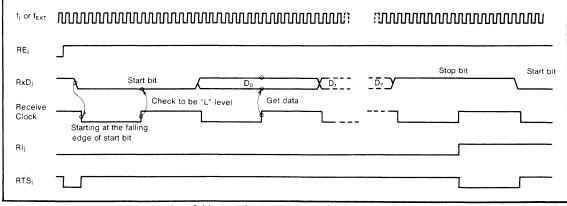


Fig. 47 Receive timing example when 8-bit asynchronous communication with no parity and 1 stop bit is selected

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

If $\overline{\text{RTS}_i}$ output is selected by setting the bit 2 of UART_i transmit/receive control register 0 to "1", the $\overline{\text{RTS}_i}$ output is "H" when the RE_i flag is "0". When the RE_i flag changes to "1", the $\overline{\text{RTS}_i}$ output goes "L" to indicate receive ready and returns to "H" once receive has started. In other words, $\overline{\text{RTS}_i}$ output can be used to determine externally whether the receive register is ready to receive.

The entire transmission data bits are received when the start bit passes the final bit of the receive block shown in Figure 40. At this point, the contents of the receive register is transferred to the receive buffer register and the bit 3 of UART₁ transmit/receive control register 1 is set. In other words, the Rl₁ flag indicates that the receive buffer register contains data when it is set. If $\overline{\text{RTS}_1}$ output is selected, $\overline{\text{RTS}_1}$ output goes "L" to indicate that the register is ready to receive the next data.

The interrupt request bit in the UART_i receive interrupt control register is set when the RI_i flag changes from "0" to "1".

The bit 4 (OER_i flag) of UART_i transmission control register 1 is set when the next data is transferred from the receive register to the receive buffer register while the Rl_i flag is "1". In other words when an overrun error occurs. If the OER_i flag is "1", it indicates that the next data has been transferred to the receive buffer register before the contents of the receive butter register has been read.

Bit 5 (FER; flag) is set when the number of stop bits is less than required (framing error).

Bit 6 (PER; flag) is set when a parity error occurs.

Bit 7 (SUM_i flag) is set when either the OER_i flag, FER_i flag, or the PER_i flag is set. Therefore, the SUM_i flag can be used to determine whether there is an error.

The setting of the RI_i flag, OER_i flag, FER_i flag, and the PERi flag is performed while transferring the contents of the receive register to the receive buffer register. The RI_i OER_i, FER_i, PER_i, and SUM_i flags are cleared when the low order byte of the receive buffer register is read or when the RE_i flag is cleared.

Sleep mode

The sleep mode is used to communicate only between certain microcomputers when multiple microcomputers are connected through serial I/O.

The sleep mode is entered when the bit 7 of UART_i transmit/receive mode register is set.

The operation of the sleep mode for an 8-bit asynchronous communication is described below.

When sleep mode is selected, the contents of the receive register is not transferred to the receive buffer register if bit 7 (bit 6 if 7-bit asynchronous communication and bit 8 if 9-bit asychronous communication) of the received data is "0". Also the RI_i, OER_i, FER_i, PER_i, and the SUM_i flag are unchanged. Therefore, the interrupt request bit of the UART_i receive interrupt control register is also unchanged.

Normal receive operation takes place when bit 7 of the received data is "1".

The following is an example of how the sleep mode can be used.

The main microcomputer first sends data with bit 7 set to "1" and bits 0 to 6 set to the address of the subordinate microcomputer which wants to communicate with. Then all subordinate microcomputers receive the same data. Each subordinate microcomputer checks the received data, clears the sleep bit if bits 0 to 6 are its own address and sets the sleep bit if not. Next the main microcomputer sends data with bit 7 cleared. Then the microcomputer with the sleep bit cleared will receive the data, but the microcomputer with the sleep bit set will not. In this way, the main microcomputer is able to communicate with only the designated microcomputer.

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

A-D CONVERTER

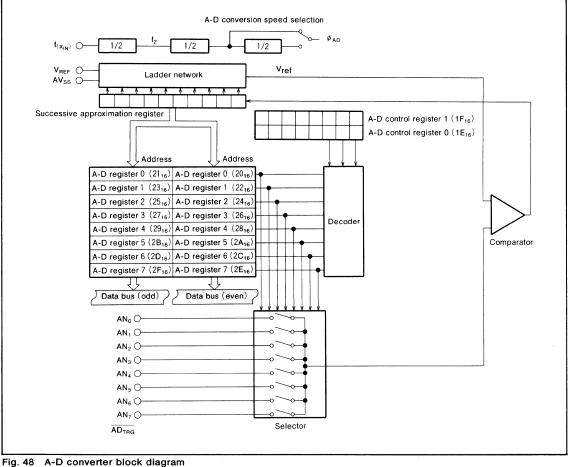
The A-D converter is a 10-bit successive approximation converter.

Figure 48 shows a block diagram of the A-D converter and Figure 49 shows the configuration of the A-D control register 0 (address 1E₁₆) and A-D control register 1 (address $1F_{16}$).

The frequency of the A-D converter operating clock ϕ_{AD} is selected by bit 7 of the A-D control register 0. When bit 7 is "0", ϕ_{AD} is the clock frequency divided by 8. That is, ϕ_{AD} $=f(X_{IN})/8$. When bit 7 is "1", ϕ_{AD} is the clock frequency divided by 4 and $\phi_{AD} = f(X_{IN})/4$.

The ϕ_{AD} during A-D conversion must be 250kHz minimum because the comparator consists of a capacity coupling amplifier

Bit 3 of A-D control register 1 is used to select whether to use the conversion result as 10 bits or as 8 bits. The conversion result is used as 10 bits when bit 3 is "1" and as 8 bits when bit 3 is "0".


When the conversion result is used as 10 bits, the loworder 8 bits of the conversion result is stored in the even address of the corresponding A-D register and the highorder two bits are stored in bits 0 and 1 of the odd address of the corresponding A-D register. Bits 2 to 7 of the A-D register odd address return "0000002" when read.

When the conversion result is used as 8 bits, the high-order 8 bits of the 10-bit A-D conversion are stored in even address of the corresponding A-D register. In this case, the A-D register odd address returns "00₁₆" when read.

The operating mode is selected by the bits 3 and 4 of A-D control register 0 and bits 1 and 2 of A-D control register 1. The available operating modes are one-shot, repeat, single sweep, repeat sweep 0, and repeat sweep 1.

The bit of data direction register bit corresponding to the A-D converter pin must be "0" (input mode) because the analog input port is shared with port P7.

The operation of each mode is described below.

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

(1) One-shot mode

One-shot mode is selected when bits 3 and 4 of A-D control register 0 are "0" and bit 2 of A-D control register 1 is "0". The A-D conversion pins are selected with bits 0 to 2 of A-D control register 0. A-D conversion can be started by a software trigger or by an external trigger.

A software trigger is selected when bit 5 of A-D control register 0 is "0" and an external trigger is selected when it is "1". When a software trigger is selected, A-D conversion is started when bit 6 (A-D conversion start flag) is set. When bit 3 of A-D control register 1 is "1", A-D conversion ends after 59 ϕ_{AD} cycles and an interrupt request bit of the A-D conversion interrupt control register is set. At the same time, A-D control register 0 bit 6 (A-D conversion start flag) is cleared and A-D conversion stops. The result of A-D conversion is stored in the A-D register corresponding to the selected pin.

If an external trigger is selected, A-D conversion starts when the A-D conversion start flag is "1" and the $\overline{AD_{TRG}}$ in-

put changes from "H" to "L". In this case, the pins that can be used for A-D conversion are AN_0 to AN_6 because the $\overline{AD_{TRG}}$ pin is shared with the analog voltage input pin AN_7 . The operation is the same as with software trigger except that the A-D conversion start flag is not cleared after A-D conversion and a retrigger can be available during A-D conversion.

(2) Repeat mode

Repeat mode is selected when bit 3 of A-D control register 0 is "1", bit 4 is "0" and bit 2 of A-D control register 1 is "0". The operation of this mode is the same as the operation of one-shot mode except that when A-D conversion of the selected pin is complete and the result is stored in the A-D register, conversion does not stop, but is repeated.

No interrupt request is issued in this mode. Furthermore, if software trigger is selected, the A-D conversion start flag is not cleared.

The contents of the A-D register can be read at any time.

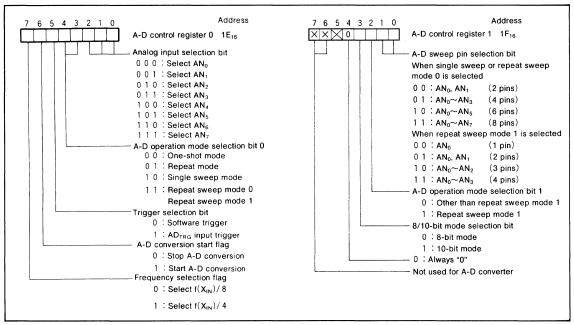


Fig. 49 A-D control register bit configuration

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

(3) Single sweep mode

Single sweep mode is selected when bit 3 of A-D control register 0 is "0", bit 4 is "1" and bit 2 of A-D control register 1 is "0".

In the single sweep mode, the number of analog input pins to be swept can be selected. Analog input pins are selected by bits 1 and 0 of the A-D control register 1 (address $1F_{16}$). Two pins, four pins, six pins, or eight pins can be selected as analog input pins, depending on the contents of these bits.

A-D conversion is performed only for selected input pins. After A-D conversion is performed for input of AN_0 pin, the conversion result is stored in A-D register 0, and in the same way, A-D conversion is performed for selected pins one after another. After A-D conversion is performed for all selected pins, the sweep is stopped.

A-D conversion can be started with a software trigger or with an external trigger input. A software trigger is selected when bit 5 is "0" and an external trigger is selected when it is "1".

When a software trigger is selected, A-D conversion is started when A-D control register 0 bit 6 (A-D conversion start flag) is set. When A-D conversion of all selected pins end, an interrupt request bit of the A-D conversion interrupt control register is set. At the same time, A-D conversion start flag is cleared and A-D conversion stops.

When an external trigger is selected, A-D conversion starts when the A-D conversion start flag is "1" and the $\overline{AD_{TRG}}$ input changes from "H" to "L". In this case, the A-D conversion result which is stored in the A-D register 7 becomes invalid because the $\overline{AD_{TRG}}$ pin is shared with AN₇ pin.

The operation by external trigger is the same as that done by software trigger except that the A-D conversion start flag is not cleared after A-D conversion and a retrigger can be available during A-D conversion.

(4) Repeat sweep mode 0

Repeat sweep mode 0 is selected when bit 3 of A-D control register 0 is "1", bit 4 is "1" and bit 2 of A-D control register 1 is "0".

The difference with the single sweep mode is that A-D conversion does not stop after converting from the AN_0 pin to the selected pins, but repeats again from the AN_0 pin. The repeat is performed among the selected pins. Also, no interrupt request is generated. Furthermore, if software trigger is selected, the A-D conversion start flag is not cleared. The A-D register can be read at any time.

(5) Repeat sweep mode 1

Repeat sweep mode 1 is selected when bit 3 of A-D control register 0 is "1", bit 4 is "1" and bit 2 of A-D control register 1 is "1".

The difference with the repeat sweep mode 0 is that A-D conversion of one unselected pin is performed and A-D conversion is repeated once again from AN_0 pin after A-D

conversion of selected pins is performed in sequence from AN_0 pin. The number of analog input pins to be swept is also different.

The analog input pins for repeat sweep are selected with bits 1 and 0 of A-D control register 1. The contents of these pins are used to select one pin, two pins, three pins, or four pins.

The unselected pins are converted in sequence after the conversion of pins selected as repeat sweep pins. No interrupt request is generated. Furthermore, if software trigger is selected, the A-D conversion start flag is not cleared. The A-D register can be read at any time.

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

D-A CONVERTER

The D-A converter is an 8-bit R-2R method D-A converter. Two independent D-A converters are built in. Figure 50 shows the block diagram of the D-A converter and Figure 51 shows the bit configuration of A-D control register 1.

D-A conversion is performed by writing a value in the corresponding D-A register. The conversion result is output by bits 6 and 7 of A-D control register 1 (address $1F_{16}$). When bit 7 is "1", the conversion result is output from DA₀ pin. When bit 6 is "1", the conversion result is output from DA₁ pin.

The output analog voltage V is determined from the value n (decimal) set in the D-A register.

 $V = V_{REF} \times n/256 \ (n = 0 \text{ to } 255)$

V_{REF}: Reference voltage

The D-A output enable bit is cleared to "0" at reset. An external buffer should be connected when connecting to a low impedance load because there is no built-in D-A output buffer.

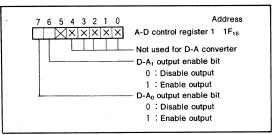


Fig. 51 A-D control register 1 bit configuration

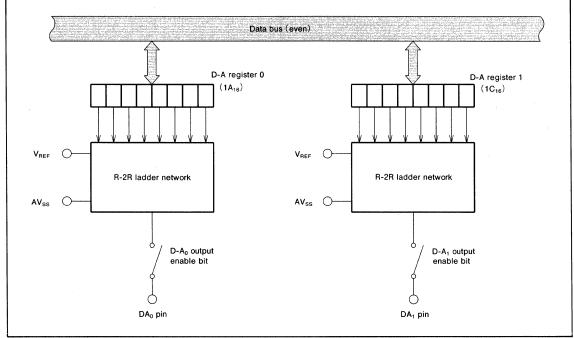


Fig. 50 D-A converter block diagram

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

WATCHDOG TIMER

The watchdog timer is used to detect unexpected execution sequence caused by software run-away.

Figure 52 shows a block diagram of the watchdog timer. The watchdog timer consists of a 12-bit binary counter.

The watchdog timer counts the clock frequency divided by $32 (f_{32})$ or by $512 (f_{512})$. Whether to count f_{32} or f_{512} is determined by the watchdog timer frequency selection flag shown in Figure 53. f_{512} is selected when the flag is "0" and f_{32} is selected when it is "1". The flag is cleared after reset. FFF₁₆ is set in the watchdog timer when "L" or $2V_{CC}$ is applied to the RESET pin, STP instruction is executed, data is written to the watchdog timer, or the most significant bit of the watchdog timer become "0".

After FFF₁₆ is set in the watchdog timer, the contents of watchdog timer is decremented by one at every cycle of selected frequency f_{32} or f_{512} , and after 2048 counts, the most significant bit of watchdog timer become "0", and a watchdog timer interrupt request bit is set, and FFF₁₆ is preset in the watchdog timer.

Normally, a program is written so that data is written in the watchdog timer before the most significant bit of the watchdog timer become "0". If this routine is not executed due to unexpected program execution, the most significant bit of the watchdog timer become eventually "0" and an interrupt is generated.

The processor can be reset by setting the bit 3 (software reset bit) of processor mode register 0 described in Figure 10 in the interrupt section and generating a reset pulse.

The watchdog timer stops its function when the RESET pin voltage is raised to double the V_{CC} voltage.

The watchdog timer can also be used to recover from when the clock is stopped by the STP instruction. Refer to the section on clock generation circuit for more details.

The watchdog timer hold the contents during a hold state and the frequency is stopped to input.

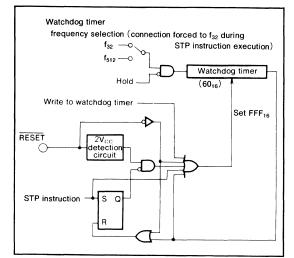


Fig. 52 Watchdog timer block diagram

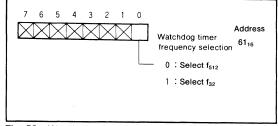


Fig. 53 Watchdog timer frequency selection flag

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

RESET CIRCUIT

Reset occurs when the RESET pin is returned to "H" level after holding it at "L" level when the power voltage is at 5V $\pm 10\%$. Program execution starts at the address formed by setting the address pins $A_{23} \sim A_{16}$ to 00_{16} , $A_{15} \sim A_8$ to the contents of address FFFF₁₆, and $A_7 \sim A_0$ to the contents of address FFFE₁₆.

Figure 54 shows the status of the internal registers when a reset occurs.

Figure 55 shows an example of a reset circuit. The reset input voltage must be held 0.9V or lower when the power voltage reaches 4.5V.

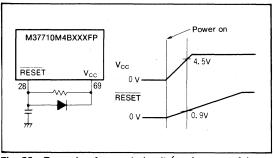


Fig. 55 Example of a reset circuit (perform careful evaluation at the system design level before using)

		Address				Address	
(1)	Port P0 data direction register	(04 ₁₆)…	0016	(29)	Processor mode register 0	(5E ₁₆)…	0016
(2)	Port P1 data direction register	(05 ₁₆)…	0016	(30)	Processor mode register 1	(5F ₁₆)…	
(3)	Port P2 data direction register	(08 ₁₆)…	0016	(31)	Watchdog timer (6016)	FFF ₁₆
(4)	Port P3 data direction register	(09 ₁₆)…		(32)	Watchdog timer frequency selection flag	(61 ₁₆)…	
(5)	Port P4 data direction register	(0C ₁₆)	0016	(3 3)	Waveform output mode register	(6216)…	0016
(6)	Port P5 data direction register	(0D ₁₆)…	0016	(34)	Reserved area (Do not write to this addre	ess)(66 ₁₆)…	0016
(7)	Port P6 data direction register	$(10_{16})\cdots$	0016	(35)	A-D conversion interrupt control register	(70 ₁₆)…	
(8)	Port P7 data direction register	(11 ₁₆)	0016	(36)	UART 0 transmission interrupt control register	(71 ₁₆)…	
(9)	Port P8 data direction register	(14 ₁₆)…	0016	(37)	UART 0 receive interrupt control register	(72 ₁₆)…	
(10)	A-D control register 0	$(1E_{16})\cdots$	00000???	(38)	UART 1 transmission interrupt control register	(73 ₁₆)…	
(11)	A-D control register 1	$(\mathbf{1F_{16}})\cdots$	0 0 0 0 0 1 1	(39)	UART 1 receive interrupt control register	(74 ₁₆)…	
(12)	UART 0 Transmit/Receive mode register	(3016)	0016	(40)	Timer A0 interrupt control register	(75 ₁₆)…	
(13)	UART 1 Transmit/Receive mode register	(38 ₁₆)	0016	(41)	Timer A1 interrupt control register	(76 ₁₆)…	
(14)	UART 0 Transmit/Receive control register 0	(34 ₁₆)	0 1 0 0 0	(42)	Timer A2 interrupt control register	(77 ₁₆)…	
(15)	UART 1 Transmit/Receive control register 0	$(3C_{16})\cdots$	0 1 0 0 0	(43)	Timer A3 interrupt control register	(78 ₁₆)…	
(16)	UART 0 Transmit/Receive control register 1	(35 ₁₆)…	0 0 0 0 0 0 1 0	(44)	Timer A4 interrupt control register	(79 ₁₆)…	
(17)	UART 1 Transmit/Receive control register 1	$(3D_{16})\cdots$	0 0 0 0 0 0 1 0	(45)	Timer B0 interrupt control register	$(7A_{16})\cdots$	
(18)	Count start flag	(40 ₁₆)…	0016	(46)	Timer B1 interrupt control register	(7B ₁₆)…	
(19)	One-shot start flag	(42 ₁₆)…		(47)	Timer B2 interrupt control register	(7C ₁₆)	
(20)	Up-down flag	(44 ₁₆)…	0016	(48)	INT 0 interrupt control register	(7D ₁₆)…	
(21)	Timer A0 mode register	(56 ₁₆)…	0016	(49)	INT 1 interrupt control register	(7E ₁₆)…	
(22)	Timer A1 mode register	(57 ₁₆)…	0016	(50)	INT 2 interrupt control register	(7F ₁₆)…	
(23)	Timer A2 mode register	(58 ₁₆)…	0016	(51)	Processor status register PS	0 0 0	? ? 0 0 0 1 ? '
(24)	Timer A3 mode register	(59 ₁₆)…	0016	(52)	Program bank register PG		0016
(25)	Timer A4 mode register	$(5A_{16})\cdots$	0016	(53)	Program counter PC _H		Content of FFFF16
(26)	Timer B0 mode register	(5B ₁₆)…	0 0 1 0 0 0 0 0	(54)	Program counter PCL		Content of FFFE16
(27)	Timer B1 mode register	(5C ₁₆)…	0 0 1 0 0 0 0	(55)	Direct page register DPR		000016
(28)	Timer B2 mode register	(5D ₁₆)…	0 0 1 0 0 0 0	(56)	Data bank register DT		0016

Fig. 54 Microcomputer internal status during reset

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

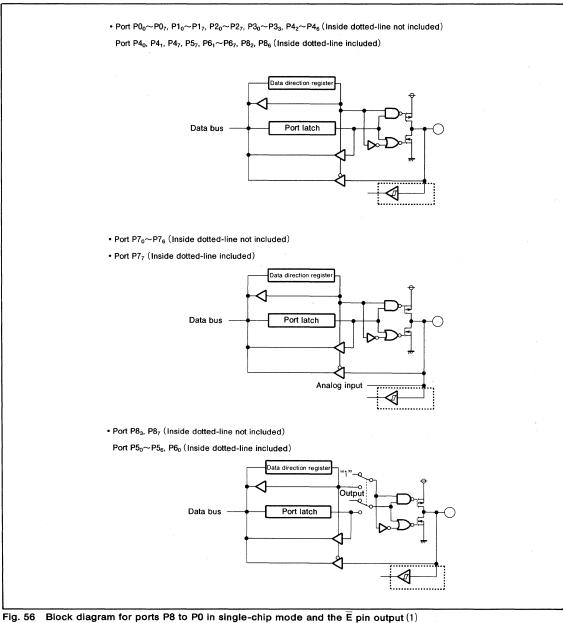
INPUT/OUTPUT PINS

Ports P8 to P0 all have a data direction register and each bit can be programmed for input or output. A pin becomes an output pin when the corresponding data direction register is set and an input pin when it is cleared.

When pin programmed for output, the data is written to the port latch and it is output to the output pin. When a pin is programmed for output, the contents of the port latch is read instead of the value of the pin. Therefore, a previously output value can be read correctly even when the output "L" voltage is raised due to reasons such as directly driving an LED.

A pin programmed for input is floating and the value input to the pin can be read. When a pin is programmed for input, the data is written only in the port latch and the pin stays floating.

If an input/output pin is not used as an output port, clear the bit of the corresponding data direction register so that the pin become input mode.


Figures 56 and 57 show block diagrams of ports P8 to P0 in single-chip mode and the \overline{E} pin output.

In memory expansion mode, microprocessor mode, and evaluation chip mode, ports P4 to P0 are also used as address, data, and control signal pins.

Refer to the section on processor modes for more details.

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

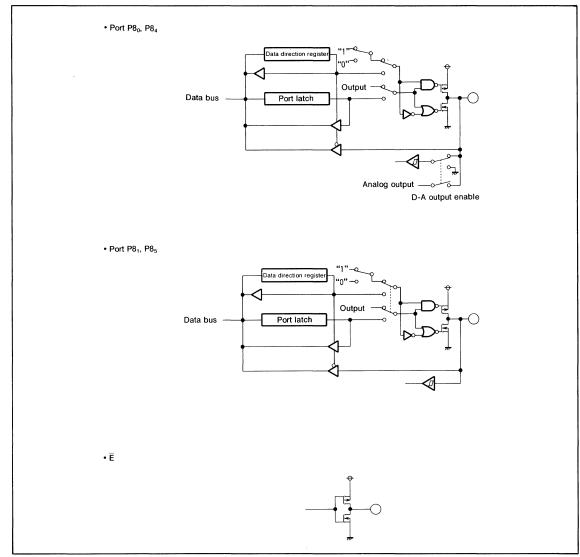


Fig. 57 Block diagram for ports P8 to P0 in single-chip mode and \overline{E} pin output (2)

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

PROCESSOR MODE

The bits 0 and 1 of processor mode register 0 as shown in Figure 58 are used to select any mode of single-chip mode, memory expansion mode, microprocessor mode, and evaluation chip mode.

Ports P3 to P0 and a part of port P4 are used as address, data, and control signal I/O pins except in single-chip mode.

Figure 59 shows the functions of ports P4 to P0 in each mode.

The external memory area changes when the mode changes.

Figure 60 shows the memory map for each mode.

Refer to Figure 1 for the memory map of the single-chip mode. The external memory area can be accessed except in single-chip mode. The accessing of the external memory is affected by the BYTE pin, the bit 2 (wait bit) of processor mode register 0, and bit 0 (wait selection bit) of processor mode register 1. These will be described next.

BYTE pin

When accessing the external memory, the level of the BYTE pin is used to determine whether to use the data bus as 8-bit width or 16-bit width.

The data bus width is 8 bits when the level of the BYTE pin is "H" and port P2 becomes the data I/O pin.

The data bus width is 16 bits when the level of the BYTE pin is "L" and ports P1 and P2 become the data I/O pins.

When accessing the internal memory, the data bus width is always 16 bits regardless of the BYTE pin level.

An exclusive mode in the evaluation chip mode allows the BYTE pin level to be set to $2 \cdot V_{CC}$. In this case, the operation is slightly different from the above. This is described in the evaluation chip mode section.

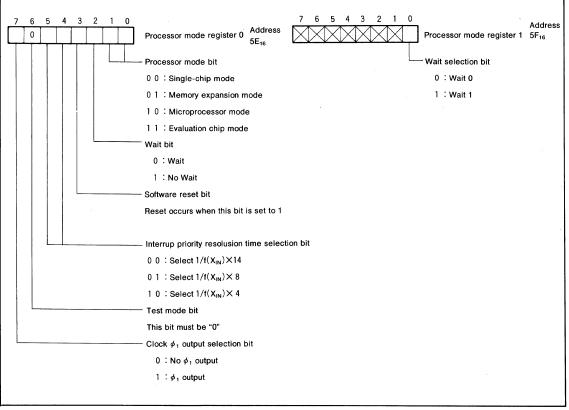
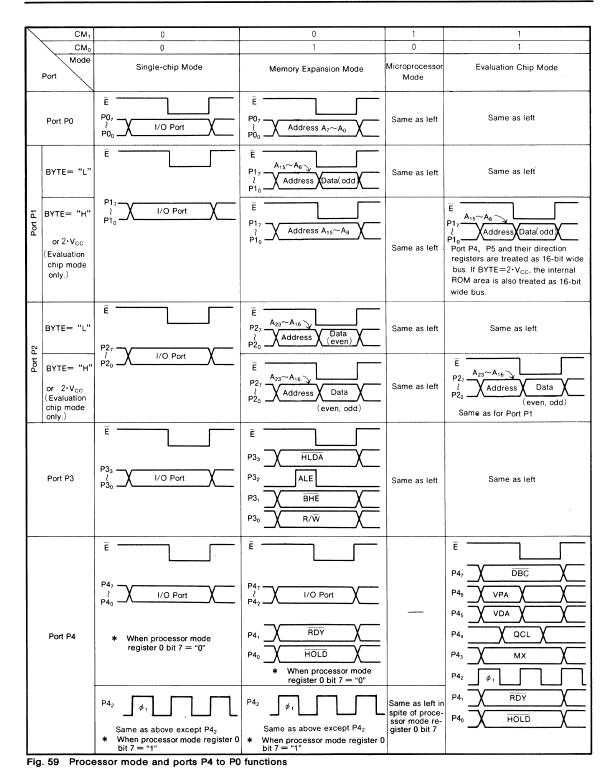



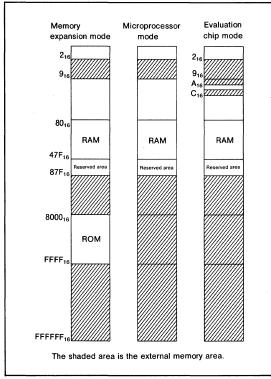
Fig. 58 Processor mode register bit configulation

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

Wait bit

As shown in Figure 61, when the external memory area is accessed with the processor mode register 0 (address $5E_{16}$) bit 2 (wait bit) cleared to "0", the access time can be extended compared with no wait (the wait bit is "1").


The access time is extended in two ways and this is selected with bit 0 (wait selection bit) of processor mode register 1 (address $5F_{16}).$

When this bit is "1", the access time is 1.5 times compared to that for no wait. When this bit is "0", the access time is twice compared to that for no wait.

At reset the wait bit is "0" and bit 0 of processor mode register 1 is "0".

The accessing of internal memory area is performed in no wait mode regardless of the wait bit.

The processor modes are described below.

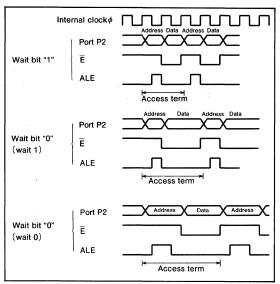


Fig. 61 Relationship between wait bit, wait selection bit, and access time

(1) Single-chip mode [00]

Single-chip mode is entered by connecting the CNV_{SS} pin to V_{SS} and starting from reset. Ports P4 to P0 all function as normal I/O ports. Port P4₂ can be the ϕ_1 output pin divided the clock to X_{IN} pin by 2 by setting bit 7 of processor mode register 0 to "1"

(2) Memory expansion mode [01]

Memory expansion mode is entered by setting the processor mode bits to "01" after connecting the CNV_{SS} pin to V_{SS} and starting from reset.

Port P0 becomes an address output pin and loses its I/O port function.

Port P1 has two functions depending on the level of the BYTE pin.

When the BYTE pin level is "L", port P1 functions as an address output pin while \overline{E} is "H" and as an odd address data I/O pin while \overline{E} is "L". However, if an internal memory is read, external data is ignored while \overline{E} is "L". In this case the I/O port function is lost.

When the BYTE pin level "H", port P1 functions as an address output pin and loses its I/O port function.

Port P2 has two functions depending on the level of the BYTE pin.

When the BYTE pin level is "L", port P2 functions as an address output pin while \overline{E} is "H" and as an even address data I/O pin while \overline{E} is "L". However, if an internal memory is read, external data is ignored while \overline{E} is "L".

When the BYTE pin level is "H", port P2 functions as an address output pin while \overline{E} is "H" and as an even and odd address data I/O pin while \overline{E} is "L". However, if an internal memory is read, external data is ignored while \overline{E} is "L". In this case the I/O port function is lost.

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

Ports P3₀, P3₁, P3₂, and P3₃ become R/\overline{W} , \overline{BHE} , ALE, and \overline{HLDA} output pin respectively and lose their I/O port functions.

 R/\overline{W} is a read/write signal which indicates a read when it is "H" and a write when it is "L".

BHE is a byte high enable signal which indicates that an odd address is accessed when it is "L".

Therefore, two bytes at even and odd addresses are accessed simultaneously if address A_0 is "L" and $\overline{\text{BHE}}$ is "L".

ALE is an address latch enable signal used to latch the address signal from a multiplexed signal of address and data. The latch is transparent while ALE is "H" to let the address signal pass through and held while ALE is "L".

HLDA is a hold acknowledge signal and is used to notify externally when the microcomputer receives HOLD input and enters into hold state.

Ports $P4_0$ and $P4_1$ become HOLD and RDY input pin respectively and lose their output pin function, but the input pin function remains.

HOLD is a hold request signal. It is an input signal used to put the microcomputer in hold state. HOLD input is accepted when the internal clock ϕ falls from "H" level to "L" level while the bus is not used. Ports P0, P1, P2, P3₀, and P3₁ are floating while the microcomputer stays in hold state. These ports are floating after one cycle of the internal clock ϕ later than HLDA signal changes to "L" level. At the removing of hold state, these ports are removed from floating state after one cycle of ϕ later than HLDA signal changes to "H" level.

RDY is a ready signal. If this signal goes "L", the internal clock ϕ stops at "L". When ϕ_1 output from port P4₂ is selected by setting bit 7 of processor mode register 0 to "1", ϕ_1 output keeps on. **RDY** is used when slow external memory is attached.

(3) Microprocessor mode [10]

Microprocessor mode is entered by connecting the CNV_{SS} pin to V_{CC} and starting from reset. It can also be entered by programming the processor mode bits to "10" after connecting the CNV_{SS} pin to V_{SS} and starting from reset. This mode is similar to memory expansion mode except that internal ROM is disabled and an external memory is required, and ϕ_1 from port P4₂ is always output in spite of bit 7 of processor mode register 0.

(4) Evaluation chip mode [11]

Evaluation chip mode is entered by applying voltage twice the V_{CC} voltage to the CNV_{SS} pin. This mode is normally used for evaluation tools.

The functions of ports P0 and P3 are the same as in memory expansion mode.

Port P1 functions as an address output pin while \overline{E} is "H" and as data I/O pin of odd addresses while \overline{E} is "L" regardless of the BYTE pin level. However, if an internal memory is read, external data is ignored while \overline{E} is "L".

Port P2 function as an address output pin while \overline{E} is "H" and as data I/O pin of even addresses while \overline{E} is "L" when the BYTE pin level is "L". However, if an internal memory is read, external data is ignored while \overline{E} is "L".

When the BYTE pin level is "H" or $2 \cdot V_{CC}$, port P2 functions as an address output pin while \overline{E} is "H" and as data I/O pin of even and odd addresses while \overline{E} is "L". However, if an internal memory is read, external data is ignored while \overline{E} is "L".

Port P4 and its data direction register which are located at address $0A_{16}$ and $0C_{16}$ are treated differently in evaluation chip mode. When these addresses are accessed, the data bus width is treated as 16 bits regardless of the BYTE pin level, and the access cycle is treated as internal memory regardless of the wait bit.

When a voltage twice the V_{CC} voltage is applied to the BYTE pin, the addresses corresponding to the internal ROM area are also treated as 16-bit data bus.

The functions of ports $P4_0$ and $P4_1$ are the same as in memory expansion mode.

Ports P4₂ to P4₆ become ϕ_1 , MX, QCL, VDA, and VPA output pins respectively. Port P4₇ becomes the DBC input pin.

 ϕ_1 from port P4₂ divided the clock to X_{IN} pin by 2 is always output in spite of bit 7 of processor mode register 0.

The MX signal normally contains the contents of flag m, but the contents of flag x is output if the CPU is using flag x.

QCL is the queue buffer clear signal. It becomes "H" when the instruction queue buffer is cleared, for example, when a jump instruction is executed.

VDA is the valid data address signal. It becomes "H" while the CPU is reading data from data buffer or writing data to data buffer. It also becomes "H" when the first byte of the instruction (operation code) is read from the instruction queue buffer.

VPA is the valid program address signal. It becomes "H" while the CPU is reading an instruction code from the instruction queue buffer.

 $\overline{\text{DBC}}$ is the debug control signal and is used for debugging. Table 5 shows the relationship between the CNV_{SS} pin input levels and processor modes.

Table 5. Relationship between the CNV_{SS} pin input levels and processor modes

CNV _{SS}	Mode	Description
	 Single-chip 	Single-chip mode upon start-
	Memory expansion	ing after reset. Other modes
Vss	Microprocessor	can be selected by changing
	 Evaluation chip 	the processor mode bit by
		software.
	Microprocessor	Microprocessor mode upon
	 Evaluation chip 	starting after reset. Evaluation
Vcc		chip mode can be selected
		by changing the processor
		mode bit by software.
2 • V _{cc}	Evaluation chip	Evaluation chip mode only.

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

CLOCK GENERATING CIRCUIT

Figure 62 shows a block diagram of the clock generator. When an STP instruction is executed, the internal clock ϕ stops oscillating at "L" level. At the same time, FFF₁₆ is written to watchdog timer and the watchdog timer input connection is forced to f₃₂. This connection is broken and connected to the input determined by the watchdog timer frequency selection flag when the most significant bit of the watchdog timer is cleared or reset.

Oscillation resumes when an interrupt is received, but the internal clock ϕ remains at "L" level until the most significant bit of the watchdog timer is cleared. This is to avoid the unstable interval at the start of oscillation when using a ceramic resonator.

When a WIT instruction is executed, the internal clock ϕ stops at "L" level, but the oscillator does not stop. The clock is restarted when an interrupt is received. Instructions can be executed immediately because the oscillator is not stopped.

The stop or wait state is released when an interrupt is received or when reset is issued. Therefore, interrupts must be enabled before executing a STP or WIT instruction.

Figure 63 shows a circuit example using a ceramic (or quartz crystal) resonator. Use the manufacturer's recommended values for constants such as capacitance which differ for each resonator. Figure 64 shows an example of using an external clock signal.

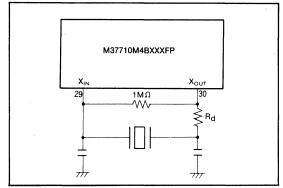


Fig. 63 Circuit using a ceramic resonator

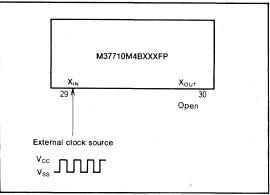


Fig. 64 External clock input circuit

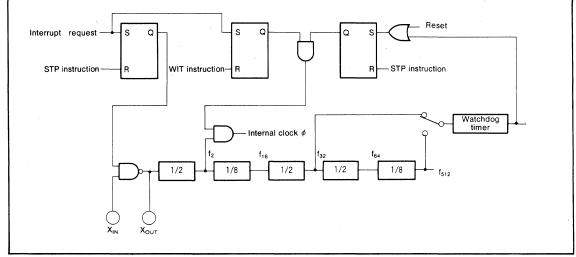


Fig. 62 Block diagram of a clock generator

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

ADDRESSING MODES

The M37710M4BXXXFP has 28 powerful addressing modes. Refer to the MELPS 7700 addressing mode description for the details of each addressing mode.

MACHINE INSTRUCTION LIST

The M37710M4BXXXFP has 103 machine instructions. Refer to the MELPS 7700 machine instruction list for details.

DATA REQUIRED FOR MASK ROM ORDERING

- Please send the following data for mask orders.
- (1) M37710M4BXXXFP mask ROM order confirmation form
- (2) 80P6N mark specification form
- (3) ROM data (EPROM 3 sets)

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

Symbol	Parameter	Conditions	Ratings	Unit
V _{cc}	Supply voltage		-0.3~7	V
AVcc	Analog supply voltage		-0.3~7	v
V ₁	Input voltage RESET, CNV _{SS} , BYTE		-0.3~12	v
Vi	Input voltage P0 ₀ ~P0 ₇ , P1 ₀ ~P1 ₇ , P2 ₀ ~P2 ₇ , P3 ₀ ~P3 ₃ , P4 ₀ ~P4 ₇ , P5 ₀ ~P5 ₇ , P6 ₀ ~P6 ₇ , P7 ₀ ~P7 ₇ , P8 ₀ ~P8 ₇ , V _{REF} , X _{IN}		$-0.3 \sim V_{\rm cc} + 0.3$	v
Vo	Output voltage P0 ₀ ~P0 ₇ , P1 ₀ ~P1 ₇ , P2 ₀ ~P2 ₇ , P3 ₀ ~P3 ₃ , P4 ₀ ~P4 ₇ , P5 ₀ ~P5 ₇ , P6 ₀ ~P6 ₇ , P7 ₀ ~P7 ₇ , P8 ₀ ~P8 ₇ , X _{0U7} , Ē		-0.3~V _{cc} +0.3	v
Pd	Power dissipation	T _a =25°C	300	mW
Topr	Operating temperature		-20~85	°C
Tstg	Storage temperature		-40~150	°C

ABSOLUTE MAXIMUM RATINGS

RECOMMENDED OPERATING CONDITIONS ($v_{cc}=5v\pm10\%$, $T_a=-20\sim85$ °C, unless otherwise noted)

Symbol	Parameter	L	Limits		Unit
	- dramotor	Min.	Тур.	Max.	
V _{cc}	Supply voltage	4.5	5.0	5.5	v
AVcc	Analog supply voltage		v_{cc}		v
Vss	Supply voltage		0		v
AV _{SS}	Analog supply voltage		0		v
V _{IH}	High-level input voltage P0 ₀ ~P0 ₇ , P3 ₀ ~P3 ₃ , P4 ₀ ~P4 ₇ , P5 ₀ ~P5 ₇ , P6 ₀ ~P6 ₇ , P7 ₀ ~P7 ₇ , P8 ₀ ~P8 ₇ , X _{IN} , RESET, CNV _{SS} , BYTE	0.8V _{cc}		V _{cc}	v
VIH	High-level input voltage $P1_0 \sim P1_7$, $P2_0 \sim P2_7$ (in single-chip mode)	0.8V _{cc}		V _{cc}	v
VIH	High-level input voltage P1 ₀ ~P1 ₇ , P2 ₀ ~P2 ₇ (in memory expansion mode and microprocessor mode)	0.5V _{cc}		V _{cc}	v
VIL	$\begin{array}{llllllllllllllllllllllllllllllllllll$	0		0. 2V _{CC}	v
VIL	Low-level input voltage P1 ₀ ~P1 ₇ , P2 ₀ ~P2 ₇ (in single-chip mode)	0		0.2V _{cc}	v
VIL	Low-level input voltage P1 ₀ ~P1 ₇ , P2 ₀ ~P2 ₇ (in memory expansion mode and microprocessor mode)	0		0. 16V _{cc}	v
I _{он(peak)}	High-level peak output current P0 ₀ ~P0 ₇ , P1 ₀ ~P1 ₇ , P2 ₀ ~P2 ₇ , P3 ₀ ~P9 ₃ , P4 ₀ ~P4 ₇ , P5 ₀ ~P5 ₇ , P6 ₀ ~P6 ₇ , P7 ₀ ~P7 ₇ , P8 ₀ ~P8 ₇			-10	mA
I _{он(avg)}	High-level average output current P0 ₀ ~P0 ₇ , P1 ₀ ~P1 ₇ , P2 ₀ ~P2 ₇ , P3 ₀ ~P3 ₃ , P4 ₀ ~P4 ₇ , P5 ₀ ~P5 ₇ , P6 ₀ ~P6 ₇ , P7 ₀ ~P7 ₇ , P8 ₀ ~P8 ₇			—5	mA
I _{OL} (peak)	Low-level peak output current P0 ₀ ~P0 ₇ , P1 ₀ ~P1 ₇ , P2 ₀ ~P2 ₇ , P3 ₀ ~P3 ₃ , P4 ₀ ~P4 ₇ , P5 ₀ ~P5 ₇ , P6 ₀ ~P6 ₇ , P7 ₀ ~P7 ₇ , P8 ₀ ~P8 ₇			10	mA
I _{OL(avg)}	Low-level average output current P0 ₀ ~P0 ₇ , P1 ₀ ~P1 ₇ , P2 ₀ ~P2 ₇ , P3 ₀ ~P3 ₃ , P4 ₀ ~P4 ₇ , P5 ₀ ~P5 ₇ , P6 ₀ ~P6 ₇ , P7 ₀ ~P7 ₇ , P8 ₀ ~P8 ₇			5	mA
f(X _{IN})	External clock frequency input			25	MHz

Note 1. Average output current is the average value of a 100ms interval.

 The sum of l_{OL}(peak) for ports P0, P1, P2, P3, and P8 must be 80mA or less, the sum of l_{OH}(peak) for ports P0, P1, P2, P3, and P8 must be 80mA or less, the sum of l_{OH}(peak) for ports P4, P5, P6, and P7 must be 80mA or less, and the sum of l_{OH}(peak) for ports P4, P5, P6, and P7 must be 80mA or less.

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

Cumbal	Parameter Test conditions		nditions			Unit	
Symbol	Parameter	Test co	natuons	Min.	Тур.	Max.	Uni
V _{он}	High-level output voltage P0 ₀ ~P0 ₇ , P1 ₀ ~P1 ₇ , P2 ₀ ~P2 ₇ , P3 ₀ , P3 ₁ , P3 ₃ , P4 ₀ ~P4 ₇ , P5 ₀ ~P5 ₇ , P6 ₀ ~P6 ₇ , P7 ₀ ~P7 ₇ , P8 ₀ ~P8 ₇	I _{он} =—10mA		3			v
V _{он}	High-level output voltage P0 ₀ ~P0 ₇ , P1 ₀ ~P1 ₇ , P2 ₀ ~P2 ₇ , P3 ₀ , P3 ₁ , P3 ₃	I _{OH} =-400µА		4. 7			v
V _{он}	High-level output voltage P32	I _{OH} =-10mA		3.1			v
∙он	nigh-level output voltage P32	I _{ОН} =-400µА		4.8			v
V _{он}	High-level output voltage E	I _{OH} =-10mA		3.4			v
∙он	nigh-level output voltage E	I _{OH} =-400µА		4.8			V
V _{ol}	Low-level output voltage $P0_0 \sim P0_7$, $P1_0 \sim P1_7$, $P2_0 \sim P2_7$, $P3_0$, $P3_1$, $P3_3$, $P4_0 \sim P4_7$, $P5_0 \sim P5_7$, $P6_0 \sim P6_7$, $P7_0 \sim P7_7$, $P8_0 \sim P8_7$	I _{OL} =10mA				2	v
V _{OL}	Low-level output voltage P0 ₀ ~P0 ₇ , P1 ₀ ~P1 ₇ , P2 ₀ ~P2 ₇ , P3 ₀ , P3 ₁ , P3 ₃	I _{OL} =2mA				0.45	v
		I _{OL} =10mA				1.9	v
Vol	Low-level output voltage P32	I _{OL} =2mA				0.43	v
	Low-level output voltage E	I _{OL} =10mA				1.6	v
Vo∟	Low-level output voltage E	I _{OL} =2mA				0.4	v
$V_{T+}-V_{T-}$	$\begin{array}{c} \text{Hysteresis} \overline{\text{HOLD}}, \ \overline{\text{RDY}}, \ \text{TA0}_{\text{IN}} \sim \text{TA4}_{\text{IN}}, \ \text{TB0}_{\text{IN}} \sim \text{TB2}_{\text{IN}}, \\ \hline \overline{\text{INT}}_0 \sim \overline{\text{INT}}_2, \ \overline{\text{AD}}_{\text{TRG}}, \ \overline{\text{CTS}}_0, \ \overline{\text{CTS}}_1, \ \text{CLK}_0, \ \text{CLK}_1 \end{array}$			0.4		1	v
$V_{\tau+} - V_{\tau-}$	Hysteresis RESET			0.2		0.5	v
$V_{\tau+} - V_{\tau-}$	Hysteresis X _{IN}			0.1		0.3	v
l _{in}	High-level input current P0 ₀ ~P0 ₇ , P1 ₀ ~P1 ₇ , P2 ₀ ~P2 ₇ , P3 ₀ ~P3 ₃ , P4 ₀ ~P4 ₇ , P5 ₀ ~P5 ₇ , P6 ₀ ~P6 ₇ , P7 ₀ ~P7 ₇ , P8 ₀ ~P8 ₇ , X _{IN} , RESET, CNV _{SS} , BYTE	V _I =5V				5	μA
Ι _{ΙL}	$\begin{array}{l} Low-level input current $P0_0 \sim P0_7, $P1_0 \sim P1_7, $P2_0 \sim P2_7,$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$	v ₁ =0v				-5	μA
V _{RAM}	RAM hold voltage	When clock is stoppe	d.	2			v
		In single-chip mode	f(X _{IN})=25MHz, square waveform		19	38	m/
Icc	Power supply current	output only pin is open and other pins	T _a =25°C when clock is stopped.			1	
		are V _{SS} during reset.	T _a =85°C when clock is stopped.			20	μΑ

ELECTRICAL CHARACTERISTICS ($v_{cc}=5v$, $v_{ss}=0v$, $\tau_a=25$ °C, $f(X_{IN})=25$ MHz, unless otherwise noted)

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

A-D CONVERTER CHARACTERISTICS ($v_{cc}=Av_{cc}=5V$, $v_{ss}=Av_{ss}=0V$, $\tau_a=25$ °C, $f(X_{IN})=25$ MHz, unless otherwise noted)

Cumbal	Parameter	Test conditions	Limits			
Symbol			Min.	Тур.	Max.	Unit
	Resolution	V _{REF} =V _{CC}			10	Bits
	Absolute accuracy	V _{REF} =V _{CC}			±3	LSB
RLADDER	Ladder resistance	V _{REF} =V _{CC}	5		20	kΩ
t _{CONV}	Conversion time		9.44			μs
VREF	Reference voltage		2		V _{cc}	v
VIA	Analog input voltage	1	0		VREF	v

D-A CONVERTER CHARACTERISTICS ($v_{cc}=5V$, $v_{ss}=Av_{ss}=0V$, $T_a=25$ °C, $f(X_{IN})=25$ MHz, unless otherwise noted)

Symbol	Parameter	Test conditions		Limits		
Symbol			Min.	Тур.	Max.	Unit
	Resolution				8	Bits
	Absolute accuracy				1.0	%
t _{su}	Set time				3	μs
Ro	Output resistance		1	2.5	4	kΩ
IVREF	Reference power input current	(Note)			3.2	mA

Note. One D-A converter is used, and the value of D-A register for unused D-A converter is " 00_{16} ".

Current that flows to the ladder resistance of A-D converter is excluded.

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

TIMING REQUIREMENTS ($v_{cc}=5v\pm10\%$, $v_{ss}=0v$, $\tau_a=25$ °C, $f(X_{IN})=25$ MHz, unless otherwise noted) External clock input

Symbol	Parameter	Limits		
Cymbol		Min.	Max.	Unit
t _c	External clock input cycle time	40		ns
t _{w(H)}	External clock input high-level pulse width	15		ns
t _{W(L)}	External clock input low-level pulse width	15		ns
tr	External clock rise time		8	ns
t _f	External clock fall time		8	ns

Single-chip mode

Cumple of	Parameter	Lir	nits	Unit
Symbol		Min.	Max.	Unit
t _{SU(POD-E)}	Port P0 input setup time	60		ns
t _{SU(P1D-E)}	Port P1 input setup time	60		ns
t _{SU(P2D-E)}	Port P2 input setup time	60		ns
t _{SU(P3D-E)}	Port P3 input setup time	60		ns
t _{SU(P4D-E)}	Port P4 input setup time	60		ns
tsu(P5D-E)	Port P5 input setup time	60		ns
t _{SU(P6D-E)}	Port P6 input setup time	60		ns
t _{su(P7D-E)}	Port P7 input setup time	60		ns
t _{SU(P8D-E)}	Port P8 input setup time	60		ns
th(E-POD)	Port P0 input hold time	0		ns
th(E-P1D)	Port P1 input hold time	0		ns
th(E-P2D)	Port P2 input hold time	0		ns
th(E-P3D)	Port P3 input hold time	0		ns
t _{h(E-P4D)}	Port P4 input hold time	0		ns
th(E-P5D)	Port P5 input hold time	0		ns
th(E-P6D)	Port P6 input hold time	0		ns
th(E-P7D)	Port P7 input hold time	0		ns
th(E-P8D)	Port P8 input hold time	0		ns

Memory expansion mode and microprocessor mode

Symbol	Parameter	Limits	Unit	
Symbol	Parameter	Min. Max.	.x.	
t _{SU(P1D-E)}	Port P1 input setup time	30	ns	
t _{SU(P2D-E)}	Port P2 input setup time	30	ns	
tsu(RDY-#1)	RDY input setup time	55	ns	
t _{su(hold} -∉ ₁)	HOLD input setup time	55	ns	
th(E-P1D)	Port P1 input hold time	0	ns	
th(E-P2D)	Port P2 input hold time	0	ns	
th(#1-RDY)	RDY input hold time	0	ns	
th(¢1-HOLD)	HOLD input hold time	0	ns	

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

Symbol	Parameter		nits	Unit
	Falameter	Min.	Max.	Unit
t _{C(TA)}	TAi _{IN} input cycle time	80		ns
tw(TAH)	TAi _{IN} input high-level pulse width	40		ns
tw(TAL)	TAi _{IN} input low-level pulse width	40		ns

Timer A input (Count input in event counter mode)

Timer A input (Gating input in timer mode)

Symbol	Parameter		Limits		
Symbol	Falaneter	Min.	Max.	Unit	
t _{C(TA)}	TAI _{IN} input cycle time	320		ns	
tw(TAH)	TAI _{IN} input high-level pulse width	160		ns	
tw(TAL)	TAi _{IN} input low-level pulse width	160		ns	

Timer A input (External trigger input in one-shot pulse mode)

Symbol	Parameter	Lin	Unit	
		Min.	Max.	Unit
t _{C(TA)}	TAi _{IN} input cycle time	160		ns
tw(TAH)	TAi _{IN} input high-level pulse width	80		ns
tw(TAL)	TAi _{IN} input low-level pulse width	80		ns

Timer A input (External trigger input in pulse width modulation mode)

Symbol	Parameter	Limits		Unit
		Min.	Max.	Unit
t _{w(TAH)}	TAi _{IN} input high-level pulse width	80		ns
t _{w(TAL)}	TAi _{IN} input low-level pulse width	80		ns

Timer A input (Up-down input in event counter mode)

Symbol	Commuter and the second s	Limits		11-14
	Parameter		Max.	Unit
t _{C(UP)}	TAi _{out} input cycle time	2000		ns
tw(uph)	TAi _{OUT} input high-level pulse width	1000		ns
	TAi _{OUT} input low-level pulse width	1000		ns
tsu(UP-TIN)	TAi _{OUT} input setup time	400		ns
th(TIN-UP)	TAi _{OUT} input hold time	400		ns

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

Timer B input (Count input in event counter mode)

Symbol	Parameter	Lin		
		Min.	Max.	Unit
t _{C(тв)}	TBi _{IN} input cycle time (one edge count)	80		ns
t _{w(твн)}	TBi _{IN} input high-level pulse width (one edge count)	40		ns
tw(TBL)	TBi _{IN} input low-level pulse width (one edge count)	40		ns
t _{C(TB)}	TBi _{IN} input cycle time (both edges count)	160		ns
tw(TBH)	TBi _{IN} input high-level pulse width (both edges count)	80		ns
tw(TBL)	TBi _{IN} input low-level pulse width (both edges count)	80		ns

Timer B input (Pulse period measurement mode)

Symbol	Parameter	Lin	Unit	
		Min.	Max.	Onit
t _{C(TB)}	TBi _{IN} input cycle time	320		ns
t _{w(TBH)}	TBi _{IN} input high-level pulse width	160		ns
tw(TBL)	TBi _{IN} input low-level pulse width	160		ns

Timer B input (Pulse width measurement mode)

Symbol	Parameter	Lin	Linit	
		Min.	Max.	Unit
t _{C(TB)}	TBi _{IN} input cycle time	320		ns
tw(TBH)	TBi _{IN} input high-level pulse width	160		ns
tw(TBL)	TBi _{IN} input low-level pulse width	160		ns

A-D trigger input

Symbol	Parameter	Lin	Unit	
		Min.	Max.	Unit
t _{C(AD)}	AD _{TRG} input cycle time (minimum allowable trigger)	1000		ns
t _{W(ADL)}	AD _{TRG} input low-level pulse width	125		ns

Serial I/O

Symbol	Parameter	Limits		
		Min.	Max.	Unit
t _{C(CK)}	CLK _i input cycle time	200		ns
t _{w(ckh)}	CLK _i input high-level pulse width	100		ns
tw(CKL)	CLK _i input low-level pulse width	100		ns
td(c-q)	TxD _i output delay time		80	ns
th(c-a)	TxDj hold time	0		ns
t _{su(D-C)}	RxD _i input setup time	30		ns
th(c-D)	RxDi input hold time	90		ns

External interrupt INT; input

Symbol	Parameter	Limits		Unit
		Min.	Max.	Om
t _{w(INH)}	INTi input high-level pulse width	250		ns
t _{W(INL)}	INT; input low-level pulse width	250		ns

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

SWITCHING CHARACTERISTICS ($v_{cc}=5v\pm10\%$, $v_{ss}=0v$, $\tau_a=25$ °C, $f(x_{iN})=25$ MHz, unless otherwise noted) **Single-chip mode**

Cumple of	Parameter	Test conditions	Lir		
Symbol			Min.	Max.	Unit
td(E-POQ)	Port P0 data output delay time			80	ns
td(E-P1Q)	Port P1 data output delay time			80	ns
td(E-P2Q)	Port P2 data output delay time	Fig. 65		80	ns
td(E-P3Q)	Port P3 data output delay time			80	ns
td(E-P4Q)	Port P4 data output delay time			80	ns
td(E-P5Q)	Port P5 data output delay time	-		80	ns
td(E-P6Q)	Port P6 data output delay time			80	ns
td(E-P7Q)	Port P7 data output delay time			80	ns
td(E-P8Q)	Port P8 data output delay time			80	ns

Memory expansion mode and microprocessor mode (when wait bit = "1")

Symbol	Parameter	Test conditions	Lir	nits	Unit
Symbol	Falameter		Min.	Max.	Unit
td(POA-E)	Port P0 address output delay time		12		ns
td(E-P1Q)	Port P1 data output delay time (BYTE="L")			45	ns
tpxz(E-P1Z)	Port P1 floating start delay time (BYTE="L")			5	ns
t _{d(P1A-E)}	Port P1 address output delay time		12		ns
td(P1A-ALE)	Port P1 address output delay time	· ·	5		ns
td(E-P2Q)	Port P2 data output delay time			45	ns
tpxz(E-P2Z)	Port P2 floating start delay time			5	ns
td(P2A-E)	Port P2 address output delay time		12		ns
td(P2A-ALE)	Port P2 address output delay time		5		ns
td(ø1-HLDA)	HLDA output delay time			50	ns
td(ALE-E)	ALE output delay time		4		ns
t _{W(ALE)}	ALE pulse width		22		ns
t _{d(BHE-E)}	BHE output delay time	Fig. 65	20		ns
td(R/W-E)	R/W output delay time	Fig. 65	20		ns
$t_{d(E-\phi_1)}$	ϕ_1 output delay time		0	18	ns
th(E-POA)	Port P0 address hold time		25		ns
th(ALE-P1A)	Port P1 address hold time (BYTE="L")		9		ns
th(E-P1Q)	Port P1 data hold time (BYTE="L")		25		ns
tpzx(E-P1Z)	Port P1 floating release delay time (BYTE="L")		25		ns
th(E-P1A)	Port P1 address hold time (BYTE="H")		25		ns
th(ALE-P2A)	Port P2 address hold time		9		ns
th(E-P2Q)	Port P2 data hold time		25		ns
tpzx(E-P2Z)	Port P2 floating release delay time		25		ns
th(E-BHE)	BHE hold time		18		ns
th(E-R/W)	R/W hold time]	18		ns
t _{w(EL)}	Ē pulse width		50		ns

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

Memory expansion mode and microprocessor mode (when wait bit = "0", wait selection bit = "1", and external memory area is accessed)

			Lin	nits	
Symbol	Parameter	Test conditions	Min.	Max.	Unit
td(poa-e)	Port P0 address output delay time		12		ns
td(E-P1Q)	Port P1 data output delay time (BYTE="L")			45	ns
tpxz(E-P1Z)	Port P1 floating start delay time (BYTE="L")			5	ns
td(PTA-E)	Port P1 address output delay time		12		ns
td(PIA-ALE)	Port P1 address output delay time	×	5		ns
td(E-P2Q)	Port P2 data output delay time			45	ns
tpxz(E-P2Z)	Port P2 floating start delay time			5	ns
td(P2A-E)	Port P2 address output delay time		12		ns
td(P2A-ALE)	Port P2 address output delay time		5		ns
td(ø1-HLDA)	HLDA output delay time			50	ns
td(ALE-E)	ALE output delay time		4		ns
tw(ALE)	ALE pulse width		22		ns
td(BHE-E)	BHE output delay time	Fig. 65	20		ns
td(R/W-E)	R/W output delay time	Fig. 65	20		ns
$t_{d(E-\phi_1)}$	ϕ_1 output delay time		0	18	ns
th(E-POA)	Port P0 address hold time		25		ns
th(ALE-P1A)	Port P1 address hold time (BYTE="L")		9		ns
th(E-PIQ)	Port P1 data hold time (BYTE="L")		25		ns
tpzx(E-P1Z)	Port P1 floating release delay time (BYTE="L")		25		ns
th(E-P1A)	Port P1 address hold time (BYTE="H")		25		ns
th(ALE-P2A)	Port P2 address hold time		9		ns
th(E-P2Q)	Port P2 data hold time		25		ns
tpzx(E-P2Z)	Port P2 floating release delay time		25		ns
th(E-BHE)	BHE hold time		18		ns
th(E-R/W)	R/W hold time		18		ns
t _{W(EL)}	Ē pulse width		130		ns

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

Memory expansion mode and microprocessor mode

(when wait bit = "0", wait selection bit = "0", and external memory area is accessed)

Symbol	Parameter		Limits		
		Test conditions	Min.	Max.	Unit
td(POA-E)	Port P0 address output delay time		92		ns
td(E-P1Q)	Port P1 data output delay time (BYTE="L")			45	ns
tpxz(E-P1Z)	Port P1 floating start delay time (BYTE="L")			5	ns
td(P1A-E)	Port P1 address output delay time		92		ns
td(P1A-ALE)	Port P1 address output delay time		70		ns
td(E-P2Q)	Port P2 data output delay time			45	ns
tpxz(E-P2Z)	Port P2 floating start delay time			5	ns
td(P2A-E)	Port P2 address output delay time		92		ns
td(P2A-ALE)	Port P2 address output delay time		70		ns
td(ø1-HLDA)	HLDA output delay time			50	ns
td(ALE-E)	ALE output delay time		15		ns
t _{w(ALE)}	ALE pulse width		62		ns
td(BHE-E)	BHE output delay time	Fig. 65	100		ns
td(R/W-E)	R/W output delay time		100		ns
td(E-#1)	ϕ_1 output delay time		0	18	ns
th(E-POA)	Port P0 address hold time		25		ns
th(ALE-P1A)	Port P1 address hold time (BYTE="L")		20		ns
th(E-P1Q)	Port P1 data hold time (BYTE="L")		25		ns
tpzx(E-P1Z)	Port P1 floating release delay time (BYTE="L")		25		ns
th(E-P1A)	Port P1 address hold time (BYTE="H")		25		ns
th(ALE—P2A)	Port P2 address hold time		20		ns
th(E-P2Q)	Port P2 data hold time		25		ns
tpzx(E-P2Z)	Port P2 floating release delay time		25		ns
th(E-BHE)	BHE hold time		18		ns
th(E-R/W)	R/W hold time		18		ns
tw(EL)	E pulse width		130		ns

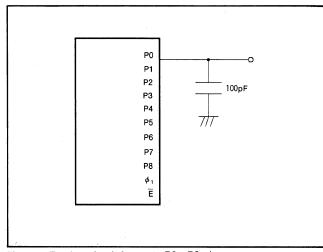
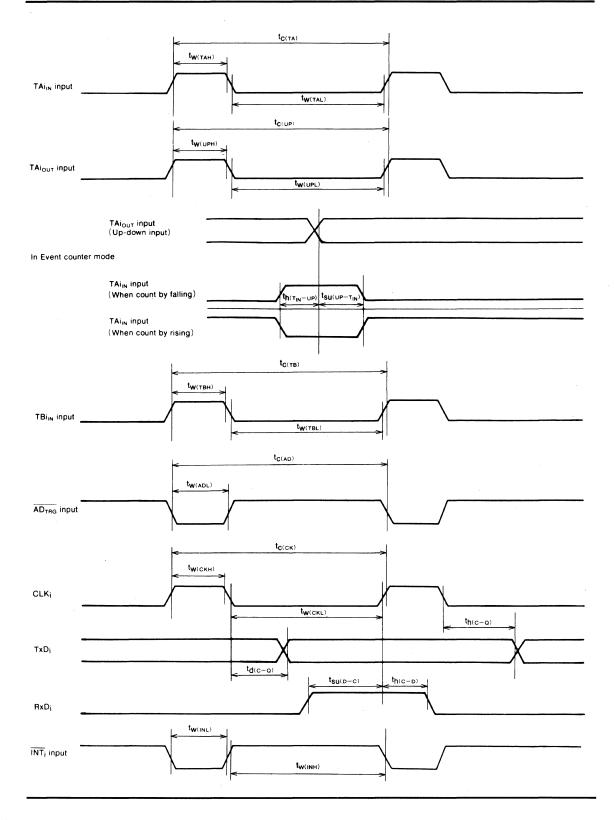
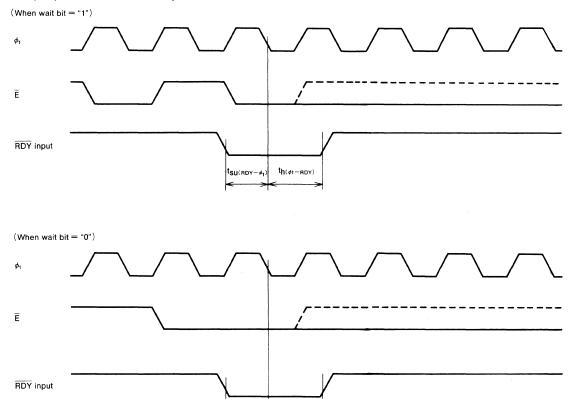


Fig. 65 Testing circuit for ports P0~P8, ϕ_1

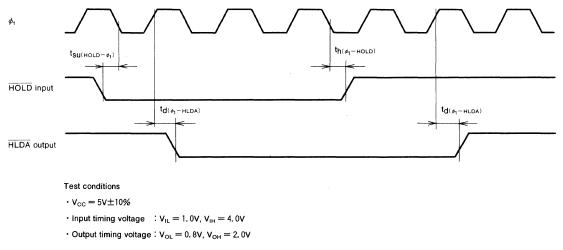


SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

TIMING DIAGR Single-chip mode	$AM \qquad \qquad \begin{array}{c} t_{r} & t_{f} \\ \hline \begin{array}{c} \hline \end{array} & t_{c} \\ \hline \end{array} & \hline \end{array} & \begin{array}{c} \end{array} & \begin{array}{c} \hline \end{array} & \begin{array}{c} \end{array} & \end{array} & \begin{array}{c} \end{array} & \begin{array}{c} \end{array} & \end{array} & \begin{array}{c} \end{array} & \begin{array}{c} \end{array} & \end{array} & \begin{array}{c} \end{array} & \end{array} & \end{array} & \begin{array}{c} \end{array} & \begin{array}{c} \end{array} & \end{array} & \end{array} & \end{array} \\ & \begin{array}{c} \end{array} & \end{array} & \end{array} & \end{array} & \begin{array}{c} \end{array} & \end{array} & \end{array} & \begin{array}{c} \end{array} & \end{array} & \end{array} & \end{array} & \begin{array}{c} \end{array} & \end{array} \\ & \begin{array}{c} \end{array} & \end{array} $
$f(X_{IN})$	
Ē	
Port P0 output	←→ ^t d(E−P0Q)
Port P0 input	tsu(POD-E)
Port P1 output	<→ td(E-PIQ)
Port P1 input	
Port P2 output	↓ td(E-P2Q)
Port P2 input	$ \begin{array}{c c} & & \\ \hline \\ \hline$
Port P3 output	
Port P3 input	t _{SU(P3D-E)} th(E-P3D)
Port P4 output	
Port P4 input	t _{SU(P4D-E)} th(E-P4D)
Port P5 output	td(ε-ρ ₅₀)
Port P5 input	
	→ th(E-P5D) → td(E-P6Q)
Port P6 output	
Port P6 input	th(E−P6D) td(E−P7Q)
Port P7 output	X
Port P7 input	t _{SU(P7D-E)} th(E-P7D)
Port P8 output	→ td(E-P8Q)
Port P8 input	



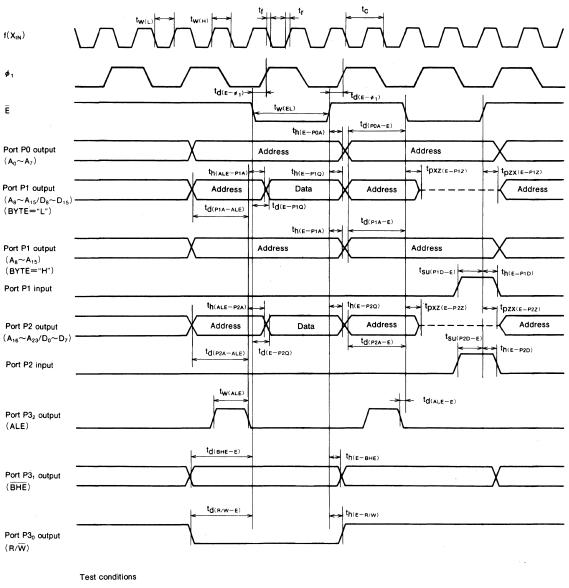
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER



SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

Memory expansion mode and microprocessor mode

(When wait bit = "1" or "0" in common)



th(#1-RDY)

tsu(RDY-ø1)

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

Memory expansion mode and microprocessor mode (When wait bit="1")

 $\cdot v_{cc} = 5v \pm 10\%$

• Output timing voltage : V_{OL}=0.8V, V_{OH}=2.0V

• Ports P1, P2 input : V_{IL}=0. 8V, V_{IH}=2.5V

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

Memory expansion mode and microprocessor mode

(When wait bit = "0", wait selection bit = "1", and external memory area is accessed)

f(X _{IN})	\sim	WW		
¢1				
Ē		tw(EL)	$t_{d(E-+1)}$	<u>,</u>
Port P0 output $(A_0 \sim A_7)$	Х_	Address	Address	
Port P1 output ($A_8 \sim A_{15}/D_8 \sim$ (BYTĖ="L")	0,15)	dress Data	Address	Address
Port P1 output $(A_8 \sim A_{15})$ (BYTE="H")	_	t _{h(E-PIA)} Address	Address	
Port P1 input			<u> </u>	<u> </u>
Port P2 output (A ₁₆ ~A ₂₃ /D ₀ ~	- <u>D</u> ₇)	Idress Data	Address t _{gu(P2D-E)} t _{gu(P2D-E)}	tpzx(E-P2Z) Address
Port P2 input.	td(p2a-a tw()			+\
Port P3 ₂ outpo (ALE)	.t	Λ		
Port P3 ₁ outpu		(Ε-Ε) 	<→ t _{h(E- вне)}	
(BHE)	`ل ل ^t d(هر	w-E)	.	_X
Port P3 ₀ outpo (R/W)	t		th(ε− R/W)	

Test conditions

 $\cdot v_{cc} = 5v \pm 10\%$

- Output timing voltage : V_{OL}=0.8V, V_{OH}=2.0V
- Ports P1, P2 input $V_{IL}=0.8V, V_{IH}=2.5V$

۰.

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

Memory expansion mode and microprocessor mode

(When wait bit = "0", wait selection bit = "0", and external memory area is accessed)

f(X _{IN})	
ϕ_1	$ \begin{tabular}{ c c c c c } \hline \begin{tabular}{ c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$
Ē .	
Port P0 output $(A_0 \sim A_7)$	Address Address Address
Port P1 output $(A_8 \sim A_{15}/D_8 \sim D_{15})$ (BYTE="L")	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
Port P1 output ($A_8 \sim A_{15}$) (BYTE="H")	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
Port P1 input	
Port P2 output $(A_{16} \sim A_{23}/D_0 \sim D_7)$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
Port P2 input	td(P2A-ALE)
Port P3 ₂ output (ALE)	
Port РЗ₁ output (ВНЕ)	td(вне-е)
	td(R/W−E) th(E−R/W)
Port P3 ₀ output (R/W)	\/

Test conditions

 $\cdot v_{cc} = 5V \pm 10\%$

- Output timing voltage : V_{OL}=0.8V, V_{OH}=2.0V
- Ports P1, P2 input $: V_{IL}=0.8V, V_{IH}=2.5V$

MITSUBISHI MICROCOMPUTERS

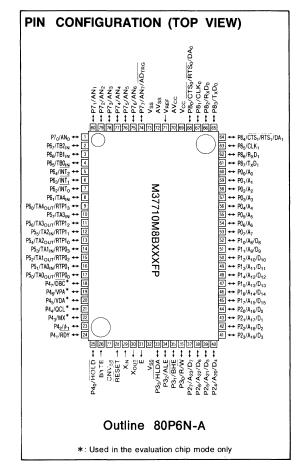
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

DESCRIPTION

The M37710M8BXXXFP is a single-chip microcomputer designed with high-performance CMOS silicon gate technology. This is housed in a 80-pin plastic molded QFP. This single-chip microcomputer has a large 16M bytes address space, three instruction queue buffers, and two data buffers for high-speed instruction execution. The CPU is a 16-bit parallel processor that can also be switched to perform 8bit parallel processing. This microcomputer is suitable for office, business, and industrial equipment controller that require high-speed processing of large data.

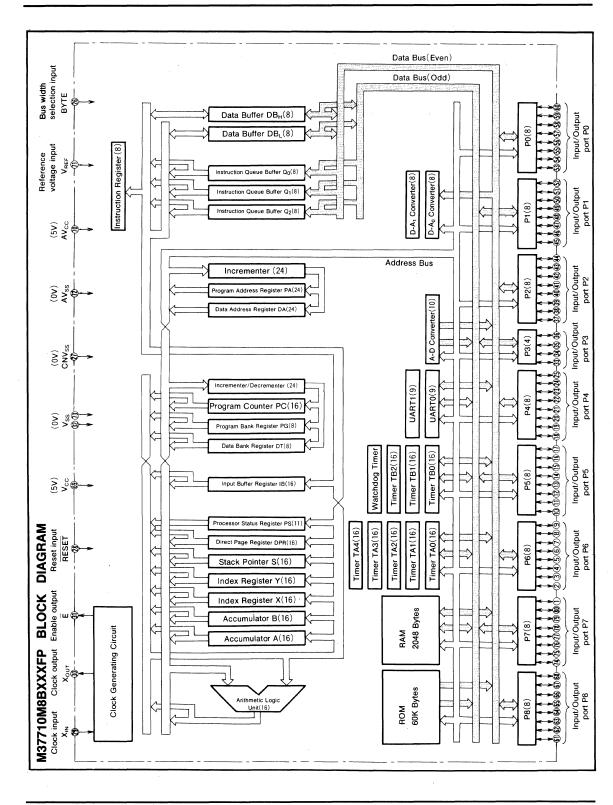
FEATURES

•	Number of basic	instructions 103
٠	Memory size	ROM60K bytes
		RAM 2048 bytes
•	Instruction exect	ution time
	The fastest instr	uction at 25MHz frequency 160ns
٠	Single power su	pply5V±10%
٠	Low power dissi	pation (at 25MHz frequency)
		······ 95mW (Typ.)
٠		
٠	Multiple function	16-bit timer
	(Pulse motor dri	ve waveform can be output.)
•	UART (may also	be synchronous)2
٠	10-bit A-D conve	erter 8-channel inputs
٠	8-bit D-A conve	rter ······2-channel outputs
٠	12-bit watchdog	timer
۲	Programmable i	nput/output


APPLICATION

Control devices for office equipment such as copiers, printers, typewriters, facsimiles, word processors, and personal computers

Control devices for industrial equipment such as communication and measuring instruments


NOTE

Refer to "Chapter 5 PRECAUTIONS" when using this microcomputer.

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

FUNCTIONS OF M37710M8BXXXFP

	Parameter	Functions
Number of basic instructions		103
Instruction execution time	160ns (the fastest instruction at external clock 25MHz frequency)	
	ROM	60K bytes
Memory size	RAM	2048 bytes
	P0~P2, P4~P8	8 -bit×8
Input/Output ports	P3	4 -bit× 1
A.4. (b) 6	TA0, TA1, TA2, TA3, TA4	16-bit× 5
Multi-function timers	ТВ0, ТВ1, ТВ2	16-bit× 3
Serial I/O		(UART or clock synchronous serial I/O)×2
A-D converter		10-bit×1(8 channels)
D-A converter		8 -bit× 2
Watchdog timer		12-bit× 1
· · · · · ·		3 external types, 16 internal types
Interrupts		(Each interrupt can be set the priority levels to $0 \sim 7$.)
Clock generating circuit		Built-in(externally connected to a ceramic resonator or quartz crystal resonator)
Supply voltage		5 V±10%
Power dissipation		95mW(at external clock 25MHz frequency)
	Input/Output voltage	5 V
Input/Output characteristic	Output current	5 mA
Memory expansion	-	Maximum 16M bytes
Operating temperature range)	-20~85°C
Device structure		CMOS high-performance silicon gate process
Package		80-pin plastic molded QFP

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

PIN DESCRIPTION

Pin	Name	Input/Output	Functions
V _{CC} , V _{SS}	Power supply		Supply 5 V±10% to V _{CC} and 0 V to V _{SS} .
CNV _{SS}	CNV _{SS} input	Input	This pin controls the processor mode. Connect to V_{SS} for single-chip mode, and to V_{CC} for external ROM types.
RESET	Reset input	Input	To enter the reset state, this pin must be kept at a "L" condition which should be maintained for the re- quired time.
X _{IN}	Clock input	Input	These are I/O pins of internal clock generating circuit. Connect a ceramic or quartz crystal resonator be- tween X_{IN} and X_{OUT} . When an external clock is used, the clock source should be connected to the X_{IN} pin
X _{OUT}	Clock output	Output	and the X _{OUT} pin should be left open.
Ē	Enable output	Output	Data or instruction read and data write are performed when output from this pin is "L".
BYTE	Bus width selection input	Input	In memory expansion mode or microprocessor mode, this pin determines whether the external data bus is 8-bit width or 16-bit width. The width is 16 bits when "L" signal inputs and 8 bits when "H" signal inputs.
AV _{CC} AV _{SS}	Analog supply input		Power supply for the A-D converter. AV_{SS} is also used for D-A converter. Connect AV_{CC} to V_{CC} and AV_{SS} to V_{SS} externally.
V _{REF}	Reference voltage input	Input	This is reference voltage input pin for the A-D converter and the D-A converter.
P0₀~P0 ₇	I/O port P0	1/0	In single-chip mode, port P0 becomes an 8-bit I/O port. An I/O direction register is available so that each pin can be programmed for input or output. These ports are in input mode when reset . Address($A_7 \sim A_0$) is output in memory expansion mode or microprocessor mode.
P1 ₀ ~P1 ₇	I/O port P1	1/0	In single-chip mode, these pins have the same functions as port P0. When the BYTE pin is set to "L" in memory expansion mode or microprocessor mode and external data bus is 16-bit width, high-order data $(D_{15} \sim D_8)$ is input or output when \overline{E} output is "L" and an address $(A_{15} \sim A_8)$ is output when \overline{E} output is "H". If the BYTE pin is "H" that is an external data bus is 8-bit width, only address $(A_{15} \sim A_8)$ is output.
P2₀~P2 ₇	I/O port P2	1/0	In single-chip mode, these pins have the same functions as port P0. In memory expansion mode or microprocessor mode low-order data $(D_7 \sim D_0)$ is input or output when \overline{E} output is "L" and an address $(A_{23} \sim A_{16})$ is output when \overline{E} output is "H".
P3 ₀ ~P3 ₃	I/O port P3	· I/O	In single-chip mode, these pins have the same functions as port P0. In memory expansion mode or microprocessor mode, R/\overline{W} , \overline{BHE} , ALE, and \overline{HLDA} signals are output.
P4₀~P4 ₇	I/O port P4	1/0	In single-chip mode, these pins have the same functions as port P0. In memory expansion mode or microprocessor mode, P4 ₀ and P4 ₁ become HOLD and RDY input pin respectively. Functions of other pins are the same as in single-chip mode. In single-chip mode or memory expansion mode, port P4 ₂ can be programmed for ϕ_1 output pin divided the clock to X _{IN} pin by 2. In microprocessor mode, P4 ₂ always has the function as ϕ_1 output pin.
P5₀~P5 ₇	I/O port P5	1/0	In addition to having the same functions as port P0 in single-chip mode, these pins also function as I/O pins for timer A0, timer A1, timer A2 and timer A3. $P5_0 \sim P5_6$ also function as output pins for pulse motor drive waveform.
P6₀~P67	I/O port P6	1/0	In addition to having the same functions as port P0 in single-chip mode, these pins also function as I/O pins for timer A4, external interrupt input $\overline{INT_0}$, $\overline{INT_1}$ and $\overline{INT_2}$ pins, and input pins for timer B0, timer B1 and timer B2. P6 ₀ also functions as an output pin for pulse motor drive waveform.
P7 ₀ ~P7 ₇	I/O port P7	1/0	In addition to having the same functions as port P0 in single-chip mode, these pins also function as analog input AN ₀ ~AN ₇ input pins. P7 ₇ also has an A-D conversion trigger input function.
P80~P87	I/O port P8	1/0	In addition to having the same functions as port P0 in single-chip mode, these pins also function as R_xD , T _x D, CLK, CTS/RTS pins for UART 0 and UART 1, and output pins for D-A converter.

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

BASIC FUNCTION BLOCKS

The M37710M8BXXXFP has the same functions as the M37710M4BXXXFP except for the following:

- (1) The ROM size is 60K bytes.
- (2) The RAM size is 2048 bytes.

Therefore, refer to the section on the M37710M4BXXXFP.

MEMORY

The memory map is shown in Figure 1.

ADDRESSING MODES

The M37710M8BXXXFP has 28 powerful addressing modes. Refer to the MELPS 7700 addressing mode description for the details of each addressing mode.

MACHINE INSTRUCTION LIST

The M37710M8BXXXFP has 103 machine instructions. Refer to the MELPS 7700 machine instruction list for details.

DATA REQUIRED FOR PROM ORDERING

Please send the following data for mask order.

- (1) M37710M8BXXXFP mask ROM order confirmation form
- (2) 80P6N mark specification form
- (3) ROM data (EPROM 3 sets)

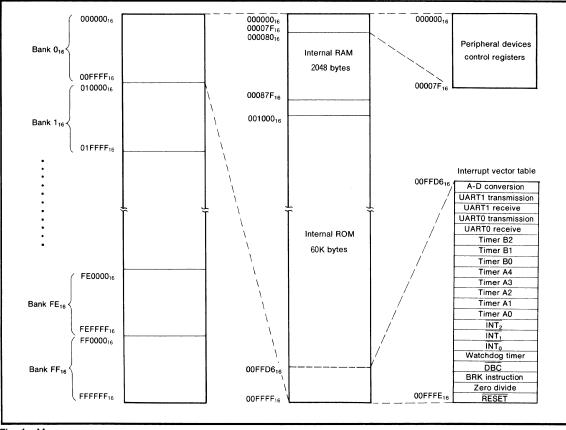


Fig. 1 Memory map

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Ratings	Unit
V _{cc}	Supply voltage		-0.3~7	V
AVcc	Analog supply voltage		-0.3~7	V
V,	Input voltage RESET, CNV _{SS} , BYTE		-0.3~12	V
V,	Input voltage P0 ₀ ~P0 ₇ , P1 ₀ ~P1 ₇ , P2 ₀ ~P2 ₇ , P3 ₀ ~P3 ₃ , P4 ₀ ~P4 ₇ , P5 ₀ ~P5 ₇ , P6 ₀ ~P6 ₇ , P7 ₀ ~P7 ₇ , P8 ₀ ~P8 ₇ , V _{REF} , X _{IN}		$-0.3 \sim V_{cc} + 0.3$	v
Vo	Output voltage P0 ₀ ~P0 ₇ , P1 ₀ ~P1 ₇ , P2 ₀ ~P2 ₇ , P3 ₀ ~P3 ₃ , P4 ₀ ~P4 ₇ , P5 ₀ ~P5 ₇ , P6 ₀ ~P6 ₇ , P7 ₀ ~P7 ₇ , P8 ₀ ~P8 ₇ , X _{0U7} , Ē		-0.3~V _{cc} +0.3	v
Pd	Power dissipation	T _a =25℃	300	mW
Topr	Operating temperature		-20~85	°C
Tstg	Storage temperature		-40~150	°C

RECOMMENDED OPERATING CONDITIONS (Vcc=5V±10%, Ta=-20~85°C, unless otherwise noted)

Symbol	Parameter		Limits		Unit
Symbol	Falailletei	Min.	Тур.	Max.	Unit
V _{cc}	Supply voltage	4.5	5.0	5.5	V
AV _{cc}	Analog supply voltage		v_{cc}		٧
V _{ss}	Supply voltage		0		V
AV _{SS}	Analog supply voltage		0		V
V _{IH}	High-level input voltage P0 ₀ ~P0 ₇ , P3 ₀ ~P3 ₃ , P4 ₀ ~P4 ₇ , P5 ₀ ~P5 ₇ , P6 ₀ ~P6 ₇ , P7 ₀ ~P7 ₇ , P8 ₀ ~P8 ₇ , X _{IN} , RESET, CNV _{SS} , BYTE	0.8V _{cc}		V _{cc}	v
V _{IH}	High-level input voltage $P1_0 \sim P1_7$, $P2_0 \sim P2_7$ (in single-chip mode)	0.8V _{cc}		V _{cc}	v
ViH	High-level input voltage P1 ₀ ~P1 ₇ , P2 ₀ ~P2 ₇ (in memory expansion mode and microprocessor mode)	0. 5V _{CC}		V _{cc}	v
Vil	$\begin{array}{llllllllllllllllllllllllllllllllllll$	0		0. 2V _{cc}	v
VIL	Low-level input voltage P1 ₀ ~P1 ₇ , P2 ₀ ~P2 ₇ (in single-chip mode)	0		0.2V _{cc}	v
ViL	Low-level input voltage P1 ₀ ~P1 ₇ , P2 ₀ ~P2 ₇ (in memory expansion mode and microprocessor mode)	0		0. 16V _{cc}	v
I _{он(peak)}	High-level peak output current P0 ₀ ~P0 ₇ , P1 ₀ ~P1 ₇ , P2 ₀ ~P2 ₇ , P3 ₀ ~P3 ₃ , P4 ₀ ~P4 ₇ , P5 ₀ ~P5 ₇ , P6 ₀ ~P6 ₇ , P7 ₀ ~P7 ₇ , P8 ₀ ~P8 ₇			-10	mA
I _{он(avg)}	High-level average output current P0 ₀ ~P0 ₇ , P1 ₀ ~P1 ₇ , P2 ₀ ~P2 ₇ , P3 ₀ ~P3 ₃ , P4 ₀ ~P4 ₇ , P5 ₀ ~P5 ₇ , P6 ₀ ~P6 ₇ , P7 ₀ ~P7 ₇ , P8 ₀ ~P8 ₇			—5	mA
l _{oL(peak)}	Low-level peak output current P0 ₀ ~P0 ₇ , P1 ₀ ~P1 ₇ , P2 ₀ ~P2 ₇ , P3 ₀ ~P3 ₃ , P4 ₀ ~P4 ₇ , P5 ₀ ~P5 ₇ , P6 ₀ ~P6 ₇ , P7 ₀ ~P7 ₇ , P8 ₀ ~P8 ₇			10	mA
I _{OL} (avg)	Low-level average output current P0 ₀ ~P0 ₇ , P1 ₀ ~P1 ₇ , P2 ₀ ~P2 ₇ , P3 ₀ ~P9 ₃ , P4 ₀ ~P4 ₇ , P5 ₀ ~P5 ₇ , P6 ₀ ~P6 ₇ , P7 ₀ ~P7 ₇ , P8 ₀ ~P8 ₇			5	mA
$f(X_{IN})$	External clock frequency input			25	MHz

 Note 1. Average output current is the average value of a 100ms interval.
 2. The sum of I_{OL}(peak) for ports P0, P1, P2, P3, and P8 must be 80mA or less, the sum of I_{OH}(peak) for ports P0, P1, P2, P3, and P8 must be 80mA or less, the sum of $I_{OL(peak)}$ for ports P4, P5, P6, and P7 must be 80mA or less, and the sum of $I_{OH(peak)}$ for ports P4, P5, P6, and P7 must be 80mA or less.

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

Symbol	Parameter	Test co	onditions		Limits		Unit
Cymbol		100000		Min.	Тур.	Max.	
V _{он}	High-level output voltage P0 ₀ ~P0 ₇ , P1 ₀ ~P1 ₇ , P2 ₀ ~P2 ₇ , P3 ₀ , P3 ₁ , P3 ₃ , P4 ₀ ~P4 ₇ , P5 ₀ ~P5 ₇ , P6 ₀ ~P6 ₇ , P7 ₀ ~P7 ₇ , P8 ₀ ~P8 ₇	I _{OH} =-10mA		3			v
V _{OH}	High-level output voltage P00~P07, P10~P17, P20~P27, P30, P31, P33	I _{OH} =-400µА		4.7			v
V _{он}	High-level output voltage P32	I _{OH} =-10mA I _{OH} =-400µA		3.1 4.8			v
V _{OH}	High-level output voltage E	$I_{OH} = -10 \text{mA}$ $I_{OH} = -400 \mu \text{A}$		3.4 4.8			v
Vol	Low-level output voltage $P0_0 \sim P0_7$, $P1_0 \sim P1_7$, $P2_0 \sim P2_7$, $P3_0$, $P3_1$, $P3_3$, $P4_0 \sim P4_7$, $P5_0 \sim P5_7$, $P6_0 \sim P6_7$, $P7_0 \sim P7_7$, $P8_0 \sim P8_7$	I _{OL} =10mA				2	v
Vol	Low-level output voltage P0 ₀ ~P0 ₇ , P1 ₀ ~P1 ₇ , P2 ₀ ~P2 ₇ , P3 ₀ , P3 ₁ , P3 ₃	I _{OL} =2mA				0.45	v
Vol	Low-level output voltage P32	$I_{OL} = 10 \text{mA}$ $I_{OL} = 2 \text{mA}$				1.9 0.43	v
Vol	Low-level output voltage E	$I_{OL} = 10 \text{mA}$ $I_{OL} = 2 \text{mA}$				1.6	v
$v_{t+} - v_{t-}$	Hysteresis HOLD, RDY, TA0 _{IN} ~TA4 _{IN} , TB0 _{IN} ~TB2 _{IN} , INT ₀ ~INT ₂ , AD _{TRG} , CTS ₀ , CTS ₁ , CLK ₀ , CLK ₁			0.4		1	v
$V_{T+} - V_{T-}$	Hysteresis RESET			0.2		0.5	V
$V_{T+}-V_{T-}$	Hysteresis X _{IN}			0.1		0.3	V
l _{ін}	High-level input current P0 ₀ ~P0 ₇ , P1 ₀ ~P1 ₇ , P2 ₀ ~P2 ₇ , P3 ₀ ~P3 ₃ , P4 ₀ ~P4 ₇ , P5 ₀ ~P5 ₇ , P6 ₀ ~P6 ₇ , P7 ₀ ~P7 ₇ , P8 ₀ ~P8 ₇ , X _{IN} , RESET, CNV _{SS} , BYTE	V ₁ =5V				5	μA
l _i L	$\begin{array}{c} \mbox{Low-level input current $P0_0$$\sim$P0_7$, $P1_0$$\sim$P1_7$, $P2_0$$\sim$P2_7$, $P3_0$$\sim$P3_3$, $P4_0$$\sim$P4_7$, $P5_0$$\sim$P5_7$, $P6_0$$\sim$P6_7$, $P7_0$$\sim$P6_7$, $P3_0$$\sim$P8_7$, X_{IN}, $RESET$, CNV_{SS}, BYTE } \end{array}$	v ₁ =0v				—5	μA
VRAM	RAM hold voltage	When clock is stoppe	d.	2			v
		In single-chip mode	f(X _{IN})=25MHz, square waveform		19	38	mA
Icc	Power supply current	output only pin is open and other pins	$T_a=25^{\circ}C$ when clock is stopped.			1	
		are V _{SS} during reset.	T _a =85°C when clock is stopped.			20	μΑ

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

$\textbf{A-D} \quad \textbf{CONVERTER} \quad \textbf{CHARACTERISTICS} \quad (v_{cc} = Av_{cc} = 5v, v_{ss} = Av_{ss} = 0v, \tau_{a} = 25^{\circ}c, \ \textbf{f}(X_{IN}) = 25 \text{MHz}, \ \textbf{unless otherwise noted})$

Symbol	Parameter	Toot one distance		11-14		
		Test conditions	Min.	Тур.	Max.	Unit
	Resolution	V _{REF} =V _{CC}			10	Bits
	Absolute accuracy	V _{REF} =V _{CC}			±3	LSB
RLADDER	Ladder resistance	V _{REF} =V _{CC}	5		20	kΩ
t _{CONV}	Conversion time		9.44			μs
VREF	Reference voltage		2		V _{cc}	v
VIA	Analog input voltage		0		VREF	v

D-A CONVERTER CHARACTERISTICS (v_{cc} =5V, v_{ss} =AV_{ss}=0V, τ_a =25°C, f(X_{IN})=25MHz, unless otherwise noted)

Symbol	Parameter	Test conditions		Limits		
			Min.	Тур.	Max.	Unit
—	Resolution				8	Bits
	Absolute accuracy				1.0	%
t _{su}	Set time				3	μs
Ro	Output resistance		1	2.5	4	kΩ
IVREF	Reference power input current	(Note)			3.2	mA

Note. One D-A converter is used, and the value of D-A register for unused D-A converter is "00₁₆". Current that flows to the ladder resistance of A-D converter is excluded.

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

TIMING REQUIREMENTS ($v_{cc}=5v\pm10\%$, $v_{ss}=0v$, $\tau_a=25$ °C, $f(x_{iN})=25$ MHz, unless otherwise noted) **External clock input**

Overthe al	Decompletion	Lir		
Symbol	Parameter	Min.	Max.	Unit
t _c	External clock input cycle time	40		ns
t _{w(H)}	External clock input high-level pulse width	15		ns
t _{W(L)}	External clock input low-level pulse width	15		ns
tr	External clock rise time		8	ns
tf	External clock fall time		8	ns

Single-chip mode

Querra have	Provention	Limits		11-14
Symbol	Parameter	Min.	Max.	Unit
t _{SU(POD-E)}	Port P0 input setup time	60		ns
t _{su(P1D-E)}	Port P1 input setup time	60		ns
t _{su(P2D-E)}	Port P2 input setup time	60		ns
t _{su(P3D-E)}	Port P3 input setup time	60		ns
t _{SU(P4D-E)}	Port P4 input setup time	60		ns
t _{su(P5D-E)}	Port P5 input setup time	60		ns
t _{SU(P6D-E)}	Port P6 input setup time	60		ns
t _{su(P7D-E)}	Port P7 input setup time	60		ns
t _{su(P8D-E)}	Port P8 input setup time	60		ns
th(E-POD)	Port P0 input hold time	0		ns
th(E-P1D)	Port P1 input hold time	0		ns
th(E-P2D)	Port P2 input hold time	0		ns
th(E-P3D)	Port P3 input hold time	0		ns
th(E-P4D)	Port P4 input hold time	0		ns
th(E-P5D)	Port P5 input hold time	0		ns
th(E-P6D)	Port P6 input hold time	0		ns
th(E-P7D)	Port P7 input hold time	0		ns
th(E-P8D)	Port P8 input hold time	0		ns

Memory expansion mode and microprocessor mode

0 mbal	Descustor	Lin	Unit	
Symbol	Parameter	Min.	Max.	Omi
t _{SU(P1D-E)}	Port P1 input setup time	30		ns
t _{SU(P2D-E)}	Port P2 input setup time	30		ns
tsu(RDY-Ø1)	RDY input setup time	55		ns
t _{SU(HOLD} -¢1)	HOLD input setup time	55		ns
th(E-P1D)	Port P1 input hold time	0		ns
th(E-P2D)	Port P2 input hold time	0		ns
$t_{h(\phi_1-RDY)}$	RDY input hold time	0		ns
th(#1-HOLD)	HOLD input hold time	0		ns

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

Timer A input (Count input in event counter mode)

Symbol	Parameter		Limits		
	Faranieter	Min.	Max.	Unit	
t _{C(TA)}	TAi _{IN} input cycle time	80		ns	
tw(TAH)	TAi _{IN} input high-level pulse width	40		ns	
tw(TAL)	TAi _{IN} input low-level pulse width	40		ns	

Timer A input (Gating input in timer mode)

Symbol	Parameter		Limits		
	Parameter	Min.	Max.	Unit	
t _{C(TA)}	TAi _{IN} input cycle time	320		ns	
t _{w(TAH)}	TAi _{IN} input high-level pulse width	160		ns	
t _{W(TAL)}	TAi _{IN} input low-level pulse width	160		ns	

Timer A input (External trigger input in one-shot pulse mode)

Symbol	Parameter	Limits		Unit
		Min.	Max.	Unit
t _{C(TA)}	TAI _{IN} input cycle time	160		ns
tw(TAH)	TAi _{IN} input high-level pulse width	80		ns
tw(TAL)	TAi _{IN} input low-level pulse width	80		ns

Timer A input (External trigger input in pulse width modulation mode)

Symbol	Parameter		Limits	
	Parameter	Min.	Max.	Unit
tw(TAH)	TAi _{IN} input high-level pulse width	80		ns
t _{W(TAL)}	TAi _{IN} input low-level pulse width	80		ns

Timer A input (Up-down input in event counter mode)

Symbol	Parameter	Lin	11-14	
		Min.	Max.	Unit
t _{C(UP)}	TAi _{OUT} input cycle time	2000		ns
tw(uph)	TAi _{OUT} input high-level pulse width	1000		ns
	TAi _{OUT} input low-level pulse width	1000		ns
tsu(UP-TIN)	TAi _{OUT} input setup time	400		ns
th(TIN-UP)	TAi _{out} input hold time	400		ns

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

Timer B input (Count input in event counter mode)

Symbol	Parameter	Lin		
		Min.	Max.	Unit
t _{C(TB)}	TBi _{IN} input cycle time (one edge count)	80		ns
t _{w(TBH)}	TBi _{IN} input high-level pulse width (one edge count)	40		ns
tw(TBL)	TBi _{IN} input low-level pulse width (one edge count)	40		ns
t _{C(TB)}	TBi _{IN} input cycle time (both edges count)	160		ns
tw(TBH)	TBi _{IN} input high-level pulse width (both edges count)	80		ns
tw(TBL)	TBi _{IN} input low-level pulse width (both edges count)	80		ns

Timer B input (Pulse period measurement mode)

Symbol	Parameter	Limits		Unit
		Min.	Max.	Unit
t _{C(TB)}	TBi _{IN} input cycle time	320		ns
t _{w(твн)}	TBi _{IN} input high-level pulse width	160		ns
t _{W(TBL)}	TBi _{IN} input low-level pulse width	160		ns

Timer B input (Pulse width measurement mode)

Symbol	Parameter	Lin	Unit	
		Min.	Max.	Unit
t _{C(TB)}	TBi _{IN} input cycle time	320		ns
t _{w(твн)}	TBi _{IN} input high-level pulse width	160		ns
t _{w(TBL)}	TBi _{IN} input low-level pulse width	160		ns

A-D trigger input

Symbol	Parameter	Limits		Unit
		Min.	Max.	Unit
t _{C(AD)}	AD _{TRG} input cycle time (minimum allowable trigger)	1000		ns
tw(ADL)	AD _{TRG} input low-level pulse width	125		ns

Serial I/O

Symbol	Parameter	Lir		
		Min.	Max.	Unit
t _{c(ck)}	CLK _i input cycle time	200		ns
tw(CKH)	CLK _i input high-level pulse width	100		ns
tw(CKL)	CLK _i input low-level pulse width	100		ns
td(c-q)	TxD _i output delay time		80	ns
th(c-a)	TxD _i hold time	0		ns
t _{su(D-C)}	RxDi input setup time	30		ns
th(c-D)	RxD _i input hold time	90		ns

External interrupt INT; input

Symbol	Parameter	Limits		Unit
		Min.	Max.	Unit
t _{W(INH)}	INTi input high-level pulse width	250		ns
t _{W(INL)}	INT; input low-level pulse width	250		ns

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

SWITCHING CHARACTERISTICS ($v_{cc}=5v\pm10\%$, $v_{ss}=0v$, $T_a=25\%$, $f(x_{IN})=25$ MHz, unless otherwise noted) **Single-chip mode**

Symbol	Parameter	Test conditions	Lir		
			Min.	Max.	Unit
td(E-POQ)	Port P0 data output delay time	Fig. 2		80	ns
td(E-P1Q)	Port P1 data output delay time			80	ns
td(E-P2Q)	Port P2 data output delay time			80	ns
td(E-P3Q)	Port P3 data output delay time			80	ns
td(E-P4Q)	Port P4 data output delay time			80	ns
td(E-P5Q)	Port P5 data output delay time			80	ns
td(E-P6Q)	Port P6 data output delay time			80	ns
td(E-P7Q)	Port P7 data output delay time			80	ns
td(E-P8Q)	Port P8 data output delay time			80	ns

Memory expansion mode and microprocessor mode (when wait bit = "1")

Symbol	Parameter	Test conditions	Lir	nits	Unit
Symbol	Parameter	Test conditions	Min.	Max.	Unit
td(POA-E)	Port P0 address output delay time		12		ns
td(E-P1Q)	Port P1 data output delay time (BYTE="L")			45	ns
tpxz(E-P1Z)	Port P1 floating start delay time (BYTE="L")			5	ns
td(PIA-E)	Port P1 address output delay time		12		ns
td(PIA-ALE)	Port P1 address output delay time		5		ns
td(E-P2Q)	Port P2 data output delay time			45	ns
tpxz(E-P2Z)	Port P2 floating start delay time			5	ns
td(P2A-E)	Port P2 address output delay time		12		ns
td(P2A-ALE)	Port P2 address output delay time		5		ns
td(ø1-HLDA)	HLDA output delay time			50	ns
td(ALE-E)	ALE output delay time		4		ns
t _{w(ALE)}	ALE pulse width		22		ns
td(BHE-E)	BHE output delay time		20		ns
	R/W output delay time	Fig. 2	20		ns
td(E-#1)	ϕ_1 output delay time		0	18	ns
th(E-POA)	Port P0 address hold time	·	25		ns
th(ALE-P1A)	Port P1 address hold time (BYTE="L")		9		ns
th(E-P1Q)	Port P1 data hold time (BYTE="L")		25		ns
tpzx(E-P1Z)	Port P1 floating release delay time (BYTE="L")		25		ns
th(E-P1A)	Port P1 address hold time (BYTE="H")		25		ns
th(ALE-P2A)	Port P2 address hold time]	9		ns
th(E-P2Q)	Port P2 data hold time	1	25		ns
tpzx(E-P2Z)	Port P2 floating release delay time]	25		ns
th(E-BHE)	BHE hold time	· · · · · · · · · · · · · · · · · · ·	18		ns
	R/W hold time	1	18		ns
	E pulse width	1	50		ns

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

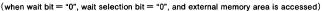
Memory expansion mode and microprocessor mode

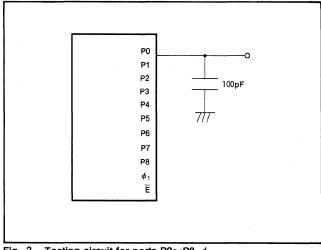
(when wait bit = "0", wait selection bit = "1", and external memory area is accessed)

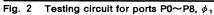
Symbol	Parameter		Lir	nits	
Symbol	Parameter	Test conditions	Min.	Max.	Unit
td(POA-E)	Port P0 address output delay time		12		ns
td(E-P1Q)	Port P1 data output delay time (BYTE="L")			45	ns
tpxz(E-P1Z)	Port P1 floating start delay time (BYTE="L")			5	ns
td(PIA-E)	Port P1 address output delay time		12		ns
td(PIA-ALE)	Port P1 address output delay time		5		ns
td(E-P2Q)	Port P2 data output delay time			45	ns
tpxz(E-P2Z)	Port P2 floating start delay time			5	ns
td(P2A-E)	Port P2 address output delay time		12		ns
td(P2A-ALE)	Port P2 address output delay time		5		ns
td(#1-HLDA)	HLDA output delay time			50	ns
td(ALE-E)	ALE output delay time		4		ns
tw(ALE)	ALE pulse width		22		ns
td(BHE-E)	BHE output delay time		20		ns
td(R/W-E)	R/W output delay time	Fig. 2	20		ns
td(E \$\$_1)	∮1 output delay time		0	18	ns
th(E-POA)	Port P0 address hold time		25		ns
th(ALE-P1A)	Port P1 address hold time (BYTE="L")		9		ns
th(E-P1Q)	Port P1 data hold time (BYTE="L")		25		ns
tpzx(E-P1Z)	Port P1 floating release delay time (BYTE="L")		25		ns
th(E-P1A)	Port P1 address hold time (BYTE="H")		25		ns
th(ALE-P2A)	Port P2 address hold time		9		ns
th(E-P2Q)	Port P2 data hold time		25		ns
tpzx(E-P2Z)	Port P2 floating release delay time		25		ns
th(E-BHE)	BHE hold time		18		ns
th(E-R/W)	R/W hold time		18		ns
tw(EL)	E pulse width		130		ns

130

ns

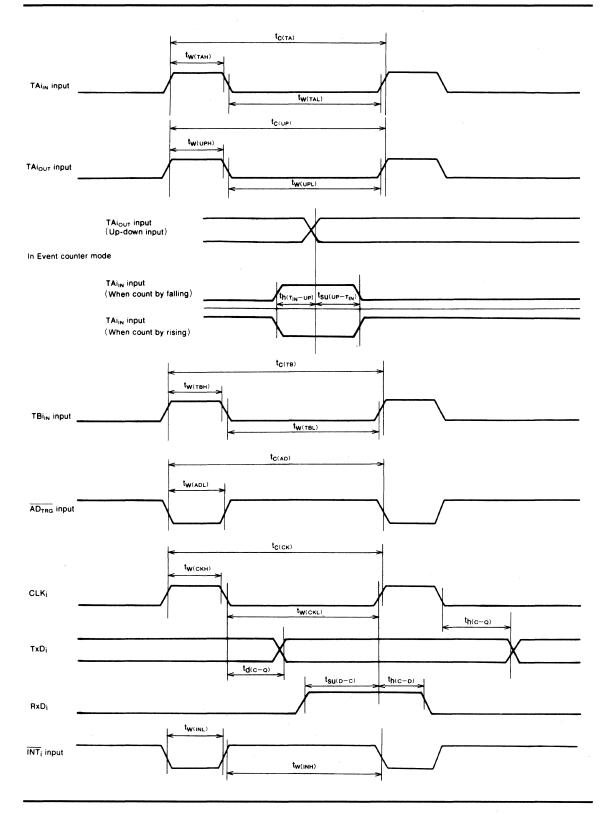

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER


Memory expansion mode and microprocessor mode


E pulse width

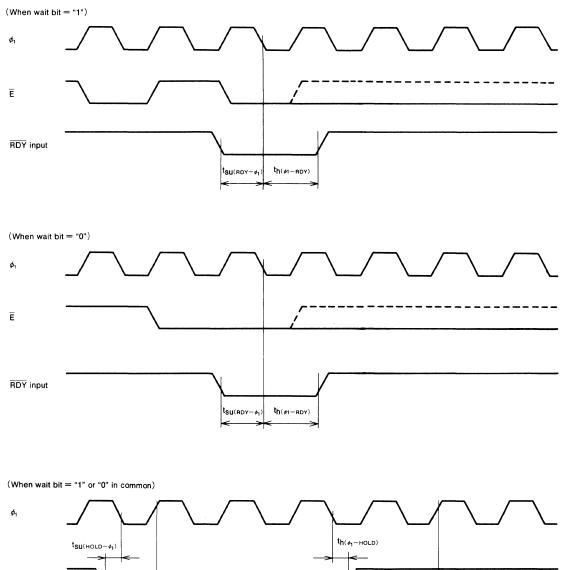
 $\mathbf{t}_{W(EL)}$

Symbol	Parameter	Test conditions	Lir	nits	Unit
Symbol	Falameter	Test conditions	Min.	Max.	Onit
td(POA-E)	Port P0 address output delay time		92		ns
td(E-P1Q)	Port P1 data output delay time (BYTE="L")	4		45	ns
tpxz(E-P1Z)	Port P1 floating start delay time (BYTE="L")			5	ns
td(P1A-E)	Port P1 address output delay time		92		ns
td(P1A-ALE)	Port P1 address output delay time	Fig. 2	70		ns
td(E-P2Q)	Port P2 data output delay time			45	ns
tpxz(E-P2Z)	Port P2 floating start delay time			5	ns
td(P2A-E)	Port P2 address output delay time		92		ns
td(P2A-ALE)	Port P2 address output delay time		70		ns
td(ø1-HLDA)	HLDA output delay time			50	ns
td(ALE-E)	ALE output delay time		15		ns
t _{W(ALE)}	ALE pulse width		62		ns
td(вне-е)	BHE output delay time	Eig 2	100		ns
td(R/W-E)	R/W output delay time	Fig. 2	100		ns
td(E-\$\$_1)	ϕ_1 output delay time		0	18	ns
th(E-POA)	Port P0 address hold time		25		ns
th(ALE-P1A)	Port P1 address hold time (BYTE="L")		20		ns
th(E-PIQ)	Port P1 data hold time (BYTE="L")	- Fig. 2	25		ns
tpzx(E-P1Z)	Port P1 floating release delay time (BYTE="L")		25		ns
th(E-P1A)	Port P1 address hold time (BYTE="H")		25		ns
th(ALE-P2A)	Port P2 address hold time		20		ns
th(E-P2Q)	Port P2 data hold time		25		ns
tpzx(E-P2Z)	Port P2 floating release delay time		25		ns
th(E-BHE)	BHE hold time		18		ns
th(E-R/W)	R/W hold time		18		ns



SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

TIMING DIAGR Single-chip mode	AM tr tr t <u>c</u> → tw(µ) ← → tw(L)
$f(\mathbf{X}_{iN})$	
Ē	
Port P0 output	→ ^t d(E – POQ)
Port P0 input	tsu(POD-E)
Port P1 output	<-> td(E−P10)
Port P1 input	
Port P2 output	t _{su(p2D−E)} ,
Port P2 input	$ \xrightarrow{ h_{(E-P2D)} } t_{d(E-P3Q)} $
Port P3 output	t _{SU(P3D−E)}
Port P3 input	$\frac{t_{h(\epsilon-p_{3D})}}{t_{d(\epsilon-p_{4Q})}}$
Port P4 output	
Port P4 input	t _{SU(P4D-E)}
Port P5 output	←→ td(ε-P5Q)
Port P5 input	t _{SU(PSD} -E) t _{h(E-PSD)}
Port P6 output	
Port P6 input	
Port P7 output	
Port P7 input	t _{SU(P7D-E)}
Port P8 output	
Port P8 input	th(ε-P8D)



SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

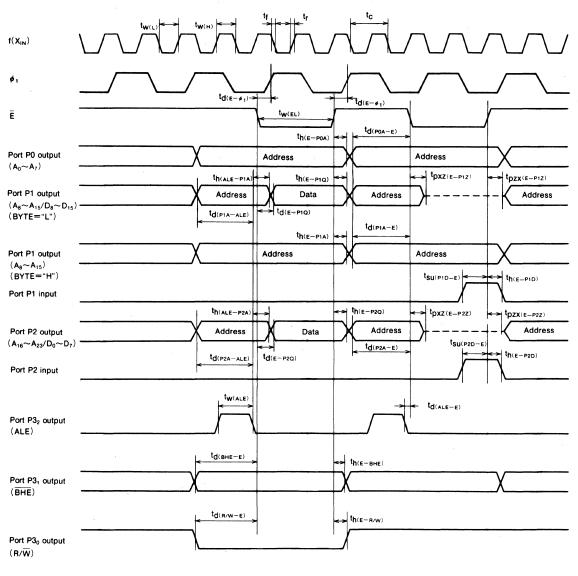
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

Memory expansion mode and microprocessor mode

HOLD input

HLDA output

Test conditions $\cdot V_{CC} = 5V \pm 10\%$



td(++++++)

 $\label{eq:VIL} \begin{array}{ll} \bullet \mbox{ Input timing voltage } & : \mbox{ V}_{\rm IL} = 1.0 \mbox{ V}, \mbox{ V}_{\rm IH} = 4.0 \mbox{ V} \\ \bullet \mbox{ Output timing voltage } : \mbox{ V}_{\rm OL} = 0.8 \mbox{ V}, \mbox{ V}_{\rm OH} = 2.0 \mbox{ V} \end{array}$

 $t_{d(\phi_1 - HLDA)}$

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

Memory expansion mode and microprocessor mode (When wait bit="1")

Test conditions

• V_{cc}=5V±10%

- Output timing voltage : V_{OL}=0. 8V, V_{OH}=2. 0V

• Ports P1, P2 input : VIL=0. 8V, VIH=2.5V

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

Memory expansion mode and microprocessor mode (When wait bit = "0", wait selection bit = "1", and external memory area is accessed)

f(X _{IN})		\sim		\sim	MMM
\$ 1					
Ē		tw(EL) th(E-PO A)		A-E)	
Port P0 output $(A_0 \sim A_7)$	X	Address	X	Address	Х
Port P1 output (A ₈ ~A ₁₅ /D ₈ ~ (BYTÈ="L")	D ₁₅) Y Addres		Address	:pxz(ε−₽1z) ←	Address
Port P1 output (A ₈ ~A ₁₅) (BYTE="H")	_	t _{h(E-P1A)} Address	X	A−E) Address su(P1D−E)	→ t _{h(E-P1D)}
Port P1 input					\neg
Port P2 outpu (A ₁₆ ~A ₂₃ /D ₀ - Port P2 input		th($E-P 2Q$) s Data td($E-P2Q$)	Address	tsu(p2D-E)	Address
Port P3 ₂ outp (ALE)	Jt	-			N
Port P3 ₁ outp (BHE)		•	th(е- вне)		Χ
Port P3 ₀ outp (R/ W)			th(E- R/W)		

Test conditions

- $\cdot v_{cc} = 5V \pm 10\%$
- Output timing voltage : V_OL=0. 8V, V_OH=2. 0V
- Ports P1, P2 input : V_{IL}=0.8V, V_{IH}=2.5V

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

Memory expansion mode and microprocessor mode

(When wait bit = "0", wait selection bit = "0", and external memory area is accessed)

	t _c
f(X _{IN})	$\mathcal{M} = \mathcal{M} = $
<i>\$</i> 1	
Ē	
Port P0 output $(A_0 \sim A_7)$	th(E-POA) Address
Port P1 output $(A_8 \sim A_{15}/D_8 \sim D_{15})$ (BYTE="L")	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
Port P1 output (A ₈ ∼A ₁₅) (BYTE="H")	this Address Address Address
Port P1 input	t _{SU(PID-E)} t _{h(E-PID)}
Port P2 output $(A_{16} \sim A_{23}/D_0 \sim D_7)$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
Port P2 input	td(P2A-ALE)
Port P3 ₂ output (ALE)	tw(ALE)
	td(BHE−E) th(E−BHE)
Port P3 ₁ output (BHE)	
	$\stackrel{t_{d(R/W-E)}}{\longleftrightarrow} \stackrel{t_{d(E-R/W)}}{\longleftrightarrow}$
Port P3 ₀ output (R/ \overline{W})	

Test conditions

 $\cdot v_{cc} = 5V \pm 10\%$

• Output timing voltage : V_{OL}=0.8V, V_{OH}=2.0V

• Ports P1, P2 input $: V_{IL}=0.8V, V_{IH}=2.5V$

MITSUBISHI MICROCOMPUTERS

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

DESCRIPTION

The M37710M8LXXXHP is a single-chip 16-bit microcomputer designed with high-performance CMOS silicon gate technology. This is housed in a small 80-pin plastic molded QFP.

This microcomputer has a large 16M bytes address space, three instruction queue buffers, and two data buffers for high-speed instruction execution. The CPU is a 16-bit parallel processor that can also be switched to perform 8-bit parallel processing. This microcomputer is suitable for communication, office, business and industrial equipment controller that require high-speed processing of large data. Its strong points are the low supply voltage and the small package.

FEATURES

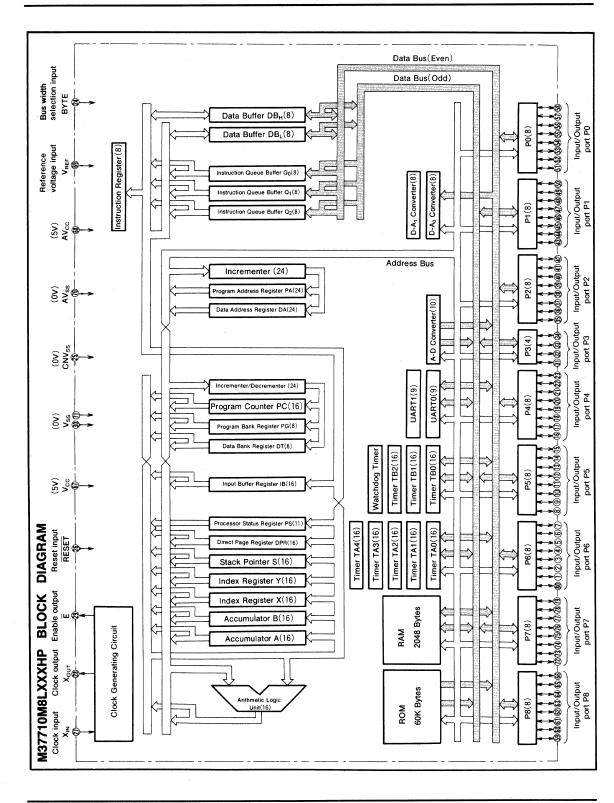
٠	Number of basic	instructions 103
٠	Memory size	ROM60K bytes
		RAM 2048 bytes
٠	Instruction exec	
	The fastest instr	uction at 8MHz frequency 500ns
٠	Single low supp	ly voltage 2.7~5.5V
٠	Low power diss	pation
	(At 3V supply ve	oltage, 8MHz frequency) ··· 12mW (Typ.)
	(At 5V supply ve	oltage, 8MHz frequency) ··· 30mW (Typ.)
٠	Wide operating	temperature range·······-40~85℃
٠		······19 types 7 levels
٠	Multiple function	16-bit timer
		ve waveform can be output)
٠	UART (may also	be synchronous) ······2
٠	10-bit A-D conv	erter 8-channel inputs
•	8-bit D-A conve	rter ······2-channel outputs
٠	12-bit watchdog	timer
•	Programmable i	nput/output
	(ports P0, P1, P	2, P3, P4, P5, P6, P7, P8) ······ 68

Small package

APPLICATION

Control devices for office equipment such as copiers, printers, typewriters, facsimiles, word processors, and personal computers

Control devices for industrial equipment such as ME, NC, communication, portable equipment, and measuring instruments



NOTE

Refer to "Chapter 5 PRECAUTIONS" when using this microcomputer.

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

FUNCTIONS OF M37710M8LXXXHP

	Parameter	Functions
Number of basic instructions		103
Instruction execution time		500ns (the fastest instruction at external clock 8MHz frequency)
M	ROM	60K bytes
Memory size	RAM	2048 bytes
In much (Quida und an andra	P0~P2, P4~P8	8 -bit× 8
Input/Output ports	P3	4 -bit× 1
A.4. 111 4	TA0, TA1, TA2, TA3, TA4	16-bit× 5
Multi-function timers	TB0, TB1, TB2	16-bit× 3
Serial I/O		(UART or clock synchronous serial I/O)×2
A-D converter		10-bit×1 (8 channels)
D-A converter		8 -bit× 2
Watchdog timer		12-bit× 1
1-4		3 external types, 16 internal types
Interrupts		(Each interrupt can be set the priority levels to $0 \sim 7$.)
Clock generating circuit		Built-in(externally connected to a ceramic resonator or quartz crystal resonator)
Supply voltage		2. 7~5. 5V
Power dissipation		12mW (At 3V supply voltage, external clock 8 MHz frequency)
Power dissipation		30mW (At 5V supply voltage, external clock 8 MHz frequency)
	Input/Output voltage	5 V
Input/Output characteristic	Output current	5 mA
Memory expansion		Maximum 16M bytes
Operating temperature range	•	_40~85℃
Device structure		CMOS high-performance silicon gate process (80P6D-A : 0.5mm lead pitch)
Package		80-pin plastic molded fine-pitch QFP

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

PIN DESCRIPTION

Pin	Name	Input/Output	Functions
V _{CC} , V _{SS}	Power supply		Supply 2.7 to 5.5V to V $_{CC}$ and $~0$ V to V $_{SS}.$
CNV _{SS}	CNV _{SS} input	Input	This pin controls the processor mode. Connect to V_{SS} for single-chip mode, and to V_{CC} for external ROM types.
RESET	Reset input	Input	To enter the reset state, this pin must be kept at a "L" condition which should be maintained for the re- quired time.
X _{IN}	Clock input	Input	These are I/O pins of internal clock generating circuit. Connect a ceramic or quartz crystal resonator be- tween X_N and X_{OUT} . When an external clock is used, the clock source should be connected to the X_N pin
X _{OUT}	Clock output	Output	and the X _{OUT} pin should be left open.
Ē	Enable output	Output	Data or instruction read and data write are performed when output from this pin is "L".
BYTE	Bus width selection input	Input	In memory expansion mode or microprocessor mode, this pin determines whether the external data bus is 8-bit width or 16-bit width. The width is 16 bits when "L" signal inputs and 8 bits when "H" signal inputs.
AV _{CC} AV _{SS}	Analog supply input		Power supply for the A-D converter. AV_{SS} is also used for D-A converter. Connect AV_{CC} to V_{CC} and AV_{SS} to V_{SS} externally.
V _{REF}	Reference voltage input	Input	This is reference voltage input pin for the A-D converter and the D-A converter.
P0 ₀ ~P0 ₇	I/O port P0	1/0	In single-chip mode, port P0 becomes an 8-bit I/O port. An I/O direction register is available so that each pin can be programmed for input or output. These ports are in input mode when reset . Address($A_7 \sim A_0$) is output in memory expansion mode or microprocessor mode.
P1 ₀ ~P1 ₇	I/O port P1	1/0	In single-chip mode, these pins have the same functions as port P0. When the BYTE pin is set to "L" in memory expansion mode or microprocessor mode and external data bus is 16-bit width, high-order data $(D_{15}\sim D_8)$ is input or output when \overline{E} output is "L" and an address $(A_{15}\sim A_8)$ is output when \overline{E} output is "H". If the BYTE pin is "H" that is an external data bus is 8-bit width, only address $(A_{15}\sim A_8)$ is output.
P2 ₀ ~P2 ₇	I/O port P2	I/O	In single-chip mode, these pins have the same functions as port P0. In memory expansion mode or microprocessor mode low-order data($D_7 \sim D_0$) is input or output when \overline{E} output is "L" and an address($A_{23} \sim A_{16}$) is output when \overline{E} output is "H".
P3₀~P3₃	I/O port P3	1/0	In single-chip mode, these pins have the same functions as port P0. In memory expansion mode or microp- rocessor mode, R/W, BHE, ALE, and HLDA signals are output.
P4₀~P4 ₇	I/O port P4	I/O	In single-chip mode, these pins have the same functions as port P0. In memory expansion mode or microprocessor mode, P4 ₀ and P4 ₁ become HOLD and RDY input pin respectively. Functions of other pins are the same as in single-chip mode. In single-chip mode or memory expansion mode, port P4 ₂ can be programmed for ϕ_1 output pin divided the clock to X _{IN} pin by 2. In microprocessor mode, P4 ₂ always has the function as ϕ_1 output pin.
P5 ₀ ~P5 ₇	I/O port P5	1/0	In addition to having the same functions as port P0 in single-chip mode, these pins also function as I/C pins for timer A0, timer A1, timer A2 and timer A3. $P5_0 \sim P5_6$ also function as output pins for pulse motor drive waveform.
P6 ₀ ~P6 ₇	I/O port P6	I/O .	In addition to having the same functions as port P0 in single-chip mode, these pins also function as I/C pins for timer A4, external interrupt input $\overline{INT_0}$, $\overline{INT_1}$ and $\overline{INT_2}$ pins, and input pins for timer B0, timer B1 and timer B2. P6 ₀ also functions as an output pin for pulse motor drive waveform.
P7₀~P7 ₇	I/O port P7	1/0	In addition to having the same functions as port P0 in single-chip mode, these pins also function as analog input AN ₀ \sim AN ₇ input pins. P7 ₇ also has an A-D conversion trigger input function.
P80~P87	I/O port P8	1/0	In addition to having the same functions as port P0 in single-chip mode, these pins also function as R_xD T _x D, CLK, $\overline{CTS}/\overline{RTS}$ pins for UART 0 and UART 1, and output pins for D-A converter.

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

BASIC FUNCTION BLOCKS

The M37710M8LXXXHP has the same functions as the M37710M4BXXXFP except for the following:

- (1) The ROM size is 60K bytes.
- (2) The RAM size is 2048 bytes.
- (3) The reset circuit is different.
- (4) The package is different.

Therefore, refer to the section on the M37710M4BXXXFP.

MEMORY

The memory map is shown in Figure 1.

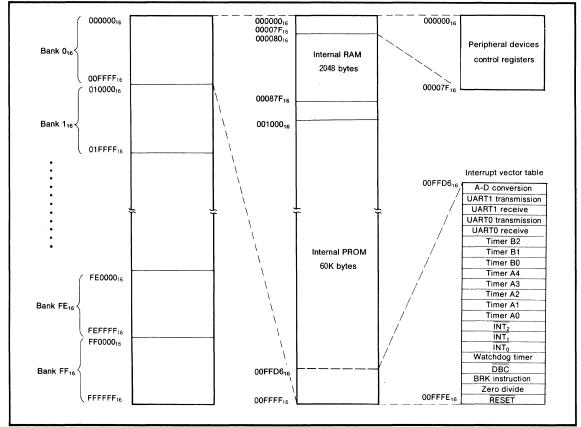


Fig. 1 Memory map

MITSUBISHI MICROCOMPUTERS

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

RESET CIRCUIT

Reset occurs when the RESET pin is returned to "H" level after holding it at "L" level when the power voltage is at 2.7 to 5.5V. Program execution starts at the address formed by setting the address pins $A_{23} \sim A_{16}$ to 00_{16} , $A_{15} \sim A_8$ to the contents of address FFFF₁₆, and $A_7 \sim A_0$ to the contents of address FFFE₁₆.

Figure 2 shows the status of the internal registers when a reset occurs.

Figure 3 shows an example of a reset circuit. The reset input voltage must be held 0.55V or lower when the power voltage reaches 2.7V.

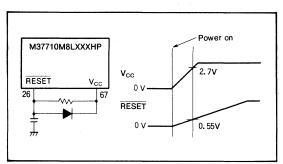


Fig. 3 Example of a reset circuit (perform careful evaluation at the system design level before using)

	(0416)…	0016	(29)	Processor mode register 0	(5E ₁₆)…	0016
data direction register				ũ		
data direction register	(05 ₁₆)…	0016	(30)	Processor mode register 1	(5F ₁₆)…	
data direction register	(08 ₁₆)…	00 ₁₆	(31)	-	i0 ₁₆)…	FFF ₁₆
data direction register	(09 ₁₆)		(32)	Watchdog timer frequency selection flag	(61 ₁₆)	
data direction register	(0C ₁₆)	0016	(33)	Waveform output mode register	(62 ₁₆)…	0016
data direction register	(0D ₁₆)	0016	(34)	Reserved area (Do not write to this address)	(66 ₁₆)…	0016
data direction register	(10 ₁₆)…	0016	(35)	A-D conversion interrupt control register	(70 ₁₆)…	
data direction register	(11 ₁₆)…	0016	(36)	UART 0 transmission interrupt control register	(71 ₁₆)…	
data direction register	(14 ₁₆)…	0016	(37)	UART 0 receive interrupt control register	(72 ₁₆)…	
ntrol register 0	(1E ₁₆)…	00000???	(38)	UART 1 transmission interrupt control register	(73 ₁₆)…	
ntrol register 1	(1F ₁₆)…	0 0 0 0 1 1	(39)	UART 1 receive interrupt control register	(74 ₁₆)…	
ransmit/Receive mode register	(30 ₁₆)	0016	(40)	Timer A0 interrupt control register	(75 ₁₆)…	
ransmit/Receive mode register	(38 ₁₆)	0016	(4 1)	Timer A1 interrupt control register	(76 ₁₆)…	
ansmit/Receive control register 0	(34 ₁₆)…		(42)	Timer A2 interrupt control register	(77 ₁₆)…	
ansmit/Receive control register 0	(3C ₁₆)…		(43)	Timer A3 interrupt control register	(78 ₁₆)…	
ansmit/Receive control register 1	(35 ₁₆)…	0 0 0 0 0 0 1 0	(44)	Timer A4 interrupt control register	(79 ₁₆)…	
ansmit/Receive control register 1	(3D ₁₆)…	0 0 0 0 0 0 1 0	(45)	Timer B0 interrupt control register	(7A ₁₆)…	
start flag	(40 ₁₆)…	0016	(46)	Timer B1 interrupt control register	(7B ₁₆)…	
ot start flag	(42 ₁₆)…	0 0 0 0 0	(47)	Timer B2 interrupt control register	(7C ₁₆)…	
vn flag	(44 ₁₆)…	00 ₁₆	(48)	INT o interrupt control register	(7D ₁₆)…	0 0 0 0 0
A0 mode register	(56 ₁₆)…	0016	(49)	INT 1 interrupt control register	(7E ₁₆)…	000000
A1 mode register	(57 ₁₆)…	00 ₁₆	(50)	INT 2 interrupt control register	(7F ₁₆)…	
A2 mode register	(58 ₁₆)…	00 ₁₆	(51)	Processor status register PS	0 0 0	? ? 0 0 0 1 ? '
A3 mode register	(59 ₁₆)…	0016	(52)	Program bank register PG		0016
A4 mode register	(5A ₁₆)…	0016	(53)	Program counter PC _H		Content of FFFF ₁₆
30 mode register	(5B ₁₆)…	0 0 1 0 0 0 0	(54)	Program counter PC _L		Content of FFFE ₁₆
31 mode register	(5C ₁₆)	0 0 1 0 0 0 0	(55)	Direct page register DPR		000016
B2 mode register	(5D ₁₆)	0 0 1 0 0 0 0	(56)	Data bank register DT		0016
31 n	node register	node register (5C ₁₆)	node register $(5C_{16}) \cdots 0 0 1 1 0 0 0 0$	node register $(5C_{16}) \cdots 0 0 1 1 0 0 0 0 $ (55)	node register $(5C_{16})$ $0 0 1 1 0 0 0 0$ (5) Direct page register DPR	node register (5C ₁₆) 0 0 1 0 0 0 (55) Direct page register DPR

Fig. 2 Microcomputer internal status during reset

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

ADDRESSING MODES

The M37710M8LXXXHP has 28 powerful addressing modes. Refer to the MELPS 7700 addressing mode description for the details of each addressing mode.

MACHINE INSTRUCTION LIST

The M37710M8LXXXHP has 103 machine instructions. Refer to the MELPS 7700 machine instruction list for details.

DATA REQUIRED FOR MASK ROM ORDERING

- Please send the following data for mask orders.
- (1) M37710M8LXXXHP mask ROM order confirmation form
- (2) 80P6D mark specification form
- (3) ROM data (EPROM 3 sets)

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

Symbol	Parameter	Conditions	Ratings	Unit
V _{cc}	Supply voltage		-0.3~7	V
AVcc	Analog supply voltage		-0.3~7	V
V ₁	Input voltage RESET, CNV _{SS} , BYTE		-0.3~12	V
Vi	Input voltage P0 ₀ ~P0 ₇ , P1 ₀ ~P1 ₇ , P2 ₀ ~P2 ₇ , P3 ₀ ~P3 ₃ , P4 ₀ ~P4 ₇ , P5 ₀ ~P5 ₇ , P6 ₀ ~P6 ₇ , P7 ₀ ~P7 ₇ , P8 ₀ ~P8 ₇ , V _{REF} , X _{IN}		-0.3~V _{cc} +0.3	v
vo	Output voltage P0 ₀ ~P0 ₇ , P1 ₀ ~P1 ₇ , P2 ₀ ~P2 ₇ , P3 ₀ ~P3 ₃ , P4 ₀ ~P4 ₇ , P5 ₀ ~P5 ₇ , P6 ₀ ~P6 ₇ , P7 ₀ ~P7 ₇ , P8 ₀ ~P8 ₇ , X _{0UT} , Ē		-0.3~V _{cc} +0.3	v
Pd	Power dissipation	T _a =25℃	200	mW
Topr	Operating temperature		-40~85	°C
Tsta	Storage temperature		-65~150	°C

ABSOLUTE MAXIMUM RATINGS

RECOMMENDED OPERATING CONDITIONS ($v_{cc}=2.7\sim5.5v$, $T_a=-40\sim85$ °C, unless otherwise noted)

Symbol	Parameter		Limits		Unit
Gymbol		Min.	Тур.	Max.	Onic
V _{cc}	Supply voltage	2.7		5.5	v
AV _{CC}	Analog supply voltage		Vcc		v
V _{SS}	Supply voltage		0		V
AV _{SS}	Analog supply voltage		0		v
V _{IH}	High-level input voltage P0 ₀ ~P0 ₇ , P3 ₀ ~P3 ₃ , P4 ₀ ~P4 ₇ , P5 ₀ ~P5 ₇ , P6 ₀ ~P6 ₇ , P7 ₀ ~P7 ₇ , P8 ₀ ~P8 ₇ , X _{IN} , RESET, CNV _{SS} , BYTE	0.8V _{cc}		V _{cc}	v
VIH	High-level input voltage P1 ₀ ~P1 ₇ , P2 ₀ ~P2 ₇ (in single-chip mode)	0.8V _{cc}		V _{cc}	v
V _{IH}	High-level input voltage $P1_0 \sim P1_7$, $P2_0 \sim P2_7$ (in memory expansion mode and microprocessor mode)	0.5V _{CC}		V _{cc}	v
VIL	Low-level input voltage P0 ₀ ~P0 ₇ , P3 ₀ ~P3 ₃ , P4 ₀ ~P4 ₇ , P5 ₀ ~P5 ₇ , P6 ₀ ~P6 ₇ , P7 ₀ ~P7 ₇ , P8 ₀ ~P8 ₇ , X _{IN} , RESET, CNV _{SS} , BYTE	0		0. 2V _{CC}	v
VIL	Low-level input voltage P1 ₀ ~P1 ₇ , P2 ₀ ~P2 ₇ (in single-chip mode)	0		0. 2V _{CC}	v
V _{IL}	Low-level input voltage P1 ₀ ~P1 ₇ , P2 ₀ ~P2 ₇ (in memory expansion mode and microprocessor mode)	0		0. 16V _{cc}	v
I _{OH} (peak)	High-level peak output current P0 ₀ ~P0 ₇ , P1 ₀ ~P1 ₇ , P2 ₀ ~P2 ₇ , P3 ₀ ~P3 ₃ , P4 ₀ ~P4 ₇ , P5 ₀ ~P5 ₇ , P6 ₀ ~P6 ₇ , P7 ₀ ~P7 ₇ , P8 ₀ ~P8 ₇			-10	mA
I _{OH(avg)}	High-level average output current P0 ₀ ~P0 ₇ , P1 ₀ ~P1 ₇ , P2 ₀ ~P2 ₇ , P3 ₀ ~P3 ₃ , P4 ₀ ~P4 ₇ , P5 ₀ ~P5 ₇ , P6 ₀ ~P6 ₇ , P7 ₀ ~P7 ₇ , P8 ₀ ~P8 ₇			-5	mA
I _{OL} (peak)	Low-level peak output current P0 ₀ ~P0 ₇ , P1 ₀ ~P1 ₇ , P2 ₀ ~P2 ₇ , P3 ₀ ~P3 ₃ , P4 ₀ ~P4 ₇ , P5 ₀ ~P5 ₇ , P6 ₀ ~P6 ₇ , P7 ₀ ~P7 ₇ , P8 ₀ ~P8 ₇			10	mA
I _{oL(avg)}	$\begin{array}{llllllllllllllllllllllllllllllllllll$			5	mA
f(X _{IN})	External clock frequency input			8	MHz

Note 1. Average output current is the average value of a 100ms interval.

2. The sum of I_{OL(peak)} for ports P0, P1, P2, P3, and P8 must be 80mA or less, the sum of I_{OL(peak)} for ports P0, P1, P2, P3, and P8 must be 80mA or less, the sum of I_{OL(peak)} for ports P4, P5, P6, and P7 must be 80mA or less, and the sum of I_{OL(peak)} for ports P4, P5, P6, and P7 must be 80mA or less.

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

Symbol	Parameter	Т	est conditions			Limits		Uni	
0,					Min.	Тур.	Max.	0111	
V _{он}	High-level output voltage P0 ₀ ~P0 ₇ , P1 ₀ ~P1 ₇ , P2 ₀ ~P2 ₇ , P3 ₀ , P3 ₁ , P3 ₃ , P4 ₀ ~P4 ₇ ,	V _{сс} =5V, I _{он} =-	-10mA		3			v	
•OH	P5₀~P5 ₇ , P6₀~P6 ₇ , P7₀~P7 ₇ , P8₀~P8 ₇	$V_{CC}=3V$, $I_{OH}=-1mA$			2.5				
V _{он}	High-level output voltage P0 ₀ ~P0 ₇ , P1 ₀ ~P1 ₇ , P2 ₀ ~P2 ₇ , P3 ₀ , P3 ₁ , P3 ₃	V _{cc} =5V, I _{он} =-	-400μA		4.7			v	
		V _{cc} =5V, I _{он} =-	-10mA		3.1				
V _{он}	High-level output voltage P32	V _{сс} =5V, I _{он} =-	-400μA		4.8			v	
		V _{CC} =3V, I _{OH} =-	-1mA		2.6				
		V _{сс} =5V, I _{он} =-	-10mA		3.4				
V _{он}	High-level output voltage E	V _{cc} =5V, I _{OH} =-	-400μA		4.8			v	
		V _{CC} =3V, I _{OH} =-	-1mA		2.6				
Vol	Low-level output voltage P0 ₀ ~P0 ₇ , P1 ₀ ~P1 ₇ , P2 ₀ ~P2 ₇ , P3 ₀ , P3 ₁ , P3 ₃ , P4 ₀ ~P4 ₇ ,	V _{CC} =5V, I _{OL} =1	0mA				2	v	
VOL	P5 ₀ ~P5 ₇ , P6 ₀ ~P6 ₇ , P7 ₀ ~P7 ₇ , P8 ₀ ~P8 ₇	V _{CC} =3V, I _{OL} =1	mA				0.5		
V _{oL}	Low-level output voltage P0 ₀ ~P0 ₇ , P1 ₀ ~P1 ₇ , P2 ₀ ~P2 ₇ , P3 ₀ , P3 ₁ , P3 ₃	$V_{CC}=5V$, $I_{OL}=2mA$				0.45	v		
		$V_{CC}=5V$, $I_{OL}=10mA$				1.9			
V _{oL} I	Low-level output voltage P32	V _{CC} =5V, I _{OL} =2	$V_{CC}=5V, I_{OL}=2mA$				0.43] v	
		$V_{CC}=3V$, $I_{OL}=1mA$					0.4		
	·	V _{CC} =5V, I _{OL} =1	0mA				1.6	0.4 V	
Vol	Low-level output voltage E	$V_{CC}=5V, I_{OL}=2$	mA				0.4		
		V _{CC} =3V, I _{OL} =1	mA				0.4		
v _{t+} -v _{t-}	Hysteresis HOLD, RDY, TA0 _{IN} ~TA4 _{IN} , TB0 _{IN} ~TB2 _{IN} ,	V _{cc} =5V			0.4		1	l v	
•1+ •1-	$\overline{INT_0} \sim \overline{INT_2}$, $\overline{AD_{TRG}}$, $\overline{CTS_0}$, $\overline{CTS_1}$, CLK_0 , CLK_1	V _{cc} =3V			0.1		0.7		
/V-	Hysteresis RESET	V _{cc} =5V			0.2		0.5	v	
•1+ •1-		V _{cc} =3V			0.1		0.4		
V++V+	Hysteresis X _{IN}	V _{cc} =5V			0.1		0.3	l v	
•1+ •1-	•	V _{cc} =3V			0.06		0.2		
ін	High-level input current P0 ₀ ~P0 ₇ , P1 ₀ ~P1 ₇ , P2 ₀ ~P2 ₇ , P3 ₀ ~P3 ₃ , P4 ₀ ~P4 ₇ , P5 ₀ ~P5 ₇ ,	V _{cc} =5V, V ₁ =5V	,				5	μA	
17	P6₀~P67, P7₀~P77, P8₀~P87, X _{IN} , RESET, CNV _{SS} , BYTE	$V_{cc}=3V, V_{l}=3V$,				4		
IL.	Low-level input current $P0_0 \sim P0_7$, $P1_0 \sim P1_7$, $P2_0 \sim P2_7$, $P3_0 \sim P3_3$, $P4_0 \sim P4_7$, $P5_0 \sim P5_7$,	$v_{cc}=5v, v_i=0v$	·				-5	щ	
'IL	P6₀~P67, P7₀~P77, P8₀~P87, X _{IN} , RESET, CNV _{SS} , BYTE	V _{CC} =3V, V _I =0V				-4	μ		
/ _{RAM}	RAM hold voltage	When clock is s	topped.		2			V	
		In single-chip	f(X _{IN})=8MHz,	$V_{CC}=5V$		6	12	m	
		mode output	square waveform	$V_{CC}=3V$		4	8	n	
cc	Power supply current	only pin is open and other pins	T _a =25°C when stopped.	clock is			1		
		are V _{SS} during reset.	T _a =85°C when stopped.	clock is			20	μ	

ELECTRICAL CHARACTERISTICS (V_{cc}=5V, V_{ss}=0V, T_a=25°C, f(X_{IN})=8MHz, unless otherwise noted)

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

A-D CONVERTER CHARACTERISTICS (V_{cc}=AV_{cc}=5V, V_{ss}=AV_{ss}=0V, T_a=25°C, f(X_{IN})=8MHz; unless otherwise noted)

Symbol	Parameter	Test conditions		Unit		
Symbol	Falameter	Test conditions	Min.	Тур.	Max.	Unit
	Resolution	V _{REF} =V _{CC}			10	Bits
	Absolute accuracy	V _{REF} =V _{CC}			±3	LSB
RLADDER	Ladder resistance	V _{REF} =V _{CC}	5		20	kΩ
t _{CONV}	Conversion time		29.5			μs
VREF	Reference voltage		2.7		V _{cc}	v
VIA	Analog input voltage		0		VREF	v

D-A CONVERTER CHARACTERISTICS ($v_{cc}=5v$, $v_{ss}=av_{ss}=0v$, $T_a=25$ °C, $f(X_{IN})=8$ MHz, unless otherwise noted)

Sumbol	Parameter	Test conditions	Limits			11-14
Symbol	Parameter		Min.	Тур.	Max.	Unit
	Resolution				8	Bits
_	Absolute accuracy				1.0	%
t _{su}	Set time				3	μs
Ro	Output resistance		1	2.5	4	kΩ
IVREF	Reference power input current	(Note)			3.2	mA

Note. One D-A converter is used, and the value of D-A register for unused D-A converter is "00₁₆".

Current that flows to the ladder resistance of A-D converter is excluded.

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

TIMING REQUIREMENTS ($v_{cc}=2.7\sim5.5v$, $v_{ss}=0v$, $T_a=25^{\circ}$ C, $f(x_{iN})=8$ MHz, unless otherwise noted) **External clock input**

O	Parameter	Limits		Unit
Symbol	Parameter	Min.	Max.	Unit
t _c	External clock input cycle time	125		ns
t _{w(H)}	External clock input high-level pulse width	50		ns
t _{w(L)}	External clock input low-level pulse width	50		ns
tr	External clock rise time		20	ns
tf	External clock fall time		20	ns

Single-chip mode

Ciumbial.	Parameter	Limits	nits	Unit
Symbol	Parameter	Min.	Max.	Unit
tsu(pod-e)	Port P0 input setup time	300		ns
t _{su(P1D-E)}	Port P1 input setup time	300		ns
t _{su(p2D-E)}	Port P2 input setup time	300		ns
tsu(P3D-E)	Port P3 input setup time	300		ns
t _{su(P4D-E)}	Port P4 input setup time	300		ns
t _{SU(P5D-E)}	Port P5 input setup time	300		ns
t _{SU(P6D-E)}	Port P6 input setup time	300		ns
t _{su(P7D-E})	Port P7 input setup time	300		ns
t _{SU(P8D-E)}	Port P8 input setup time	300		ns
th(E-POD)	Port P0 input hold time	0		ns
th(E-P1D)	Port P1 input hold time	0		ns
th(E-P2D)	Port P2 input hold time	0		ns
th(E-P3D)	Port P3 input hold time	0		ns
th(E-P4D)	Port P4 input hold time	0		ns
th(E-P5D)	Port P5 input hold time	0		ns
th(E-P6D)	Port P6 input hold time	0		ns
th(E-P7D)	Port P7 input hold time	0		ns
th(E-P8D)	Port P8 input hold time	0		ns

Memory expansion mode and microprocessor mode

Symbol	Parameter	Limits	nits	Unit
Symbol	Parameter	Min.	Max.	Unit
t _{su(P1D-E)}	Port P1 input setup time	80		ns
t _{SU(P2D-E)}	Port P2 input setup time	80		ns
tsu(RDY-ø1)	RDY input setup time	90		ns
t _{su(HOLD} −ø ₁)	HOLD input setup time	90		ns
th(E-P1D)	Port P1 input hold time	0		ns
th(E-P2D)	Port P2 input hold time	0		ns
th(ø1-RDY)	RDY input hold time	0		ns
th(ø1-HOLD)	HOLD input hold time	0		ns

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

Timer A input (Count input in event counter mode)

Cumhal	Parameter	Limits		Unit
Symbol	Parameter	Min. Max.	Unit	
t _{C(TA)}	TAi _{IN} input cycle time	250		ns
t _{w(TAH)}	TAi _{IN} input high-level pulse width	125		ns
t _{w(TAL)}	TAi _{IN} input low-level pulse width	125		ns

Timer A input (Gating input in timer mode)

Symbol	Parameter	Lin	nits	Unit
Symbol	Parameter	Min.	Max.	Unit
t _{C(TA)}	TAi _{IN} input cycle time	1000		ns
t _{w(TAH)}	TAi _{IN} input high-level pulse width	500		ns
tw(TAL)	TAI _{IN} input low-level pulse width	500		ns

Timer A input (External trigger input in one-shot pulse mode)

Symbol	Parameter	Lin	Limits	Unit
Symbol		Min.	Max.	x.
t _{C(TA)}	TAi _{IN} input cycle time	500		ns
tw(TAH)	TAi _{IN} input high-level pulse width	250		ns
tw(TAL)	TAi _{IN} input low-level pulse width	250		ns

Timer A input (External trigger input in pulse width modulation mode)

Symbol	Parameter	Limits	Unit	
	Falanetei	Min.	Max.	Unit
tw(TAH)	TAi _{IN} input high-level pulse width	250		ns
t _{W(TAL)}	TAi _{IN} input low-level pulse width	250		ns

Timer A input (Up-down input in event counter mode)

Crumb al	Parameter	Lin	Limits	
Symbol	Parameter	Min.	Max.	Unit
t _{C(UP)}	TAi _{OUT} input cycle time	5000		ns
tw(UPH)	TAi _{OUT} input high-level pulse width	2500		ns
	TAi _{OUT} input low-level pulse width	2500		ns
t _{su(up-TIN})	TAi _{OUT} input setup time	1000		ns
th(TIN-UP)	TAi _{OUT} input hold time	1000		ns

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

Timer B input (Count input in event counter mode)

Symbol	Parameter	Lin	Limits	
	Parameter	Min.	Max.	Unit
t _{C(TB)}	TBi _{IN} input cycle time (one edge count)	250		ns
t _{W(TBH)}	TBi _{IN} input high-level pulse width (one edge count)	125		ns
t _{W(TBL)}	TBi _{IN} input low-level pulse width (one edge count)	125		ns
t _{C(TB)}	TBi _{IN} input cycle time (both edges count)	500		ns
t _{w(TBH)}	TBi _{IN} input high-level pulse width (both edges count)	250		ns
tw(TBL)	TBi _{IN} input low-level pulse width (both edges count)	250		ns

Timer B input (Pulse period measurement mode)

Symbol	Decomptor	Limits	Unit	
	Parameter	Min.	Max.	Unit
t _{C(TB)}	TBi _{IN} input cycle time	1000		ns
t _{w(твн)}	TBi _{IN} input high-level pulse width	500		ns
t _{W(TBL)}	TBi _{IN} input low-level pulse width	500		ns

Timer B input (Pulse width measurement mode)

Symbol	Parameter	Limits	Unit	
Symbol	Parameter	Min.	Max.	Unit
t _{C(TB)}	TBi _{IN} input cycle time	1000		ns
tw(твн)	TBi _{IN} input high-level pulse width	500		ns
tw(TBL)	TBi _{IN} input low-level pulse width	500		ns

A-D trigger input

Symbol	Parameter		nits	Unit
	Falaneter	Min.	Max.	Onit
t _{C(AD)}	AD _{TRG} input cycle time (minimum allowable trigger)	2000		ns
t _{W(ADL)}	AD _{TRG} input low-level pulse width	250		ns

Serial I/O

Symbol	Parameter	Limits		11-14
		Min.	Max.	Unit
t _{c(cκ)}	CLK _i input cycle time	500		ns
tw(CKH)	CLK ₁ input high-level pulse width	250		ns
tw(CKL)	CLKi input low-level pulse width	250		ns
td(c-a)	TxD _i output delay time		170	ns
th(c-a)	TxD _i hold time	0		ns
t _{su(D-C)}	RxD _i input setup time	80		ns
th(c-D)	RxD _i input hold time	100		ns

External interrupt INT; input

Symbol	Parameter		nits	Unit
	Falance	Min.	Max.	Unit
t _{W(INH)}	INTi input high-level pulse width	250		ns
tw(INL)	INT _i input low-level pulse width	250		ns

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

SWITCHING CHARACTERISTICS ($v_{cc}=2.7\sim5.5V$, $v_{ss}=0V$, $T_a=25^{\circ}C$, $f(x_{IN})=8MHz$, unless otherwise noted) Single-chip mode

Symbol	Parameter	Test conditions	Lir	11-14	
			Min.	Max.	Unit
td(E-POQ)	Port P0 data output delay time			300	ns
td(E-P1Q)	Port P1 data output delay time	Fig. 4		300	ns
td(E-P2Q)	Port P2 data output delay time			300	ns
td(E-P3Q)	Port P3 data output delay time			300	ns
td(EP4Q)	Port P4 data output delay time			300	ns
td(EP5Q)	Port P5 data output delay time			300	ns
td(E-P6Q)	Port P6 data output delay time			300	ns
td(E_P7Q)	Port P7 data output delay time			300	ns
td(E-P8Q)	Port P8 data output delay time			300	ns

Memory expansion mode and microprocessor mode (when wait bit = "1")

Symbol	Parameter	Test conditions	Lin	nits	Unit
Symbol	Farameter	Test conditions	Min.	Max.	Unit
td(POA-E)	Port P0 address output delay time		62		ns
td(E-P1Q)	Port P1 data output delay time (BYTE="L")			130	ns
tpxz(E-P1Z)	Port P1 floating start delay time (BYTE="L")			10	ns
td(PIA-E)	Port P1 address output delay time		62		ns
td(P1A-ALE)	Port P1 address output delay time		52		ns
td(E-P2Q)	Port P2 data output delay time			130	ns
tpxz(E-P2Z)	Port P2 floating start delay time			10	ns
td(P2A-E)	Port P2 address output delay time	· · · · ·	62		ns
td(P2A-ALE)	Port P2 address output delay time		52		ns
td(ø1-HLDA)	HLDA output delay time			120	ns
td(ALE-E)	ALE output delay time		4		ns
tw(ALE)	ALE pulse width	Fig. 4	82		ns
td(BHE-E)	BHE output delay time		62		ns
td(R/W-E)	R/W output delay time		62		ns
$t_{d(E-\phi_1)}$	ϕ_1 output delay time		0	40	ns
th(E-POA)	Port P0 address hold time		95		ns
th(ALE-P1A)	Port P1 address hold time (BYTE="L")		9		ns
th(E-P1Q)	Port P1 data hold time (BYTE="L")		95		ns
tpzx(E-P1Z)	Port P1 floating release delay time (BYTE="L")		95		ns
th(E-P1A)	Port P1 address hold time (BYTE="H")		95		ns
th(ALE-P2A)	Port P2 address hold time		9		ns
th(E-P2Q)	Port P2 data hold time		95		ns
tpzx(E-P2Z)	Port P2 floating release delay time		95		ns
th(E-BHE)	BHE hold time		18		ns
th(E-R/W)	R/W hold time	1	18		ns
	Ē pulse width	1	220		ns

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

Memory expansion mode and microprocessor mode

(when wait bit = "0", wait selection bit = "1", and external memory area is accessed)

Symbol	Parameter	Test conditions	Limits		
Symbol			Min.	Max.	Unit
td(POA-E)	Port P0 address output delay time		62		ns
td(E-P1Q)	Port P1 data output delay time (BYTE="L")			130	ns
tpxz(E-P1Z)	Port P1 floating start delay time (BYTE="L")			10	ns
td(P1A-E)	Port P1 address output delay time		62		ns
td(P1A-ALE)	Port P1 address output delay time		52		ns
td(E-P2Q)	Port P2 data output delay time			130	ns
tpxz(E-P2Z)	Port P2 floating start delay time			10	ns
td(P2A-E)	Port P2 address output delay time		62		ns
td(P2A-ALE)	Port P2 address output delay time		52		ns
td(ø1-HLDA)	HLDA output delay time			120	ns
td(ALE-E)	ALE output delay time		4		ns
tw(ALE)	ALE pulse width		82		ns
td(BHE-E)	BHE output delay time		62		ns
td(R/W-E)	R/W output delay time	Fig. 4	62		ns
td(E-\$\$1)	ϕ_1 output delay time		0	40	ns
th(E-POA)	Port P0 address hold time		95		ns
th(ALE-P1A)	Port P1 address hold time (BYTE="L")		9		ns
th(E-P1Q)	Port P1 data hold time (BYTE="L")		95		ns
tpzx(E-P1Z)	Port P1 floating release delay time (BYTE="L")		95		ns
th(E-P1A)	Port P1 address hold time (BYTE="H")		95		ns
th(ALE-P2A)	Port P2 address hold time		9		ns
th(E-P2Q)	Port P2 data hold time	-	95		ns
tpzx(E-P2Z)	Port P2 floating release delay time		95		ns
th(E-BHE)	BHE hold time		18		ns
th(E-R/W)	R/W hold time		18		ns
tw(EL)	E pulse width		470		ns

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

Memory expansion mode and microprocessor mode

(when wait bit = "0", wait selection bit = "0", and external memory area is accessed)

Ourse had	Parameter	Test conditions		Limits	
Symbol				Max.	Unit
td(POA-E)	Port P0 address output delay time		312		ns
td(E-P1Q)	Port P1 data output delay time (BYTE="L")			130	ns
tpxz(E-P1Z)	Port P1 floating start delay time (BYTE="L")			10	ns
td(P1A-E)	Port P1 address output delay time		312		ns
td(PIA-ALE)	Port P1 address output delay time		177		ns
td(E-P2Q)	Port P2 data output delay time			130	ns
tpxz(E-P2Z)	Port P2 floating start delay time			10	ns
td(P2A-E)	Port P2 address output delay time		312		ns
td(P2A-ALE)	Port P2 address output delay time		177		ns
td(ø1-HLDA)	HLDA output delay time			120	ns
td(ALE-E)	ALE output delay time		100		ns
tw(ALE)	ALE pulse width		207		ns
t _{d(BHE-E})	BHE output delay time	Fig. 4	312		ns
td(R/W-E)	R/W output delay time	Fig. 4	.312		ns
td(E-#1)	ϕ_1 output delay time		0	40	ns
th(E-POA)	Port P0 address hold time				ns
th(ALE-P1A)	Port P1 address hold time (BYTE="L")		105		ns
th(E-P1Q)	Port P1 data hold time (BYTE="L")		95		ns
tpzx(E-P1Z)	Port P1 floating release delay time (BYTE="L")		95		ns
th(E-P1A)	Port P1 address hold time (BYTE="H")		95		ns
th(ALE-P2A)	Port P2 address hold time		105		ns
th(E-P2Q)	Port P2 data hold time		95		ns
tpzx(E-P2Z)	Port P2 floating release delay time		95		ns
t _{h(E—вне)}	BHE hold time		18		ns
th(E-R/W)	R/W hold time		18		ns
t _{w(EL)}	E pulse width		470		ns

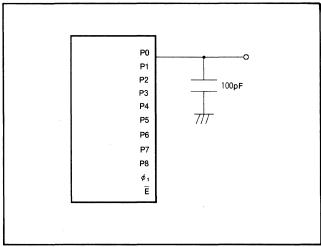
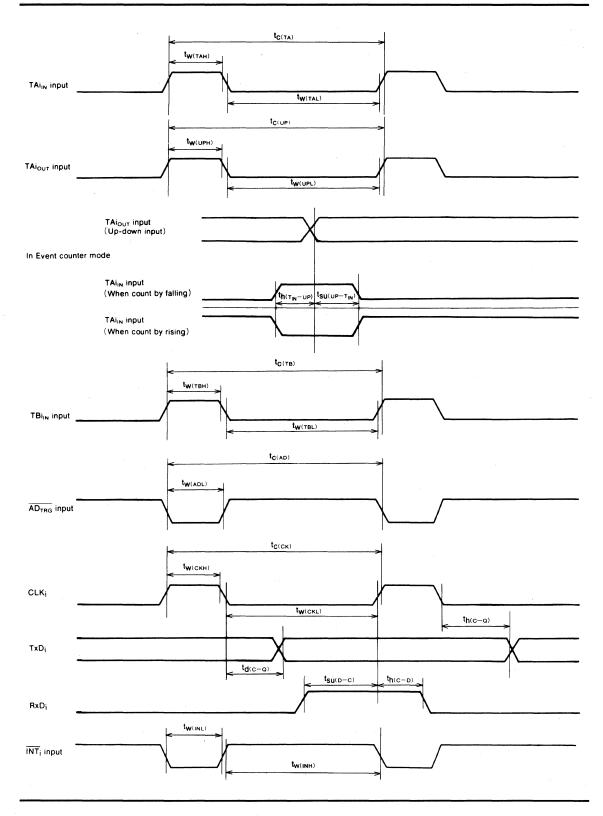
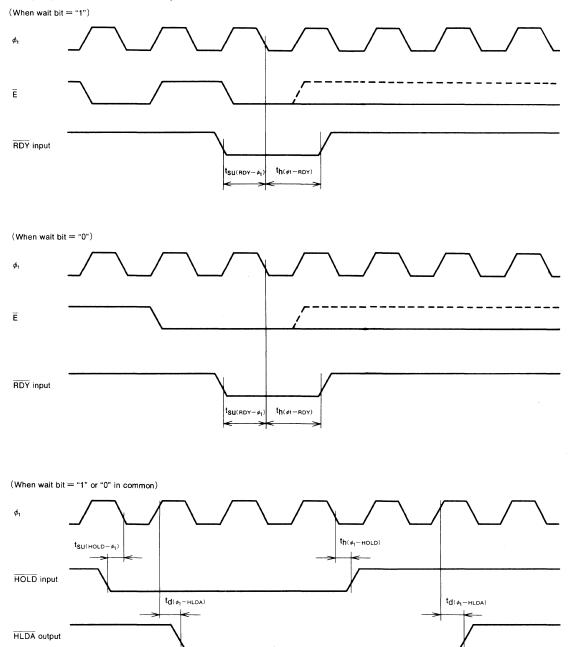


Fig. 4 Testing circuit for ports P0~P8, ϕ_1



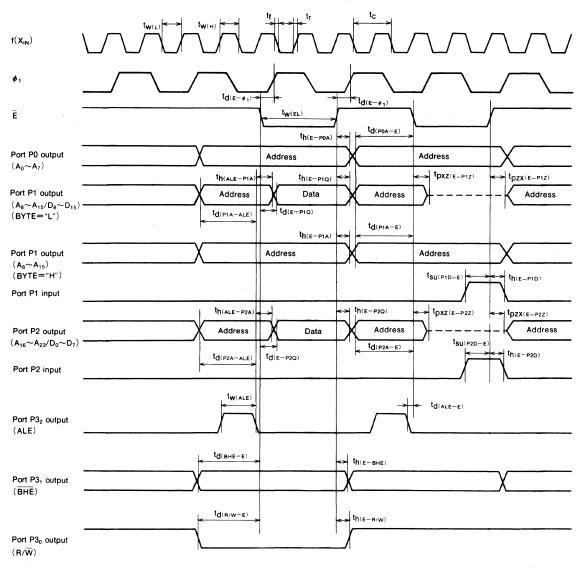
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

TIMING DIAGR Single-chip mode	$AM \qquad \begin{array}{c} t_r & t_f \\ \hline $
f(X _{IN})	
Ē	
Port P0 output	↓ td(E-P0Q)
Port P0 input	tsu(POD-E)
Port P1 output	<→ t _{d(E-P1Q)}
Port P1 input	
Port P2 output	 t _{su(P2D-E)}
Port P2 input	
Port P3 output	X
Port P3 input	t _{SU(P3D-E)} t _{h(E-P3D)}
Port P4 output	td(E-P4Q)
Port P4 input	t _{SU(P4D-E)} th(E-P4D)
Port P5 output	td(ε-P5Q)
Port P5 input	t _{SU(PSD-E)} t _{h(E-PSD)}
Port P6 output	
Port P6 input	th(ε−₽6D)
Port P7 output	t _{su(₽70-E)}
Port P7 input	th(E-P7D)
Port P8 output	<-> td(E−P8Q)
Port P8 input	



SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER


Memory expansion mode and microprocessor mode

Test conditions

- $\cdot V_{cc} = 2.7 \sim 5.5 v$
- Input timing voltage \therefore V_{IL} = 0. 2V_{CC}, V_{IH} = 0. 8V_{CC}
- Output timing voltage : $V_{OL} = 0.8V$, $V_{OH} = 2.0V$

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

Memory expansion mode and microprocessor mode (When wait bit="1")

Test conditions

• V_{cc}=2.7~5.5V

• Output timing voltage : V_{OL}=0. 8V, V_{OH}=2. 0V

• Ports P1, P2 input : VIL=0. 16V_{CC}, VIH=0. 5V_{CC}

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

Memory expansion mode and microprocessor mode

(When wait bit = "0", wait selection bit = "1", and external memory area is accessed)

f(X _{IN})		WW	WW	
\$ 1				
Ē		th(E-PO A) ++	td(P0A-E)	
Port P0 output $(A_0 \sim A_7)$	X Add	/ \	Address	
Port P1 output ($A_8 \sim A_{15}/D_8 \sim$ (BYTE="L")	D ₁₅) Address X	th(E-PIQ)	••• t _{pxz(e-p1z)} •••	tpzx (E-P1Z) Address
Port P1 output ($A_8 \sim A_{15}$) (BYTE="H")			$\frac{t_{d(P1A-E)}}{Address}}$	μ _(E-P1D)
Port P1 input				······
Port P2 output (A ₁₆ ~A ₂₃ /D ₀ ~		Data Addre	t _{SU(P2D-E)}	$\underbrace{ \begin{array}{c} t_{pZX(E=P2Z)} \\ Address \\ t_{h(E=P2D)} \end{array} }$
Port P2 input	td(P2A-ALE) td(E-1			
Port P3₂ outpo (ALE)	/ \	^	<td(ale−e)< td=""><td></td></td(ale−e)<>	
Port P3, outpo (BHE)		+ t _{h(ε-}	вне)	
Port P3 ₀ outpr (R/ W)	<>	<-> th(E−)	R/W)	

Test conditions

- $\cdot V_{cc} = 2.7 \sim 5.5 V$
- Output timing voltage : VoL=0.8V, VOH=2.0V
- Ports P1, P2 input $V_{IL}=0.16V_{CC}$, $V_{IH}=0.5V_{CC}$

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

Memory expansion mode and microprocessor mode

(When wait bit = "0", wait selection bit = "0", and external memory area is accessed)

	tc
f(X _{IN})	$\mathcal{M} \mathcal{M} \mathcal{M} \mathcal{M} \mathcal{M} \mathcal{M} \mathcal{M} \mathcal{M} $
<i>\$</i> 1	$ \begin{tabular}{ c c c c } \hline \begin{tabular}{ c c c } \hline \begin{tabular}{ c c } \hline \belticle \ \begin{tabular}{ c c } \hline \begi$
Ē	
Port P0 output $(A_0 \sim A_7)$	th(E-POA) Address Address
Port P1 output $(A_8 \sim A_{15}/D_8 \sim D_{15})$ (BYTE="L")	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
Port P1 output ($A_8 \sim A_{15}$) (BYTE="H")	$\frac{t_{h(E-P1A)}}{Address}$
Port P1 input	
Port P2 output $(A_{16} \sim A_{23}/D_0 \sim D_7)$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
Port P2 input	td(P2A-ALE)
Port P3 ₂ output (ALE)	
$\frac{\text{Port P3}_1 \text{ output}}{(\overline{\text{BHE}})}$	td(вне-е) → th(е-вне) / / / / / / / / / / / / / / / / / / /
Port $P3_0$ output (R/W)	td(R/W−E) th(E−R/W)

Test conditions

• V_{cc}=2.7~5.5V

- Output timing voltage : V_{OL} =0. 8V, V_{OH} =2. 0V

• Ports P1, P2 input $V_{IL}=0.16V_{CC}, V_{IH}=0.5V_{CC}$

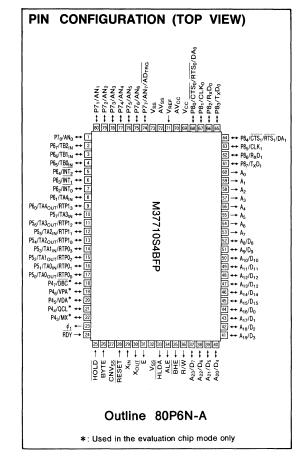
16-BIT CMOS MICROCOMPUTER

DESCRIPTION

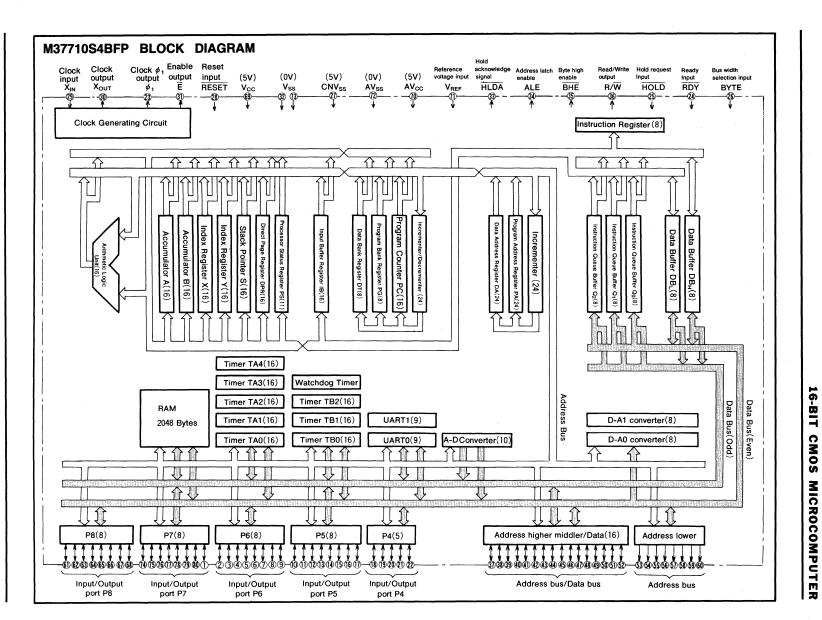
The M37710S4BFP is a microcomputer designed with highperformance CMOS silicon gate technology. This is housed in a 80-pin plastic molded QFP. This microcomputer has a large 16M bytes address space, three instruction queue buffers, and two data buffers for high-speed instruction execution. The CPU is a 16-bit parallel processor that can also be switched to perform 8-bit parallel processing. This microcomputer is suitable for office, business, and industrial equipment controller that require high-speed processing of large data.

FEATURES

٠	Number of basic instructions103
٠	Memory size RAM 2048 bytes
٠	Instruction execution time
	The fastest instruction at 25MHz frequency 160ns
٠	Single power supply
٠	Low power dissipation (at 25MHz frequency)
	······ 95mW (Тур.)
٠	Interrupts
٠	Multiple function 16-bit timer
	(Pulse motor drive waveform can be output.)
٠	UART (may also be synchronous)2
٠	10-bit A-D converter 8-channel inputs
٠	8-bit D-A converter2-channel outputs
٠	12-bit watchdog timer
٠	Programmable input/output
	(ports P4, P5, P6, P7, P8)


APPLICATION

Control devices for office equipment such as copiers, printers, typewriters, facsimiles, word processors, and personal computers


Control devices for industrial equipment such as communication and measuring instruments

NOTE

Refer to "Chapter 5 PRECAUTIONS" when using this microcomputer.

CMOS

2-116

MITSUBISHI LECTRIC

16-BIT CMOS MICROCOMPUTER

FUNCTIONS OF M37710S4BFP

	Parameter	Functions		
Number of basic instructions		103		
Instruction execution time		160ns (the fastest instruction at external clock 25MHz frequency)		
Memory size RAM		2048 bytes		
	P5~P8	8 -bit× 4		
Input/Output ports	P4	5 -bitX 1		
Multi-function timers	TA0, TA1, TA2, TA3, TA4	16-bit× 5		
Mulu-function timers	TB0, TB1, TB2	16-bit× 3		
Serial I/O		(UART or clock synchronous serial I/O)×2		
A-D converter		10-bit×1(8 channels)		
D-A converter		8 -bit× 2		
Watchdog timer		12-bit× 1		
		3 external types, 16 internal types		
Interrupts		(Each interrupt can be set the priority levels to $0 \sim 7$.)		
Clock generating circuit		Built-in(externally connected to a ceramic resonator or quartz crystal resonator)		
Supply voltage		5 V±10%		
Power dissipation		95mW(at external clock 25MHz frequency)		
	Input/Output voltage	5 V		
Input/Output characteristic	Output current	5 mA		
Memory expansion		Maximum 16M bytes		
Operating temperature range		20~-85°C		
Device structure		CMOS high-performance silicon gate process		
Package		80-pin plastic molded QFP		

16-BIT CMOS MICROCOMPUTER

PIN DESCRIPTION

Pin	Name	Input/Output	Functions
V _{CC} , V _{SS}	Power supply		Supply 5 V±10% to V _{cc} and 0 V to V _{SS} .
CNV _{SS}	CNV _{SS} input	Input	Connect to V _{CC} .
RESET	Reset input	Input	To enter the reset state, this pin must be kept at a "L" condition should be maintained for the required time.
X _{IN}	Clock input	Input	These are I/O pins of internal clock generating circuit. Connect a ceramic or quartz crystal resonator be-
Х _{оит}	Clock output	Output	tween X_{IN} and X_{OUT} . When an external clock is used, the clock source should be connected to the X_{IN} pin and the X_{OUT} pin should be left open.
Ē	Enable output	Output	Data or instruction read and data write are performed when output from this pin is "L".
BYTE	Bus width selection input	Input	This pin determines whether the external data bus is 8-bit width or 16-bit width. The width is 16 bits when "L" signal inputs and 8 bits when "H" signal inputs.
AV _{CC} , AV _{SS}	Analog supply input		Power supply for A-D converter. AV_{SS} is also used for D-A converter. Connect AV _{CC} to V _{CC} , and AV _{SS} to V _{SS} externally.
V _{REF}	Reference voltage input	Input	This is reference voltage input pin for A-D converter and D-A converter.
\$ 1	Clock output	Output	This pin outputs the clock ϕ_1 which is divided the clock to X_{IN} pin by 2.
RDY	Ready	Input	This is ready input pin. This is an input pin for the $\overline{\text{RDY}}$ signal. Internal clock stops while this signal is "L".
HOLD	Hold request input	Input	This is an input pin for HOLD request signal. The microcomputer enters into hold state while this signal is "L".
HLDA	Hold acknowledge output	Output	This is an output pin for HLDA signal, indicates the hold state.
R/₩	Read/Write output	Output	"H" indicates the read status and "L" indicates the write status.
BHE	Byte high enable output	Output	"L" is output when an odd-numbered address is accessed.
ALE	Address latch enable output	Output	This is used to retrieve only the address data from address data and data multiplex signal.
A ₀ ~A ₇	Address (low-order) output	Output	Address $(A_7 \sim A_0)$ is output.
A ₈ /D ₈ ~ A ₁₅ /D ₁₅	Address (middle-order) output/Data (high-order) I/O	1/0	In case the BYTE pin is "L" and an external data bus is 16-bit width, high-order data $(D_{15} \sim D_8)$ is input or output when \overline{E} output is "L" and an address $(A_{15} \sim A_8)$ is output when \overline{E} output is "H". In case the BYTE pin is "H" and an external data bus is 8-bit width, only address $(A_{15} \sim A_8)$ is output.
A ₁₆ /D ₀ ~ A ₂₃ /D ₇	Address (high-order) output/Data (low-order) I/O	1/0	Low-order data $(D_7 \sim D_0)$ is input or output when \overline{E} output is "L", and an address $(A_{23} \sim A_{16})$ is output when \overline{E} output is "H".
P43~P47	I/O port P4	1/0	Port P4 is a 5-bit I/O port. This port has an data direction register and each pin can be programmed for in- put or output. This port is in input mode when reset.
P5₀~P5 ₇	I/O port P5	1/0	Port P5 is a 8-bit I/O port. This port has an data direction register and each pin can be programmed for in- put or output. This port is in input mode when reset. These pins also function as I/O pins for timer A0, timer A1, timer A2 and timer A3. P5 ₀ to P5 ₆ also function as output pins for pulse motor drive waveform.
P6₀~P6 ₇	I/O port P6	1/0	In addition to having the same I/O functions as port P5, these pins also function as I/O pins for timer A4, external interrupt input $\overline{INT_0}$, $\overline{INT_1}$ and $\overline{INT_2}$ pins, and input pin for timer B0, timer B1 and timer B2. P6 ₀ also functions as an output pin for pulse motor drive waveform.
₽7 ₀ ∼₽7 ₇	I/O port P7	1/0	These pins also function as analog input $AN_0 \sim AN_7$ input pins in addition to having the same I/O functions as port P5. P7 ₇ also has an A-D conversion trigger input function.
P80~P87	I/O port P8	1/0	These pins also function as RxD, TxD, CLK, CTS/RTS pins for UART0 and UART1 in addition to having the same I/O functions as port P5.

16-BIT CMOS MICROCOMPUTER

BASIC FUNCTION BLOCKS

The M37710S4BFP contains the following devices on a single chip: RAM for storing instructions and data, CPU for processing, bus interface unit (which controls instruction prefetch and data read/write between CPU and memory), timers, UART, A-D converter, D-A converter, and other peripheral devices such as I/O ports. Each of these devices are described below.

MEMORY

The memory map is shown in Figure 1. The address space is 16M bytes from addresses 0_{16} to FFFFF₁₆. The address space is divided into 64K bytes units called banks. The banks are numbered from 0_{16} to FF₁₆.

Built-in RAM and control registers for built-in peripheral devices are assigned to bank $\mathbf{0}_{16}.$

Addresses $FFD6_{16}$ to FFF_{16} are the RESET and interrupt vector addresses and contain the interrupt vectors. Use ROM for memory of this address. Refer to the section on interrupts for details.

The 2048 bytes area from addresses 80_{16} to $87F_{16}$ contains the built-in RAM. In addition to storing data, the RAM is used as stack during a subroutine call, or interrupts.

Assigned to addresses 0_{16} to $7F_{16}$ are peripheral devices such as I/O ports, D-A converter, A-D converter, UART, timer, and interrupt control registers.

A 256 bytes direct page area can be allocated anywhere in bank 0_{16} using the direct page register DPR. In direct page addressing mode, the memory in the direct page area can be accessed with two words thus reducing program steps.

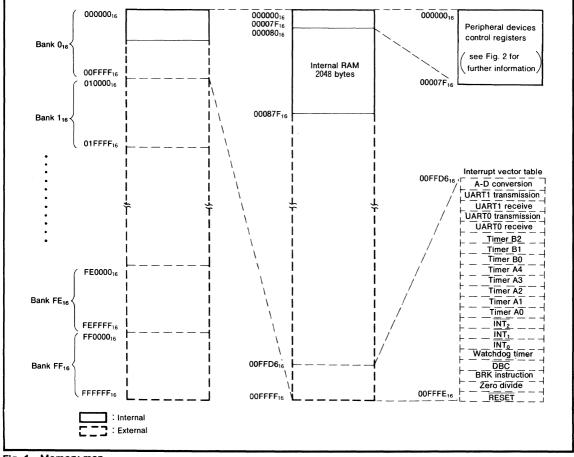


Fig. 1 Memory map

16-BIT CMOS MICROCOMPUTER

Address

000000	
000001	·
000002	
000003	· · · · · · · · · · · · · · · · · · ·
000004	en e
000005	
000006	-
000007 000008	
000008	
000009 00000A	Port P4
00000B	Port P5
00000C	Port P4 data direction register
00000D	Port P5 data direction register
00000E	Port P6
00000F	Port P7
000010	Port P6 data direction register
000011	Port P7 data direction register
000012	Port P8
000013	
000014	Port P8 data direction register
000015	
000016	
000017	
000018	
000019	
00001A	D-A register 0
00001B	
00001C	D-A register 1
00001D	
00001E	A-D control register 0
00001F 000020	A-D control register 1
	A-D register 0
000021 000022	-
000022	A-D register 1
000023	
000025	A-D register 2
000026	
000027	A-D register 3
000028	
000029	A-D register 4
00002A	A D register 5
00002B	A-D register 5
00002C	A-D register 6
00002D	A-D register 6
00002E	A-D register 7
00002F	
000030	UART 0 transmit/receive mode register
000031	UART 0 bit rate generator
000032	UART 0 transmission buffer register
000033	
000034	UART 0 transmit/receive control register
000035 000036	UART 0 transmit/receive control register
	UART 0 receive buffer register
000037 000038	UART 1 transmit/receive mode register
000038	UART 1 bit rate generator
000039 00003A	
00003A	UART 1 transmission buffer register
00003D	UART 1 transmit/receive control register
00003D	UART 1 transmit/receive control register
00003E	
00003F	UART 1 receive buffer register

40	ecimal notation) Count start flag
41	oount start nag
42 43	One-shot start flag
4 15	Up-down flag
6	Timer A0
8 9	Timer A1
IA IB	Timer A2
IC ID	Timer A3
IE IF	Timer A4
50 51	Timer B0
52 53	Timer B1
54 55 56	Timer B2
6 7	Timer A0 mode register
8	Timer A1 mode register
	Timer A2 mode register
9	Timer A3 mode register
A B	Timer A4 mode register
-	Timer B0 mode register
D	Timer B1 mode register Timer B2 mode register
ε	Processor mode register 0
F	Processor mode register 0 Processor mode register 1
50	Watchdog timer
51	Watchdog timer frequency selection flag
52	Watchdog timer nequency selection hag Waveform output mode register
3	trateroini ouput mode register
4	Pulse output data register 1
5	Pulse output data register 1
5 6	Reserved area (Note)
0 7	10001760 al6a (11016)
r B	
)	
A	
B	
c	
D	
E	
F	
0	A-D conversion interrupt control register
1	UART0 transmission interrupt control register
2	UART0 receive interrupt control register
3	UART1 transmission interrupt control register
4	UART1 receive interrupt control register
5	Timer A0 interrupt control register
6	Timer A1 interrupt control register
7	Timer A2 interrupt control register
8	Timer A3 interrupt control register
9	Timer A4 interrupt control register
Ā	Timer B0 interrupt control register
в	Timer B1 interrupt control register
5	Timer B2 interrupt control register
D	INT ₀ interrupt control register
Е	INT ₁ interrupt control register
	INT ₂ interrupt control register

Note : Do not write to this address.

Fig. 2. Location of peripheral devices and interrupt control registers

16-BIT CMOS MICROCOMPUTER

CENTRAL PROCESSING UNIT (CPU)

The CPU has ten registers and is shown in Figure 3. Each of these registers is described below.

ACCUMULATOR A (A)

Accumulator A is the main register of the microcomputer. It consists of 16 bits and the lower 8 bits can be used separately. The data length flag m determines whether the register is used as 16-bit register or as 8-bit register. It is used as a 16-bit register when flag m is "0" and as an 8-bit register when flag m is "1". Flag m is a part of the processor status register (PS) which is described later.

Data operations such as calculations, data transfer, input/ output, etc., is executed mainly through the accumulator.

ACCUMULATOR B (B)

Accumulator B has the same functions as accumulator A, but the use of accumulator B requires more instruction bytes and execution cycles than accumulator A.

INDEX REGISTER X (X)

Index register X consists of 16 bits and the lower 8 bits can be used separately. The index register length flag x determines whether the register is used as 16-bit register or as 8-bit register. It is used as a 16-bit register when flag x is "0" and as an 8-bit register when flag x is "1". Flag x is a part of the processor status register (PS) which is described later. In index addressing mode, register X is used as the index register and the contents of this address is added to obtain the real address.

Also, when executing a block transfer instruction MVP or MVN, the contents of index register X indicate the loworder 16 bits of the source data address. The third byte of the MVP and MVN is the high-order 8 bits of the source data address.

INDEX REGISTER Y (Y)

Index register Y consists of 16 bits and the lower 8 bits can be used separately. The index register length flag x determines whether the register is used as 16-bit register or as 8-bit register. It is used as a 16-bit register when flag x is "0" and as an 8-bit register when flag x is "1". Flag x is a part of the processor status register (PS) which is described later.

In index addressing mode, register Y is used as the index register and the contents of this address is added to obtain the real address.

Also, when executing a block transfer instruction MVP or MVN, the contents of index register Y indicate the loworder 16 bits of the destination address. The second byte of the MVP and MVN is the high-order 8 bits of the destination data address.

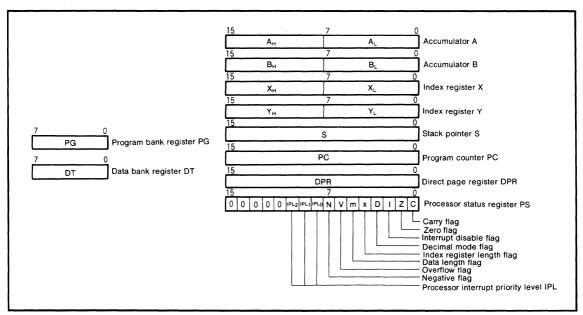


Fig. 3 Register structure

16-BIT CMOS MICROCOMPUTER

STACK POINTER (S)

Stack pointer (S) is a 16-bit register. It is used during a subroutine call or interrupts. It is also used during stack, stack pointer relative, or stack pointer relative indirect indexed Y addressing mode.

PROGRAM COUNTER (PC)

Program counter (PC) is a 16-bit counter that indicates the low-order 16 bits of the next program memory address to be executed. There is a bus interface unit between the program memory and the CPU, so that the program memory is accessed through bus interface unit. This is described later.

PROGRAM BANK REGISTER (PG)

Program bank register is an 8-bit register that indicates the high-order 8 bits of the next program memory address to be executed. When a carry occurs by incrementing the contents of the program counter, the cotents of the program bank register (PG) is incremented by 1. Also, when a carry or borrow occurs after adding or subtracting the offset value to or from the contents of the program counter (PC) using branch instruction, the contents of the program bank register (PG) is incremented or decremented by 1 so that programs can be written without worrying about bank boundaries.

DATA BANK REGISTER (DT)

Data bank register (DT) is an 8-bit register. With some addressing modes, a part of the data bank register (DT) is used to specify a memory address. The contents of data bank register (DT) is used as the high-order 8 bits of a 24-bit address. Addressing modes that use the data bank register (DT) are direct indirect, direct indexed X indirect, direct indexed Y, absolute bit, absolute indexed X, absolute indexed Y.

DIRECT PAGE REGISTER (DPR)

Direct page register (DPR) is a 16-bit register. Its contents is used as the base address of a 256-byte direct page area. The direct page area is allocated in bank 0_{16} , but when the contents of DPR is FF01₁₆ or greater, the direct page area spans across bank 0_{16} and bank 1_{16} . All direct addressing modes use the contents of the direct page register (DPR) to generate the data address. If the low-order 8 bits of the direct page register (DPR) is "00₁₆", the number of cycles required to generate an address is minimized. Normally the low-order 8 bits of the direct page register (DPR) is set to "00₁₆".

PROCESSOR STATUS REGISTER (PS)

Processor status register (PS) is an 11-bit register. It consists of a flag to indicate the result of operation and CPU interrupt levels.

Branch operations can be performed by testing the flags C, Z, V, and N.

The details of each processor status register bit are described below.

1. Carry flag (C)

The carry flag contains the carry or borrow generated by the ALU after an arithmetic operation. This flag is also affected by shift and rotate instructions. This flag can be set and reset directly with the SEC and CLC instructions or with the SEP and CLP instructions.

2. Zero flag (Z)

This zero flag is set if the result of an arithmetic operation or data transfer is zero and reset if it is not. This flag can be set and reset directly with the SEP and CLP instructions.

3. Interrupt disable flag (1)

When the interrupt disable flag is set to "1", all interrupts except watchdog timer, \overline{DBC} , and software interrupt are disabled. This flag is set to "1" automatically when there is an interrupt. It can be set and reset directly with the SEI and CLI instructions or SEP and CLP instructions.

4. Decimal mode flag (D)

The decimal mode flag determines whether addition and subtraction are performed as binary or decimal. Binary arithmetic is performed when this flag is "0". If it is "1", decimal arithmetic is performed with each word treated as two or four digit decimal. Arithmetic operation is performed using four digits when the data length flag m is "0" and with two digits when it is "1". (Decimal operation is possible only with the ADC and SBC instructions.) This flag can be set and reset with the SEP and CLP instructions.

16-BIT CMOS MICROCOMPUTER

5. Index register length flag (x)

The index register length flag determines whether index register X and index register Y are used as 16-bit registers or as 8-bit registers. The registers are used as 16-bit registers when flag x is "0" and as 8-bit registers when it is "1". This flag can be set and reset with the SEP and CLP instructions.

6. Data length flag (m)

The data length flag determines whether the data length is 16-bit or 8-bit. The data length is 16-bit when flag m is "0" and 8-bit when it is "1". This flag can be set and reset with the SEM and CLM instructions or with the SEP and CLP instructions.

7. Overflow flag (V)

The overflow flag has meaning when addition or subtraction is performed a word as signed binary number. When the data length flag m is "0", the overflow flag is set when the result of addition or subtraction is outside the range between -32768 and +32767. When the data length flag m is "1", the overflow flag is set when the result of addition or subtraction is outside the range between -128 and +127. It is reset in all other cases. The overflow flag can also be set and reset directly with the SEP, and CLV or CLP instructions.

8. Negative flag (N)

The negative flag is set when the result of arithmetic operation or data transfer is negative (If data length flag m is "0", when data bit 15 is "1". If data length flag m is "1", when data bit 7 is "1".) It is reset in all other cases. It can also be set and reset with the SEP and CLP instructions.

9. Processor interrupt priority level (IPL)

The processor interrupt priority level (IPL) consists of 3 bits and determines the priority of processor interrupts from level 0 to level 7. Interrupt is enabled when the interrupt priority of the device requesting interrupt (set using the interrupt control register) is higher than the processor interrupt priority. When interrupt is enabled, the current processor interrupt priority level is saved in a stack and the processor interrupt priority level is replaced by the interrupt priority level of the device requesting the interrupt. Refer to the section on interrupts for more details.

BUS INTERFACE UNIT

The CPU operates on an internal clock frequency which is obtained by dividing the external clock frequency $f_{(X_{iN})}$ by two. This frequency is twice the bus cycle frequency. In order to speed-up processing, a bus interface unit is used to pre-fetch instructions when the data bus is idle. The bus interface unit synchronizes the CPU and the bus and prefetches instructions. Figure 4 shows the relationship between the CPU and the bus interface unit. The bus interface unit has a program address register, a 3-byte instruction queue buffer, a data address register, and a 2-byte data buffer.

The bus interface unit obtains an instruction code from memory and stores it in the instruction queue buffer, obtains data from memory and stores it in the data buffer, or writes the data from the data buffer to the memory.

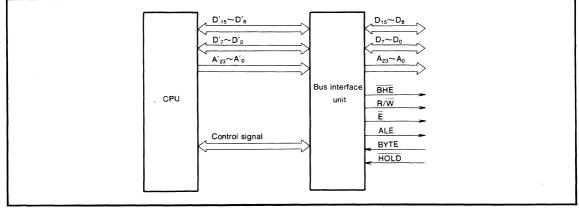


Fig. 4 Relationship between the CPU and the bus interface unit

16-BIT CMOS MICROCOMPUTER

The bus interface unit operates using one of the waveforms (1) to (10) shown in Figure 5. The standard waveforms are (1) and (2).

The ALE signal is used to latch only the address signal from the multiplexed signal containing data and address.

The \overline{E} signal becomes "L" when the bus interface unit reads an instruction code or data from memory or when it writes data to memory. Whether to perform read or write is controlled by the R/ \overline{W} signal. Read is performed when the R/ \overline{W} signal is "H" state and write is performed when it is "L" state.

Waveform (1) in Figure 5 is used to access a single byte or two bytes simultaneously. To read or write two bytes simultaneously, the first address accessed must be even. Furthermore, when accessing an external memory area, set the bus width selection input pin BYTE to "L". (external data bus width to 16 bits) The internal memory area is always treated as 16-bit bus width regardless of BYTE.

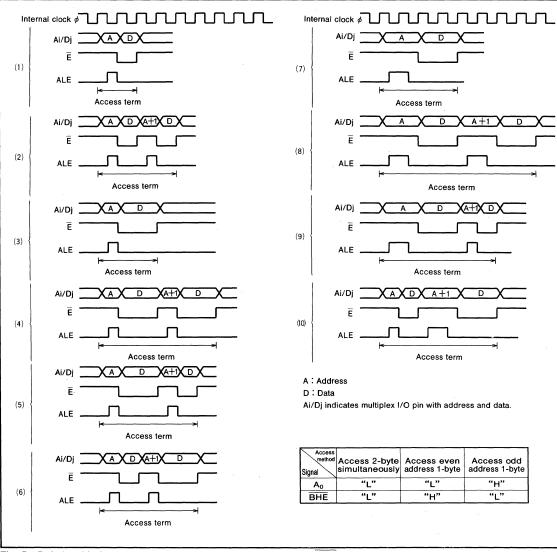


Fig. 5 Relationship between access method and signals A_0 and \overline{BHE}

16-BIT CMOS MICROCOMPUTER

When performing 16-bit data read or write, if the conditions for simultaneously accessing two bytes are not satisfied, waveform (2) is used to access each byte one by one. However, when prefetching the instruction code, if the address of the instruction code is odd, waveform (1) is used, and only one byte is read in the instruction queue buffer.

The signals A_0 and \overline{BHE} in Figure 5 are used to control these cases: 1-byte read from even address, 1-byte read from odd address, 2-byte simultaneous read from even and odd addresses, 1-byte write to even address, 1-byte write to odd addresses, or 2-byte simultaneous write to even and odd addresses. The A_0 signal that is the address bit 0 is "L" when an even number address is accessed. The \overline{BHE} signal becomes "L" when an odd number address is accessed.

The bit 2 of processor mode register 0 (address $5E_{16}$) is the wait bit. When external memory area is accessed with this bit set to "0", the width of \overline{E} signal is extended and access time can be extended.

There are two ways to extend the access time and they are selected with the processor mode register 1 (address $5F_{16}$) bit 0.

When this bit is set to "1", the "L" width of \overline{E} signal in (1) becomes twice as long as in (3) and the access time becomes 1.5 times (wait 1). When this bit is set to "0", the ALE signal in (1) and \overline{E} signal are extended as in (7) and the access time is doubled (wait 0).

However, these signals are not extended when accessing internal memory area.

When the wait bit is set to "1", these signals are not extended when accessing either memory area regardless of the value of processor mode register 1 bit 0.

Waveform (4), (5), and (6) show the entire waveform, first half, and last half respectively of waveform (2) for wait 1.

Waveform (8), (9), and (10) show the entire waveform, first half, and last half respectively of waveform (2) for wait 0.

Instruction code read, data read, and data write are described below.

Instruction code read will be described first.

The CPU obtains instruction codes from the instruction queue buffer and executes them. The CPU notifies the bus interface unit that it is requesting an instruction code during an instruction code request cycle. If the requested instruction code is not yet stored in the instruction queue buffer, the bus interface unit halts the CPU until it can store more instructions than requested in the instruction queue buffer. Even if there is no instruction code request from the CPU, the bus interface unit reads instruction codes from memory and stores them in the instruction queue buffer when the instruction queue buffer is empty or when only one instruction code is stored and the bus is idle on the next cycle. This is referred to as instruction pre-fetching. Normally, when reading an instruction code from memory, if the accessed address is even the next odd address is read together with the instruction code and stored in the instruction queue buffer.

However, if the bus width switching pin BYTE is "H", external data bus width is 8 bits and the address to be read is in external memory area is odd, only one byte is read and stored in the instruction queue buffer. Therefore, waveform (1), (3) or (7) in Figure 5 is used for instruction code read. Data read and write are described below.

The CPU notifies the bus interface unit when performing data read or write. At this time, the bus interface unit halts the CPU if the bus interface unit is already using the bus or if there is a request with higher priority. When data read or write is enabled, the bus interface unit uses one of the waveforms from (1) to (10) in Figure 5 to perform the operation.

During data read, the CPU waits until the entire data is stored in the data buffer. The bus interface unit sends the address received from the CPU to the address bus. Then it reads the memory when the \overline{E} signal is "L" and stores the result in the data buffer.

During data write, the CPU writes the data in the data buffer and the bus interface unit writes it to memory. Therefore, the CPU can proceed to the next step without waiting for write to complete. The bus interface unit sends the address received from the CPU to the address bus. Then when the \overline{E} signal is "L", the bus interface unit sends the data in the data buffer to the data bus and writes it to memory.

16-BIT CMOS MICROCOMPUTER

INTERRUPTS

Table 1 shows the interrupt types and the corresponding interrupt vector addresses. Reset is also treated as a type of interrupt and is discussed in this section, too.

DBC is an interrupt used during debugging.

Interrupts other than reset, DBC, watchdog timer, zero divide, and BRK instruction all have interrupt control registers. Table 2 shows the addresses of the interrupt control registers and Figure 6 shows the bit configuration of the interrupt control register.

Use the SEB and CLB instructions when setting each interrupt control register.

The interrupt request bit is automatically cleared by the hardware during reset or when processing an interrupt. Also, interrupt request bits other than \overrightarrow{DBC} and watchdog timer can be cleared by software.

 $\overline{INT_2}$ to $\overline{INT_0}$ are external interrupts and whether to cause an interrupt at the input level (level sense) or at the edge (edge sense) can be selected with the level sense/edge sense selection bit. Furthermore, the polarity of the interrupt input can be selected with polarity selection bit.

Timer and UART interrupts are described in the respective section.

The priority of interrupts when multiple interrupts are caused simultaneously is partially fixed by hardware, but, it can also be adjusted by software as shown in Figure 7. The hardware priority is fixed the following:

reset $> \overline{\text{DBC}} >$ watchdog timer > other interrupts

Interrupts	Vector a	ddresses
A-D conversion	00FFD6 ₁₆	00FFD7 ₁₆
UART1 transmit	00FFD816	00FFD9 ₁₆
UART1 receive	00FFDA ₁₆	00FFDB ₁₆
UART0 transmit	00FFDC ₁₆	00FFDD ₁₆
UART0 receive	00FFDE ₁₆	00FFDF ₁₆
Timer B2	00FFE016	00FFE116
Timer B1	00FFE216	00FFE316
Timer B0	00FFE4 ₁₆	00FFE516
Timer A4	00FFE616	00FFE716
Timer A3	00FFE816	00FFE916
Timer A2	00FFEA16	00FFEB ₁₆
Timer A1	00FFEC ₁₆	00FFED ₁₆
Timer A0	00FFEE ₁₆	00FFEF16
INT ₂ external interrupt	00FFF0 ₁₆	00FFF1 ₁₆
INT ₁ external interrupt	00FFF2 ₁₆	00FFF3 ₁₆
INT ₀ external interrupt	00FFF4 ₁₆	00FFF5 ₁₆
Watchdog timer	00FFF6 ₁₆	00FFF7 ₁₆
DBC (unusable)	00FFF8 ₁₆	00FFF9 ₁₆
Break instruction	00FFFA ₁₆	00FFFB ₁₆
Zero divide	00FFFC16	00FFFD ₁₆
Reset	00FFFE ₁₆	00FFFF ₁₆

Table 1. Interrupt types and the interrupt vector

addresses

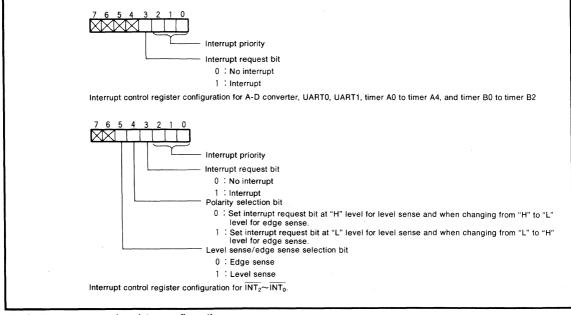


Fig. 6 Interrupt control register configuration

16-BIT CMOS MICROCOMPUTER

Table 2. Addresses of interrupt control registers

Interrupt control registers	Addresses
A-D conversion interrupt control register	000070 ₁₆
UART0 transmit interrupt control register	000071 ₁₆
UART0 receive interrupt control register	000072 ₁₆
UART1 transmit interrupt control register	000073 ₁₆
UART1 receive interrupt control register	000074 ₁₆
Timer A0 interrupt control register	000075 ₁₆
Timer A1 interrupt control register	00007616
Timer A2 interrupt control register	000077 ₁₆
Timer A3 interrupt control register	000078 ₁₆
Timer A4 interrupt control register	000079 ₁₆
Timer B0 interrupt control register	00007A ₁₆
Timer B1 interrupt control register	00007B ₁₆
Timer B2 interrupt control register	00007C ₁₆
INT ₀ interrupt control register	00007D ₁₆
INT ₁ interrupt control register	00007E ₁₆
INT ₂ interrupt control register	00007F ₁₆

Interrupts caused by a BRK instruction and when dividing by zero are software interrupts and are not included in this list.

Other interrupts previously mentioned are A-D converter, UART, Timer, INT interrupts. The priority of these interrupts can be changed by changing the priority level in the corresponding interrupt control register by software.

Figure 8 shows a diagram of the interrupt priority resolution circuit. When an interrupt is caused, the each interrupt device compares its own priority with the priority from above and if its own priority is higher, then it sends the priority below and requests the interrupt. If the priorities are the same, the one above has priority.

This comparison is repeated to select the interrupt with the highest priority among the interrupts that are being requested. Finally the selected interrupt is compared with the processor interrupt priority level (IPL) contained in the processor status register (PS) and the request is accepted if it is higher than IPL and the interrupt disable flag I is "0". The request is not accepted if flag I is "1". The reset, DBC, and watchdog timer interrupts are not affected by the interrupt disable flag I.

When an interrupt is accepted, the contents of the processor status register (PS) is saved to the stack and the interrupt disable flag I is set to "1".

Furthermore, the interrupt request bit of the accepted interrupt is cleared to "0" and the processor interrupt priority level (IPL) in the processor status register (PS) is replaced by the priority level of the accepted interrupt.

Therefore, multi-level priority interrupts are possible by resetting the interrupt disable flag I to "0" and enable further interrupts.

For reset, DBC, watchdog timer, zero divide, and BRK instruction interrupts, which do not have an interrupt control register, the processor interrupt level (IPL) is set as shown in Table 3. Priority resolution is performed by latching the interrupt request bit and interrupt priority level so that they do not change. They are sampled at the first half and latched at the last half of the operation code fetch cycle.

Because priority resolution takes some time, no sampling pulse is generated for a certain interval even if it is the next operation code fetch cycle.

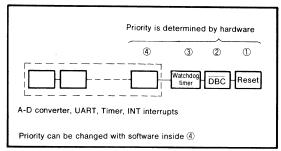


Fig. 7 Interrupt priority

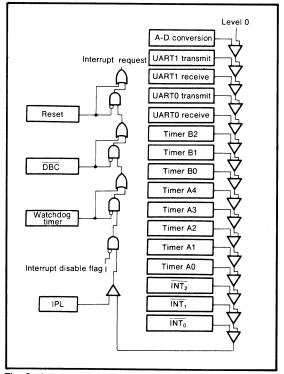


Fig. 8 Interrupt priority resolution

16-BIT CMOS MICROCOMPUTER

As shown in Figure 9, there are three different interrupt priority resolution time from which one is selected by software. After the selected time has elapsed, the highest priority is determined and is processed after the currently executing instruction has been completed.

The time is selected with bits 4 and 5 of the processor mode register 0 (address 5E₁₆) shown in Figure 10. Table 4 shows the relationship between these bits and the number of cycles. After a reset, the processor mode register is initialized to "0016" and therefore, the longest time is selected.

However, the shortest time should be selected by software.

Table 3. Value set in processor interrupt level (IPL) during an interrupt

Interrupt types	Setting value
Reset	0
DBC	7
Watchdog timer	7
Zero divide	Not change value of IPL.
BRK instruction	Not change value of IPL.

Table 4. Relationship between priority level resolution time selection bit and number of cycles

Priority level resolut	ion time selection bit	Number of cycles
Bit 5	Bit 4	
0	0	7 cycles of ϕ
0	1	4 cycles of ϕ
1	0	2 cycles of ϕ

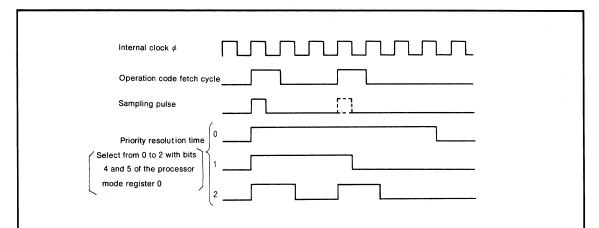
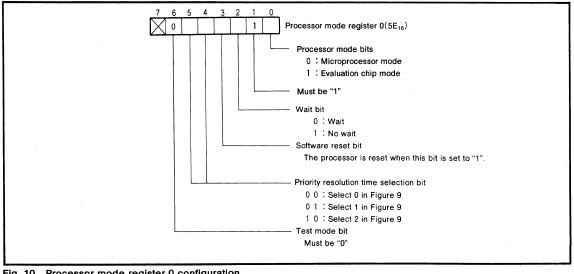



Fig. 9 Interrupt priority resolution time

16-BIT CMOS MICROCOMPUTER

TIMER

There are eight 16-bit timers. They are divided by type into timer A(5) and timer B(3).

The timer I/O pins are shared with I/O pins for port P5 and P6. To use these pins as timer input pins, the data direction register bit corresponding to the pin must be cleared to "0" to specify input mode.

TIMER A

Figure 11 shows a block diagram of timer A.

Timer A has four modes; timer mode, event counter mode, one-shot pulse mode, and pulse width modulation mode. The mode is selected with bits 0 and 1 of the timer Ai mode register (i = 0 to 4). Each of these modes is described below.

(1) Timer mode (00)

Figure 12 shows the bit configuration of the timer Ai mode register during timer mode. Bits 0, 1, and 5 of the timer Ai mode register must always be "0" in timer mode. Bit 3 is ignored if bit 4 is "0".

Bits 6 and 7 are used to select the timer counter source. The counting of the selected clock starts when the count start flag is "1" and stops when it is "0".

Figure 13 shows the bit configuration of the count start flag. The counter is decremented, an interrupt is caused and the interrupt request bit in the timer Ai interrupt control register is set when the contents becomes 0000_{16} . At the same time, the contents of the reload register is transferred to the counter and count is continued.

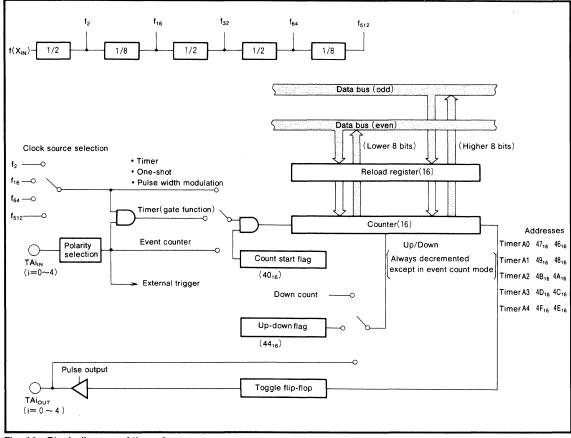


Fig. 11 Block diagram of timer A

16-BIT CMOS MICROCOMPUTER

When bit 2 of the timer Ai mode register is "1", the output is generated from TAi_{OUT} pin. The output is toggled each time the contents of the counter reaches to 0000_{16} . When the contents of the count start flag is "0", "L" is output from TAi_{OUT} pin.

When bit 2 is "0", $\mathsf{TAi}_{\mathsf{OUT}}$ pin can be used as a normal port pin.

When bit 4 is "0", $\mathsf{TAi}_{\mathsf{IN}}$ pin can be used as a normal port pin.

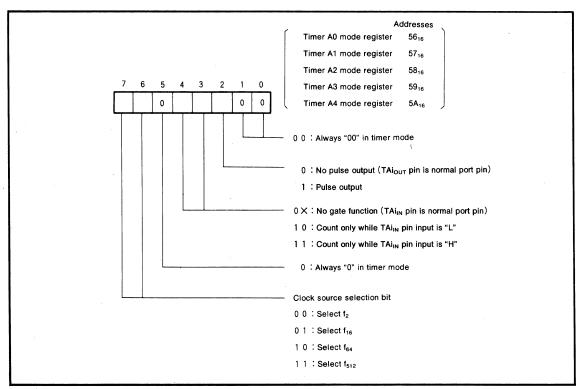
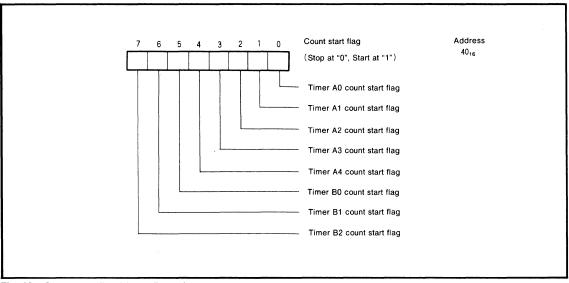
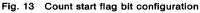
When bit 4 is "1", counting is performed only while the input signal from the TAi_{IN} pin is "H" or "L" as shown in Figure 14. Therefore, this can be used to measure the pulse width of the input signal to TAi_{IN} pin. Whether to count while the input signal is "H" or while it is "L" is determined

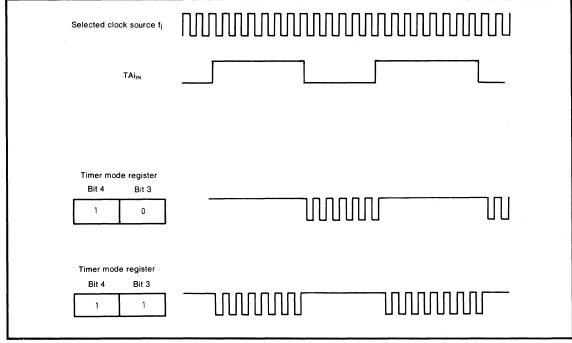
by bit 3. If bit 3 is "1", counting is performed while the TAi_{IN} pin input signal is "H" and if bit 3 is "0", counting is performed while it is "L".

Note that the duration of "H" or "L" on the TAi_{\rm IN} pin must be two or more cycles of the timer count source.

When data is written to timer Ai register with timer Ai halted, the same data is also written to the reload register and the counter. When data is written to timer Ai which is busy, the data is written to the reload register, but not to the counter. The counter is reloaded with new data from the reload register at the next reload time. The contents of the counter can be read at any time.

When the value set in the timer Ai register is n, the timer frequency dividing ratio is 1/(n+1).


Fig. 12 Timer Ai mode register bit configuration during timer mode

16-BIT CMOS MICROCOMPUTER

16-BIT CMOS MICROCOMPUTER

(2) Event counter mode [01]

Figure 15 shows the bit configuration of the timer Ai mode register during event counter mode. In event counter mode, the bit 0 of the timer Ai mode register must be "1" and bit 1 and 5 must be "0".

The input signal from the $\mathsf{TAi}_{\mathsf{IN}}$ pin is counted when the count start flag shown in Figure 13 is "1" and counting is stopped when it is "0".

Count is performed at the fall of the input signal when bit 3 is "0" and at the rise of the signal when it is "1".

In event counter mode, whether to increment or decrement the count can be selected with the up-down flag or the input signal from the TAi_{OUT} pin.

When bit 4 of the timer Ai mode register is "0", the updown flag is used to determine whether to increment or decrement the count (decrement when the flag is "0" and increment when it is "1"). Figure 16 shows the bit configuration of the up-down flag.

When bit 4 of the timer Ai mode register is "1", the input signal from the TAi_{OUT} pin is used to determine whether to increment or decrement the count. However, note that bit 2 must be "0" if bit 4 is "1" because if bit 2 is "1", TAi_{OUT} pin becomes an output pin with pulse output.

The count is decremented when the input signal from the TAi_{OUT} pin is "L" and incremented when it is "H". Determine the level of the input signal from the TAi_{OUT} pin before valid edge is input to the TAi_{IN} pin.

An interrupt request signal is generated and the interrupt request bit in the timer Ai interrupt control register is set when the counter reaches 0000_{16} (decrement count) or FFFF₁₆ (increment count). At the same time, timers A0 and A1 transfer the contents of the reload register to the counter and continue counting.

Timers A2, A3, and A4 transfer the contents of the reload register to the counter and continue count when bit 6 of the corresponding timer Ai mode register is "0", but when bit 6 is "1", they continue counting without transferring the contents of the reload register to the counter.

When bit 2 is "1", the waveform reversing polarity is output from TAi_{OUT} pin each time the counter reaches 0000_{16} (decrement count) or FFFF₁₆ (increment count). If bit 2 is "0", TAi_{OUT} pin can be used as a normal port pin. However, if bit 4 is "1" and the TAi_{OUT} pin is used as an output pin, the output from the pin changes the count direction. Therefore, bit 4 must be "0" unless the output from the TAi_{OUT} pin is not to be used to select the count direction.

Data write and data read are performed in the same way as for timer mode. That is, when data is written to timer Ai which is halted, it is also written to the reload register and the counter.

When data is written to timer Ai which is busy, the data is written to the reload register, but not to the counter. The counter is reloaded with new data from the reload register at the next reload time and continues counting. For timer

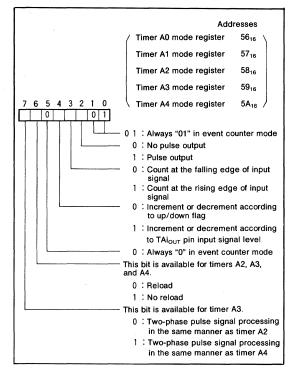


Fig. 15 Timer Ai mode register bit configuration during event counter mode

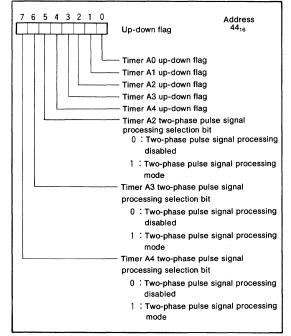


Fig. 16 Up-down flag bit configuration

16-BIT CMOS MICROCOMPUTER

A2, A3, and A4, the contents of the reload register are not reloaded in the counter when bit 6 of the corresponding timer Ai mode register is "1". The contents of the counter can be read at any time.

Furthermore, in event counter mode, whether to increment or decrement the counter can also be determined by supplying two-phase pulse input with phase shifted by 90° to timer A2, A3, or A4. There are two types of two-phase pulse processing operations. One uses timer A2 and the other uses timer A4. Timer A3 can select one of these two operations with bit 7 of the timer A3 mode register. In either processing operation, two-phase pulse is input in the same way, that is, pulses out of phase by 90° are input at the TAj_{out} (j = 2 to 4) pin and TAj_{IN} pin.

When timer A2 is used, as shown in Figure 17, the count is incremented when a rising edge is input to the $TA2_{IN}$ pin after the level of $TA2_{OUT}$ pin changes from "L" to "H", and when the falling edge is input, the count is decremented.

For timer A4, as shown in Figure 18, when a phase related pulse with a rising edge input to the TA4_{IN} pin is input after the level of TA4_{OUT} pin changes from "L" to "H", the count is incremented at the respective rising edge and falling edge of the TA4_{OUT} pin and TA4_{IN} pin. When a phase related pulse with a falling edge input to the TA4_{OUT} pin is input after the level of TA4_{IN} pin changes from "H" to "L", the count is decremented at the respective rising edge and falling edge of the TA4_{IN} pin and TA4_{IN} pin.

When performing this two-phase pulse signal processing, timer Aj mode register bit 0 and bit 4 must be set to "1" and bits 1, 2, 3, and 5 must be set to "0" as shown in Figure 19.

Bit 7 is used to select whether to perform two-phase pulse signal processing for timer A3 in the same manner as timer A2 or as timer A4. When this bit is "0", two-phase pulse signal processing for timer A3 is performed in the same manner as timer A2 and when it is "1", it is performed in the same manner as timer A4. This bit is ignored for timer A2 and A4.

Note that bits 5, 6, and 7 of the up-down flag (address 44_{16}) are the two-phase pulse signal processing selection bit for timer A2, A3, and A4 respectively.

Each timer operates in normal event counter mode when the corresponding bit is "0" and performs two-phase pulse signal processing when it is "1".

Count is started by setting the count start flag to "1". Data write and read are performed in the same way as for normal event counter mode. Note that the direction register of the input port must be set to input mode because twophase pulse signal is input. Also, there can be no pulse output in this mode.

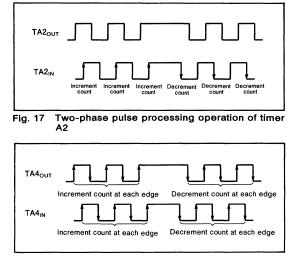


Fig. 18 Two-phase pulse processing operation of timer A4

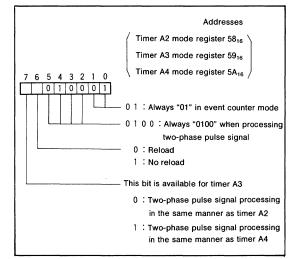


Fig. 19 Timer Aj mode register bit configuration when performing two-phase pulse signal processing in event counter mode

16-BIT CMOS MICROCOMPUTER

(3) One-shot pulse mode [10]

Figure 20 shows the bit configuration of the timer Ai mode register during one-shot pulse mode. In one-shot pulse mode, bit 0 and bit 5 must be "0" and bit 1 and bit 2 must be "1".

The trigger is enabled when the count start flag is "1". The trigger can be generated by software or it can be input from the TAi_{IN} pin. Software trigger is selected when bit 4 is "0" and the input signal from the TAi_{IN} pin is used as the trigger when it is "1".

Bit 3 is used to determine whether to trigger at the fall of the trigger signal or at the rise. The trigger is at the fall of the trigger signal when bit 3 is "0" and at the rise of the trigger signal when it is "1".

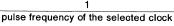

Software trigger is generated by setting the bit in the oneshot start flag corresponding to each timer.

Figure 21 shows the bit configuration of the one-shot start flag.

As shown in Figure 22, when a trigger signal is received, the counter counts the clock selected by bits 6 and 7.

If the contents of the counter is not 0000₁₆, the TAi_{OUT} pin goes "H" when a trigger signal is received. The count direction is decrement.

When the counter reaches 0001_{16} , The TAi_{OUT} pin goes "L" and count is stopped. The contents of the reload register is transferred to the counter. At the same time, an interrupt request signal is generated and the interrupt request bit in the timer Ai interrupt control register is set. This is repeated each time a trigger signal is received. The output pulse width is

 $\label{eq:counters} $$ (counter's value at the time of trigger).$$ If the count start flag is "0", TAi_{OUT} goes "L". Therefore, the value corresponding to the desired pulse width must be written to timer Ai before setting the timer Ai count start flag.$

As shown in Figure 23, a trigger signal can be received before the operation for the previous trigger signal is completed. In this case, the contents of the reload register is transferred to the counter by the trigger and then that value is decremented.

Except when retriggering while operating, the contents of the reload register is not transferred to the counter by triggering.

When retriggering, there must be at least one timer count source cycle before a new trigger can be issued.

Data write is performed to the same way as for timer mode. When data is written in timer Ai halted, it is also written to the reload register and the counter.

When data is written to timer Ai which is busy, the data is written to the reload register, but not to the counter. The counter is reloaded with new data from the reload register at the next reload time. Undefined data is read when timer Ai is read.

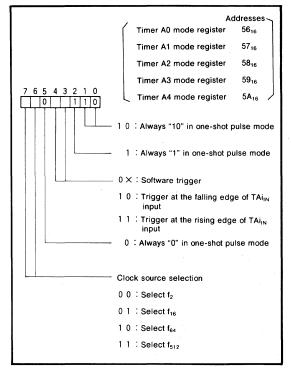


Fig. 20 Timer Ai mode register bit configuration during one-shot pulse mode

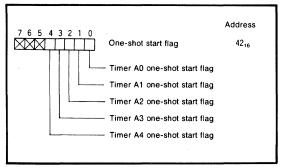


Fig. 21 One-shot start flag bit configuration

16-BIT CMOS MICROCOMPUTER

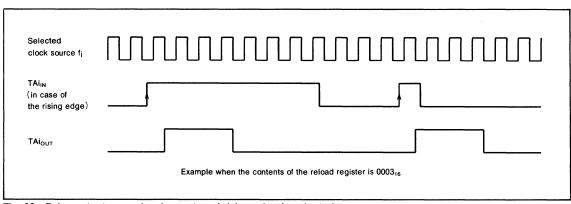


Fig. 22 Pulse output example when external rising edge is selected

Selected clock source f _i	mmmmm
TAi _{lN} (in case of the rising edge)	
ΤΑί _{ουτ}	
	Example when the contents of the reload register is 0004 ₁₆

Fig. 23 Example when trigger is re-issued during pulse output

16-BIT CMOS MICROCOMPUTER

(4) Pulse width modulation mode [11]

Figure 24 shows the bit configuration of the timer Ai mode register during pulse width modulation mode. In pulse width modulation mode, bits 0, 1, and 2 must be set to "1". Bit 5 is used to determine whether to perform 16-bit length pulse width modulator or 8-bit length pulse width modulator. 16-bit length pulse width modulator is performed when bit 5 is "0" and 8-bit length pulse width modulator is performed when it is "1". The 16-bit length pulse width modulator is described first.

The pulse width modulator can be started with a software trigger or with an input signal from a TAi_{IN} pin (external trigger).

The software trigger mode is selected when bit 4 is "0". Pulse width modulator is started and pulse is output from TAi_{OUT} when the timer Ai start flag is set to "1".

The external trigger mode is selected when bit 4 is "1". Pulse width modulator starts when a trigger signal is input from the TAi_{IN} pin when the timer Ai start flag is "1". Whether to trigger at the fall or rise of the trigger signal is determined by bit 3. The trigger is at the fall of the trigger signal when bit 3 is "0" and at the rise when it is "1".

When data is written to timer Ai with the pulse width modulator halted, it is written to the reload register and the counter.

Then when the timer Ai start flag is set to "1" and a software trigger or an external trigger is issued to start modulation, the waveform shown in Figure 25 is output continuously. Once modulation is started, triggers are not accepted. If the value in the reload register is m, the duration "H" of pulse is

 $\frac{1}{\text{selected clock frequency}} \times m$ and the output pulse period is

 $\frac{1}{\text{selected clock frequency}} \times (2^{16} - 1).$

An interrupt request signal is generated and the interrupt request bit in the timer Ai interrupt control register is set at each fall of the output pulse.

The width of the output pulse is changed by updating timer data. The update can be performed at any time. The output pulse width is changed at the rise of the pulse after data is written to the timer.

The contents of the reload register are transferred to the counter just before the rise of the next pulse so that the pulse width is changed from the next output pulse.

Undefined data is read when timer Ai is read.

The 8-bit length pulse width modulator is described next.

The 8-bit length pulse width modulator is selected when the timer Ai mode register bit 5 is "1".

The reload register and the counter are both divided into 8bit halves.

The low order 8 bits function as a prescaler and the high

order 8 bits function as the 8-bit length pulse width modulator. The prescaler counts the clock selected by bits 6 and 7. A pulse is generated when the counter reaches 0000_{16} as shown in Figure 26. At the same time, the contents of the reload register is transferred to the counter and count is continued.

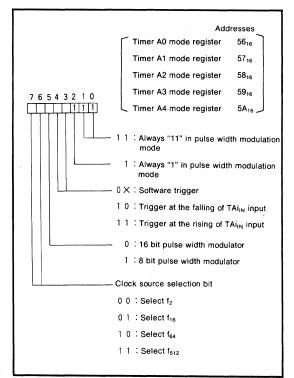


Fig. 24 Timer Ai mode register bit configuration during pulse width modulation mode

16-BIT CMOS MICROCOMPUTER

Therefore, if the low order 8-bit of the reload register is n, the period of the generated pulse is

```
1
selected clock frequency \times(n+1).
```

The high order 8-bit function as an 8-bit length pulse width modulator using this pulse as input. The operation is the same as for 16-bit length pulse width modulator except that the length is 8 bits. If the high order 8-bit of the reload register is m, the duration "H" of pulse is

> 1 selected clock frequency $\times (n+1) \times m$.

And the output pulse period is

1 selected clock frequency $\times (n+1) \times (2^8-1)$.

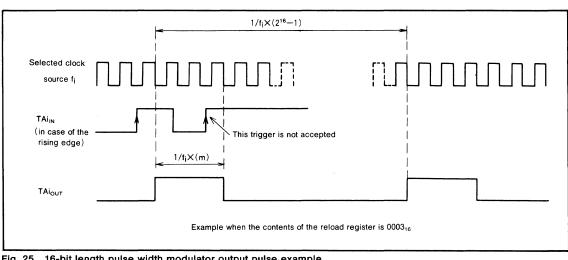
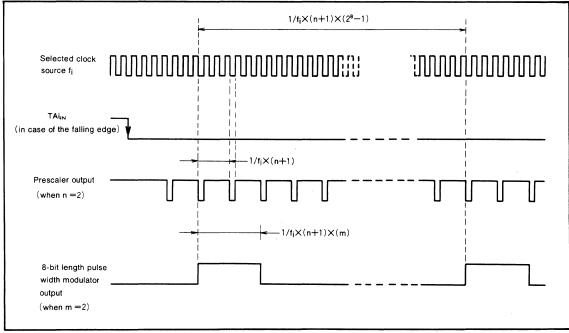
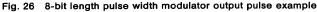




Fig. 25 16-bit length pulse width modulator output pulse example

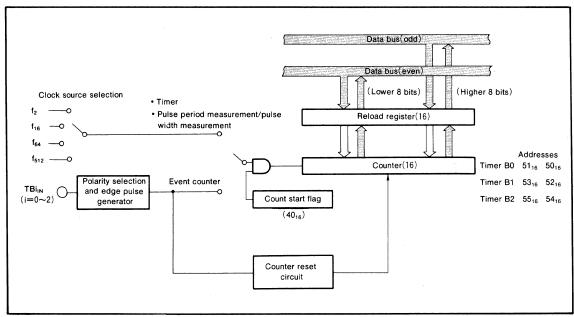
16-BIT CMOS MICROCOMPUTER

TIMER B

Figure 27 shows a block diagram of timer B.

Timer B has three modes; timer mode, event counter mode, and pulse period measurement/pulse width measurement mode. The mode is selected with bits 0 and 1 of the timer Bi mode register (i = 0 to 2). Each of these modes is described below.

(1) Timer mode [00]


Figure 28 shows the bit configuration of the timer Bi mode register during timer mode. Bits 0, and 1 of the timer Bi mode register must always be "0" in timer mode.

Bits 6 and 7 are used to select the clock source. The counting of the selected clock starts when the count start flag is "1" and stops when "0".

As shown in Figure 13, the timer Bi count start flag is at the same address as the timer Ai count start flag. The count is decremented, an interrupt occurs, and the interrupt request bit in the timer Bi interrupt control register is set when the contents becomes 0000_{16} . At the same time, the contents of the reload register is stored in the counter and count is continued.

Timer Bi does not have a pulse output function or a gate function like timer A.

When data is written to timer Bi halted, it is written to the reload register and the counter. When data is written to timer Bi which is busy, the data is written to the reload register, but not to the counter. The counter is reloaded with new data from the reload register at the next reload time. The contents of the counter can be read at any time.

Fig. 27 Timer B block diagram

16-BIT CMOS MICROCOMPUTER

(2) Event counter mode [01]

Figure 29 shows the bit configuration of the timer Bi mode register during event counter mode. In event counter mode, the bit 0 in the timer Bi mode register must be "1" and bit 1 must be "0".

The input signal from the $\mathsf{TBi}_{\mathsf{IN}}$ pin is counted when the count start flag is "1" and counting is stopped when it is "0". Count is performed at the fall of the input signal when bits 2, and 3 are "0" and at the rise of the input signal when bit 3 is "0" and bit 2 is "1".

When bit 3 is "1" and bit 2 is "0", count is performed at the rise and fall of the input signal.

Data write, data read and timer interrupt are performed in the same way as for timer mode.

(3) Pulse period measurement/pulse width measurement mode [10]

Figure 30 shows the bit configuration of the timer Bi mode register during pulse period measurement/pulse width measurement mode.

In pulse period measurement/pulse width measurement mode, bit 0 must be "0" and bit 1 must be "1". Bits 6 and 7 are used to select the clock source. The selected clock is counted when the count start flag is "1" and counting stops when it is "0".

The pulse period measurement mode is selected when bit 3 is "0". In pulse period measurement mode, the selected clock is counted during the interval starting at the fall of the input signal from the TBi_N pin to the next fall or at the rise of the input signal to the next rise and the result is stored in the reload register. In this case, the reload register acts as a buffer register.

When bit 2 is "0", the clock is counted from the fall of the input signal to the next fall. When bit 2 is "1", the clock is counted from the rise of the input signal to the next rise.

In the case of counting from the fall of the input signal to the next fall, counting is performed as follows. As shown in Figure 31, when the fall of the input signal from TBi_{IN} pin is detected, the contents of the counter is transferred to the reload register. Next the counter is cleared and count is started from the next clock. When the fall of the next input signal is detected, the contents of the counter is transferred to the reload register once more, the counter is cleared, and the count is started. The period from the fall of the input signal to the next fall is measured in this way.

After the contents of the counter is transferred to the reload register, an interrupt request signal is generated and the interrupt request bit in the timer Bi interrupt control register is set. However, no interrupt request signal is generated when the contents of the counter is transferred first time to the reload register after the count start flag is set to "1".

When bit 3 is "1", the pulse width measurement mode is selected. Pulse width measurement mode is similar to pulse period measurement mode except that the clock is

counted from the fall of the TBi_{IN} pin input signal to the next rise or from the rise of the input signal to the next fall as shown in Figure 32.

When timer Bi is read, the contents of the reload register is read.

Note that in this mode, the interval between the fall of the TBi_{IN} pin input signal to the next rise or from the rise to the next fall must be at least two cycles of the timer count source.

Timer Bi overflow flag which is bit 5 of timer Bi mode register is set to "1" when the timer Bi counter reaches 0000_{16} . This flag is cleared by writing to corresponding timer Bi mode register. This bit is set to "1" at reset.

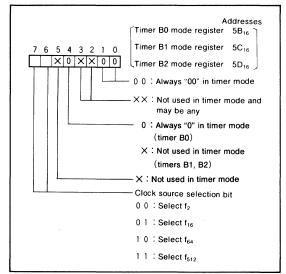


Fig. 28 Timer Bi mode register bit configuration during timer mode

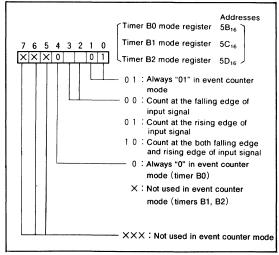


Fig. 29 Timer Bi mode register bit configuration during event counter mode

16-BIT CMOS MICROCOMPUTER

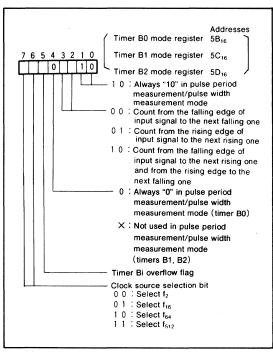


Fig. 30 Timer Bi mode register bit configuration during pulse period measurement/pulse width measurement mode

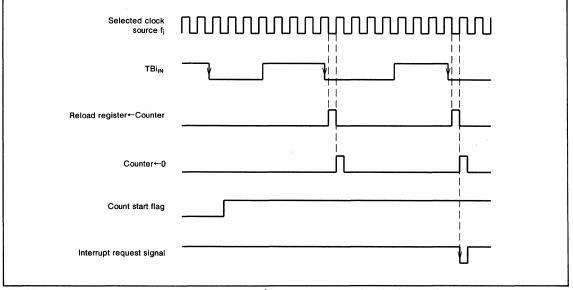
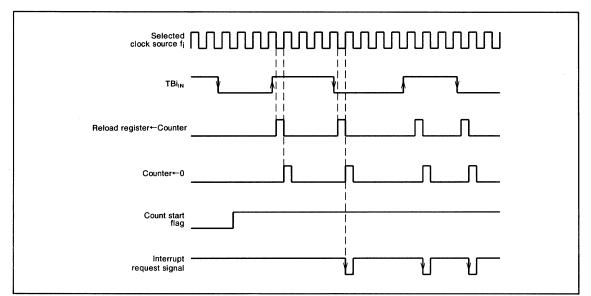
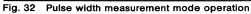




Fig. 31 Pulse period measurement mode operation (example of measuring the interval between the falling edge to next falling one)

16-BIT CMOS MICROCOMPUTER

16-BIT CMOS MICROCOMPUTER

PULSE OUTPUT PORT MODE

The M37710 can use several built-in timer As to output pulse motor drive waveform. This mode is described below. Figure 33 shows a block diagram for pulse output port mode. In the pulse output port mode, two pairs of 4-bit pulse output ports are used. There are three combinations of pulse output ports. When bit 0 of the waveform output selection bit in waveform output mode register (address 62_{16}) shown in Figure 34 is set to "1" and bit 1 is set to "0", RTP1₃, RTP1₂, RTP1₁, and RTP1₀ become pulse output ports. When bit 1 of waveform output selection bit in waveform output mode register is set to "1" and bit 0 is set to "0", RTP0₃, RTP0₂, RTP0₁, and RTP0₀ become pulse output ports. The ports not used as pulse output ports can be used as normal parallel ports or timer I/O pins. When bit 0 and bit 1 of pulse output selection bit are set to "1", the two four-line sets RTP1₃, RTP1₂, RTP1₁, and RTP1₀ and RTP0₃, RTP0₂, RTP0₁, and RTP0₀ become pulse output ports. In the pulse output port mode, set timers A2 and A0 to timer mode as timers A2 and A0 are used. In addition, set bit 2 of the corresponding timer Ai mode register to "1" when using RTP0₀, RTP0₂, RTP1₀, RTP1₂, and RTP1₃ as pulse output port because they are shared with TAi_{OUT} (i = 0 to 4) pins. Figure 35 shows the bit configuration of timer A0, A2 mode registers in pulse output port mode.

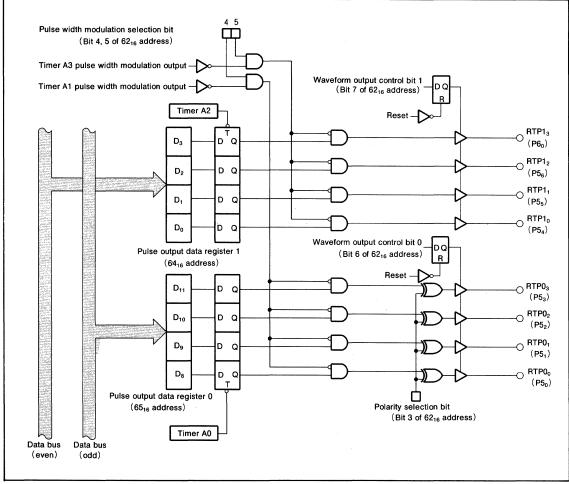


Fig. 33 Block diagram for pulse output port mode

16-BIT CMOS MICROCOMPUTER

Data can be set in each bit of the pulse output data register corresponding to four ports selected as pulse output ports. Figure 36 shows the bit configuration of the pulse output data register.

The contents of the pulse output data register 1 (low-order four bits of address 64_{16}) corresponding to ports RTP1₃, RTP1₂, RTP1₁, and RTP1₀ are output to the ports each time the counter of timer A2 becomes 0000_{16} . The contents of the pulse output data register 0 (low-order four bits of address 65_{16}) corresponding to ports RTP0₃, RTP0₂, RTP0₁, and RTP0₀ are output to the ports each time the counter of timer A0 becomes 0000_{16} .

Each timer starts counting when the content of the corresponding timer count start flag (address 40_{16}) is set to "1" and stops counting when it is set to "0". When "0" is written to a specified bit of the pulse output data register, "L" level is output to the corresponding pulse output port when the counter of corresponding timer becomes 0000_{16} , and when "1" is written, "H" level is output to the pulse output port. Pulse width modulation can be applied to each pulse output port. Pulse width modulation involves the use of timers A3 and A1, activate these timers in pulse width modulation mode. When a certain bit of the pulse output register is "1", pulse width modulation is output from the pulse output port when the counter of the corresponding timer becomes 0000_{16} .

Ports RTP1₃, RTP1₂, RTP1₁, and RTP1₀ are applied pulse width modulation by setting the pulse width modulation selection bit by timer A3 (bit 5) of the waveform output mode register to "1".

Ports RTP0₃, RTP0₂, RTP0₁, and RTP0₀ are applied pulse width modulation by setting the pulse width modulation selection bit by timer A1 (bit 4) of the waveform output mode register to "1".

When outputting to pulse output ports $RTP0_3$, $RTP0_2$, $RTP0_1$, and $RTP0_0$, the output data can be reversed by the polarity selection bit (bit 3) of the waveform output mode register. When the polarity selection bit is "0", the contents of the pulse output data register 0 is output unchanged. When the polarity selection bit is "1", the reversed data of the contents of the pulse output data register 0 is output. When pulse width modulation is applied, likewise the polarity reverse to pulse width modulation can be selected by the polarity selection bit. Figure 37 shows example of waveforms in pulse output port mode.

Ports selecting pulse output port mode can control the output of RTP0₃, RTP0₂, RTP0₁, and RTP0₀ with the waveform output control bit 0 (bit 6) and the output of RTP1₃, RTP1₂, RTP1₁, and RTP1₀ with waveform output control bit 1 (bit 7). When the waveform output control bit is set to "1", waveform is output from the corresponding port. When it is set to "0", the waveform output from the corresponding port is stopped and the port becomes floating. These bits can be cleared with an instruction and cleared by reset.

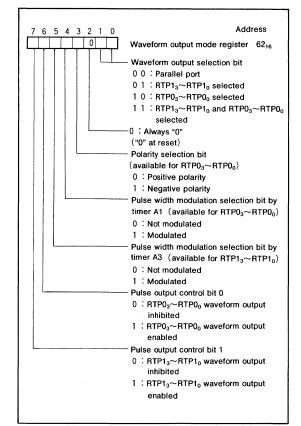
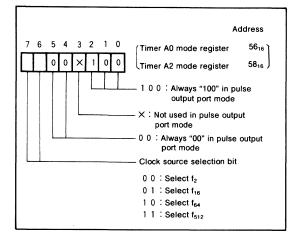
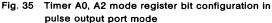




Fig. 34 Waveform output mode register bit configuration

16-BIT CMOS MICROCOMPUTER

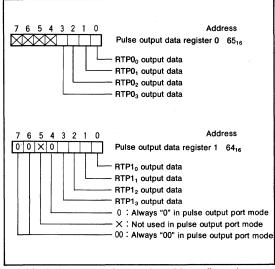
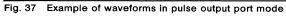



Fig. 36 Pulse output data register bit configuration

16-BIT CMOS MICROCOMPUTER

	Example of pulse output port (RTP1 ₃ , RTP1 ₂ , RTP1 ₁ , RTP1 ₀)
Output signal at each time when timer A2 becomes 0000 ₁₆	
RTP1 ₃ (Port P6 ₀)	
RTP1 ₂ (Port P5 ₆)	
RTP1₁ (Port P5₅)	
RTP1₀ (Port P5₄)	
Output signal at each time when timer A2 becomes 0000 ₁₆	Example of the above pulse output port when pulse width modulation is applied by timer A3.
RTP1 ₃ (Port P6 ₀)	
RTP1 ₂ (Port P5 ₆)	
RTP1 ₁ (Port P5 ₅)	
RTP1₀ (Port P5₄)	
	Example of pulse output port (RTP0 ₃ , RTP0 ₂ , RTP0 ₁ , RTP0 ₀) when pulse width modulation is applied by timer A1 with polarity selection bit="1"
Output signal at each time when timer A0 becomes 0000 ₁₆	
RTP0 ₃ (Port P5 ₃)	
RTP0 ₂ (Port P5 ₂)	
RTP0, (Port P5,)	
RTP0 ₀ (Port P5 ₀)	

16-BIT CMOS MICROCOMPUTER

SERIAL I/O PORTS

Two independent serial I/O ports are provided. Figure 38 shows a block diagram of the serial I/O ports.

Bits 0, 1, and 2 of the UARTi (i = 0, 1) Transmit/Receive mode register shown in Figure 39 are used to determine whether to use port P8 as parallel port, clock synchronous serial I/O port, or asynchronous (UART) serial I/O port us-

ing start and stop bits.

Figures 40 and 41 show the connections of receiver/transmitter according to the mode.

Figure 42 shows the bit configuration of the UARTi transmit/ receive control register.

Each communication method is described below.

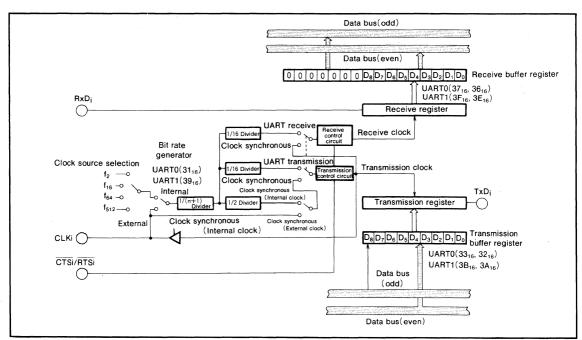


Fig. 38 Serial I/O port block diagram

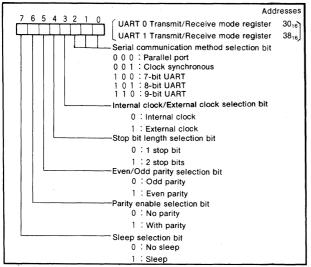


Fig. 39 UART i Transmit/Receive mode register bit configuration

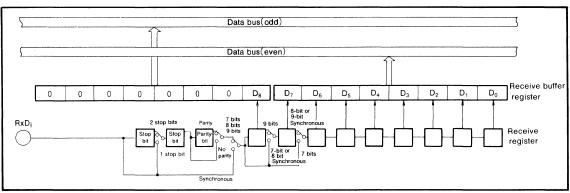


Fig. 40 Receiver block diagram

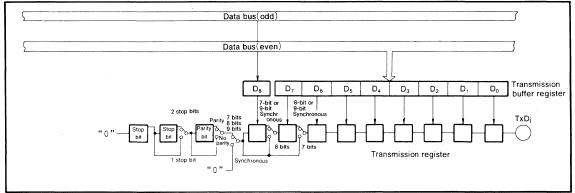


Fig. 41 Transmitter block diagram

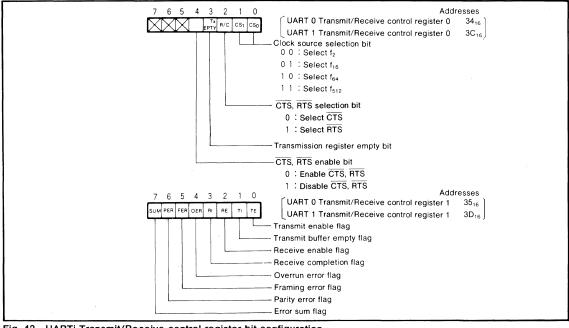


Fig. 42 UARTi Transmit/Receive control register bit configuration

16-BIT CMOS MICROCOMPUTER

CLOCK SYNCHRONOUS SERIAL COMMUNICATION

A case where communication is performed between two clock synchronous serial I/O ports as shown in Figure 43 will be described. (The transmission side will be denoted by subscript j and the receiving side will be denoted by subscript k.)

Bit 0 of the UARTj transmit/receive mode register and UARTk transmit/receive mode register must be set to "1" and bits 1 and 2 must be "0". The length of the transmission data is fixed at 8 bits.

Bit 3 of the UARTj transmit/receive mode register of the clock sending side is cleared to "0" to select the internal clock. Bit 3 of the UARTk transmit/receive mode register of the clock receiving side is set to "1" to select the external clock. Bits 4, 5 and 6 are ignored in clock synchronous mode. Bit 7 must always be "0".

The clock source is selected by bit 0 (CS_0) and bit 1 (CS_1) of the clock sending side UARTj transmit/receive control register 0. As shown in Figure 38, the selected clock is divided by (n + 1), then by 2, passed through a transmisson control circuit, and output as transmisson clock CLKj. Therefore, when the selected clock is fi,

Bit Rate=fi/{ $(n+1)\times 2$ }

On the clock receiving side, the CS_0 and CS_1 bits of the UARTk transmit/receive control register are ignored because an external clock is selected.

The bit 2 of the clock sending side UARTj transmit/receive control register 0 is cleared to "0" to select $\overline{\text{CTS}_j}$ input. The bit 2 of the clock receiving side is set to "1" to select $\overline{\text{RTS}_k}$ output.

Whether to use the $\overline{\text{CTS}}$ and $\overline{\text{RTS}}$ signals is determined by bit 4 of the UART transmit/receive control register 0. Set bit 4 to "0" when $\overline{\text{CTS}}$ and $\overline{\text{RTS}}$ signals are used, and to "1" when they are not used.

When CTS and RTS signals are not used, the $\overline{\text{CTS}}/\overline{\text{RTS}}$ pin can be used as normal port. The following describes the case when the $\overline{\text{CTS}}$ and $\overline{\text{RTS}}$ signals are used. If $\overline{\text{CTS}}$ and $\overline{\text{RTS}}$ signals are not used, the $\overline{\text{CTS}}_j$ input condition is unnecessary and there is no $\overline{\text{RTS}}_k$ output.

Transmission

Transmission is started when the bit 0 (TEj flag) of UARTj transmit/receive control register 1 is "1", bit 1 (TIj flag) of one is "0", and $\overline{\text{CTSj}}$ input is "L". As shown in Figure 44, data is output from TxDj pin when transmission clock CLKj changes from "H" to "L". The data is output from the least significant bit.

The TIj flag indicates whether the transmission buffer register is empty or not. It is cleared to "0" when data is written in the transmission buffer register and set to "1" when the contents of the transmission buffer register is transferred to the transmission register. When the transmission register becomes empty after the contents has been transmitted, data is transferred automatically from the transmission buffer register to the transmission register if the next transmission start condition is satisfied. If the bit 2 of UARTj transmit/receive control register 0 is "1", $\overline{\text{CTS}}$ input is ignored and transmission start is controlled only by the TEj flag and Tij flag. Once transmission has started, the TEj flag, TIj flag, and $\overline{\text{CTS}}$ signals are ignored until data transmission completes. Therefore, transmission is not interrupt when $\overline{\text{CTS}}$ input is changed to "H" during transmission.

The transmission start condition indicated by TEj flag, TIj flag, and $\overline{\text{CTSj}}$ is checked while the T_{ENDj} signal shown in Figure 44 is "H". Therefore, data can be transmitted continuously if the next transmission data is written in the transmission buffer register and TIj flag is cleared to "0" before the T_{ENDj} signal goes "H".

The bit 3 (TxEPTYj flag) of UARTj transmit/receive control register 0 changes to "1" at the next cycle after the T_{ENDj} signal goes "H" and changes to "0" when transmission starts. Therefore, this flag can be used to determine whether data transmission has completed.

When the TIj flag changes from "0" to "1", the interrupt request bit in the UARTj transmission interrupt control register is set to "1".

Receive

Receive starts when the bit 2 (RE_k flag) of UART_k transmit/receive control register 1 is set to "1".

The $\overline{RTS_k}$ output is "H" when the RE_k flag is "0" and goes "L" when the RE_k flag changed to "1". It goes back to "H" when receive starts. Therefore, the $\overline{RTS_k}$ output can be used to determine whether the receive register is ready to receive. It is ready when $\overline{RTS_k}$ output is "L".

The data from the RxDk pin is retrieved and the contents of the receive register is shifted by 1 bit each time the transmission clock CLKj changes from "L" to"H". When an 8-bit data is received, the contents of the receive register is transferred to the receive buffer register and the bit 3 (RIk flag) of UARTk transmit/receive control register 1 is set to "1". In other words, the setting of the RIk flag indicates that the receive buffer register contains the received data. At this point, RTSj output goes "L" to indicate that the next data can be received. When the RIk flag changes from "0" to "1", the interrupt request bit in the UARTk receive interrupt control register is set to "1". Bit 4 (OERk flag) of UARTk transmit/receive control register is set to "1" when the next data is transferred from the receive register to the receive buffer register while RIk flag is "1", and indicates that the next data was transferred to the receive register before the contents of the receive buffer register was read. Rik and OERk flags are cleared automatically to "0" when the low-order byte of the receive buffer register is read. The OERk flag is also cleared when the REk flag is

16-BIT CMOS MICROCOMPUTER

cleared. Bit 5 (FER_k flag), bit 6 (PER_k flag), and bit 7 (SUM_k flag) are ignored in clock synchronous mode. As shown in Figure 38, with clock synchronous serial communication, data cannot be received unless the transmitter

is operating because the receive clock is created from the transmission clock. Therefore, the transmitter must be operating even when there is no data to be sent from $UART_k$ to $UART_j$.

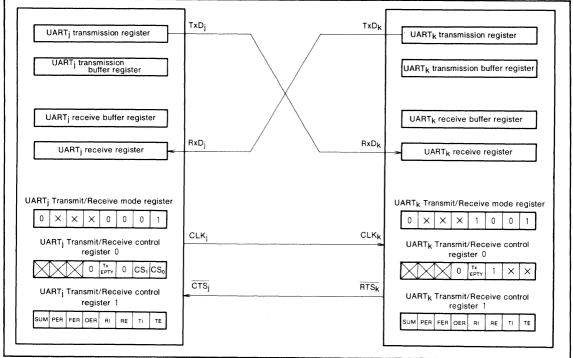


Fig. 43 Clock synchronous serial communication

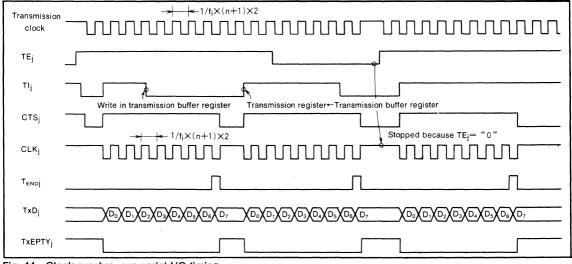


Fig. 44 Clock synchronous serial I/O timing

16-BIT CMOS MICROCOMPUTER

ASYNCHRONOUS SERIAL COMMUNICATION

Asynchronous serial communication can be performed using 7-, 8-, or 9-bit length data. The operation is the same for all data lengths. The following is the description for 8-bit asynchronous communication.

With 8-bit asynchronous communication, the bit 0 of UARTi transmit/receive mode register is "1", the bit 1 is "0", and the bit 2 is "1".

Bit 3 is used to select an internal clock or an external clock. If bit 3 is "0", an internal clock is selected and if bit 3 is "1", then external clock is selected. If an internal clock is selected, the bit 0 (CS_0) and bit 1 (CS_1) of UARTi transmit/ receive control register 0 are used to select the clock source. When an internal clock is selected for asynchronous serial communication, the CLKi pin can be used as a normal I/O pin.

The selected internal or external clock is divided by (n+1), then by 16, and passed through a control circuit to create the UART transmission clock or UART receive clock.

Therefore, the transmission speed can be changed by changing the contents n of the bit rate generator. If the selected clock is an internal clock fi or an external clock f_{EXT} .

Bit Rate = $(f_i \text{ or } f_{EXT}) / \{ (n+1) \times 16 \}$

Bit 4 is the stop bit length selection bit to select 1 stop bit or 2 stop bits.

The bit 5 is a selection bit of odd parity or even parity. In the odd parity mode, the parity bit is adjusted so that the sum of the 1's in the data and parity bit is always odd.

In the even parity mode, the parity bit is adjusted so that the sum of the 1's in the data and parity bit is always even.

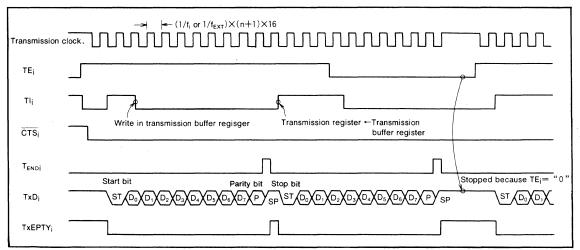
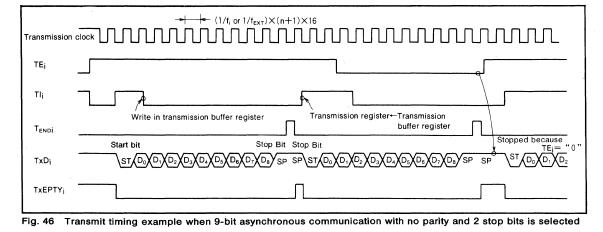



Fig. 45 Transmit timing example when 8-bit asynchronous communication with parity and 1 stop bit is selected

16-BIT CMOS MICROCOMPUTER

Bit 6 is the parity bit selection bit which indicates whether to add parity bit or not.

Bits 4 to 6 should be set or reset according to the data format of the communicating devices.

Bit 7 is the sleep selection bit. The sleep mode is described later.

The UART_i transmit/receive control regisger 0 bit 2 is used to determine whether to use $\overline{CTS_i}$ input or $\overline{RTS_i}$ output. $\overline{CTS_i}$ input is used if bit 2 is "0" and $\overline{RTS_i}$ output is used if bit 2 is "1".

If $\overline{\text{CTS}}_i$ input is selected, the user can control whether to stop or start transmission by external $\overline{\text{CTS}}_i$ input.

Whether to use the $\overline{\text{CTS}}$ and $\overline{\text{RTS}}$ signals is determined by bit 4 of the UART transmit/receive control register 0. Set bit 4 to "0" when $\overline{\text{CTS}}$ and $\overline{\text{RTS}}$ signals are used, and to "1" when they are not used.

When $\overline{\text{CTS}}$ and $\overline{\text{RTS}}$ signals are not used, the $\overline{\text{CTS}}/\overline{\text{RTS}}$ pin can be used as normal port. The following describes the case when the $\overline{\text{CTS}}$ and $\overline{\text{RTS}}$ signals are used. If $\overline{\text{CTS}}$ and $\overline{\text{RTS}}$ signals are not used, the $\overline{\text{CTS}}_i$ input condition is unnecessary and there is no $\overline{\text{RTS}}_i$ output.

Transmission

Transmission is started when the bit 0 (TEi flag) of UART_i transmit/receive control register <u>1</u> is "1", the bit 1 (TI_i flag) is "0", and $\overline{\text{CTS}_i}$ input is "L" if $\overline{\text{CTS}_i}$ input is selected. As shown in Figure 45 and 46, data is output from the TxD_i pin with the stop bit and parity bit specified by the bits 4 to 6 of UART_i transmit/receive mode register. The data is output from the least significant bit.

The TI_i flag indicates whether the transmission butter is empty or not. It is cleared to "0" when data is written in the transmission buffer and set to "1" when the contents of the transmission buffer register is transferred to the transmission register. When the transmission register becomes empty after the contents has been transmitted, data is transferred automatically form the transmission buffer register to the transmission register if the next transmission start condition is satisfied.

Once transmission has started, the TE_i flag, TI_i flag, and $\overline{\text{CTS}_i}$ signal (if $\overline{\text{CTS}_i}$ input is selected) are ignored until data transmission is completed.

Therefore, transmission does not stop until it completes even if the TE_i flag is cleared during transmission.

The transmission start condition indicated by TE_i flag, TI_i flag, and $\overline{\text{CTS}_i}$ is checked while the T_{ENDi} signal shown in Figure 45 is "H". Therefore, data can be transmitted continuously if the next transmission data is written in the transmission butter register and TI_i flag is cleared to 0 before the T_{ENDi} signal goes "H".

The bit 3 (TxEPTY_j flag) of UART_j transmit/receive control register 0 changes to "1" at the next cycle after the T_{ENDi} signal goes "H" and changes to "0" when transmission starts. Therefore, this flag can be used to determine whether data transmission is completed.

When the Tl_i flag changes from "0" to "1", the interrupt request bit in the UART_i transmissoin interrupt control register is set to "1".

Receive

Receive is enabled when the bit 2 (RE_i flag) of UART_i transmit/receive control register 1 is set. As shown in Figure 47, the frequency divider circuit at the receiving end begin to work when a start bit is arrived and the data is received.

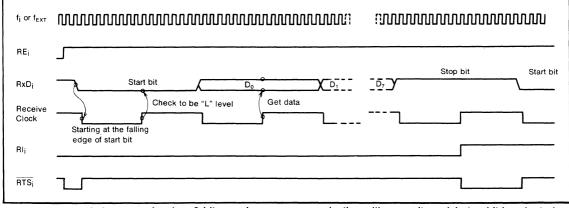


Fig. 47 Receive timing example when 8-bit asynchronous communication with no parity and 1 stop bit is selected

16-BIT CMOS MICROCOMPUTER

If $\overline{\text{RTS}_i}$ output is selected by setting the bit 2 of UART_i transmit/receive control register 0 to "1", the $\overline{\text{RTS}_i}$ output is "H" when the RE_i flag is "0". When the RE_i flag changes to "1", the $\overline{\text{RTS}_i}$ output goes "L" to indicate receive ready and returns to "H" once receive has started. In other words, $\overline{\text{RTS}_i}$ output can be used to determine externally whether the receive register is ready to receive.

The entire transmission data bits are received when the start bit passes the final bit of the receive block shown in Figure 40. At this point, the contents of the receive register is transferred to the receive buffer register and the bit 3 of UART_i transmit/receive control register 1 is set. In other words, the Rl_i flag indicates that the receive buffer register contains data when it is set. If $\overline{\text{RTS}_i}$ output is selected, $\overline{\text{RTS}_i}$ output goes "L" to indicate that the register is ready to receive the next data.

The interrupt request bit in the UART_i receive interrupt control register is set when the Rl_i flag changes from "0" to "1".

The bit 4 (OER_i flag) of UART_i transmission control register 1 is set when the next data is transferred from the receive register to the receive buffer register while the Rl_i flag is "1". In other words when an overrun error occurs. If the OER_i flag is "1", it indicates that the next data has been transferred to the receive buffer register before the contents of the receive butter register has been read.

Bit 5 (FER; flag) is set when the number of stop bits is less than required (framing error).

Bit 6 (PER; flag) is set when a parity error occurs.

Bit 7 (SUM_i flag) is set when either the OER_i flag, FER_i flag, or the PER_i flag is set. Therefore, the SUM_i flag can be used to determine whether there is an error.

The setting of the RI_i flag, OER_i flag, FER_i flag, and the PERi flag is performed while transferring the contents of the receive register to the receive buffer register. The RI_i OER_i, FER_i, PER_i, and SUM_i flags are cleared when the low order byte of the receive buffer register is read or when the RE_i flag is cleared.

Sleep mode

The sleep mode is used to communicate only between certain microcomputers when multiple microcomputers are connected through serial I/O.

The sleep mode is entered when the bit 7 of UART_i transmit/receive mode register is set.

The operation of the sleep mode for an 8-bit asynchronous communication is described below.

When sleep mode is selected, the contents of the receive register is not transferred to the receive buffer register if bit 7 (bit 6 if 7-bit asynchronous communication and bit 8 if 9-bit asychronous communication) of the received data is "0". Also the RI_i, OER_i, FER_i, PER_i, and the SUM_i flag are unchanged. Therefore, the interrupt request bit of the UART_i receive interrupt control register is also unchanged.

Normal receive operation takes place when bit 7 of the received data is "1".

The following is an example of how the sleep mode can be used.

The main microcomputer first sends data with bit 7 set to "1" and bits 0 to 6 set to the address of the subordinate microcomputer which wants to communicate with. Then all subordinate microcomputers receive the same data. Each subordinate microcomputer checks the received data, clears the sleep bit if bits 0 to 6 are its own address and sets the sleep bit if not. Next the main microcomputer sends data with bit 7 cleared. Then the microcomputer with the sleep bit cleared will receive the data, but the microcomputer with the sleep bit set will not. In this way, the main microcomputer is able to communicate with only the designated microcomputer.

16-BIT CMOS MICROCOMPUTER

A-D CONVERTER

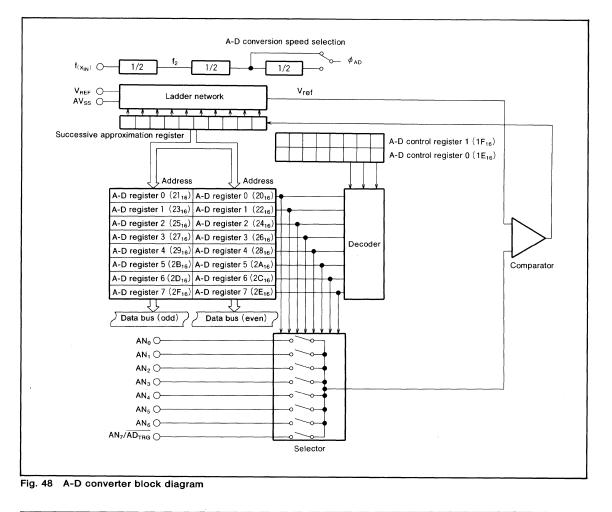
The A-D converter is a 10-bit successive approximation converter.

Figure 48 shows a block diagram of the A-D converter and Figure 49 shows the configuration of the A-D control register 0 (address $1E_{16}$) and A-D control register 1 (address $1F_{16}$).

The frequency of the A-D converter operating clock ϕ_{AD} is selected by bit 7 of the A-D control register 0. When bit 7 is "0", ϕ_{AD} is the clock frequency divided by 8. That is, $\phi_{AD} = f(X_{IN})/8$. When bit 7 is "1", ϕ_{AD} is the clock frequency divided by 4 and $\phi_{AD} = f(X_{IN})/4$.

The ϕ_{AD} during A-D conversion must be 250kHz minimum because the comparator consists of a capacity coupling amplifier.

Bit 3 of A-D control register 1 is used to select whether to use the conversion result as 10 bits or as 8 bits. The conversion result is used as 10 bits when bit 3 is "1" and as 8 bits when bit 3 is "0".


When the conversion result is used as 10 bits, the loworder 8 bits of the conversion result is stored in the even address of the corresponding A-D register and the highorder two bits are stored in bits 0 and 1 of the odd address of the corresponding A-D register. Bits 2 to 7 of the A-D register odd address return " 000000_2 " when read.

When the conversion result is used as 8 bits, the high-order 8 bits of the 10-bit A-D conversion are stored in even address of the corresponding A-D register. In this case, the A-D register odd address returns " 00_{16} " when read.

The operating mode is selected by the bits 3 and 4 of A-D control register 0 and bits 1 and 2 of A-D control register 1. The available operating modes are one-shot, repeat, single sweep, repeat sweep 0, and repeat sweep 1.

The bit of data direction register bit corresponding to the A-D converter pin must be "0" (input mode) because the analog input port is shared with port P7.

The operation of each mode is described below.

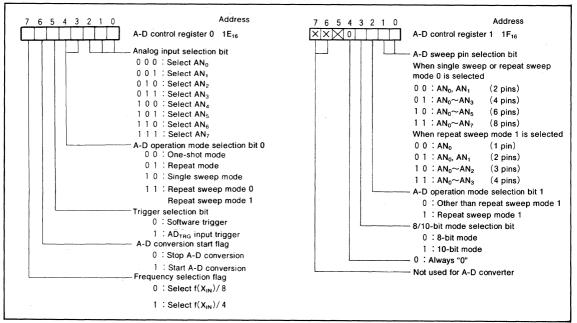
16-BIT CMOS MICROCOMPUTER

(1) One-shot mode

One-shot mode is selected when bits 3 and 4 of A-D control register 0 are "0" and bit 2 of A-D control register 1 is "0". The A-D conversion pins are selected with bits 0 to 2 of A-D control register 0. A-D conversion can be started by a software trigger or by an external trigger.

A software trigger is selected when bit 5 of A-D control register 0 is "0" and an external trigger is selected when it is "1". When a software trigger is selected, A-D conversion is started when bit 6 (A-D conversion start flag) is set. When bit 3 of A-D control register 1 is "1", A-D conversion ends after 59 ϕ_{AD} cycles and an interrupt request bit of the A-D conversion interrupt control register is set. At the same time, A-D control register 0 bit 6 (A-D conversion start flag) is cleared and A-D conversion stops. The result of A-D conversion is stored in the A-D register corresponding to the selected pin.

If an external trigger is selected, A-D conversion starts when the A-D conversion start flag is "1" and the $\overline{AD_{TRG}}$ in-


put changes from "H" to "L". In this case, the pins that can be used for A-D conversion are AN_0 to AN_6 because the $\overline{AD_{TRG}}$ pin is shared with the analog voltage input pin AN_7 . The operation is the same as with software trigger except that the A-D conversion start flag is not cleared after A-D conversion and a retrigger can be available during A-D conversion.

(2) Repeat mode

Repeat mode is selected when bit 3 of A-D control register 0 is "1", bit 4 is "0" and bit 2 of A-D control register 1 is "0". The operation of this mode is the same as the operation of one-shot mode except that when A-D conversion of the selected pin is complete and the result is stored in the A-D register, conversion does not stop, but is repeated.

No interrupt request is issued in this mode. Furthermore, if software trigger is selected, the A-D conversion start flag is not cleared.

The contents of the A-D register can be read at any time.

16-BIT CMOS MICROCOMPUTER

(3) Single sweep mode

Single sweep mode is selected when bit 3 of A-D control register 0 is "0", bit 4 is "1" and bit 2 of A-D control register 1 is "0".

In the single sweep mode, the number of analog input pins to be swept can be selected. Analog input pins are selected by bits 1 and 0 of the A-D control register 1 (address $1F_{16}$). Two pins, four pins, six pins, or eight pins can be selected as analog input pins, depending on the contents of these bits.

A-D conversion is performed only for selected input pins. After A-D conversion is performed for input of AN_0 pin, the conversion result is stored in A-D register 0, and in the same way, A-D conversion is performed for selected pins one after another. After A-D conversion is performed for all selected pins, the sweep is stopped.

A-D conversion can be started with a software trigger or with an external trigger input. A software trigger is selected when bit 5 is "0" and an external trigger is selected when it is "1".

When a software trigger is selected, A-D conversion is started when A-D control register 0 bit 6 (A-D conversion start flag) is set. When A-D conversion of all selected pins end, an interrupt request bit of the A-D conversion interrupt control register is set. At the same time, A-D conversion start flag is cleared and A-D conversion stops.

When an external trigger is selected, A-D conversion starts when the A-D conversion start flag is "1" and the $\overline{AD_{TRG}}$ input changes from "H" to "L". In this case, the A-D conversion result which is stored in the A-D register 7 becomes invalid because the $\overline{AD_{TRG}}$ pin is shared with AN₇ pin.

The operation by external trigger is the same as that done by software trigger except that the A-D conversion start flag is not cleared after A-D conversion and a retrigger can be available during A-D conversion.

(4) Repeat sweep mode 0

Repeat sweep mode 0 is selected when bit 3 of A-D control register 0 is "1", bit 4 is "1" and bit 2 of A-D control register 1 is "0".

The difference with the single sweep mode is that A-D conversion does not stop after converting from the AN_0 pin to the selected pins, but repeats again from the AN_0 pin. The repeat is performed among the selected pins. Also, no interrupt request is generated. Furthermore, if software trigger is selected, the A-D conversion start flag is not cleared. The A-D register can be read at any time.

(5) Repeat sweep mode 1

Repeat sweep mode 1 is selected when bit 3 of A-D control register 0 is "1", bit 4 is "1" and bit 2 of A-D control register 1 is "1".

The difference with the repeat sweep mode 0 is that A-D conversion of one unselected pin is performed and A-D conversion is repeated once again from AN_0 pin after A-D

conversion of selected pins is performed in sequence from $AN_0\ pin.$ The number of analog input pins to be swept is also different.

The analog input pins for repeat sweep are selected with bits 1 and 0 of A-D control register 1. The contents of these pins are used to select one pin, two pins, three pins, or four pins.

The unselected pins are converted in sequence after the conversion of pins selected as repeat sweep pins. No interrupt request is generated. Furthermore, if software trigger is selected, the A-D conversion start flag is not cleared. The A-D register can be read at any time.

16-BIT CMOS MICROCOMPUTER

D-A CONVERTER

The D-A converter is an 8-bit R-2R method D-A converter. Two independent D-A converters are built in. Figure 50 shows the block diagram of the D-A converter and Figure 51 shows the bit configuration of A-D control register 1.

D-A conversion is performed by writing a value in the corresponding D-A register. The conversion result is output by bits 6 and 7 of A-D control register 1 (address $1F_{16}$). When bit 7 is "1", the conversion result is output from DA₀ pin. When bit 6 is "1", the conversion result is output from DA₁ pin.

The output analog voltage V is determined from the value n (decimal) set in the D-A register.

$$V = V_{\text{REF}} \times n/256 \ (n = 0 \text{ to } 255)$$

V_{REF}: Reference voltage

The D-A output enable bit is cleared to "0" at reset. An external buffer should be connected when connecting to a low impedance load because there is no built-in D-A output buffer.

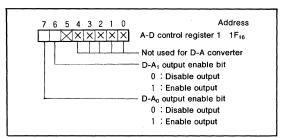


Fig. 51 A-D control register 1 bit configuration

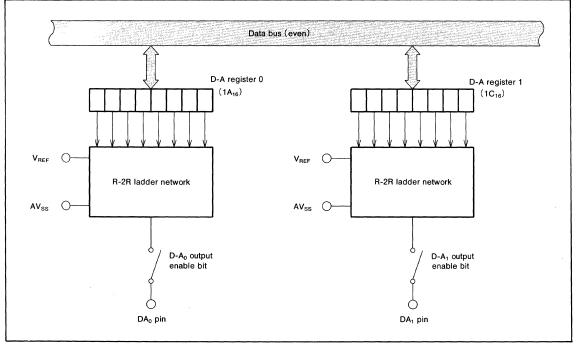


Fig. 50 D-A converter block diagram

16-BIT CMOS MICROCOMPUTER

WATCHDOG TIMER

The watchdog timer is used to detect unexpected execution sequence caused by software run-away.

Figure 52 shows a block diagram of the watchdog timer. The watchdog timer consists of a 12-bit binary counter.

The watchdog timer counts the clock frequency divided by 32 (f_{32}) or by 512 (f_{512}). Whether to count f_{32} or f_{512} is determined by the watchdog timer frequency selection flag shown in Figure 53. f_{512} is selected when the flag is "0" and f_{32} is selected when it is "1". The flag is cleared after reset. FFF₁₆ is set in the watchdog timer when "L" or 2·V_{CC} is applied to the RESET pin, STP instruction is executed, data is written to the watchdog timer, or the most significant bit of the watchdog timer become "0".

After FF₁₆ is set in the watchdog timer, the contents of watchdog timer is decremented by one at every cycle of selected frequency f_{32} or f_{512} , and after 2048 counts, the most significant bit of watchdog timer become "0", and a watchdog timer interrupt request bit is set, and FFF₁₆ is preset in the watchdog timer.

Normally, a program is written so that data is written in the watchdog timer before the most significant bit of the watchdog timer become "0". If this routine is not executed due to unexpected program execution, the most significant bit of the watchdog timer become eventually "0" and an interrupt is generated.

The processor can be reset by setting the bit 3 (software reset bit) of processor mode register 0 described in Figure 10 in the interrupt section and generating.

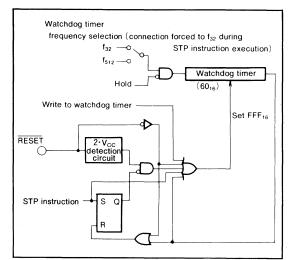


Fig. 52 Watchdog timer block diagram

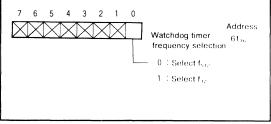


Fig. 53 Watchdog timer frequency selection flag

16-BIT CMOS MICROCOMPUTER

RESET CIRCUIT

Reset occurs when the RESET pin is returned to "H" level after holding it at "L" level when the power voltage is at 5V $\pm 10\%$. Program execution starts at the address formed by setting the address pins $A_{23} \sim A_{16}$ to 00_{16} , $A_{15} \sim A_8$ to the contents of address FFFF₁₆, and $A_7 \sim A_0$ to the contents of address FFFE₁₆.

Figure 54 shows the status of the internal registers when a reset occurs.

Figure 55 shows an example of a reset circuit. The reset input voltage must be held 0.9V or lower when the power voltage reaches 4.5V.

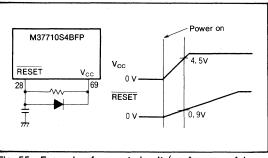


Fig. 55 Example of a reset circuit (perform careful evaluation at the system design level before using)

		Address				Address	
(1)) Port P4 data direction register	(0C ₁₆)…	00 ₁₆	(27)	Watchdog timer	(60 ₁₆)	FFF ₁₆
(2) Port P5 data direction register	(0D ₁₆)…	0016	(28)	Watchdog timer frequency selection flag	(61 ₁₆)	
(3	Port P6 data direction register	(10 ₁₆)	0016	(29)	Waveform output mode register	· (62 ₁₆)…	0016
(4)) Port P7 data direction register	(11 ₁₆)…	0016	(30)	Reserved area (Do not write to this address) (66 ₁₆)…	0016
(5) Port P8 data direction register	(14 ₁₆)…	0016	(31)	A-D conversion interrupt control register	(70 ₁₆)…	0 0 0 0
(6	A-D control register 0	(1E ₁₆)…	00000???	(32)	UART 0 transmission interrupt control register	(71 ₁₆)…	
(7	A-D control register 1	(1F ₁₆)…	0 0 0 0 0 1 1	(33)	UART 0 receive interrupt control register	(72 ₁₆)…	
(8	UART 0 Transmit/Receive mode register	(30 ₁₆)	0016	(34)	UART 1 transmission interrupt control register	(73 ₁₆)…	
(9	UART 1 Transmit/Receive mode register	(38 ₁₆)	0016	(35)	UART 1 receive interrupt control register	(74 ₁₆)…	
(10	UART 0 Transmit/Receive control register 0	(34 ₁₆)…		(36)	Timer A0 interrupt control register	(75 ₁₆)…	
(11) UART 1 Transmit/Receive control register 0	(3C ₁₆)	0 1 0 0 0	. (37)	Timer A1 interrupt control register	(76 ₁₆)…	
(12) UART 0 Transmit/Receive control register 1	(35 ₁₆)…	0 0 0 0 0 0 1 0	(38)	Timer A2 interrupt control register	(77 ₁₆)…	
(13) UART 1 Transmit/Receive control register 1	(3D ₁₆)	0 0 0 0 0 0 1 0	(39)	Timer A3 interrupt control register	(78 ₁₆)…	
(14) Count start flag	(40 ₁₆)	0016	(40)	Timer A4 interrupt control register	(79 ₁₆)…	
(15	One-shot start flag	(42 ₁₆)…		(41)	Timer B0 interrupt control register	(7A ₁₆)…	
(16) Up-down flag	(44 ₁₆)	0016	(42)	Timer B1 interrupt control register	(7B ₁₆)…	
(17) Timer A0 mode register	(56 ₁₆)	0016	(43)	Timer B2 interrupt control register	(7C ₁₆)…	
(18) Timer A1 mode register	(57 ₁₆)…	0016	(44)	$\overline{\text{INT}_0}$ interrupt control register	(7D ₁₆)…	
(19) Timer A2 mode register	(58 ₁₆)…	0016	(45)	\overline{INT}_{1} interrupt control register	(7E ₁₆)…	
(20) Timer A3 mode register	(59 ₁₆)…	0016	(46)	$\overline{\text{INT}_2}$ interrupt control register	(7F ₁₆)…	
(21) Timer A4 mode register	(5A ₁₆)…	0016	(47)	Processor status register PS	0 0 0	? ? 0 0 0 1 ? ?
(22) Timer B0 mode register	(5B ₁₆)	0 0 1 0 0 0 0 0	(48)	Program bank register PG		0016
(23) Timer B1 mode register	(5C ₁₆)	0 0 1 0 0 0 0	(49)	Program counter PC _H		Content of FFFF ₁₆
(24) Timer B2 mode register	(5D ₁₆)…	0 0 1 0 0 0 0	(50)	Program counter PCL		Content of FFFE ₁₆
(25	Processor mode register 0	(5E ₁₆)…	0000010	(51)	Direct page register DPR		0000 ₁₆
(26	Processor mode register 1	(5F ₁₆)…	O XXXXXX O	(52)	Data bank register DT		0016
					ntents of other registers and RAN ized by software.	1 are not init	ialized and should be in-

Fig. 54 Microcomputer internal status during reset

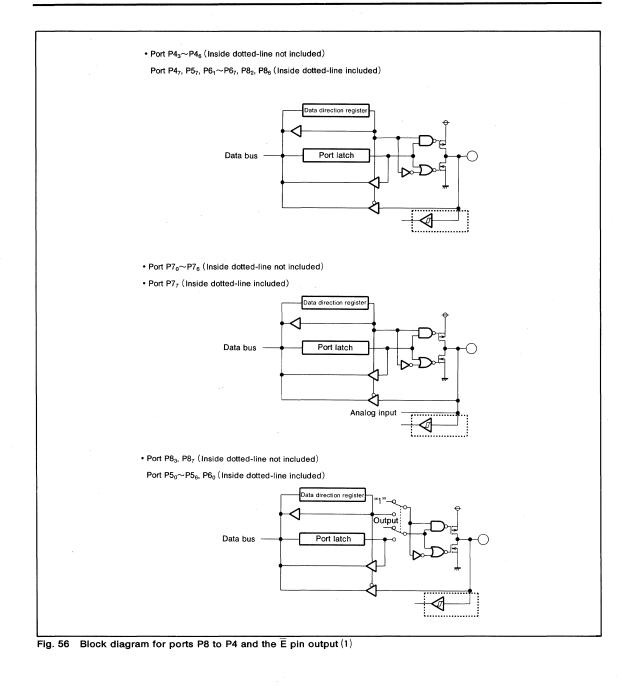
16-BIT CMOS MICROCOMPUTER

INPUT/OUTPUT PINS

Ports P8 to P4 all have a data direction register and each bit can be programmed for input or output. A pin becomes an output pin when the corresponding data direction register is set and an input pin when it is cleared.

When pin programmed for output, the data is written to the port latch and it is output to the output pin. When a pin is programmed for output, the contents of the port latch is read instead of the value of the pin. Therefore, a previously output value can be read correctly even when the output "L" voltage is raised due to reasons such as directly driving an LED.

A pin programmed for input is floating and the value input to the pin can be read. When a pin is programmed for input, the data is written only in the port latch and the pin stays floating.


If an input/output pin is not used as an output port, clear the bit of the corresponding data direction register so that the pin become input mode.

Figures 56 and 57 show block diagrams of ports P8 to P4 and the $\overline{\mathsf{E}}$ pin output.

In evaluation chip mode, ports P4 is also used as control signal pin.

Refer to the section on processor modes for more details.

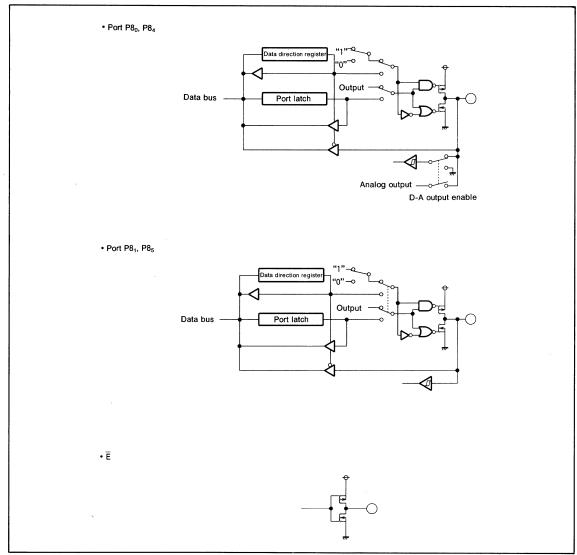


Fig. 57 Block diagram for ports P8 to P4 and E pin output (2)

16-BIT CMOS MICROCOMPUTER

PROCESSOR MODE

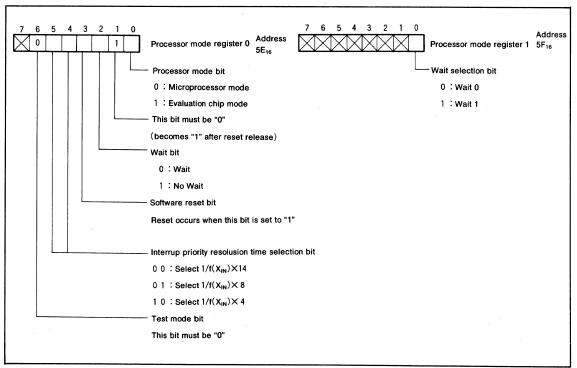
The bit 0 of processor mode register 0 as shown in Figure 58 is used to select which mode of microprocessor mode, and evaluation chip mode.

Figure 59 shows the functions of A_0 to A_7 pins, A_8/D_8 to $A_{23}/$ D_7 pins, and ports P4 in each mode.

The external memory area also changes when the mode changes.

Figure 60 shows the memory map for each mode.

The accessing of the external memory is affected by the BYTE pin, the bit 2 (wait bit) of processor mode register 0, and bit 0 (wait selection bit) of processor mode register 1. These will be described next.


BYTE pin

When accessing the external memory, the level of the BYTE pin is used to determine whether to use the data bus as 8-bit width or 16-bit width.

The data bus width is 8 bits when the level of the BYTE pin is "H" and A_{16}/D_0 to A_{23}/D_7 pins become the data I/O pins. The data bus width is 16 bits when the level of the BYTE pin is "L" and both A_{16}/D_0 to A_{23}/D_7 pins and A_8/D_8 to A_{15}/D_{15} pins become the data I/O pins.

When accessing the internal memory, the data bus width is always 16 bits regardless of the BYTE pin level.

An exclusive mode in the evaluation chip mode allows the BYTE pin level to be set to $2 \cdot V_{CC}$. In this case, the operation is slightly different from the above. This is described in the evaluation chip mode section.

16-BIT CMOS MICROCOMPUTER

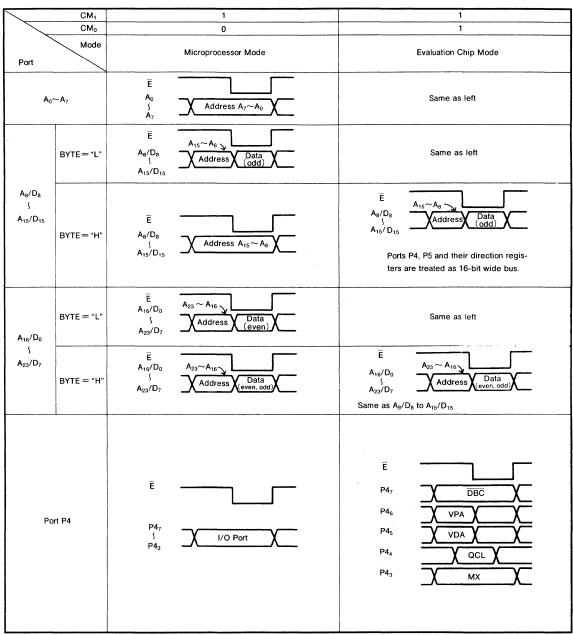
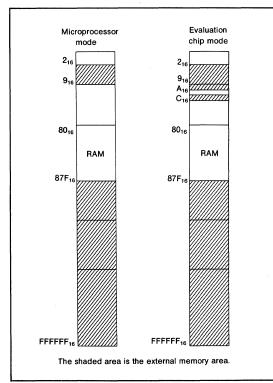


Fig. 59 Processor mode and A_0 to A_7 pins, A_8/D_8 to A_{23}/D_7 pins and port P4 functions

16-BIT CMOS MICROCOMPUTER

Wait bit

As shown in Figure 61, when the external memory area is accessed with the processor mode register 0 (address $5E_{16}$) bit 2 (wait bit) cleared to "0", the access time can be extended compared with no wait (the wait bit is "1").


The access time is extended in two ways and this is selected with bit 0 (wait selection bit) of processor mode register 1 (address $5F_{16}$).

When this bit is "1", the access time is 1.5 times compared to that for no wait. When this bit is "0", the access time is twice compared to that for no wait.

At reset the wait bit is "0" and bit 0 of processor mode register 1 is "0".

The accessing of internal memory area is performed in no wait mode regardless of the wait bit.

The processor modes are described below.

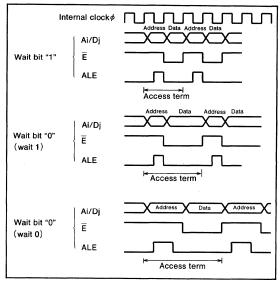


Fig. 61 Relationship between wait bit, wait selection bit, and access time

(1) Microprocessor mode [10]

Microprocessor mode is entered by connecting the CNV_{SS} pin to V_{CC} and starting from reset.

A₀ to A₇ pins become address output pins.

 A_8/D_8 to A_{15}/D_{15} pins have two functions depending on the level of the BYTE pin.

When the BYTE pin level is "L", A_8/D_8 to A_{15}/D_{15} pins function as an address output pin while \overline{E} is "H" and as an odd address data I/O pin while \overline{E} is "L". However, if an internal memory is read, external data is ignored while \overline{E} is "L".

When the BYTE pin level "H", A_8/D_8 to A_{15}/D_{15} pins function as an address output pin.

 A_{16}/D_0 to A_{23}/D_7 pins have two functions depending on the level of the BYTE pin.

When the BYTE pin level is "L", A_{16}/D_0 to A_{23}/D_7 pins function as an address output pin while \overline{E} is "H" and as an even address data I/O pin while \overline{E} is "L". However, if an internal memory is read, external data is ignored while \overline{E} is "L".

When the BYTE pin level is "H", A_{16}/D_0 to A_{23}/D_7 pins function as an address output pin while \overline{E} is "H" and as an even and odd address data I/O pin while \overline{E} is "L". However, if an internal memory is read, external data is ignored while \overline{E} is "L".

 R/\overline{W} is a read/write signal which indicates a read when it is "H" and a write when it is "L".

BHE is a byte high enable signal which indicates that an odd address is accessed when it is "L".

Therefore, two bytes at even and odd addresses are accessed simultaneously if address A_0 is "L" and $\overline{\text{BHE}}$ is "L".

16-BIT CMOS MICROCOMPUTER

ALE is an address latch enable signal used to latch the address signal from a multiplexed signal of address and data. The latch is transparent while ALE is "H" to let the address signal pass through and held while ALE is "L".

 ϕ_1 outputs X_{IN} clock divided by 2.

HLDA is a hold acknowledge signal and is used to notify externally when the microcomputer receives HOLD input and enters into hold state.

HOLD is a hold request signal. It is an input signal used toput the microcomputer in hold state. HOLD input is accepted when the internal clock ϕ falls from "H" level to "L" level while the bus is not used. A₀ to A₇ pins, A₈/D₈ to A₂₃/D₇ pins, R/W pin, and BHE pin are floating while the microcomputer stays in hold state. These pins are floating after one cycle of the internal clock ϕ later than HLDA signal changes to "L" level. At the removing of hold state, these ports are removed from floating state after one cycle of ϕ later than HLDA signal changes to "H" level.

RDY is a ready signal. If this signal goes "L", the internal clock ϕ stops at "L". However, ϕ_1 output from clock ϕ_1 output pin does not stop. $\overline{\text{RDY}}$ is used when slow external memory is attached.

(2) Evaluation chip mode [11]

Evaluation chip mode is entered by applying voltage twice the V_{CC} voltage to the CNV_{SS} pin. This mode is normally used for evaluation tools.

 A_8/D_8 to A_{15}/D_{15} pins function as address output pins while \overline{E} is "H" and as data I/O pin of odd addresses while \overline{E} is "L" regardless of the BYTE pin level. However, if an internal memory is read, external data is ignored while \overline{E} is "L". A_{16}/D_0 to A_{23}/D_7 pins function as address output pins while \overline{E} is "H" and as data I/O pin of even addresses while \overline{E} is "L" when the BYTE pin level is "L". However, if an internal memory is read, external data is ignored while \overline{E} is "L".

When the BYTE pin level is "H" or $2 \cdot V_{CC}$, port P2 functions as an address output pin while \overline{E} is "H" and as data I/O pin of even and odd addresses while \overline{E} is "L". However, if an internal memory is read, external data is ignored while \overline{E} is "L".

Port P4 and its data direction register which are located at address $0A_{16}$ and $0C_{16}$ are treated differently in evaluation chip mode. When these addresses are accessed, the data bus width is treated as 16 bits regardless of the BYTE pin level, and the access cycle is treated as internal memory regardless of the wait bit.

Ports P4₃ to P4₆ become MX, QCL, VDA, and VPA output pins respectively. Port P4₇ becomes the $\overline{\text{DBC}}$ input pin.

The MX signal normally contains the contents of flag m, but the contents of flag x is output if the CPU is using flag x.

QCL is the queue buffer clear signal. It becomes "H" when the instruction queue buffer is cleared, for example, when a jump instruction is executed.

VDA is the valid data address signal. It becomes "H" while the CPU is reading data from data buffer or writing data to data buffer. It also becomes "H" when the first byte of the instruction (operation code) is read from the instruction queue buffer.

VPA is the valid program address signal. It becomes "H" while the CPU is reading an instruction code from the instruction queue buffer.

DBC is the debug control signal and is used for debugging. Table 5 shows the relationship between the CNV_{SS} pin input levels and processor modes.

Table 5.	ationship between els and processor	V _{ss} I	oin inp	ut
	 -			
		-		

CNV _{SS}	Mode	Description
V _{cc}	Microprocessor Evaluation chip	Microprocessor mode upon starting after reset. Evaluation chip mode can be selected by changing the processor mode bit by software.
2 • V _{cc}	 Evaluation chip 	Evaluation chip mode only.

16-BIT CMOS MICROCOMPUTER

CLOCK GENERATING CIRCUIT

Figure 62 shows a block diagram of the clock generator.

When an STP instruction is executed, the internal clock ϕ stops oscillating at "L" level. At the same time, FFF₁₆ is written to watchdog timer and the watchdog timer input connection is forced to f₃₂. This connection is broken and connected to the input determined by the watchdog timer frequency selection flag when the most significant bit of the watchdog timer is cleared or reset.

Oscillation resumes when an interrupt is received, but the internal clock ϕ remains at "L" level until the most significant bit of the watchdog timer is cleared. This is to avoid the unstable interval at the start of oscillation when using a ceramic resonator.

When a WIT instruction is executed, the internal clock ϕ stops at "L" level, but the oscillator does not stop. The clock is restarted when an interrupt is received. Instructions can be executed immediately because the oscillator is not stopped.

The stop or wait state is released when an interrupt is received or when reset is issued. Therefore, interrupts must be enabled before executing a STP or WIT instruction.

Figure 63 shows a circuit example using a ceramic (or quartz crystal) resonator. Use the manufacturer's recommended values for constants such as capacitance which differ for each resonator. Figure 64 shows an example of using an external clock signal.

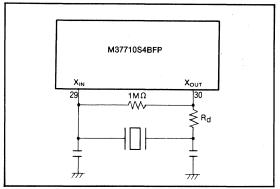


Fig. 63 Circuit using a ceramic resonator

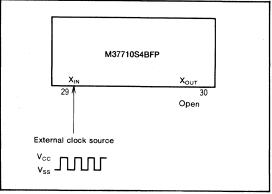


Fig. 64 External clock input circuit

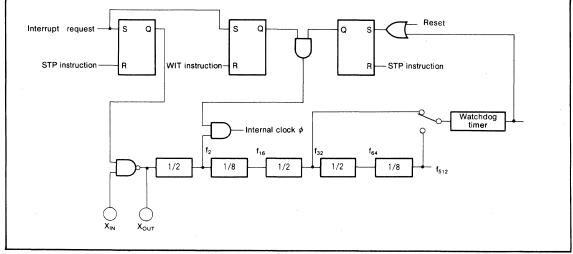


Fig. 62 Block diagram of a clock generator

16-BIT CMOS MICROCOMPUTER

ADDRESSING MODES

The M37710S4BFP has 28 powerful addressing modes. Refer to the MELPS 7700 addressing mode description for the details of each addressing mode.

MACHINE INSTRUCTION LIST

The M37710S4BFP has 103 machine instructions. Refer to the MELPS 7700 machine instruction list for details.

16-BIT CMOS MICROCOMPUTER

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Ratings	Unit
V _{cc}	Supply voltage		-0.3~7	V
AVcc	Analog supply voltage		-0.3~7	v
V,	Input voltage RESET, CNV _{SS} , BYTE		-0.3~12	V
Vi	Input voltage A ₀ ~A ₇ , A ₈ /D ₈ ~A ₂₃ /D ₇ , P4 ₃ ~P4 ₇ , P5 ₀ ~P5 ₇ , P6 ₀ ~P6 ₇ , P7 ₀ ~P7 ₇ , P8 ₀ ~P8 ₇ , V _{REF} , X _{IN} , HOLD, RDY		-0.3~V _{cc} +0.3	v
Vo	Output voltage A ₀ ~A ₇ , A ₈ /D ₈ ~A ₂₃ /D ₇ , P4 ₃ ~P47, P5 ₀ ~P57, P6 ₀ ~P67, P7 ₀ ~P77, P8 ₀ ~P87, X _{OUT} , Ē, φ ₁ , HLDA, ALE, BHĒ, R/W		-0.3~V _{cc} +0.3	v
Pd	Power dissipation	T _a =25℃	300	mW
Topr	Operating temperature		-20~85	°C
Tstg	Storage temperature		-40~150	°C

RECOMMENDED OPERATING CONDITIONS ($v_{cc}=5v\pm10\%$, $T_a=-20\sim85$ °C, unless otherwise noted)

Symbol	Parameter		Limits				
Symbol	Parameter	Min.	Тур.	Max.	Unit		
V _{cc}	Supply voltage	4.5	5.0	5.5	v		
AV _{cc}	Analog supply voltage		Vcc		v		
Vss	Supply voltage		0		v		
AV _{SS}	Analog supply voltage		0		v		
V _{IH}	High-level input voltage P4 ₃ ~P4 ₇ , P5 ₀ ~P5 ₇ , P6 ₀ ~P6 ₇ , P7 ₀ ~P7 ₇ , P8 ₀ ~P8 ₇ , X _{IN} , RESET, CNV _{SS} , BYTE, HOLD, RDY	0.8V _{cc}		V _{cc}	v		
VIH	High-level input voltage A ₈ /D ₈ ~A ₂₃ /D ₇	0.5V _{CC}		V _{cc}	v		
VIL	$\begin{array}{c} \mbox{Low-level input voltage $P4_3$$ \sim$ P4_7$, $P5_0$$ \sim$ P5_7$, $P6_0$$ \sim$ P6_7$, $P7_0$$ \sim$ P7_7$, $P8_0$$ \sim$ P8_7$, X_{IN}, $$$ $RESET$, CNV_{SS}, BYTE, $$HOLD$, $$$ RDY \\ \end{array}$	0		0. 2V _{CC}	v		
VIL	Low-level input voltage A8/D8~A23/D7	0		0.16V _{cc}	v		
I _{OH} (peak)	High-level peak output current A ₀ ~A ₇ , A ₈ /D ₈ ~A ₂₃ /D ₇ , P4 ₃ ~P4 ₇ , P5 ₀ ~P5 ₇ , P6 ₀ ~P6 ₇ , P7 ₀ ~P7 ₇ ,P8 ₀ ~P8 ₇ , φ ₁ , HLDA, ALE, BHE, R/W			-10	mA		
I _{он(avg)}	High-level average output current A ₀ ~A ₇ , A ₈ /D ₈ ~A ₂₃ /D ₇ , P4 ₃ ~P4 ₇ , P5 ₀ ~P5 ₇ , P6 ₀ ~P6 ₇ , P7 ₀ ~P7 ₇ ,P8 ₀ ~P8 ₇ , φ ₁ , HLDA, ALE, BHE, R/W		ĸ	-5	mA		
l _{o∟(peak)}	Low-level peak output current A ₀ ~A ₇ , A ₈ /D ₈ ~A ₂₃ /D ₇ , P4 ₃ ~P4 ₇ , P5 ₀ ~P5 ₇ , P6 ₀ ~P6 ₇ , P7 ₀ ~P7 ₇ ,P8 ₀ ~P8 ₇ , ϕ_1 , HLDA, ALE, BHE, R/W			10	mA		
I _{OL} (avg)	Low-level average output current A ₀ ~A ₇ , A ₈ /D ₈ ~A ₂₃ /D ₇ , P4 ₃ ~P4 ₇ , P5 ₀ ~P5 ₇ , P6 ₀ ~P6 ₇ , P7 ₀ ~P7 ₇ , P8 ₀ ~P8 ₇ , φ ₁ , HLDA, ALE, BHE, R/W			5	mA		
f(X _{IN})	External clock frequency input			25	MHz		

Note 1. Average output current is the average value of a 100ms interval.

The sum of I_{OL(peak}) for ports A₀~A₇, A₈/D₈~A₂₃/D₇, HLDA, ALE, BHE, R/W, and P8 must be 80mA or less, the sum of I_{OH(peak}) for ports A₀~A₇, A₈/D₈~A₂₃/D₇, HLDA, ALE, BHE, R/W, and P8 must be 80mA or less, the sum of I_{OL(peak}) for ports P4, P5, P6, P7, φ₁ must be 80mA or less, and the sum of I_{OH(peak}) for ports P4, P5, P6, P7, φ₁ must be 80mA or less.

16-BIT CMOS MICROCOMPUTER

Symbol	Parameter	Test conditions			Unit		
Jinoo	i didilotoi	1850 00		Min.	Тур.	Max.	Unit
V _{он}	High-level output voltage $A_0 \sim A_7$, $A_8/D_8 \sim A_{23}/D_7$, $P4_3 \sim P4_7$, $P5_0 \sim P5_7$, $P6_0 \sim P6_7$, $P7_0 \sim P7_7$, $P8_0 \sim P8_7$, ϕ_1 , \overline{HLDA} , \overline{BHE} , R/W	I _{он} =-10mA		3			v
V _{OH}	High-level output voltage $A_0 \sim A_7$, $A_8/D_8 \sim A_{23}/D_7$, ϕ_1 , HLDA, BHE, R/W	I _{OH} =-400µА		4.7			v
V _{он}	High-level output voltage ALE	$I_{OH} = -10 \text{mA}$ $I_{OH} = -400 \mu \text{A}$		3.1 4.8			v
		$I_{OH} = -10 \text{mA}$		4.0 3.4			
V _{OH}	High-level output voltage E	$I_{OH} = -400 \mu A$		4.8			v
V _{ol}	Low-level output voltage $A_0 \sim A_7$, $A_8 / D_8 \sim A_{23} / D_7$, $P4_3 \sim P4_7$, $P5_0 \sim P5_7$, $P6_0 \sim P6_7$, $P7_0 \sim P7_7$, $P8_0 \sim P8_7$, ϕ_1 , \overline{HLDA} , \overline{BHE} , R/W	I _{OL} =10mA				2	v
Vol	Low-level output voltage $A_0 \sim A_7$, $A_8/D_8 \sim A_{23}/D_7$, ϕ_1 , HLDA, BHE, R/W	I _{OL} =2mA				0.45	v
Vol	Low-level output voltage ALE	$I_{OL} = 10 \text{mA}$ $I_{OL} = 2 \text{mA}$				1.9 0.43	v
Vo∟	Low-level output voltage E	$I_{OL} = 10 \text{mA}$ $I_{OL} = 2 \text{mA}$				1.6	v
$v_{\tau+}-v_{\tau-}$	Hysteresis \overline{HOLD} , \overline{RDY} , $TA0_{IN} \sim TA4_{IN}$, $TB0_{IN} \sim TB2_{IN}$, $\overline{INT_0} \sim \overline{INT_2}$, $\overline{AD_{TRG}}$, $\overline{CTS_0}$, $\overline{CTS_1}$, CLK_0 , CLK_1			0.4		1	v
$V_{T+} - V_{T-}$	Hysteresis RESET			0.2		0.5	l v
$V_{T+} - V_{T-}$	Hysteresis X _{IN}			0.1		0.3	v
I _{IH}	High-level input current A ₈ /D ₈ ~A ₂₃ /D ₇ , P4 ₃ ~P4 ₇ , P5 ₀ ~P5 ₇ , P6 ₀ ~P6 ₇ , P7 ₀ ~P7 ₇ , P8 ₀ ~P8 ₇ , X _{IN} , RESET, CNV _{SS} , BYTE, HOLD, RDY	v ₁ =5v				5	۶ų
l _{iL}	$\begin{array}{l} \mbox{Low-level input current $A_8/D_8 \sim A_{23}/D_7$,} \\ \mbox{P4}_3 \sim P4_7, \mbox{P5}_0 \sim P5_7, \mbox{P6}_0 \sim P6_7, \\ \mbox{P7}_0 \sim P7_7, \mbox{P8}_0 \sim P8_7, \mbox{X}_{IN}, \mbox{RESET}, \\ \mbox{CNV}_{SS}, \mbox{BYTE}, \mbox{HOLD}, \mbox{RDY} \end{array}$	V _i =0V				-5	μА
VRAM	RAM hold voltage	When clock is stoppe	d.	2			V
		Output only pin is	f(X _{IN})=25MHz, square waveform		19	38	mA
Icc	Power supply current	open and other pins are V_{SS} during reset.	T _a =25℃ when clock is stopped.			1	
		a.o 155 during reset.	Ta=85°C when clock is stopped.			20	μΑ

ELECTRICAL CHARACTERISTICS ($v_{cc}=5v$, $v_{ss}=0v$, $T_a=25$ °C, $f(X_{IN})=25$ MHz, unless otherwise noted)

16-BIT CMOS MICROCOMPUTER

$\textbf{A-D} \quad \textbf{CONVERTER} \quad \textbf{CHARACTERISTICS} \quad (v_{cc} = Av_{cc} = 5V, \\ v_{ss} = Av_{ss} = 0V, \\ \textbf{T}_a = 25^\circ \textbf{C}, \\ \textbf{f}(X_{IN}) = 25 \\ \textbf{MHz}, \\ \textbf{unless otherwise noted}) \quad \textbf{M}_{a} = 10^\circ \textbf{C}, \\ \textbf{f}(X_{IN}) = 10^\circ \textbf{M}_{a} =$

0	Parameter	Test enditions		Unit		
Symbol		Test conditions	Min.	Тур.	Max.	Unit
	Resolution	V _{REF} =V _{CC}			10	Bits
	Absolute accuracy	V _{REF} =V _{CC}			±3	LSB
RLADDER	Ladder resistance	V _{REF} =V _{CC}	5		20	kΩ
t _{CONV}	Conversion time		9.44			μs
VREF	Reference voltage	· · · · ·	2		Vcc	v
VIA	Analog input voltage		0		VREF	v

D-A CONVERTER CHARACTERISTICS ($v_{cc}=5v$, $v_{ss}=Av_{ss}=0v$, $\tau_a=25$ °C, $f(X_{IN})=25$ MHz, unless otherwise noted)

0	Parameter	Test conditions	Limits			1 1 - 14
Symbol			Min.	Тур.	Max.	Unit
	Resolution				8	Bits
	Absolute accuracy				1.0	%
t _{su}	Set time				3	μs
Ro	Output resistance		1	2.5	4	kΩ
IVREF	Reference power input current	(Note)			3.2	mA

Note. One D-A converter is used, and the value of D-A register for unused D-A converter is "00₁₆". Current that flows to the ladder resistance of A-D converter is excluded.

16-BIT CMOS MICROCOMPUTER

TIMING REQUIREMENTS ($v_{cc}=5v\pm10\%$, $v_{ss}=0v$, $\tau_a=25$ °C, $f(x_m)=25$ MHz, unless otherwise noted) External clock input

0.1.1	Danamatan	Lin	11-14	
Symbol	Parameter	Min.	Max.	Unit
t _c	External clock input cycle time	40		ns
t _{w(H)}	External clock input high-level pulse width	15		ns
t _{w(L)}	External clock input low-level pulse width	15		ns
tr	External clock rise time		8	ns
tf	External clock fall time		8	ns

Microprocessor mode

0.1.1	Descusion	Lin	nits	
Symbol	Parameter	Min.	Max.	Unit
t _{su(DH-E)}	Data high-order input setup time	30		ns
t _{SU(DL-E)}	Data low-order input setup time	30		ns
t _{SU(P4D-E)}	Port P4 input setup time	60		ns
tsu(P5D-E)	Port P5 input setup time	60		ns
tsu(P6D-E)	Port P6 input setup time	60		ns
tsu(P7D-E)	Port P7 input setup time	60		ns
tsu(P8D-E)	Port P8 input setup time	60		ns
$t_{SU(RDY-\phi_1)}$	RDY input setup time	55		ns
tsu(HOLD-#1)	HOLD input setup time	55		ns
th(E-DH)	Data high-order input hold time	0		ns
th(E-DL)	Data low-order input hold time	0		ns
th(E-P4D)	Port P4 input hold time	0		ns
th(E-P5D)	Port P5 input hold time	. 0		ns
th(E-P6D)	Port P6 input hold time	0		ns
th(E-P7D)	Port P7 input hold time	0		ns
th(E-P8D)	Port P8 input hold time	0		ns
th(#1RDY)	RDY input hold time	0		ns
th(¢1-HOLD)	HOLD input hold time	0		ns

16-BIT CMOS MICROCOMPUTER

Timer A input (Count input in event counter mode)

Symbol	Parameter		Limits	
Symbol	Falaneter	Min.	Max.	Unit
t _{C(TA)}	TAI _{IN} input cycle time	80		ns
t _{w(TAH)}	TAi _{IN} input high-level pulse width	40		ns
tw(TAL)	TAi _{IN} input low-level pulse width	40		ns

Timer A input (Gating input in timer mode)

Symbol	Parameter		Limits	
Symbol	Falanelei	Min.	Max.	Unit
t _{C(TA)}	TAi _{IN} input cycle time	320		ns
tw(TAH)	TAi _{IN} input high-level pulse width	160		ns
tw(TAL)	TAi _{IN} input low-level pulse width	160		ns

Timer A input (External trigger input in one-shot pulse mode)

Symbol	Parameter	Limits		Linit
		Min.	Max.	Unit
t _{C(TA)}	TAi _{IN} input cycle time	160		ns
t _{w(TAH)}	TAi _{IN} input high-level pulse width	80		ns
tw(TAL)	TAi _{IN} input low-level pulse width	80		ns

Timer A input (External trigger input in pulse width modulation mode)

Symbol	Parameter	Limits		1 lm/h
		Min.	Max.	Unit
t _{w(TAH)}	TAi _{IN} input high-level pulse width	80		ns
tw(TAL)	TAi _{IN} input low-level pulse width	80		ns

Timer A input (Up-down input in event counter mode)

Symbol	Parameter	Lin	Limits	
		Min.	Max.	Unit
t _{C(UP)}	TAi _{OUT} input cycle time	2000		ns
tw(UPH)	TAi _{OUT} input high-level pulse width	1000		ns
tw(UPL)	TAi _{OUT} input low-level pulse width	1000		ns
tsu(UP-TIN)	TAi _{OUT} input setup time	400		ns
th(TIN-UP)	TAi _{OUT} input hold time	400		ns

16-BIT CMOS MICROCOMPUTER

Timer B input (Count input in event counter mode)

Symbol	Parameter	Lin	Limits	
		Min.	Max.	Unit
t _{C(TB)}	TBi _{IN} input cycle time (one edge count)	80		ns
t _{w(твн)}	TBi _{IN} input high-level pulse width (one edge count)	40		ns
tw(TBL)	TBi _{IN} input low-level pulse width (one edge count)	40		ns
t _{C(TB)}	TBI _{IN} input cycle time (both edges count)	160		ns
tw(TBH)	TBi _{IN} input high-level pulse width (both edges count)	80		ns
tw(TBL)	TBi _{IN} input low-level pulse width (both edges count)	80		ns

Timer B input (Pulse period measurement mode)

Symbol	Parameter	Limits		Linit
		Min.	Max.	Unit
t _{C(TB)}	TBi _{IN} input cycle time	320		ns
tw(TBH)	TBi _{IN} input high-level pulse width	160		ns
tw(TBL)	TBi _{IN} input low-level pulse width	160		ns

Timer B input (Pulse width measurement mode)

Symbol	Parameter	Limits		Unit
		Min.	Max.	Unit
t _{C(TB)}	TBi _{IN} input cycle time	320		ns
tw(твн)	TBi _{IN} input high-level pulse width	160		ns
t _{W(TBL)}	TBi _{IN} input low-level pulse width	160		ns

A-D trigger input

Symbol	Parameter	Limits		Unit
Symbol		Min.	Max.	Onic
t _{C(AD)}	AD _{TRG} input cycle time (minimum allowable trigger)	1000		ns
tw(ADL)	AD _{TRG} input low-level pulse width	125		ns

Serial I/O

Symbol	Parameter	Limits		11-14
		Min.	Max.	Unit
t _{C(CK)}	CLK _i input cycle time	200		ns
tw(ckh)	CLKi input high-level pulse width	100		ns
tw(CKL)	CLK _i input low-level pulse width	100		ns
td(c-q)	TxD _i output delay time		80	ns
th(c-a)	TxD _i hold time	0		ns
tsu(D-C)	RxDi input setup time	30		ns
th(c-D)	RxD _i input hold time	90		ns

External interrupt INT; input

Symbol	Parameter	Limits		Unit
	Parameter	Min.	Max.	Unit
t _{W(INH)}	INT _i input high-level pulse width	250		ns
tw(INL)	INTi input low-level pulse width	250		ns

16-BIT CMOS MICROCOMPUTER

$\label{eq:switching} \textbf{SWITCHING} \quad \textbf{CHARACTERISTICS} \ (v_{cc} = 5v \pm 10\%, \ v_{ss} = 0v, \ \tau_a = 25\%, \ f(X_{\text{IN}}) = 25\text{MHz}, \ \text{unless otherwise noted})$

Microprocessor mode (when wait bit = "1")

Symbol	Parameter	Test conditions	Lir	nits	Unit
Symbol	Parameter	Test conditions	Min.	Max.	Unit
td(AL-E)	Address low-order output delay time	-	12		ns
td(E-DHQ)	Data high-order output delay time (BYTE="L")			45	ns
t _{PXZ(E-DHZ)}	Floating start delay time (BYTE="L")			5	ns
td(AM-E)	Address middle-order output delay time		12		ns
td(AM-ALE)	Address middle-order output delay time		5		ns
td(E-DLQ)	Data low-order output delay time			45	ns
t _{PXZ(E-DLZ)}	Floating start delay time			5	ns
td(AH-E)	Address high-order output delay time		12		ns
td(AH-ALE)	Address high-order output delay time		5		ns
td(ø1-HLDA)	HLDA output delay time			50	ns
	ALE output delay time		4		ns
tw(ALE)	ALE pulse width		22		ns
td(BHE-E)	BHE output delay time		20		ns
td(R/W-E)	R/W output delay time		20		ns
$t_{d(E-\phi_1)}$	ϕ_1 output delay time		0	18	ns
th(E-AL)	Address low-order hold time	Fig. 65	25		ns
th(ALE-AM)	Address middle-order hold time (BYTE="L")	Fig. 65	9		ns
th(E-DHQ)	Data high-order hold time (BYTE="L")		25		ns
t _{PZX(E-DHZ)}	Floating release delay time (BYTE="L")		25		ns
th(E-AM)	Address middle-order hold time (BYTE="H")		25		ns
th(ALE-AH)	Address high-order hold time		9		ns
th(E-DLQ)	Data low-order hold time		25		ns
t _{PZX(E-DLZ)}	Floating release delay time		25		ns
t _{h(е-вне)}	BHE hold time		18		ns
th(E-R/W)	R/W hold time		18		ns
td(E-P4Q)	Port P4 data output delay time			80	ns
td(E-P5Q)	Port P5 data output delay time			80	ns
td(E-P6Q)	Port P6 data output delay time			80	ns
td(E-P7Q)	Port P7 data output delay time			80	ns
td(E-P8Q)	Port P8 data output delay time			80	ns
tw(EL)	Ē pulse width		50		ns

16-BIT CMOS MICROCOMPUTER

Symbol	Parameter	Test conditions	Lin	Limits	
Symbol	Farameter		Min.	Max.	Unit
td(AL-E)	Address low-order output delay time		12		ns
td(E-DHQ)	Data high-order output delay time (BYTE="L")			45	ns
t _{PXZ(E-DHZ)}	Floating start delay time (BYTE="L")			5	ns
td(AM-E)	Address middle-order output delay time		12		ns
td(AM-ALE)	Address middle-order output delay time		5		ns
td(E-DLQ)	Data low-order output delay time			45	ns
t _{PXZ(E-DLZ)}	Floating start delay time			5	ns
td(AH-E)	Address high-order output delay time		12		ns
td(AH-ALE)	Address high-order output delay time		5		ns
td(#1-HLDA)	HLDA output delay time			50	ns
td(ALE-E)	ALE output delay time		4		ns
tw(ALE)	ALE pulse width		22		ns
td(BHE-E)	BHE output delay time		20		ns
	R/W output delay time	1	20		ns
td(E-01)	ϕ_1 output delay time		0	18	ns
th(E-AL)	Address low-order hold time	51- 05	25		ns
th(ALE-AM)	Address middle-order hold time (BYTE="L")	Fig. 65	9		ns
th(E-DHQ)	Data high-order hold time (BYTE="L")		25		ns
t _{PZX(E-DHZ)}	Floating release delay time (BYTE="L")		25		ns
th(E-AM)	Address middle-order hold time (BYTE="H")		25		ns
th(ALE-AH)	Address high-order hold time		9		ns
th(E-DLQ)	Data low-order hold time		25		ns
t _{PZX(E-DLZ)}	Floating release delay time		25		ns
th(E-BHE)	BHE hold time		18		ns
th(E-R/W)	R/W hold time		18		ns
td(E-P4Q)	Port P4 data output delay time			80	ns
td(E-P5Q)	Port P5 data output delay time			80	ns
td(E_P6Q)	Port P6 data output delay time			80	ns
td(E-P7Q)	Port P7 data output delay time			80	ns
td(E_P8Q)	Port P8 data output delay time			80	ns
	E pulse width		130		ns

Microprocessor mode (when wait bit = "0", wait selection bit = "1", and external memory area is accessed)

16-BIT CMOS MICROCOMPUTER

Symbol	Parameter	Test conditions	Lir	nits	Unit
Symbol		rest conditions	Min.	Max.	Unit
td(AL-E)	Address low-order output delay time	-	92		ns
td(E-DHQ)	Data high-order output delay time (BYTE="L")			45	ns
t _{PXZ(E-DHZ)}	Floating start delay time (BYTE="L")			5	ns
td(AM-E)	Address middle-order output delay time		92		ns
td(AM-ALE)	Address middle-order output delay time		70		ns
td(E-DLQ)	Data low-order output delay time			45	ns
t _{PXZ(E-DLZ)}	Floating start delay time			5	ns
td(AH-E)	Address high-order output delay time		92		ns
td(AH-ALE)	Address high-order output delay time		70		ns
td(ø1-HLDA)	HLDA output delay time			50	ns
td(ALE-E)	ALE output delay time		15		ns
	ALE pulse width		62		ns
td(BHE-E)	BHE output delay time		100		ns
td(R/W-E)	R/W output delay time		100		ns
$t_{d(E-\phi_1)}$			0	18	ns
th(E-AL)	Address low-order hold time	51- 05	25	1	ns
th(ALE-AM)	Address middle-order hold time (BYTE="L")	Fig. 65	20		ns
th(E-DHQ)	Data high-order hold time (BYTE="L")		25		ns
t _{PZX(E-DHZ)}	Floating release delay time (BYTE="L")		25		ns
th(E-AM)	Address middle-order hold time (BYTE="H")		25		ns
th(ALE-AH)	Address high-order hold time		20		ns
th(E-DLQ)	Data low-order hold time		25		ns
t _{PZX(E-DLZ)}	Floating release delay time	· · · ·	25		ns
th(E-BHE)	BHE hold time		18		ns
th(E-R/W)	R/W hold time		18		ns
td(E-P4Q)	Port P4 data output delay time			80	ns
td(E-P5Q)	Port P5 data output delay time			80	ns
td(E-P6Q)	Port P6 data output delay time			80	ns
td(E-P7Q)	Port P7 data output delay time			80	ns
td(E-P8Q)	Port P8 data output delay time			80	ns
t _{w(EL)}	E pulse width	1	130		ns

Microprocessor mode (when wait bit = "0", wait selection bit = "0", and external memory area is accessed)

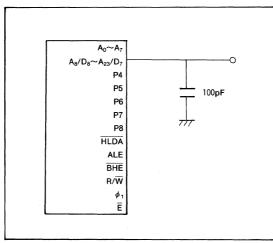
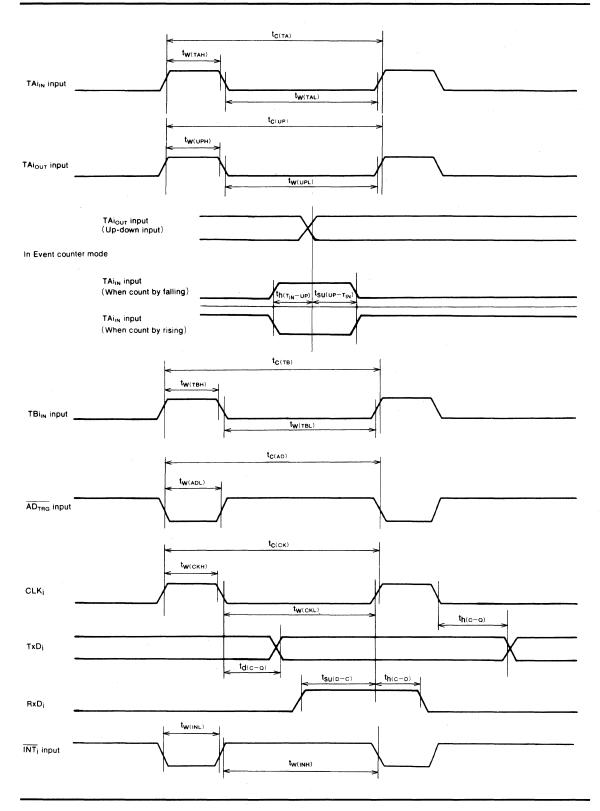
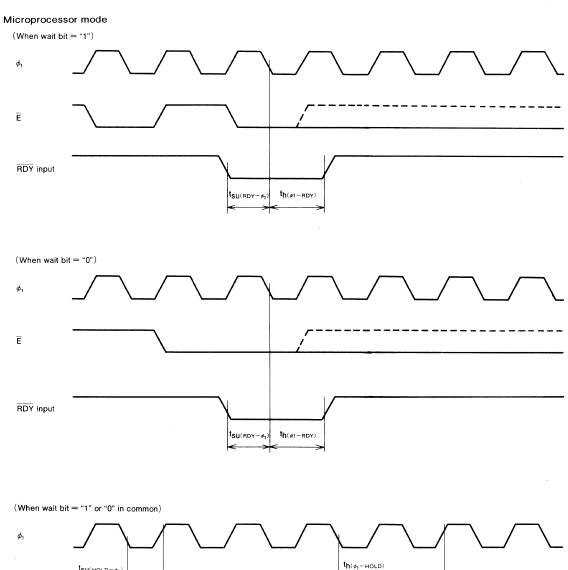
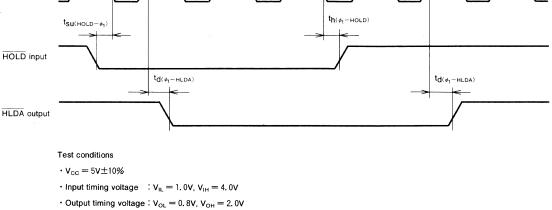
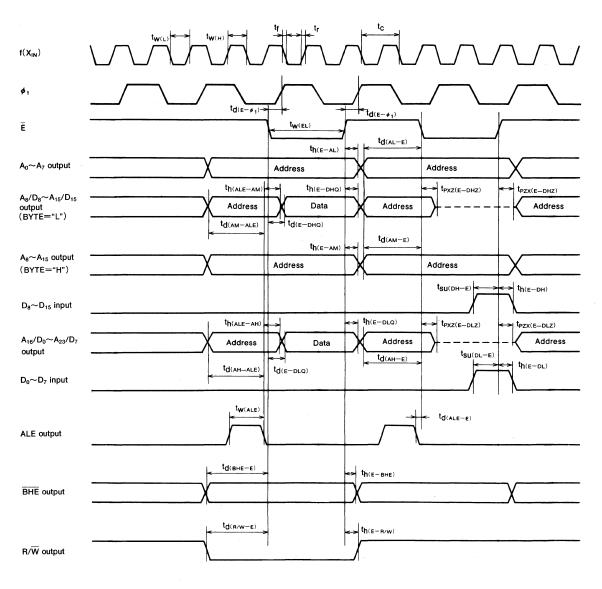



Fig. 65 Testing circuit for each teminal




TIMING DIAGRA	AM t_r t_f t_c $ \langle - \rangle $ $t_{W(H)}$ $ \langle - \rangle $ $t_{W(L)}$
f(X _{IN})	
Ē	
Port P4 output	
Port P4 input	t _{SU} (P4D-E) th(E-P4D)
Port P5 output	
Port P5 input	t _{SU(P5D-E)} th(E-P5D)
Port P6 output	→ td(E-P6Q)
Port P6 input	t _{SU(P6D-E)} t _{h(E-P6D)}
Port P7 output	
Port P7 input	t _{SU(P7D-E)} th(E-P7D)
Port P8 output	
Port P8 input	t _{SU(P8D} -E) th(E-P8D)



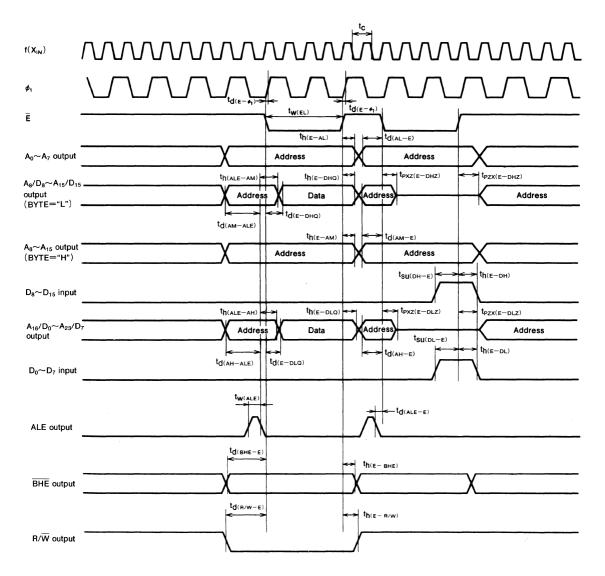
16-BIT CMOS MICROCOMPUTER

Microprocessor mode (When wait bit = "1")

Test conditions

 $\cdot v_{cc}$ =5V±10%

• Output timing voltage : V_{OL} =0.8V, V_{OH} =2.0V


• D_0 to D_{15} input : $V_{IL}=0.8V, V_{IH}=2.5V$

16-BIT CMOS MICROCOMPUTER

Microprocessor mode

(When wait bit = "0", wait selection bit = "1", and external memory area is accessed)

Test conditions

 $\cdot v_{cc} = 5v \pm 10\%$

.

- Output timing voltage : V_{OL} =0. 8V, V_{OH} =2. 0V
- D₀ to D₁₅ input : V_{IL}=0.8V, V_{IH}=2.5V

16-BIT CMOS MICROCOMPUTER

Memory expansion mode and microprocessor mode

(When wait bit = "0", wait selection bit = "0", and external memory area is accessed)

	tc
f(X _{IN})	
<i>\$</i> 1	
Ē	$\frac{t_{d(E-\phi_1)}}{t_{W(EL)}} \xrightarrow{t_{W(EL)}} \underbrace{t_{d(A-E)}}{t_{d(A-E)}}$
$A_0 \sim A_7$ output	th(E-AL) Address
$A_8/D_8 \sim A_{15}/D_{15}$ output (BYTE="L")	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
A ₈ ~A ₁₅ output (BYTE="H")	Address Address
$D_8 \sim D_{15}$ input	
A ₁₆ /D ₀ ~A ₂₃ /D ₇ output	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$D_0 \sim D_7$ input	
ALE output	
BHE output	td(вн∈-е)
R/₩ output	td(R/W-E)

Test conditions

 $\cdot V_{cc} = 5V \pm 10\%$

• Output timing voltage : V_{OL}=0.8V, V_{OH}=2.0V

• D_0 to D_{15} input : $V_{IL}=0.8V, V_{IH}=2.5V$

M37720 GROUP EXTERNAL ROM VERSION

MITSUBISHI MICROCOMPUTERS

M37720 Group

16-BIT CMOS MICROCOMPUTER

M37720 GROUP

The M37720 group has useful functions for office automations and telecommunications. This group internally has the following :

●4-channel DMA controller

DRAM controller

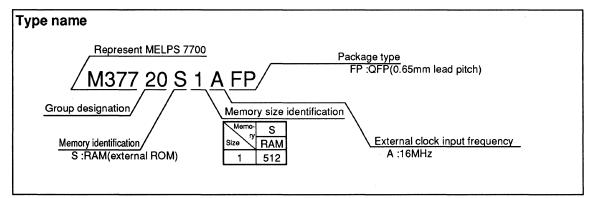
•CAS before RAS refresh method

The DMA controller is suitable for large memory space and high-speed data transfer betweeen memory and memory, and betweeen memory and I/O. The DRAM controller enables to support 1-15M byte DRAM.

FEATURES

●4-channel DMA controller built-in

ORAM controller(CAS before RAS refresh method) built-in
 With 8-bit refresh timer


Internal RAM......512 bytes
Peripheral functions

•I/O port	
•Interrupt	
•Multiple function 16-bit timer	5+3
•Serial I/O (clock synchronous / a	
•12-bit watchdog timer	,,

•Real time output port4 bits × 2 channels

APPLICATION

Control devices such as Serial printer, Facsimile, Image scanner, High-speed modem, Network controller, ODD, ISDN terminal

M37720 group expansion

morrze greup expansion				
ROM	Group name	Memory size	Frequency	Package
type	+ Memory	(Byte)		
	identification	RAM	A	
External	M37720S1	512		100-pin QFP
ROM	WI0772001	512		(100P6S-A)

• : NOW

* The former 8MHz version was unified into "A" version. "A" version satisfies the timing requirements and the switching characteristics of 8MHz version.

MITSUBISHI MICROCOMPUTERS

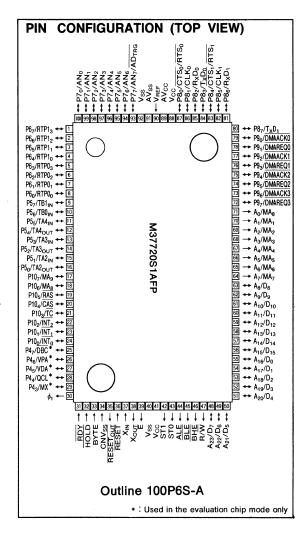
M37720S1AFP

M37720S1FP is unified into M37720S1AFP.

16-BIT CMOS MICROCOMPUTER

DESCRIPTION

The M37720S1AFP is a 16-bit microcomputer designed with high-performance CMOS silicon gate technology. This is housed in a 100-pin plastic molded QFP.

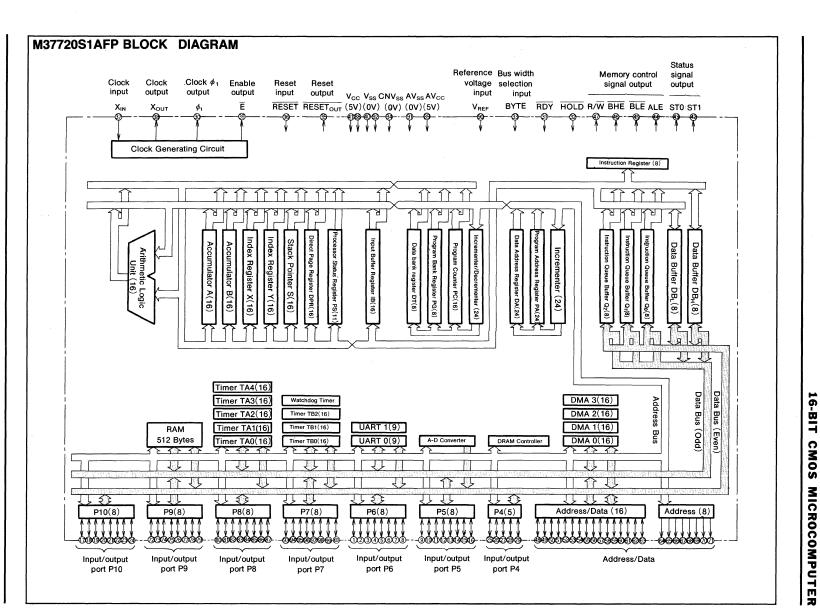

This microcomputer has a large 16M bytes address space, three instruction queue buffers, and two data buffers for high-speed instruction execution. This also incorporates a 4-channel DMA controller and a DRAM controller which has a refresh function. The CPU is a 16-bit parallel processor that can also be switched to perform 8-bit parallel processing. This microcomputer is suitable for office, business, and industrial equipment controller that require high-speed processing of large data.

FEATURES

•	Number of basi	c instructions·····103
٠	Memory size	RAM
		ROM ······ External
٠	Instruction exec	ution time
	The fastest in	struction at 16MHz frequency 250ns
٠	Single power su	ipply5V±10%
٠	Low power diss	ipation (at 16MHz frequency)
٠	Interrupts ······	······ 23 types, 7 levels
٠		n 16-bit timer
٠	UART (may also	be synchronous)2
•	8-bit A-D conve	rter
٠	DMA controller	4-channel
٠	DRAM controlle	
٠	4-bit real-time of	output ······2-channel
٠	Watchdog timer	
٠	Programmable i	nput/output
	(ports P4, P5,	P6, P7, P8, P9, P10)53

APPLICATION

Copiers, printers, typewriters, facsimiles, optical disk units, hard disk drives, telecommunications equipment such as mobile radio and ISDN terminal units, and office automation (OA) equipment including personal computers



NOTE

Refer to "Chapter 5 PRECAUTIONS" when using this microcomputer.

The M37720S1AFP satisfies the timing requirements and the switching characteristics of the former M37720S1FP.

MITSUBISHI MICROCOMPUTERS

2—186

16-BIT CMOS MICROCOMPUTER

Parameter Functions Number of basic instructions 103 Instruction execution time M37720S1AFP 250ns (the fastest instruction at external clock 16MHz frequency) RAM 512 bytes Memory size ROM External P5~P10 8 -bit× 6 Input/Output ports P4 5 -bit X 1 TA0, TA1, TA2, TA3, TA4 $16-bit \times 5$ Multi-function timers TB0, TB1, TB2 16-bitX 3 (UART or clock synchronous serial I/O)X2 Serial I/O 8-bit×1(8 channels) A-D converter 12-bit× 1 Watchdog timer 4 channels DMA controller Maximum transfer rate : 8M bytes/second "CAS before RAS refresh" system DRAM controller 8 -bit refresh timer incorporated Real-time output 4 bit×2 channels 3 external types, 20 internal types Interrupts (Each interrupt can be set the priority levels to $0 \sim 7$.) Built-in (externally connected to a ceramic resonator or quartz crystal Clock generating circuit resonator) 5 V±10% Supply voltage 90mW(at external clock 16MHz frequency) Power dissipation 5 V Input/Output voltage Input/Output characteristic 5 mA Output current Maximum 16M bytes Memory expansion Operating temperature range -20~85°C Device structure CMOS high-performance silicon gate process Package 100-pin plastic molded QFP

FUNCTIONS OF M37720S1AFP

16-BIT CMOS MICROCOMPUTER

PIN DESCRIPTION	(1)
------------------------	-----

Pin	Name	Input/Output	Functions	
V _{CC} , V _{SS}	Power supply		Supply 5 V \pm 10% to V _{cc} and 0 V to V _{SS} .	
CNV _{SS}	CNV _{SS} input	Input	Connect to V _{SS} or V _{CC} .	
RESET	Reset input	Input	To enter the reset state, this pin must be kept at a "L" condition which should be maintained for the re- quired time.	
RESETout	Reset output	Output	This pin outputs the response of reset input. When input to RESET pin is "L", this pin outputs "L". And output from this pin returns "H" after the release of reset. When the software reset bit is set to "1", this pin outputs "L".	
X _{IN}	Clock input	Input	This is an input pin for internal clock generating circuit. Connect a ceramic or quartz crystal resonator be- tween X_{IN} and X_{OUT} . When an external clock is used, the clock source should be connected to the X_{IN} pin and the X_{OUT} pin should be left open.	
X _{OUT}	Clock output	Output	This is an output pin for internal clock generating circuit. When a resonator is used, the resonator should be connected between this pin and the $X_{\rm IN}$ pin.	
Ē	Enable output	Output	Data or instruction read and data write are performed when output from this pin is "L".	
BYTE	Bus width selection input	Input	This pin determines whether the external data bus is 8-bit width or 16-bit width. The width is 16 bits when "L" signal inputs and 8 bits when "H" signal inputs.	
STO, ST1	Status signal output	Output	The bus use status output is generated in 2-bit code. ST1 ST0 Refresh 0 0 Hold 0 1 DMA 1 0 CPU 1 1	
AV _{CC} , AV _{SS}	Analog supply input		Power supply for the A-D converter. Connect AV _{CC} to V _{CC} and AV _{SS} to V _{SS} externally.	
V _{REF}	Reference voltage input	Input	This is reference voltage input pin for the A-D converter.	
R/W, BHE, ALE, BLE	Memory control signal output	Output	These pins are for R/W, BHE, ALE, and BLE output pins.	
ø1	Clock ø1 output	Output	This is the $\phi 1$ output pin which is divided the clock to X _{IN} pin by 2.	
HOLD	HOLD input	Input	This is an input pin for the HOLD request signal.	
RDY	RDY input	Input	This is an input pin for the $\overline{\text{RDY}}$ signal.	
A ₀ /MA ₀ ~ A ₇ /MA ₇	Address low-order/ DRAM address	Output	These are output pins for the 8 low-order bits of addresses. When the DRAM is to be accessed, the row and column addresses are generated by means of time division multiplexing.	
A ₈ /D ₈ ~ A ₁₅ /D ₁₅	Address medium-order/ data high-order	1/0	In cases where an external data bus width of 16 bits is used with the BYTE pin set to the "L" (Low) level, the high-order data $(D_{15} \sim D_8)$ input/output is effected at the "L" \overline{E} output level, and the address output $(A_{15} \sim A_8)$ is generated at the "H" (High) \overline{E} output level. In cases where an external data bus width of 8 bits is used with the BYTE pin set to the "H" level, only the address $(A_{15} \sim A_8)$ output is generated.	
A ₁₆ /D ₀ ~ A ₂₃ /D ₇	Address high-order/ data low-order	1/0	When the \overline{E} output is "L", the low-order data $(D_7 \sim D_0)$ input/output is effected. When the \overline{E} output is "H", the address output (A ₂₃ ~A ₁₆) is generated.	
P4 ₃ ~P4 ₇	I/O port P4	1/0	Port P4 is an 5-bit I/O port. As it has an I/O directional register, it is possible to perform programming to determine whether each bit serves as an input pin or an output pin.	
P50~P57	I/O port P5	1/0	Port P5 is an 8-bit I/O port. It has basically the same functions as port P4. In addition, these pins also func- tion as I/O pins for timer A2, timer A3 and timer A4, and input pins for timer B0 and timer B1.	

16-BIT CMOS MICROCOMPUTER

PIN DESCRIPTION (2)

Pin	Name	Input/Output	Functions
P6₀~P6 ₇	I/O port P6	1/0	Port P6 is an 8-bit I/O port. It has basically the same functions as port P4. In addition, pins $P6_0$ through $P6_3$ and pins $P6_4$ through $P6_7$ are capable of functioning as a 4-bit real-time output, respectively.
P7₀~P7 ₇	I/O port P7	1/0	Port P7 is an 8-bit I/O port. It has basically the same functions as port P4. In addition, these pins also function as input pins for analog inputs AN_0 through AN_7 . Pin P7 ₇ also has an A-D conversion trigger input function.
P8 ₀ ~P8 ₇	I/O port P8	1/0	Port P8 is an 8-bit I/O port. It has basically the same functions as port P4. In addition, these pins also function as R_XD , T_XD , CLK, and $\overrightarrow{CTS}/\overrightarrow{RTS}$ pins for UART0 and UART1.
₽9 ₀ ∼₽9 ₇	I/O port P9	1/0	Port P9 is an 8-bit I/O port. It has basically the same functions as port P4. In addition, these pins also func- tion as input pins for DMA request, and output pins for DMA acknowledge signal.
P10 ₀ ~P10 ₇	I/O port P10	1/0	Port P10 is an 8-bit I/O port. It has basically the same functions as port P4. In addition, these pins also function as input pins for $\overline{INT_0}/\overline{INT_1}/\overline{INT_2}$, and I/O pin for \overline{TC} , and output pins for \overline{RAS} , \overline{CAS} , MA_8 and MA_9 .

16-BIT CMOS MICROCOMPUTER

BASIC FUNCTION BLOCKS

The M37720S1AFP contains the following devices on a chip: RAM for storing instructions and data, CPU for processing, bus interface unit (which controls instruction prefetch and data read/write between CPU and memory), timers, UART, A-D converter, and other peripheral devices such as I/O ports. ROM is not incorporated. Each of these devices are described below.

MEMORY

The memory map is shown in Figure 1. The address space is 16M bytes from addresses 0_{16} to FFFFF₁₆. The address space is divided into 64K bytes units called banks. The banks are numbered from 0_{16} to FF₁₆.

Built-in RAM, and control registers for built-in peripheral devices are assigned to bank 0_{16} .

Addresses $FFCE_{16}$ to $FFFF_{16}$ are the RESET and interrupt vector addresses and store the interrupt vectors. Be sure to set up external ROM for the interrupt vector table. Refer to the section on interrupts for details.

The 512 bytes area from addresses 80_{16} to $27F_{16}$ contains the built-in RAM. In addition to storing data, the RAM is used as stack during a subroutine call, or interrupts.

Assigned to addresses 0_{16} to $7F_{16}$ are peripheral devices such as I/O ports, A-D converter, UART, timer, and interrupt control registers. Registers necessary for DMA control are assigned to addresses $1FC0_{16}$ through $1FFF_{16}$.

A 256 bytes direct page area can be allocated anywhere in bank 0_{16} using the direct page register DPR. In direct page addressing mode, the memory in the direct page area can be accessed with two words thus reducing program steps.

Fig.1 Memory map

16-BIT CMOS MICROCOMPUTER

Address (Hexadecimal notation)
000000	
0000001	
000002	
000002	
000003	
000004	
000006	
0000007	
000007	
000009	
000000A	Port P4
00000B	Port P5
00000C	Port P4 data direction register
00000D	Port P5 data direction register
00000E	Port P6
00000F	Port P7
000010	Port P6 data direction register
000011	Port P7 data direction register
000012	Port P8
000012	Port P9
000013	Port P8 data direction register
000014	Port P9 data direction register
000015	Port P10
000017	FORFIG
000018	Port P10 data direction register
000019	Fort FTO data direction register
000013	Pulse output data register 0
00001A	Fuise output data register 0
00001D	Pulse output data register 1
00001C	Pulse output data register 1
00001E	A-D control register
00001F	A-D sweep pin selection register
000020	A-D register 0
000021	A B legister e
000022	A-D register 1
000022	A D legister 1
000024	A-D register 2
000025	A D Tegister 2
000026	A-D register 3
000027	
000028	A-D register 4
000029	
00002A	A-D register 5
00002R	A D legister o
00002D	A-D register 6
00002D	
00002E	A-D register 7
00002E	
000021	UART0 transmit/receive mode register
000031	UARTO bit rate generator
000032	Chille Billiale generator
000033	UART0 transmission buffer register
000034	UART0 transmit/receive control register 0
000035	UARTO transmit/receive control register 0
000036	
000037	UART0 receive buffer register
000038	UART1 transmit/receive mode register
000039	UART1 bit rate register
00003A	
00003B	UART1 transmission buffer register
00003C	UART1 transmit/receive control register 0
00003D	UART1 transmit/receive control register 0
00003D	
00003F	UART1 receive buffer register
200001	L

	···· · · · · · · · · · · · · · · · · ·
Address (000040	Hexadecimal notation)
000041	
000042 000043	One-shot start flag
000043	Up-down flag
000045	
000046	Timer A0
000047	
000048 000049	Timer A1
00004A 00004B	Timer A2
00004B	
00004D	Timer A3
00004E	Timer A4
00004F 000050	
000051	Timer B0
000052	Timer B1
000053	
000054	Timer B2
000055 000056	Timer A0 mode register
000057	Timer A1 mode register
000058	Timer A2 mode register
000059	Timer A3 mode register
00005A	Timer A4 mode register
00005B 00005C	Timer B0 mode register Timer B1 mode register
00005D	Timer B2 mode register
00005E	Processor mode register
00005F	
000060	Watchdog timer
000061	Watchdog timer frequency selection flag
000062 000063	Real-time output control register
000064	DRAM control register
000065	
000066	Refresh timer
000067 000068	DMAC control register I
000069	DMAC control register L DMAC control register H
00006A	
00006B	
00006C	DMA0 interrupt control register
00006D 00006E	DMA1 interrupt control register DMA2 interrupt control register
00000E	DMA2 interrupt control register
000070	A-D conversion interrupt control register
000071	UART0 transmission interrupt control register
000072	UART0 receive interrupt control register
000073 000074	UART1 transmission interrupt control register UART1 receive interrupt control register
000075	Timer A0 interrupt control register
000076	Timer A1 interrupt control register
000077	Timer A2 interrupt control register
000078	Timer A3 interrupt control register
000079	Timer A4 interrupt control register
00007A 00007B	Timer B0 interrupt control register Timer B1 interrupt control register
00007C	Timer B2 interrupt control register
00007D	INT ₀ interrupt control register
00007E	INT ₁ interrupt control register
00007F	INT ₂ interrupt control register

Fig.2 Location of peripheral devices and interrupt control registers

CENTRAL PROCESSING UNIT (CPU)

The CPU has ten registers and is shown in Figure 3. Each of these registers is described below.

ACCUMULATOR A (A)

Accumulator A is the main register of the microcomputer. It consists of 16 bits and the lower 8 bits can be used separately. The data length flag m determines whether the register is used as 16-bit register or as 8-bit register. It is used as a 16-bit register when flag m is "0" and as an 8-bit register when flag m is "1". Flag m is a part of the processor status register (PS) which is described later.

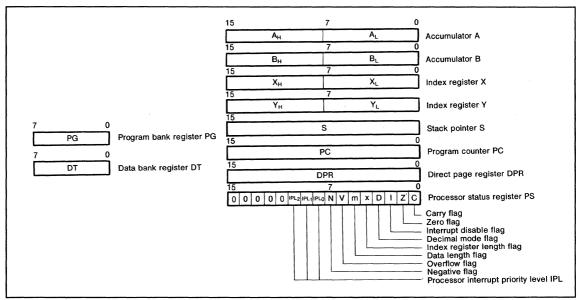
Data operations such as calculations, data transfer, input/ output, etc., is executed mainly through the accumulator.

ACCUMULATOR B (B)

Accumulator B has the same functions as accumulator A, but the use of accumulator B requires more instruction bytes and execution cycles than accumulator A.

INDEX REGISTER X (X)

Index register X consists of 16 bits and the lower 8 bits can be used separately. The index register length flag x determines whether the register is used as 16-bit register or as 8-bit register. It is used as a 16-bit register when flag x is "0" and as an 8-bit register when flag x is "1". Flag x is a part of the processor status register (PS) which is described later. In index addressing mode, register X is used as the index register and the contents of this address is added to obtain the real address.


Also, when executing a block transfer instruction MVP or MVN, the contents of index register X indicates the loworder 16 bits of the source data address. The third byte of the MVP and MVN is the high-order 8 bits of the source data address.

INDEX REGISTER Y (Y)

Index register Y consists of 16 bits and the lower 8 bits can be used separately. The index register length flag x determines whether the register is used as 16-bit register or as 8-bit register. It is used as a 16-bit register when flag x is "0" and as an 8-bit register when flag x is "1". Flag x is a part of the processor status register (PS) which is described later.

In index addressing mode, register Y is used as the index register and the contents of this address is added to obtain the real address.

Also, when executing a block transfer instruction MVP or MVN, the content of index register Y indicates the loworder 16 bits of the destination address. The second byte of the MVP and MVN is the high-order 8 bits of the destination data address.

Fig.3 Register structure

16-BIT CMOS MICROCOMPUTER

STACK POINTER (S)

Stack pointer (S) is a 16-bit register. It is used during a subroutine call or interrupts. It is also used during stack, stack pointer relative, or stack pointer relative indirect indexed Y addressing mode.

For stack area selection, use bit 7 stack bank selection bit of the processor mode register (address $5E_{16}$). When the bit is set to "0", the stack area is set to bank 0_{16} . When the bit is "1", the stack area is set to bank FF₁₆. This bit defaults to 0 upon resetting.

PROGRAM COUNTER (PC)

Program counter (PC) is a 16-bit counter that indicates the low-order 16 bits of the next program memory address to be executed. There is a bus interface unit between the program memory and the CPU, so that the program memory is accessed through bus interface unit. That is described later.

PROGRAM BANK REGISTER (PG)

Program bank register (PG) is an 8-bit register that indicates the high-order 8 bits of the next program memory address to be executed. When a carry occurs by incrementing the contents of the program counter, the contents of the program bank register (PG) is incremented by 1. Also, when a carry or borrow occurs after adding or subtracting the offset value to or from the contents of the program counter (PC) using branch instruction, the contents of the program bank register (PG) is incremented or decremented by 1 so that programs can be written without worrying about bank boundaries.

DATA BANK REGISTER (DT)

Data bank register (DT) is an 8-bit register. With some addressing modes, a part of the data bank register (DT) is used to specify a memory address.

The contents of data bank register (DT) is used as the high-order 8 bits of a 24-bit address. Addressing modes that use the data bank register (DT) are direct indirect, direct indexed X indirect, direct indirect indexed Y, absolute, absolute bit, absolute indexed X, absolute indexed Y, absolute bit relative, and stack pointer relative indirect indexed Y.

DIRECT PAGE REGISTER (DPR)

Direct page register (DPR) is a 16-bit register. Its contents is used as the base address of a 256byte direct page area. The direct page area is allocated in bank 0_{16} , but when the contents of DPR is FF01₁₆ or greater, the direct page area spans across bank 0_{16} and bank 1_{16} . All direct addressing modes use the contents of the direct page register (DPR) to generate the data address. If the low-order 8 bits of the direct page register (DPR) is "00₁₆", the number of cycles required to generate the address is minimized. Therefore,

nomally the low-order 8 bits of the direct page register (DPR) is set to "0016".

PROCESSOR STATUS REGISTER (PS)

Processor status register (PS) is an 11-bit register. It consists of a flag to indicate the result of operation and CPU interrupt levels.

Branch operations can be performed by testing the flags, C, Z, V, and N.

The details of each processor status register bit are described below.

1. Carry flag (C)

The carry flag contains the carry or borrow generated by the ALU after an arithmetic operation. This flag is also affected by shift and rotate instructions. This flag can be set and reset directly with the SEC and CLC instructions or with the SEP and CLP instructions.

2. Zero flag (Z)

This zero flag is set if the result of an arithmetic operation or data transfer is zero and reset if it is not. This flag can be set and reset directly with the SEP and CLP instructions.

3. Interrupt disable flag (I)

When the interrupt disable flag is set to "1", all interrupts except watchdog timer, DBC, and software interrupt are disabled. This flag is set to "1" automatically when interrupts are serviced. It can be set and reset directly with the SEI and CLI instructions or SEP and CLP instructions.

4. Decimal mode flag (D)

The decimal mode flag determines whether addition and subtraction are performed as binary or decimal.

Binary arithmetic is performed when this flag is "0". If it is "1", decimal arithmetic is performed with each word treated as two or four digit decimal. Arithmetic operation is performed using four digits when the data length flag m is "0" and with two digits when it is "1". (Decimal operation is possible only with the ADC and SBC instructions.) This flag can be set and reset with the SEP and CLP instructions.

5. Index register length flag (X)

The index register length flag determines whether index register X and index register Y are used as 16-bit registers or as 8-bit registers. The registers are used as 16-bit registers when flag x is "0" and as 8-bit registers when it is "1". This flag can be set and reset with the SEP and CLP instructions.

6. Data length flag (m)

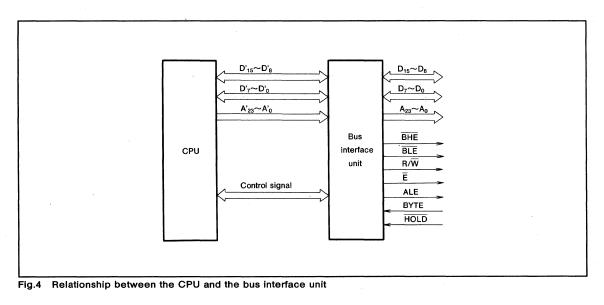
The data length flag determines whether the data length is 16-bit or 8-bit. The data length is 16-bit when flag m is "0" and 8-bit when it is "1". This flag can be set and reset with the SEM and CLM instructions or with the SEP and CLP instructions.

7. Overflow flag (V)

The overflow flag has meaning when addition or subtraction is performed as signed binary number. When the data length flag m is "0", the overflow flag is set when the result of addition or subtraction is outside the range between -32768 and +32767. When the data length flag m is "1", the overflow flag is set when the result of addition or subtraction is outside the range between -128 and +127. It is reset in all other cases. The overflow flag can also be set and reset directly with the SEP, and CLV or CLP instructions.

8. Negative flag (N)

The negative flag is set when the result of arithmetic operation or data transfer is negative (If data length flag m is "0", when data bit 15 is "1". If data length flag m is "1", when data bit 7 is "1".) It is reset in all other cases. It can also be set and reset with the SEP and CLP instructions.


9. Processor interrupt priority level (IPL)

The processor interrupt priority level (IPL) consists of 3 bits and determines the priority of processor interrupts from level 0 to level 7. Interrupt is enabled when the interrupt priority (set using the interrupt control register) of the device requesting interrupt is higher than the processor interrupt priority. When interrupt is enabled, the current processor interrupt priority level is saved in a stack and the processor interrupt priority level is replaced by the interrupt priority level of the device requesting the interrupt. Refer to the section on interrupts for more details.

BUS INTERFACE UNIT

The CPU operates on an internal clock frequency which is obtained by dividing the external clock frequency $f(X_{IN})$ by two. This frequency is twice the bus cycle frequency. In order to speed-up processing, a bus interface unit is used to pre-fetch instructions when the data bus is idle. The bus interface unit synchronizes the CPU and the bus access timing and pre-feches instructions. Figure 4 shows the relationship between the CPU and the bus interface unit. The bus interface unit has a program address register, a 3-byte instruction queue buffer, a data address register, and a 2-byte data buffer.

The bus interface unit obtains an instruction code from memory and stores it in the instruction queue buffer, obtains data from memory and stores it in the data buffer, or writes the data from the data buffer to the memory.

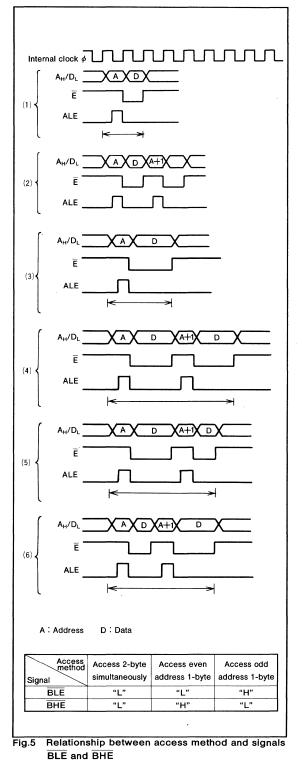
16-BIT CMOS MICROCOMPUTER

The bus interface unit operates using one of the waveforms (1) to (6) shown in Figure 5. The standard waveforms are (1) and (2).

The ALE signal is used to latch only the address signal from the multiplexed signal containing data and address.

The \overline{E} signal becomes "L" when the bus interface unit reads an instruction code or data from memory or when it writes data to memory. Whether to perform read or write is controlled by the R/ \overline{W} signal. Read is performed when the R/ \overline{W} signal is "H" state and write is performed when it is "L" state.

Waveform (1) in Figure 5 is used to access a single byte or two bytes simultaneously. To read or write two bytes simultaneously, the first address accessed must be even. Furthermore, when accessing an external memory area, set the bus width selection input pin BYTE to "L". (external data bus width to 16 bits) The internal memory area is always treated as 16-bit bus width regardless of BYTE.


When performing 16-bit data read or write, if the conditions for simultaneously accessing two bytes are not satisfied, waveform (2) is used to access each byte one by one. However, when prefetching the instruction code, if the address of the instruction code is odd, only one byte is read in the instruction queue buffer.

The signals $\overline{\text{BLE}}$ and $\overline{\text{BHE}}$ in Figure 5 are used to control these cases: 1-byte read from even address, 1-byte read from odd address, 2-byte simultaneous read from even and odd addresses, 1-byte write to even address, 1-byte write to odd address, or 2-byte simultaneous write to even and odd addresses.

The $\overline{\text{BLE}}$ signal becomes "L" when an even number address is accessed. The $\overline{\text{BHE}}$ signal becomes "L" when an odd number address is accessed.

The bit 2 of processor mode register (address $5E_{16}$) is the wait bit. When this bit is set to "0", the "L" width of \overline{E} signal is extended 2 times as long when accessing an external memory area in microprocessor mode. However, the "L" width of \overline{E} signal is not extended when an internal memory area is accessed. When the wait bit is "1", the "L" width of \overline{E} signal is not extended for any access. Waveform (3) is an expansion of the "L" width of \overline{E} signal in waveform (4), (5), and (6) are expansion of the "L" width of each \overline{E} signal in waveform (2), first half of waveform (2), and the last half of waveform (2) respectively.

Instruction code read, data read, and data write are described below.

16-BIT CMOS MICROCOMPUTER

Instruction code read will be described first.

The CPU obtains instruction codes from the instruction queue buffer and executes them. The CPU notifies the bus interface unit that it is requesting an instruction code during an instruction code request cycle. If the requested instruction code is not yet stored in the instruction queue buffer, the bus interface unit halts the CPU until it can store more instructions than requested in the instruction queue buffer. Even if there is no instruction code request from the CPU, the bus interface unit reads instruction codes from memory and stores them in the instruction queue buffer when the instruction queue buffer is empty or when only one instruction code is stored and the bus is idle on the next cycle. This is referred to as instruction pre-fetching.

Normally, when reading an instruction code from memory, if the accessed address is even the next odd address is read together with the instruction code and stored in the instruction queue buffer.

However, if the bus width switching pin BYTE is "H", external data bus width is 8 bits and the address to be read is in external memory area, or the addresses to be read is odd, only one byte is read and stored in the instruction queue buffer. Therefore, waveform (1) or (3) in Figure 5 in used for instruction code read.

Data read and write are described below.

The CPU notifies the bus interface unit when performing data read or write. At this time, the bus interface unit halts the CPU if the bus interface unit is already using the bus or if there is a request with higher priority. When data read or write is enabled, the bus interface unit uses one of the waveforms from (1) to (6) in Figure 5 to perform the operation.

During data read, the CPU waits until the entire data is stored in the data buffer. The bus interface unit sends the address received from the CPU to the address bus. Then it reads the memory when the \overline{E} signal is "L" and stores the result in the data buffer.

During data write, the CPU writes the data in the data buffer and the bus interface unit writes it to memory. Therefore, the CPU can proceed to the next step without waiting for write to complete. The bus interface unit sends the address received from the CPU to the address bus. Then when the \overline{E} signal is "L", the bus interface unit sends the data in the data buffer to the data bus writes it to memory.

16-BIT CMOS MICROCOMPUTER

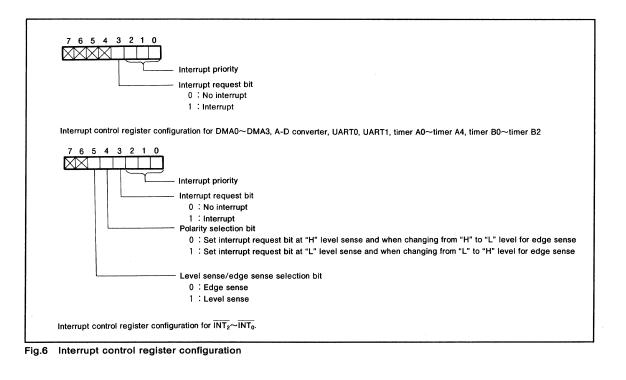
INTERRUPTS

Table 1 shows the interrupt sources and the corresponding interrupt vector addresses. Reset is also treated as a kind of interrupt and is discussed in this section, too.

DBC is an interrupt used for debugging.

Interrupts other than reset, $\overline{\text{DBC}}$, watchdog timer, zero divide, and BRK instruction all have interrupt control registers. Table 2 shows the addresses of the interrupt control registers and Figure 6 shows the bit configuration of the interrupt control register. Use the SEB and CLB instructions when setting each interrupt control register. The interrupt request bit is automatically cleared by the hardware during reset or when processing an interrupt. Also, Interrupt request bits other than $\overline{\text{DBC}}$ and watchdog timer can be cleared by software.

 INT_2 to INT_0 are external interrupts and whether to cause an interrupt at the input level (level sense) or at the edge (edge sense) can be selected with the level sense/edge sense selection bit. Furthermore, the polarity of the interrupt input can be selected with polarity selection bit.


Timer and UART interrupts described in the respective section.

The priority of interrupts when multiple interrupts are caused simultaneously is partially fixed by hardware, but, it can also be adjusted by software as shown in Figure 7. The hardware priority is fixed the following:

reset>DBC>watchdog timer>other interrupts

Table 1.	Interrupt sources and the interrupt vector
	addresses

Interrupts	Vector a	ddresses
DMA3	00FFCE ₁₆	00FFCF ₁₆
DMA2	00FFD016	00FFD1 ₁₆
DMA1	00FFD216	00FFD316
DMA0	00FFD4 ₁₆	00FFD516
A-D conversion	00FFD616	00FFD7 ₁₆
UART1 transmit	00FFD816	00FFD9 ₁₆
UART1 receive	00FFDA ₁₆	00FFDB ₁₆
UART0 transmit	00FFDC ₁₆	00FFDD ₁₆
UART0 receive	00FFDE ₁₆	00FFDF ₁₆
Timer B2	00FFE016	00FFE1 ₁₆
Timer B1	00FFE216	00FFE316
Timer B0	00FFE416	00FFE516
Timer A4	00FFE616	00FFE7 ₁₆
Timer A3	00FFE816	00FFE9 ₁₆
Timer A2	00FFEA16	00FFEB ₁₆
Timer A1	00FFEC ₁₆	00FFED ₁₆
Timer A0	00FFEE ₁₆	00FFEF16
INT ₂ external interrupt	00FFF016	00FFF1 ₁₆
INT ₁ external interrupt	00FFF2 ₁₆	00FFF3 ₁₆
INT ₀ external interrupt	00FFF4 ₁₆	00FFF516
Watchdog timer	00FFF6 ₁₆	00FFF7 ₁₆
DBC (unusable)	00FFF8 ₁₆	00FFF9 ₁₆
Break instruction	00FFFA ₁₆	00FFFB ₁₆
Zero divide	00FFFC ₁₆	00FFFD ₁₆
Reset	00FFFE ₁₆	00FFFF ₁₆

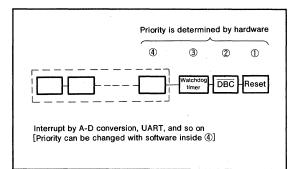
Interrupts	Addresses
DMA0 interrupt control register	00006C ₁₆
DMA1 interrupt control register	00006D ₁₆
DMA2 interrupt control register	00006E ₁₆
DMA3 interrupt control register	00006F ₁₆
A-D conversion interrupt control register	000070 ₁₆
UART0 transmit interrupt control register	000071 ₁₆
UART0 receive interrupt control register	000072 ₁₆
UART1 transmit interrupt control register	000073 ₁₆
UART1 receive interrupt control register	000074 ₁₆
Timer A0 interrupt control register	000075 ₁₆
Timer A1 interrupt control register	000076 ₁₆
Timer A2 interrupt control register	000077 ₁₆
Timer A3 interrupt control register	000078 ₁₆
Timer A4 interrupt control register	000079 ₁₆
Timer B0 interrupt control register	00007A ₁₆
Timer B1 interrupt control register	00007B ₁₆
Timer B2 interrupt control register	00007C ₁₆
INT ₀ interrupt control register	00007D ₁₆
INT ₁ interrupt control register	00007E ₁₆
INT ₂ interrupt control register	00007F ₁₆

Table 2. Address of interrupt control registers

Interrupts caused by a BRK instruction and when dividing by zero are software interrupts and are not included in this list.

Other interrupts previously mentioned are DMA, A-D converter, UART, Timer, $\overline{\text{INT}}$ interrupts. The priority of these interrupts can be changed by changing the priority level in the corresponding interrupt control register by software.

Figure 8 shows a diagram of the interrupt priority resolution circuit. When an interrupt is caused, the each interrupt device compares its own priority with the priority from above and if its own priority is higher, then it sends the priority below and requests the interrupt. If the priorities are the same, the one above has priority.


This comparison is repeated to select the interrupt with the highest priority among the interrupts that are being requested. Finally the selected interrupt is compared with the processor interrupt priority level (IPL) contained in the processor status register (PS) and the request is accepted if it is higher than IPL and the interrupt disable flag I is "0". The request is not accepted if flag I is "1". The reset, DBC, and watchdog timer interrupts are not affected by the interrupt disable flag I.


When an interrupt is accepted, the contents of the processor status register (PS) is saved to the stack and the interrupt disable flag I is set to "1".

Furthermore, the interrupt request bit of the accepted interrupt is cleared to "0" and the processor interrupt priority level (IPL) in the processor status register (PS) is replaced by the priority level of the accepted interrupt.

Therefore, multi-level priority interrupts are possible by resetting the interrupt disable flag I to "0" and enable further interrupts. For reset, DBC, watchdog timer, zero divide, and BRK instruction interrupts, which do not have an interrupt control register, the processor interrupt level (IPL) is set as shown in Table 3.

Priority resolution is performed by latching the interrupt request bit and interrupt priority level so that they do not change. They are sampled at the first half and latched at the last half of the operation code fetch cycle.

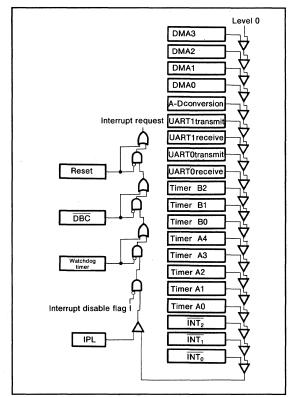


Fig.8 Interrupt priority resolution

16-BIT CMOS MICROCOMPUTER

Because priority resolution takes some time, no sampling pulse is generated for a certain interval even if it is the next operation code fetch cycle.

As shown in Figure 9, there are three different interrupt priority resolution time from which one is selected by software. After the selected time has elapsed, the highest priority is determined and is processed after the currently executing instruction has been completed.

The time is selected with bits 4 and 5 of the processor mode register (address $5E_{16}$) shown in Figure 10. Table 4 shows the relationship between these bits and the number of cycles. After a reset, the processor mode register is initialized to "00₁₆" and therefore, the longest time is selected.

However, the shortest time should be selected by software.

Table 3. Value set in processor interrupt level(IPL)during an interrupt

Interrupt types	Setting value
Reset	0
DBC	7
Watchdog timer	7
Zero divide	Not change value of IPL.
BRK instruction	Not change value of IPL.

 Table 4. Relationship between priority level resolution time selection bit and number of cycles

Priority level resoluti	on time selection bit	Number of evolution
Bit 5	Bit 4	Number of cycles
0	0	7 cycles of ϕ
0	1	4 cycles of ø
1	0	2 cycles of ϕ

φ : Internal clock

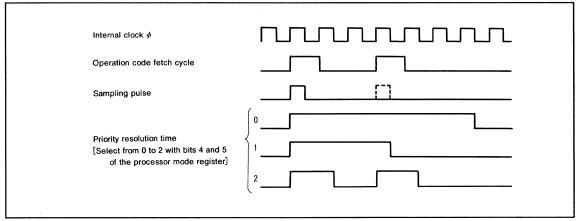
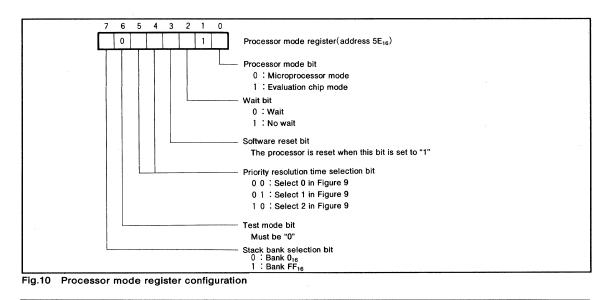



Fig.9 Interrupt priority resolution time

TIMER

There are eight 16-bit timers. They are divided by type into timer A (5) and timer B (3).

The timer I/O pins are shared with I/O pins for port P5. To use these pins as timer input pins, the direction register bit corresponding to the pin must be cleared to "0" to specify input mode.

TIMER A

Figure 11 shows a block diagram of timer A.

Timer A has four modes; timer mode, event counter mode, one-shot pulse mode, and pulse width modulation mode. The mode is selected with bits 0 and 1 of the timer Ai mode register (i=0 to 4).

Each of these modes is described below.

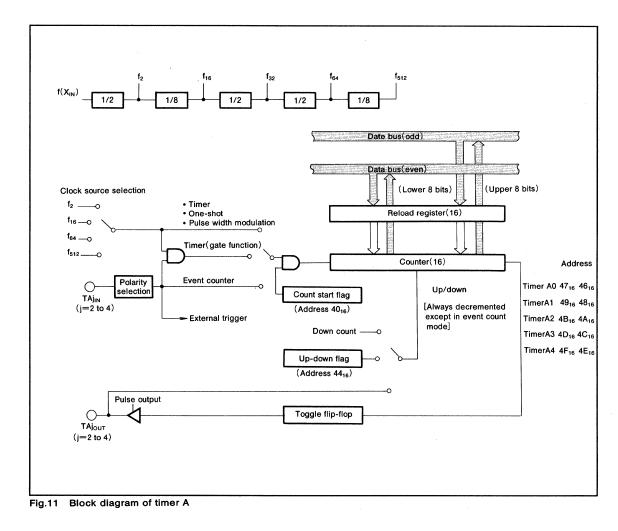

(1) Timer mode [00]

Figure 12 shows the bit configuration of the timer Ai mode register during timer mode. Bits 0, 1, and 5 of the timer Ai mode register must always be "0" in timer mode. Bit 3 is ignored if bit 4 is "0".

Bits 6 and 7 are used to select the timer counter source.

The counting of the selected clock starts when the count start flag is "1" and stops when it is "0".

Figure 13 shows the bit configuration of the count start flag. The counter is decremented, an interrupt is caused and the interrupt request bit in the timer Ai interrupt control register is set when the contents becomes 0000_{16} . At the same time, the contents of the reload register is transferred to the counter and count is continued.

16-BIT CMOS MICROCOMPUTER

When bit 2 of the timer Ai mode register is "1", the output is generated from $TAj_{OUT}(j=2 \text{ to } 4)$ pin. The output is toggled each time the contents of the counter reaches to 0000_{16} . When the contents of the count start flag is "0","L" is output from TAj_{OUT} pin.

When bit 2 is "0", TAj_{OUT} can be used as a normal port pin. When bit 4 is "0", TAj_{IN} can be used as a normal port pin.

When bit 4 is "1", counting is performed only while the input signal from the TAj_{IN} pin is "H" or "L" as shown in Figure 14. Therefore, this can be used to measure the pulse width of the TAj_{IN} input signal. Whether to count while the input signal is "H" or while it is "L" is determined by bit 3. If bit 3 is "1", counting is performed while the TAj_{IN} pin input signal is "H" and if bit 3 is "0", counting is performed while it is "L".

Note that the duration of "H" or "L" on the TAj_{IN} pin must be two or more cycles of the timer count source.

When data is written into timer Ai while it is not operating, the data is written into the reload register and counter. On the other hand, when data is written into timer Ai while it is operating, the data is written into the reload register only and not into the counter. When reloading is initiated next, new data is reloaded from the reload register into the counter for operation continuation. The contents of the counter can be read at any time.

When the value set in the timer Ai register is n, the timer frequency dividing ratio is 1/(n+1).

As timers A0 and A1 do not have the $TA_{\rm IN}$ and $TA_{\rm OUT}$ pin, be sure to use the timer mode.

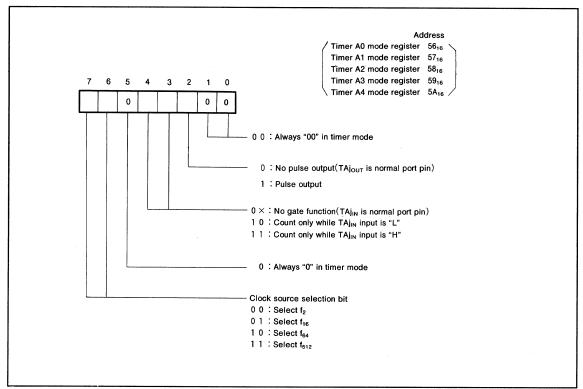
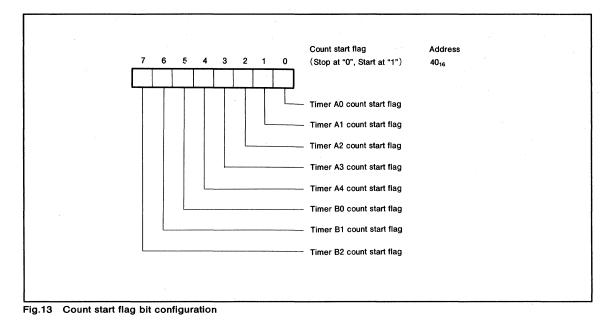
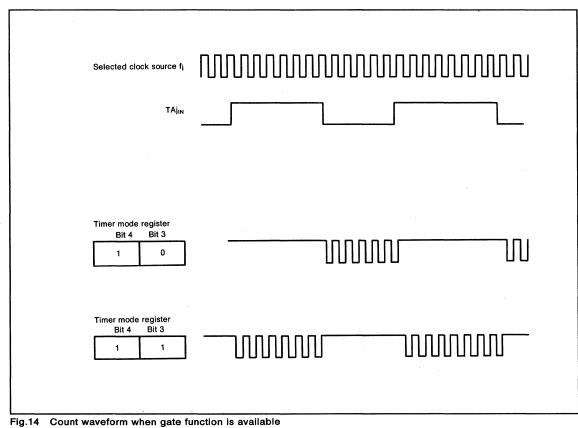




Fig.12 Timer Ai mode register bit configuration in timer mode

16-BIT CMOS MICROCOMPUTER

16-BIT CMOS MICROCOMPUTER

(2) Event counter mode [01]

Figure 15 shows the bit configuration of the timer Aj mode register during event counter mode. In event counter mode, the bit 0 of the timer Aj(j=2 to 4) mode register must be "1" and bit 1 and bit 5 must be "0".

The input signal from the $TA_{j_{\rm IN}}$ pin is counted when the count start flag shown in Figure 13 is "1" and counting is stopped when it is "0".

Count is performed at the fall of the input signal when bit 3 is "0" and at the rise of the signal when it is "1".

In event counter mode, whether to increment or decrement the count can be selected with the up-down flag or the input signal from the TAj_{OUT} pin. When bit 4 of the timer Aj mode register is "0", the up-down flag is used to determine whether to increment or decrement the count (decrement when the flag is "0" and increment when it is "1"). Figure 16 shows the bit configuration of the up-down flag. When bit 4 of the timer Aj mode register is "1", the input signal from the TAj_{OUT} pin is used to determine whether to increment or decrement the count. However, note that bit 2 must be "0" if bit 4 is "1" because if bit 2 is "1", TAj_{OUT} pin becomes an output pin with pulse output.

Determine the level of the input signal from the TAj_{OUT} pin before valid edge is input to the TAj_{IN} pin.

The count is decremented when the input signal from the TAj_{OUT} pin is "L" and incremented when it is "H".

An Interrupt request signal is generated and the interrupt request bit in the timer A_j interrupt control register is set when the counter reaches 0000_{16} (decrement count) or FFFF₁₆ (increment count). At the same time, the contents of the reload register is transferred to the counter and the count is continued.

When bit 2 is "1" and the counter reaches 0000_{16} (decrement count) or FFF₁₆ (increment count), the waveform reversing polarity is output from TAj_{OUT} pin.

If bit 2 is "0", TAj_{OUT} pin can be used as a normal port pin. However, if bit 4 is "1" and the TAj_{OUT} pin is used as an output pin, the output from the pin changes the count direction. Therefore, bit 4 should be "0" unless the output from the TAj_{OUT} pin is to be used to select the count direction.

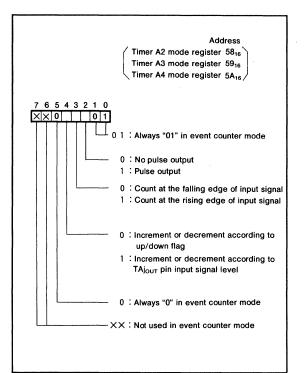


Fig.15 Timer Aj mode register bit configuration in event counter mode

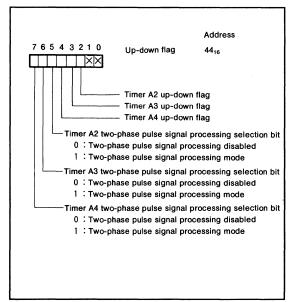


Fig.16 Up-down flag bit configuration

16-BIT CMOS MICROCOMPUTER

Data write and data read are performed in the same way as for timer mode. That is, when data is written to timer Aj while it is not operating, it is also written to the reload register and the counter. When data is written to timer Aj while it is operating, the data is written to the reload register, but not to the counter. The counter is reloaded with new data from the reload register at the next reload time. The counter can be read at any time.

In event counter mode, whether to increment or decrement the counter can also be determined by supplying two-phase pulse input with phase shifted by 90° to timer A2, A3, or A4. There are two types of two-phase pulse processing operations. One uses timers A2 and A3, and the other uses timer A4. In either processing operation, two-phase pulse is input in the same way, that is, pulses out of phase by 90° are input at the TAj_{OUT} (j=2 to 4) pin and TAj_{IN} pin.

When timers A2 and A3 are used, as shown in Figure 17, the count is incremented when a rising edge is entered to the TAk_{IN} pin after the level of TAk_{OUT} (k = 2, 3) pin changes from "L" to "H", and when the falling edge is inserted, the count is decremented.

For timer A4, as shown in Figure 18, when a phase related pulse with a rising edge input to the $TA4_{IN}$ pin is entered after the level of $TA4_{OUT}$ pin changes from "L" to "H", the count is incremented at the respective rising edge and falling edge of the $TA4_{OUT}$ and $TA4_{IN}$ pins.

When a phase related pulse with a falling edge input to the $TA4_{OUT}$ pin is entered after the level of $TA4_{IN}$ pin changes from "H" to "L", the count is decremented at the respective rising edge and falling edge of the $TA4_{IN}$ and $TA4_{OUT}$ pins. When performing this two-phase pulse signal processing, timer Aj mode register bit 0 and bit 4 must be set to "1" and bits 1, 2, 3, and 5 must be "0" (refer the Figure 19). Bits 6 and 7 are ignored. Note that bits 5, 6, and 7 of the up-down flag register (44₁₆) are the two-phase pulse signal processing selection bit for timer A2, A3, and A4 respectively. Each timer operates in normal event counter mode when the corresponding bit is "0" and performs two-phase pulse signal processing when it is "1".

Count is started by setting the count start flag to "1". Data write and read are performed in the same way as for normal event counter mode. Note that the direction register of the input port must be set to input mode because twophase pulse signal is input. Also, there can be no pulse gutput in this mode.

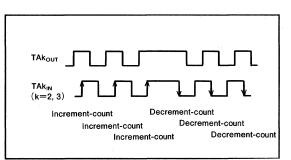
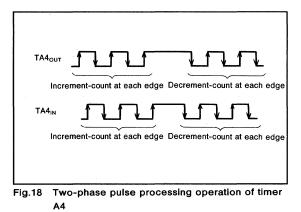
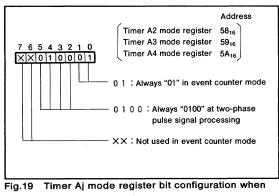
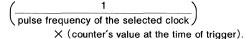




Fig.17 Two-phase pulse processing operation of timers A2 and A3

performing two-phase pulse signal processing in event counter mode

16-BIT CMOS MICROCOMPUTER

(3) One-shot pulse mode [10]


Figure 20 shows the bit configuration of the timer Aj mode register during one-shot pulse mode. In one-shot pulse mode, bit 0 and bit 5 must be "0" and bit 1 and bit 2 must be "1".

The trigger is enabled when the count start flag is "1". The trigger can be generated by software or it can be input from the TA_{JIN} pin. Software trigger is selected when bit 4 is "0" and the input signal from the TA_{JIN} pin is used as the trigger when it is "1". Bit 3 is used to determine whether to trigger at the fall of the trigger signal or at the rise. The trigger is at the fall of the trigger signal when bit 3 is "0" and at the rise of the trigger signal when it is "1". Software trigger is generated by setting the bit in the one-shot start flag corresponding to each timer. Figure 21 shows the bit configuration of the one-shot start flag. Bit 7 of the one-shot start flag must always be "0".

As shown in Figure 22, when a trigger signal is received, the counter counts the clock selected by bits 6 and 7.

If the contents of the counter is not 0000₁₆, the TAj_{OUT} pin goes "H" when a trigger signal is received. The count direction is decrement.

When the counter reaches 0001_{16} . The TAj_{OUT} pin goes "L" and count is stopped. The contents of the reload register is transferred to the counter. At the same time, an interrupt request signal is generated and the interrupt request bit in the timer Aj interrupt control register is set. This is repeated each time a trigger signal is received. The output pulse width is

If the count start flag is "0", TAj_{OUT} goes "L". Therefore, the value corresponding to the desired pulse width must be written to timer Aj before setting the timer Aj count start

flag. As shown in Figure 23, a trigger signal can be received before the operation for the previous trigger signal is completed. In this case, the contents of the reload register is transferred to the counter by the trigger and then that value is decremented. Except when retriggering while operating, the contents of the reload register is not transferred to the counter by triggering.

When retriggering, there must be at least one timer count source cycle before a new trigger can be issued.

Data write is performed to the same way as for timer mode. When data is written in timer Aj while it is not operating, it is also written to the reload register and the counter.

When data is written to timer Aj while it is operating, the data is written to the reload register, but not to the counter. The counter is reloaded with new data from the reload register at the next reload time.

Undefined data is read, when timer Aj is read.

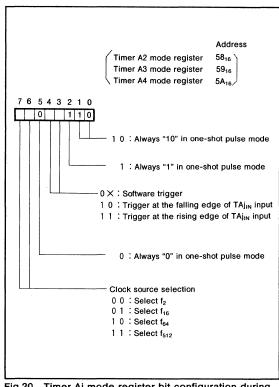


Fig.20 Timer Aj mode register bit configuration during one-shot pulse mode

Fig.21 One-shot start flag bit configuration

16-BIT CMOS MICROCOMPUTER

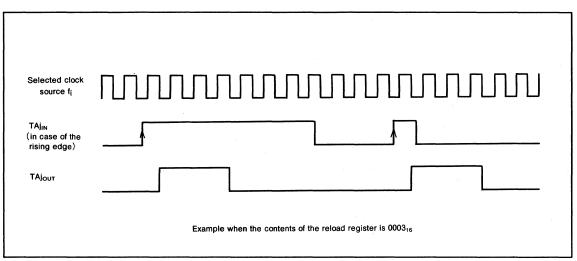


Fig.22 Pulse output example when external rising edge is selected

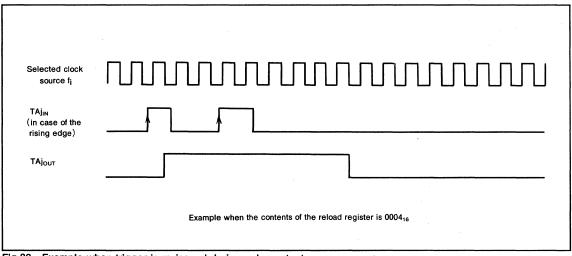


Fig.23 Example when trigger is re-issued during pulse output

16-BIT CMOS MICROCOMPUTER

(4) Pulse width modulation mode [11]

Figure 24 shows the bit configuration of the timer Aj mode register during pulse width modulation mode. In pulse width modulation mode, bits 0, 1, and 2 must be set to "1". Bit 5 is used to determine whether to perform 16-bit length pulse width modulator or 8-bit length pulse width modulator. 16-bit length pulse width modulator is performed when bit 5 is "0" and 8-bit length pulse width modulator is performed when it is "1". The 16-bit length pulse width modulator is described first.

The pulse width modulator can be started with a software trigger or with an input signal from a TAj_{IN} pin (external trigger).

The software trigger mode is selected when bit 4 is "0".

Pulse width modulator is started and pulse is output from TAj_{OUT} when the timer Aj start flag is set to "1".

The external trigger mode is selected when bit 4 is "1".

Pulse width modulator starts when a trigger signal is input from the $TA_{J_{IN}}$ pin when the timer Aj start flag is "1".

Whether to trigger at the fall or rise of the trigger signal is determined by bit 3. The trigger is at the fall of the trigger signal when bit 3 is "0" and at the rise when it is "1".

When data is written to timer Aj with the pulse width modulator while it is not operating, it is written to the reload register and the counter.

Then when the timer Aj start flag is set to "1" and a software trigger or an external trigger is issued to start modulation, the waveform shown in Figure 25 is output continuously. Once modulation is started, triggers are not accepted. If the value in the reload register is m, the duration "H" of pulse is

 $\frac{1}{\text{selected clock frequency}} \times m.$ and the output pulse period is

 $\frac{1}{\text{selected clock frequency}} \times (2^{16} - 1).$

An interrupt request signal is generated and the interrupt request bit in the timer Aj interrupt control register is set at each fall of the output pulse.

The width of the output pulse is changed by updating timer data. The update can be performed at any time. The output pulse width is changed at the rise of the pulse after data is written to the timer. The data is written to the reload register, but not to the counter.

The contents of the reload register are transferred to the counter just before the rise of the next pulse so that the pulse width is changed from the next output pulse.

Undefined data is read, when timer Aj is read.

The 8-bit length pulse width modulator is described next.

The 8-bit length pulse width modulator is selected when the timer Aj mode register bit 5 is "1".

The reload register and the counter are both divided into 8bit halves. The low order 8 bits function as a prescaler and the high order 8 bits function as the 8-bit length pulse width modulator. The prescaler counts the clock selected by bits 6 and 7. A pulse is generated when the counter reaches 0000_{16} as shown in Figure 26. At the same time, the contents of the reload register is transferred to the counter and count is continued.

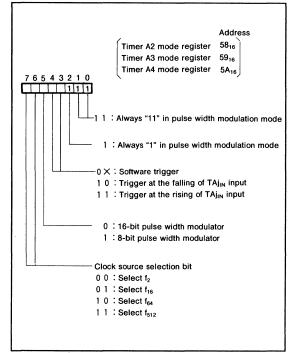


Fig.24 Timer Aj mode register bit configuration during pulse width modulation mode

16-BIT CMOS MICROCOMPUTER

Therefore, if the low order 8-bit of the reload register is n, the period of the generated pulse is

the length is 8 bits. If the high order 8-bit of the reload register is m, the duration "H" of pulse is 1

```
selected clock frequency \times (n+1).
```

1

The high order 8-bit function as an 8-bit length pulse width modulator using this pulse as input. The operation is the same as for 16-bit length pulse width modulator except that

selected clock frequency $\times (n+1) \times m$. And the output pulse period is

1

```
selected clock frequency \times (n+1) \times (2^8-1).
```

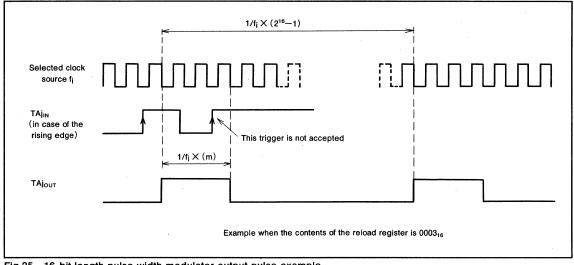
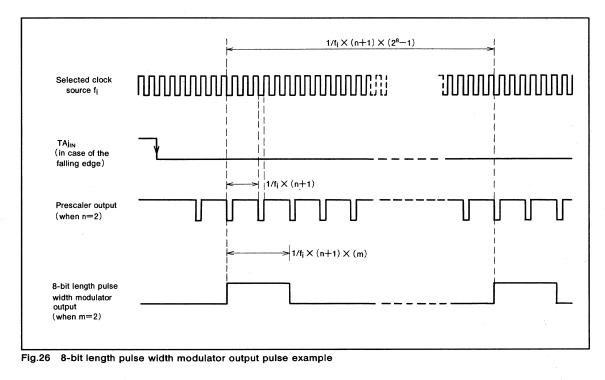



Fig.25 16-bit length pulse width modulator output pulse example

16-BIT CMOS MICROCOMPUTER

TIMER B

Figure 27 shows a block diagram of timer B.

Timer B has three modes; timer mode, event counter mode, and pulse period measurement/pulse width measurement mode. The mode is selected with bits 0 and 1 of the timer Bi mode register (i = 0 to 2). Each of these modes is described below.

(1) Timer mode [00]

Figure 28 shows the bit configuration of the timer Bi mode register during timer mode. Bits 0, and 1 of the timer Bi mode register must always be "0" in timer mode.

Bits 6 and 7 are used to select the clock source. The counting of the selected clock starts when the count start flag is "1" and stops when "0".

As shown in Figure 13, the timer Bi count start flag is at the same address as the timer Ai count start flag. The count is decremented, an interrupt occurs, and the interrupt request bit in the timer Bi interrupt control register is set when the contents becomes 0000_{16} . At the same time, the contents of the reload register is stored in the counter and count is continued.

Timer Bi does not have a pulse output function or a gate function like timer A.

When data is written to timer Bi while it is not operating, it is written to the reload register and the counter. When data is written to timer Bi while it is operating, the data is written to the reload register, but not to the counter. The counter is reloaded with new data from the reload register at the next reload time.

The contents of the counter can be read at any time. As timer B2 does not have the TB_{IN} pin, be sure to use the timer mode.

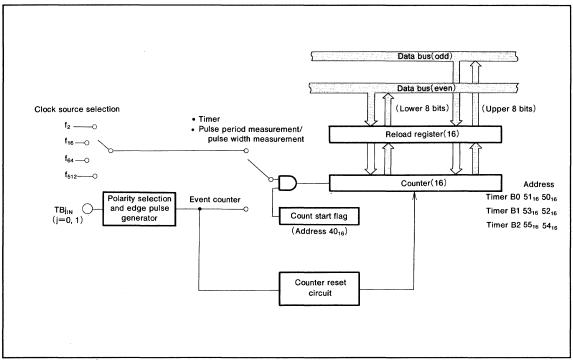


Fig.27 Timer B block diagram

16-BIT CMOS MICROCOMPUTER

(2) Event counter mode [01]

Figure 29 shows the bit configuration of the timer Bj(j=0, 1) mode register during event counter mode. In event counter mode, the bit 0 in the timer Bj mode register must be "1" and bit 1 must be "0". The input signal from the $TB_{J_{\rm IN}}$ pin is counted when the count start flag is "1" and counting is stopped when it is "0".

Count is performed at the fall of the input signal when bits 2 and 3 are "0", and at the rise of the input signal when bit 3 is "0" and bit 2 is "1".

When bit 3 is "1" and bit 2 is "0", count is performed at the rise and fall of the input signal.

Data write, data read and timer interrupt are performed in the same way as for timer mode.

(3) Pulse period measurement/pulse width measurement mode [10]

Figure 30 shows the bit configuration of the timer Bj mode register during pulse period measurement/pulse width measurement mode.

In pulse period measurement/pulse width measurement mode, bit 0 must be "0" and bit 1 must be "1". Bits 6 and 7 are used to select the clock source. The selected clock is counted when the count start flag is "1" and counting stops when it is "0".

The pulse period measurement mode is selected when bit 3 is "0". In pulse period measurement mode, the selected clock is counted during the interval starting at the fall of the input signal from the TBj_{IN} pin to the next fall or at the rise of the input signal to the next rise and the result is stored in the reload register. In this case, the reload register acts as a buffer register.

When bit 2 is "0", the clock is counted from the fall of the input signal to the next fall. When bit 2 is "1", the clock is counted from the rise of the input signal to the next rise.

In the case of counting from the fall of the input signal to the next fall, counting is performed as follows. As shown in Figure 31, when the fall of the input signal from TBj_{IN} pin is detected, the contents of the counter is transferred to the reload register. Next the counter is cleared and count is started from the next clock. When the fall of the next input signal is detected, the contents of the counter is transferred to the reload register once more, the counter is cleared, and the count is started. The period from the fall of the input signal to the next fall is measured in this way.

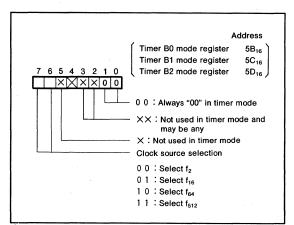


Fig.28 Timer Bi mode register bit configuration during timer mode

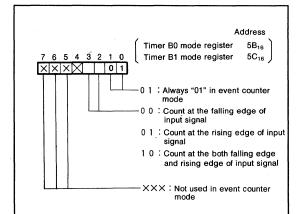
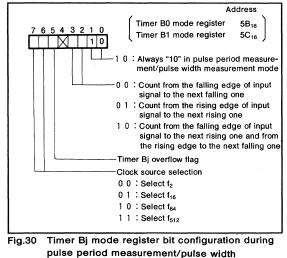



Fig.29 Timer Bj mode register bit configuration during event counter mode

measurement mode

After the contents of the counter is transferred to the reload register, an interrupt request signal is generated and the interrupt request bit in the timer Bj interrupt control register is set. However, no interrupt request signal is generated when the contents of the counter is transferred first time to the reload register after the count start flag is set to "1".

When bit 3 is "1", the pulse width measurement mode is selected. Pulse width measurement mode is similar to pulse period measurement mode except that clock is counted from the fall of the $TB_{j_{IN}}$ pin input signal to the next rise or from the rise of the input signal to the next fall as

shown in Figure 32.

When timer Bj is read, the contents of the reload register is read.

Note that in this mode, the interval between the fall of the TB_{JIN} pin input signal to the next rise or from the rise to the next fall must be at least two cycles of the timer count source.

Timer Bi overflow flag which is bit 5 of timer Bi mode register is set to "1" when the timer Bi counter reach 0000_{16} .

This flag is cleared by writing to corresponding timer Bi mode register.

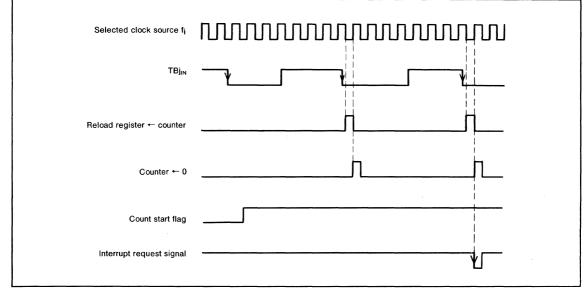
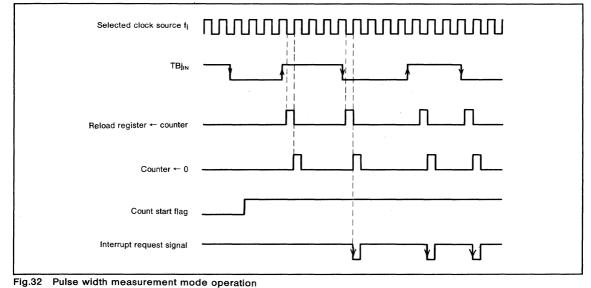



Fig.31 Pulse period measurement mode operation

(example of measuring the interval between the falling edge to next falling one)

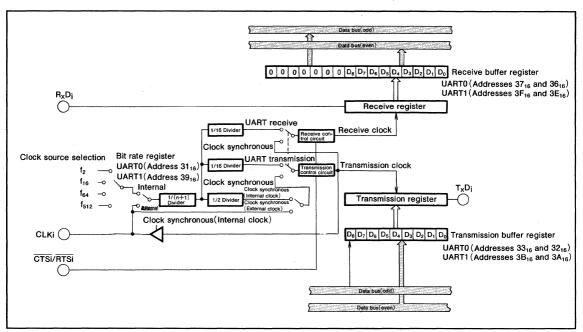
SERIAL I/O PORTS

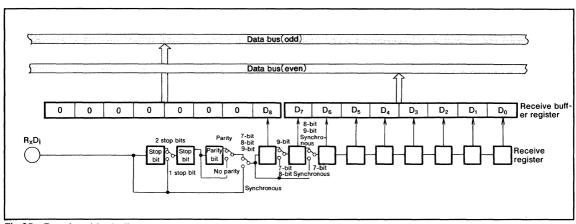
Two independent serial I/O ports are provided. Figure 33 shows a block diagram of the serial I/O ports. Bits 0, 1. and 2 of the UARTi (i=0, 1) Transmit/Receive mode register shown in Figure 34 are used to determine whether to use port P8 as parallel port, clock synchronous serial I/O port, or asynchronous (UART) serial I/O port using start and stop bits.

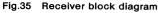
Figures 35 and 36 show connections of receiver/transmitter according to the mode.

Figure 37 shows the bit configuration of the UARTi transmit/ receive control register.

Each communication method is described below.




Fig.33 Serial I/O port block diagram


1 : Even parity Parity enable selection bit 0 : No parity 1 : With parity Sleep selection bit 0 : No sleep 1 : Sleep		7 6 5 4 3 2 1 0 UART0 Transmit/Receive mode register 30 ₁₆ UART1 Transmit/Receive mode register 38 ₁₆ Serial communication method selection bit 0 0 0 : Parallel port
--	--	---

configuration

16-BIT CMOS MICROCOMPUTER

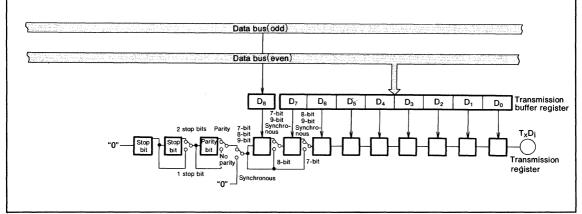
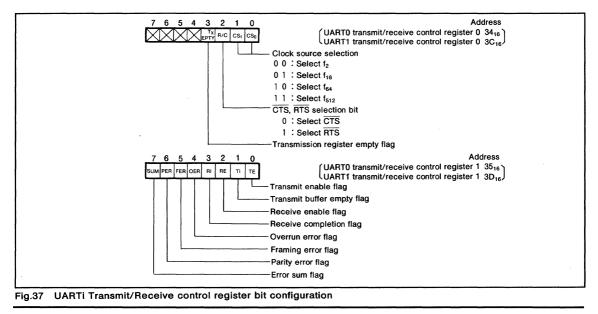



Fig.36 Transmitter block diagram

CLOCK SYNCHRONOUS SERIAL COMMUNICATION

A case where communication is performed between two clock synchronous serial I/O ports as shows in Figure 38 will be described. (The transmission side will be denoted by subscript j and the receiving side will be denoted by subscript k.)

Bit 0 of the UART_j transmit/receive mode register and UART_k transmit/receive mode register must be set to "1" and bits 1 and 2 must be "0". The length of the transmission data is fixed at 8 bits.

Bit 3 of the UART_j transmit/receive mode register of the clock sending side is cleared to "0" to select the internal clock. Bit 3 of the UART_k transmit/receive mode register of the clock receiving side is set to "1" to select the external clock. Bits 4, 5 and 6 are ignored in clock synchronous mode. Bit 7 must always be "0".

The clock source is selected by bit 0 (CS_0) and bit 1 (CS_1) of the clock sending side UART_j transmit/receive control register 0. As shown in Figure 33, the selected clock is divided by (n+1), then by 2, passed through a transmission control circuit, and output as transmission clock CLK_j. Therefore, when the selected clock is fi,

Bit Rate=fi/ $\{(n+1)\times 2\}$

On the clock receiving side, the CS_0 and CS_1 bits of the UART_k transmit/receive control register 0 are ignored because an external clock is selected.

The bit 2 of the clock sending side UART_j transmit/receive control register 0 is clear to "0" to select $\overline{\text{CTS}_j}$ input. The bit 2 of the clock receiving side is set to "1" to select $\overline{\text{RTS}_k}$ output. $\overline{\text{CTS}}$, and $\overline{\text{RTS}}$ signals are described later.

Transmission

Transmission is started when the bit 0 (TEj flag) of UARTj transmit/receive control register 1 is "1", bit 1 (TIj flag) of one is "0", and $\overline{\text{CTS}_j}$ input is "L". As shown in Figure 39, data is output from TxDj pin when transmission clock CLKj changes from "H" to "L". The data is output from the least significant bit.

The TIJ flag indicates whether the transmission buffer register is empty or not. It is cleared to "0" when data is written in the transmission buffer register and set to "1" when the contents of the transmission buffer register is transferred to the transmission register.

When the transmission register becomes empty after the contents has been transmitted, data is transferred automatically from the transmission buffer register to the transmission register if the next transmission start condition is satisfied. If the bit 2 of UARTj transmit/receive control register 0 is "1", $\overline{\text{CTS}}_{j}$ input is ignored and transmission start is controlled only by the TEj flag and Tlj flag. Once transmission has started, the TEj flag, Tlj flag, and $\overline{\text{CTS}}_{j}$ signals are ignored unit data transmission completes. Therefore, transmission is not interrupt when $\overline{\text{CTS}}_{j}$ input is changed to "H"

during transmission.

The transmission start condition indicated by TEj flag, Tlj flag, and $\overline{\text{CTS}_j}$ is checked while the T_{ENDj} signal shown in Figure 39 is "H". Therefore, data can be transmitted continuously if the next transmission data is written in the transmission buffer register and Tlj flag is cleared to "0" before the T_{ENDj} signal goes "H".

The bit 3 (TxEPTY_j flag) of UART_j transmit/receive control register 0 changes to "1" at the next cycle after the T_{ENDj} signal goes "H" and changes to "0" when transmission starts. Therefore, this flag can be used to determine whether data transmission has completed.

When the Tlj flag changes from "0" to "1", the interrupt request bit in the UART_j transmission interrupt control register is set to "1".

Receive

Receive starts when the bit 2 (RE_k flag) of UART_k transmit/receive control register 1 is set to "1".

The $\overline{RTS_k}$ output is "H" when the RE_k flag is "0" and goes "L" when the RE_k flag changed to "1". It goes back to "H" when receive starts. Therefore, the $\overline{RTS_k}$ output can be used to determine whether the receive register is ready to receive. It is ready when $\overline{RTS_k}$ output is "L".

The data from the RxDk pin is retrieved and the contents of the receive register is shifted by 1 bit each time the transmission clock CLK_i changes from "L" to "H". When an 8-bit data is received, the contents of the receive register is transferred to the receive buffer register and the bit 3 (RIk flag) of UARTk transmit/receive control register 1 is set to "1". In other words, the setting of the RIk flag indicates that the receive buffer register contains the received data. At this point, RTSk output goes "L" to indicate that the next data can be received. When the RIk. flag changes from "0" to "1", the interrupt request bit in the UARTk receive interrupt control register is set to "1". Bit 4 (OERk flag) of UARTk transmit/receive control register is set to "1" when the next data is transferred from the receive register to the receive buffer register while RIk flag is "1", and indicates that the next data was transferred to the receive register before the contents of the receive buffer register was read. RIk and OERk flags are cleared automatically to "0" when the loworder byte of the receive buffer register is read. The OERk flag is also cleared when the REk flag is cleared. Bit 5 (FERk flag), bit 6 (PERk flag), and bit 7 (SUMk flag) are ignored in clock synchronous mode.

As shown in Figure 33, with clock synchronous serial communication, data cannot be received unless the transmitter is operating because the receive clock is created from the transmission clock. Therefore, the transmitter must be operating even when there is no data to be sent from UART_k to UART_j.

16-BIT CMOS MICROCOMPUTER

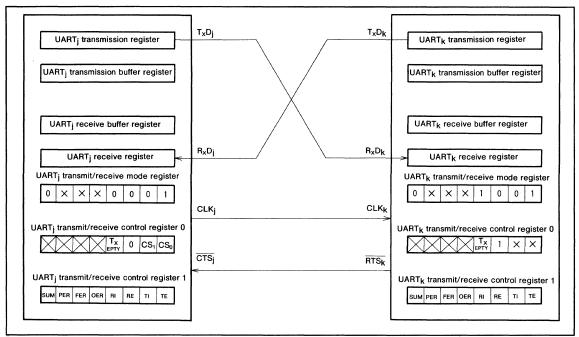


Fig.38 Clock synchronous serial communication

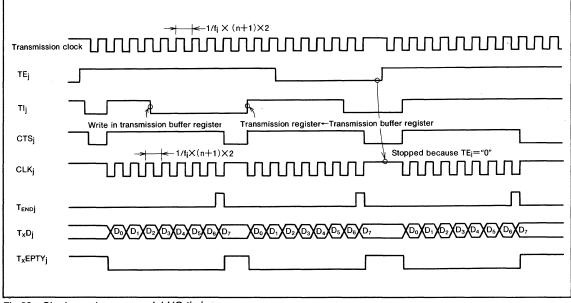


Fig.39 Clock synchronous serial I/O timing

ASYNCHRONOUS SERIAL COMMUNICATION

Asynchronous serial communication can be performed using 7-, 8-, or 9-bit length data. The operation is the same for all data lengths. The following is the description for 8-bit asynchronous communication.

With 8-bit asynchronous communication, the bit 0 of UARTi transmit/receive mode register is "1", the bit 1 is "0", and the bit 2 is "1".

Bit 3 is used to select an internal clock or an external clock. If bit 3 is "0", an internal clock is selected and if bit 3 is "1", then external clock is selected. If an internal clock is selected, the bit 0 (CS_0) and bit 1 (CS_1) of UARTi transmit/receive control register 0 are used to select the clock source. When an internal clock is selected for asynchronous serial communication, the CLK_j pin can be used as a

normal I/O pin.

The selected internal or external clock is divided by (n+1), then by 16, and passed through a control circuit to create the UART transmission clock or UART receive clock.

Therefore, the transmission speed can be changed by changing the contents n of the bit rate generator. If the selected clock is an internal clock fi or an external clock fext.

Bit Rate=(fi or f_{EXT})/ {(n+1)×16}

Bit 4 is the stop bit length selection bit to select 1 stop bit or 2 stop bits.

The bit 5 is a selection bit of odd parity or even parity. In the odd parity mode, the parity bit is adjusted so that the sum of the 1's in the data and parity bit is always odd.

In the even parity mode, the parity bit is adjusted so that the sum of the 1's in the data and parity bit is always even.

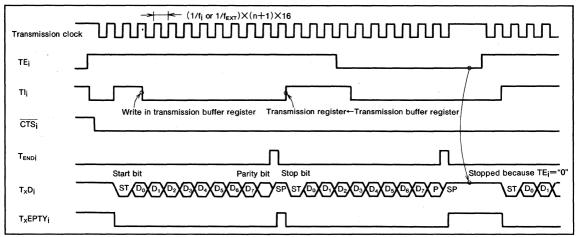


Fig.40 Transmit timing example when 8-bit asynchronous communication with parity and 1 stop bit is selected

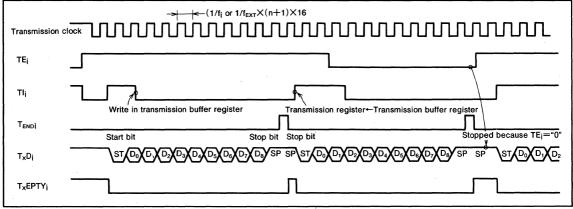


Fig.41 Transmit timing example when 9-bit asynchronous communication with no parity and 2 stop bits is selected

16-BIT CMOS MICROCOMPUTER

Bit 6 is parity bit selection bit which indicates whether to add parity bit or not.

Bits 4 to 6 should be set or reset according to the data format of the communicating devices.

Bit 7 is the sleep selection bit. The sleep mode is described later.

The UARTi transmit/receive control register 0 bit 2 is used to determine whether to use $\overline{CTS_i}$ input or $\overline{RTS_i}$ output.

 $\overline{\text{CTS}_i}$ input used if bit 2 is "0" and $\overline{\text{RTS}_i}$ output is used if bit 2 is "1".

If $\overline{\text{CTS}_i}$ input is selected, the user can control whether to stop or start transmission by external $\overline{\text{CTS}_i}$ input. $\overline{\text{RTS}_i}$ will be described later.

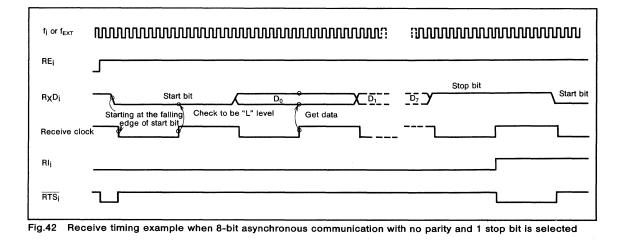
Transmission

Transmission is started when the bit 0 (TE_i flag) of UARTi transmit/receive control register 1 is "1", the bit 1 (TI_i flag) is "0", and $\overline{\text{CTS}_i}$ input is "L" if $\overline{\text{CTS}_i}$ input is selected. As shown in Figure 40 and 41, data is output from the TxD_i pin with the stop bit and parity bit specified by the bits 4 to 6 of UARTi transmit/receive mode register. The data is output from the least significant bit.

The TI_i flag indicates whether the transmission buffer is empty or not. It is cleared to "0" when data is written in the transmission buffer and set to "1" when the contents of the transmission buffer register is transferred to the transmission register.

When the transmission register becomes empty after the contents has been transmitted, data is transferred automatically from the transmission buffer register to the transmission register if the next transmission start condition is satisfied. Once transmission has started, the TE_i flag, TI_i flag, and $\overline{\text{CTS}_i}$ signal (if $\overline{\text{CTS}_i}$ input is selected) are ignored until data transmission is completed.

Therefore, transmission does not stop until it completes even if the TE_i flag is cleared during transmission.


The transmission start condition indicated by TE_i flag, TI_i flag, and $\overline{\text{CTS}_i}$ is checked while the T_{ENDi} signal shown in Figure 40 is "H". Therefore, data can be transmitted continuously if the next transmission data is written in the transmission buffer register and TI_i flag is cleared to 0 before the T_{ENDi} signal goes "H".

The bit 3 (TxEPTY_i flag) of UARTi transmit/receive control register 0 changes to "1" at the next cycle after the T_{ENDi} signal goes "H" and changes to "0" when transmission starts. Therefore, this flag can be used to determine whether data transmission is completed.

When the Tl_i flag changes from "0" to "1", the interrupt request bit in the UARTi transmission interrupt control register is set to "1".

Receive

Receive is enabled when the bit 2 (REi flag) of UARTi transmit/receive control register 1 is set. As shown in Figure 42, the frequency divider circuit at the receiving end begin to work when a start bit is arrived and the data is received.

16-BIT CMOS MICROCOMPUTER

If $\overline{\text{RTS}_i}$ output is selected by setting the bit 2 of UARTi transmit/receive control register 0 to "1", the $\overline{\text{RTS}_i}$ output is "H" when the RE_i flag is "0". When the RE_i flag changes to "1", the $\overline{\text{RTS}_i}$ output goes "L" to indicate receive ready and returns to "H" once receive has started. In other words, $\overline{\text{RTS}_i}$ output can be used to determine externally whether the receive register is ready to receive.

The entire transmission data bits are received when the start bit passes the final bit of the receive block shown in Figure 35. At this point, the contents of the receive register is transferred to the receive buffer register and the bit 3 of UARTi transmit/receive control register 1 is set. In other words, the Rl_i flag indicates that the receive buffer register contains data when it is set. If $\overline{\text{RTS}_i}$ output is selected, $\overline{\text{RTS}_i}$ output goes "L" to indicate that the register is ready to receive the next data.

The interrupt request bit in the UARTi receive interrupt control register is set when the RI_i flag changes from "0" to "1".

The bit 4 (OER_i flag) of UARTi transmission control register 1 is set when the next data is transferred from the receive register to the receive buffer register while the RI_i flag is "1". In other words when an overrun error occurs. If the OER_i flag is "1", it indicates that the next data has been transferred to the receive buffer register before the contents of the receive buffer register has been read. Bit 5 (FER_i flag) is set when the number of stop bits is less than required (framing error).

Bit 6 (PER; flag) is set when a parity error occurs.

Bit 7 (SUM_i flag) is set when either the OER_i flag, FER_i flag, or the PER_i flag is set. Therefore, the SUM_i flag can be used to determine whether there is an error.

The setting of the RI_i flag, OER_i flag, FER_i flag, and the PER_i flag is performed while transferring the contents of the receive register to the receive buffer register. The RI_i, OER_i, FER_i, and SUM_i flags are cleared when the low order byte of the receive buffer register is read or when the RE_i flag is cleared.

Sleep mode

The sleep mode is used to communicate only between certain microcomputers when multiple microcomputers are connected through serial I/O.

The sleep mode is entered when the bit 7 of UARTi transmit/receive mode register is set.

The operation of the sleep mode for an 8-bit asynchronous communication is described below.

When sleep mode is selected, the contents of the receive register is not transferred to the receive buffer register if bit 7 (bit 6 if 7-bit asynchronous communication and bit 8 if 9-bit asynchronous communication) of the received data is "0". Also the RI_i, OER_i, FER_i, and the SUM_i flag are unchanged. Therefore, the interrupt request bit of the UARTi receive interrupt control register is also unchanged.

Normal receive operation takes place when bit 7 of the received data is "1".

The following is an example of how the sleep mode can be used.

The main microcomputer first sends data with bit 7 set to "1" and bits 0 to 6 set to the address of the subordinate microcomputer which wants to communicate with. Then all subordinate microcomputers receive the same data. Each subordinate microcomputer checks the received data with software, clears the sleep bit if bits 0 to 6 are its own address and sets the sleep bit if not. Next the main microcomputer sends data with bit 7 cleared. Then the microcomputer with the sleep bit cleared will receive the data, but the microcomputer with the sleep bit set will not. In this way, the main microcomputer is able to communicate with only the designated microcomputer.

16-BIT CMOS MICROCOMPUTER

A-D CONVERTER

The A-D converter is an 8-bit successive approximation converter.

Figure 43 shows a block diagram of the A-D converter and Figure 44 shows the bit configuration of the A-D control register. The frequency of the A-D converter operating clock ϕ_{AD} is selected by the bit 7 of the A-D control register. When bit 7 is "0", ϕ_{AD} is the clock frequency divided by 8. That is $\phi_{AD} = f(X_{IN})/8$. When bit 7 is "1", ϕ_{AD} is the clock frequency divided by 4 and ϕ_{AD} is= $f(X_{IN})/4$. The ϕ_{AD} during A-D conversion must be 250KHz minimum because the comparator consists of a capacity coupling amplifier.

The operating mode is selected by the bits 3 and 4 of A-D control register. The available operating modes are one-shot, repeat, single sweep, and repeat sweep.

The bit of data direction register bit corresponding to the A-D converter pin must be "0" (input mode) because the analog input port is shared with port P7.

The operation of each mode is described below.

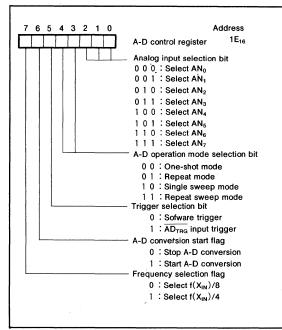
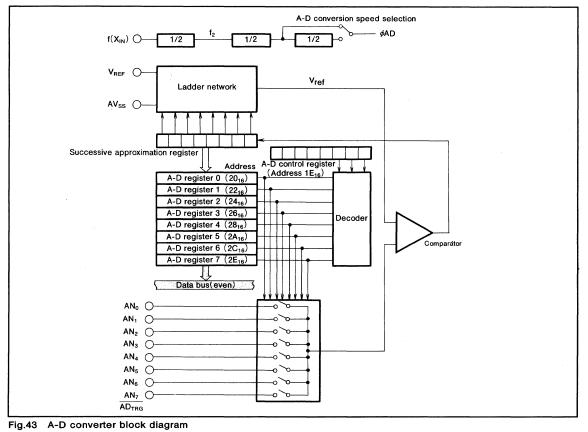



Fig.44 A-D control register bit configuration

16-BIT CMOS MICROCOMPUTER

(1) One-shot mode [00]

The A-D conversion pins are selected with the bit 0 to 2 of A-D control register. A-D conversion can be started by a. software trigger or by an external trigger.

A software trigger is selected when the bit 5 of A-D control register is "0" and an external trigger is selected when it is "1".

When a software trigger is selected, A-D conversion is started when bit 6 (A-D conversion start flag) is set. A-D conversion ends after 57 ϕ_{AD} cycles and an interrupt request bit is set in the A-D conversion interrupt control register. At the same time, A-D control register bit 6 (A-D conversion start flag) is cleared and A-D conversion stops. The result of A-D conversion is stored in the A-D register corresponding to the selected pin.

If an external trigger is selected, A-D conversion starts when the A-D conversion start flag is "1" and the $\overline{AD_{TRG}}$ input changes from "H" to "L". In this case, the pins that can be used for A-D conversion are AN_0 to AN_6 because the $\overline{AD_{TRG}}$ pin is shared with the analog voltage input pin AN7. The operation is the same as with software trigger except that the A-D conversion start flag is not cleared after A-D conversion and a retrigger can be available during A-D conversion.

(2) Repeat mode [01]

The operation of this mode is the same as the operation of one-shot mode except that when A-D conversion of the selected pin is complete and the result is stored in the A-D register, conversion dose not stop, but is repeated. Also, no interrupt request is issued in this mode. Furthermore, if software trigger is selected, the A-D conversion start flag is not cleared. The contents of the A-D register can be read at any time.

(3) Single sweep mode [10]

In the sweep mode, the number of analog input pins to be swept can be selected. Analog input pins are selected by bits 1 and 0 of the A-D sweep pin selection register (address $1F_{16}$) shown in Figure 45. Two pins, four pins, six pins, or eight pins can be selected as analog input pins, depending on the contents of these bits.

A-D conversion is performed only for selected input pins. After A-D conversion is performed for input of AN_0 pin, the conversion result is stored in A-D register 0, and in the same way, A-D conversion is performed for selected pins one after another. After A-D conversion is performed for all selected pins, the sweep is stopped.

A-D conversion can be started with a software trigger or with an external trigger input. A software trigger is selected when bit 5 is "0" and an external trigger is selected when it is "1".

When a software trigger is selected, A-D conversion is started when A-D control register bit 6 (A-D conversion

start flag) is set. When A-D conversion of all selected pins end, an interrupt bit is set In the A-D conversion interrupt control register. At the same time, A-D control register bit 6 (A-D conversion start flag) is cleared and A-D conversion stops.

When an external trigger is selected, A-D conversion starts when the A-D conversion start flag is "1" and the $\overline{AD_{TRG}}$ input changes from "H" to "L". In this case, the A-D conversion result of the trigger input itself is stored in the A-D register 7 because the $\overline{AD_{TRG}}$ pin is shared with AN₇ pin.

The operation is the same as done by software trigger except that the A-D conversion start flag is not cleared after A-D conversion and a retrigger can be available during A-D conversion.

(4) Repeat sweep mode [11]

The difference with the single sweep mode is that A-D conversion dose not stop after converting from the AN_0 pin to the selected pins, but repeats again from the AN_0 pin. The repeat is performed among the selected pins. Also, no interrupt request is generated. Furthermore, if software trigger is selected, the A-D conversion start flag is not cleared. The A-D register can be read at any time.

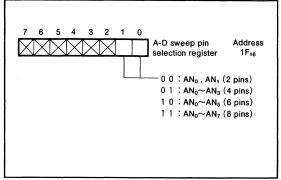


Fig.45 A-D sweep pin selection register configuration

16-BIT CMOS MICROCOMPUTER

DMA CONTROLLER

The DMA (direct memory access) controller is a 4-channel controller that is provided to carry out data transfer from memory to memory, memory to I/O, or I/O to memory at high speed without using the CPU.

Figure 46 shows the DMA controller block diagram. Figure 47 shows the DMA control related register memory map. Figure 48 shows the DMAC control register bit configuration.

The DMAC control register consists of 16 bits. Bit 0 is a priority selection bit and bit 1 is a terminal count TC pin validity bit. Bits 4 through 7 are DMA request flags. These bits can be read to determine whether DMA requests occur on individual channels. Bits 8 through 11 are software DMA request bits, and used to be occured the DMA request by software. Bits 12 through 15 are DMA permission bits. The DMA request is accepted only when the DMA permission bits are "1". All these bits default to 0 upon resetting.

Figure 49 shows the DMAi control register (i=0 to 3) bit configuration. Each channel of the DMAi control register consists of 8 bits. Bits 0 through 3 are used for DMA request source selection.

Bit 4 determines whether the edge or level sensing function is to be used for selecting the source of the request from the DMA request input DMAREQi pin. Bit 5 is a DMA acknowledge output DMAACKi pin validity bit. When this bit is "0", the DMAACKi pin is invalid. When the bit is "1", on the other hand, the pin is valid.

Figure 50 shows the DMAi mode register bit configuration. Each channel of the DMAi mode register (i=0 to 3) consists of 16 bits. Further details are given below.

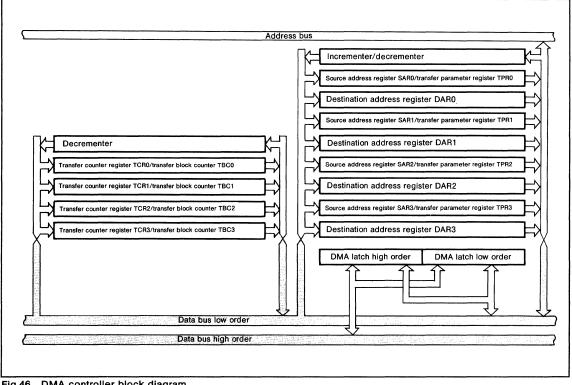


Fig.46 DMA controller block diagram

16-BIT CMOS MICROCOMPUTER

000068	DMAC control register L		
000069	DMAC control register H		
		Address(Hexadecimal notation)	
001FC0	Source address register 0 L	001FE0 Source address register 2 L	
001FC1	Source address register 0 M	001FE1 Source address register 2 M	1
001FC2	Source address register 0 H	001FE2 Source address register 2 H	1
001FC3		001FE3	
001FC4	Destination address register 0 L	001FE4 Destination address register 2	2 L
001FC5	Destination address register 0 M	001FE5 Destination address register 2	2 M
001FC6	Destination address register 0 H	001FE6 Destination address register 2	2 H
001FC7		001FE7	
001FC8	Transfer counter register 0 L	001FE8 Transfer counter register 2	_
001FC9	Transfer counter register 0 M	001FE9 Transfer counter register 2	v
001FCA	Transfer counter register 0 H	001FEA Transfer counter register 2	1
001FCB		001FEB	
001FCC	DMA0 mode register L	001FEC DMA2 mode register L	
001FCD	DMA0 mode register H	001FED DMA2 mode register H	
001FCE	DMA0 control register	001FEE DMA2 control register	
001FCF		001FEF	
001FD0	Source address register 1 L	001FF0 Source address register 3 L	
001FD1	Source address register 1 M	001FF1 Source address register 3 M	1
001FD2	Source address register 1 H	001FF2 Source address register 3	1
001FD3		001FF3	
001FD4	Destination address register 1 L	001FF4 Destination address register	3 L
001FD5	Destination address register 1 M	001FF5 Destination address register	3 M
001FD6	Destination address register 1 H	001FF6 Destination address register 3	3 Н
001FD7		001FF7	
001FD8	Transfer counter register 1 L	001FF8 Transfer counter register 3	L
001FD9	Transfer counter register 1 M	001FF9 Transfer counter register 3	м
001FDA	Transfer counter register 1 H	001FFA Transfer counter register 3	н
001FDB		001FFB	
001FDG	DMA1 mode register L	001FFC DMA3 mode register L	
001FDD	DMA1 mode register H	001FFD DMA3 mode register H	
001FDE	DMA1 control register	001FFE DMA3 control register	
001FDF		001FFF	

Fig.47 DMA controller related register map

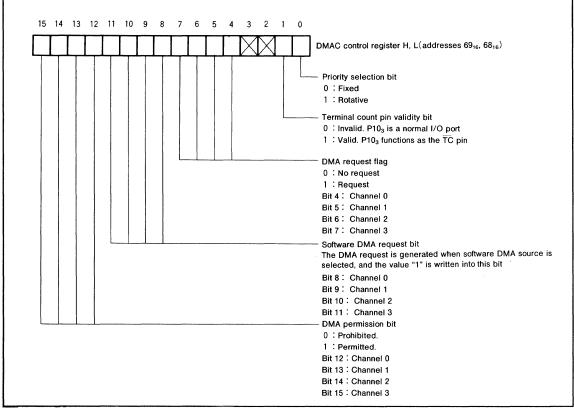
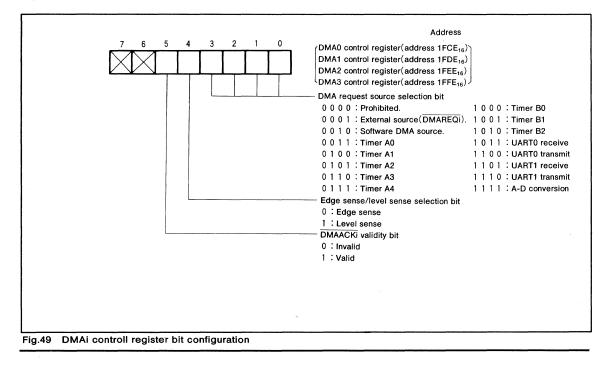



Fig.48 DMAC controll register bit configuration

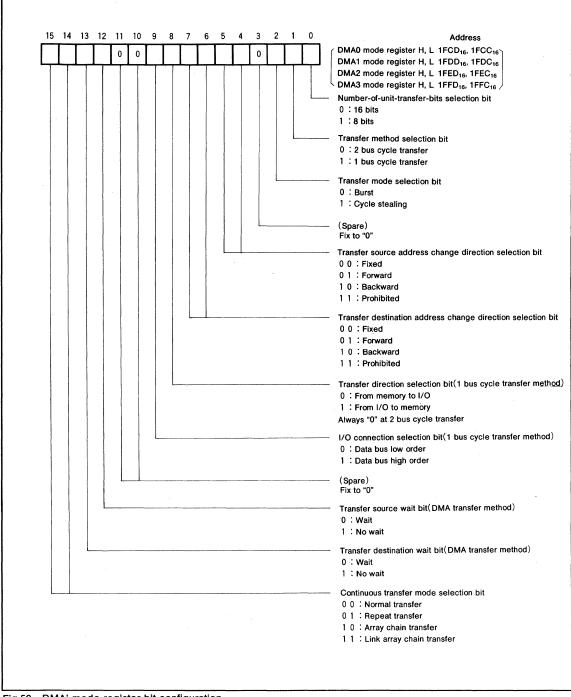


Fig.50 DMAi mode register bit configuration

16-BIT CMOS MICROCOMPUTER

Pin descriptions

The $\overline{\text{DMAREQ}}$, $\overline{\text{DMAACK}}$, and $\overline{\text{TC}}$ pins are used for DMA transfer.

DMAACKi (i=0 to 3) is a DMA acknowledge output pin, and port P9₀, P9₂, P9₄ and P9₆ share with DMAACK0, DMAACK1, DMAACK2 and DMAACK3 pins respectively. When bit 5 (DMAACKi validity bit) of the DMAi control register of each channel is set to "1", DMAACKi serves as the dedicated DMAACKi signal output pins. During DMA transfer, the operating channel acknowledge signal output is generated no matter whether the 1 bus transfer or 2 bus transfer method is employed. When the acknowledge signal is not to be used, set the DMAACKi validity bit to "0" so that DMAACKi can be used as the I/O pin.

 \overline{TC} is a terminal count pin and \overline{TC} pin shares with port P10₃. When the value "1" is written at bit 1 of the DMA control register, the \overline{TC} pin takes effect. At this time, the \overline{TC} pin serves as the N-channel open drain output terminal. When the transfer counter register or transfer block counter value is "0", the \overline{TC} pin generates a one-cycle ϕ "L" level output.

When the \overline{TC} pin validity bit is "1", any ongoing channel DMA transfer can be stopped by changing the level of the input from the \overline{TC} pin from "H" to "L".

Data transfer method

Two different data transfer method are used: two bus cycle transfer and one bus cycle transfer. The two bus cycle transfer method is effective for memory-to-memory data transfer, whereas the one bus cycle transfer method is effective for memory-to-I/O or I/O to memory data transfer. Two transfer method are detailed below.

(1) Two bus cycle transfer

When bit 1 of the DMAi mode register shown in Figure 50 is set to "0", the two bus cycle transfer method is selected. This method accomplishes one unit of transfer by performing one reading bus cycle and one writing bus cycle. One unit of transfer refers to the number of bits that can be transferred by one DMA transfer operation. It is determined by bit 0 of the DMAi mode register. When the bit is set to "0", one transfer unit consists of 16 bits (2 bytes). When the bit is "1", on the other hand, one transfer unit consists of 8 bits (1 byte).

At two bus cycle transfer, bit 8 of DMAi mode register must

be "0".

Figure 51 shows an example of two bus cycle transfer. In the reading cycle, the transfer source (memory 1) address is output to the address bus, its address data is read in one-transfer units, and stored in the DMA controller DMA data latch (16-bit). In the writing cycle, on the other hand, the transfer destination address is output to the address bus and the data stored in the DMA data latch is written at the transfer destination (memory 2) address. If the read/ write operation is not completed by one session, it is divided into two sessions (for details see under Bus cycle at DMA transfer).

When two bus cycle transfer is effected in 16-bit units with an external bus width of 16 bits employed, the following operations cannot be performed.

1. The transfer source and destination are DRAM, and an odd-numbered address designated as the first address for the backward transfer source address change direction.

2. The transfer destination is DRAM, and an odd-numbered address designated as the first address for the backward transfer destination address change direction.

(2) One bus cycle transfer

When bit 1 of the DMAi mode register is set to "1", the one bus cycle transfer method is selected.

When data transfer is to be made between I/O and memory, this system reads from memory at the same time it writes into I/O, or vice versa, to carry out data transfer at high speed. Bit 8 of the DMAi mode register determines whether one bus cycle transfer is to be made from memory to I/O or from I/O to memory. When this bit is set to "0", data transfer is made from memory to I/O. When the bit is "1", on the other hand, data transfer is made from I/O to memory.

Figures 52 through 55 show examples of one bus cycle transfer. Figure 52 shows a memory-to-I/O DMA transfer in cases where the transfer is effected in 16-bit units with an external bus width of 16 bits employed. The memory (transfer source) address is output to the address bus. The R/W signal is "H", and the BLE and BHE signals are "L". The read operation is performed at both even- and odd-numbered addresses. This ensures that the memory data is read into the data bus high-order area ($D_8 \sim D_{15}$) and low-order area ($D_0 \sim D_7$). At the same time, chip selection is made in accordance with the acknowledge signal from the DMAACKi pin, and the data read from memory is directly acquired when the \overline{E} signal level rises. In this manner, data is transferred from memory to I/O in one bus cycle.

In data transfer from I/O to memory, chip selection is made according to the acknowledge signal from the $\overline{DMAACKi}$ pin and data is read into the data bus from I/O. At the same time, the memory (transfer destination) address is output to the address bus, and the R/\overline{W} signal goes Low to write data into memory. To receive the one bus cycle transfer

16-BIT CMOS MICROCOMPUTER

service for DMA purposes, however, the external circuitry must be formed in such a manner that the read and write signal inputs for I/O are the reversal of the M37720S1AFP's read and write signal outputs. Figure 53 shows the data transfer data flow of Figure 52.

When the address changes in forward direction, data 1 and data 2 are transferred to the I/O's 8 low-order bits and 8 high-order bits, respectively, in the first cycle of DMA transfer. In the next cycle of DMA transfer, data 3 and data 4 are transferred to the I/O's 8 low-order bits and 8 high-order bits, respectively. In this manner, the memory data are sequentially transferred to the I/O.

If the address changes in backward direction, on the other hand, data 10 and data 9 are transferred to the I/O's 8 high-order bits and 8 low-order bits, respectively, in the first DMA transfer cycle.

When one bus cycle transfer is effected in 16-bit units with an external bus width of 16 bits employed, as shown in Figure 52, 16 bits of data are simultaneously read into the data bus. Therefore, determine the transfer start address so that transfer begins with an even-numbered address when the address change mode is forward or that transfer begins with an odd-numbered address when the address change mode is backward.

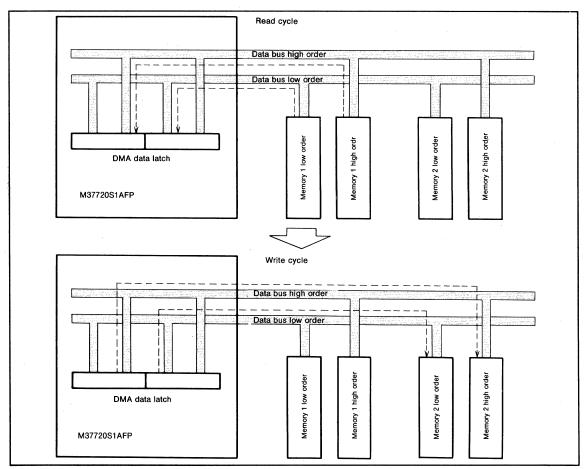
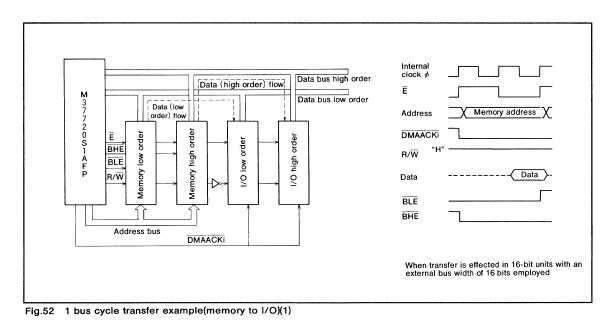
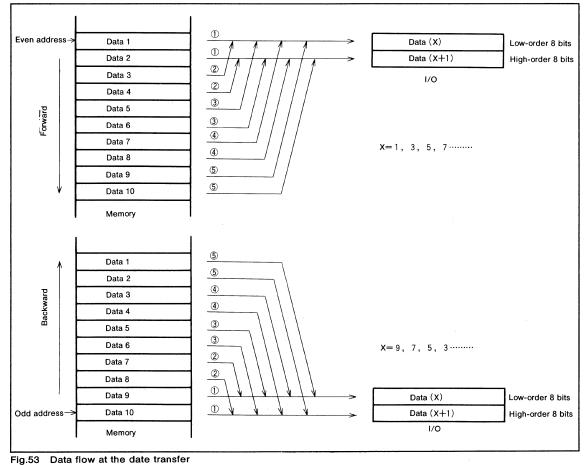




Fig.51 Two bus cycle transfer example

16-BIT CMOS MICROCOMPUTER

Figures 54 and 55 indicate the cases where transfer is made in 8-bit units with an external bus width of 16 bits employed.

Figure 54 shows the cases where an external bus width of 16 bits is employed with the I/O connected to the 8 loworder bits only. Connect the odd-numbered address memories to data bus high-order area $(D_8 \sim D_{15})$ and the even-numbered address memories to data bus low-order area $(D_0 \sim D_7)$. When data is transferred from an oddnumbered memory address to I/O, the data is read from the memory high-order to the data bus high-order. The read data first goes into the chip, is copied by the DMA controller to the data bus low-order, and then output outside. Therefore, the data output to the data bus low-order is the same as that for the high-order. For the I/O, chip selection is made according to the DMAACKi signal so that the data output to the data bus low-order is acquired. When data is transferred from an even-numbered address memory to I/O, the data read from the memory low-order is directly acquired by the I/O. At this time, M37720S1AFP data bus pins D₀ to D₇ are floating.

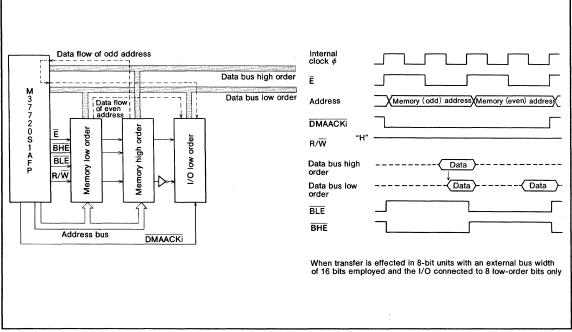
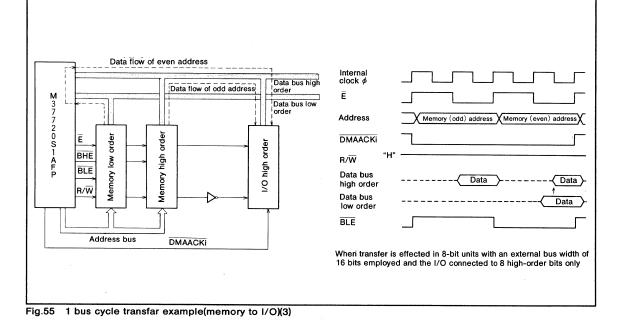


Fig.54 1 bus cycle transfer example(memoly to I/O)(2)

16-BIT CMOS MICROCOMPUTER


Figure 55 shows the case where the I/O is connected to the 8 high-order bits only. When data is transferred from an odd-numbered memory address to I/O, the data read from the memory high-order is directly acquired by the I/O. At this time, M37720S1FP data bus pins D_8 through D_{15} are floating. When data is transferred from an even-numbered memory address to I/O, the data is read from the memory low-order to the data bus low-order. The read data first goes into the chip, is copied by the DMA controller to the data bus high-order, and then output outside. The I/O acquires that data. In one bus cycle transfer, data bus pin (D₀ $\sim D_7$, $D_8 \sim D_{15}$) I/O changeover is automatically effected to initiate DMA transfer no matter whether the 8-bit I/O is connected to the low-or high-order of the data bus. In the above data copy between the chip's internal data buses, there is limitation on the transfer rate.

When one bus cycle transfer is effected with an external bus width of 8 bit, I/O connection selection bit must be "0". When one bus cycle transfer is effected in 16-bit units with an external bus width of 16 bits employed, the following operation cannot be performed.

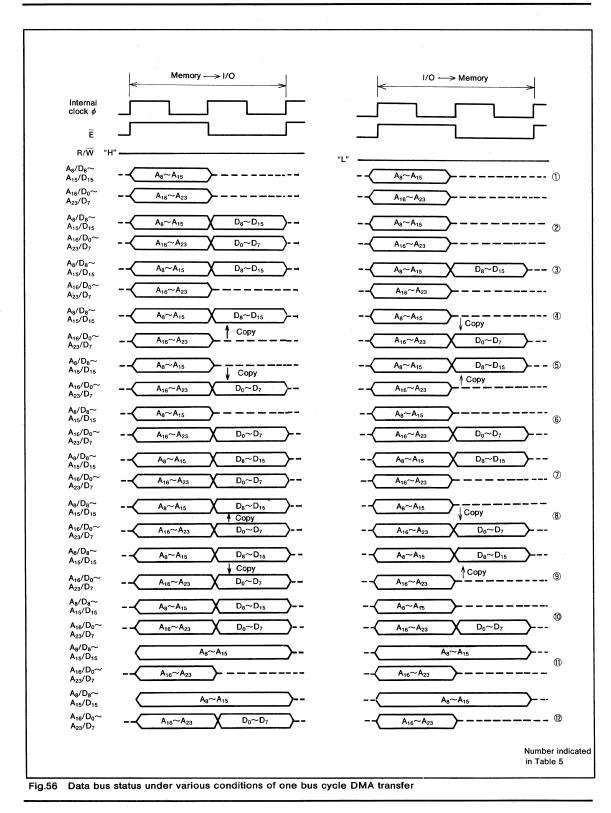

1. The object memory is DRAM, and an odd-numbered address designated as the first address for the backward transfer address change direction. Figure 56 shows the data bus status when one bus cycle transfer is made under the conditions indicated in Table 5.

Table 5. Data bus conditions for one bus cycle DMA transfer

Number		External	Transfer	BLE	BHE	I/O
Number	Memory	bus width	unit	BLE	BHE	position
1	External	16-bit	16-bit	0	0	Upper/Lower
2	Internal	16-bit	16-bit	0	0	Upper/Lower
3	External	16-bit	8-bit	0	1	Lower
4	External	16-bit	8-bit	0	1	Upper
5	External	16-bit	8-bit	1	0	Lower
6	External	16-bit	8-bit	1	0	Upper
\bigcirc	Internal	16-bit	8-bit	0	1	Lower
8	Internal	16-bit	8-bit	0	1	Upper
9	Internal	16-bit	8-bit	1	0	Lower
10	Internal	16-bit	8-bit	1	0	Upper
1	External	8-bit	8-bit	-	-	Lower
12	Internal	8-bit	8-bit			Lower

16-BIT CMOS MICROCOMPUTER

DMA request sources

One out of fifteen DMA request sources can be selected for each channel. There are a total of fifteen DMA request sources. The internal DMA request sources are the A-D conversion, UART0 transmit/receive, UART1 transmit/receive, timer A4, timer A3, timer A2, timer A1, timer A0, timer B2, timer B1, timer B0 and the software DMA source by programs. The external DMA request source is one associated with DMAREQi pin input. For DMA request source selection, use the DMAi control register DMAi request source selection bits (bits 0 through 3) as shown in Figure 49. Table 6 indicates the contents of the bits and DMA request sources. The request timing is the same as that for interrupt.

When the software DMA source is selected with the DMA request source selection bits, the DMA request flag is set to "1" by writing the value "1" for the DMAC control register software DMA request bits (bits 8 through 11). When the DMA request flag is "1", the software DMA request bits are automatically cleared. When the external source is selected with the DMA request source selection bits, the input from the DMAREQi pin sets the DMA request flag to "1". The DMA transfer request will not be accepted until both the DMAC control register DMA permission bit and DMA request flag are "1". Therefore, if the DMA permission bit is "0" while the DMA request flag is "1", the DMA request will not be accepted. Note that DMA permission bit is cleared to "0" upon resetting. Therefore, after DMA transfer parameter and other data setup, set to "1" the DMA permission bit of a DMA channel to be rendered valid. This assures that the transfer request bit of that channel takes effect, making is possible to effect DMA transfer.

 Table 6.
 Relationship between DMA request source selection bits (bits 3 to 0) and DMA request sources

b3	b2	b1	b0	Cause
0	0	0	0	Prohibited
0	0	0	1	External source (DMAREQi)
0	0	1	0	Software DMA source
0	0	1	1	Timer A0
0	1	0	0	Timer A1
0	1	0	1	Timer A2
0	1	1	0	Timer A3
0	1	1	1	Timer A4
1	0	0	0	Timer B0
1	0	0	1	Timer B1
1	0	1	0	Timer B2
1	0	1	1	UART0 receive
1	1	0	0	UART0 transmit
1	1	0	1	UART1 receive
1	1	1	0	UART1 transmit
1	1	1	1	A-D conversion

Transfer mode

Two DMA transfer modes are available: burst transfer mode and cycle steal transfer mode. Mode selection is made variously for all channeles, using bit 2 of the DMAi mode register. When this bit is set to "0", the burst transfer mode is selected. This mode is automatically selected upon resetting.

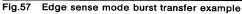
(1) Burst transfer mode

When a DMA request is request is received from a certain channel in the burst transfer mode, the DMA request from another channel will not be accepted until the DMA transfer on the former channel is completed. In the burst transfer mode, either the edge sense or level sense mode can be selected only when the input from the DMAREQi pin (external source) is chosen as the request source.

When DMAi control register bit 4 is set to "0", the edge sense mode is selected. The edge sense mode is automatically selected upon resetting. In the edge sense mode, the DMA request flag is set to "1" when the input from the DMAREQi pin falls. In the burst transfer edge sense mode, the DMA request flag is cleared to "0" when any of the following conditions is met.

- 1. The channel i DMA permission bit is cleared to "0" (forced termination of transfer).
- 2. The channel i DMA request flag is cleared to "0".
- 3. Channel i DMA transfer is wholly terminated.
- 4. The "L" level is entered to the \overline{TC} pin during channel i transfer execution (forced termination of transfer).

Figure 57 shows an example of edge sense mode burst transfer. In this example, the DMAREQi pin input (external source) is chosen as the DMA request source. When the DMAREQi pin input changes from the "H" to "L" level during CPU operation, the DMA request flag is set to "1" and the DMA controller acquires the right of bus use and initiates transfer. From high to low, the bus use priority is for DRAM refresh, HOLD, DMA controller, and CPU. Therefore, if the request is made by the DRAM refresh, which has a higher priority than the DMA controller, the DMA controller halts any ongoing transfer operation at the end of the current transfer cycle and transfers the bus use right to the DRAM controller as shown in Figure 57. Upon getting the bus use right, the DRAM controller generates the refresh cycle. When refreshing is terminated, the DMA controller resumes the execution of the interrupted DMA transfer at the point of interruption. Once a DMA request is received in the burst transfer mode, no request from another channel is accepted unless DMA transfer is entirely terminated or the transfer operation is brought to a forced stop. Therefore, even when the request flag of channel 0, which has a high priority, is set to "1" in the middle of transfer as shown in Figure 57, such a request will not be accepted (the priority is explained in the next section). When channel 1 DMA transfer is completed, the bus use right is once trans-



16-BIT CMOS MICROCOMPUTER

ferred to the CPU, and the DMA transfer request from channel 0 is later accepted at the end of the current bus cycle.

When bit 4 of the DMAi control register is set to "1", the level sense mode is selected. The level sense mode can only be used for the DMA request from the $\overline{\text{DMAREQi}}$ pin. When selecting other sources, be sure to select the edge sense mode.

	· · · · · · · · · · · · · · · · · · ·
DRAM refresh	·
HOLD	Whole DMA transfer
DMA controller	
CPU	
DMAREQ1	
DMA1 request fl	flag
DMAREQ0	
DMA0 request f	
Refresh request	st

16-BIT CMOS MICROCOMPUTER

In the level sence mode, the DMAi request flag is set to "1" to initiate DMA transfer only while the $\overrightarrow{\text{DMAREQi}}$ pin input is "L". If the $\overrightarrow{\text{DMAREQi}}$ pin input level returns to "H" in the middle of transfer, the DMA operation is interrupted at the end of the current transfer cycle or next transfer cycle so that the bus use right is returned to the CPU. At this time, the DMA permission bit is not cleared. When the $\overrightarrow{\text{DMAREQi}}$ pin input goes Low, the transfer operation is resumed at the address subsequent to the point of interruption. In the level sense mode, the DMA request flag varies only with the level of the input from the $\overrightarrow{\text{DMAREQi}}$ pin. Therefore, while the $\overrightarrow{\text{DMAREQi}}$ pin input goes I is not level is Low, the DMA request flag remains to be "1" even if transfer is completed.

Figure 58 shows an example of level sense mode burst transfer. When the channel 1 DMAREQi pin input level changes from "H" to "L" during CPU operation, the DMA request flag is set to "1" so that the DMA controller acquires the bus use right and initiates transfer. When the

DMAREQi pin input returns to the "H" level, the DMA1 request flag is cleared. This causes the DMA transfer operation to be interrupted and returns the bus use right to the CPU. When the DMAREQ1 pin input is returned to the "L" level again and the DMA1 request flag set to "1", DMA transfer is resumed at the point of interruption. As with the edge sense mode, no transfer request from a different channel is accepted while DMA transfer is executed for a certain channel. For instance, if the channel 1 request flag is set to "0" and the request flag of channel 0, which has a higher priority, is set to "1", the new request will not be accepted. When channel 1 DMA transfer is wholly terminated, the DMA permission bit is set to "0" so that the bus use right is transfered to the CPU. The DMA transfer request from channel 0 is then accepted at the end of a bus cvcle.

DRAM refresh	[]
HOLD	LWhole DMA transfer
DMA controlle	
CPU	
DMAREQ1	
DMA1 reques	t flag
DMAREQ0	
DMA0 reques	t flag
Refresh reque	

Fig.58 Level sense mode burst transfer example

16-BIT CMOS MICROCOMPUTER

(2) Cycle steal transfer mode

When bit 2 of the DMAi mode register is set to "1", the cycle steal transfer mode is selected. In the cycle steal transfer mode, be sure to select the edge sense mode.

When the DMA request occurs in the cycle steal transfer mode, the DMA request flag is set to "1" as in the burst transfer mode. When the DMA request from a channel is accepted, DMA transfer starts. However, the DMA request flag is automatically cleared at the beginning of the first DMA transfer cycle. Therefore, if there is no channel DMA request at the end of one-unit transfer, the DMA controller returns the bus use right to the CPU. If there is a DMA request from any channel, the DMA controller continues to use the bus and initiates DMA transfer for the channel. In the cycle steal transfer mode, the priorities of the channels are considered at all times to assure that the DMA request from a channel having the highest priority is accepted to initiate DMA transfer execution. Transfer is effected in one transfer unit segments. However, the DMA permission bit will not be cleared even if the DMA request flag is cleared. Therefore, when the DMA request flag is set to "1", transfer is resumed at the point of interruption. When the transfer counter value is "0" in normal transfer, or both of the transfer counter and transfer block counter value is "0" in array chain transfer, the DMA permission bit is cleared to terminate the whole DMA transfer operation.

Figure 59 shows an example of cycle steal transfer. When the DMAREQi pin input changes from "H" to "L", the DMA1 request flag is set to "1" and the DMA controller acquires the bus use right to initiate DMA transfer. The DMA1 request flag is cleared when the channel 1 transfer cycle starts. Therefore, if there is no DMA transfer request from the other channels, the DMA controller returns the bus use right to the CPU at the end of one transfer cycle. In the example showed in Figure 59, however, DMA0 transfer cycle execution continues because the channel 0 request flag is set to "1". When the DMA0 transfer cycle is terminated, the DMA request flags of all channels are set to "0" so that the DMA controller returns the bus use right to the CPU. When the DMA1 request flag is set to "1", only one cycle of transfer operation is performed. Even if the DMA1 request flag is cleared at this time, the DMA1 request flag is set to "1" again to effect continued transfer as long as the DMAREQi pin input goes Low before the end of the next transfer cycle. In cycle steal transfer, the priorities of individual channels are examined at the end of each transfer cycle. Therefore, if the request is sent from channel 0, which has a higher priority than channel 1, channel 0 transfer is executed first. Further, if the refresh request is sent from the DRAM controller, such a request for bus use takes precedence as it has a high priority.

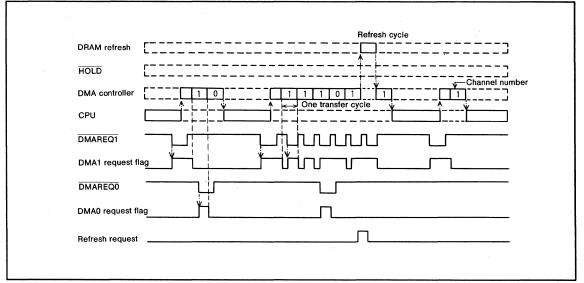
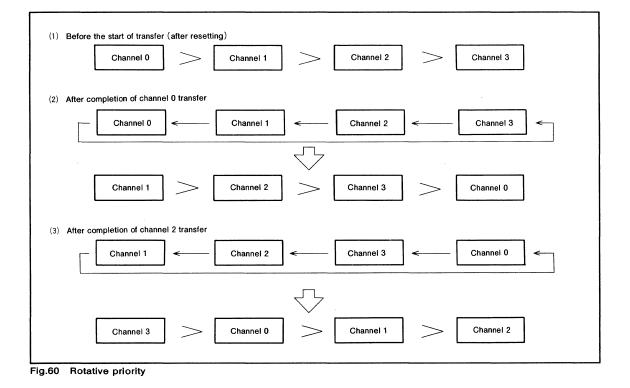
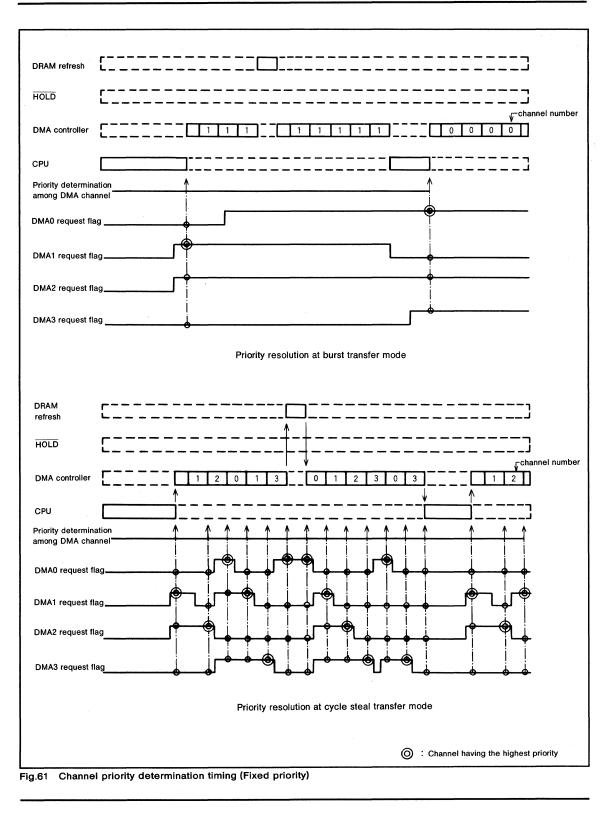


Fig.59 Cycle steal transfer example


16-BIT CMOS MICROCOMPUTER

Priority


Priorities are assigned to all DMA channels. Either the fixed or rotative priority can be selected. When bit 0 (priority selection bit) of the DMAC control register is set to "0", the fixed priority is selected. Note that the fixed priority is automatically chosen upon resetting. In the fixed priority, the channels are given fixed priorities and DMA transfer is executed in the order of priority. From high to low, the priorities are assigned to channels 0, 1, 2, and 3. As indicated in Figure 61, the priorities are checked when the first DMA request is received in the burst transfer mode or at each cycle end in the cycle steal transfer mode.

When bit 0 of the DMAC control register is set to "1", the

rotative priority is used. From high to low, the initial priorities are assigned to channels 0, 1, 2, and 3 as is the case with the fixed priority. When the DMA transfer for one channel is normally terminated with the rotative priority employed, the priorities are rotated in such a manner that the channel, for which transfer has just been completed, has the lowest priority. For example, when channel 0 transfer is normally terminated as shown in Figure 60, the priorities are rotated upon completion of transfer so that the new priorities are, in decreasing order, channel 1, channel 2, channel 3, and channel 0. The priorities remain unchanged when DMA transfer is forcibly terminated by \overline{TC} pin input or DMA permission bit clearing.

16-BIT CMOS MICROCOMPUTER

Transfer address change direction

The address change direction in DMA transfer can be designated independently for the transfer source and destination. Choices are "forward", "backward", and "fixed". When the forward direction is chosen, the address increments. When the backward direction is selected, the address decrements. When the fixed direction is selected, the address is fixed(2 bytes when one transfer unit consists of 16 bits or 1 byte when one transfer unit consists of 8 bits) and does not change. Use bits 4 and 5 of the DMAi mode register shown in Figure 50 to specify the transfer address change direction for the source. For the destination, use bits 6 and 7.

Figure 62 shows an example transfer address change mode when two bus cycle transfer is effected in 16-bit units. Figure 62-(1) shows an example case where both the DMAi mode register transfer source and destination address change directions are set to "forward". In this type of setup, data are transferred from memory 1 to memory 2 in the (1, 2, 3), and (4) order. Figure 62-(2) shows a case where the transfer source address change direction is "forward" and the destination addresses are "fixed". In this setup, the memory 1 data are called up in the forward address change direction and written at fixed memory 2 addresses in one transfer unit segments. Figure 62-(3) shows a case where the transfer source address change direction is forward and the destination address change direction is backward. Figure 62-(4) shows a case where the transfer source address change direction is backward and the destination addresses are fixed. In this setup, the memory 1 data are written at fixed memory 2 addresses in one transfer unit segments in the (1), (2), and (3) order.

As explained above, three different address change modes are selectable for each of the transfer source and destination. A total of nine different address change direction combinations are available.

In one bus cycle transfer, the memory side address change direction depends on the memory bits. For data transfer from memory to I/O, therefore, use bits 4 and 5 (transfer source address change direction selection bits) of the DMAi mode register to determine the memory side (transfer source) address change direction. This is not affected by bits 6 and 7 (transfer destination address change direction selection bits). For data transfer from I/O to memory, use bits 6 and 7 of the DMAi mode register to set the memory side (transfer destination) address change direction. This is not affected by bits 6 and 7 of the DMAi mode register to set the memory side (transfer destination) address change direction. This is not affected by bits 4 and 5.

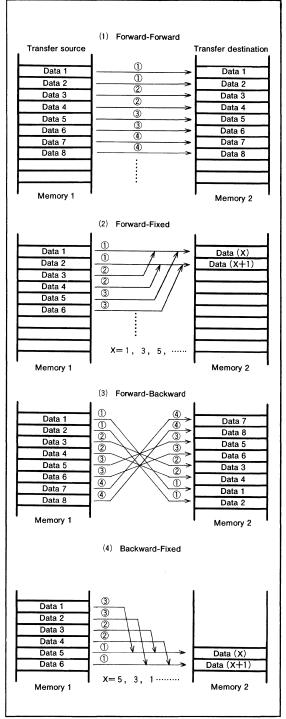


Fig.62 Two bus cycle transfer address change direction examples (when one transfer unit consists of 16 bits)

16-BIT CMOS MICROCOMPUTER

Bus cycle at DMA transfer

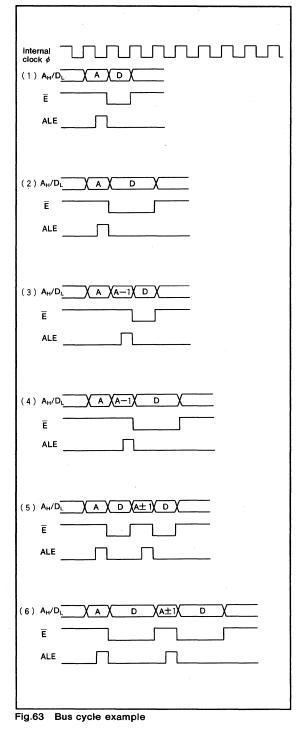
The memory or I/O read/write cycle (hereinafter referred to as the bus cycle) is basically the same as the bus cycle of CPU. Figure 63 shows six examples of bus cycle.

When transfer is made in 8-bit (1-byte) units, the operating waveform is as shown in Figure 63-(1). Bit 12 of the DMAi mode register is the transfer source wait bit and bit 13 is the transfer destination wait bit for DMA transfer. When the transfer source wait bit is set to "0" in cases where the DMA controller performs a read operation, the E signal "L" output period is extended as shown in Figure 63-(2) so that the "L" width of \overline{E} signal is extended 2 times as long. When the transfer destination wait bit is set to "0" in cases where the DMA controller performs a write operation, the "L" width of E signal is extended 2 times as long. All channels have DMAi mode register, it is possible to determine whether or not to extend the access time depending on the speed of the memory space element to be accessed. The DMA controller wait bit is effective for both the internal and external memory areas.

When transfer is made in 16-bit (2-byte) units, the operating waveform looks like Figure 63-(1) if the following two conditions are met.

- 1. The associated channel transfer address change direction is either forward or fixed.
- 2. The first address of the memory to be accessed is evennumbered.

However, when the transfer source or destination wait bit is "0", the DRAM area is being accessed, or transfer parameters are read in the array chain or link array chain transfer mode, the \overline{E} signal "L" period is extended so that the operating waveform looks like Figure 63-(2).


When transfer is made in 16-bit (2-byte) units, the operating waveform looks like Figure 63-(3) if the following two conditions are met.

- 1. The associated channel transfer address change direction is backward.
- The first address of the memory to be accessed is oddnumbered.

In this case, although the two bytes can be accessed simultaneously, one additional internal clock cycle ϕ is needed. However, when the transfer source or destination wait bit is "0" or the DRAM area is being accessed, the \overline{E} signal "L" period is extended so that the operating waveform looks like Figure 63-(4).

When transfer is made in 16-bit (2-byte) units, the operating waveform looks like Figure 63-(5) if the following two conditions are met.

- 1. The associated channel transfer address change direction is forward.
- 2. The first address of the memory to be accessed is oddnumbered.

16-BIT CMOS MICROCOMPUTER

The same waveform results if the following two conditions are met.

- 1. The associated channel transfer address change direction is backward.
- 2. The first address of the memory to be accessed is evennumbered.

In these cases, accessing is done in 1 byte units only. Therefore, accessing is conducted in two sessions. However, if the transfer source or destination wait bit is "0" or the DRAM area is being accessed, the \overline{E} signal "L" period is extended. If the wait bits of the transfer source and destination are both "0", the operating waveform looks like Figure 63-(6).

DMA continuous transfer

(1) Normal transfer

With the normal transfer function, it is possible to effect DMA transfer of the preselected number of bytes. As shown in Figure 50, first set up the number of one-transfer unit bits, transfer method, transfer mode, and transfer address change direction of the DMAi mode register, and then write the transfer source block first transfer address (the block's lowest-order address in the forward or fixed transfer address change direction or the block's highestorder address in the backward address change direction) into the source address register (hereinafter referred to as the SAR). Further, write the destination block first transfer address (the lowest-order address in the forward or fixed transfer address change direction or the highest-order address in the backward transfer address change direction) into the destination address register (hereinafter referred to as the DAR). Also write the desired number of bytes to be transferred, into the transfer counter register (hereinafter referred to as the TCR). Write the value 1 or more into TCR. The SAR, DAR, and TCR have 24 bits each. Be sure to write into all these bits. The SAR, DAR, and TCR are located at the addresses shown in Figure 47. The next step is to perform DMA source and other setups for the DMAi control register shown in Figure 49. Set up bit 0 (priority selection bit) and bit 1 (terminal count validity bit) of the DMAC control register shown in Figure 48,and finally set the DMAC control register DMA permission bit to "1" so as to make the DMA request acceptable.

When the contents of TCR are "0", the terminal count \overline{TC} signal output is generated, and at the same time, the interrupt request bit of the DMA interrupt control register is set to "1".

To halt transfer, enter the "L" level to the $\overline{\text{TC}}$ pin or write the value "0" in the DMA permission bit position. At this time, the interrupt request bit of the DMA interrupt control register is not set.

An example normal transfer operation performed under the following conditions is presented below.

- Transfer unit: 16 bits
- Transfer method: 2 bus cycle transfer
- Transfer mode: Burst transfer mode (edge sense)
- Transfer source address change direction: Forward.
- Transfer destination address change direction: Forward
- Transfer source wait: None
- Transfer destination wait: None
- DMA source: External input (DMAREQi)

When the DMAREQi pin input level changes from "H" to "L", the DMA request flag is set to "1" so that the DMA transfer request is accepted.

At this time, if there is no refresh request from the DRAM controller or no HOLD request is made from the HOLD pin, the DMA request is accepted. If no request is received from a channel having a higher priority than the accepted DMA channel, the DMA transfer for that accepted channel starts. If there is a DMA request from a channel having a higher priority, the DMA transfer for such a channel takes precedence.

As two bus cycle transfer is made, a read operation is performed in the first bus cycle. First the address written into the SAR is output to the address bus and then inputted into the incrementor/decrementor (hereinafter referred to as the I/D). The I/D adds 1 or 2 to the entered address and outputs the result back to the SAR. If one 16-bit transfer operation is not enough to complete the read operation, the read operation is divided into two sessions to achieve the purpose. The operation performed so far is called the read cycle and the R/\overline{W} signal goes High. The data from memory or I/O is stored in the data latch within the DMA controller.

The write operation is performed in the next bus cycle. First the address written in the DAR is output to the address bus and then inputted into the I/D. The I/D adds 1 or 2 to the entered address and outputs the result back to the DAR. If one 16-bit transfer operation is not enough to complete the write operation, the write operation is divided into two sessions to achieve the purpose. The operation performed so far is called the write cycle and the R/\overline{W} signal goes Low. The data stored in the DMA controller data latch in the read cycle is output to the data bus in the write cycle and written into the destination memory or I/O. The operations performed so far comprise one data transfer unit. In two bus cycle transfer, the read and write cycle combination is called the DMA transfer cycle.

In two bus cycle transfer, the TCR varies in the read cycle. The remaining transfer bytes are read from the TCR in concurrence with address output from SAR in the read cycle, and inputted into the decrementor (hereinafter referred to as the D). The D subtracts 1 or 2 from the number of remaining bytes and outputs the result back to the TCR. In this manner, the contents of the TCR decrease after each one-unit transfer. When the number of remaining bytes,

16-BIT CMOS MICROCOMPUTER

which is read from the TCR, becomes "0", the DMA controller outputs the terminal count \overline{TC} signal to the \overline{TC} pin, and at the same time, sets the interrupt request bit of the DMA interrupt control register to "1". At this time, the DMA permission bit is cleared. As the burst transfer mode is selected in this example, the DMA request flag is also cleared.

To halt transfer before completion, enter the "L" level to the

 \overline{TC} pin (P10₃) or write the value "0" in the DMA permission bit.

In normal transfer, the first values written in the SAR, DAR, and TCR are retained in the internal latches. Therefore, if DMA transfer is to be effected under the same conditions, it can be initiated simply by setting the DMA permission bit to "1".

Figure 64 shows the normal transfer timing diagram.

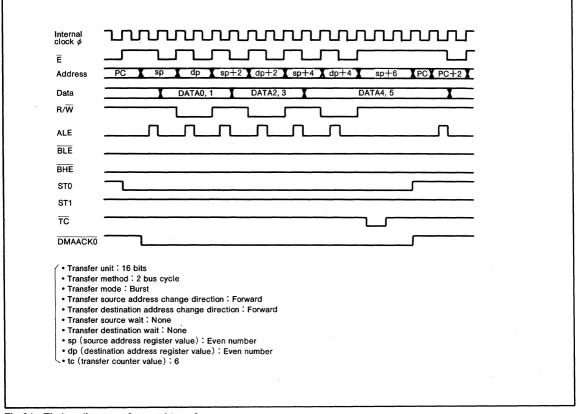


Fig.64 Timing diagram of normal transfer

16-BIT CMOS MICROCOMPUTER

(2) Repeat transfer

The term "repeat transfer" refers to DMA transfer in which normal transfer is repeated. First set up the number of unit transfer bits, transfer method, transfer mode, and transfer address change direction of the DMAi mode register. Next write the transfer source block transfer start address in the SAR and the transfer destination transfer start address in the DAR. Further, write the number of bytes to be transferred, into the TCR, and set up the DMAi control register and DMAC control register. The DMA request is now acceptable. When the DMA request is received in this state, DMA transfer starts. Even when the number of remaining bytes (to be read from the TCR) becomes 0, the DMA permission bit is not cleared. When the burst transfer function is activated, the DMA request flag is not cleared either. When the cycle steal transfer function is selected, the DMA request flag is cleared at the end of each one-unit transfer.

The first values written in the SAR, DAR, and TCR are retained in the internal latches. The contents of the latches are transferred to the SAR, DAR and TCR at the end of the last transfer cycle. Therefore, when the burst transfer function is selected, the transfer operation is repeated starting with the first written values. When the cycle steal transfer function is selected, on the other hand, these values are used as the initial values and transfer is initiated each time the DMA request flag is set to "1".

To terminate this type of transfer, enter the "L" level to the \overline{TC} pin or write the value "0" in the DMA permission bit.

In repeat transfer, \overline{TC} signal output and the setting to the interrupt request bit of the DMA interrupt control register are not performed.

Figure 65 shows the repeat transfer timing diagram.

Internal clock ϕ	
Ē.	
Address	PC X sp X dp X X sp+4 X dp+4 X sp+6 X sp X dp X sp+2 X dp+2 X
Data	🗙 DATA0, 1 🤾 🗶 DATA4, 5 🗶 DATA0, 1 🗶 DATA2, 3
R/W ·	
ALE .	
BLE	
BHE .	
STO ·	
ST1	
TC .	
DMAACK0	
∕•Transfer u	nit : 16 bits
• Transfer m	nethod: 2 bus cycle
Transfer m	node : Burst ource address change direction : Forward
	estination address change direction : Forward
	ource wait : None
	estination wait:None e address register value):Even number
• dp (destin	aduress register value) : Even number nation address register value) : Even number
ヽ• tc (transfe	r counter value) : 6

16-BIT CMOS MICROCOMPUTER

(3) Array chain transfer

The term "array chain transfer" refers to the DMA transfer in which one channel is used for the data transfer for two or more memory blocks.

Three parameters necessary for transfer, that is, the transfer source start address, transfer destination start address, and the number of transfer bytes, must be sequentially written into the transfer parameter memory. The transfer parameter memory can be located in an arbitrary position in the memory space. Figure 66 shows an array chain transfer mode transfer parameter memory configuration example. All the transfer parameters of the memory block to be transferred must be written into the transfer parameter memory. The transfer parameter write format is indicated in Figure 67. For one bus cycle transfer, the I/O side parameters are not needed. For transfer from memory to I/O, for instance, consecutively write the transfer source start address and the number of transfer bytes only as shown in Figure 68. As the transfer destination start address needs not be written, it is possible to save on the transfer time and transfer parameter memory area.

In normal or repeat transfer, the first values written in the SAR, DAR, and TCR are retained in the internal latches. In array chain transfer and link array chain transfer, however, the latches perform different functions.

The SAR latch serves as the transfer parameter register (hereinafter referred to as the TPR) which indicates the first address of the transfer parameter memory. The TCR latch serves as the transfer block counter (hereinafter referred to as the TBC) which indicates the number of transfer blocks. In array chain transfer and link array chain transfer, writing a value at an SAR address causes that value to be written in the TPR, and writing a value at a TCR address causes that value to be written in the TBC.

The array chain transfer operations are detailed below.

As is the case with the other types of transfer, first set up the DMAi mode register, DMAi control register, and DMAC control register. Write the first address of the transfer parameter memory into the SAR. This value is then written into the TPR. Be sure that an even-numbered address is designated as the first address. Nothing needs to be written into the DAR. Into the TCR, on the other hand, write the number of memory blocks to be transferred. This number is then written into the TBC. When the DMA permission bit is set to "1" after completion of the above-mentioned setup, DMA transfer is enable.

In array chain transfer, the transfer parameters are first read from the transfer parameter memory and then written into the SAR, DAR, and TCR. This operations state is called the "array state". Figure 69 shows a two bus cycle transfer mode array state example. The DMA controller outputs the first address of the transfer parameter memory to the address bus, and sequentially stores the read data into the SAR, DAR, and TCR.

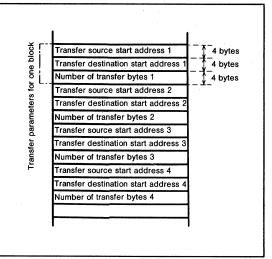


Fig.66 Array chain transfer mode parameter memory configuration example

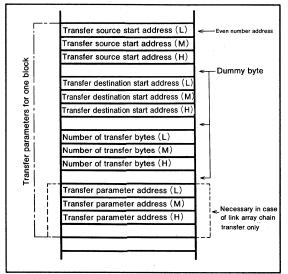
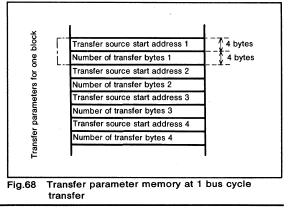
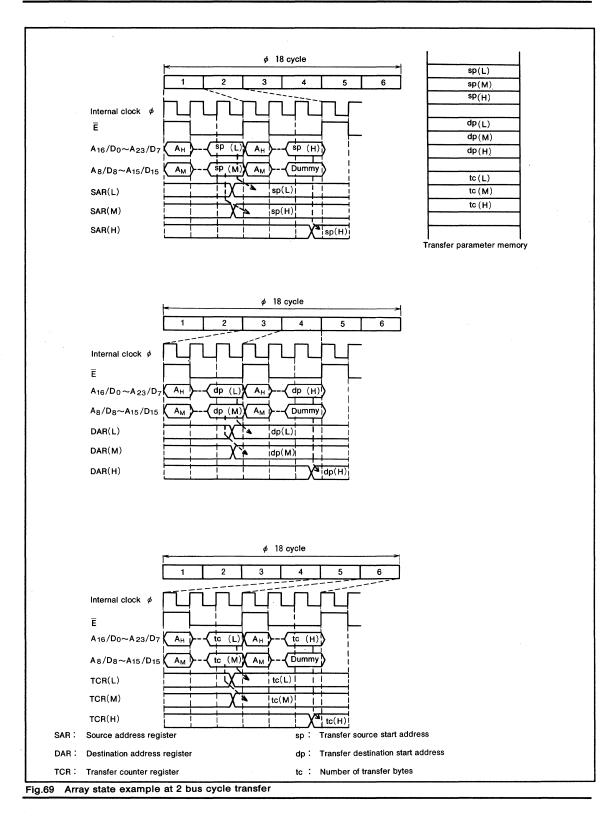



Fig.67 Parameter memory format

16-BIT CMOS MICROCOMPUTER


When the transfer parameters for one block are completely stored, the contents of the TBC are decremented by 1 and then the first DMA transfer starts in accordance with the stored parameters.

In contrast to the array state, the state in which DMA transfer is made is called the transfer state. In the transfer state, the same operations are performed as in normal transfer. At the end of each one-unit transfer, the contents of the transfer counter are decremented by 1 in 8-bit transfer or by 2 in 16-bit transfer. Even when the contents of the transfer counter are 0, the DMA request flag and DMA permission bit are not cleared and the array state of the next block occurs.

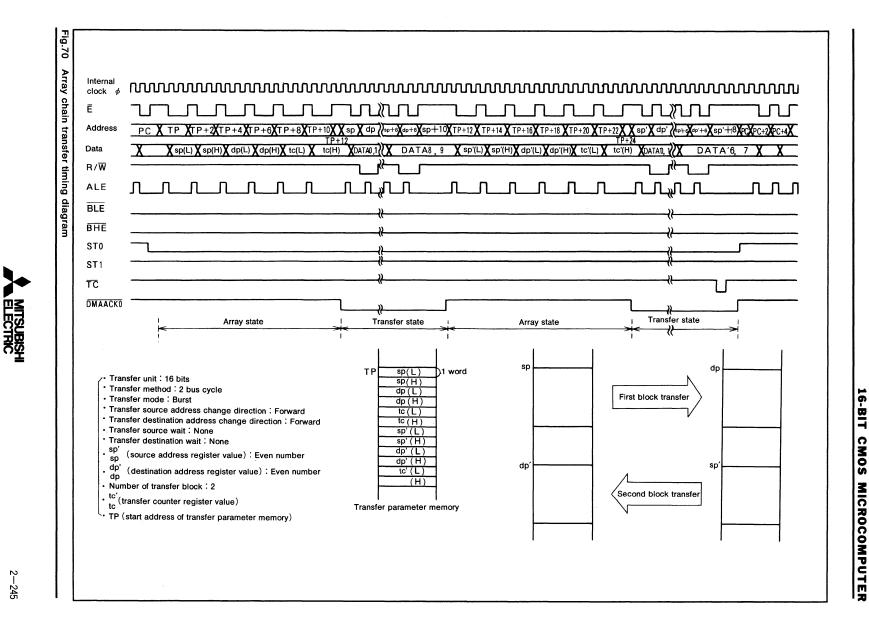

When the contents of the TBC are 0 at the beginning of the array state, the entire transfer operation is considered to be completed, and the "L" level is output to the \overline{TC} pin to clear the DMA request flag and DMA permission bit and terminate array chain transfer. At the same time, the interrupt request bit of the DMA interrupt control register is set to "1". In the cycle steal transfer at the array chain transfer mode, one array state and the transfer cycle of one-unit transfer are performed by one DMA request.

Figure 70 shows the array chain transfer timing diagram.

MITSUBISHI MICROCOMP

M37 UTERS

N

205

عر

⋗ η

U

16-BIT CMOS MICROCOMPUTER

(4) Link array chain transfer

Figure 71 shows the link array chain transfer parameter memory configuration. As shown in this figure, not only the transfer source start address, transfer destination start address, and number of transfer bytes, but also the first address of the memory block which contains the next transfer parameters is stored. In the transfer parameter of the last block, set " 000000_{16} " as the first address of the next transfer parameter. In one bus cycle transfer, the I/O side parameters are not needed.

As is the case with the other types of transfer, the DMAi mode register, DMAi control register, and DMAC control register must be set up for link array chain transfer purposes. Into the SAR, write the first address of the memory block that stores the parameters for the first transfer. This address value is then written into the TPR. Be sure that an evennumbered address is designated as the first address. Nothing needs to be written in the DAR. Write a numerical value other than zero into the TCR. When the DMA permission bit is set to "1" after completion of the above setup, DMA transfer is enable.

In link array chain transfer, the transfer parameters are first read from the transfer parameter memory and then written into the SAR, DAR, and TCR. Further, the first address of the memory block that contains the next parameters is written into the TPR. In link array chain transfer, the state so far is referred to as the array state.

The DMA controller sequentially outputs to the address bus the addresses of the memory block that stores the transfer parameters, beginning with the first address. The read data are sequentially stored into the SAR, DAR, and TCR, and then the first address of the memory block containing the next parameters is written into the TPR. DMA transfer is made in accordance with the parameters read from the transfer parameter memory. The transfer state is the same as in normal transfer. The contents of the TCR are decremented by 1 or 2 at the end of each one-unit transfer. Even when the contents of the TCR are 0, the DMA request flag and DMA permission bit are not cleared to "0" but the array state starts again. When the contents of the TPR are 0 at this time, however, the "L" level is output to the \overline{TC} pin to clear the DMA request flag and DMA permission bit and terminate link array chain transfer. At the same time, the interrupt request bit of the DMA interrupt control register is set to "1".

In the cycle steal transfer at the rink array chain transfer mode, one array state and the transfer cycle of one-unit transfer are performed by one DMA request.

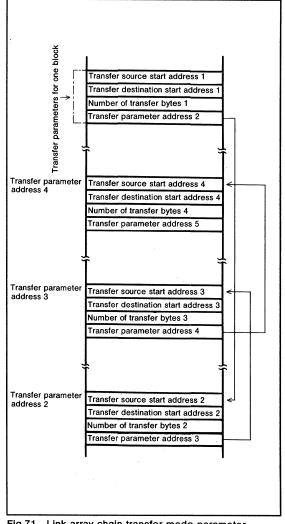
Figure 72 shows the link array chain transfer timing diagram.

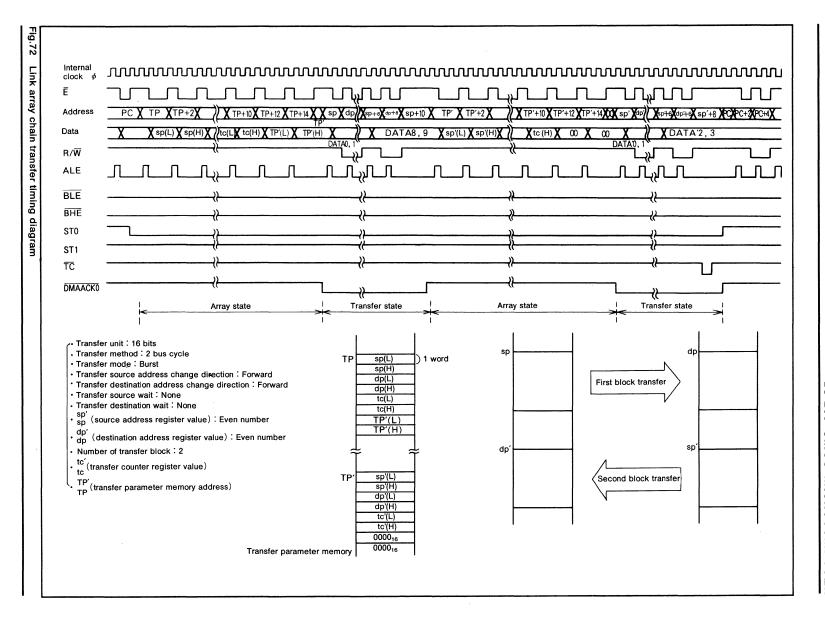
Note that the following operations cannot be performed in array chain transfer or link array chain transfer.

1. A 16-bit transfer operation performed with an external width of 8 bits employed and the fixed transfer address

change direction selected for either the transfer source or destination

2. A 16-bit transfer operation performed with an external width of 16 bits employed, the fixed transfer address change direction selected, and an odd-numbered address designated as the first address for either the transfer source or destination.




Fig.71 Link array chain transfer mode parameter memory configuration example

M37 720S AF 10

16-BIT CMOS MICROCOMPUTER

247

MITSUBISH ELECTRIC

16-BIT CMOS MICROCOMPUTER

DRAM CONTROLLER

The DRAM controller directly controls the DRAM (dynamic random access memory). The DRAM control pins are located at ports $P10_4/CAS$, $P10_5/RAS$, $P10_6/MA_8$, $P10_7/MA_9$, and A_0/MA_0 through $A_7/MA7$.

Figure 73 shows the DRAM controller block diagram. Figure 74 shows the DRAM control register (address 64_{16}) bit configuration. Bit 7 of the DRAM control register is a DRAM validity bit. When this bit is set to "1", port P10₄ serves as the CAS (column address strobe) signal output pin, port 10₅ serves as the RAS (Row address strobe) signal output pin, port P10₆ serves as the MA₈ output pin, and P10₇ serves as the MA₉ output terminal. Upon resetting, the DRAM validity bit is set to "0". When using the DRAM controller, be sure to set this bit to "1".

Bits 0 through 3 of the DRAM control register are the DRAM area selection bits. These bits are used to designate the DRAM area in 1M-byte units. When the DRAM area selection bits (bits 3 through 0) are set to "0000", the DRAM controller concludes that there is no DRAM area. This state prevails upon resetting. When the bits are set to "0001", the DRAM area is set to 1M-byte and the system automatically judges that the area between addresses $F00000_{16}$ and $FFFFF_{16}$ is provided as the DRAM area. When the bits are set to "1111", the DRAM area is set to 15M bytes and the DRAM controller automatically concludes that the area between addresses 100000_{16} and $FFFFF_{16}$ is the DRAM area.

When the area to be accessed is judged to the DRAM area, the DRAM controller generates timing signals \overline{RAS}

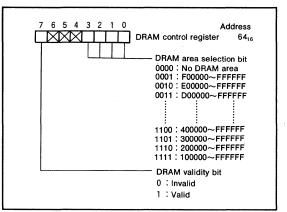


Fig.74 DRAM control register bit configuration

and \overline{CAS} for latching the address in the bus cycle, and outputs addresses A₀ through A₂₀ to MA₀ (A₀ pin) through MA₇ (A₇ pin), MA₈, and MA₉ by means of time division multiplexing. The time division multiplexing method varies with the external bus connection. Table 7 shows the address time-division multiplexing DRAM controller for DRAM accessing.

It should also be noted that when the DRAM area is accessed, the "L" level period of \vec{E} is increased twofold without respect to the contents of the wait bit. This also holds true when the DRAM area is accessed by the CPU or DMA controller.

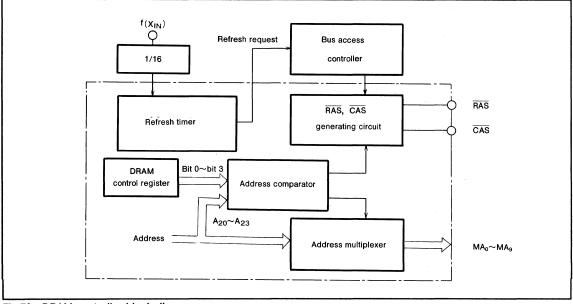


Fig.73 DRAM controller block diagram

16-BIT CMOS MICROCOMPUTER

The DRAM controller incorporates an independent 8-bit refresh timer. The refresh timer is based on decrement count and its clock source employs a clock that is derived by dividing $f(X_{IN})$ by sixteen. The refresh interval can be given as desired by writing a value (not "0") in the refresh timer (address 66_{16}). The value must be set in the refresh timer before the DRAM validity bit is set to "1". Generally, the value written in the refresh timer is expressed by the following formula.

Timer value n=refresh interval [ns] $\times f(X_{IN})/16-1$

When the contents of the refresh timer is 00_{16} , the refresh timer generates the refresh request signal. The refresh request signal sends the bus use request to the bus access controller. When the request is accepted, the system stops the CPU and DMA controller and sends the response signal to the RAS/CAS generator circuit. The RAS/CAS generator circuit generates the refresh cycle.

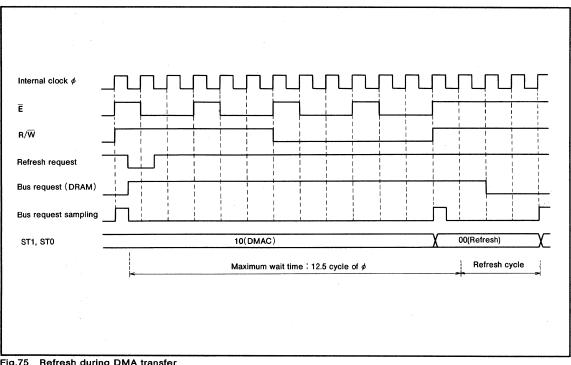
If the CPU or DMA controller is using the data bus, refresh cycle generation does not take place even when the refresh request is made. When a WIT or STP instruction is executed, the refresh operation is not performed. Figure 75 shows an example refresh operation that is performed when the refresh request is made during DMA transfer. Figure 76 shows an example refresh operation that is performed when the refresh request is made during CPU operation (bus accessing). Both examples represent the cases where the response delay time is maximized. Table 8 shows the delay time that denotes the interval between the instant at which the contents of the refresh timer become 00_{16} and the instant at which the refresh cycle is inserted. This table indicates the maximum and minimum values prevailing when the $\overline{\text{RDY}}$ input is not provided. If the access time is to be increased by $\overline{\text{RDY}}$ input, the time delay resulting from such an access time increase must be added to the maximum values in the table.

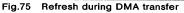
Figure 77 shows the DRAM accessing bus cycle timing diagram. The DRAM controller generates three types of bus cycles: read, write, and refresh bus cycles.

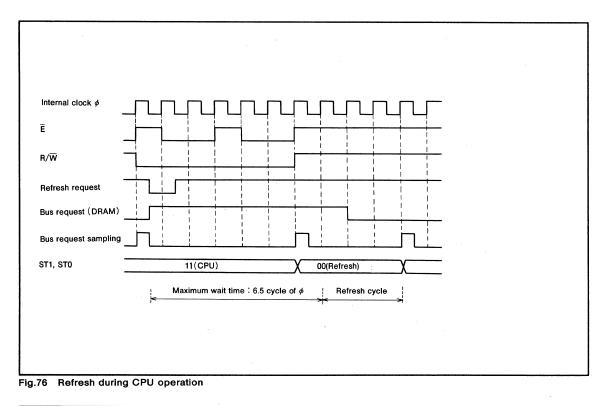
In the read cycle, the \overline{RAS} pin level falls from "H" to "L", and then the \overline{CAS} pin level falls from "H" to "L" at the end of 1/2 the internal clock cycle ϕ . The address bus changes from the row address to the column address during the time interval between \overline{RAS} pin level fall and \overline{CAS} pin level fall.

In the write cycle, the \overrightarrow{CAS} pin level falls one internal clock cycle ϕ after \overrightarrow{RAS} pin level fall.

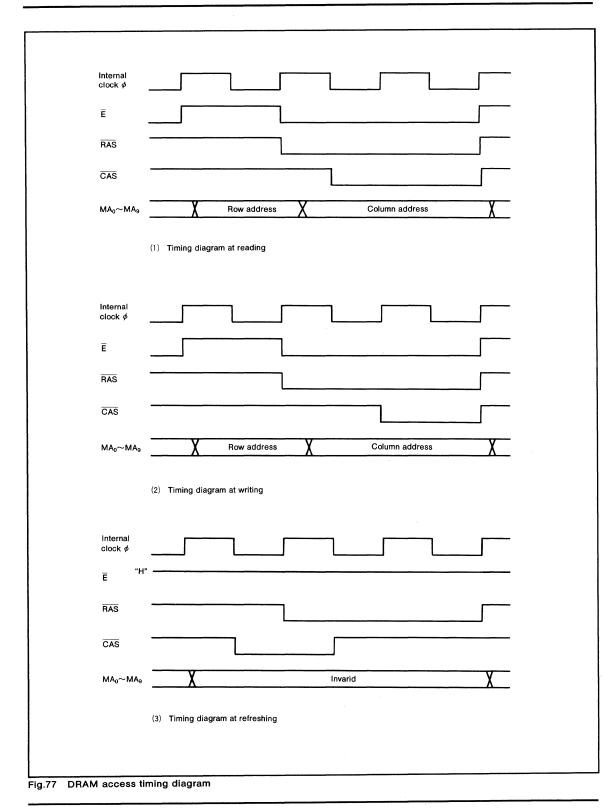
In the refresh cycle, the \overline{CAS} pin level falls 1/2 internal clock cycle ϕ earlier than \overline{RAS} pin level fall. Refresh occurs as the \overline{CAS} pin level falls earlier than the \overline{RAS} pin level. This method is called the " \overline{CAS} before \overline{RAS} refresh method". Be sure that the selected DRAM permits " \overline{CAS} before \overline{RAS} refresh".


	Regular bus	Ao	A ₁	A ₂	A ₃	A4	A ₅	A ₆	A ₇	P10 ₆	P107
	DRAM access	MAo	MA ₁	MA ₂	MA ₃	MA ₄	MA ₅	MA ₆	MA ₇	MA ₈	MA ₉
E	Row address	A ₀	A ₁	A ₂	A ₃	A ₄	A ₅	A ₆	A ₇	A ₁₆	A ₁₈
External 8-bit	Column address	A ₈	A ₉	A ₁₀	A ₁₁	A ₁₂	A ₁₃	A ₁₄	A ₁₅	A ₁₇	A ₁₉
E	Row address	A ₁₆	A ₁	A ₂	A ₃	A ₄	A ₅	A ₆	A ₇	A ₁₈	A ₂₀
External 16-bit	Column address	A ₈	A ₉	A ₁₀	A ₁₁	A ₁₂	A ₁₃	A ₁₄	A ₁₅	A ₁₇	A ₁₉


Table 7. DRAM accessing address time-division multiplexing method


Table 8. Refresh wait time

Cause of bus use	Number of delay	At 16MHz	At 8MHz
0.011		187.5ns~812.5ns (wait provided)	375ns~1625ns (wait provided)
CPU	1.5~6.5	187.5ns~562.5ns (wait not provided)	375ns~1125ns (wait not provided)
	1.5~12.5	187.5ns~1562.5ns (wait provided)	375ns~3125ns (wait provided)
DMA controller	1.5~12.5	187.5ns~1062.5ns (wait not provided)	375ns~2125ns (wait not provided)
HOLD state	1.5	187.5ns	375ns



16-BIT CMOS MICROCOMPUTER

REAL-TIME OUTPUT

The M37720S1AFP has a 4-bit, 2-channel real-time output function which is shared with port P6 as the output port. As with the other ports, the port P6 direction register is in the input state after resetting and therefore functions as a regular I/O port. To use the real-time output function, be sure to set the port P6 direction register for output. Ports P6₀ through P6₃ correspond to channel 0, whereas ports 6₄ through 6₇ correspond to channel 1.

Figure 78 shows the real-time output control register (address 62_{16}) bit configuration. Bits 0 and 1 are the real-time output validity bits for the channels. Bit 0 relates to channel 0, and bit 1 relates to channel 1. When the value "1" is written in the positions of these bits, the real-time output function is enabled. These bits are "0" upon resetting.

Figure 80 shows the real-time output block diagram. In the real-time output mode, the values written in the pulse output data register are not output immediately. However, such an output is delivered to the pin when timer A0 (channel 0) or timer A1 (channel 1) underflows. Before underflow occurrence, the previously written data are output.

Figure 79 shows the pulse output data register bit configuration. When the real-time output 0 validity bit is "0", the data written in the port P6 latch (address E_{16}) is output to ports P6₀ through P6₃. When the real-time output 0 validity bit is "1", the values written in the bit 0 to bit 3 positions of pulse output data register 0 (address 1A₁₆) are output to ports P6₀ (RTP0₀) through P6₃ (RTP0₃), respectively.

When the real-time output 1 validity bit is "0", the values written for bits 4 through 7 of the port P6 latch (address E_{16}) are output to ports P64 through P6₇, respectively. When the real-time output 1 validity bit is "1", on the other hand, the values written in pulse output data register 1 (address 1C₁₆) are output to ports P6₄ (RTP1₀) through P6₇ (RTP₁₃).

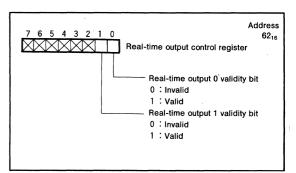


Fig.78 Real-time output control register bit configuration

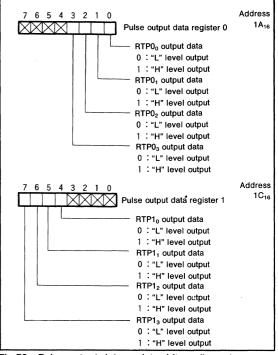
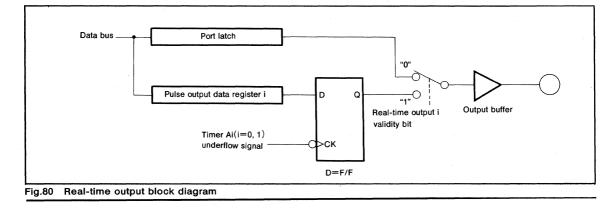



Fig.79 Pulse output data register bit configuration

16-BIT CMOS MICROCOMPUTER

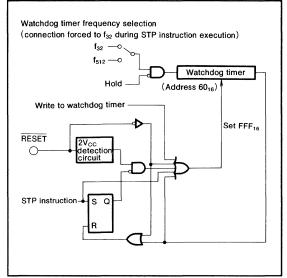
WATCHDOG TIMER

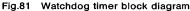
The watchdog timer is used to detect unexpected execution sequence caused by software run-away. Figure 81 shows a block diagram of the watchdog timer.

The watchdog timer consists of a 12-bit binary counter.

The watchdog timer counts the clock frequency divided by 32 (f_{32}) or by 512 (f_{512}). Whether to count f_{32} or f_{512} is determined by the watchdog timer frequency selection flag shown in Figure 82. f_{512} is selected when the flag is "0" and f_{32} is selected when it is "1". The flag is cleared after reset. FFF₁₆ is set in the watchdog timer when "L" or 2V_{CC} is applied to the RESET pin, STP instruction is executed, data is written to the watchdog timer, or the most significant bit of the watchdog timer become "0".

After FFF₁₆ is set in the watchdog timer, the contents of watchdog timer is decremented by one at every cycle of selected frequency f_{32} or f_{512} , and after 2048 counts, the most significant bit of watchdog timer become "0", and a watchdog timer interrupt request bit is set, and FFF₁₆ is preset in the watchdog timer.


Normally, a program is written so that data is written in the watchdog timer before the most significant bit of the watchdog timer become "0". If this routine is not executed due to unexpected program execution, the most significant bit of the watchdog timer become eventually "0" and an interrupt is generated.


The processor can be reset by setting the bit 3 (software reset bit) of processor mode register described in Figure 10 in the interrupt section and generating a reset pulse.

The watchdog timer stops its function when the $\overrightarrow{\text{RESET}}$ pin voltage is raised to double the V_{CC} voltage.

The watchdog timer can also be used to recover from when the clock is stopped by the STP instruction. Refer to the section on clock generation circuit for more details.

The watchdog timer is also in the hold state during hold, DMA transfer, or refresh. Therefore, the input to the watchdog timer is prohibited.

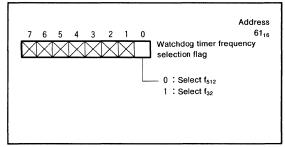


Fig.82 Watchdog timer frequency selection flag

16-BIT CMOS MICROCOMPUTER

RESET CIRCUIT

Reset occurs when the RESET pin is returned to "H" level after holding it at "L" level when the power voltage is at 5V \pm 10%. Program execution starts at the address formed by setting the address pins A₂₃ ~ A₁₆ to 00₁₆, A₁₅ ~ A₈ to the

contents of address FFFF_{16}, and $A_7\!\sim\! A_0$ to the contents of address FFFE_{16}.

Figure 83 shows the status of the internal registers when a reset occurs.

(1) Port P4 data direction register	(0C ₁₆)…	0 0 0 0 0	(38)	A-D conversion interrupt control register	(70 ₁₆)…	
(2) Port P5 data direction register	(0D ₁₆)…	00 ₁₆	(39)	UART 0 transmission interrupt control register	(71 ₁₆)…	
(3) Port P6 data direction register	(10 ₁₆)…	0016	(40)	UART0 receive interrupt control register	(72 ₁₆)…	0000
(4) Port P7 data direction register	(11 ₁₆)	0016	(41)	UART1 transmission interrupt control register	(73 ₁₆)…	
(5) Port P8 data direction register	(14 ₁₆)…	00 ₁₆	(42)	UART1 receive interrupt control register	(74 ₁₆)…	
(6) Port P9 data direction register	(15 ₁₆)…	0016	(43)	Timer A0 interrupt control register	(75 ₁₆)…	0 0 0 0
(7) Port P10 data direction register	(18 ₁₆)…	00 ₁₆	(44)	Timer A1 interrupt control register	(76 ₁₆)…	
(8) A-D control register	(1E ₁₆)… [00000???	(45)	Timer A2 interrupt control register	(77 ₁₆)…	
(9) A-D sweep pin selection registe	r (1F ₁₆)…		(46)	Timer A3 interrupt control register	(78 ₁₆)…	0000
(10) UART0 Transmit/Receive mode register	(30 ₁₆)…	0016	(47)	Timer A4 interrupt control register	(79 ₁₆)…	
(11) UART1 Transmit/Receive mode register	(38 ₁₆)…	0016	(48)	Timer B0 interrupt control register	(7A ₁₆)…	
(12) UART0 Transmit/Receive control register 0	(34 ₁₆)…		(49)	Timer B1 interrupt control register	(7B ₁₆)	0000
(13) UART1 Transmit/Receive control register 0	(3C ₁₆)…		(50)	Timer B2 interrupt control register	(7C ₁₆)…	
(14) UART0 Transmit/Receive control register 1	(35 ₁₆)…	0 0 0 0 0 0 1 0	(51)	INT ₀ interrupt control register	(7D ₁₆)…	
(15) UART1 Transmit/Receive control register 1	(3D ₁₆)…	0 0 0 0 0 1 0	(52)	INT ₁ interrupt control register	(7E ₁₆)…	000000
(16) Count start flag	(40 ₁₆)…	0016	(53)	INT ₂ interrupt control register	(7F ₁₆)…	
(17) One-shot start flag	(42 ₁₆)…		(54)	DMA0 mode register L	(1FCC ₁₆)	0016
(18) Up-down flag	(44 ₁₆)…	0016	(55)	DMA0 mode register H	(1FCD ₁₆)	0016
(19) Timer A0 mode register	(56 ₁₆)…	0016	(56)	DMA0 control register	(1FCE ₁₆)	000000
(20) Timer A1 mode register	(57 ₁₆)…	0016	(57)	DMA1 mode register L	(1FDC ₁₆)…	0016
(21) Timer A2 mode register	(58 ₁₆)…	0016	(58)	DMA1 mode register H	(1FDD ₁₆)	0016
(22) Timer A3 mode register	(59 ₁₆)…	0016	(59)	DMA1 control register	(1FDE ₁₆)…	000000
(23) Timer A4 mode register	(5A ₁₆)…	0016	(60)	DMA2 mode register L	(1FEC ₁₆)…	0016
(24) Timer B0 mode register	(5B ₁₆)…	0 0 1 0 0 0 0	. (61)	DMA2 mode register H	(1FED ₁₆)…	0016
(25) Timer B1 mode register	(5C ₁₆)…	0 0 1 0 0 0 0	(62)	DMA2 control register	(1FEE ₁₆)…	000000
(26) Timer B2 mode register	(5D ₁₆)…	0 0 1 0 0 0 0	(63)	DMA3 mode register L	(1FFC ₁₆)	0016
(27) Processor mode register	(5E ₁₆)…	0 0 0 0 0 1 0	(64)	DMA3 mode register H	(1FFD ₁₆)	0016
(28) Watchdog timer (60 ₁₆)…	FFF ₁₆	(65)	DMA3 control register	(1FFE ₁₆)…	0 0 0 0 0 0
(29) Watchdog timer frequency selection flag	(61 ₁₆)…		(66)	Processor status register PS	0 0 0	? ? 0 0 0 1 ? ?
(30) Real-time output control registe	r (62 ₁₆)…	0 0	(67)	Program bank register PG		0016
(31) DRAM control register	(64 ₁₆)…	0 0 0 0 0	(68)	Program counter PC _H		Contents of address FFFF ₁₆
(32) DMAC control register L	(68 ₁₆)…	0 0 0 0 0 0 0 0	(69)	Program counter PCL		Contents of address FFFE ₁₆
(33) DMAC control register H	(69 ₁₆)…	0016	(70)	Direct page register DPR		000016
(34) DMA0 interrupt control register	(6C ₁₆)	0000	(71)	Data bank register DT		00 ₁₆
(35) DMA1 interrupt control register	(6D ₁₆)…	0000]			
(36) DMA2 interrupt control register	(6E ₁₆)…	0000		ontents of other registers and RAM	are not ini	tialized and should be in-
(37) DMA3 interrupt control register	(6F ₁₆)…		1118	alized by software.		
Fig.83 Microcomputer intern	al status	during reset				

16-BIT CMOS MICROCOMPUTER

Figure 84 shows an example of a reset circuit. The reset input voltage must be held 0.9V or lower when the power voltage reaches 4.5V.

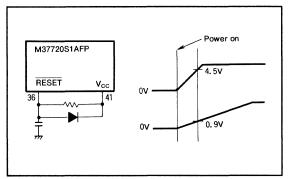


Fig.84 Example of a reset circuit (perform careful evaluation at the system design before using)

INPUT/OUTPUT PINS

Ports P10 to P4 all have a data direction register and each bit can be programmed for input or output. A pin becomes an output pin when the corresponding data direction register is set and an input pin when it is cleared.

When pin programmed for output, the data is written to the port latch and it is output to the output pin. When a pin is programmed for output, the contents of the port latch is read instead of the value of the pin. Therefore, a previously output value can be read correctly even when the output "L" voltage is raised due to reasons such as directly driving an LED.

A pin programmed for input is floating and the value input to the pin can be read. When a pin is programmed for input, the data is written only in the port latch and the pin stays floating.

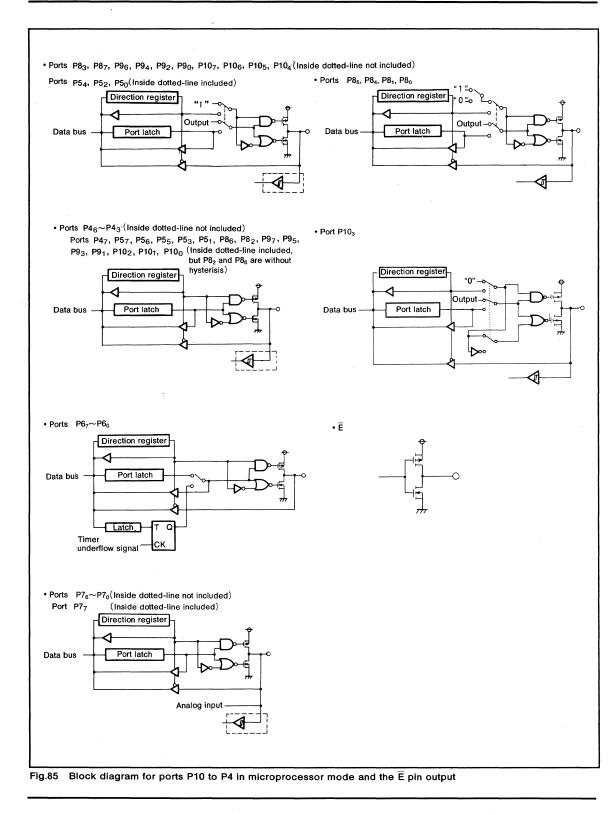

If an input/output pin is not used as an output port, clear the bit of the corresponding data direction register so that the pin become input mode.

Figure 85 presents the port P10 to port P4 block diagrams and $\overline{\mathsf{E}}$ pin output format.

In the evaluation chip mode, port P4 is also used as the control signal terminal. Refer to the section on evaluation chip mode for more details.

16-BIT CMOS MICROCOMPUTER

16-BIT CMOS MICROCOMPUTER

PROCESSOR MODE

Either the microprocessor mode or evaluation chip mode is selected in accordance with the contents of bit 0 of the processor mode register shown in Figure 86. Bit 1 must always be set to 1.

Figure 87 shows the port P4, A_7/MA_7 to A_0/MA_0 , A_{15}/D_{15} to A₈/D₈, A₂₃/D₇ to A₁₆/D₀, R/W, BHE, BLE, ALE, RDY, HOLD, and ϕ_1 functions in the two different processor modes.

The external memory area varies with the mode. Figure 88 presents the memory map in each processor mode. When the external memory is to be accessed, it is influenced by the BYTE pin and processor mode register bit 2 (wait bit) as explained below.

BYTE pin

When accessing the external memory, the level of the BYTE pin is used to determine whether to use the data bus as 8-bit width or 16-bit width.

The data bus width is 8 bits when the level of the BYTE pin is "H"

The data bus width is 16 bits when the level of the BYTE pin is "L".

When accessing the internal memory, the data bus width is always 16 bits regardless of the BYTE pin level.

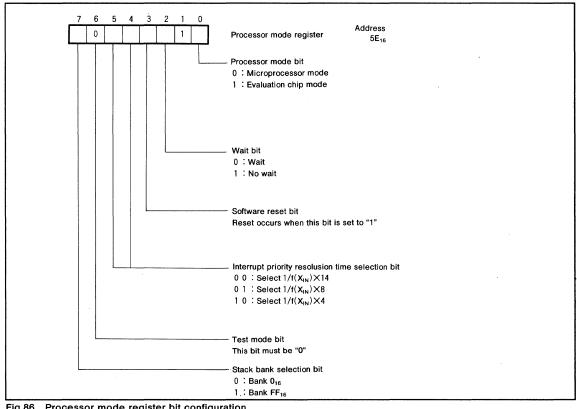


Fig.86 Processor mode register bit configuration

16-BIT CMOS MICROCOMPUTER

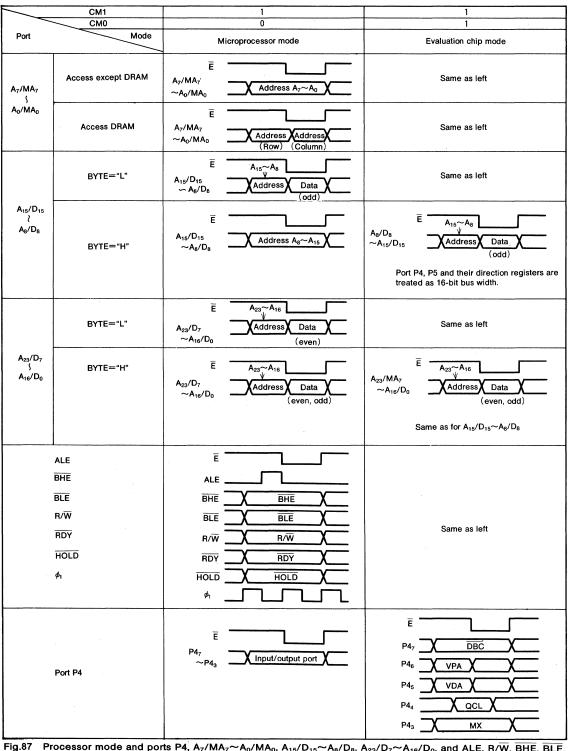
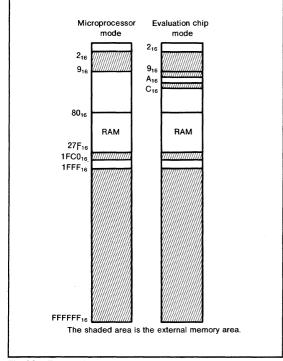
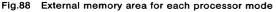
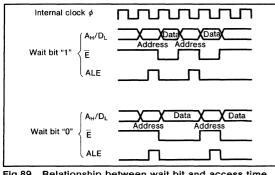


Fig.87 Processor mode and ports P4, A₇/MA₇~A₀/MA₀, A₁₅/D₁₅~A₈/D₈, A₂₃/D₇~A₁₆/D₀, and ALE, R/W, BHE, BLE, RDY, HOLD, ¢1 functions


16-BIT CMOS MICROCOMPUTER


Wait bit


As shown in Figure 89, when the external memory area is accessed with the processor mode register bit 2 (wait bit) cleared to "0", the "L" width of \overline{E} signal is becomes twice compared with no wait (the wait bit is "1"). The wait bit is cleared during reset.

When the CPU is operating, the accessing of internal memory area is performed in no wait mode regardless of the wait bit.

The processor modes are described below.

(1) Microprocessor mode [0]

When the system is reset with the CNV_{ss} pin connected to V_{SS} or V_{CC} , this mode is selected.

Ports A_{15}/D_{15} through A_8/D_8 may be in either of the following two conditions depending on the BYTE pin level.

When the BYTE pin level is "L", the ports serve

as the address output terminals while \overline{E} is at the "H" level or

as the odd-numbered address data I/O terminals while E is at the "L" level.

However, if the internal memory area is read, external data is ignored from outside while \overline{E} is at the "L" level.

When the BYTE pin level is "H", the ports serve as the address output terminals.

Ports A_{23}/D_7 through A_{16}/D_0 may be in either of the following two conditions depending on the BYTE pin level.

When the BYTE pin level is "L", the ports serve

as the address output terminals while \overline{E} is at the "H" level or

as the even-numbered address data I/O terminals while E is at the "L" level.

However, if the internal memory area is read, external data is ignored from outside while \overline{E} is at the "L" level.

When the BYTE pin level is "H", the ports serve

as the address output terminals while \overline{E} is at the "H" level or

as the even- and odd-numbered data I/O terminals while E is at the "L" level.

However, if the internal memory area is read, external data is ignored from outside while \overline{E} is at the "L" level.

R/W is the read/write signal. It performs a read operation when it is at the "H" level or a write operation when it is at the "L" level.

BHE is the byte high enable signal. When it is at the "L" level, it indicates that an odd-numbered address is being accessed. BLE is the byte low enable signal. When it is at the "L" level, it indicates that a even-numbered address is being accessed. Therefore, if BLE is at the "L" level and BHE is at the "L" level, it means that two bytes at an oddnumbered address and an even-numbered address are being accessed simultaneously.

ALE is the address latch enable signal. It is used for latching the address signal from a multiplexed signal containing addresses and data. When ALE is at the "H" level, the latch opens to pass off the address signal. When ALE is at the "L" level, it retains the address signal.

HOLD is the hold request signal. It is an input signal used to hold the microcomputer. HOLD input is accepted when the internal clock ϕ falls from "H" level to "L" level while the bus is not used. ST1 and ST0 notify externally when microcomputer enters into hold state. In the hold state, ST1 =0, ST0=1 and A_7/MA_7 through A_0/MA_0 , A_{15}/D_{15} through $A_8/D_8,\ A_{23}/D_7$ through $A_{16}/D_0,\ R/\overline{W},\ \overline{BHE},$ and \overline{BLE} are floating. These ports are floating after one cycle of the in-

16-BIT CMOS MICROCOMPUTER

ternal clock ϕ later than the status signal changes to [ST1 = 0, ST0 = 1]. At the removing of hold state, these ports are removed from floating state after one cycle of internal clock ϕ later than the status signal changes to the value except [ST1=0, ST0=1].

RDY is the ready signal. When it is at the "L" level, the internal clock ϕ stops at the "L" level. The instruction execution of CPU and the bus access of the bus interface unit are also stopped. The clock ϕ_1 output is continued. **RDY** is used When a slow external memory is installed.

(2) Evaluation chip mode [1]

The evaluation chip mode prevails when the CNV_{SS} pin is connected to 2V_{CC} . This mode is usually used for evaluation equipment.

 A_7/MA_7 to A_0/MA_0 , ALE, \overline{BHE} , \overline{BLE} , R/\overline{W} , \overline{RDY} , \overline{HOLD} , and ϕ_1 perform the same operations as in the microprocessor mode.

Ports A_{15}/D_{15} through A_8/D_8 function irrespective of the BYTE pin level. They serve

as the address output terminals while $\overline{\mathsf{E}}$ is at the "H" level or

as the odd-numbered address data I/O terminals while \overline{E} is at the "L" level.

However, if the internal memory area is read, external data is ignored from outside while \overline{E} is at the "L" level.

When the BYTE pin level is "L", ports A_{23}/D_7 through $A_{16}/$ D_0 serve

as the address output terminals while $\overline{\mathsf{E}}$ is at the "H" level or

as the even-numbered address data I/O terminals while \overline{E} is at the "L" level.

However, if the internal memory area is read, external data is ignored from outside while $\overline{\mathsf{E}}$ is at the "L" level.

When the BYTE pin level is "H", on the other hand, ports A_{23}/D_7 through A_{16}/D_0 serve

as the address output terminals while $\overline{\mathsf{E}}$ is at the "H" level or

as the even- and odd-numbered address data I/O terminals while $\overline{\mathsf{E}}$ is at the "L" level.

However, if the internal memory area is read, external data is ignored from outside while \overline{E} is at the "L" level.

Port P4, port P5, port P4 and port P5 direction register must be accessed in 8-bit unit.

The port P4 and its direction register addresses (addresses OA_{16} and OC_{16}) are treated special in the evaluation chip mode. When these addresses are accessed, the data bus width is considered to be 16 bits without regard to the BYTE pin level. Further, the access cycle is treated as the internal memory without regard to the wait bit.

Ports P4₃ through P4₆ serve as the MX, QCL, VDA, and VPA output terminals, respectively. Port P4₇ serves as the $\overrightarrow{\text{DBC}}$ input terminal.

The MX signal usually carries the contents of flag m. When

the CPU uses flag x, however, the MX signal carries the contents of flag x.

QCL is the queue buffer clear signal. It goes High when the command queue buffer is to be cleared as a command code previously entered in the command queue buffer cannot be used because of jump or other command execution.

VDA is the valid data address signal. It is at the "H" level while the CPU reads data from or writes data into the data buffer. It also goes High when the command first byte (the operation code) is read from the queue buffer.

VPA is the valid program address signal. It is High while the CPU reads a command code from the command queue buffer.

DBC is the debug control signal which is used for debugging.

Table 9 summarizes the relationship between the $\mathsf{CNV}_{\mathsf{SS}}$ pin input level and processor mode.

Table 9.	Relationship between the CNV _{SS} pin input
	levels and processor modes

CNV _{SS}	Mode	Description
V _{ss}	Microprocessor	Microprocessor mode upon starting after reset. Evaluation chip mode can be selected
or V _{CC}	Evaluation chip	by changing the processor mode bit by software.
2V _{cc}	 Evaluation chip 	Evaluation chip mode only

16-BIT CMOS MICROCOMPUTER

CLOCK GENERATING CIRCUIT

Figure 90 shows a block diagram of the clock generator. When a STP instruction is executed, the internal clock ϕ stops oscillating at "L" level. At the same time, FFF₁₆ is written to watchdog timer and the watchdog timer input connection is forced to f₃₂. This connection is broken and connected to the input determined by the watchdog timer frequency selection flag when the most significant bit of the watchdog timer is cleared or reset.

Oscillation restarts when an interrupt is received, but the internal clock ϕ remains at "L" level until the most significant bit of the watchdog timer is cleared. This is to avoid the unstable interval at the start of oscillation when using a ceramic resonator. When a WIT instruction is executed, the internal clock ϕ stops at "L" level, but the oscillator does not stop. The clock is restarted when an interrupt is received. Instructions can be executed immediately because the oscillator is not stopped.

The stop or wait state is released when an interrupt is received or when reset is issued. Therefore, interrupts must be enabled before executing a STP or WIT instruction.

Figure 91 shows a circuit example using a ceramic (or quartz crystal) resonator. Use the manufacturer's recommended values for constants such as capacitance which differ for each resonator. Figure 92 shows an example of using an external clock signal.

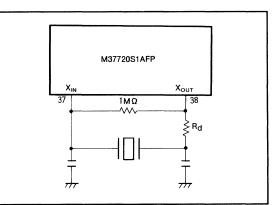


Fig.91 Circuit using a ceramic resonator

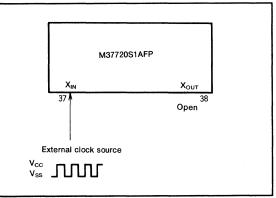
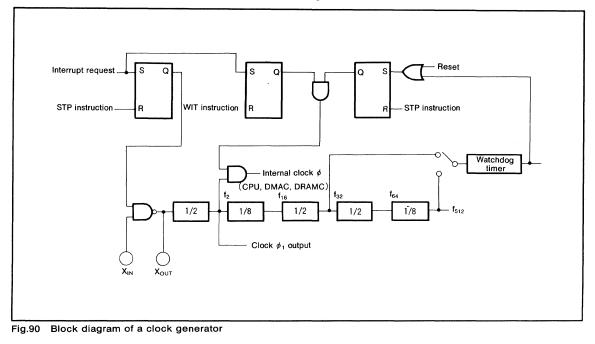



Fig.92 External clock input circuit

16-BIT CMOS MICROCOMPUTER

ADDRESSING MODES

The M37720S1AFP has 28 powerful addressing modes. Refer to the MELPS 7700 addressing mode description for the details of each addressing mode.

MACHINE INSTRUCTION LIST

The M37720S1AFP has 103 machine instructions. Refer to the MELPS 7700 machine instruction list for details.

16-BIT CMOS MICROCOMPUTER

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Ratings	Unit
V _{cc}	Supply voltage		-0.3~7	V
AVcc	Analog supply voltage		-0.3~7	v
VI	Input voltage RESET, CNV _{SS} , BYTE		-0.3~12	v
Vı	Input voltage A ₈ /D ₈ ~A ₁₅ /D ₁₅ , A ₁₆ /D ₀ ~A ₂₃ /D ₇ , P4 ₃ ~P4 ₇ , P5 ₀ ~P5 ₇ , P6 ₀ ~P6 ₇ , P7 ₀ ~P7 ₇ , P8 ₀ ~P8 ₇ , P9 ₀ ~P9 ₇ , P10 ₀ ~P10 ₇ , RDY, HOLD, X _{IN} , V _{REF}		$-0.3 \sim V_{cc} + 0.3$	v
vo	$ \begin{array}{c} \text{Output voltage } A_0/MA_0 \sim A_7/MA_7, \ A_8/D_8 \sim A_{15}/D_{15}, \\ A_{16}/D_0 \sim A_{23}/D_7, \ P4_3 \sim P4_7, \ P5_0 \sim P5_7, \\ P6_0 \sim P6_7, \ P7_0 \sim P7_7, \ P8_0 \sim P8_7, \ P9_0 \sim P9_7, \\ P10_0 \sim P10_7, \ \phi_1, \ \overline{\text{RESET}_{\text{OUT}}}, \ X_{\text{OUT}}, \ \overline{\text{E}}, \ \text{ST0}, \\ \text{ST1, ALE, } \overline{\text{BLE}}, \ \overline{\text{BHE}}, \ R/\overline{W} \end{array} $		−0. 3~V _{cc} +0. 3	v
Pd	Power dissipation	T _a =25℃	300	mW
Topr	Operating temperature		-20~85	°C
Tstg	Storage temperature		-40~150	Ĉ

RECOMMENDED OPERATING CONDITIONS (vcc=5v±10%, Ta=-20~85°C, unless otherwise noted)

0hal	Parameter		Limits		Unit
Symbol	Parameter	Min.	Тур.	Max.	Unit
V _{cc}	Supply voltage	4.5	5.0	5.5	v
AV _{CC}	Analog supply voltage		v_{cc}		v
Vss	Supply voltage		0		v
AV _{SS}	Analog supply voltage		0		v
ViH	High-level input voltage P4 ₃ ~P4 ₇ , P5 ₀ ~P5 ₇ , P6 ₀ ~P6 ₇ , P7 ₀ ~P7 ₇ , P8 ₀ ~P8 ₇ , P9 ₀ ~P9 ₇ , P10 ₀ ~P10 ₇ , RDY, HOLD, BYTE, CNV _{SS} , X _{IN} , V _{REF}	0.8V _{CC}		V _{cc}	v
VIH	High-level input voltage A8/D8~A15/D15, A16/D0~A23/D7	$0.5V_{\rm CC}$		V _{cc}	v
VIL	Low-level input voltage P4 ₃ ~P4 ₇ , P5 ₀ ~P5 ₇ , P6 ₀ ~P6 ₇ , P7 ₀ ~P7 ₇ , P8 ₀ ~P8 ₇ , P9 ₀ ~P9 ₇ , P10 ₀ ~P10 ₇ , RDY, HOLD, BYTE, CNV _{SS} , X _{IN} , V _{REF}	0		0. 2V _{cc}	v
VIL	Low-level input voltage A8/D8~A15/D15, A16/D0~A23/D7	0		0.16V _{CC}	v
l _{он(peak)}	High-level peak output current A ₀ /MA ₀ ~A ₇ /MA ₇ , A ₉ /D ₈ ~A ₁₅ /D ₁₅ , A ₁₆ /D ₀ ~A ₂₅ /D ₇ , P4 ₃ ~P4 ₇ , P5 ₀ ~P5 ₇ , P6 ₀ ~P6 ₇ , P7 ₀ ~P7 ₇ , P8 ₀ ~P8 ₇ , P9 ₀ ~P9 ₇ , P10 ₀ ~P10 ₇ , <i>φ</i> ₁ , RESET _{OUT} , ST0, ST1, ALE, BLE, BHE, R/W			-10	mA
I _{он(avg)}	High-level average output current A ₀ /MA ₀ ~A ₇ /MA ₇ , A ₈ /D ₈ ~A ₁₅ /D ₁₅ , A ₁₆ /D ₀ ~A ₂₃ /D ₇ , P4 ₃ ~P4 ₇ , P5 ₀ ~P5 ₇ , P6 ₀ ~P6 ₇ , P7 ₀ ~P7 ₇ , P8 ₀ ~P8 ₇ , P9 ₀ ~P9 ₇ , P10 ₀ ~P10 ₇ , ϕ_1 , RESET _{OUT} , ST0, ST1, ALE, BLE, BHE, R/W			—5	mA
l _{oL} (peak)	Low-level peak output current A ₀ /MA ₀ ~A ₇ /MA ₇ , A ₈ /D ₈ ~A ₁₅ /D ₁₅ , A ₁₆ /D ₀ ~A ₂₃ /D ₇ , P4 ₃ ~P4 ₇ , P5 ₀ ~P5 ₇ , P6 ₀ ~P6 ₇ , P7 ₀ ~P7 ₇ , P8 ₀ ~P8 ₇ , P9 ₀ ~P9 ₇ , P10 ₀ ~P10 ₇ , \$ ₁ , RESET _{OUT} , ST0, ST1, ALE, BLE, BHE, R/W			10	mA
I _{OL} (avg)	Low-level average output current A ₀ /MA ₀ ~A ₇ /MA ₇ , A ₈ /D ₈ ~A ₁₅ /D ₁₅ , A ₁₆ /D ₀ ~A ₂₃ /D ₇ , P4 ₃ ~P4 ₇ , P5 ₀ ~P5 ₇ , P6 ₀ ~P6 ₇ , P7 ₀ ~P7 ₇ , P8 ₀ ~P8 ₇ , P9 ₀ ~P9 ₇ , P10 ₀ ~P10, 4, RESET _{OUT} , ST0, ST1, ALE, BHE, BHE, R/W			5	mA
f(X _{IN})	External clock frequency input			16	MHz

Note 1. Average output current is the average value of a 100ms interval.

16-BIT CMOS MICROCOMPUTER

M37720S1AFP

ELECTRICAL CHARACTERISTICS ($v_{cc}=5v$, $v_{ss}=0v$, $T_a=25$ °C, $f(X_{IN})=16MHz$)

Symbol	Parameter	Test conditions		Limits		Unit
Symbol	Falanetei		Min.	Тур.	Max.	
V _{он}	High-level output voltage A₀/MA₀~Aァ/MAァ, A₀/D₀~A₁₅/D₁₅, A₁₀/D₀~A₂₃/D₂, P4₃~P4₂, P5₀~P5₂, P6₀~P6₂, P7₀~P7₂, P8₀~P8₂, P9₀~P9₂, P10₀~P10₂, φ₁, RESET₀uт, ST0, ST1, ALE, BLĒ, BHĒ, R/W	I _{OH} =—10mA	3			v
V _{OH}	High-level output voltage A ₀ /MA ₀ ~A ₇ /MA ₇ , A ₈ /D ₈ ~A ₁₅ /D ₁₅ , A ₁₆ /D ₀ ~A ₂₃ /D ₇ , MA ₈ , MA ₉ , RAS, CAS, φ ₁ , ST0, ST1, BLE, BHE, R/W	I _{0H} =-400µА	4.7			v
V _{он}	High-level output voltage ALE	I _{OH} =-10mA I _{OH} =-400μA	3.1			v
V _{он}	High-level output voltage E	I _{OH} =-10mA I _{OH} =-400μA	3.4			v
Vol	Low-level output voltage A ₀ /MA ₀ ~A ₇ /MA ₇ , A ₈ /D ₈ ~A ₁₅ /D ₁₅ , A ₁₆ /D ₀ ~A _{2,3} /D ₇ , P4 ₃ ~P4 ₇ , P5 ₀ ~P5 ₇ , P6 ₀ ~P6 ₇ , P7 ₀ ~P7 ₇ , P8 ₀ ~P8 ₇ , P9 ₀ ~P9 ₇ , P10 ₀ ~P10 ₇ , <i>φ</i> ₁ , <u>RESETour</u> , ST0, ST1, ALE, <u>BLE</u> , BHE, R/W	I _{OL} =10mA			2	v
Vol	Low-level output voltage A ₀ /MA ₀ ~A ₇ /MA ₇ , A ₈ /D ₈ ~A ₁₅ /D ₁₅ , A ₁₆ /D ₀ ~A ₂₃ /D ₇ , MA ₈ , MA ₉ , RAS, CAS, φ ₁ , ST0, ST1, BLE, BHE, R/W	I _{OL} =2mA			0. 45	v
Vol	Low-level output voltage ALE	I _{OL} =10mA			1.9	v
		I _{OL} =2mA			0.43	
Vol	Low-level output voltage E	I _{OL} =10mA I _{OL} =2mA			1.6 0.4	v
v _{t+} -v _{t-}	Hysteresis RDY, HOLD, TA2 _{IN} ~TA4 _{IN} , TB0 _{IN} , TB1 _{IN} , INT ₀ ~INT ₂ , AD _{TRG} , CTS ₀ , CTS ₁ , CLK ₀ , CLK ₁ DMAREQ0~DMAREQ3, TC		0.4		1	v
$V_{T+} - V_{T-}$	Hysteresis RESET		0.2		0.5	v
$v_{\tau+} - v_{\tau-}$	Hysteresis X _{IN}		0.1		0.3	v
IIH	High-level input current A ₈ /D ₈ ~A ₁₅ /D ₁₅ , A ₁₆ /D ₀ ~A ₂₃ /D ₇ , P4 ₃ ~P4 ₇ , P5 ₀ ~P5 ₇ , P6 ₀ ~P6 ₇ , P7 ₀ ~P7 ₇ , P8 ₀ ~P8 ₇ , P9 ₀ ~P9 ₇ , P10 ₀ ~P10 ₇ , RDY, HOLD, BYTE, CNV _{SS} , X _{IN} , RESET	V _i =5V			5	μA
I _{IL}	Low-level input current A ₈ /D ₈ ~A ₁₅ /D ₁₅ , A ₁₆ /D ₀ ~A ₂₃ /D ₇ , P4 ₃ ~P4 ₇ , P5 ₀ ~P5 ₇ , P6 ₀ ~P6 ₇ , P7 ₀ ~P7 ₇ , P8 ₀ ~P8 ₇ , P9 ₀ ~P9 ₇ , P10 ₀ ~P10 ₇ , RDY, HOLD, BYTE, CNV _{SS} , X _{IN} , RESET	v _i =0v			-5	μA
VRAM	RAM hold voltage	When clock is stopped	2			v
		f(X _{IN})=16MHz square waveform		18	36	mA
Icc	Power supply current	$T_a=25^{\circ}C$ when clock is stopped			1	μA
		Ta=85°C when clock is stopped			20	μΑ

16-BIT CMOS MICROCOMPUTER

A-D CONVERTER CHARACTERISTICS ($v_{cc}=5v$, $v_{ss}=0v$, $\tau_a=25$ °C, $f(X_{in})=16$ MHz, unless otherwise noted)

	Parameter	T 4	Lir	11	
Symbol	Parameter	Test conditions	Min.	Max.	Unit
	Resolution	V _{REF} =V _{CC}		8	Bits
	Absolute accuracy	V _{REF} =V _{CC}		±3	LSB
RLADDER	Ladder resistance	V _{REF} =V _{CC}	2	10	kΩ
t _{CONV}	Conversion time		14.5		μs
VREF	Reference voltage		2	V _{cc}	v
VIA	Analog input voltage		0	VREF	v

TIMING REQUIREMENTS ($v_{cc}=5v$, $v_{ss}=0v$, $\tau_a=25$ °C, f(x_{IN})=16MHz, unless otherwise noted)

External clock input

Sumbal	Parameter	Lir		
Symbol t _C t _{W(H)} t _{W(L)} t _r	Parameter	Min. Max. 62	Unit	
t _C	External clock input cycle time	62		ns
t _{W(H)}	External clock input high-level pulse width	25		ns
t _{W(L)}	External clock input low-level pulse width	25		ns
tr	External clock input rise time		10	ns
tf	External clock input fall time		10	ns

Microprocessor mode

Symbol	Parameter	Limits		Unit
Symbol		Min.	Max.	Unit
t _{SU(P4D-E)}	Port P4 input setup time	100		ns
t _{SU(P5D-E)}	Port P5 input setup time	100		ns
t _{SU(P6D-E)}	Port P6 input setup time	100		ns
t _{su(P7D-E)}	Port P7 input setup time	100		ns
t _{SU(P8D-E)}	Port P8 input setup time	100		ns
t _{SU(P9D-E)}	Port P9 input setup time	100		ns
t _{SU(P10D-E)}	Port P10 input setup time	100		ns
th(E-P4D)	Port P4 input hold time	0		ns
th(E-P5D)	Port P5 input hold time	0		ns
th(E-P6D)	Port P6 input hold time	0		ns
th(E-P7D)	Port P7 input hold time	0		ns
th(E-P8D)	Port P8 input hold time	0		ns
th(E-P9D)	Port P9 input hold time	0		ns
th(E-P10D)	Port P10 input hold time	0		ns
t _{su(DH-E)}	Data high-order input setup time	45		ns
t _{su(dl-e)}	Data low-order input setup time	45		ns
t _{su(RDY-ø1})	RDY input setup time	60		ns
t _{su(hold-ø1})	HOLD input setup time	60		ns
th(E-DH)	Data high-order input hold time	0		ns
th(E-DL)	Data low-order input hold time	0		ns
th(ø1-RDY)	RDY input hold time	0		ns
th(¢1-HOLD)	HOLD input hold time	0		ns

16-BIT CMOS MICROCOMPUTER

Timer A input (count input in event counter mode)

Cumbal	Parameter	Lin	nits	Unit
Symbol	Parameter	Min.	Max.	Onit
t _{C(TA)}	TAj _{IN} input cycle time	125		ns
tw(tah)	TAj _{IN} input high-level pulse width	62		ns
tw(TAL)	TAj _{in} input low-level pulse width	62		ns

Timer A input (gating input in timer mode)

Qumbal	Parameter	Limits Min. M 500 250 250	nits	Unit
Symbol	Parameter	Min.	Max.	Onit
t _{C(TA)}	TAj _{IN} input cycle time	500		ns
tw(tah)	TAj _{IN} input high-level pulse width	250		ns
tw(TAL)	TAj _{iN} input low-level pulse width	250		ns

Timer A input (external trigger input in one-shot pulse mode)

Querchal	Parameter	Limits Min. Max. 250 125 125	Limits		Unit
Symbol	Parameter		Unit		
t _{C(TA)}	TAj _{iN} input cycle time	250		ns	
tw(tah)	TAj _{iN} input high-level pulse width	125		ns	
tw(tal)	TAj _{iN} input low-level pulse width	125		ns	

Timer A input (external trigger input in pulse width modulation mode)

Cumbal	Parameter	Lin	nits	Unit
Symbol	Parameter	Min.	Max.	Unit
tw(tah)	TAj _{IN} input high-level pulse width	125		ns
tw(TAL)	TAj _{IN} input low-level pulse width	125		ns

Timer A input (up-down input in event counter mode)

Symbol	Parameter	Lin	500 250	Unit ns ns ns
	Parameter	Min.	Max.	
t _{C(UP)}	TAjout input cycle time	2500		ns
tw(UPH)	TAj _{OUT} input high-level pulse width	1250		ns
	TAjout input low-level pulse width	1250		ns
tsu(UP-TIN)	TAj _{OUT} input setup time	500		ns
tn(TIN-UP)	TAjout input hold time	500		ns

16-BIT CMOS MICROCOMPUTER

Timer B input (count input in event counter mode)

Symbol	Parameter	Lin	5	Unit
Symbol	Parameter	Min.	Max.	Unit
t _{C(TB)}	TBj _{IN} input cycle time (one-edge count)	125		ns
t _{w(твн)}	TBj _{IN} input high-level pulse width (one-edge count)	62		ns
t _{W(TBL)}	TBj _{IN} input low-level pulse width (one-edge count)	62		ns
t _{C(TB)}	TBj _{IN} input cycle time (both-edges count)	250		ns
t _{w(твн)}	TBj _{IN} input high-level pulse width (both-edges count)	125		ns
tw(TBL)	TBj _{IN} input low-level pulse width (both-edges count)	125		ns

Timer B input (pulse period measurement mode)

Symbol	Parameter	Lin	nits	Unit
Symbol	Farameter	Min.	Max.	Unit
t _{C(TB)}	TBj _{IN} input cycle time	500		ns
t _{w(твн)}	TBj _{IN} input high-level pulse width	250		ns
t _{w(TBL)}	TBj _{IN} input low-level pulse width	250		ns

Timer B input (pulse width measurement mode)

Symbol t _{C(TB)} TBj _{IN} input cycle time	Parameter	Lin	nits	Unit
Symbol	Parameter	Min.	Max.	Unit
t _{C(TB)}	TBj _{IN} input cycle time	500		ns
t _{w(твн)}	TBj _{IN} input high-level pulse width	250		ns
t _{w(TBL)}	TBj _{IN} input low-level pulse width	250		ns

A-D trigger input

Symbol	Parameter	Limits Unit Min. Max. 1000 ns 125 ns		
Symbol	Parameter	Min.	Max.	Unit
t _{C(AD)}	AD _{TRG} input cycle time (minimum allowable trigger)	1000		ns
t _{W(ADL)}	AD _{TRG} input low-level pulse width	125		ns

Serial I/O

Symbol	Parameter	Limits		Unit
Symbol	Parameter	Min.	Max.	Unit
t _{c(cк)}	CLKi input cycle time	250		ns
t _{w(скн)}	CLKi input high-level pulse width	125		ns
t _{w(CKL)}	CLKi input low-level pulse width	125		ns
td(c-a)	TxD _i output delay time		90	ns
th(c-a)	TxD _i hold time	0		ns
t _{su(D-C)}	RxDi input setup time	30		ns
th(c-D)	RxDi input hold time	90		ns

External interrupt input

Symbol	Parameter	Lin	nits	Unit
Symbol	Farameter	Min.	Max.	Unit
t _{w(INH)}	INT _i input high-level pulse width	250		ns
t _{W(INL)}	INTi input low-level pulse width	250		ns

16-BIT CMOS MICROCOMPUTER

$\label{eq:switching} \textbf{SWITCHING} \quad \textbf{CHARACTERISTICS} \ (v_{cc} = 5v \pm 10\%, \ v_{ss} = 0v, \ \tau_a = 25\%, \ f(x_{iN}) = 16 \\ \text{MHz, unless otherwise noted})$

Microprocessor mode

Symbol	Parameter	Lin	Limits	Unit
	Parameter	· Min.	Max.	
td(E-P4Q)	Port P4 data output delay time		100	ns
td(E-P5Q)	Port P5 data output delay time		100	ns
td(E-P6Q)	Port P6 data output delay time		100	ns
td(E-P7Q)	Port P7 data output delay time		100	ns
td(E-P8Q)	Port P8 data output delay time		100	ns
td(E-P9Q)	Port P9 data output delay time		100	ns
td(E_P10Q)	Port P10 data output delay time		100	ns

Test conditions are shown in Fig. 93.

When wait bit is "1"

Symbol	Parameter	Lir	Limits	Unit
Symbol		Min.	Max.	Onit
td(AL-E)	Address low-order output delay time	30		ns
td(E-DHQ)	Data high-order output delay time (BYTE="L")		70	ns
tpxz(E-DHZ)	Floating start delay time (BYTE="L")		5	ns
td(AM-E)	Address medium-order output delay time	30		ns
td(AM-ALE)	Address medium-order output delay time	24		ns
td(E-DLQ)	Data low-order output delay time		70	ns
tpxz(E-DLZ)	Floating start delay time		5	ns
td(AH-E)	Address high-order output delay time	30		ns
td(AH-ALE)	Address high-order output delay time	24		ns
td(ALE-E)	ALE output delay time	4		ns
tw(ALE)	ALE pulse width	35		ns
td(BHE-E)	BHE output delay time	30		ns
td(BLE-E)	BLE output delay time	30		ns
td(R/W-E)	R/W output delay time	30		ns
td(E \$\$_1)	ϕ_1 output delay time	0	20	ns
th(E-AL)	Address low-order hold time	25		ns
th(ALE-AM)	Address medium-order hold time (BYTE="L")	9		ns
th(E-DHQ)	Data high-order hold time (BYTE="L")	25		ns
tpzx(e-DHZ)	Floating clear delay time (BYTE="L")	25		ns
th(E-AM)	Address medium-order hold time (BYTE="H")	25		ns
th(ALE-AH)	Address high-order hold time	9		ns
th(E-DLQ)	Data low-order hold time	25		ns
tpzx(E-DLZ)	Floating clear delay time	25		ns
th(E-BHE)	BHE hold time	18		ns
th(E-BLE)	BLE hold time	25		ns
th(E-R/W)	R/W hold time	18		ns
td(_{#1-STI})	ST0, ST1 output delay time		50	ns
	Ē pulse width	95		ns

Test conditions are shown in Fig. 93.

16-BIT CMOS MICROCOMPUTER

Symbol	Parameter	Lin	Limits	Unit
Symbol	Palameter	Min.	Max.	Unit
td(AL-E)	Address low-order output delay time	30		ns
td(E-DHQ)	Data high-order output delay time (BYTE="L")		70	ns
tpxz(e-DHZ)	Floating start delay time (BYTE="L")		5	ns
td(AM-E)	Address medium-order output delay time	30		ns
td(AM-ALE)	Address medium-order output delay time	24		ns
td(E-DLQ)	Data low-order output delay time		70	ns
tpxz(E-DLZ)	Floating start delay time		5	ns
td(AH-E)	Address high-order output delay time	30		ns
td(AH-ALE)	Address high-order output delay time	24		ns
td(ALE-E)	ALE output delay time	4		ns
tw(ALE)	ALE pulse width	35		ns
td(BHE-E)	BHE output delay time	30		ns
td(BLE-E)	BLE output delay time	30		ns
td(R/W-E)	R/W output delay time	30		ns
td(E	∳₁ output delay time	0	20	ns
th(E-AL)	Address low-order hold time	25		ns
th(ALE-AM)	Address medium-order hold time (BYTE="L")	9		ns
th(E-DHQ)	Data high-order hold time (BYTE="L")	25		ns
tpzx(E-DHZ)	Floating clear delay time (BYTE="L")	25		ns
th(E-AM)	Address medium-order hold time (BYTE="H")	25		ns
th(ALE-AH)	Address high-order hold time	9		ns
th(E-DLQ)	Data low-order hold time	25		ns
tpzx(E-DLZ)	Floating clear delay time	25		ns
th(E-BHE)	BHE hold time	18		ns
th(E-BLE)	BLE hold time	25		ns
th(E-R/W)	R/W hold time	18		ns
td(#1-sті)	ST0, ST1 output delay time		50	ns
t _{W(EL)}	Ê pulse width	220		ns

When wait bit is "0", and external memory area is accessed

Test conditions are shown in Fig. 93.

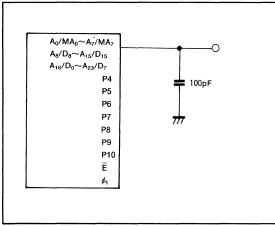


Fig.93 Testing circuit for ports

16-BIT CMOS MICROCOMPUTER

DRAM CONTROL SWITCHING CHARACTERISTICS

(V_{cc} =5V±10%, V_{ss} =0V, T_a =25°C, f(X_{IN})=16MHz, unless otherwise noted)

Symbol	Parameter	Limits	nits	Unit
Symbol	Parameter	Min.	Min. Max.	Unit
tw(RASL)	RAS low-level pulse width	210		ns
tw(CASL)	CAS low-level pulse width	160		ns
tw(RASH)	RAS high-level pulse width	90		ns
td(RAS-CAS)	RAS-CAS delay time	40		ns
td(RA-RAS)	Row address delay time before RAS	10		ns
th(RAS-RA)	Row address hold time after RAS	15		ns
td(ca-cas)	Column address delay time before CAS	0		ns
th(cas-ca)	Column address hold time after CAS	160		ns
td(R/W-RAS)	R/W delay time before RAS	30		ns
th(cas-R/W)	R/W hold time after CAS	0		ns
td(E-RASL)	RAS delay time after E low-level		30	ns
td(E-CASL)	CAS delay time after E low-level		100	ns
td(E-RASH)	RAS delay time after E high-level	0	20	ns
td(E-CASH)	CAS delay time after E high-level	0	20	ns

Test conditions are shown in Fig. 93.

Write state

Read state

Symbol	Deservation	Limits		Unít
	Parameter		Max.	Unit
tw(RASL)	RAS low-level pulse width	210		ns
tw(CASL)	CAS low-level pulse width	100		ns
tw(RASH)	RAS high-level pulse width	90		ns
td(RAS-CAS)	RAS-CAS delay time	105		ns
td(RA-RAS)	Row address delay time before RAS	10		ns
th(RAS-RA)	Row address hold time after RAS	15	-	ns
td(ca-cas)	Column address delay time before CAS	40		ns
th(cas-ca)	Column address hold time after CAS			ns
td(R/W-RAS)	R/W delay time before RAS	30		ns
th(cas-R/W)	R/W hold time after CAS	0		ns
td(E-RASL)	RAS delay time after E low-level		30	ns
td(E-CASL)	CAS delay time after E low-level		170	ns
td(E-RASH)	RAS delay time after E high-level	0	20	ns
td(E-CASH)	CAS delay time after E high-level	0	20	ns

Test conditions are shown in Fig. 93.

Refresh state

Symbol	Parameter		Limits	
	Parameter	Min.	Max.	Unit
	RAS low-level pulse width	210		ns
td(cas-RAS)	CAS-RAS delay time	· 40		ns
th(RAS-CAS)	CAS hold time after RAS	40		ns

Test conditions are shown in Fig. 93.

16-BIT CMOS MICROCOMPUTER

Limits Symbol Parameter Unit Max. Min. tsu(DRQ-#1) DMAREQi input setup time 70 ns DMAREQi input pulse width 125 ns tw(DBO) td(E-STI) ST0, ST1 output delay time 50 ns 70 DMAACKi output delay time ns td(______ Address low-order output delay time 30 ns td(AL-E) Data high-order output delay time (BYTE="L") 70 ns td(E-DHQ) Data high-order floating start delay time (BYTE="L") 5 tpxz(E-DHZ) ns Address medium-order output delay time 30 td(AM-E) ns Data low-order output delay time 70 td(E-DLQ) ns Data low-order floating start delay time 5 tpxz(E-DLZ) ns Address high-order output delay time 30 td(AH-E) ns ALE output delay time 4 td(ALE-E) ns ALE pulse width 35 ns t_{W(ALE)} BHE output delay time 30 ns td(BHE-E) 30 BLE output delay time ns td(BLE-E) R/W output delay time 30 ns td(R/W-E) Address low-order hold time 25 th(E-AL) ns th(ALE-AM) Address medium-order hold time (BYTE="L") 9 ns Data high-order hold time (BYTE="L") 25 ns th(E-DHQ) Data high-order floating release delay time (BYTE="L") 25 ns tpzx(E-DHZ) Address medium-order hold time (BYTE="H") 25 th(E-AM) ns Address high-order hold time 9 th(ALE-AH) ns Data low-order hold time 25 ns th(E-DLQ) Data low-order floating release delay time 25 ns tpzx(E-DLZ) BHE hold time 18 th(E-BHE) ns BLE hold time 25 th(E-BLE) ns R/W hold time 18 th(E-R/W) ns E pulse width 95 t_{W(EL)} ns Copy delay time 80 td(data) ns TC output delay time 60 td(ø1-тс) ns TC output pulse width 95 tw(TC) ns

DMAC SWITCHING CHARACTERISTICS (Vcc=5V±10%, Vss=0V, Ta=25°C, f(XiN)=16MHz, unless otherwise noted)

Test conditions are shown in Fig. 94.

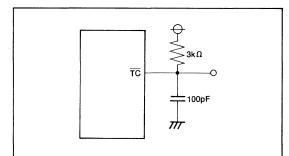
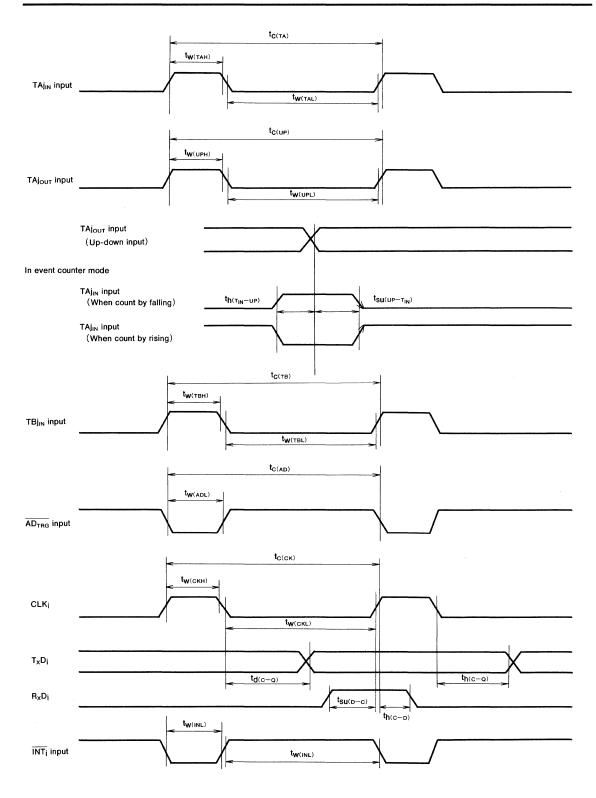
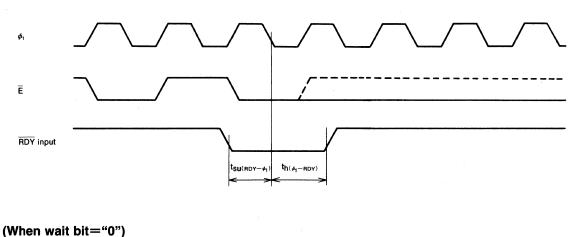


Fig.94 Testing circuit for \overline{TC} output delay time and \overline{TC} output pulse width

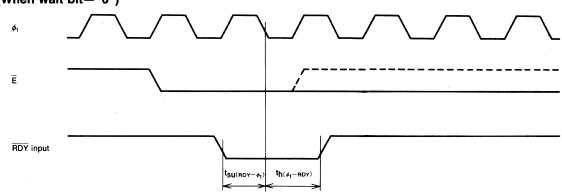


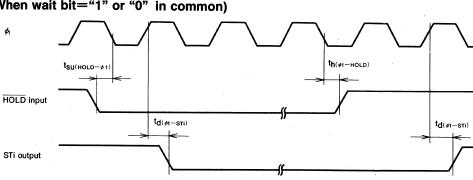
16-BIT CMOS MICROCOMPUTER

TIMING DI	AGRAM	• •
f(X _{IN})		
Ē		↓ td(E-P4Q)
Port P4 output		Χ
Port P4 input	t _{SU(P4D-E)}	<> t _{h(E−P4D)}
Port P5 output	· · · · · · · · · · · · · · · · · · ·	←→ td(E-P5Q)
Port P5 input	^t su(pdd−e) ←	th(E-PSD).
Port P6 output		<→ t _{d(E-P6Q)}
Port P6 input	t _{SU(P6D-E)}	th(E-P6D)
Port P7 output		↔ td(E-P7Q)
Port P7 input	tsu(p7D-E)	th(E-P7D)
Port P8 output		←→ t _{d(E-P8G)}
Port P8 input	t _{SU(P8D-E)}	<-> th(E-P8D)
Port P9 output		td(E-P90)
Port P9 input	tsu(pod-e)	th(E-P9D)
Port P10 output		
Port P10 input	^t su(PIOD-E)	<-> th(E-PIOD)



16-BIT CMOS MICROCOMPUTER





16-BIT CMOS MICROCOMPUTER

Microprocessor mode (When wait bit="1")

(When wait bit="1" or "0" in common)

Test conditions

 $\cdot V_{cc} = 5V \pm 10\%$

• Input timing voltage V_{IL} =1.0V, V_{IH} =4.0V

• Output timing voltage : VoL=0.8V, VoH=2.0V

16-BIT CMOS MICROCOMPUTER

Micropro	cessor mode (When wait bit="1	l")
f(X _{IN})		
Ø1		
Ē		$t_{W(EL)}$ $t_{d(AL-E)}$
$A_0 \sim A_7$ output		ddress Address
$A_8 \sim A_{15}/$ $D_8 \sim D_{15}$ output (BYTE="L")		$\begin{array}{c c} & & & & & & & \\ \hline & & & & & & \\ \hline & & & &$
A ₈ ∼A ₁₅ output (BYTE="H")	XAdi	ddress Address
$D_8 \sim D_{15}$ input		
$A_{16} \sim A_{23}/$ $D_0 \sim D_7$ output	Address	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
D ₀ ∼D ₇ input	t _W (ALE)	td(ALE-E)
	/	тородици и пореди и
BHE output		X ↓ th(E-BLE)
BLE output	td(R/W-E)	↓ t _{h(ε-R/W})
R/W output		

Test conditions

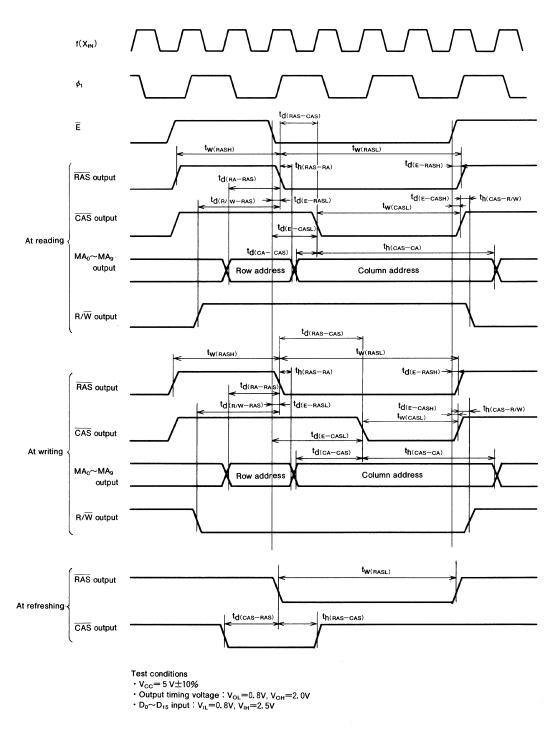
 $\begin{array}{l} \text{v}_{\text{Oc}} = 5 \; \text{v} \pm 10\% \\ \text{v}_{\text{Oc}} = 5 \; \text{v} \pm 10\% \\ \text{v}_{\text{Ot}} = 0.8V, \; \text{v}_{\text{OH}} = 2.0V \\ \text{v}_{\text{D}0} \sim \text{D}_{15} \; \text{input} : \; \text{v}_{\text{IL}} = 0.8V, \; \text{v}_{\text{IH}} = 2.5V \end{array}$

16-BIT CMOS MICROCOMPUTER

Micropro	cessor mode (Wr	nen wait bit="0", and	external me	emory area is acces	ssed)
f(X _{IN})					
¢ι	t _{d(ε−φ1})>				
Ē			td(AL-E)		/
$A_0 \sim A_7$ output	X	t _{h(E-AL)}	X	Address	
$A_8 \sim A_{15}$ / $D_8 \sim D_{15}$ outpur (BYTE="L")	t Address td(ALE-AM)	th(E-DHQ) Data td(E-DHQ) th(E-AM)	Address		+
A ₈ ∼A ₁₅ output (BYTE="H")	X	Address	X	Address	X
$D_8 \sim D_{15}$ input				tsu(DH-E)	
$A_{16} \sim A_{23}/$ $D_0 \sim D_7$ output	th(ALE-AH) Address	th(E-DLQ)	Address		
$D_0 \sim D_7$ input				t _{SU(DL-E)}	
ALE output		- t _W (ale)		► td(ALE-E)	
BHE output		td(BHE-E)	th(е-вне)		X
BLE output		td(ble-e)			χ
R/W output		td(ġ/w-e)	th(E-R/W)		

. .. ----. . 1 .

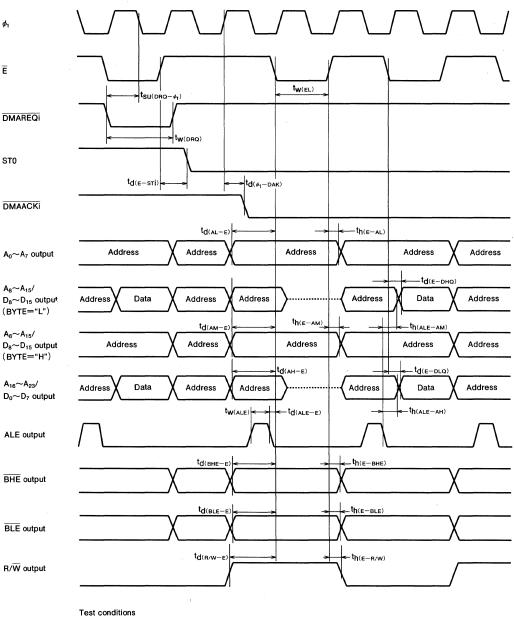
Test conditions


 $\cdot V_{cc} = 5 V \pm 10\%$

• Output timing voltage : $V_{OL}=0.8V, V_{OH}=2.0V$ • $D_0 \sim D_{15}$ input : $V_{IL}=0.8V, V_{IH}=2.5V$

16-BIT CMOS MICROCOMPUTER

When DRAM control



16-BIT CMOS MICROCOMPUTER

When DMA transfer

• Burst transfer timing (External source DMAREQi)

 $\cdot V_{cc} = 5V \pm 10\%$

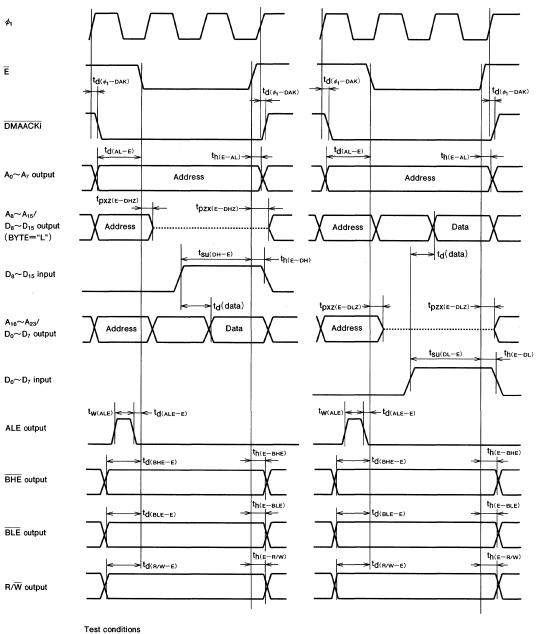
- Output timing voltage : V_{OL}=0.8V, V_{OH}=2.0V $V_{IL} = 0.8V, V_{OH} = 2.5V$: $V_{IL} = 0.8V, V_{OH} = 2.5V$
- <u>D₀~D₁₅ input</u> DMAREQi input

16-BIT CMOS MICROCOMPUTER

When DMA transfer

Cycle steal transfer timing (External source DMAREQi)

φ ₁	
Ē	
DMAREQi	
ST0	$ \langle - $
DMAACKi	
$A_0 \sim A_7$ output	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$A_8 \sim A_{15}/$ $D_8 \sim D_{15}$ output (BYTE="L")	Address Data Address Address Address Address Address
$A_8 \sim A_{15}/$ $D_8 \sim D_{15}$ output (BYTE="H")	td(AM-E) th(E-AM) Address Address Address Address
$A_{16} \sim A_{23}/$ $D_0 \sim D_7$ output	Address Data Address Address Address Address Address Address
ALE output	
BHE output	td(BHE-E) < -> + th(E-BHE)
BLE output	$\begin{array}{c c} t_{d(BLE-E)} & & & t_{h(E-BLE)} \\ \end{array}$
R/W output	
	Test conditions • V _{CC} =5V±10% • Output timing voltage : V _{OL} =0.8V, V _{OH} =2.0V


- D₀~D₁₅ input DMAREQi input $V_{\rm HL} = 0.8V, V_{\rm OH} = 2.5V$ $V_{\rm HL} = 0.8V, V_{\rm OH} = 2.5V$

16-BIT CMOS MICROCOMPUTER

When DMA transfer

• 1-bus cycle transfer timing

 $\cdot V_{cc} = 5V \pm 10\%$

 $\begin{array}{l} \bullet \text{Output timing voltage}: \mathsf{V}_{\mathsf{OL}}{=}0.8\mathsf{V}, \, \mathsf{V}_{\mathsf{OH}}{=}2.0\mathsf{V} \\ \bullet \mathsf{D}_0{\sim}\mathsf{D}_{15} \text{ input} \\ \end{array} \\ \begin{array}{l} \bullet \mathsf{V}_{\mathsf{IL}}{=}0.8\mathsf{V}, \, \mathsf{V}_{\mathsf{OH}}{=}2.5\mathsf{V} \end{array}$

16-BIT CMOS MICROCOMPUTER

When DMA transfer

Transfer complete timing

φ ₁				
Ē		td(¢,-тс)		
TC			<-> ^t d(¢₁−sri)
ST0				
DMAACKi				td(AL-E)
$A_0 \sim A_7$ output	Address	Address	Address	Address
$A_8 \sim A_{15}/$ $D_8 \sim D_{15}$ output (BYTE="L")	Address Data	$\begin{array}{c} \leftarrow t_{h(E-DHQ)} \\ \hline \\ \hline \\ \leftarrow t_{h(E-AM)} \end{array}$	Address	Address Data
$A_8 \sim A_{15}/$ $D_8 \sim D_{15}$ output (BYTE="H")	Address	Address	Address	Address
A ₁₆ ∼A ₂₃ / D ₀ ∼D ₇ output	Address Data	Address	Address	Address Data
ALE output	\frown			
BHE output	````````````````````````````````	<-th(Е-ВНЕ)	X	< <u>→ td(вне-е)</u>
BLE output	>	с th(E-BLE)		
R/\overline{W} output		<th(e−r th="" w)<=""></th(e−r>		> t _{d(R/W-E)}

Test conditions

 $\label{eq:Vcc} \begin{array}{l} \text{Test conditions} \\ \bullet \ensuremath{V_{\text{CC}}} = 5V \pm 10\% \\ \bullet \ensuremath{\text{Output timing voltage}} : \ensuremath{V_{\text{OL}}} = 0.8V, \ensuremath{V_{\text{OH}}} = 2.0V \\ \bullet \ensuremath{D_{\text{CC}}} \sim D_{\text{Vc}} \ensuremath{\text{input}} \\ : \ensuremath{V_{\text{IL}}} = 0.8V, \ensuremath{V_{\text{OH}}} = 2.5V \end{array}$

PROGRAMMABLE ROM VERSION

M37710 GROUP

M37710 GROUP PROM VERSION

3-1

MITSUBISHI MICROCOMPUTERS

M37710 Group

PROM VERSION

M37710 GROUP PROM VERSION

The M37710 group has the PROM version which can be written into the internal PROM corresponding to the mask ROM version.

There are two types for PROM version :

One time PROM version which can be written once
 EPROM version which can be written and erased repeatedly

The PROM version has the same functions as the mask ROM version except for a built-in PROM. Additionally, it has the EPROM mode for writing into the internal PROM.

General purpose PROM writer can be used for writing, so that the PROM version is suitable for a small-quantity and various production.

FEATURES

- Available one time PROM version and windowed EPROM version
- •Choice of low supply voltage ; 2.7V—5.5V, wide operating temperature range version ("L" version)
- Choice of two types as EPROM mode
- •256K modeequivalent to EPROM M5M27C256K •1M modeequivalent to EPROM M5M27C101K
- * The large internal memory version is fixed to 1M mode.

Expansion of M37710 group PROM version

ROM	Group name	Memory size		Frequency-Temp.		Package
type	+ Memory	(Byte)		Supply Vol.		(Note 1)
	identification	ROM	RAM	В	L	
One Time	M37710E4	32K	1024	•		80-pin QFP
PROM	M37710E8	60K	2048	☆☆	☆☆	(80P6N-A)
Windowed EPROM	M37710E4	32K	1024	•	—	80-pin LCC
(Note 2)	M37710E8	60K	2048	☆☆		(80D0)

●:NOW ☆:NEW ☆☆:UNDER DEVELOPMENT

Note 1. "L" version's package is 80P6D-A. Confirm its package on the following pages.

2. Do not use the windowed EPROM version for mass production, because it is a tool for program development (for evaluation).

MITSUBISHI MICROCOMPUTERS M37710E4BXXXFP **M37710E4BFS**

PROM VERSION of M37710M4BXXXFP

DESCRIPTION

The M37710E4BXXXFP is a built-in PROM single-chip microcomputers designed with high-performance CMOS silicon gate technology. This is housed in a 80-pin plastic molded QFP. The features of this chip are similar to those of the M37710M4BXXXFP except that this chip has a 32Kbyte PROM built in.

This single-chip microcomputer has a large 16M bytes address space, three instruction queue buffers, and two data buffers for high-speed instruction execution. The CPU is a 16-bit parallel processor that can also be switched to perform 8-bit parallel processing. This microcomputer is suitable for office, business, and industrial equipment controller that require high-speed processing of large data.

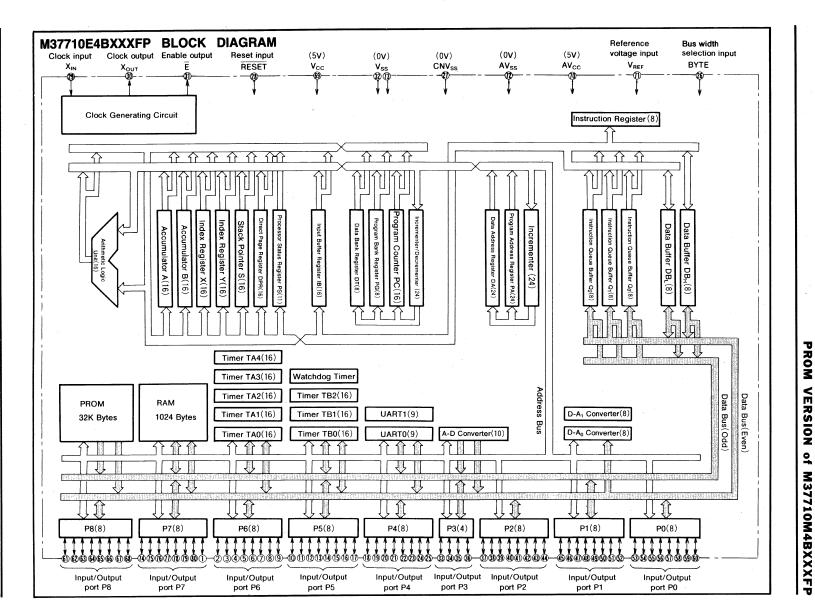
Since general purpose PROM writer can be used for the built-in PROM, this chip is suitable for small quantity production runs. For program development, the M37710E4BFS with erasable ROM that is housed in a windowed ceramic LCC is also provided.

FEATURES

٠	Number of basic	instructions······103
٠	Memory size	PROM ······32K bytes
		RAM ······ 1024 bytes
٠	Instruction exect	ution time
	The fastest instr	uction at 25MHz frequency 160ns
٠	Single power su	pply5V±10%
٠	Low power dissi	pation (at 25MHz frequency)
		······ 95mW (Тур.)
٠		······19 types 7 levels
٠	Multiple function	16-bit timer
		ve waveform can be output.)
٠	UART (may also	be synchronous) ······2
٠	10-bit A-D conve	erter 8-channel inputs
٠	8-bit D-A conver	rter ······ 2-channel outputs
٠	12-bit watchdog	timer
٠	Programmable in	nput/output
	(ports P0, P1, P2	2, P3, P4, P5, P6, P7, P8)······ 68

PIN CONFIGURATION (TOP VIEW) ++ P7₆/AN₆ 11 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 P84/CTS1/RTS1/DA1 PT_ANA + P85/CLK1 P67/TB2IN ' PG_/TB1IN ++ P8e/RyD P6_/TB0 ↔ P8₇/T_xD₁ PO_o/A_o P6_/INT + PO. /A P6_/INT P0_/A M37710E4BXXXFF P61/TA418 PO3/A3 /TA4_{OUT}/RTP PO4/A P5-/TA3. POc/A P56/TA3OUT/RTP12 P06/A6 P55/TA2IN/RTP11 + P07/A P54/TA2OUT/RTP10 + P53/TA1IN/RTP03 + ++ P1_/A_/D_ P11/Ag/Dg P52/TA1OUT/RTP02 ↔ P1₂/A₁₀/D₁₀ P51/TA0IN/RTP01 + ++ P13/A11/D11 50/TAOOUT/RTPOD ↔ P14/A12/D12 P47/DBC ↔ P1₅/A₁₃/D₁₃ P46/VPA* ++ P1_/A14/D14 ++ P17/A15/D15 P45/VDA* 4₄/QCL* + ↔ P20/A16/D0 P4₃/MX* ↔ ++ P21/A17/D1 ↔ P2₂/A₁₈/D₂ P4./6. + P4./RD ++ P23/A19/D3 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 $\begin{array}{c} \mbox{REE:} \label{eq:relation} \mbox{REE:} \mbox{REE:}$ t V_{SS} 10FD Outline 80P6N-A *: Used in the evaluation chip mode only

APPLICATION


Control devices for office equipment such as copiers, printers, typewriters, facsimiles, word processors, and personal computers

Control devices for industrial equipment such as communication and measuring instruments

NOTE

- (1) Do not use the M37710E4BFS for mass production because it is a tool for program development (for evalution).
- (2) Refer to "Chapter 5 PRECAUTIONS" when using this microcomputer.

MITSUBISHI MICROCOMPUTERS **M**37 71 ω 0 F 4 ~ IOE4B ή Т S τ

VERSION 9 M37710M4BXXXFP

MITSUBISH

3-6

MITSUBISHI MICROCOMPUTERS M37710E4BXXXFP M37710E4BFS

PROM VERSION of M37710M4BXXXFP

FUNCTIONS OF M37710E4BXXXFP

Parameter		Functions	
Number of basic instructions		103	
Instruction execution time 160ns (the fastest instruction at external clock 25MHz fre		160ns (the fastest instruction at external clock 25MHz frequency)	
	PROM	32K bytes	
Memory size	RAM	1024 bytes	
	P0~P2, P4~P8	8 -bit× 8	
Input/Output ports	P3	4 -bit×1	
	TA0, TA1, TA2, TA3, TA4	16-bit×5	
Multi-function timers	TB0, TB1, TB2	16-bit× 3	
Serial I/O		(UART or clock synchronous serial I/O)×2	
A-D converter		10-bit×1 (8 channels)	
D-A converter		8 -bit×2	
Watchdog timer		12-bit× 1	
		3 external types, 16 internal types	
Interrupts		(Each interrupt can be set the priority levels to $0 \sim 7$.)	
Clock generating circuit		Built-in(externally connected to a ceramic resonator or quartz crystal resonat	
Supply voltage		5 V±10%	
Power dissipation		95mW(at external clock 25MHz frequency)	
	Input/Output voltage	5 V	
Input/Output characteristic	Output current	5 mA	
Memory expansion		Maximum 16M bytes	
Operating temperature range -20~85°C		−20~85℃	
Device structure		CMOS high-performance silicon gate process	
Destars	M37710E4BXXXFP	80-pin plastic molded QFP	
Package	M37710E4BFS	80-pin ceramic LCC (with a window)	

PROM VERSION of M37710M4BXXXFP

PIN DESCRIPTION

Pin	Name	Input/Output	Functions
V _{CC} , V _{SS}	Power supply		Supply 5 V±10% to V_{CC} and 0 V to $V_{SS}.$
CNV _{SS}	CNV _{ss} input	Input	This pin controls the processor mode. Connect to V_{SS} for single-chip mode, and to V_{CC} for external ROM types.
RESET	Reset input	Input	To enter the reset state, this pin must be kept at a "L" condition which should be maintained for the re- quired time.
X _{IN}	Clock input	Input	These are I/O pins of internal clock generating circuit. Connect a ceramic or quartz crystal resonator be-
Xout	Clock output	Output	tween X_{iN} and X_{OUT} . When an external clock is used, the clock source should be connected to the X_{iN} pin and the X_{OUT} pin should be left open.
Ē	Enable output	Output	Data or instruction read and data write are performed when output from this pin is "L".
BYTE	Bus width selection input	Input	In memory expansion mode or microprocessor mode, this pin determines whether the external data bus is 8-bit width or 16-bit width. The width is 16 bits when "L" signal inputs and 8 bits when "H" signal inputs.
AV _{CC} AV _{SS}	Analog supply input		Power supply for the A-D converter. AV_{SS} is also used for D-A converter. Connect AV_{CC} to V_{CC} and AV_{SS} to V_{SS} externally.
V _{REF}	Reference voltage input	Input	This is reference voltage input pin for the A-D converter and the D-A converter.
P0 ₀ ~P0 ₇	I/O port P0	1/0	In single-chip mode, port P0 becomes an 8-bit I/O port. An I/O direction register is available so that each pin can be programmed for input or output. These ports are in input mode when reset . Address($A_7 \sim A_0$)is output in memory expansion mode or microprocessor mode.
P1 ₀ ~P1 ₇	I/O port P1	1/0	In single-chip mode, these pins have the same functions as port P0. When the BYTE pin is set to "L" in memory expansion mode or microprocessor mode and external data bus is 16-bit width, high-order data $(D_{15} \sim D_8)$ is input or output when \overline{E} output is "L" and an address $(A_{15} \sim A_8)$ is output when \overline{E} output is "H". If the BYTE pin is "H" that is an external data bus is 8-bit width, only address $(A_{15} \sim A_8)$ is output.
P2 ₀ ~P2 ₇	I/O port P2	1/0	In single-chip mode, these pins have the same functions as port P0. In memory expansion mode or microprocessor mode low-order data($D_7 \sim D_0$) is input or output when \overline{E} output is "L" and an address($A_{23} \sim A_{16}$) is output when \overline{E} output is "H".
P3₀~P3₃	I/O port P3	1/0	In single-chip mode , these pins have the same functions as port P0. In memory expansion mode or mic- roprocessor mode, R/W, BHE, ALE, and HLDA signals are output.
P4₀~P4 ₇	I/O port P4	I/O	In single-chip mode, these pins have the same functions as port P0. In memory expansion mode or microprocessor mode, P4 ₀ and P4 ₁ become \overline{HOLD} and \overline{RDY} input pin respectively. Functions of other pins are the same as in single-chip mode. In single-chip mode or memory expansion mode, port P4 ₂ can be programmed for ϕ_1 output pin divided the clock to X _{IN} pin by 2. In microprocessor mode, P4 ₂ always has the function as ϕ_1 output pin.
P5₀~P5 ₇	I/O port P5	1/0	In addition to having the same functions as port P0 in single-chip mode, these pins also function as I/O pins for timer A0, timer A1, timer A2 and timer A3. $P5_0 \sim P5_6$ also function as output pins for pulse motor drive waveform.
P6 ₀ ~P6 ₇	I/O port P6	1/0	In addition to having the same functions as port P0 in single-chip mode, these pins also function as I/C pins for timer A4, external interrupt input $\overline{INT_0}$, $\overline{INT_1}$ and $\overline{INT_2}$ pins, and input pins for timer B0, timer B1 and timer B2. P6 ₀ also functions as output pin for pulse motor drive waveform.
₽7 ₀ ∼₽7 ₇	I/O port P7	1/0	In addition to having the same functions as port P0 in single-chip mode, these pins also function as analog input $AN_0 \sim AN_7$ input pins. P7 ₇ also has an A-D conversion trigger input function.
P80~P87	I/O port P8	. 1/0	In addition to having the same functions as port P0 in single-chip mode, these pins also function as R_XD T _x D, CLK, CTS/RTS pins for UART 0 and UART 1, and output pins for D-A converter.

PROM VERSION of M37710M4BXXXFP

PIN DESCRIPTION (EPROM MODE)

Pin	Name	Input/Output	Functions
V _{CC} , V _{SS}	Power supply		Supply 5 V±10% to V_{cc} and 0 V to V_{ss.}
CNV _{SS}	V _{PP} input	Input	Connect to V _{PP} when programming or verifing.
BYTE	V _{PP} input	Input	Connect to V _{PP} when programming or verifing.
RESET	Reset input	Input	Connect to V _{SS} .
X _{IN}	Clock input	Input	Connect a ceramic resonator between X _{IN} and X _{OUT} .
Х _{оит}	Clock output	Output	
Ē	Enable output	Output	Keep open.
AV _{CC} , AV _{SS}	Analog supply input		Connect AV _{CC} to V _{CC} and AV _{SS} to V _{SS} .
V _{REF}	Reference voltage input	Input	Connect to V _{SS} .
P0 ₀ ~P0 ₇	Address input (A ₀ ~A ₇)	Input	Port P0 functions as the lower 8 bits address input $(A_0 \sim A_7)$.
P10~P17	Address input (A ₈ ~A ₁₅)	Input	Port $P1_0 \sim P1_7$ functions as the higher 8 bits address input ($A_8 \sim A_{15}$). In 256K mode, connect $P1_7$ to V_{CC} .
P2 ₀ ~P2 ₇	Data I/O (D ₀ ∼D ₇)	1/0	Port P2 functions as the 8 bits data bus $(D_0 \sim D_7)$.
P3 ₀ ~P3 ₃	Input port P3	Input	Connect to V _{SS} .
P4 ₀ ~P4 ₇	Input port P4	Input	Connect to V _{SS} .
P5₀~P5 ₇	Control signal input	Input	$P5_0^*, P5_1$ and $P5_2$ functions as \overline{PGM}^* , \overline{OE} and \overline{CE} input pin respectively. Connect $P5_3$, $P5_4$ and $P5_5$ to V_{CC} . Connect $P5_6$ to V_{SS} in 256K mode and to V_{CC} in 1M mode. Connect $P5_7$ to V_{SS} .
P60~P67	Input port P6	Input	Connect to V _{SS} .
P7₀~P7 ₇	Input port P7	Input	Connect to V _{SS} .
P80~P87	Input port P8	Input	Connect to V _{SS} .

* : It is available in 1M mode.

PROM VERSION of M37710M4BXXXFP

BASIC FUNCTION BLOCKS

The M37710E4BXXXFP has the same functions as the M37710M4BXXXFP except that the built-in ROM is PROM. Therefore, refer to the section on the M37710M4BXXXFP.

MEMORY

The memory map is shown in Figure 1.

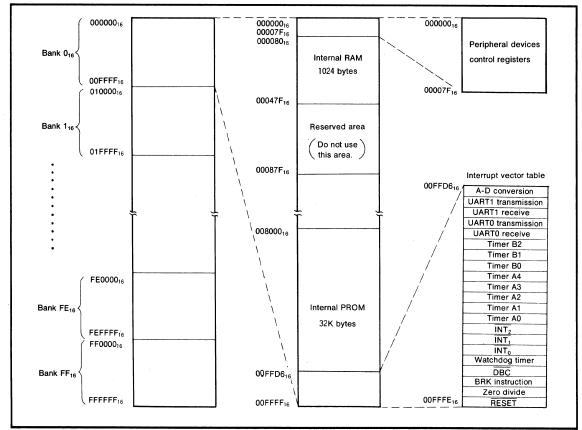


Fig. 1 Memory map

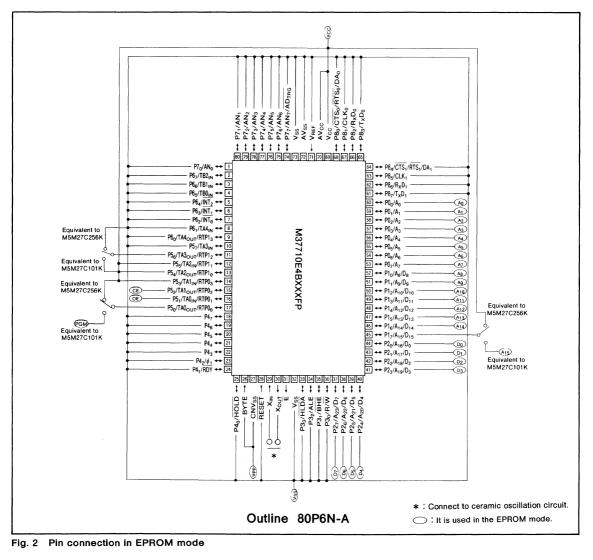
PROM VERSION of M37710M4BXXXFP

EPROM MODE

The M37710E4BXXXFP features an EPROM mode in addition to its normal modes. When the $\overline{\text{RESET}}$ signal level is "L", the chip automatically enters the EPROM mode. Table 1 list the correspondence between pins and Figure 2 shows the pin connections in the EPROM mode.

There are two EPROM modes. One is the 256K mode for the EPROM that is equivalent to the M5M27C256K, and the other is the 1M mode for the EPROM that is equivalent to the M5M27C101K. 256K mode is selected when port P5₆ is set to "L" level, and 1M mode is selected when it is set to "H" level.

When in the EPROM mode, ports P0, P1, P2, P5₀, P5₁, P5₂, CNV_{SS} and BYTE are used for the EPROM (equivalent to the M5M27C256K or M5M27C101K). When in this mode,


the built-in PROM can be written to or read from using these pins in the same way as with the M5M27C256K or M5M27C101K.

This chip does not have Device Identifier Mode, so that set the corresponding program algorithm. The program area should specify address $0000_{16} \sim 7FFF_{16}$ in 256K mode, and address $18000_{16} \sim 1FFFF_{16}$ in 1M mode.

Connect the clock which is either ceramic resonator or external clock to $X_{\rm IN}$ pin and $X_{\rm OUT}$ pin.

For one time PROM version, 256K mode should be recommended to write more deeply.

For EPROM version (with window), 1M mode should be recommended because EPROM version is repeated to write and erase. 1M mode is faster than 256K mode for writing.

PROM VERSION of M37710M4BXXXFP

Table 1. Pin function in EPROM mode

	M37710E4BXXXFP	M5M27C256K	M5M27C101K		
V _{cc}	V _{cc}	V _{cc}			
VPP	CNV _{SS} , BYTE	V _{PP}			
V _{ss}	V _{ss}	V _{SS}			
Address input	Ports P0, P1*	A ₀ ~A ₁₄	A ₀ ~A ₁₅		
Data I/O	Port P2	D ₀ ~	~D7		
CE	P52	Ō	E		
OE	P51	OE			
PGM	P50*	– PGM			

* : In 256K mode, connect P17 and P50 to $V_{\rm CC}.$

PROM VERSION of M37710M4BXXXFP

FUNCTION IN EPROM MODE (1) 1M mode (equivalent to the M5M27C101K)

Reading

To read the EPROM, set the \overline{CE} and \overline{OE} pins to a "L" level. Input the address of the data $(A_0 \sim A_{15})$ to be read, and the data will be output to the I/O pins $D_0 \sim D_7$. The data I/O pins will be floating when either the \overline{CE} or \overline{OE} pins are in the "H" state.

Writing

Writing must be performed in 8 bits by a byte program. To write to the EPROM, set the \overline{CE} pin to a "L" level and the \overline{OE} pin to a "H" level. The CPU will enter the program mode when 12.5V is applied to the V_{PP} pin. The address to be written to is selected with pins A₀~A₁₅, and the data to be written is input to pins D₀~D₇. Set the \overline{PGM} pin to a "L" level to being writing.

Erasing

To erase data on this chip, use an ultraviolet light source with a 2537 Angstrom wave length. The minimum radiation power necessary for erasing is $15 \text{ W} \cdot \text{s/cm}^2$.

Writing operation

To program the M37710E4BXXXFP, first set V_{CC} =6V, V_{PP} = 12.5V, and set the address to 18000₁₆. Apply a 0.2ms write pulse, check that the data can be read, and if it cannot be read OK, repeat the procedure, applying a 0.2ms write pulse and checking that the data can be read until it can be read OK. Record the accumulated number of pulse applied (X) before the data can be read OK, and then write the data again, applying a further once this number of pulses (0.2X X ms).

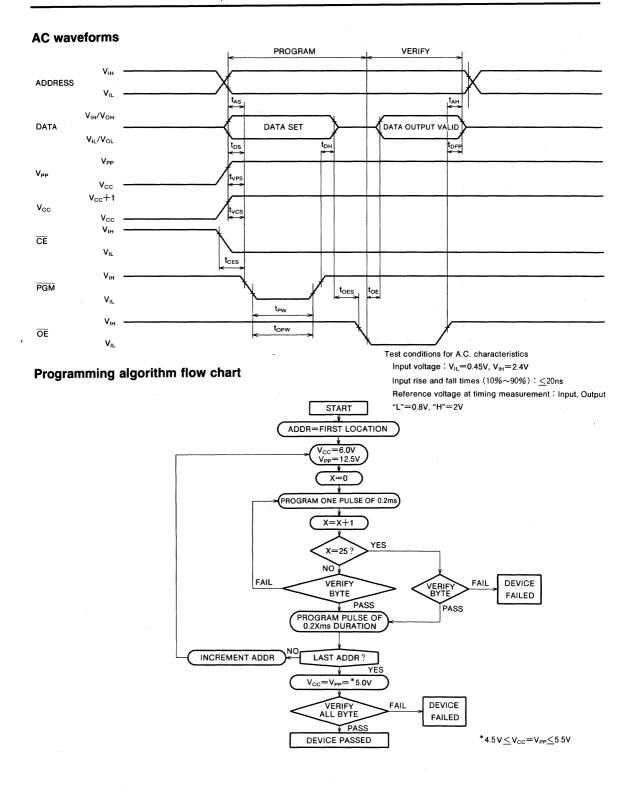
When this series of write operations is complete, increment the address, and continue to repeat the procedure above until the last address has been reached.

Finally, when all addresses have been written, read with $V_{\rm CC}{=}V_{\rm PP}{=}5V($ or $V_{\rm CC}{=}V_{\rm PP}{=}5.5V).$

Table	2.	I/O	signal	in	each	mode
-------	----	-----	--------	----	------	------

Pin Mode	CE	ŌĒ	PGM	V _{PP}	V _{cc}	Data I/O
Read-out	VIL	VIL	х	5 V	5 V	Output
Output	VIL	VIH	X	5 V	5 V	Floating
Disable	ViH	Х	X	5 V	5 V	Floating
Programming	VIL	ViH	V _{iL}	12.5V	6 V	Input
Programming Verify	VIL	Vı∟	VIH	12. 5V	6 V	Output
Program Disable	VIH	ViH	VIH	12. 5V	6 V	Floating

Note 1 : An X indicates either VIL or VIH.


Program operation (equivalent to the M5M27C101K)

AC ELECTRICAL CHARACTERISTICS (Ta=25±5°C, V_{CC}=6V±0.25V, V_{PP}=12.5±0.3V, unless otherwise noted)

Symbol	Parameter	Test see ditions		Limits		
Symbol		Test conditions	Min.	Тур.	Max.	Unit
t _{AS}	Address setup time		2			μs
toes	OE setup time		2			μs
t _{DS}	Data setup time		2			μs
t _{AH}	Address hold time		0			μs
t _{DH}	Data hold time		2			μs
t _{DFP}	Output enable to output float delay		0		130	ns
t _{vcs}	V _{CC} setup time		2			μs
t _{VPS}	V _{PP} setup time		2			μs
t _{PW}	PGM pulse width		0.19	0.2	0.21	ms
topw	PGM over program pulse width		0.19		5.25	ms
t _{CES}	CE setup time		2			μs
t _{OE}	Data valid from OE				150	ns

PROM VERSION of M37710M4BXXXFP

PROM VERSION of M37710M4BXXXFP

(2) 256K mode (equivalent to the M5M27C256K)

Reading

To read the EPROM, set the \overline{CE} and \overline{OE} pins to a "L" level. Input the address of the data $(A_0 \sim A_{14})$ to be read, and the data will be output to the I/O pins $D_0 \sim D_7$. The data I/O pins will be floating when either the \overline{CE} or \overline{OE} pins are in the "H" state.

Writing

To write to the EPROM, set the \overline{OE} pin to a "H" level. The CPU will enter the program mode when V_{PP} is applied to the V_{PP} pin. The address to be written to is selected with pins A₀~A₁₄, and the data to be written is input to pins D₀ ~D₇. Set the \overline{CE} pin to a "L" level to being writing.

Erasing

To erase data on this chip, use an ultraviolet light source with a 2537 Angstrom wave length. The minimum radiation power necessary for erasing is $15 \text{ W} \cdot \text{s/cm}^2$.

Writing operation

To program the M37710E4BXXXFP, first set V_{CC} =6V, V_{PP} = 12.5V, and set the address to "0". Apply a 1ms write pulse, check that the data can be read, and if it cannot be read OK, repeat the procedure, applying a 1ms write pulse and checking that the data can be read until it can be read OK. Record the accumulated number of pulse applied (X) before the data can be read OK, and then write the data again, applying a further three times this number of pulses (3X X ms).

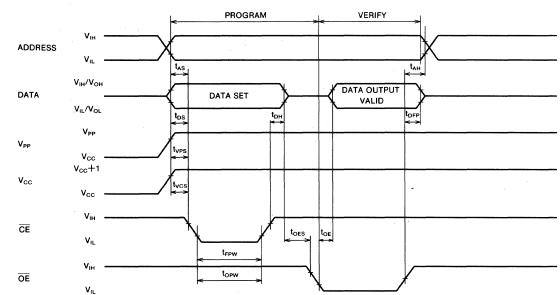
When this series of write operations is complete, increment the address, and continue to repeat the procedure above until the last address has been reached.

Finally, when all addresses have been written, read with $V_{CC} = V_{PP} = 5V($ or $V_{CC} = V_{PP} = 5.5V)$.

Pin Mode	CE	ŌĒ	V _{PP}	V _{cc}	Data I/O
Read-out	VIL	VIL	5 V	5 V	Output
Output	VIL	ViH	5 V	5 V	Floating
Disable	VIH	X	5 V	5 V	Floating
Programming	VIL	ViH	12.5V	6 V	Input
Programming Verify	VIH	VIL	12. 5 V	6 V	Output
Program Disable	VIH	VIH	12.5V	6 V	Floating

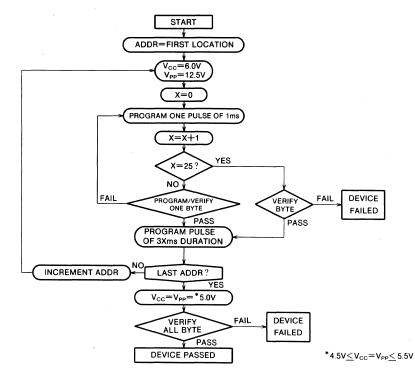
Table 3. I/O signal in each mode

Note 1 : An X indicates either VIL or VIH


Program operation (equivalent to the M5M27C256K)

AC ELECTRICAL CHARACTERISTICS (Ta=25±5°C, V_{CC}=6V±0.25V, V_{PP}=12.5±0.3V, unless otherwise noted)

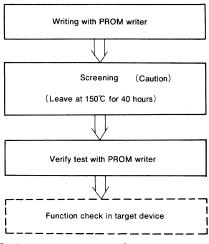
Ourse had	Parameter	To share dittant		Limits			
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit	
t _{AS}	Address setup time		2			μs	
toes	OE setup time		2			μs	
t _{DS}	Data setup time		2			μs	
t _{AH}	Address hold time		0			μs	
t _{DH}	Data hold time		2			μs	
t _{DFP}	Output enable to output float delay		0		130	ns	
t _{vcs}	V _{CC} setup time		2			μs	
t _{VPS}	V _{PP} setup time		2			μs	
t _{FPW}	CE initial program pulse width		0.95	1	1.05	ms	
t _{OPW}	CE over program pulse width		2.85		78.75	ms	
toE	Data valid from OE				150	ns	



PROM VERSION of M37710M4BXXXFP

AC waveforms

Programming algorithm flow chart



PROM VERSION of M37710M4BXXXFP

SAFETY INSTRUCTIONS

- Sunlight and fluorescent lamp contain light that can erase written information. When using in read mode, be sure to cover the transparent glass portion with a seal or other materials (ceramic package product).
- (2) Mitsubishi Electric corp. provides the seal for covering the transparent glass. Take care that the seal does not touch the read pins (ceramic package product).
- (3) Clean the transparent glass before erasing. Fingers' fat and paste disturb the passage of ultraviolet rays and may affect badly the erasure capability (ceramic package product).
- (4) A high voltage is used for writing. Take care that overvoltage is not applied. Take care especially at power on.
- (5) The programmable M37710E4BFP that are shipped in blank is also provided. For the M37710E4BFP, Mitsubishi Electric corp. does not perform PROM write test and screening following the assembly processes. To improve reliability after write, performing write and test according to the flow below before use is recommended.

Caution : Never expose to 150 °C exceeding 100 hours.

ADDRESSING MODES

The M37710E4BXXXFP has 28 powerful addressing modes. Refer to the MELPS 7700 addressing mode description for the details of each addressing mode.

MACHINE INSTRUCTION LIST

The M37710E4BXXXFP has 103 machine instructions. Refer to the MELPS 7700 machine instruction list for details.

DATA REQUIRED FOR PROM ORDERING

Please send the following data for writing to PROM.

- (1) M37710E4BXXXFP writing to PROM order confirmation form
- (2) 80P6N mark specification form
- (3) ROM data (EPROM 3 sets)

PROM VERSION of M37710M4BXXXFP

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Ratings	Unit
V _{cc}	Supply voltage		-0.3~7	V
AV _{cc}	Analog supply voltage		-0.3~7	v
V,	Input voltage RESET, CNV _{SS} , BYTE		-0.3~12(Note 1)	v
Vı	Input voltage P0 ₀ ~P0 ₇ , P1 ₀ ~P1 ₇ , P2 ₀ ~P2 ₇ , P3 ₀ ~P3 ₃ , P4 ₀ ~P4 ₇ , P5 ₀ ~P5 ₇ , P6 ₀ ~P6 ₇ , P7 ₀ ~P7 ₇ , P8 ₀ ~P8 ₇ , V _{REF} , X _{IN}		-0.3~V _{cc} +0.3	v
Vo	Output voltage P0 ₀ ~P0 ₇ , P1 ₀ ~P1 ₇ , P2 ₀ ~P2 ₇ , P3 ₀ ~P3 ₃ , P4 ₀ ~P4 ₇ , P5 ₀ ~P5 ₇ , P6 ₀ ~P6 ₇ , P7 ₀ ~P7 ₇ , P8 ₀ ~P8 ₇ , X ₀₀₇ , Ē		−0.3~V _{cc} +0.3	v
Pd	Power dissipation	T _a =25℃	300	mW
Topr	Operating temperature		-20~85	°C
Tstg	Storage temperature		-40~150	°C

Note 1. Input voltage for $\mathsf{CNV}_{\mathsf{SS}}$ and BYTE pins is 13V in writing to PROM.

RECOMMENDED OPERATING CONDITIONS ($v_{cc}=5v\pm10\%$, $T_a=-20\sim85$ °C, unless otherwise noted)

Symbol	Parameter		Limits				
Gymbol	raidinetei	Min.	Тур.	Max.	Unit		
V _{cc}	Supply voltage	4.5	5.0	5.5	V		
AV _{cc}	Analog supply voltage		Vcc		V		
V _{ss}	Supply voltage		0		V		
AV _{ss}	Analog supply voltage		0		v		
V _{IH}	High-level input voltage P0 ₀ ~P0 ₇ , P3 ₀ ~P3 ₃ , P4 ₀ ~P4 ₇ , P5 ₀ ~P5 ₇ , P6 ₀ ~P6 ₇ , P7 ₀ ~P7 ₇ , P8 ₀ ~P8 ₇ , X _{IN} , RESET, CNV _{SS} , BYTE	0.8V _{cc}		V _{cc}	V		
VIH	High-level input voltage P1 ₀ ~P1 ₇ , P2 ₀ ~P2 ₇ (in single-chip mode)	0.8V _{CC}		V _{cc}	v		
VIH	High-level input voltage P1 ₀ ~P1 ₇ , P2 ₀ ~P2 ₇ (in memory expansion mode and microprocessor mode)	0.5V _{CC}	a.	V _{cc}	v		
VIL	$\begin{array}{llllllllllllllllllllllllllllllllllll$	0		0. 2V _{CC}	v		
VIL	Low-level input voltage P1 ₀ ~P1 ₇ , P2 ₀ ~P2 ₇ (in single-chip mode)	0		0. 2V _{CC}	v		
VIL	Low-level input voltage P1 ₀ ~P1 ₇ , P2 ₀ ~P2 ₇ (in memory expansion mode and microprocessor mode)	0		0. 16V _{CC}	v		
I _{OH(peak)}	High-level peak output current P0 ₀ ~P0 ₇ , P1 ₀ ~P1 ₇ , P2 ₀ ~P2 ₇ , P3 ₀ ~P3 ₃ , P4 ₀ ~P4 ₇ , P5 ₀ ~P5 ₇ , P6 ₀ ~P6 ₇ , P7 ₀ ~P7 ₇ , P8 ₀ ~P8 ₇			-10	mA		
I _{он(avg)}	High-level average output current P0 ₀ ~P0 ₇ , P1 ₀ ~P1 ₇ , P2 ₀ ~P2 ₇ , P3 ₀ ~P3 ₃ , P4 ₀ ~P4 ₇ , P5 ₀ ~P5 ₇ , P6 ₀ ~P6 ₇ , P7 ₀ ~P7 ₇ , P8 ₀ ~P8 ₇			-5	mA		
IOL(peak)	Low-level peak output current P0 ₀ ~P0 ₇ , P1 ₀ ~P1 ₇ , P2 ₀ ~P2 ₇ , P3 ₀ ~P3 ₃ , P4 ₀ ~P4 ₇ , P5 ₀ ~P5 ₇ , P6 ₀ ~P6 ₇ , P7 ₀ ~P7 ₇ , P8 ₀ ~P8 ₇			10	mA		
I _{OL(avg)}	$\begin{array}{llllllllllllllllllllllllllllllllllll$			5	mA		
f(X _{IN})	External clock frequency input			25	MHz		

Note 2. Average output current is the average value of a 100ms interval.

3. The sum of $I_{OL(Peak)}$ for ports P0, P1, P2, P3, and P8 must be 80mA or less, the sum of $I_{OH(Peak)}$ for ports P0, P1, P2, P3, and P8 must be 80mA or less, the sum of $I_{OL(Peak)}$ for ports P4, P5, P6, and P7 must be 80mA or less, and the sum of $I_{OH(Peak)}$ for ports P4, P5, P6, and P7 must be 80mA or less.

PROM VERSION of M37710M4BXXXFP

Symbol	Parameter	Toot on	Test conditions		Limits			
Symbol	Parameter	Test co	manuons	Min.	Тур.	Max.	Uni	
V _{он}	High-level output voltage P0 ₀ ~P0 ₇ , P1 ₀ ~P1 ₇ , P2 ₀ ~P2 ₇ , P3 ₀ , P3 ₁ , P3 ₃ , P4 ₀ ~P4 ₇ , P5 ₀ ~P5 ₇ , P6 ₀ ~P6 ₇ , P7 ₀ ~P7 ₇ , P8 ₀ ~P8 ₇	I _{OH} =-10mA		3			v	
V _{он}	High-level output voltage P0 ₀ ~P0 ₇ , P1 ₀ ~P1 ₇ , P2 ₀ ~P2 ₇ , P3 ₀ , P3 ₁ , P3 ₃	I _{OH} =-400µА		4.7			v	
V _{OH}	High-level output voltage P32	I _{OH} =-10mA		3.1			v	
∙он		I _{ОН} =-400µА		4.8			· ·	
V _{он}	High-level output voltage E	I _{OH} =-10mA		3.4			v	
∙он		I _{OH} =-400µА		4.8			· ·	
Vol	Low-level output voltage $P0_0 \sim P0_7$, $P1_0 \sim P1_7$, $P2_0 \sim P2_7$, $P3_0$, $P3_1$, $P3_3$, $P4_0 \sim P4_7$, $P5_0 \sim P5_7$, $P6_0 \sim P6_7$, $P7_0 \sim P7_7$, $P8_0 \sim P8_7$	I _{OL} =10mA				2	v	
Vol	Low-level output voltage P0 ₀ ~P0 ₇ , P1 ₀ ~P1 ₇ , P2 ₀ ~P2 ₇ , P3 ₀ , P3 ₁ , P3 ₃	I _{OL} =2mA				0.45	v	
v	Low level output veltage P2	I _{OL} =10mA				1.9	v	
Vol	Low-level output voltage P32	I _{OL} =2mA				0.43	v v	
V	Low-level output voltage E	I _{OL} =10mA				1.6	v	
Vol		I _{OL} =2mA				0.4	Ľ	
$v_{\tau+} - v_{\tau-}$	$ \begin{array}{c} \text{Hysteresis} \overline{\text{HOLD}}, \ \overline{\text{RDY}}, \ \text{TA0}_{\text{IN}} \sim \text{TA4}_{\text{IN}}, \ \text{TB0}_{\text{IN}} \sim \text{TB2}_{\text{IN}}, \\ \overline{\text{INT}}_0 \sim \overline{\text{INT}}_2, \ \overline{\text{AD}}_{\text{TRG}}, \ \overline{\text{CTS}}_0, \ \overline{\text{CTS}}_1, \ \text{CLK}_0, \ \text{CLK}_1 \end{array} $			0.4		1	v	
$V_{T+} - V_{T-}$	Hysteresis RESET			0.2		0.5	v	
$V_{T+}-V_{T-}$	Hysteresis X _{IN}			0.1		0.3	v	
Іін	High-level input current P0 ₀ ~P07, P1 ₀ ~P17, P2 ₀ ~P27, P3 ₀ ~P33, P4 ₀ ~P47, P5 ₀ ~P57, P6 ₀ ~P67, P7 ₀ ~P77, P8 ₀ ~P87, X _{IN} , RESET, CNV _{SS} , BYTE	V ₁ =5V				5	μA	
կլ	Low-level input current P0 ₀ ~P0 ₇ , P1 ₀ ~P1 ₇ , P2 ₀ ~P2 ₇ , P3 ₀ ~P3 ₃ , P4 ₀ ~P4 ₇ , P5 ₀ ~P5 ₇ , P6 ₀ ~P6 ₇ , P7 ₀ ~P7 ₇ , P8 ₀ ~P8 ₇ , X _{IN} , RESET, CNV _{SS} , BYTE	v _i =0v				-5	μA	
V _{RAM}	RAM hold voltage	When clock is stoppe	d.	2			v	
		In single-chip mode	f(X _{IN})=25MHz, square waveform		19	38	m/	
l _{cc}	Power supply current	output only pin is open and other pins	Ta=25°C when clock is stopped.			1		
		are V _{SS} during reset.	T _a =85℃ when clock is stopped.			20	μŀ	

$\label{eq:characteristics} \begin{array}{c} \text{ELECTRICAL} & \text{CHARACTERISTICS} \ (v_{cc} = 5v, \, v_{ss} = 0v, \, \tau_a = 25 \ c, \ f(X_{IN}) = 25 \ \text{MHz}, \, \text{unless otherwise noted}) \end{array}$

PROM VERSION of M37710M4BXXXFP

A-D CONVERTER CHARACTERISTICS (V_{cc}=AV_{cc}=5V, V_{ss}=AV_{ss}=0V, T_a=25°C, f(X_{IN})=25MHz, unless otherwise noted)

Cumb al	Parameter	Test conditions		Unit			
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Onit	
	Resolution	V _{REF} =V _{CC}			10	Bits	
	Absolute accuracy	V _{REF} =V _{CC}			±3	LSB	
RLADDER	Ladder resistance	V _{REF} =V _{CC}	5		20	kΩ	
t _{CONV}	Conversion time		9.44			μs	
VREF	Reference voltage		2		V _{cc}	v	
VIA	Analog input voltage		0		VREF	v	

D-A CONVERTER CHARACTERISTICS ($v_{cc}=5V$, $v_{ss}=Av_{ss}=0V$, $T_a=25$ °C, $f(X_{IN})=25$ MHz, unless otherwise noted)

Symbol	Baramatar	T	Limits			11-14
	Parameter	Test conditions	Min.	Тур.	Max.	Unit
	Resolution				8	Bits
	Absolute accuracy				1.0	%
t _{su}	Set time				3	μs
Ro	Output resistance		1	2.5	4	kΩ
IVREF	Reference power input current	(Note 1)			3.2	mA

Note 1. One D-A converter is used, and the value of D-A register for unused D-A converter is "00₁₆". Current that flows to the ladder resistance of A-D converter is excluded.

PROM VERSION of M37710M4BXXXFP

$\label{eq:times} \textbf{TIMING} \quad \textbf{REQUIREMENTS} \ (v_{cc} = 5v \pm 10\%, \ v_{ss} = 0v, \ \tau_a = 25\%, \ \textbf{f}(X_{iN}) = 25 \text{MHz}, \ \textbf{unless otherwise noted})$

External clock input

Symbol	Parameter	Lir	Limits	
	Parameter	Min.	Min. Max.	Unit
t _c	External clock input cycle time	40		ns
t _{w(H)}	External clock input high-level pulse width	15		ns
tw(L)	External clock input low-level pulse width	15		ns
tr	External clock rise time		8	ns
tf	External clock fall time		8	ns

Single-chip mode

Cumphiel	Desumates	Lir	nits	11-14
Symbol	Parameter	Min.	Max.	Unit
t _{SU(POD-E)}	Port P0 input setup time	60		ns
t _{SU(P1D-E)}	Port P1 input setup time	60		ns
t _{SU(P2D-E)}	Port P2 input setup time	60		ns
t _{SU(P3D-E)}	Port P3 input setup time	60		ns
t _{SU(P4D-E)}	Port P4 input setup time	60		ns
tsu(P5D-E)	Port P5 input setup time	60		ns
tsu(P6D-E)	Port P6 input setup time	60		ns
t _{SU(P7D-E)}	Port P7 input setup time	60		ns
tsu(P8D-E)	Port P8 input setup time	60		ns
th(E-POD)	Port P0 input hold time	0		ns
th(E-P1D)	Port P1 input hold time	0		ns
th(E-P2D)	Port P2 input hold time	0		ns
th(E-P3D)	Port P3 input hold time	0		ns
th(E-P4D)	Port P4 input hold time	0		ns
th(E-P5D)	Port P5 input hold time	0		ns
th(E-P6D)	Port P6 input hold time	0		ns
th(E-P7D)	Port P7 input hold time	0		ns
th(E-P8D)	Port P8 input hold time	0		ns

Memory expansion mode and microprocessor mode

	Describer	Limits		Unit
Symbol	Parameter	Min.	Max.	Unit
tsu(P1D-E)	Port P1 input setup time	30		ns
t _{su(P2D-E)}	Port P2 input setup time	30		ns
tsu(RDY-Ø1)	RDY input setup time	55		ns
tsu(HOLD-Ø1)	HOLD input setup time	55		ns
th(E-P1D)	Port P1 input hold time	0		ns
th(E-P2D)	Port P2 input hold time	0		ns
th(¢1-RDY)	RDY input hold time	0		ns
th(#1-HOLD)	HOLD input hold time	0		ns

PROM VERSION of M37710M4BXXXFP

Symbol	Parameter	Limits		Unit
	Parameter	Min.	Мах.	Unit
t _{C(TA)}	TAi _{IN} input cycle time	80		ns
tw(TAH)	TAi _{IN} input high-level pulse width	40		ns
tw(TAL)	TAI _{IN} input low-level pulse width	40		ns

Timer A input (Count input in event counter mode)

Timer A input (Gating input in timer mode)

Symbol	Parameter	Lin	nits	Unit
	Falameter	Min.	Max.	Unit
t _{C(TA)}	TAi _{IN} input cycle time	320		ns
t _{w(TAH)}	TAi _{IN} input high-level pulse width	160		ns
tw(TAL)	TAi _{IN} input low-level pulse width	160		ns

Timer A input (External trigger input in one-shot pulse mode)

Symbol	Parameter	Lin	Limits Min. Max.	Unit
	Falanetei	Min.		Unit
t _{C(TA)}	TAi _{IN} input cycle time	160		ns
tw(TAH)	TAi _{IN} input high-level pulse width	80		ns
tw(TAL)	TAi _{IN} input low-level pulse width	80		ns

Timer A input (External trigger input in pulse width modulation mode)

Symbol	Parameter	Limits Min. Ma	nits	Unit
	Farameter		Max.	Unit
t _{w(TAH)}	TAi _{IN} input high-level pulse width	80		ns
tw(TAL)	TAi _{IN} input low-level pulse width	80		ns

Timer A input (Up-down input in event counter mode)

Symbol	Parameter	Lin	Limits	
	Parameter	Min.	Max.	Unit
t _{C(UP)}	TAi _{OUT} input cycle time	2000		ns
tw(UPH)	TAi _{OUT} input high-level pulse width	1000		ns
	TAi _{OUT} input low-level pulse width	1000		ns
tsu(UP-TIN)	TAi _{OUT} input setup time	400		ns
th(TIN-UP)	TAi _{OUT} input hold time	400		ns

M37710E4BXXXFP M37710E4BFS

PROM VERSION of M37710M4BXXXFP

Timer B input (Count input in event counter mode)

Symbol	Parameter	Limi	Limits	
	Parameter	Min.	Max.	Unit
t _{C(тв)}	TBi _{IN} input cycle time (one edge count)	80		ns
t _{w(твн)}	TBi _{IN} input high-level pulse width (one edge count)	40		ns
tw(TBL)	TBi _{IN} input low-level pulse width (one edge count)	40		ns
t _{C(TB)}	TBi _{IN} input cycle time (both edges count)	160		ns
t _{w(твн)}	TBi _{IN} input high-level pulse width (both edges count)	80		ns
tw(TBL)	TBi _{IN} input low-level pulse width (both edges count)	80		ns

Timer B input (Pulse period measurement mode)

Symbol	Parameter	Limits	Unit	
Symbol	Falaneter	Min.	Max.	Unit
t _{C(TB)}	TBi _{IN} input cycle time	320		ns
t _{w(твн)}	TBi _{IN} input high-level pulse width	160		ns
tw(TBL)	TBi _{IN} input low-level pulse width	160		ns

Timer B input (Pulse width measurement mode)

Symbol	Parameter	Limits	Unit	
Symbol		Min.	Max.	Unit
t _{C(TB)}	TBi _{IN} input cycle time	320		ns
t _{w(твн)}	TBi _{IN} input high-level pulse width	160		ns
tw(TBL)	TBi _{IN} input low-level pulse width	160		ns

A-D trigger input

Symbol	Parameter	Limits	Unit	
Symbol	Symbol	Min.	Max.	Unit
t _{C(AD)}	AD _{TRG} input cycle time (minimum allowable trigger)	1000		ns
t _{W(ADL)}	AD _{TRG} input low-level pulse width	125		ns

Serial I/O

Symbol	Desservation	Lir	Limits	
	Parameter	Min.	Max.	Unit
t _{C(CK)}	CLKi input cycle time	200		ns
tw(ckh)	CLK _i input high-level pulse width	100		ns
tw(CKL)	CLKi input low-level pulse width	100		ns
td(c-q)	TxD; output delay time		80	ns
th(c-q)	TxD _i hold time	0		ns
tsu(D-C)	RxDi input setup time	30		ns
th(c-D)	RxDi input hold time			ns

External interrupt INT; input

Symbol	Symbol Parameter		Limits	
Symbol		Min.	Max.	Unit
t _{w(INH)}	INTi input high-level pulse width	250		ns
t _{W(INL)}	INTi input low-level pulse width			ns

PROM VERSION of M37710M4BXXXFP

SWITCHING CHARACTERISTICS ($v_{cc}=5v\pm10\%$, $v_{ss}=0v$, $T_a=25^{\circ}c$, $f(x_{iN})=25$ MHz, unless otherwise noted) **Single-chip mode**

Cumple of	Deservator	Test conditions	Limits		
Symbol Parameter		Test conditions		Max.	Unit
td(E-POQ)	Port P0 data output delay time		-	80	ns
td(E-P1Q)	Port P1 data output delay time			80	ns
td(E-P2Q)	Port P2 data output delay time	Fig. 3		80	ns
td(E-P3Q)	Port P3 data output delay time			80	ns
td(E-P4Q)	Port P4 data output delay time			80	ns
td(E-P5Q)	Port P5 data output delay time			80	ns
td(E-P6Q)	Port P6 data output delay time			80	ns
td(E-P7Q)	Port P7 data output delay time			80	ns
td(E-P8Q)	Port P8 data output delay time			80	ns

Memory expansion mode and microprocessor mode (when wait bit = "1")

Symbol	Parameter	Test conditions	Lir	nits	Unit
Symbol	Falanielei		Min.	Max.	Unit
td(POA-E)	Port P0 address output delay time		12		ns
td(E-P1Q)	Port P1 data output delay time (BYTE="L")	· · ·		45	ns
tpxz(E-P1Z)	Port P1 floating start delay time (BYTE="L")			5	ns
td(PIA-E)	Port P1 address output delay time		12		ns
td(PIA-ALE)	Port P1 address output delay time		5		ns
td(E-P2Q)	Port P2 data output delay time			45	ns
tpxz(E-P2Z)	Port P2 floating start delay time			5	ns
td(P2A-E)	Port P2 address output delay time		12		ns
td(P2A-ALE)	Port P2 address output delay time		5		ns
td(#1-HLDA)	HLDA output delay time			50	ns
	ALE output delay time		4		ns
tw(ALE)	ALE pulse width		22		ns
td(BHE-E)	BHE output delay time		20		ns
td(R/W-E)	R/W output delay time	Fig. 3	20		ns
td(E	ϕ_1 output delay time		0	18	ns
th(E-POA)	Port P0 address hold time		25		ns
th(ALE-P1A)	Port P1 address hold time (BYTE="L")		9		ns
th(E-P1Q)	Port P1 data hold time (BYTE="L")		25		ns
tpzx(E-P1Z)	Port P1 floating release delay time (BYTE="L")		25		ns
th(E-P1A)	Port P1 address hold time (BYTE="H")		25		ns
th(ALE-P2A)	Port P2 address hold time		9		ns
th(E-P2Q)	Port P2 data hold time		25		ns
tpzx(E-P2Z)	Port P2 floating release delay time	1	25		ns
th(E-BHE)	BHE hold time	1	18		ns
th(E-R/W)	R/W hold time	1	18		ns
tw(EL)	E pulse width	1	50		ns

PROM VERSION of M37710M4BXXXFP

Memory expansion mode and microprocessor mode

(when wait bit = "0", wait selection bit = "1", and external memory area is accessed)

Sumbol	Parameter	Test conditions	Lit	Limits	
Symbol	Parameter			Max.	Unit
td(POA-E)	Port P0 address output delay time		12		ns
td(E-P1Q)	Port P1 data output delay time (BYTE="L")			45	ns
tpxz(E-P1Z)	Port P1 floating start delay time (BYTE="L")			5	ns
td(P1A-E)	Port P1 address output delay time		12		ns
td(P1A-ALE)	Port P1 address output delay time		5		ns
td(E-P2Q)	Port P2 data output delay time			45	ns
tpxz(E-P2Z)	Port P2 floating start delay time			5	ns
td(P2A-E)	Port P2 address output delay time		12		ns
td(P2A-ALE)	Port P2 address output delay time		5		ns
td(ø1-HLDA)	HLDA output delay time			50	ns
td(ALE-E)	ALE output delay time		4		ns
tw(ALE)	ALE pulse width		22		ns
td(BHE-E)	BHE output delay time	Fig. 0	20		ns
td(R/W-E)	R/W output delay time	Fig. 3	20		ns
td(E-\$1)	ϕ_1 output delay time		0	18	ns
th(E-POA)	Port P0 address hold time		25		ns
th(ALE-P1A)	Port P1 address hold time (BYTE="L")		9		ns
th(E-P1Q)	Port P1 data hold time (BYTE="L")		25		ns
tpzx(E-P1Z)	Port P1 floating release delay time (BYTE="L")		25		ns
th(E-P1A)	Port P1 address hold time (BYTE="H")		25		ns
th(ALE-P2A)	Port P2 address hold time		9		ns
th(E-P2Q)	Port P2 data hold time		25		ns
tpzx(E-P2Z)	Port P2 floating release delay time		25		ns
th(E-BHE)	BHE hold time		18		ns
th(E-R/W)	R/W hold time		18		ns
t _{W(EL)}	E pulse width		130		ns

PROM VERSION of M37710M4BXXXFP

Memory expansion mode and microprocessor mode

(when wait bit = "0", wait selection bit = "0", and external memory area is accessed)

Or mark al	Parameter	Test conditions	Limits		
Symbol	Parameter	Test conditions		Max.	Unit
td(POA-E)	Port P0 address output delay time	· · · · · · · · · · · · · · · · · · ·	92		ns
td(E-P1Q)	Port P1 data output delay time (BYTE="L")			45	ns
tpxz(E-P1Z)	Port P1 floating start delay time (BYTE="L")			5	ns
td(PIA-E)	Port P1 address output delay time		92		ns
td(PIA-ALE)	Port P1 address output delay time		70		ns
td(E-P2Q)	Port P2 data output delay time			45	ns
tpxz(E-P2Z)	Port P2 floating start delay time			5	ns
td(P2A-E)	Port P2 address output delay time		92		ns
td(P2A-ALE)	Port P2 address output delay time		70		ns
td(ø1-HLDA)	HLDA output delay time			50	ns
td(ALE-E)	ALE output delay time		15		ns
tw(ALE)	ALE pulse width				ns
td(BHE-E)	BHE output delay time	Fig. 3	100		ns
td(R/W-E)	R/W output delay time	Fig. 3	100		ns
td(E-#1)	ϕ_1 output delay time		0	18	ns
th(E-POA)	Port P0 address hold time		25		ns
th(ALE-P1A)	Port P1 address hold time (BYTE="L")		20		ns
th(E-P1Q)	Port P1 data hold time (BYTE="L")		25		ns
tpzx(E-P1Z)	Port P1 floating release delay time (BYTE="L")		25		ns
th(E-P1A)	Port P1 address hold time (BYTE="H")		25		ns
th(ALE-P2A)	Port P2 address hold time		20		ns
th(E-P2Q)	Port P2 data hold time				ns
tpzx(E-P2Z)	Port P2 floating release delay time		25		ns
th(E-BHE)	BHE hold time		18		ns
th(E-R/W)	R/W hold time		18		ns
t _{w(EL)}	E pulse width		130		ns

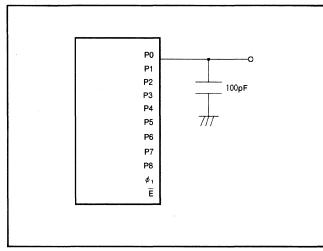
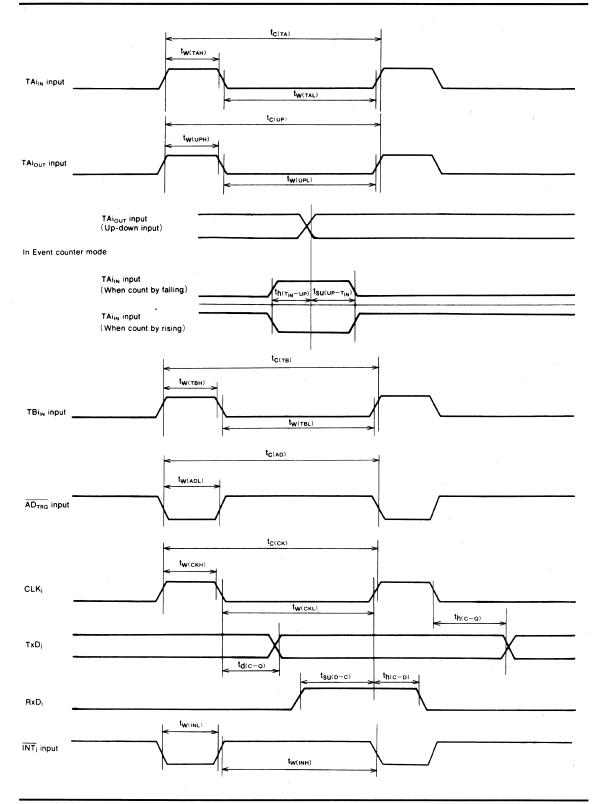
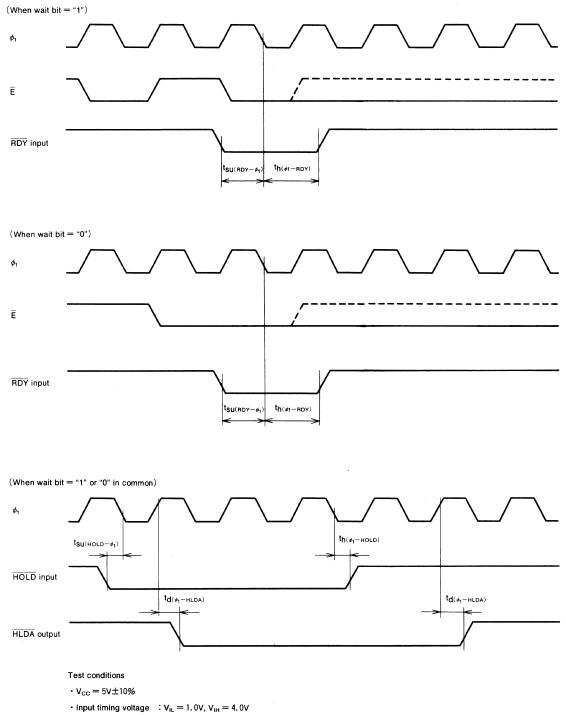


Fig. 3 Testing circuit for ports P0~P8, ϕ_1



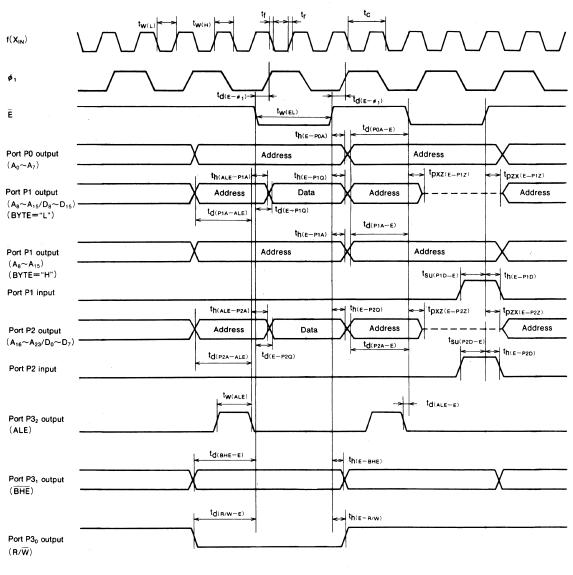
PROM VERSION of M37710M4BXXXFP

TIMING DIAGR Single-chip mode	$AM \qquad t_r \qquad t_f \qquad t_c \qquad t_c \rightarrow t_{W(H)} \qquad t_{W(L)}$
f(X _{IN})	
Ē	
Port P0 output	
Port P0 input	t _{SU(POD-E)}
Port P1 output	
Port P1 input	t _{SU(PID} -E) th(E-PID)
Port P2 output	td(E−P2Q) t
Port P2 input	tsu(P2D-E) th(E-P2D)
Port P3 output	
Port P3 input	tsu(P3D-E) th(E-P3D)
Port P4 output	
Port P4 input	t _{SU(P4D-E)}
Port P5 output	<-> ^t d(ε−psq)
Port P5 input	t _{SU(PSD-E)} t _{h(E-PSD)}
Port P6 output	td(Е-РЕQ)
Port P6 input	t _{su(P6D-E)}
Port P7 output	td(E−P7Q)
Port P7 input	t _{SU(P7D-E)} t _{h(E-P7D)}
Port P8 output	<-> t _{d(E−P8Q)}
Port P8 input	t _{SU(PBD} -E) th(E-PBD)



PROM VERSION of M37710M4BXXXFP

PROM VERSION of M37710M4BXXXFP



• Output timing voltage : $V_{OL} = 0.8V$, $V_{OH} = 2.0V$

Memory expansion mode and microprocessor mode

PROM VERSION of M37710M4BXXXFP

Memory expansion mode and microprocessor mode (When wait bit="1")

Test conditions

 $\cdot v_{cc} = 5V \pm 10\%$

Output timing voltage : V_{OL}=0.8V, V_{OH}=2.0V

• Ports P1, P2 input : VIL=0. 8V, VIH=2.5V

PROM VERSION of M37710M4BXXXFP

Memory expansion mode and microprocessor mode

(When wait bit = "0", wait selection bit = "1", and external memory area is accessed)

f(X _{IN})	๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛
φ1	
Ē	$\frac{1}{t_{W(EL)}} \xrightarrow{t_{W(EL)}} \frac{1}{t_{d(E-\phi_1)}}$
Port P0 output $(A_0 \sim A_7)$	
Port P1 output (A ₈ ~A ₁₅ /D ₈ ~ (BYTĖ="L")	$\frac{t_{h(ALE-P1A)}}{t_{D_{15}}}$ $\frac{t_{h(E-P1Q)}}{t_{d}(P1A-ALE)}$ $\frac{t_{h(E-P1Q)}}{t_{d}(P1A-ALE)}$ $\frac{t_{h(E-P1Q)}}{t_{d}(P1A-ALE)}$ $\frac{t_{h(E-P1Q)}}{t_{d}(P1A-ALE)}$
Port P1 output (A ₈ ~A ₁₅) (BYTE="H")	t $t_{h(E-P 1A)}$ $t_{d(P1A-E)}$ Address Address
Port P1 input	
Port P2 outpu (A ₁₆ ∼A ₂₃ /D ₀ ∽	
Port P2 input	$t_{d(P2A-ALE)}$ $t_{d(E-P2Q)}$
Port P3 ₂ outp (ALE)	>td(ALE-E)
Port P3 ₁ outp (BHE)	ut td(вне-е)
Port P3 ₀ outp (R/ W)	td(R/W-E)

Test conditions

- $\cdot v_{cc} = 5v \pm 10\%$
- \cdot Output timing voltage : V_{OL}=0.8V, V_{OH}=2.0V
- Ports P1, P2 input : V_{IL}=0.8V, V_{IH}=2.5V

PROM VERSION of M37710M4BXXXFP

Memory expansion mode and microprocessor mode

(When wait bit = "0", wait selection bit = "0", and external memory area is accessed)

	te
f(X _{IN})	
¢ 1	
Ē	
Port P0 output $(A_0 \sim A_7)$	th(E-POA) Address Address
Port P1 output $(A_8 \sim A_{15}/D_8 \sim D_{15})$ (BYTE="L")	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
Port P1 output (A ₈ ~A ₁₅) (BYTE="H")	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
Port P1 input	
Port P2 output $(A_{16} \sim A_{23}/D_0 \sim D_7)$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
Port P2 input	td(P2A-ALE)
Port P3 ₂ output (ALE)	
Port P3 ₁ output (BHE)	td(вне-е) th(е-вне)
Port P3₀ output (R/₩)	$\xrightarrow{t_{d(R/W-E)}} \xrightarrow{t_{h(E-R/W)}}$

Test conditions

 $\cdot v_{cc} = 5V \pm 10\%$

• Output timing voltage : V_{OL}=0. 8V, V_{OH}=2. 0V

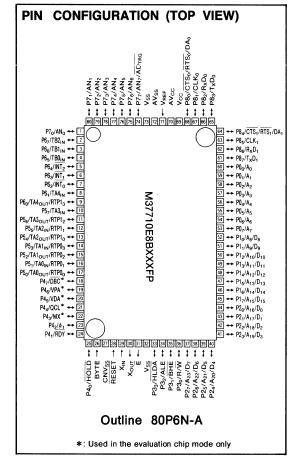
• Ports P1, P2 input : VIL=0.8V, VIH=2.5V

MITSUBISHI MICROCOMPUTERS

M37710E8BXXXFP M37710E8BFS

PROM VERSION of M37710M8BXXXFP

DESCRIPTION


The M37710E8BXXXFP is a built-in PROM single-chip microcomputer designed with high-performance CMOS silicon gate technology. This is housed in a 80-pin plastic molded QFP. The features of this chip are similar to those of the M37710M8BXXXFP except that this chip has a 32K-byte PROM built in.

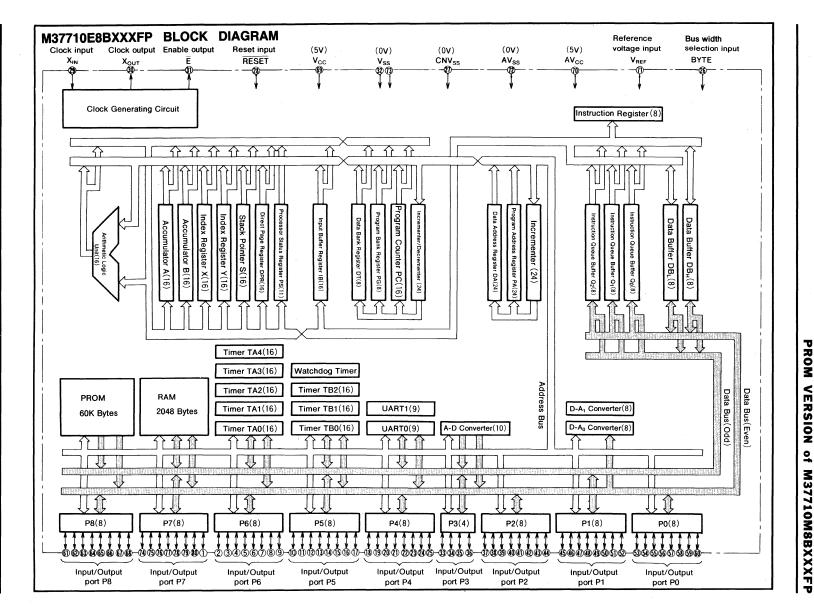
This single-chip microcomputer has a large 16M bytes address space, three instruction queue buffers, and two data buffers for high-speed instruction execution. The CPU is a 16-bit parallel processor that can also be switched to perform 8-bit parallel processing. This microcomputer is suitable for office, business, and industrial equipment controller that require high-speed processing of large data.

Since general purpose PROM writer can be used for the built-in PROM, this chip is suitable for small quantity production runs. For program development, the M37710E8BFS with erasable ROM that is housed in a windowed ceramic LCC is also provided.

FEATURES

•	Number of basic	instructions 103	
٠	Memory size	PROM60K bytes	
		RAM 2048 bytes	
٠	Instruction exect	ution time	
	The fastest instru	uction at 25MHz frequency 160ns	
٠	Single power su	pply5V±10%	
٠	Low power dissi	pation (at 25MHz frequency)	
		······ 95mW (Тур.)	
٠	Interrupts	······19 types 7 levels	
٠	Multiple function	16-bit timer 5+3	
	(Pulse motor dri	ve waveform can be output.)	
٠		be synchronous) ······2	
•	10-bit A-D conve	be synchronous) ······2 erter ······8-channel inputs	
•	10-bit A-D conve	be synchronous) ······2	
• • •	10-bit A-D conve	be synchronous) 2 erter 8-channel inputs ter 2-channel outputs	
• • •	10-bit A-D conve 8-bit D-A conver	be synchronous)2 erter	

APPLICATION


Control devices for office equipment such as copiers, printers, typewriters, facsimiles, word processors, and personal computers

Control devices for industrial equipment such as communication and measuring instruments

NOTE

- Do not use the M37710E8BFS for mass production because it is a tool for program development (for evaluation).
- (2) Refer to "Chapter 5 PRECAUTIONS" when using this microcomputer.

MITSUBISHI MICROCOMPUTERS **M**37 710E ω 8BXX 10 **E** × U T Т S

PROM VERSION

3--34

MITSUBISH ELECTRIC

PROM VERSION of M37710M8BXXXFP

FUNCTIONS OF M37710E8BXXXFP

Parameter		Functions		
Number of basic instructions		103		
Instruction execution time		160ns (the fastest instruction at external clock 25MHz frequency)		
N4	PROM	60K bytes		
Memory size	RAM	2048 bytes		
1	P0~P2, P4~P8	8 -bit× 8		
Input/Output ports	P3	4 -bit× 1		
M	TA0, TA1, TA2, TA3, TA4	16-bit× 5		
Multi-function timers	TB0, TB1, TB2	16-bit× 3		
Serial I/O		(UART or clock synchronous serial I/O)X2		
A-D converter		10-bit×1 (8 channels)		
D-A converter		8 -bit× 2		
Watchdog timer		12-bit× 1		
		3 external types, 16 internal types		
Interrupts		(Each interrupt can be set the priority levels to $0 \sim 7$.)		
Clock generating circuit		Built-in(externally connected to a ceramic resonator or quartz crystal resonate		
Supply voltage		5 V±10%		
Power dissipation		95mW(at external clock 25MHz frequency)		
Innut/Output characteristic	Input/Output voltage	5 V		
Input/Output characteristic	Output current	5 mA		
Memory expansion		Maximum 16M bytes		
Operating temperature range		-20~85°C		
Device structure		CMOS high-performance silicon gate process		
Deskare	M37710E8BXXXFP	80-pin plastic molded QFP		
Package	M37710E8BFS	80-pin ceramic LCC (with a window)		

PROM VERSION of M37710M8BXXXFP

PIN DESCRIPTION

Pin	Name	Input/Output	Functions
V _{CC} , V _{SS}	Power supply		Supply 5 V±10% to V_{cc} and 0 V to $V_{SS}.$
CNVss	CNV _{SS} input	Input	This pin controls the processor mode. Connect to V_{SS} for single-chip mode, and to V_{CC} for external ROM types.
RESET	Reset input	Input	To enter the reset state, this pin must be kept at a "L" condition which should be maintained for the re- quired time.
X _{IN}	Clock input	Input	These are I/O pins of internal clock generating circuit. Connect a ceramic or quartz crystal resonator be- tween X_{IN} and X_{OUT} . When an external clock is used, the clock source should be connected to the X_{IN} pir
X _{OUT}	Clock output	Output	and the X_{OUT} pin should be left open.
Ē	Enable output	Output	Data or instruction read and data write are performed when output from this pin is "L".
BYTE	Bus width selection input	Input	In memory expansion mode or microprocessor mode, this pin determines whether the external data bus is 8-bit width or 16-bit width. The width is 16 bits when "L" signal inputs and 8 bits when "H" signal inputs.
AV _{CC} AV _{SS}	Analog supply input		Power supply for the A-D converter. AV_{SS} is also used for D-A converter. Connect AV_{CC} to V_{CC} and AV_{SS} to V_{SS} externally.
V _{REF}	Reference voltage input	Input	This is reference voltage input pin for the A-D converter and the D-A converter.
P0 ₀ ~P0 ₇	I/O port P0	1/0	In single-chip mode, port P0 becomes an 8-bit I/O port. An I/O direction register is available so that each pin can be programmed for input or output. These ports are in input mode when reset . Address($A_7 \sim A_0$) is output in memory expansion mode or microprocessor mode.
P1 ₀ ~P1 ₇	I/O port P1	1/0	In single-chip mode, these pins have the same functions as port P0. When the BYTE pin is set to "L" in memory expansion mode or microprocessor mode and external data bus is 16-bit width, high-order data $(D_{15} \sim D_8)$ is input or output when \overline{E} output is "L" and an address $(A_{15} \sim A_8)$ is output when \overline{E} output is "H". If the BYTE pin is "H" that is an external data bus is 8-bit width, only address $(A_{15} \sim A_8)$ is output.
P2 ₀ ~P2 ₇	I/O port P2	1/0	In single-chip mode, these pins have the same functions as port P0. In memory expansion mode or microp- rocessor mode low-order data($D_7 \sim D_0$) is input or output when \overline{E} output is "L" and an address($A_{23} \sim A_{16}$) is output when \overline{E} output is "H".
P30~P33	I/O port P3	1/0	In single-chip mode , these pins have the same functions as port P0. In memory expansion mode or mic- roprocessor mode, R/\overline{W} , \overline{BHE} , ALE, and \overline{HLDA} signals are output.
P4₀~P4 ₇	I/O port P4	I/O	In single-chip mode, these pins have the same functions as port P0. In memory expansion mode or microprocessor mode, P4 ₀ and P4 ₁ become HOLD and RDY input pin respectively. Functions of other pins are the same as in single-chip mode. In single-chip mode or memory expansion mode, port P4 ₂ can be programmed for ϕ_1 output pin divided the clock to X _{IN} pin by 2. In microprocessor mode, P4 ₂ always has the function as ϕ_1 output pin.
P5 ₀ ~P5 ₇	I/O port P5	1/0	In addition to having the same functions as port P0 in single-chip mode, these pins also function as I/C pins for timer A0, timer A1, timer A2 and timer A3. $P5_0 \sim P5_8$ also function as output pins for pulse motor drive waveform.
P6 ₀ ~P6 ₇	I/O port P6	1/0	In addition to having the same functions as port P0 in single-chip mode, these pins also function as I/C pins for timer A4, external interrupt input $\overline{INT_0}$, $\overline{INT_1}$ and $\overline{INT_2}$ pins, and input pins for timer B0, timer B1 and timer B2. P6 ₀ also functions as an output pin for pulse motor drive waveform.
P7 ₀ ~P7 ₇	I/O port P7	1/0	In addition to having the same functions as port P0 in single-chip mode, these pins also function as analog input $AN_0 \sim AN_7$ input pins. P7 ₇ also has an A-D conversion trigger input function.
P80~P87	I/O port P8	1/0	In addition to having the same functions as port P0 in single-chip mode, these pins also function as R_xD T _x D, CLK, $\overline{CTS}/\overline{RTS}$ pins for UART 0 and UART 1, and output pins for D-A converter.

PROM VERSION of M37710M8BXXXFP

Pin	Name	input/Output	Functions
V _{CC} , V _{SS}	Power supply		Supply 5 V±10% to V _{CC} and 0 V to V _{SS} .
CNV _{SS}	V _{PP} input	Input	Connect to V _{PP} when programming or verifing.
BYTE	V _{PP} input	Input	Connect to V _{PP} when programming or verifing.
RESET	Reset input	Input	Connect to V _{SS} .
X _{IN}	Clock input	Input	Connect a ceramic resonator between X _{IN} and X _{OUT} .
Х _{оит}	Clock output	Output	
Ē	Enable output	Output	Keep open.
AV _{CC} , AV _{SS}	Analog supply input		Connect AV _{CC} to V _{CC} and AV _{SS} to V _{SS} .
V _{REF}	Reference voltage input	Input	Connect to V _{SS} .
P0 ₀ ~P0 ₇	Address input $(A_0 \sim A_7)$	Input	Port P0 functions as the lower 8 bits address input $(A_0 \sim A_7)$.
P10~P17	Address input (A ₈ ~A ₁₅)	Input	Port P1 functions as the higher 8 bits address input $(A_8 \sim A_{15})$.
P2 ₀ ~P2 ₇	Data I/O (D₀~D ₇)	1/0	Port P2 functions as the 8 bits data bus $(D_0 \sim D_7)$.
P3 ₀ ~P3 ₃	Input port P3	Input	Connect to V _{SS} .
P4 ₀ ~P4 ₇	Input port P4	Input	Connect to V _{SS} .
P5₀~P5 ₇	Control signal input	Input	P5 ₀ , P5 ₁ and P5 ₂ function as \overrightarrow{PGM} , \overrightarrow{OE} and \overrightarrow{CE} input pins respectively. Connect P5 ₃ , P5 ₄ , P5 ₅ and P5 ₈ to V _{CC} . Connect P5 ₇ to V _{SS} .
P60~P67	Input port P6	Input	Connect to V _{SS} .
P70~P77	Input port P7	Input	Connect to V _{SS} .
P80~P87	Input port P8	Input	Connect to V _{SS} .

PIN DESCRIPTION (EPROM MODE)

PROM VERSION of M37710M8BXXXFP

BASIC FUNCTION BLOCKS

The M37710E8BXXXFP has the same functions as the M37710M4BXXXFP except for the following:

- (1) The built-in ROM is PROM.
- (2) The ROM size is 60K bytes
- (3) The RAM size is 2048 bytes

Therefore, refer to the section on the M37710M4BXXXFP.

MEMORY

The memory map is shown in Figure 1.

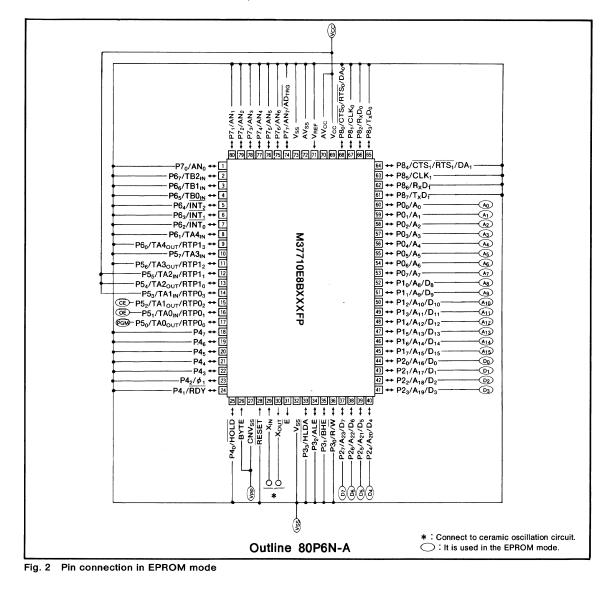


Fig. 1 Memory map

PROM VERSION of M37710M8BXXXFP

EPROM MODE

The M37710E8BXXXFP features an EPROM mode in addition to its normal modes. When the $\overrightarrow{\text{RESET}}$ signal level is "L", the chip automatically enters the EPROM mode. Table 1 list the correspondence between pins and Figure 2 shows the pin connections in the EPROM mode.


The EPROM mode is the 1M mode for the EPROM that is equivalent to the M5M27C101K.

When in the EPROM mode, ports P0, P1, P2, P5₀, P5₁, P5₂, CNV_{ss} and BYTE are used for the EPROM (equivalent to

the M5M27C101K). When in this mode, the built-in PROM can be written to or read from using these pins in the same way as with the M5M27C101K.

This chip does not have Device Identifier Mode, so that set the corresponding program algorithm. The program area should specify address $11000_{16} \sim 1FFF_{16}$.

Connect the clock which is either ceramic resonator or external clock to $X_{\rm IN}$ pin and $X_{\rm OUT}$ pin.

PROM VERSION of M37710M8BXXXFP

	M37710E8BXXXFP	M5M27C101K		
V _{cc}	V _{cc}	Vcc		
V _{PP}	CNV _{SS} , BYTE	V _{PP}		
V _{ss}	V _{SS}	V _{SS}		
Address input	Ports P0, P1	A ₀ ~A ₁₅		
Data I/O	Port P2	D ₀ ~D ₇		
CE	P52	CE		
ŌĒ	P51	ŌĒ		
PGM	P50	PGM		

Table 1 Pin function in EPROM mode

PROM VERSION of M37710M8BXXXFP

FUNCTION IN EPROM MODE 1M mode (equivalent to the M5M27C101K)

Reading

To read the EPROM, set the \overline{CE} and \overline{OE} pins to a "L" level. Input the address of the data $(A_0 \sim A_{15})$ to be read, and the data will be output to the I/O pins $D_0 \sim D_7$. The data I/O pins will be floating when either the \overline{CE} or \overline{OE} pins are in the "H" state.

Writing

Writing must be performed in 8 bits by a byte program. To write to the EPROM, set the \overline{CE} pin to a "L" level and the \overline{OE} pin to a "H" level. The CPU will enter the program mode when 12.5V is applied to the V_{PP} pin. The address to be written to is selected with pins A₀~A₁₅, and the data to be written is input to pins D₀~D₇. Set the PGM pin to a "L" level to being writing.

Erasing

To erase data on this chip, use an ultraviolet light source with a 2537 Angstrom wave length. The minimum radiation power necessary for erasing is $15 \text{ W} \cdot \text{s/cm}^2$.

Writing operation

To program the M37710E8BXXXFP, first set V_{CC} =6V, V_{PP} = 12.5V, and set the address to 11000₁₆. Apply a 0.2ms write pulse, check that the data can be read, and if it cannot be read OK, repeat the procedure, applying a 0.2ms write pulse and checking that the data can be read until it can be read OK. Record the accumulated number of pulse applied (X) before the data can be read OK, and then write the data again, applying a further once this number of pulses (0.2× X ms).

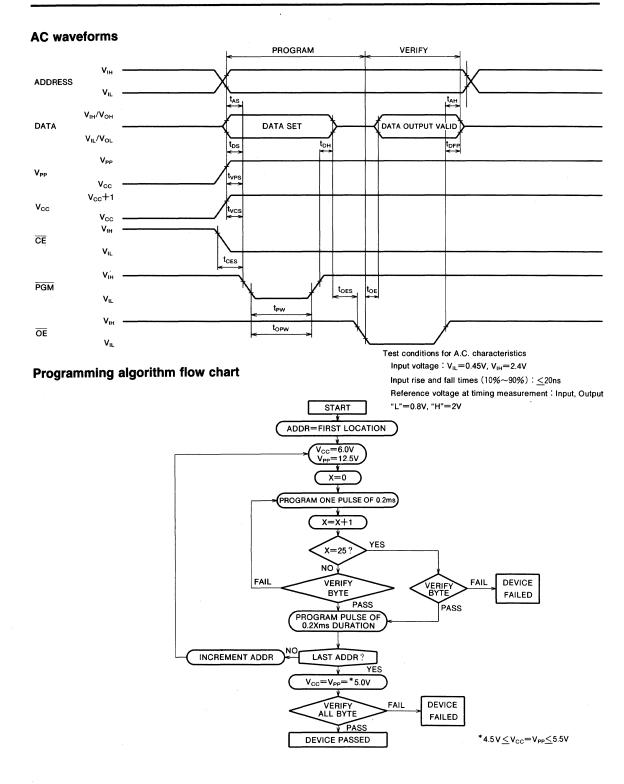
When this series of write operations is complete, increment the address, and continue to repeat the procedure above until the last address has been reached.

Finally, when all addresses have been written, read with $V_{CC} = V_{PP} = 5V(or V_{CC} = V_{PP} = 5.5V)$.

Table	2.	I/O	signal	in	each	mode
-------	----	-----	--------	----	------	------

Pin Mode	CE	ŌĒ	PGM	V _{PP}	v_{cc}	Data I/O
Read-out	VIL	V_{IL}	x	5 V	5 V	Output
Output	VIL	VIH	x	5 V	5 V	Floating
Disable	VIH	х	X	5 V	5 V	Floating
Programming	VIL	VIH	VIL	12.5V	6 V	Input
Programming Verify	VIL	Vı∟	VIH	12. 5V	6 V	Output
Program Disable	ViH	VIH	ViH	12.5V	6 V	Floating

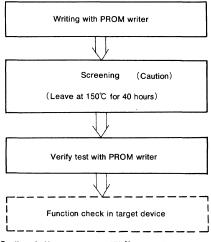
Note 1 : An X indicates either V_{IL} or V_{IH}.


Program operation (equivalent to the M5M27C101K)

AC ELECTRICAL CHARACTERISTICS (Ta=25±5°C, V_{CC}=6V±0.25V, V_{PP}=12.5±0.3V, unless otherwise noted)

Symbol	Desimation					
	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{AS}	Address setup time		2			μs
toes	OE setup time		2			μs
t _{DS}	Data setup time		2			μs
t _{AH}	Address hold time		0			μs
t _{DH}	Data hold time		2			μs
t _{DFP}	Output enable to output float delay		0		130	ns
t _{vcs}	V _{CC} setup time		2			μs
t _{VPS}	V _{PP} setup time		2			μs
tew	PGM pulse width		0.19	0.2	0.21	ms
t _{OPW}	PGM over program pulse width		0.19		5.25	ms
t _{CES}	CE setup time		2			μs
toe	Data valid from OE				150	ns

PROM VERSION of M37710M8BXXXFP



PROM VERSION of M37710M8BXXXFP

SAFETY INSTRUCTIONS

- (1) Sunlight and fluorescent lamp contain light that can erase written information. When using in read mode, be sure to cover the transparent glass portion with a seal or other materials (ceramic package product).
- (2) Mitsubishi Electric corp. provides the seal for covering the transparent glass. Take care that the seal does not touch the read pins (ceramic package product).
- (3) Clean the transparent glass before erasing. Fingers' fat and paste disturb the passage of ultraviolet rays and may affect badly the erasure capability (ceramic package product).
- (4) A high voltage is used for writing. Take care that overvoltage is not applied. Take care especially at power on.
- (5) The programmable M37710E8BFP that is shipped in blank is also provided. For the M37710E8BFP, Mitsubishi Electric corp. does not perform PROM write test and screening following the assembly processes. To improve reliability after write, performing write and test according to the flow below before use is recommended.

Caution \therefore Never expose to 150 $^\circ C$ exceeding 100 hours.

ADDRESSING MODES

The M37710E8BXXXFP has 28 powerful addressing modes. Refer to the MELPS 7700 addressing mode description for the details of each addressing mode.

MACHINE INSTRUCTION LIST

The M37710E8BXXXFP has 103 machine instructions. Refer to the MELPS 7700 machine instruction list for details.

DATA REQUIRED FOR PROM ORDERING

Please send the following data for writing to PROM.

- (1) M37710E8BXXXFP writing to PROM order confirmation form
- (2) 80P6N mark specification form
- (3) ROM data (EPROM 3 sets)

PROM VERSION of M37710M8BXXXFP

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Ratings	Unit
V _{cc}	Supply voltage		-0.3~7	V
AVcc	Analog supply voltage		-0.3~7	V
Vi	Input voltage RESET, CNV _{SS} , BYTE		-0.3~12(Note 1)	V
Vı	Input voltage P0 ₀ ~P0 ₇ , P1 ₀ ~P1 ₇ , P2 ₀ ~P2 ₇ , P3 ₀ ~P3 ₃ , P4 ₀ ~P4 ₇ , P5 ₀ ~P5 ₇ , P6 ₀ ~P6 ₇ , P7 ₀ ~P7 ₇ , P8 ₀ ~P8 ₇ , V _{REF} , X _{IN}		-0.3~V _{cc} +0.3	v
Vo	Output voltage P0 ₀ ~P0 ₇ , P1 ₀ ~P1 ₇ , P2 ₀ ~P2 ₇ , P3 ₀ ~P3 ₃ , P4 ₀ ~P4 ₇ , P5 ₀ ~P5 ₇ , P6 ₀ ~P6 ₇ , P7 ₀ ~P7 ₇ , P8 ₀ ~P8 ₇ , X _{0U7} , Ē		-0.3~V _{cc} +0.3	v
Pd	Power dissipation	T _a =25°C	300	mW
Topr	Operating temperature		-20~85	°C
Tstg	Storage temperature		-40~150	°C

Note 1. Input voltage for CNV_{SS} and BYTE pins is 13V in writing to PROM.

RECOMMENDED OPERATING CONDITIONS ($v_{cc}=5v\pm10\%$, $\tau_a=-20\sim85$ °C, unless otherwise noted)

Symbol	Parameter		Unit		
Cymbol			Тур.	Max.	
V _{cc}	Supply voltage	4.5	5.0	5.5	V
AV _{CC}	Analog supply voltage		v_{cc}		V
V _{ss}	Supply voltage		0		v
AV _{SS}	Analog supply voltage		0		v
V _{IH}	High-level input voltage P0 ₀ ~P0 ₇ , P3 ₀ ~P3 ₃ , P4 ₀ ~P4 ₇ , P5 ₀ ~P5 ₇ , P6 ₀ ~P6 ₇ , P7 ₀ ~P7 ₇ , P8 ₀ ~P8 ₇ , X _{IN} , RESET, CNV _{SS} , BYTE	0.8V _{cc}		V _{cc}	v
ViH	High-level input voltage $P1_0 \sim P1_7$, $P2_0 \sim P2_7$ (in single-chip mode)	0.8V _{cc}		V _{cc}	v
V _{IH}	High-level input voltage $P1_0 \sim P1_7$, $P2_0 \sim P2_7$ (in memory expansion mode and microprocessor mode)	0. 5V _{CC}		V _{cc}	v
V _{IL}	$\begin{array}{llllllllllllllllllllllllllllllllllll$	0		0.2V _{cc}	v
VIL	Low-level input voltage $P1_0 \sim P1_7$, $P2_0 \sim P2_7$ (in single-chip mode)	0		0.2V _{cc}	v
VIL	Low-level input voltage $P1_0 \sim P1_7$, $P2_0 \sim P2_7$ (in memory expansion mode and microprocessor mode)	0		0. 16V _{cc}	v
I _{он(peak)}	High-level peak output current P0 ₀ ~P0 ₇ , P1 ₀ ~P1 ₇ , P2 ₀ ~P2 ₇ , P3 ₀ ~P9 ₃ , P4 ₀ ~P4 ₇ , P5 ₀ ~P5 ₇ , P6 ₀ ~P6 ₇ , P7 ₀ ~P7 ₇ , P8 ₀ ~P8 ₇			-10	mA
I _{он(avg)}	$\begin{array}{l} High-level average output current $P0_0$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$			-5	mA
IoL(peak)	$\begin{array}{llllllllllllllllllllllllllllllllllll$			10	mA
I _{OL(avg)}	$\begin{array}{llllllllllllllllllllllllllllllllllll$			5	mA
$f(X_{IN})$	External clock frequency input			25	MHz

Note 2. Average output current is the average value of a 100ms interval.

3. The sum of $I_{OL(peak)}$ for ports P0, P1, P2, P3, and P8 must be 80mA or less, the sum of $I_{OH(peak)}$ for ports P0, P1, P2, P3, and P8 must be 80mA or less, the sum of $I_{OL(peak)}$ for ports P4, P5, P6, and P7 must be 80mA or less, and the sum of $I_{OH(peak)}$ for ports P4, P5, P6, and P7 must be 80mA or less.

PROM VERSION of M37710M8BXXXFP

Symbol	Parameter	Test or	Test conditions		Limits		
Symbol	Falanelei	Test co	inunions	Min.	Тур.	Max.	Uni
V _{oн}	High-level output voltage P0 ₀ ~P0 ₇ , P1 ₀ ~P1 ₇ , P2 ₀ ~P2 ₇ , P3 ₀ , P3 ₁ , P3 ₃ , P4 ₀ ~P4 ₇ , P5 ₀ ~P5 ₇ , P6 ₀ ~P6 ₇ , P7 ₀ ~P7 ₇ , P8 ₀ ~P8 ₇	I _{он} =—10mA		3			v
V _{он}	High-level output voltage P00~P07, P10~P17, P20~P27, P30, P31, P33	I _{OH} =-400µА		4.7			v
V _{OH}	High-level output voltage P32	I _{ОН} =-10mA		3.1			v
•он		I _{OH} =-400µA		4.8			Ļ
Voн	High-level output voltage E	I _{он} =-10mA		3.4			v
•0H		I _{OH} =-400µА		4.8			· ·
V _{ol}	Low-level output voltage P0 ₀ ~P0 ₇ , P1 ₀ ~P1 ₇ , P2 ₀ ~P2 ₇ , P3 ₀ , P3 ₁ , P3 ₃ , P4 ₀ ~P4 ₇ , P5 ₀ ~P5 ₇ , P6 ₀ ~P6 ₇ , P7 ₀ ~P7 ₇ , P8 ₀ ~P8 ₇	I _{OL} =10mA				2	v
Vol	Low-level output voltage P00~P07, P10~P17, P20~P27, P30, P31, P33	I _{OL} =2mA				0.45	v
	Low level output veltage D2	I _{OL} =10mA				1.9	v
Vol	Low-level output voltage P32	I _{OL} =2mA				0.43	v
VoL	Low-level output voltage E	I _{OL} =10mA				1.6	v
VOL		I _{OL} =2mA				0.4	v
$v_{\tau+} - v_{\tau-}$	$\begin{array}{c} \text{Hysteresis} \overline{\text{HOLD}}, \ \overline{\text{RDY}}, \ \text{TA0}_{\text{IN}} \sim \text{TA4}_{\text{IN}}, \ \text{TB0}_{\text{IN}} \sim \text{TB2}_{\text{IN}}, \\ \overline{\text{INT}}_0 \sim \overline{\text{INT}}_2, \ \overline{\text{AD}}_{\text{TRG}}, \ \overline{\text{CTS}}_0, \ \overline{\text{CTS}}_1, \ \text{CLK}_0, \ \text{CLK}_1 \end{array}$			0.4		1	v
V _{T+} V _{T-}	Hysteresis RESET			0.2		0.5	v
$V_{T+}-V_{T-}$	Hysteresis X _{IN}			0.1		0.3	V
l _{in}	High-level input current P0 ₀ ~P07, P1 ₀ ~P17, P2 ₀ ~P27, P3 ₀ ~P33, P4 ₀ ~P47, P5 ₀ ~P57, P6 ₀ ~P67, P7 ₀ ~P77, P8 ₀ ~P87, X _{IN} , RESET, CNV _{SS} , BYTE	V ₁ =5V				5	μA
I _{IL}	Low-level input current P0 ₀ ~P0 ₇ , P1 ₀ ~P1 ₇ , P2 ₀ ~P2 ₇ , P3 ₀ ~P3 ₃ , P4 ₀ ~P4 ₇ , P5 ₀ ~P5 ₇ , P6 ₀ ~P6 ₇ , P7 ₀ ~P7 ₇ , P8 ₀ ~P8 ₇ , X _{IN} , RESET, CNV _{SS} , BYTE	v _i =0v				-5	μA
VRAM	RAM hold voltage	When clock is stoppe	d.	2			v
		In single-chip mode	f(X _{IN})=25MHz, square waveform		19	38	mA
Icc	Power supply current	output only pin is open and other pins	T _a =25°C when clock is stopped.			1	
		are V _{SS} during reset.	T _a =85°C when clock is stopped.	а. П. Т. Т. Т. Т. Т.		20	μ

ELECTRICAL CHARACTERISTICS ($v_{cc}=5v$, $v_{ss}=0v$, $\tau_a=25^{\circ}$, $f(X_{IN})=25$ MHz, unless otherwise noted)

PROM VERSION of M37710M8BXXXFP

A-D CONVERTER CHARACTERISTICS (V_{cc}=AV_{cc}=5V, V_{ss}=AV_{ss}=0V, T_a=25°C, f(X_{IN})=25MHz, unless otherwise noted)

Symbol	Parameter	To A constant of		11-11		
		Test conditions	Min.	Тур.	Max.	Unit
-	Resolution	V _{REF} =V _{CC}		-	10	Bits
	Absolute accuracy	V _{REF} =V _{CC}			±3	LSB
RLADDER	Ladder resistance	V _{REF} =V _{CC}	5		20	kΩ
t _{CONV}	Conversion time		9.44			μs
VREF	Reference voltage		2		V _{cc}	v
VIA	Analog input voltage		0		VREF	v

D-A CONVERTER CHARACTERISTICS ($v_{cc}=5v$, $v_{ss}=av_{ss}=0v$, $\tau_a=25^{\circ}$ C, $f(X_{IN})=25$ MHz, unless otherwise noted)

Symbol	Parameter	Test conditions	Limits			
			Min.	Тур.	Max.	Unit
-	Resolution				8	Bits
	Absolute accuracy				1.0	%
t _{su}	Set time				3	μs
Ro	Output resistance		1	2.5	4	kΩ
IVREF	Reference power input current	(Note 1)			3.2	mA

Note 1. One D-A converter is used, and the value of D-A register for unused D-A converter is "0016" Current that flows to the ladder resistance of A-D converter is excluded.

PROM VERSION of M37710M8BXXXFP

TIMING REQUIREMENTS ($v_{cc}=5v\pm10\%$, $v_{ss}=0v$, $\tau_a=25$ °C, f(x_{iN})=25MHz, unless otherwise noted) External clock input

Symbol	Parameter	Lin	1.1	
		Min.	Max.	Unit
t _c	External clock input cycle time	40		ns
t _{w(H)}	External clock input high-level pulse width	15		ns
t _{w(L)}	External clock input low-level pulse width	15		ns
tr	External clock rise time		8	ns
tf	External clock fall time		8	ns

Single-chip mode

Cumbel	Deservation	Lin	1.1	
Symbol	Parameter	Min.	Max.	Unit
t _{SU(POD-E)}	Port P0 input setup time	60		ns
t _{SU(P1D-E)}	Port P1 input setup time	60		ns
t _{SU(P2D-E)}	Port P2 input setup time	60		ns
t _{SU(P3D-E)}	Port P3 input setup time	60		ns
t _{SU(P4D-E)}	Port P4 input setup time	60		ns
t _{SU(P5D-E)}	Port P5 input setup time	60		ns
t _{SU(P6D-E)}	Port P6 input setup time	60		ns
t _{SU(P7D-E)}	Port P7 input setup time	60		ns
t _{SU(P8D-E)}	Port P8 input setup time	60		ns
th(E-POD)	Port P0 input hold time	0		ns
th(E-P1D)	Port P1 input hold time	0		ns
th(E-P2D)	Port P2 input hold time	0		ns
th(E-P3D)	Port P3 input hold time	0		ns
th(E-P4D)	Port P4 input hold time	0		ns
th(E-P5D)	Port P5 input hold time	0		ns
th(E-P6D)	Port P6 input hold time	0		ns
th(E-P7D)	Port P7 input hold time	0		ns
th(E-P8D)	Port P8 input hold time	0		ns

Memory expansion mode and microprocessor mode

0 mm h al	Parameter	Lin	Unit	
Symbol	Parameter	Min.	Max.	Unit
t _{SU(P1D-E)}	Port P1 input setup time	30		ns
t _{SU(P2D-E)}	Port P2 input setup time	30		ns
t _{su(RDY} -ø1)	RDY input setup time	55		ns
t _{su(hold} -∳1)	HOLD input setup time	55		ns
th(E-P1D)	Port P1 input hold time	0		ns
th(E-P2D)	Port P2 input hold time	0		ns
th(#1-RDY)	RDY input hold time	0		ns
t _{h(∲1} —HOLD)	HOLD input hold time	0		ns

PROM VERSION of M37710M8BXXXFP

Timer A input (Count input in event counter mode)

Symbol	Parameter	Lin	Unit	
Symbol	Farameter	Min.	Max.	Unit
t _{C(TA)}	TAI _{IN} input cycle time	80		ns
tw(TAH)	TAi _{IN} input high-level pulse width	40		ns
t _{W(TAL)}	TAi _{IN} input low-level pulse width	40		ns

Timer A input (Gating input in timer mode)

Symbol	Parameter	Lin	Unit	
		Min.	Max.	Unit
t _{C(TA)}	TAi _{IN} input cycle time	320		ns
t _{w(TAH)}	TAi _{IN} input high-level pulse width	160		ns
t _{w(TAL)}	TAi _{IN} input low-level pulse width	160		ns

Timer A input (External trigger input in one-shot pulse mode)

Symbol	Parameter	Lin	Unit	
	Parameter	Min.	Max.	Unit
t _{C(TA)}	TAi _{IN} input cycle time	160		ns
t _{w(TAH)}	TAi _{IN} input high-level pulse width	80		ns
tw(TAL)	TAi _{IN} input low-level pulse width	80		ns

Timer A input (External trigger input in pulse width modulation mode)

Symbol	Parameter	Lin	Unit	
		Min.	Max.	Unit
t _{w(TAH)}	TAi _{IN} input high-level pulse width	80		ns
tw(TAL)	TAi _{IN} input low-level pulse width	80		ns

Timer A input (Up-down input in event counter mode)

Symbol	Parameter	Lin	Limits	
Symbol	Falalleter	Min.	Max.	Unit
t _{C(UP)}	TAi _{out} input cycle time	2000		ns
tw(UPH)	TAi _{OUT} input high-level pulse width	1000		ns
tw(UPL)	TAi _{out} input low-level pulse width	1000		ns
tsu(UP-TIN)	TAi _{OUT} input setup time	400		ns
th(TIN-UP)	TAi _{out} input hold time	400		ns

M37710E8BXXXFP M37710E8BFS

PROM VERSION of M37710M8BXXXFP

Timer B input (Count input in event counter mode)

Symbol	Parameter	Lin	Limits		
	Parameter	Min.	Max.	Unit	
t _{C(TB)}	TBi _{IN} input cycle time (one edge count)	80		ns	
t _{w(твн)}	TBi _{IN} input high-level pulse width (one edge count)	40		ns	
tw(TBL)	TBi _{IN} input low-level pulse width (one edge count)	40		ns	
t _{C(TB)}	TBi _{IN} input cycle time (both edges count)	160		ns	
t _{w(твн)}	TBi _{IN} input high-level pulse width (both edges count)	80		ns	
tw(TBL)	TBi _{IN} input low-level pulse width (both edges count)	80		ns	

Timer B input (Pulse period measurement mode)

Quest al	Parameter	Lin	Unit	
Symbol	Parameter	Min.	Max.	Unit
t _{с(тв)}	TBi _{IN} input cycle time	320		ns
t _{w(твн)}	TBi _{IN} input high-level pulse width	160		ns
tw(TBL)	TBi _{IN} input low-level pulse width	160		ns

Timer B input (Pulse width measurement mode)

Symbol	Parameter	Limits	nits	Unit
Symbol	Falaneter	Min.	Max.	Unit
t _{c(тв)}	TBi _{IN} input cycle time	320		ns
t _{w(твн)}	TBi _{IN} input high-level pulse width	160		ns
t _{w(TBL)}	TBi _{IN} input low-level pulse width	160		ns

A-D trigger input

Symbol	Parameter		nits	Unit
	Parameter	Min.	Max.	Unit
t _{C(AD)}	AD _{TRG} input cycle time (minimum allowable trigger)	1000		ns
t _{W(ADL)}	AD _{TRG} input low-level pulse width	125		ns

Serial I/O

Queen had	Parameter	Lir		
Symbol	Parameter	Min.	Max.	Unit
t _{C(CK)}	CLKi input cycle time	200		ns
t _{w(скн)}	CLK _i input high-level pulse width	100		ns
tw(CKL)	CLK _j input low-level pulse width	100		ns
td(c-q)	TxDj output delay time		80	ns
th(c-q)	TxDi hold time	0		ns
t _{su(D-C)}	RxDi input setup time	30		ns
th(c-D)	RxDi input hold time	90		ns

External interrupt INT; input

Symbol	Parameter		Limits	
	Parameter	Min.	Max.	Unit
t _{w(INH)}	INT; input high-level pulse width	250		ns
t _{W(INL)}	INTi input low-level pulse width	250		ns

PROM VERSION of M37710M8BXXXFP

SWITCHING CHARACTERISTICS ($v_{cc}=5v\pm10\%$, $v_{ss}=0v$, $\tau_a=25$ °C, $f(x_{in})=25$ MHz, unless otherwise noted) **Single-chip mode**

0 million	Symbol Parameter	Test conditions	Lir	11-14	
Symbol			Min.	Max.	Unit
td(E-POQ)	Port P0 data output delay time			80	ns
td(E-P1Q)	Port P1 data output delay time			80	ns
td(E-P2Q)	Port P2 data output delay time			80	ns
td(E-P3Q)	Port P3 data output delay time			80	ns
td(E-P4Q)	Port P4 data output delay time	Fig. 3		80	ns
td(E-P5Q)	Port P5 data output delay time			80	ns
td(E-P6Q)	Port P6 data output delay time			80	ns
td(E-P7Q)	Port P7 data output delay time			80	ns
td(E-P8Q)	Port P8 data output delay time			80	ns

Memory expansion mode and microprocessor mode (when wait bit = "1")

Symbol	Parameter	Test conditions	Lir	nits	Unit
Symbol	Falalleter	Test conditions	Min.	Max.	Unit
td(POA-E)	Port P0 address output delay time		12		ns
td(E-P1Q)	Port P1 data output delay time (BYTE="L")			45	ns
tpxz(E-P1Z)	Port P1 floating start delay time (BYTE="L")			5	ns
td(PIA-E)	Port P1 address output delay time		12		ns
td(P1A-ALE)	Port P1 address output delay time		5		ns
td(E-P2Q)	Port P2 data output delay time			45	ns
tpxz(E-P2Z)	Port P2 floating start delay time			5	ns
td(P2A-E)	Port P2 address output delay time		12		ns
td(P2A-ALE)	Port P2 address output delay time		5		ns
td(#1HLDA)	HLDA output delay time			50	ns
td(ALE-E)	ALE output delay time		4		ns
t _{W(ALE)}	ALE pulse width		22		ns
td(BHE-E)	BHE output delay time	Fig. 0	20		ns
td(R/W-E)	R/W output delay time	Fig. 3	20		ns
td(E-\$_1)	ϕ_1 output delay time		0	18	ns
th(E-POA)	Port P0 address hold time		25		ns
th(ALE-PIA)	Port P1 address hold time (BYTE="L")		9		ns
th(E-P1Q)	Port P1 data hold time (BYTE="L")		25		ns
tpzx(E-P1Z)	Port P1 floating release delay time (BYTE="L")		25		ns
th(E-P1A)	Port P1 address hold time (BYTE="H")		25		ns
th(ALE-P2A)	Port P2 address hold time		9		ns
th(E-P2Q)	Port P2 data hold time		25		ns
tpzx(E-P2Z)	Port P2 floating release delay time		25		ns
th(E-BHE)	BHE hold time		18		ns
th(E-R/W)	R/W hold time		18		ns
	E pulse width		50		ns

PROM VERSION of M37710M8BXXXFP

Memory expansion mode and microprocessor mode

(when wait bit = "0", wait selection bit = "1", and external memory area is accessed)

Sumbol	Parameter	Test conditions	Lir	nits	1 Init
Symbol	Parameter	Test conditions	Min.	Max.	Unit
td(POA-E)	Port P0 address output delay time		12		ns
td(E-P1Q)	Port P1 data output delay time (BYTE="L")			45	ns
tpxz(E-P1Z)	Port P1 floating start delay time (BYTE="L")			5	ns
td(P1A-E)	Port P1 address output delay time		12		ns
td(P1A-ALE)	Port P1 address output delay time		5		ns
td(E-P2Q)	Port P2 data output delay time			45	ns
tpxz(E-P2Z)	Port P2 floating start delay time			5	ns
td(P2A-E)	Port P2 address output delay time		12		ns
td(P2A-ALE)	Port P2 address output delay time		5		ns
td(ø1-HLDA)	HLDA output delay time			50	ns
td(ALE-E)	ALE output delay time		4		ns
tw(ALE)	ALE pulse width		22		ns
td(BHE-E)	BHE output delay time	- 	20		ns
td(R/W-E)	R/W output delay time	Fig. 3	20		ns
$t_{d(E-\phi_1)}$	ϕ_1 output delay time		0	18	ns
th(E-POA)	Port P0 address hold time		25		ns
th(ALE-P1A)	Port P1 address hold time (BYTE="L")		9		ns
th(E-P1Q)	Port P1 data hold time (BYTE="L")		25		ns
tpzx(E-P1Z)	Port P1 floating release delay time (BYTE="L")		25		ns
th(E-P1A)	Port P1 address hold time (BYTE="H")		25		ns
th(ALE-P2A)	Port P2 address hold time	·	9		ns
th(E-P2Q)	Port P2 data hold time	-	25		ns
tpzx(E-P2Z)	Port P2 floating release delay time		25		ns
th(E-BHE)	BHE hold time		18		ns
th(E-R/W)	R/W hold time		18		ns
tw(EL)	E pulse width		130		ns

PROM VERSION of M37710M8BXXXFP

Memory expansion mode and microprocessor mode

(when wait bit = "0", wait selection bit = "0", and external memory area is accessed)

Symbol	Parameter	Test conditions	Limits		Unit
Symbol	Parameter	lest conditions	Min.	Max.	Unit
td(POA-E)	Port P0 address output delay time		92		ns
td(E-P1Q)	Port P1 data output delay time (BYTE="L")			45	ns
tpxz(E-P1Z)	Port P1 floating start delay time (BYTE="L")			5	ns
td(P1A-E)	Port P1 address output delay time		92		ns
td(P1A-ALE)	Port P1 address output delay time		70		ns
td(E-P2Q)	Port P2 data output delay time			45	ns
tpxz(E-P2Z)	Port P2 floating start delay time			5	ns
td(P2A-E)	Port P2 address output delay time		92		ns
td(P2A-ALE)	Port P2 address output delay time		70		ns
td(¢1-HLDA)	HLDA output delay time			50	ns
td(ALE-E)	ALE output delay time		15		ns
t _{w(ALE)}	ALE pulse width	-	62		ns
td(BHE-E)	BHE output delay time	Fig. 3	100		ns
td(R/W-E)	R/W output delay time	rig. 5	100		ns
td(E \$ 1)	ϕ_1 output delay time		0	18	ns
th(E-POA)	Port P0 address hold time		25		ns
th(ALE-P1A)	Port P1 address hold time (BYTE="L")		20		ns
th(E-P1Q)	Port P1 data hold time (BYTE="L")		25		ns
tpzx(E-P1Z)	Port P1 floating release delay time (BYTE="L")		25		ns
th(E-P1A)	Port P1 address hold time (BYTE="H")		25		ns
th(ALE-P2A)	Port P2 address hold time		20		ns
th(E-P2Q)	Port P2 data hold time		25		ns
tpzx(E-P2Z)	Port P2 floating release delay time		25		ns
th(E-BHE)	BHE hold time		18		ns
th(E-R/W)	R/W hold time		18		ns
tw(EL)	Ē pulse width]	130		ns

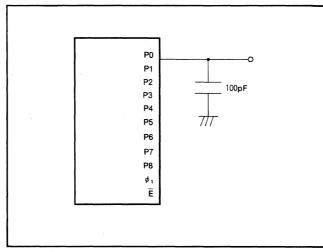
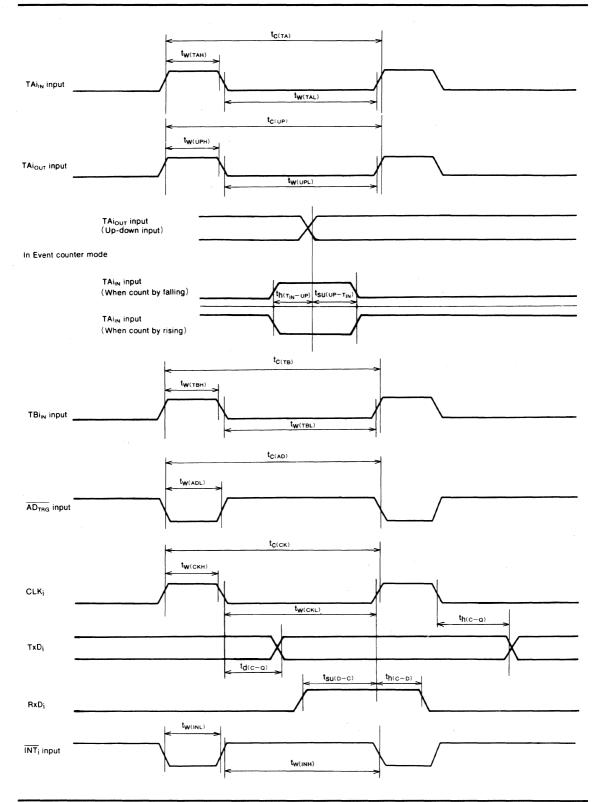
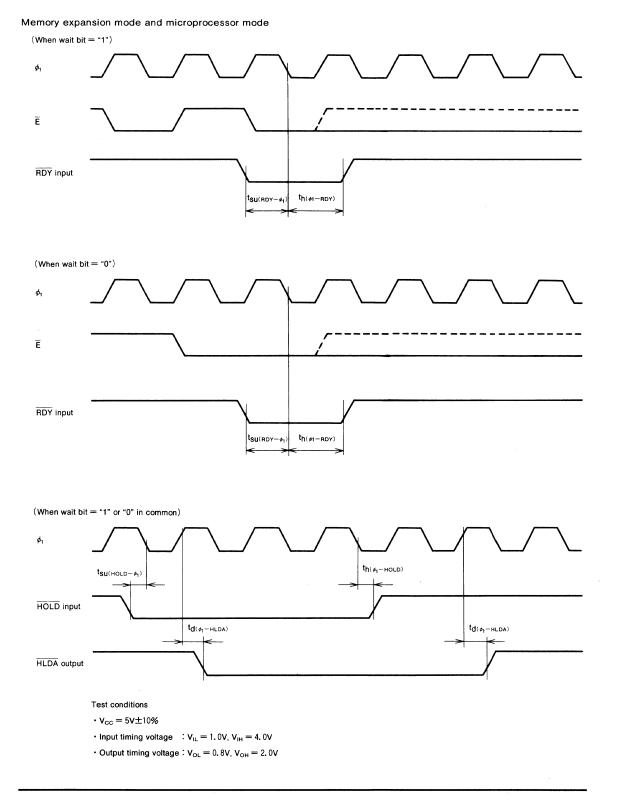


Fig. 3 Testing circuit for ports P0~P8, \$ 1

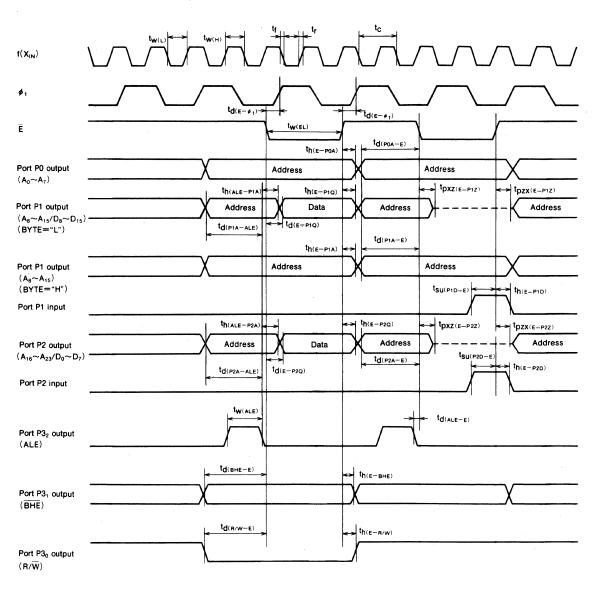


PROM VERSION of M37710M8BXXXFP

TIMING DIAGR Single-chip mode	AM t_r t_f t_c $t_c \rightarrow t_{w(H)}$ $t_{w(L)}$
$f(X_{IN})$	
Ē	
Port P0 output	←→ ^t d(E−P0Q)
Port P0 input	tsu(POD-E)
Port P1 output	<-> td(E−P1Q)
Port P1 input	
Port P2 output	 tsu(p2D-E)
Port P2 input	$\begin{array}{c c} & & \\ & &$
Port P3 output	t _{su(P3D−E)}
Port P3 input	th(E−P3D) th(E−P3D) td(E−P4Q)
Port P4 output	X
Port P4 input	tsu(P4D-E) th(E-P4D)
Port P5 output	td(E-PSQ)
Port P5 input	t _{SU(P5D-E)} t _{h(E-P5D)}
Port P6 output	td(ε-P6Q)
Port P6 input	t _{SU} (P6D-E) th(E-P6D)
Port P7 output	td(E−P7Q)
Port P7 input	t _{su(P7D-E)} t _{h(E-P7D)}
Port P8 output	→ td(E−P/D)
Port P8 input	th(E−P8D)



PROM VERSION of M37710M8BXXXFP



PROM VERSION of M37710M8BXXXFP

PROM VERSION of M37710M8BXXXFP

Memory expansion mode and microprocessor mode (When wait bit="1")

Test conditions

 $\cdot v_{cc} = 5V \pm 10\%$

• Output timing voltage : V_{OL}=0. 8V, V_{OH}=2. 0V

• Ports P1, P2 input : VIL=0. 8V, VIH=2.5V

PROM VERSION of M37710M8BXXXFP

Memory expansion mode and microprocessor mode

(When wait bit = "0", wait selection bit = "1", and external memory area is accessed)

		tc		
f(X _{IN})		MM		ЛЛЛЛ
\$ 1				
Ē		$\frac{EL}{th(E-P0 A)} \xrightarrow{td(E-\phi_1)} td(P0$	A-E)	
Port P0 output $(A_0 \sim A_7)$	X Addre		Address	
Port P1 output ($A_8 \sim A_{15}/D_8 \sim$ (BYTĖ="L")	D_{15}	Data Address		Address
Port P1 output $(A_8 \sim A_{15})$ (BYTE="H")	Addre		$\frac{A-E}{Address}$ $\frac{SU(P1D-E)}{SU(P1D-E)} + \frac{SU(P1D-E)}{SU(P1D-E)} $	-P1D)
Port P1 input				
Port P2 output (A ₁₆ ~A ₂₃ /D ₀ ~	- <u>D</u> ₇) Address	Data Address	t _{SU(P2D-E)}	Address
Port P2 input.	td(P2A-ALE) td(E-P2C			
Port P3₂ outpr (ALE)	utt_d(θΗΕ-Ε)		d(ALE-E)	
Port P3, outpu (BHE)	μt, t _{d(R/W-E)}	<→ t _{h(∈− вне)}	Х	
Port P3 ₀ outp (R/ W)	>	< > t _{h(E- R/W)}		

Test conditions

- $\cdot v_{cc} = 5v \pm 10\%$
- \cdot Output timing voltage : V_{OL}=0.8V, V_{OH}=2.0V
- Ports P1, P2 input : V_{IL}=0.8V, V_{IH}=2.5V

PROM VERSION of M37710M8BXXXFP

Memory expansion mode and microprocessor mode

(When wait bit = "0", wait selection bit = "0", and external memory area is accessed)

	_ tc
f(X _{IN})	$\mathcal{M} = \mathcal{M} = $
¢1	
Ē	$\frac{t_{d(E-\phi_1)}}{t_{W(EL)}}$
Port P0 output $(A_0 \sim A_7)$	th(E-POA) Address
Port P1 output $(A_8 \sim A_{15}/D_8 \sim D_{15})$ (BYTE="L")	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
Port P1 output (A ₈ ~A ₁₅) (BYTE="H")	$\frac{t_{h(E-P1A)}}{Address}$
Port P1 input	t _{\$U(P1D-E)} t _{h(E-P1D)}
Port P2 output $(A_{16} \sim A_{23}/D_0 \sim D_7)$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
Port P2 input	td(P2A-ALE)
Port P3 ₂ output (ALE)	
Port P31 output (BHE)	td(вне-е)
Port P3 ₀ output (R/W)	$\xrightarrow{t_{d(R/W-E)}} t_{h(E-R/W)}$

Test conditions

 $\cdot v_{cc} = 5V \pm 10\%$

• Output timing voltage : V_{OL}=0.8V, V_{OH}=2.0V

• Ports P1, P2 input : V_{IL}=0.8V, V_{IH}=2.5V

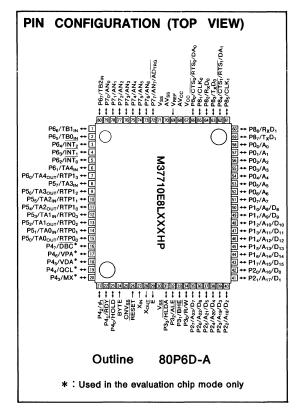
MITSUBISHI MICROCOMPUTERS

PROM VERSION of M37710M8LXXXHP

DESCRIPTION

The M37710E8LXXXHP is a single-chip 16-bit microcomputer designed with high-performance CMOS silicon gate technology. This is housed in a small 80-pin plastic molded QFP. The features of this chip are similar to those of the M37710M8LXXXHP except that this chip has a 60K-byte PROM built in.

This microcomputer has a large 16M bytes address space, three instruction queue buffers, and two data buffers for high-speed instruction execution. The CPU is a 16-bit parallel processor that can also be switched to perform 8-bit parallel processing. This microcomputer is suitable for communication, office, business and industrial equipment controller that require high-speed processing of large data. Since general purpose PROM writers can be used for the built-in PROM, this chip is suitable for small quantity production runs.

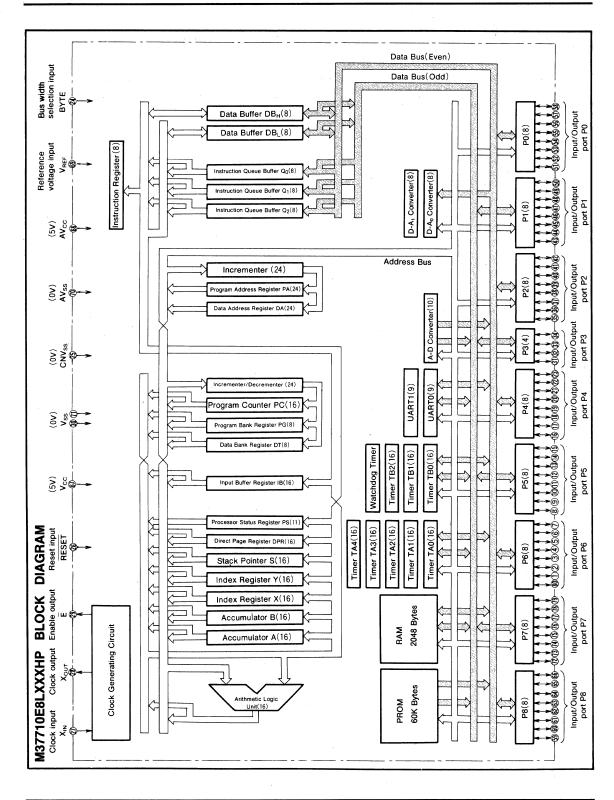

FEATURES

٠		instructions 103
٠	Memory size	PROM(one time) ·······60K bytes
		RAM······ 2048 bytes
٠	Instruction exect	ution time
	The fastest instr	uction at 8MHz frequency 500ns
٠	Single low supp	ly voltage 2.7~5.5V
•	Low power dissi	pation
		oltage, 8MHz frequency)… 12mW (Typ.)
	(At 5V supply vo	oltage, 8MHz frequency)… 30mW (Typ.)
٠	Wide operating	temperature range······-40~85℃
•		······19 types 7 levels
٠	Multiple function	16-bit timer
		ve waveform can be output)
٠	UART (may also	be synchronous) ······2
٠	10-bit A-D conve	erter 8-channel inputs
٠	8-bit D-A conver	rter ······ 2-channel outputs
٠	12-bit watchdog	timer
٠	Programmable in	
	(ports P0, P1, P2	2, P3, P4, P5, P6, P7, P8) ······ 68
-	0	

APPLICATION

Control devices for office equipment such as copiers, printers, typewriters, facsimiles, word processors, and personal computers

Control devices for industrial equipment such as ME, NC, communication, portable equipment, and measuring instruments



NOTE

Refer to "Chapter 5 PRECAUTIONS" when using this microcomputer.

PROM VERSION of M37710M8LXXXHP

PROM VERSION of M37710M8LXXXHP

FUNCTIONS OF M37710E8LXXXHP

	Parameter	Functions		
Number of basic instructions		103		
Instruction execution time		500ns (the fastest instruction at external clock 8MHz frequency)		
Mananasia	PROM	60K bytes		
Memory size	RAM	2048 bytes		
In a set /Output in ante	P0~P2, P4~P8	8 -bit× 8		
Input/Output ports	P3	4 -bit× 1		
A.4. (A) .6	TA0, TA1, TA2, TA3, TA4	16-bit× 5		
Multi-function timers	TB0, TB1, TB2	16-bit×3		
Serial I/O		(UART or clock synchronous serial I/O)X2		
A-D converter		10-bit×1(8 channels)		
D-A converter		8 -bit× 2		
Watchdog timer		12-bit× 1		
1-1		3 external types, 16 internal types		
Interrupts		(Each interrupt can be set the priority levels to $0 \sim 7$.)		
Clock generating circuit		Built-in(externally connected to a ceramic resonator or quartz crystal resonato		
Supply voltage		2. 7~5. 5V		
Power dissipation		12mW (At 3V supply voltage, external clock 8MHz frequency)		
Power dissipation		30mW (At 5V supply voltage, external clock 8MHz frequency)		
	Input/Output voltage	5 V		
Input/Output characteristic	Output current	5 mA		
Memory expansion		Maximum 16M bytes		
Operating temperature range)	-40~85°C		
Device structure		CMOS high-performance silicon gate process (80P6D-A: 0.5mm lead pitch)		
Package		80-pin plastic molded fine-pitch QFP		

PROM VERSION of M37710M8LXXXHP

PIN DESCRIPTION

Pin	Name	Input/Output	Functions
V _{CC} , V _{SS}	Power supply		Supply 2.7 to 5.5V to V _{CC} and 0 V to V _{SS} .
CNV _{SS}	CNV _{SS} input	Input	This pin controls the processor mode. Connect to V_{SS} for single-chip mode, and to V_{CC} for external ROM types.
RESET	Reset input	Input	To enter the reset state, this pin must be kept at a "L" condition which should be maintained for the re- quired time.
X _{IN}	Clock input	Input	These are I/O pins of internal clock generating circuit. Connect a ceramic or quartz crystal resonator be-
X _{OUT}	Clock output	Output	tween X_{IN} and X_{OUT} . When an external clock is used, the clock source should be connected to the X_{IN} pin and the X_{OUT} pin should be left open.
Ē	Enable output	Output	Data or instruction read and data write are performed when output from this pin is "L".
BYTE	Bus width selection input	Input	In memory expansion mode or microprocessor mode, this pin determines whether the external data bus is 8-bit width or 16-bit width. The width is 16 bits when "L" signal inputs and 8 bits when "H" signal inputs.
AV _{CC} AV _{SS}	Analog supply input		Power supply for the A-D converter. AV_{SS} is also used for D-A converter. Connect AV_{CC} to V_{CC} and AV_{SS} to V_{SS} externally.
V _{REF}	Reference voltage input	Input	This is reference voltage input pin for the A-D converter and the D-A converter.
P0 ₀ ~P0 ₇	I/O port P0	1/0	In single-chip mode, port P0 becomes an 8-bit I/O port. An I/O direction register is available so that each pin can be programmed for input or output. These ports are in input mode when reset . Address($A_7 \sim A_0$) is output in memory expansion mode or microprocessor mode.
P1 ₀ ~P1 ₇	I/O port P1	1/0	In single-chip mode, these pins have the same functions as port P0. When the BYTE pin is set to "L" in memory expansion mode or microprocessor mode and external data bus is 16-bit width, high-order data $(D_{15}\sim D_8)$ is input or output when \overline{E} output is "L" and an address $(A_{15}\sim A_8)$ is output when \overline{E} output is "H". If the BYTE pin is "H" that is an external data bus is 8-bit width, only address $(A_{15}\sim A_8)$ is output.
P2 ₀ ~P2 ₇	I/O port P2	1/0	In single-chip mode, these pins have the same functions as port P0. In memory expansion mode or microp- rocessor mode low-order data($D_7 \sim D_0$) is input or output when \overline{E} output is "L" and an address($A_{23} \sim A_{16}$) is output when \overline{E} output is "H".
P3₀~P3₃	I/O port P3	1/0	In single-chip mode , these pins have the same functions as port P0. In memory expansion mode or mic- roprocessor mode, R/W, BHE, ALE, and HLDA signals are output.
P4₀~P4 ₇	I/O port P4	1/0	In single-chip mode, these pins have the same functions as port P0. In memory expansion mode or microp- rocessor mode, P4 ₀ and P4 ₁ become HOLD and RDY input pin respectively. Functions of other pins are the same as in single-chip mode. In single-chip mode or memory expansion mode, port P4 ₂ can be program- med for ϕ_1 output pin divided the clock to X _{IN} pin by 2. In microprocessor mode, P4 ₂ always has the func- tion as ϕ_1 output pin.
P5₀~P57	I/O port P5	1/0	In addition to having the same functions as port P0 in single-chip mode, these pins also function as I/O pins for timer A0, timer A1, timer A2 and timer A3. $P5_0 \sim P5_6$ also function as output pins for pulse motor drive waveform.
P6 ₀ ~P6 ₇	I/O port P6	1/0	In addition to having the same functions as port P0 in single-chip mode, these pins also function as I/O pins for timer A4, external interrupt input $\overline{INT_0}$, $\overline{INT_1}$ and $\overline{INT_2}$ pins, and input pins for timer B0, timer B1 and timer B2. P6 ₀ also functions as an output pin for pulse motor drive waveform.
P7₀~P7 ₇	I/O port P7	1/0	In addition to having the same functions as port P0 in single-chip mode, these pins also function as analog input AN ₀ ~AN ₇ input pins. P7 ₇ also has an A-D conversion trigger input function.
P80~P87	I/O port P8	1/0	In addition to having the same functions as port P0 in single-chip mode, these pins also function as R_xD T _x D, CLK, $\overline{CTS}/\overline{RTS}$ pins for UART 0 and UART 1, and output pins for D-A converter.

PROM VERSION of M37710M8LXXXHP

PIN DESCRIPTION (EPROM MODE)

Pin	Name	Input/Output	Functions
V _{CC} , V _{SS}	Power supply		Supply 5 V±10% to V_{cc} and 0 V to V_{SS.}
CNV _{SS}	V _{PP} input	Input	Connect to V_{PP} when programming or verifing.
BYTE	V _{PP} input	Input	Connect to V_{PP} when programming or verifing.
RESET	Reset input	Input	Connect to V _{SS} .
X _{IN}	Clock input	Input	Connect a ceramic resonator between X_{IN} and $X_{\text{OUT}}.$
Х _{оит}	Clock output	Output	
Ē	Enable output	Output	Кеер ореп.
AV _{CC} , AV _{SS}	Analog supply input		Connect AV _{CC} to V _{CC} and AV _{SS} to V _{SS} .
V _{REF}	Reference voltage input	Input	Connect to V _{SS} .
P0 ₀ ~P0 ₇	Address input $(A_0 \sim A_7)$	Input	Port P0 functions as the lower 8 bits address input $(A_0 \sim A_7)$.
P10~P17	Address input (A ₈ ~A ₁₅)	Input	Port P1 functions as the higher 8 bits address input ($A_8 \sim A_{15}$).
P2 ₀ ~P2 ₇	Data I/O (D₀~D ₇)	1/0	Port P2 functions as the 8 bits data bus $(D_0 \sim D_7)$.
P3 ₀ ~P3 ₃	Input port P3	Input	Connect to V _{SS} .
P4 ₀ ~P4 ₇	Input port P4	Input	Connect to V _{SS} .
P50~P57	Control signal input	Input	P5 ₀ , P5 ₁ and P5 ₂ functions as \overrightarrow{PGM} , \overrightarrow{OE} and \overrightarrow{CE} input pin respectively. Connect P5 ₃ , P5 ₄ , P5 ₅ and P5 ₆ to V _{cc} . Connect P5 ₇ to V _{ss} .
P6 ₀ ~P6 ₇	Input port P6	Input	Connect to V _{SS} .
P7₀~P7 ₇	Input port P7	Input	Connect to V _{SS} .
P80~P87	Input port P8	Input	Connect to V _{SS} .

PROM VERSION of M37710M8LXXXHP

BASIC FUNCTION BLOCKS

The M37710E8LXXXHP has the same functions as the M37710M4BXXXFP except for the following:

- (1) The built-in ROM is PROM.
- (2) The ROM size is 60K bytes.
- (3) The RAM size is 2048 bytes.
- (4) The reset circuit is different.
- (5) The package is different.

Therefore, refer to the section on the M37710M4BXXXFP.

MEMORY

The memory map is shown in Figure 1.

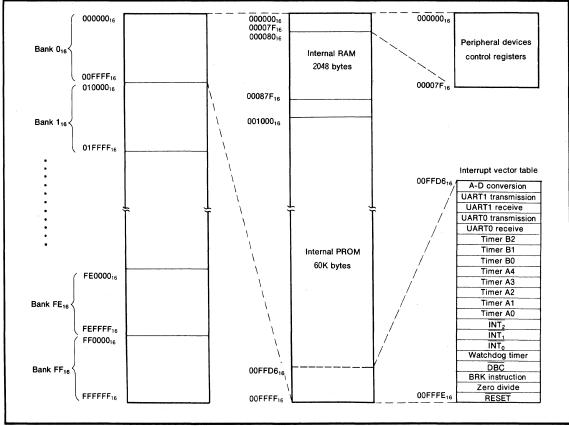


Fig. 1 Memory map

PROM VERSION of M37710M8LXXXHP

RESET CIRCUIT

Reset occurs when the RESET pin is returned to "H" level after holding it at "L" level when the power voltage is at 2.7 to 5.5V. Program execution starts at the address formed by setting the address pins $A_{23} \sim A_{16}$ to 00_{16} , $A_{15} \sim A_8$ to the contents of address FFFF₁₆, and $A_7 \sim A_0$ to the contents of address FFFE₁₆.

Figure 2 shows the status of the internal registers when a reset occurs.

Figure 3 shows an example of a reset circuit. The reset input voltage must be held 0.55V or lower when the power voltage reaches 2.7V.

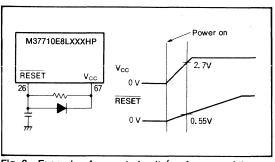


Fig. 3 Example of a reset circuit (perform careful evaluation at the system design level before using)

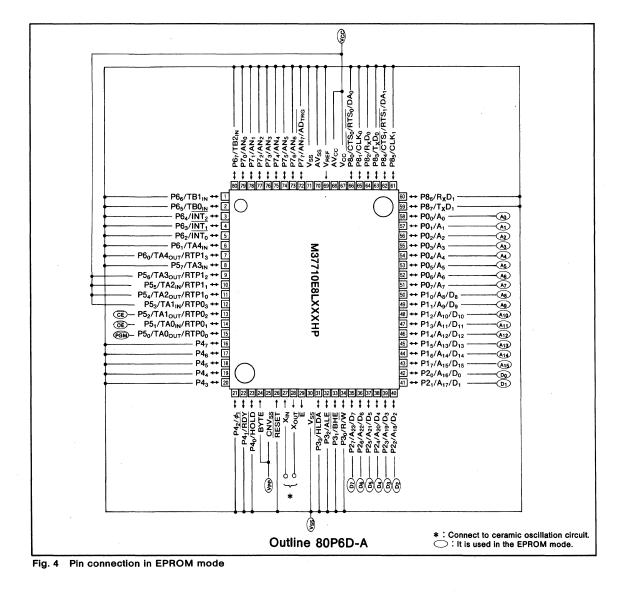
		Address				Address			
(1)	Port P0 data direction register	(04 ₁₆)…	0016	(29)	Processor mode register 0	(5E ₁₆)…	0016		
(2)	Port P1 data direction register	(05 ₁₆)…	0016	(30)	Processor mode register 1	(5F ₁₆)…	O XXXXXX o		
(3)	Port P2 data direction register	(08 ₁₆)…	0016	(3 1)	Watchdog timer (60 ₁₆)	FFF ₁₆		
(4)	Port P3 data direction register	(09 ₁₆)…		(32)	Watchdog timer frequency selection flag	(61 ₁₆)…	VXXXX 0		
(5)	Port P4 data direction register	(0C ₁₆)	0016	(33)	Waveform output mode register	(62 ₁₆)…	0016		
(6)	Port P5 data direction register	(0D ₁₆)…	0016	(34)	Reserved area (Do not write to this address)	(66 ₁₆)…	0016		
(7)	Port P6 data direction register	(10 ₁₆)…	0016	(35)	A-D conversion interrupt control register	(70 ₁₆)…			
(8)	Port P7 data direction register	(11 ₁₆)…	0016	(36)	UART 0 transmission interrupt control register	(71 ₁₆)…			
(9)	Port P8 data direction register	(14 ₁₆)…	0016	(37)	UART 0 receive interrupt control register	(72 ₁₆)…			
(10)	A-D control register 0	(1E ₁₆)…	00000???	(38)	UART 1 transmission interrupt control register	(73 ₁₆)…			
(11)	A-D control register 1	$(1F_{16})\cdots$	0 0 0 0 0 1 1	(39)	UART 1 receive interrupt control register	(74 ₁₆)…			
(12)	UART 0 Transmit/Receive mode register	(30 ₁₆)	0016	(40)	Timer A0 interrupt control register	(75 ₁₆)…			
(13)	UART 1 Transmit/Receive mode register	(38 ₁₆)…	0016	(41)	Timer A1 interrupt control register	(76 ₁₆)…			
(14)	UART 0 Transmit/Receive control register 0	(34 ₁₆)…	0 1 0 0	(42)	Timer A2 interrupt control register	(77 ₁₆)…			
(15)	UART 1 Transmit/Receive control register 0	(3C ₁₆)…	0 1 0 0	(43)	Timer A3 interrupt control register	(78 ₁₆)…			
(16)	UART 0 Transmit/Receive control register 1	(35 ₁₆)…	0 0 0 0 0 1 0	(44)	Timer A4 interrupt control register	(79 ₁₆)…			
(17)	UART 1 Transmit/Receive control register 1	(3D ₁₆)	0 0 0 0 0 0 1 0	(45)	Timer B0 interrupt control register	(7A ₁₆)…			
(18)	Count start flag	(40 ₁₆)…	0016	(46)	Timer B1 interrupt control register	(7B ₁₆)…			
(19)	One-shot start flag	(42 ₁₆)…		(47)	Timer B2 interrupt control register	(7C ₁₆)…			
(20)	Up-down flag	(44 ₁₆)…	0016	(48)	INT 0 interrupt control register	(7D ₁₆)…			
(21)	Timer A0 mode register	(56 ₁₆)…	0016	(49)	INT 1 interrupt control register	(7E ₁₆)…			
(22)	Timer A1 mode register	(57 ₁₆)	0016	(50)	INT 2 interrupt control register	(7F ₁₆)…			
(23)	Timer A2 mode register	(58 ₁₆)…	0016	(51)	Processor status register PS	0 0 0	? ? 0 0 0 1 ? ?		
(24)	Timer A3 mode register	(59 ₁₆)…	0016	(52)	Program bank register PG		0016		
(25)	Timer A4 mode register	(5A ₁₆)	0016	(53)	Program counter PC _H		Content of FFFF ₁₆		
(26)	Timer B0 mode register	(5B ₁₆)…	0 0 1 0 0 0 0 0	(54)	Program counter PCL		Content of FFFE ₁₆		
(27)	Timer B1 mode register	(5C ₁₆)…	0 0 1 0 0 0 0	(55)	Direct page register DPR		000016		
(28)	Timer B2 mode register	(5D ₁₆)…	0 0 1 0 0 0 0	(56)	Data bank register DT		0016		

Fig. 2 Microcomputer internal status during reset

PROM VERSION of M37710M8LXXXHP

EPROM MODE

The M37710E8LXXXHP features an EPROM mode in addition to its normal modes. When the RESET signal level is "L", the chip automatically enters the EPROM mode. Table 1 list the correspondence between pins and Figure 4 shows the pin connections in the EPROM mode.


The EPROM mode is the 1M mode for the EPROM that is equivalent to the M5M27C101K.

When in the EPROM mode, ports P0, P1, P2, P50, P51, P52,

 CNV_{SS} and BYTE are used for the EPROM (equivalent to the M5M27C101K). When in this mode, the built-in PROM can be written to or read from using these pins in the same way as with the M5M27C101K.

This chip does not have Device Identifier Mode, so that set the corresponding program algorithm. The program area should specify address $11000_{16} \sim 1FFF_{16}$.

Connect the clock which is either ceramic resonator or external clock to $X_{\rm IN}$ pin and $X_{\rm OUT}$ pin.

PROM VERSION of M37710M8LXXXHP

Table 1 Pin function in EPROM mode

	M37710E8LXXXHP	M5M27C101K
V _{cc}	Vcc	V _{cc}
V _{PP}	CNV _{SS} , BYTE	V _{PP}
V _{SS}	Vss	V _{SS}
Address input	Ports P0, P1	A ₀ ~A ₁₅
Data I/O	Port P2	D ₀ ~D ₇
CE	P52	CE
OE	P51	ŌĒ
PGM	P50	PGM

PROM VERSION of M37710M8LXXXHP

FUNCTION IN EPROM MODE 1M mode (equivalent to the M5M27C101K)

Reading

To read the EPROM, set the \overline{CE} and \overline{OE} pins to a "L" level. Input the address of the data $(A_0 \sim A_{15})$ to be read, and the data will be output to the I/O pins $D_0 \sim D_7$. The data I/O pins will be floating when either the \overline{CE} or \overline{OE} pins are in the "H" state.

Writing

Writing must be performed in 8 bits by a byte program. To write to the EPROM, set the \overline{CE} pin to a "L" level and the \overline{OE} pin to a "H" level. The CPU will enter the program mode when 12.5V is applied to the V_{PP} pin. The address to be written to is selected with pins A₀~A₁₅, and the data to be written is input to pins D₀~D₇. Set the \overline{PGM} pin to a "L" level to being writing.

Writing operation

To program the M37710E8LXXXHP, first set V_{CC} =6V, V_{PP} = 12.5V, and set the address to 11000₁₆. Apply a 0.2ms write pulse, check that the data can be read, and if it cannot be read OK, repeat the procedure, applying a 0.2ms write pulse and checking that the data can be read until it can be read OK. Record the accumulated number of pulse applied (N) before the data can be read OK, and then write the data again, applying a further once this number of pulses (0.2×N ms).

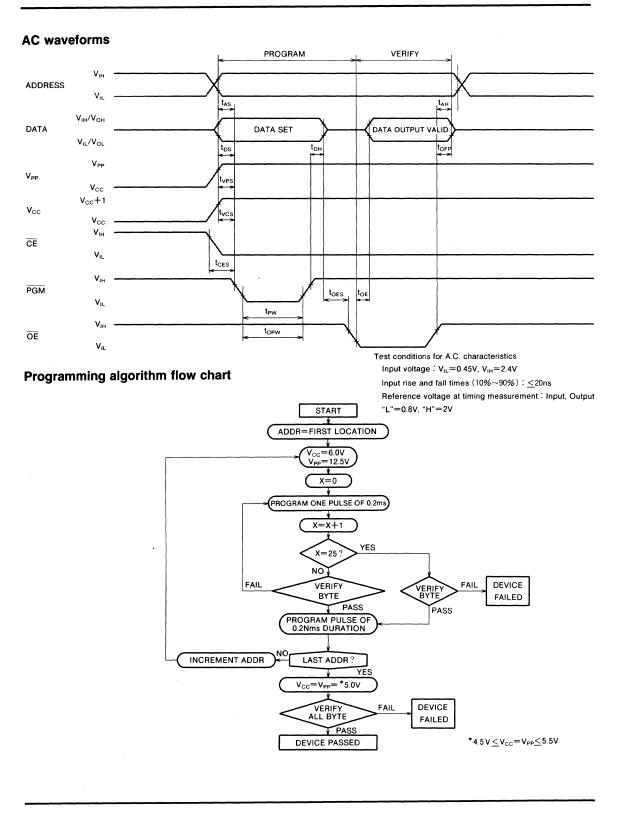
When this series of write operations is complete, increment the address, and continue to repeat the procedure above until the last address has been reached.

Finally, when all addresses have been written, read with $V_{\rm CC}{=}V_{\rm PP}{=}5V($ or $V_{\rm CC}{=}V_{\rm PP}{=}5.5V).$

Pin Mode	CE	ŌĒ	PGM	V _{PP}	v_{cc}	Data I/O
Read-out	VIL	VIL	X	5 V	5 V	Output
Output	VIL	VIH	X	5 V	5 V	Floating
Disable	VIH	х	X	5 V	5 V	Floating
Programming	VIL	VIH	VIL	12.5V	6 V	Input
Programming Verify	Vı∟	VIL	VIH	12. 5V	6 V	Output
Program Disable	VIH	VIH	VIH	12.5V	6 V	Floating

Table 🕻	2 1/0	signal in	each	mode
---------	-------	-----------	------	------

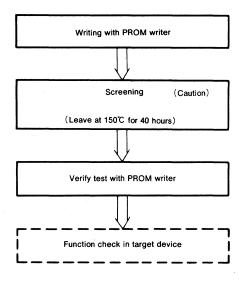
Note 1 : An X indicates either VIL or VIH.


Program operation (equivalent to the M5M27C101K)

AC ELECTRICAL CHARACTERISTICS (Ta=25±5°C, Vcc=6V±0.25V, Vpe=12.5±0.3V, unless otherwise noted)

Ourse had	Parameter	Test conditions		Limits		
Symbol		Test conditions	Min.	Тур.	Max.	Unit
t _{AS}	Address setup time		2			μs
toes	OE setup time		2			μs
t _{DS}	Data setup time		2			μs
t _{AH}	Address hold time		0			μs
t _{DH}	Data hold time		2			μs
t _{DFP}	Output enable to output float delay		0		130	ns
tvcs	V _{cc} setup time		2			μs
t _{VPS}	V _{PP} setup time		2			μs
t _{PW}	PGM pulse width		0.19	0.2	0.21	ms
topw	PGM over program pulse width		0.19		5.25	ms
t _{CES}	CE setup time		2			μs
toE	Data valid from OE				150	ns

PROM VERSION of M37710M8LXXXHP



PROM VERSION of M37710M8LXXXHP

SAFETY INSTRUCTIONS

- A high voltage is used for writing. Take care that overvoltage is not applied. Take care especially at power on.
- (2) The programmable M37710E8LHP that is shipped in blank is also provided. For the M37702E8LHP, Mitsubishi Electric corp. does not perform PROM write test and screening in the assembly process and following processes. To improve reliability after write, performing write and test according to the flow below before use is recommended.

Caution : Never expose to 150°C exceeding 100 hours.

ADDRESSING MODES

The M37710E8LXXXHP has 28 powerful addressing modes. Refer to the MELPS 7700 addressing mode description for the details of each addressing mode.

MACHINE INSTRUCTION LIST

The M37710E8LXXXHP has 103 machine instructions. Refer to the MELPS 7700 machine instruction list for details.

DATA REQUIRED FOR PROM ORDERING

Please send the following data for writing to PROM.

- (1) M37710E8LXXXHP writing to PROM order confirmation form
- (2) 80P6D mark specification form
- (3) ROM data (EPROM 3 sets)

PROM VERSION of M37710M8LXXXHP

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Ratings	Unit
V_{cc}	Supply voltage		-0.3~7	v
AV _{CC}	Analog supply voltage		-0.3~7	v
Vi	Input voltage RESET, CNV _{SS} , BYTE		-0.3~12(Note 1)	V
V,	Input voltage P0 ₀ ~P0 ₇ , P1 ₀ ~P1 ₇ , P2 ₀ ~P2 ₇ , P3 ₀ ~P3 ₃ , P4 ₀ ~P4 ₇ , P5 ₀ ~P5 ₇ , P6 ₀ ~P6 ₇ , P7 ₀ ~P7 ₇ , P8 ₀ ~P8 ₇ , V _{REF} , X _{IN}		-0.3~V _{cc} +0.3	v
Vo	$\begin{array}{c} \mbox{Output voltage $P0_0$$\sim$P0_7$, $P1_0$$\sim$P1_7$, $P2_0$$\sim$P2_7$, $P3_0$$\sim$P3_3$,} \\ \mbox{$P4_0$$\sim$P4_7$, $P5_0$$\sim$P5_7$, $P6_0$$\sim$P6_7$, $P7_0$$\sim$P7_7$,} \\ \mbox{$P8_0$$\sim$P8_7$, X_{OUT}, \overline{E}} \end{array}$		-0.3~V _{cc} +0.3	v
Pd	Power dissipation	T _a =25°C	200	mW
Topr	Operating temperature		-40~85	°C
Tsta	Storage temperature		-65~150	°C

Note 1. Input voltage for CNV_{SS} and BYTE pins is 13V in writing to PROM.

$\label{eq:recommended} Recommended \ operating \ conditions \ (v_{cc} = 2.7 \sim 5.5 v, \ \tau_a = -40 \sim 85 °C, \ unless \ otherwise \ noted)$

Symbol	Parameter	Limits			Unit
Cymbol		Min.	Тур.	Max.	onix
V _{cc}	Supply voltage	2.7		5.5	v
AV _{CC}	Analog supply voltage		$v_{\rm cc}$		v
Vss	Supply voltage	1	0		v
AV _{SS}	Analog supply voltage		0		v
V _{IH}	High-level input voltage P0 ₀ ~P0 ₇ , P3 ₀ ~P3 ₃ , P4 ₀ ~P4 ₇ , P5 ₀ ~P6 ₇ , P6 ₀ ~P6 ₇ , P7 ₀ ~P7 ₇ , P8 ₀ ~P8 ₇ , X _{IN} , RESET, CNV _{SS} , BYTE	0.8V _{CC}		V _{cc}	v
VIH	High-level input voltage P1 ₀ ~P1 ₇ , P2 ₀ ~P2 ₇ (in single-chip mode)	0.8V _{CC}		V _{cc}	v
VIH	High-level input voltage P1 ₀ ~P1 ₇ , P2 ₀ ~P2 ₇ (in memory expansion mode and microprocessor mode)	0.5V _{CC}		V _{cc}	v
VIL	$\begin{array}{llllllllllllllllllllllllllllllllllll$	0		0. 2V _{cc}	v
VIL	Low-level input voltage P1 ₀ ~P1 ₇ , P2 ₀ ~P2 ₇ (in single-chip mode)	0		0. 2V _{CC}	v
VIL	Low-level input voltage P1_0~P1_7, P2_0~P2_7 (in memory expansion mode and microprocessor mode)	0		0. 16V _{CC}	v
I _{OH} (peak)	High-level peak output current P0 ₀ ~P0 ₇ , P1 ₀ ~P1 ₇ , P2 ₀ ~P2 ₇ , P3 ₀ ~P3 ₃ , P4 ₀ ~P4 ₇ , P5 ₀ ~P5 ₇ , P6 ₀ ~P6 ₇ , P7 ₀ ~P7 ₇ , P8 ₀ ~P8 ₇			-10	mA
I _{он(avg)}	High-level average output current P0 ₀ ~P0 ₇ , P1 ₀ ~P1 ₇ , P2 ₀ ~P2 ₇ , P3 ₀ ~P3 ₃ , P4 ₀ ~P4 ₇ , P5 ₀ ~P5 ₇ , P6 ₀ ~P6 ₇ , P7 ₀ ~P7 ₇ , P8 ₉ ~P8 ₇			—5	mA
I _{OL} (peak)	Low-level peak output current P0 ₀ ~P0 ₇ , P1 ₀ ~P1 ₇ , P2 ₀ ~P2 ₇ , P3 ₀ ~P3 ₃ , P4 ₀ ~P4 ₇ , P5 ₀ ~P5 ₇ , P6 ₀ ~P6 ₇ , P7 ₀ ~P7 ₇ , P8 ₀ ~P8 ₇			10	mA
I _{OL} (avg)	Low-level average output current P0 ₀ ~P0 ₇ , P1 ₀ ~P1 ₇ , P2 ₀ ~P2 ₇ , P3 ₀ ~P3 ₃ , P4 ₀ ~P4 ₇ , P5 ₀ ~P5 ₇ , P6 ₀ ~P6 ₇ , P7 ₀ ~P7 ₇ , P8 ₀ ~P8 ₇			5	mA
f(X _{IN})	External clock frequency input			8	MHz

Note 2. Average output current is the average value of a 100ms interval.

 The sum of I_{OL(peak)} for ports P0, P1, P2, P3, and P8 must be 80mA or less, the sum of I_{OH(peak)} for ports P0, P1, P2, P3, and P8 must be 80mA or less, the sum of I_{OL(peak)} for ports P4, P5, P6, and P7 must be 80mA or less, and the sum of I_{OH(peak)} for ports P4, P5, P6, and P7 must be 80mA or less.

PROM VERSION of M37710M8LXXXHP

Symbol	Parameter	Т	est conditions			Limits		Unit
		•			Min.	Тур.	Max.	
V _{он}	High-level output voltage P0 ₀ ~P0 ₇ , P1 ₀ ~P1 ₇ , P2 ₀ ~P2 ₇ , P3 ₀ , P3 ₁ , P3 ₃ , P4 ₀ ~P4 ₇ ,	V _{cc} =5V, I _{он} =-	-10 mA		3			v
∙он	P5₀~P5 ₇ , P6₀~P6 ₇ , P7₀~P7 ₇ , P8₀~P8 ₇	V _{CC} =3V, I _{OH} =-	-1mA		2.5			ľ
V он	High-level output voltage P0 ₀ ~P0 ₇ , P1 ₀ ~P1 ₇ , P2 ₀ ~P2 ₇ , P3 ₀ , P3 ₁ , P3 ₃	V _{cc} =5V, I _{он} =-	-400µA	•	4.7			. v
		V _{cc} =5V, I _{он} =-	-10mA		3.1			
ион	High-level output voltage P32	V _{cc} =5V, I _{он} =-	-400μA		4.8			v
		V _{CC} =3V, I _{OH} =-	-1mA		2.6			
		V _{cc} =5V, I _{он} =-	-10 mA		3.4			
/ _{он}	High-level output voltage E	V _{CC} =5V, I _{ОН} =-	–400µA		4.8			V
		V _{CC} =3V, I _{OH} =-	-1mA		2.6			
/ _{OL}	Low-level output voltage P0 ₀ ~P0 ₇ , P1 ₀ ~P1 ₇ , P2 ₀ ~P2 ₇ , P3 ₀ , P3 ₁ , P3 ₃ , P4 ₀ ~P4 ₇ ,	V _{CC} =5V, I _{OL} =1	0 mA				2	v
, OL	P5₀~P57, P6₀~P67, P7₀~P77, P8₀~P87	V _{CC} =3V, I _{OL} =1	mA				0.5	
V _{oL}	Low-level output voltage $P0_0 \sim P0_7$, $P1_0 \sim P1_7$, $P2_0 \sim P2_7$, $P3_0$, $P3_1$, $P3_3$	V _{CC} =5V, I _{OL} =2	mA				0. 45	v
		V _{CC} =5V, I _{OL} =1	0mA				1.9	
∕ _{ol}	Low-level output voltage P32	V _{cc} =5V, I _{oL} =2	mA				0. 43	\
		$V_{CC}=3V$, $I_{OL}=1$	mA					
		V _{CC} =5V, I _{OL} =1	0mA				1.6	
/ _{o∟}	Low-level output voltage E	$V_{CC}=5V, I_{OL}=2$	mA				0.4	\
		V _{CC} =3V, I _{OL} =1	mA				0.4	
/ _{T+} V _{T-}	Hysteresis HOLD, RDY, TA0 _{IN} ~TA4 _{IN} , TB0 _{IN} ~TB2 _{IN} ,	V _{cc} =5V			0.4		1	
· · · · · · · · · · · · · · · · · · ·	$\overline{INT_0} \sim \overline{INT_2}$, $\overline{AD_{TRG}}$, $\overline{CTS_0}$, $\overline{CTS_1}$, CLK_0 , CLK_1	V _{cc} =3V			0.1		0.7	
ν _{τ+} ν _{τ-}	Hysteresis RESET	V _{cc} =5V			0.2		0.5	
1+ •1-		V _{cc} =3V			0.1		0.4	
/ _{T+} -V _{T-}	Hysteresis X _{IN}	V _{cc} =5V			0.1		0.3	
		V _{cc} =3V			0.06		0.2	
н	High-level input current P0 ₀ ~P0 ₇ , P1 ₀ ~P1 ₇ , P2 ₀ ~P2 ₇ , P3 ₀ ~P3 ₃ , P4 ₀ ~P4 ₇ , P5 ₀ ~P5 ₇ ,	V _{cc} =5V, V _i =5V	/				5	μ
IH 	P6 ₀ ~P6 ₇ , P7 ₀ ~P7 ₇ , P8 ₀ ~P8 ₇ , X _{IN} , RESET, CNV _{SS} , BYTE	V _{CC} =3V, V _I =3V	/				4	μ.
	Low-level input current $P0_0 \sim P0_7$, $P1_0 \sim P1_7$, $P2_0 \sim P2_7$, $P3_0 \sim P3_3$, $P4_0 \sim P4_7$, $P5_0 \sim P5_7$,	V _{cc} =5V, V _I =0V	/				-5	
ΙL	P6 ₀ ~P6 ₇ , P7 ₀ ~P7 ₇ , P8 ₀ ~P8 ₇ , X _{IN} , RESET, CNV _{SS} , BYTE	V _{cc} =3V, V _I =0V	1				4	μ
/ _{RAM}	RAM hold voltage	When clock is a	stopped.		2			<u>۱</u>
		In single-chip	$f(X_{IN})=8MHz$,	$v_{cc}=5v$		6	12	
		mode output	square waveform	$V_{CC}=3V$		4	8	m
cc	Power supply current	only pin is open and other pins	T _a ==25°C when a stopped.	clock is			1	
		are V _{SS} during reset.	T _a =85°C when a stopped.	clock is			20	μ

ELECTRICAL CHARACTERISTICS ($v_{cc}=5v$, $v_{ss}=0v$, $\tau_a=25$ °C, $f(X_{IN})=8MHz$, unless otherwise noted)

PROM VERSION of M37710M8LXXXHP

$\textbf{A-D} \quad \textbf{CONVERTER} \quad \textbf{CHARACTERISTICS} \quad (v_{cc} = Av_{cc} = 5v, v_{ss} = Av_{ss} = 0v, \tau_a = 25\%, \text{ f}(X_{IN}) = 8 \text{ MHz}, \text{ unless otherwise noted})$

0	Deservation	T , 101	Limits			11-14
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Magene	Resolution	V _{REF} =V _{CC}			10	Bits
	Absolute accuracy	V _{REF} =V _{CC}			±3	LSB
RLADDER	Ladder resistance	V _{REF} =V _{CC}	5		20	kΩ
t _{CONV}	Conversion time		29.5			μs
VREF	Reference voltage		2.7		V _{cc}	V
VIA	Analog input voltage		0		VREF	V

$\textbf{D-A} \quad \textbf{CONVERTER} \quad \textbf{CHARACTERISTICS} \ (v_{cc} = 5v, v_{ss} = Av_{ss} = 0v, \ \tau_a = 25^\circ C, \ f(X_{IN}) = 8 \text{MHz}, \ unless \ otherwise \ noted)$

				Limits		
Symbol	Parameter	Test conditions	Min.	Тур. Мах.		Unit
	Resolution				8	Bits
	Absolute accuracy				1.0	%
t _{su}	Set time				3	μs
Ro	Output resistance		1	2.5	4	kΩ
IVREF	Reference power input current	(Note 1)			3.2	mA

Note 1. One D-A converter is used, and the value of D-A register for unused D-A converter is "00₁₆". Current that flows to the ladder resistance of A-D converter is excluded.

PROM VERSION of M37710M8LXXXHP

$\label{eq:timescale} TIMING \quad REQUIREMENTS ~ (v_{cc} = 2.7 \sim 5.5 V, v_{ss} = 0 V, \ \tau_a = 25 °C, \ f(x_{iN}) = 8 MHz, \ unless \ otherwise \ noted)$

External clock input

Symbol	Parameter	Lir	nits	11.44
Symbol	Parameter	Min.	Max.	Unit
t _c	External clock input cycle time	125		ns
t _{w(H)}	External clock input high-level pulse width	50		ns
t _{w(L)}	External clock input low-level pulse width	50		ns
t _r	External clock rise time		20	ns
tf	External clock fall time		20	ns

Single-chip mode

Symbol	Parameter	Lir		
Symbol	Parameter	Min.	Max.	Unit
tSU(POD-E)	Port P0 input setup time	300		ns
t _{su(P1D-E)}	Port P1 input setup time	300		ns
t _{SU(P2D-E)}	Port P2 input setup time	300		ns
t _{SU(P3D-E)}	Port P3 input setup time	300		ns
t _{su(P4D-E)}	Port P4 input setup time	300		ns
tsu(P5D-E)	Port P5 input setup time	300		ns
tsu(P6D-E)	Port P6 input setup time	300		ns
t _{su(P7D-E})	Port P7 input setup time	300		ns
t _{SU(P8D-E)}	Port P8 input setup time	300		ns
th(E-POD)	Port P0 input hold time	0		ns
th(E-P1D)	Port P1 input hold time	0		ns
th(E-P2D)	Port P2 input hold time	0		ns
th(E-P3D)	Port P3 input hold time	0		ns
th(E-P4D)	Port P4 input hold time	0		ns
th(E-P5D)	Port P5 input hold time	0		ns
th(E-P6D)	Port P6 input hold time	0		ns
th(E-P7D)	Port P7 input hold time	0		ns
th(E-P8D)	Port P8 input hold time	0		ns

Memory expansion mode and microprocessor mode

Cumula al	Dessuration	Lin	Unit	
Symbol	Parameter	Min.	Max.	Unit
t _{SU(P1D-E)}	Port P1 input setup time	80		ns
t _{SU(P2D-E)}	Port P2 input setup time	80		ns
t _{SU(RDY-ø1})	RDY input setup time	90		ns
tsu(HOLD-+ +1)	HOLD input setup time	90		ns
th(E-P1D)	Port P1 input hold time	0		ns
th(E-P2D)	Port P2 input hold time	0		ns
th(#1-RDY)	RDY input hold time	0		ns
th(#1-HOLD)	HOLD input hold time	0		ns

PROM VERSION of M37710M8LXXXHP

Timer A input (Count input in event counter mode)

Symbol	Parameter	Limits	nits	11-34
Symbol	Parameter	Min.	Max.	Unit
t _{C(TA)}	TAi _{IN} input cycle time	250		ns
t _{w(TAH)}	TAi _{IN} input high-level pulse width	125		ns
tw(TAL)	TAi _{IN} input low-level pulse width	125		ns

Timer A input (Gating input in timer mode)

Symbol	Parameter	Limits	Limits	
Symbol		Min.	Max.	Unit
t _{C(TA)}	TAi _{IN} input cycle time	1000		ns
t _{w(TAH)}	TAi _{IN} input high-level pulse width	500		ns
t _{W(TAL)}	TAi _{IN} input low-level pulse width	500		ns

Timer A input (External trigger input in one-shot pulse mode)

Symbol	Parameter	Lin	Limits	Unit
Symbol	yindoi Parameter	Min.	Max.	Unit
t _{C(TA)}	TAi _{IN} input cycle time	500		ns
t _{w(TAH)}	TAi _{IN} input high-level pulse width	250		ns
t _{w(TAL)}	TAi _{IN} input low-level pulse width	250		ns

Timer A input (External trigger input in pulse width modulation mode)

Symbol	Parameter	Limits		Unit
Symbol	Farameter	Min.	Max.	Unit
t _{w(TAH)}	TAi _{IN} input high-level pulse width	250		ns
t _{W(TAL)}	TAi _{IN} input low-level pulse width	250		ns

Timer A input (Up-down input in event counter mode)

Symbol	Parameter	Lin	Unit	
Symbol	Falaneter	Min.	Min. Max.	
t _{C(UP)}	TAi _{OUT} input cycle time	5000		ns
t _{w(UPH)}	TAi _{OUT} input high-level pulse width	2500		ns
	TAi _{OUT} input low-level pulse width	2500		ns
tsu(UP-TIN)	TAi _{OUT} input setup time	1000		ns
th(TIN-UP)	TAi _{OUT} input hold time	1000		ns

PROM VERSION of M37710M8LXXXHP

Symbol		Lir	Limits		
	Parameter	Min.	Max.	Unit	
t _{C(TB)}	TBi _{IN} input cycle time (one edge count)	250		ns	
t _{w(твн)}	TBi _{IN} input high-level pulse width (one edge count)	125		ns	
t _{W(TBL)}	TBi _{IN} input low-level pulse width (one edge count)	125		ns	
t _{C(TB)}	TBi _{IN} input cycle time (both edges count)	500		ns	
t _{w(TBH)}	TBi _{IN} input high-level pulse width (both edges count)	250		ns	
tw(TBL)	TBi _{IN} input low-level pulse width (both edges count)	250		ns	

Timer B input (Count input in event counter mode)

Timer B input (Pulse period measurement mode)

Course had	Parameter		Limits	
Symbol	Farameter	Min.	Max.	Unit
t _{C(тв)}	TBi _{IN} input cycle time	1000		ns
t _{w(твн)}	TBi _{IN} input high-level pulse width	500		ns
t _{W(TBL)}	TBi _{IN} input low-level pulse width	500		ns

Timer B input (Pulse width measurement mode)

Symbol	Decemeter		nits	Unit
	Parameter	Min.	Max.	Unit
t _{C(TB)}	TBi _{IN} input cycle time	1000		ns
t _{W(TBH)}	TBi _{IN} input high-level pulse width	500		ns
t _{W(TBL)}	TBi _{IN} input low-level pulse width	500		ns

A-D trigger input

Symbol	Parameter		Limits	
	Parameter	Min.	Max.	Unit
t _{C(AD)}	AD _{TRG} input cycle time (minimum allowable trigger)	2000		ns
	AD _{TRG} input low-level pulse width	250		ns

Serial I/O

Symbol	Parameter		Limits	
	Falameter	Min.	Max.	Unit
t _{C(CK)}	CLK _i input cycle time	500		ns
t _{W(CKH)}	CLK _j input high-level pulse width	250		ns
tw(CKL)	CLK _i input low-level pulse width	250		ns
td(c-q)	TxD _i output delay time		170	ns
th(c-a)	TxD _i hold time	0		ns
t _{su(D-C)}	RxD _i input setup time	80		ns
th(c-D)	RxD _i input hold time	100		ns

External interrupt INTi input

	Symbol	Parameter		Limits	
	Symbol	Parameter	Min.	Max.	Unit
t	W(INH)	INTi input high-level pulse width	250		ns
t	W(INL)	INT _i input low-level pulse width	250		ns

PROM VERSION of M37710M8LXXXHP

SWITCHING CHARACTERISTICS ($v_{cc}=2.7\sim5.5v$, $v_{ss}=0v$, $\tau_a=25$ °C, $f(x_{IN})=8$ MHz, unless otherwise noted) Single-chip mode

Symbol	Desemator	Test conditions	Limits		11-14
	Parameter	lest conditions	Min.	Max.	Unit
td(E-POQ)	Port P0 data output delay time			300	ns
td(E-P1Q)	Port P1 data output delay time			300	ns
td(E-P2Q)	Port P2 data output delay time			300	ns
td(E-P3Q)	Port P3 data output delay time			300	ns
td(E-P4Q)	Port P4 data output delay time	Fig. 5		300	ns
td(E-P5Q)	Port P5 data output delay time			300	ns
td(E-P6Q)	Port P6 data output delay time			300	ns
td(E-P7Q)	Port P7 data output delay time			300	ns
td(E-P8Q)	Port P8 data output delay time			300	ns

Memory expansion mode and microprocessor mode (when wait bit = "1")

Symbol	Parameter	Test conditions	Lii	mits	Unit
Symbol	Farameter		Min.	Max.	Unit
td(POA-E)	Port P0 address output delay time		62		ns
td(E-P1Q)	Port P1 data output delay time (BYTE="L")			130	ns
tpxz(E-P1Z)	Port P1 floating start delay time (BYTE="L")			10	ns
td(P1A-E)	Port P1 address output delay time		62		ns
td(PIA-ALE)	Port P1 address output delay time		52		ns
td(E-P2Q)	Port P2 data output delay time			130	ns
tpxz(E-P2Z)	Port P2 floating start delay time			10	ns
td(P2A-E)	Port P2 address output delay time		62		ns
td(P2A-ALE)	Port P2 address output delay time		52		ns
td(ø1-HLDA)	HLDA output delay time			120	ns
td(ALE-E)	ALE output delay time		4		ns
t _{W(ALE)}	ALE pulse width		82		ns
td(BHE-E)	BHE output delay time		62		ns
td(R/W-E)	R/W output delay time	- Fig. 5	62		ns
$t_{d(E-\phi_1)}$	ϕ_1 output delay time		0	40	ns
th(E-POA)	Port P0 address hold time		95		ns
th(ALE-P1A)	Port P1 address hold time (BYTE="L")		9		ns
th(E-P1Q)	Port P1 data hold time (BYTE="L")		95		ns
tpzx(E-P1Z)	Port P1 floating release delay time (BYTE="L")		95		ns
th(E-P1A)	Port P1 address hold time (BYTE="H")		95		ns
th(ALE-P2A)	Port P2 address hold time		9		ns
th(E-P2Q)	Port P2 data hold time		95		ns
tpzx(E-P2Z)	Port P2 floating release delay time		95		ns
th(E-BHE)	BHE hold time		18		ns
	R/W hold time		18		ns
	E pulse width	1	220		ns

PROM VERSION of M37710M8LXXXHP

Memory expansion mode and microprocessor mode (when wait bit = "0", wait selection bit = "1", and external memory area is accessed)

Queen to al	Parameter	Test conditions	Limits		Unit
Symbol	Parameter		Min.	Max.	Unit
td(POA-E)	Port P0 address output delay time		62		ns
td(E-P1Q)	Port P1 data output delay time (BYTE="L")			130	ns
tpxz(E-P1Z)	Port P1 floating start delay time (BYTE="L")			10	ns
td(P1A-E)	Port P1 address output delay time		62		ns
td(P1A-ALE)	Port P1 address output delay time		52		ns
td(E-P2Q)	Port P2 data output delay time			130	ns
tpxz(E-P2Z)	Port P2 floating start delay time			10	ns
td(P2A-E)	Port P2 address output delay time		62		ns
td(P2A-ALE)	Port P2 address output delay time		52		ns
td(≠1−HLDA)	HLDA output delay time			120	ns
td(ALE-E)	ALE output delay time		4		ns
tw(ALE)	ALE pulse width		82		ns
td(BHE-E)	BHE output delay time	Fig. 5	62		ns
td(R/W-E)	R/W output delay time	Fig. 5	62		ns
t _{d(E-\$\phi_1)}	ϕ_1 output delay time		0	40	ns
th(E-POA)	Port P0 address hold time		95		ns
th(ALE-P1A)	Port P1 address hold time (BYTE="L")		9		ns
th(E-P1Q)	Port P1 data hold time (BYTE="L")		95		ns
tpzx(E-P1Z)	Port P1 floating release delay time (BYTE="L")		95		ns
th(E-P1A)	Port P1 address hold time (BYTE="H")		95		ns
th(ALE-P2A)	Port P2 address hold time		9		ns
th(E-P2Q)	Port P2 data hold time		95		ns
tpzx(E-P2Z)	Port P2 floating release delay time		95		ns
t _{h(е—вне)}	BHE hold time		18		ns
th(E-R/W)	R/W hold time		18		ns
tw(EL)	E pulse width		470		ns

PROM VERSION of M37710M8LXXXHP

Memory expansion mode and microprocessor mode

(when wait bit = "0", wait selection bit = "0", and external memory area is accessed)

Currents and	Parameter	Test conditions	Limits		11-14
Symbol	Parameter	Test conditions	Min.	Max.	Unit
td(POA-E)	Port P0 address output delay time		312		ns
td(E-P1Q)	Port P1 data output delay time (BYTE="L")			130	ns
tpxz(E-P1Z)	Port P1 floating start delay time (BYTE="L")			10	ns
td(P1A-E)	Port P1 address output delay time		312		ns
td(P1A-ALE)	Port P1 address output delay time		177		ns
td(E-P2Q)	Port P2 data output delay time			130	ns
tpxz(E-P2Z)	Port P2 floating start delay time			10	ns
td(P2A-E)	Port P2 address output delay time		312		ns
td(P2A-ALE)	Port P2 address output delay time		177		ns
td(ø1-HLDA)	HLDA output delay time			120	ns
td(ALE-E)	ALE output delay time		100		ns
t _{W(ALE)}	ALE pulse width		207		ns
td(BHE-E)	BHE output delay time	Fig. 5	312		ns
td(R/W-E)	R/W output delay time	Fig. 5	312		ns
td(E-\$\phi_1)	ϕ_1 output delay time		0	40	ns
th(E-POA)	Port P0 address hold time		95		ns
th(ALE-P1A)	Port P1 address hold time (BYTE="L")		105		ns
th(E-P1Q)	Port P1 data hold time (BYTE="L")		95		ns
tpzx(E-P1Z)	Port P1 floating release delay time (BYTE="L")		95		ns
th(E-P1A)	Port P1 address hold time (BYTE="H")		95		ns
th(ALE-P2A)	Port P2 address hold time		105		ns
th(E-P2Q)	Port P2 data hold time		95		ns
tpzx(E-P2Z)	Port P2 floating release delay time		95		ns
th(E-BHE)	BHE hold time		18		ns
th(E-R/W)	R/W hold time		18		ns
tw(EL)	E pulse width		470		ńs

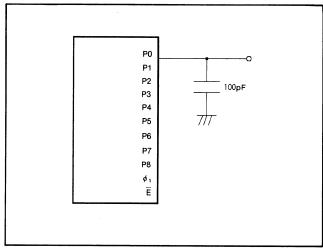
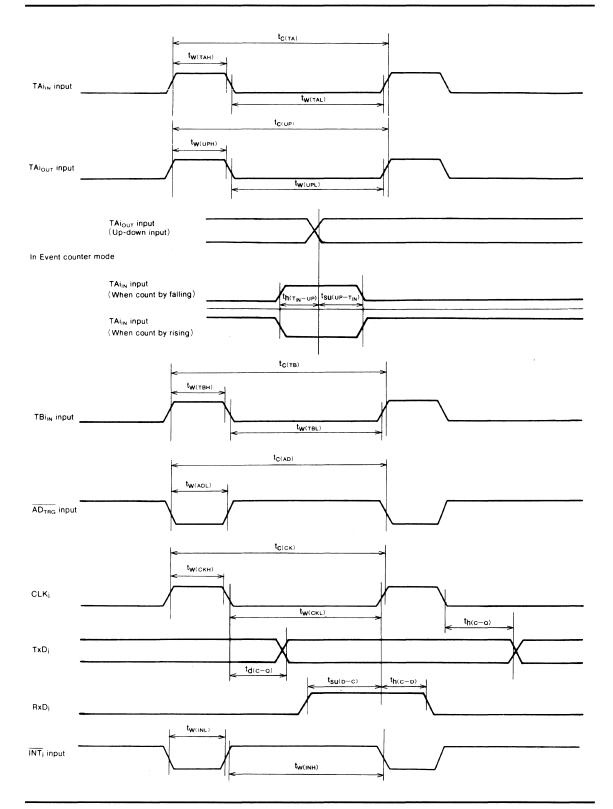
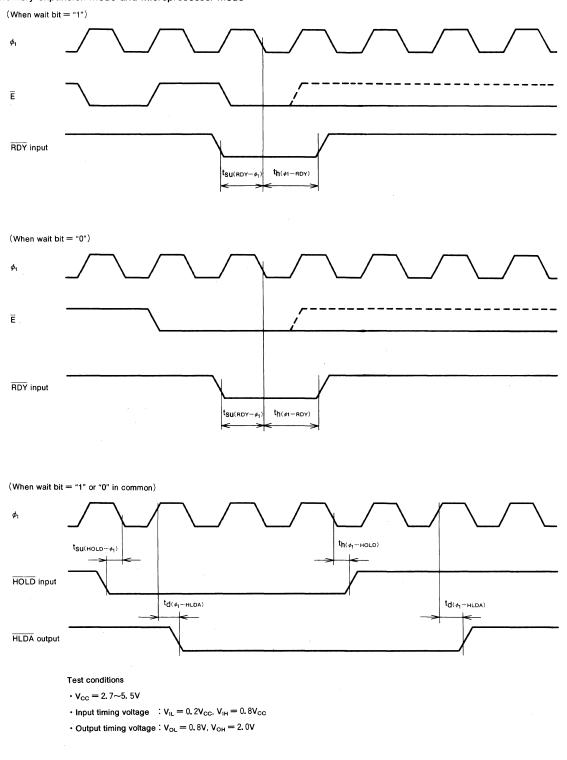


Fig. 5 Testing circuit for ports P0~P8, ϕ_1

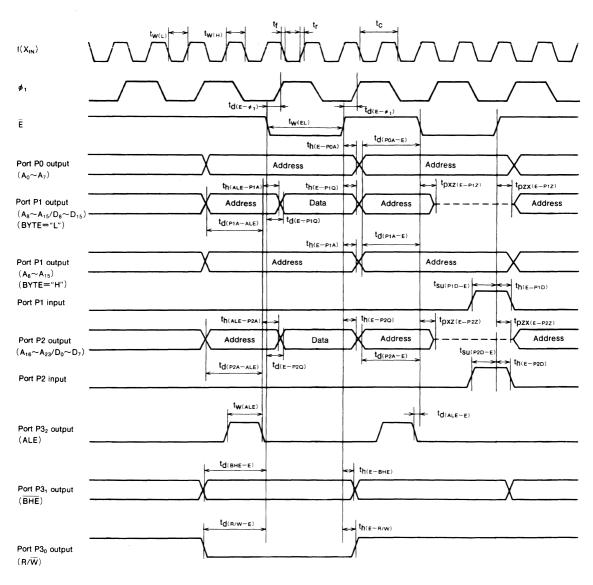


PROM VERSION of M37710M8LXXXHP

TIMING DIAGR Single-chip mode	AM $t_r t_f t_c$ $ \langle - \rangle \langle - \rangle t_w(H) \langle - \rangle t_w(L)$
f(X _{IN})	
Ē	
Port P0 output	↓ td(E-POQ)
Port P0 input	tsu(PDD-E)
Port P1 output	↓ t _{d(E-P1Q)}
Port P1 input	t _{SU(P1D-E)} th(E-P1D)
Port P2 output	td(ε−ρ _{2Q})
Port P2 input	t _{SU(P2D-E)}
Port P3 output	↓ td(E-P3Q)
Port P3 input	t _{SU(РЭО-Е)} t _{h(Е-РЭD)}
Port P4 output	td(E−P4Q) td(E−P4Q) td(E−P
Port P4 input	t _{SU(P4D} -E) th(E-P4D)
Port P5 output	★ td(ε-ρsq)
Port P5 input	t _{SU(PSD-E)} th(E-PSD)
Port P6 output	↓ td(Е-Р6Q)
Port P6 input	t _{SU(PED-E)} t _{h(E-PED)}
Port P7 output	td(E-P7Q)
Port P7 input	t _{SU(P7D-E)}
Port P8 output	<→ td(E−P8Q)
Port P8 input	t _{SU(P8D-E)} th(E-P8D)



PROM VERSION of M37710M8LXXXHP


PROM VERSION of M37710M8LXXXHP

Memory expansion mode and microprocessor mode

PROM VERSION of M37710M8LXXXHP

Memory expansion mode and microprocessor mode (When wait bit="1")

Test conditions

• V_{cc}=2.7~5.5V

- · Output timing voltage : V_{OL}=0. 8V, V_{OH}=2. 0V
- Ports P1, P2 input $V_{IL}=0.16V_{CC}, V_{IH}=0.5V_{CC}$

PROM VERSION of M37710M8LXXXHP

Memory expansion mode and microprocessor mode

(When wait bit = "0", wait selection bit = "1", and external memory area is accessed)

			t _c	
f(X _{IN})	\sim	\mathcal{M}	www	\mathcal{M}
¢ 1				
Ē		tw(EL)	$\frac{d(e-\phi_1)}{d(e-\phi_1)}$	
Port P0 output $(A_0 \sim A_7)$		Address	Address	
Port P1 output (A ₈ ~A ₁₅ /D ₈ ~ (BYTÈ="L")	D ₁₅)	th(ALE-P1A) Address Data	o) Address	Address
Port P1 outpu (A ₈ ~A ₁₅) (BYTE="H")		td (P1A-ALE) th(E-P1 Address	Address	+x
Port P1 input			tsu(PID-E)	
Port P2 outpu (A ₁₆ ~A ₂₃ /D ₀		th(ALE-P2A) Address td(P2A-ALE) td(E-P2O)	$\begin{array}{c} \textbf{Q} \end{array} \xrightarrow{t} \textbf{Q} \\ \textbf{Address} \end{array} \xrightarrow{t} \textbf{Q} \\ \textbf{Address} \\ \textbf{t}_{SU(P2D-t)} \\ \textbf{t}_{U(P2A-E)} \\ \textbf$	$\begin{array}{c} & & \\$
Port P2 input		tw(ALE)	/	\
Port P3₂ outp (ALE)	ut			
Port P3 ₁ outp (BHE)	ut		<>↓ th(Е- ВНЕ)	X
Port P3₀ outp (R/₩)	ut		th(E- R/W)	

Test conditions

- V_{cc}=2.7~5.5V
- Output timing voltage : V_{OL}=0.8V, V_{OH}=2.0V
- Ports P1, P2 input $V_{IL}=0.16V_{CC}, V_{IH}=0.5V_{CC}$

PROM VERSION of M37710M8LXXXHP

Memory expansion mode and microprocessor mode

(When wait bit = "0", wait selection bit = "0", and external memory area is accessed)

	tc
f(X _{IN})	
<i>ϕ</i> ₁	
Ē	$\frac{t_{d(E-\phi_1)}}{t_{W(EL)}}$
Port P0 output $(A_0 \sim A_7)$	th(E-POA) Address
Port P1 output ($A_8 \sim A_{15}/D_8 \sim D_{15}$) (BYTE="L")	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
Port P1 output (A ₈ ~A ₁₅) (BYTE="H")	th(E-PIA) Address Address
Port P1 input	t _{SU(PID-E)} t _{h(E-PID)}
Port P2 output $(A_{16} \sim A_{23}/D_0 \sim D_7)$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
Port P2 input	t _d (P2A-ALE)
Port P3₂ output (ALE)	
Port P3 ₁ output (BHE)	td(вне-е)
Port P3 ₀ output (R/W)	$(\mathbf{t}_{d(\mathbf{R}/\mathbf{W}-\mathbf{E})})$

Test conditions

 $\cdot V_{cc} = 2.7 \sim 5.5 V$

- Output timing voltage : V_{OL} =0.8V, V_{OH} =2.0V
- Ports P1, P2 input $V_{IL}=0.16V_{CC}$, $V_{IH}=0.5V_{CC}$

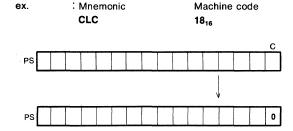
MELPS 7700 SOFTWARE

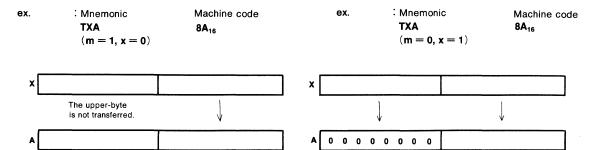
MITSUBISHI MICROCOMPUTERS MELPS 7700 ADDRESSING MODES SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

ADDRESSING MODES

The MELPS 7700 microcomputers support 28 different addressing modes, offering extremely versatile and powerful memory accessing capability.

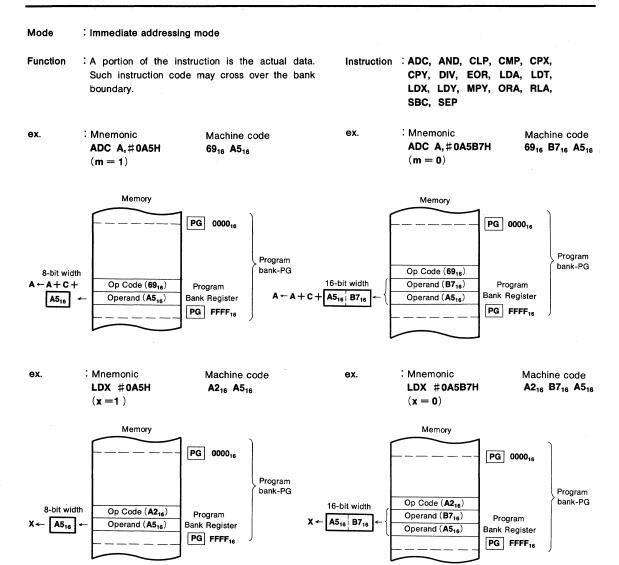
When executing an instruction, the address of the memory location from which the data required for arithmetic opera-

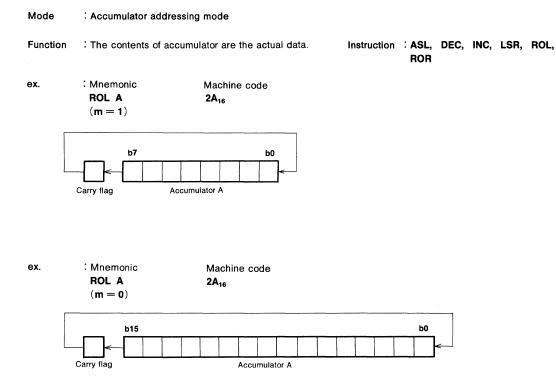

Mode : Implied addressing mode


Function : The single-instruction inherently address an internal register.

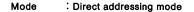
tion is to be retrieved or to which the result of arithmetic								
operation is to be stored must be specified address during								
program execution. Addressing refers to the method of								
specifying the memory address.								

Actual addressing modes are now described by type.


Instruction	: BRK,	CLC,	CLI,	CLM,	CLV,
	DEX,	DEY,	INX,	INY,	NOP,
	RTI,	RTL,	RTS,	SEC,	SEI,
	SEM,	STP,	TAD,	TAS,	TAX,
	TAY,	TBD,	TBS,	TBX,	TBY,
	TDA,	TDB,	TSA,	TSB,	TSX,
	TXA,	ТХВ,	TXS,	TXY,	TYA,
	TYB,	TYX,	WIT,	XAB	

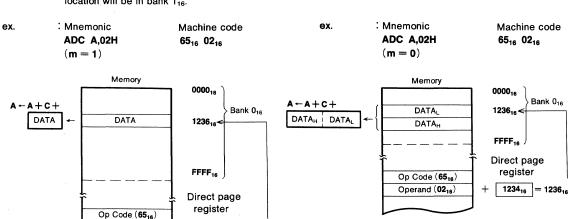


(Note) When the data length differ between the transfer-from and transfer-to locations, data is transferred at the data length for the transfer-to location. If, however, the index register is specified as the transfer-to location and the x flag is set to 1, 0016 is sent as the upper byte value.


CPY, DEC, DIV, EOR, INC, LDA, LDM, LDX, LDX, LSR,

MPY, ORA, ROL, ROR, SBC,

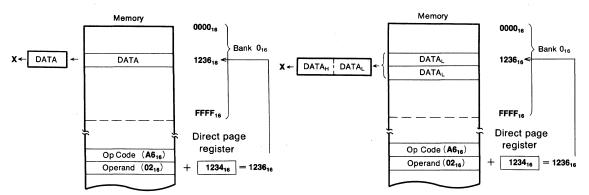
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER


Instruction : ADC, AND, ASL, CMP, CPX,

STA, STX, STY

Function The contents of the bank 0₁₆ memory location specified by the result of adding the second byte of the instruction to the contents of the direct page register become the actual data. If, however, addition of the instruction's second byte to the direct page register's contents result in a value that exceeds the bank 0₁₆ range, the specified location will be in bank 1₁₆.

Operand (0216)

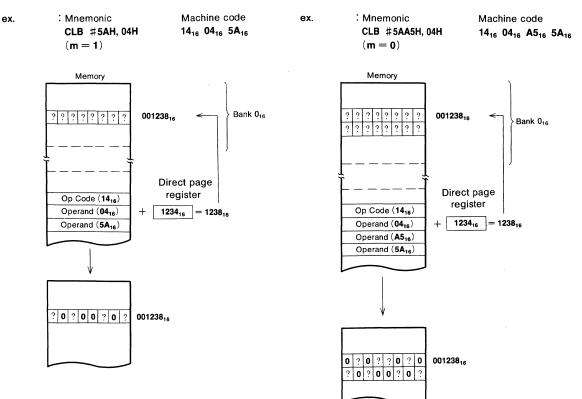

ex. : Mnemonic LDX 02H (x = 1) Machine code A6₁₆ 02₁₆

123416 = 123616

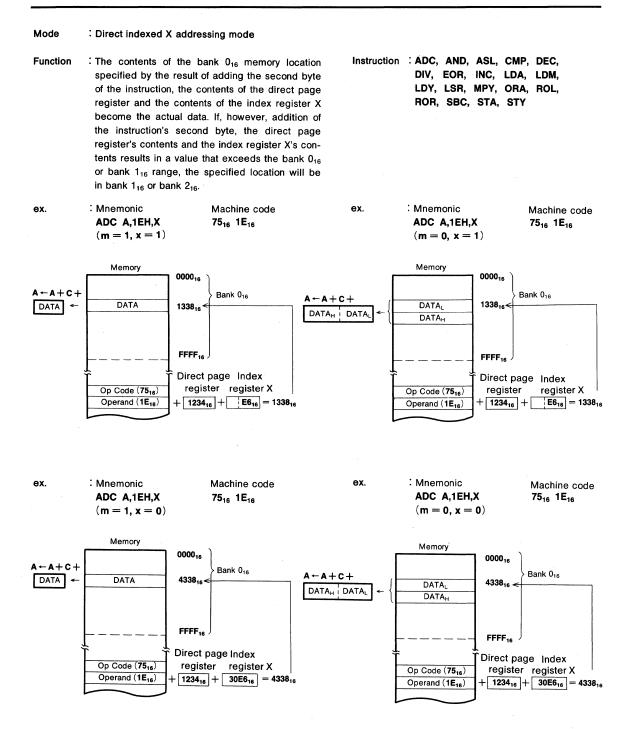
ex.

: Mnemonic LDX 02H (x = 0)

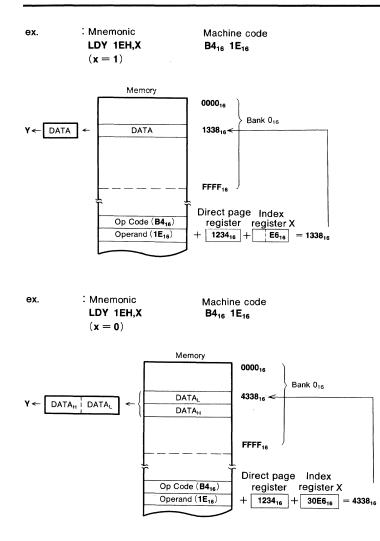
Machine code A616 0216



SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER


Instruction : CLB, SEB

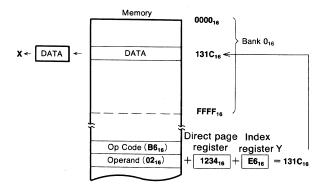
Mode : Direct bit addressing mode


Function Specifies the bank 0_{16} memory location by the value obtained by adding the instruction's second byte to the direct page register's contents, and specifies the positions of multiple bits in the memory location by the bit pattern in the third and fourth bytes of the instruction (third byte only when the m flag is set to 1). If, however, addition of the instruction's second byte to the direct page register's contents result in a value that exceeds the bank 0_{16} range, the specified location will be in bank 1_{16} .

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

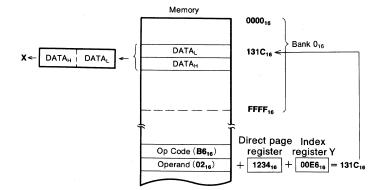
Instruction : LDX, STX

Mode : Direct indexed Y addressing mode


Function : The contents of the bank 0₁₆ memory location specified by the result of adding the second byte of the instruction, the contents of the direct page register and the contents of the index register Y become the actual data. If, however, addition of the instruction's second byte, the direct page register's contents and the index register Y's contents results in a value that exceeds the bank 0₁₆ or bank 1₁₆ range, the specified location will be in bank 1₁₆ or bank 2₁₆.

ex.

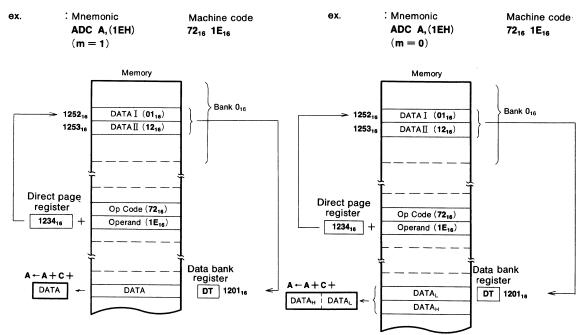
: Mnemonic LDX 02H,Y (x = 1) Machine code B6₁₆ 02₁₆


Machine code

B616 0216

ex.

: Mnemonic LDX 02H,Y (x = 0)

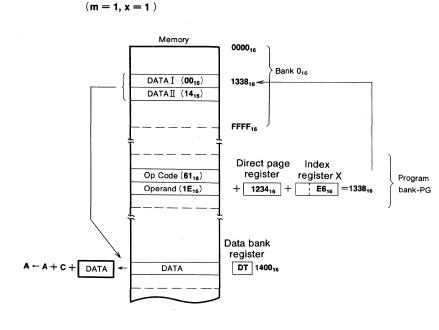


SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

Mode : Direct indirect addressing mode

Function : The value obtained by adding the instruction's second byte to the contents of the direct page register specifies 2 adjacent bytes in memory bank 0₁₆, and the contents of these bytes in memory bank-DT (DT is contents of data bank register) become the actual data. If, however, the value obtained by adding the instruction's second byte and the direct page register's contents exceeds the bank 0₁₆ range, the specified location will be in bank 1₁₆.

Instruction : ADC, AND, CMP, DIV, EOR, LDA, MPY, ORA, SBC, STA



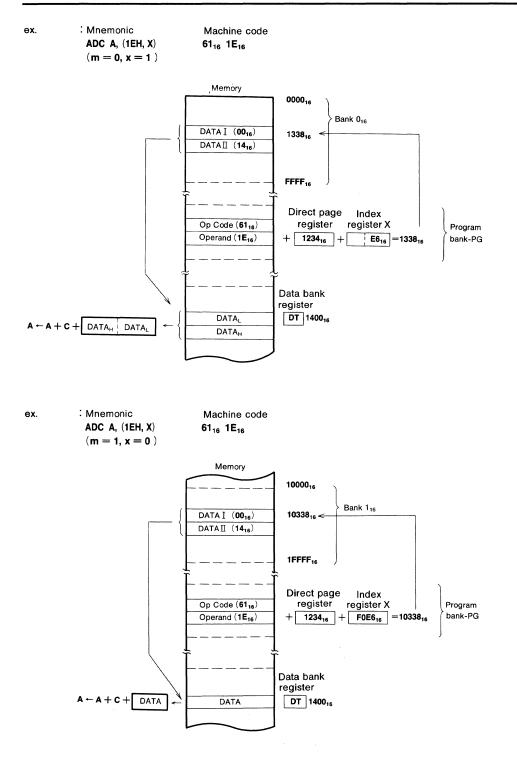
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

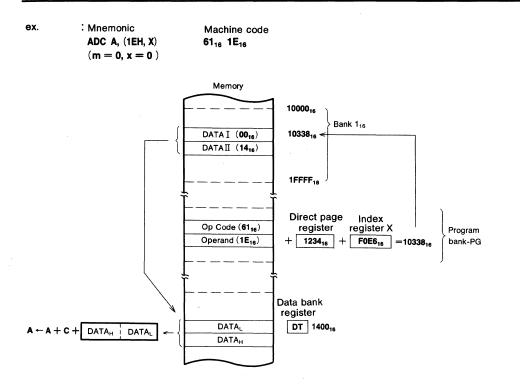
Mode : Direct indexed X indirect addressing mode

Function : The value obtained by adding the instruction's second byte, the contents of the direct page register and the contents of the index register X specifies 2 adjacent bytes in memory bank 0₁₆, and the contents of these bytes in memory bank 0₁₆, and the contents of these bytes in memory bank-DT (DT is contents of data bank register) become the actual data. If, however, the value obtained by adding the instruction's second byte, the direct page register's contents and the index register X's contents exceeds the bank 0₁₆ or bank 1₁₆ range, the specified location will be in bank 1₁₆ or bank 2₁₆.

Instruction : ADC, AND, CMP, DIV, EOR, LDA, MPY, ORA, SBC, STA

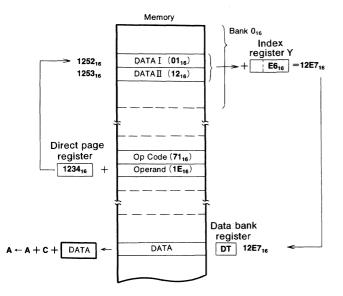
Machine code


6116 1E16


ex.

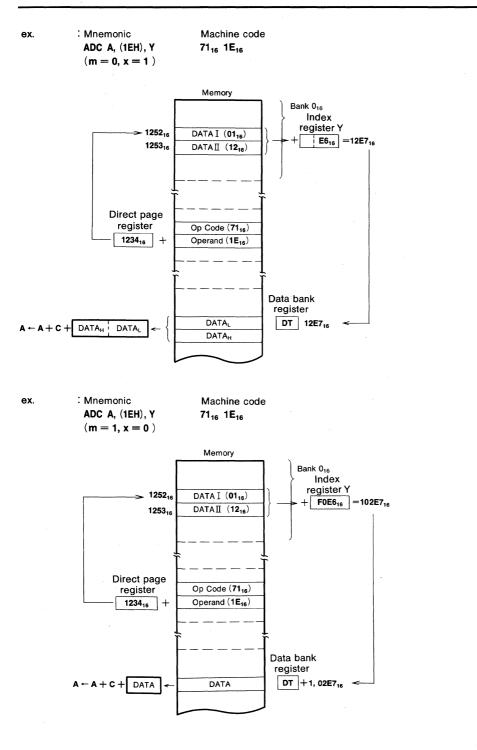
: Mnemonic

ADC A, (1EH, X)

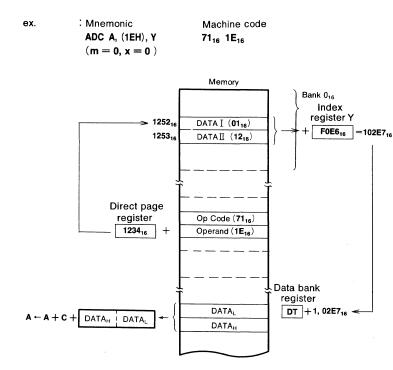

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

Mode : Direct indirect indexed Y addressing mode

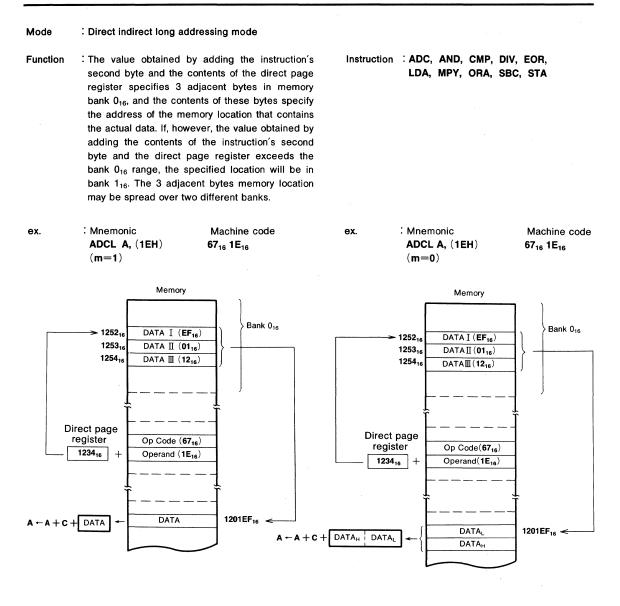
Function : The value obtained by adding the instruction's second byte and the contents of the direct page register specifies 2 adjacent bytes in memory bank 0₁₆.

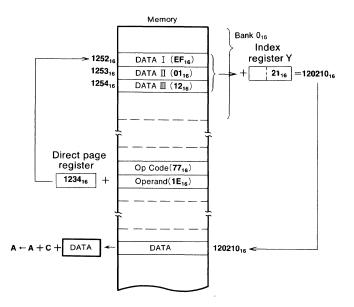

The value obtained by adding the contents of these bytes and the contents of the index register Y specifies address of the actual data in memory bank-DT (DT is contents of data bank register). If, however, the value obtained by adding the contents of the instruction's second byte and the direct page register exceeds the bank 0_{16} range, the specified location will be in bank 1_{16} . Also, if addition of the contents of memory and index register Y generate a carry, the bank number will be 1 larger than the contents of the data bank register.

ex. : Mnemonic Machine code ADC A, (1EH),Y 71₁₆ 1E₁₆ (m = 1, x = 1)

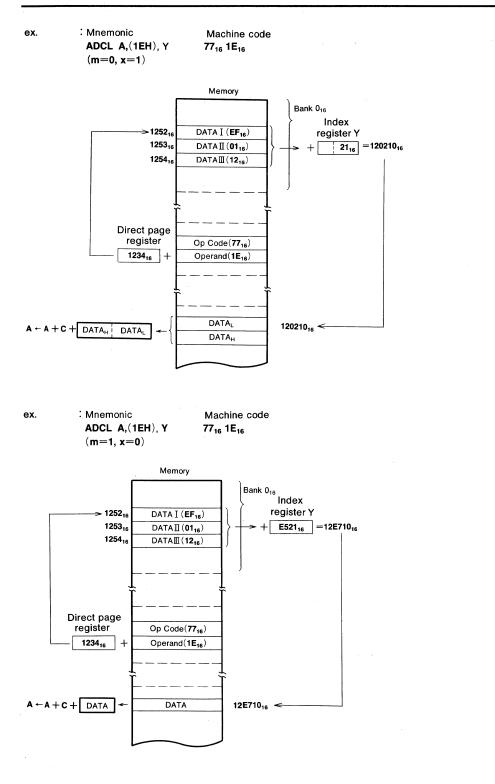


Instruction : ADC, AND, CMP, DIV, EOR, LDA, MPY, ORA, SBC, STA

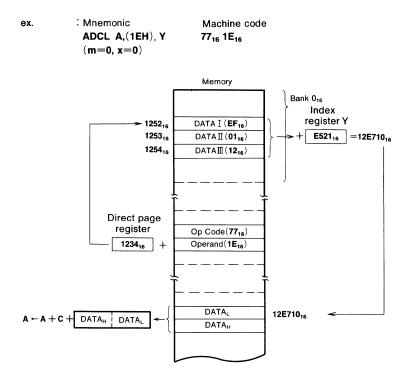




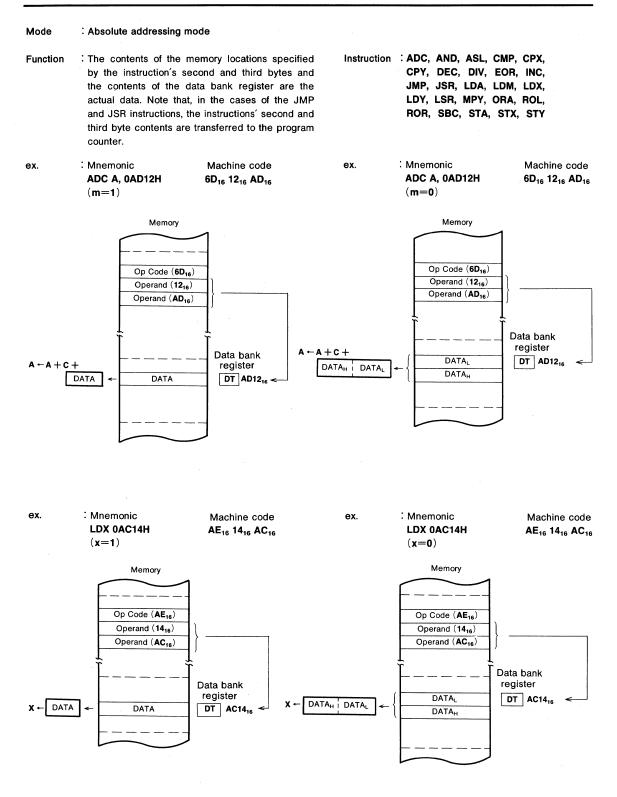
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

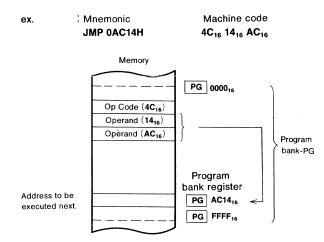

Mode : Direct indirect long indexed Y addressing mode

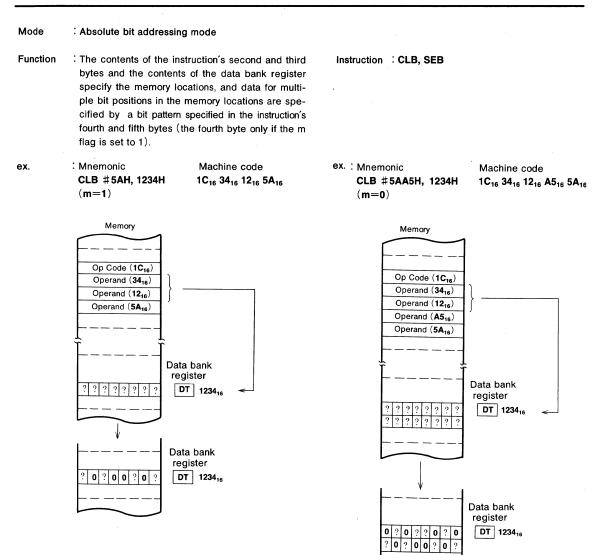
- Function : The value obtained by adding the instruction's second byte and the contents of the direct page register specifies 3 adjacent bytes in memory bank 0₁₆, and the value obtained by adding the contents of these bytes and the contents of the index register Y specifies the address of the memory location where the actual data is stored. If, however, the value obtained by adding the contents of the instruction's second byte and the direct page register exceeds the bank 0₁₆ range, the specified location will be in bank 1₁₆. The 3 adjacent bytes memory location may be spread over two different banks.
- ex. : Mnemonic Machine code ADCL A,(1EH), Y 77₁₆ 1E₁₆ (m=1, x=1)



Instruction : ADC, AND, CMP, DIV, EOR, LDA, MPY, ORA, SBC, STA

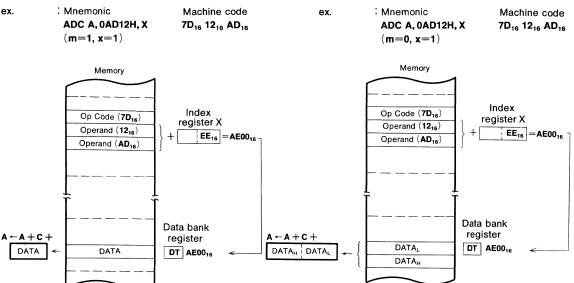


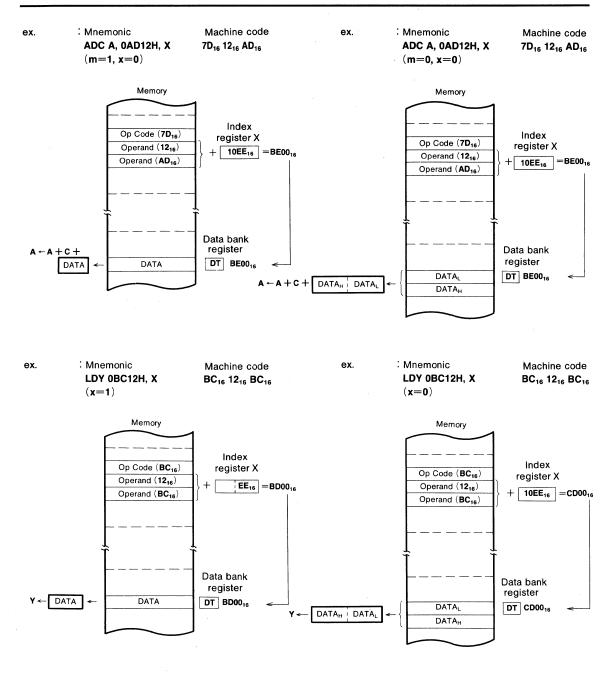




SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

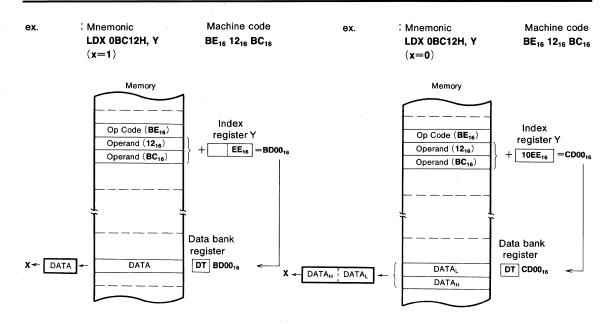
Program bank register contents are not affected.




SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

Mode : Absolute indexed X addressing mode

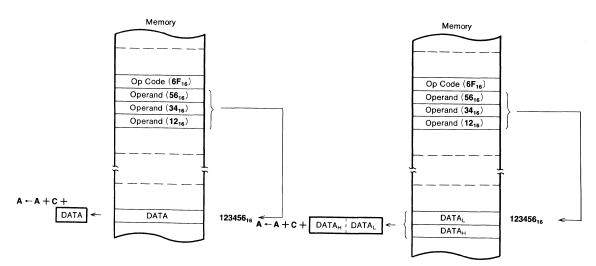
- Function : The contents of the memory locations specified by a value resulting from addition of a 16-bit numeric value expressed by the instruction's second and third bytes with the contents of the index register X and the contents of the data bank register are the actual data. If, however, addition of the numeric value expressed by the instruction's second and third bytes with the contents of the index register X generates a carry, the bank number will be 1 larger than the contents of the data bank register.
- Instruction : ADC, AND, ASL, CMP, DEC, DIV, EOR, INC, LDA, LDM, LDY, LSR, MPY, ORA, ROL, ROR, SBC, STA


SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

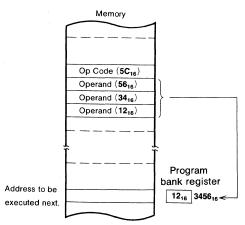
Mode : Absolute indexed Y addressing mode

Function : The contents of the memory locations specified by a value resulting from addition of a 16-bit numeric value expressed by the instruction's second and third bytes with the contents of the index register Y and the contents of the data bank register are the actual data. If, however, addition of the numeric value expressed by the instruction's second and third bytes with the contents of the index register Y generates a carry, the bank number will be 1 larger than the contents of the data bank register. Instruction : ADC, AND, CMP, DIV, EOR, LDA, LDX, MPY, ORA, SBC, STA

: Mnemonic Machine code : Mnemonic ex. ex. Machine code ADC A, 0AD12H, Y 7916 1216 AD16 ADC A, 0AD12H, Y 7916 1216 AD16 (m=1, x=1)(m=1, x=0)Memory Memory Index Op Code (7916) Index register Y Op Code (79₁₆) Operand (1216) register Y EE16 = AE0016 Operand (1216) 10EE₁₆ Operand (AD₁₆) =BE00₁₆ + Operand (AD₁₆) Data Bank Data Bank ← A + C + register $A \leftarrow A + C +$ register DATA DATA DT BE0016 DATA DATA DT AE0016 ex. : Mnemonic Machine code ex. : Mnemonic Machine code ADC A, 0AD12H, Y 7916 1216 AD16 ADC A, 0AD12H, Y 7916 1216 AD16 (m=0, x=1)(m=0, x=0)Memory Memory Index Op Code (79₁₆) register Y Operand (12₁₆) Index EE16 = AE0016 Op Code (79₁₆) Operand (AD₁₆) register Y Operand (12₁₆) 10EE₁₆ =BE00₁₆ Operand (AD₁₆) Data bank register Data bank ← A + C + DATA DT AE0016 register $A \leftarrow A + C +$ DATAH DATAL DATAH DATAL DT BE0016 DATAH DATAL DATA_H

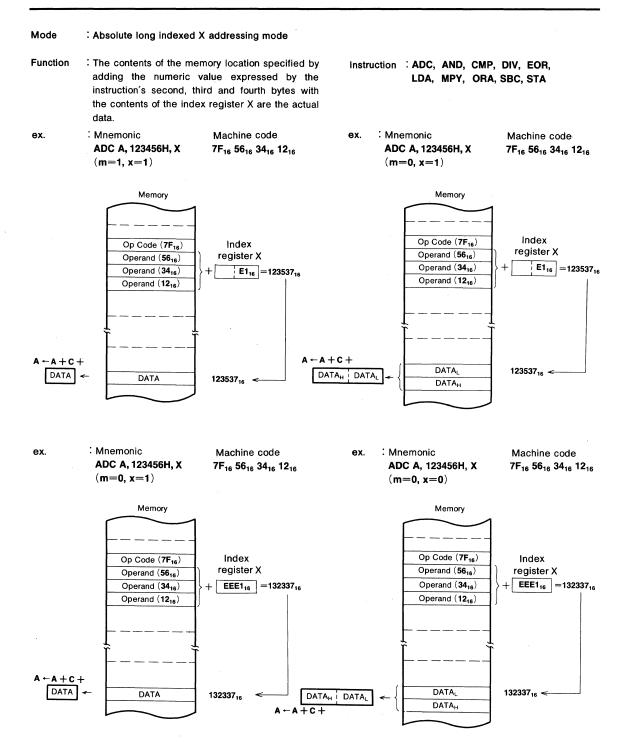

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

Mode : Absolute long addressing mode


Function : The contents of the memory locations specified by the instruction's second, third and fourth bytes become the actual data. Note that, in the cases of the JMP and JSR instructions, the instructions' second and third byte contents are transferred to the program counter and the fourth byte contents are transferred to the program bank register.

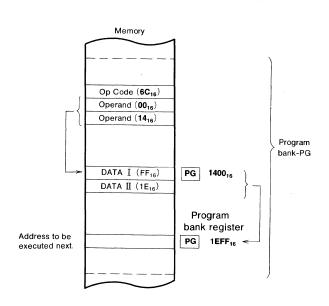
ex. : Mnemonic Machine code ADC A, 123456H 6F₁₆ 56₁₆ 34₁₆ 12₁₆ (m=1) Instruction : ADC, AND, CMP, DIV, EOR, JMP, JSR, LDA, MPY, ORA, SBC, STA

ex. : Mnemonic Machine code ADC A, 123456H 6F₁₆ 56₁₆ 34₁₆ 12₁₆ (m=0)



ex. : Mnemonic Machine code JMP 123456H 5C₁₆ 56₁₆ 34₁₆ 12₁₆

Program bank register contents are replaced by the third operand.

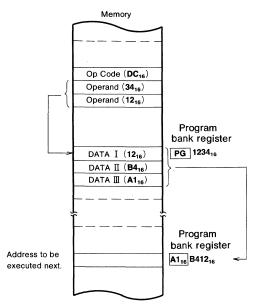


SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

Mode : Absolute indirect addressing mode

- Function : The instruction's second and third bytes specify 2 adjacent bytes in memory, and the contents of these bytes specify the address within the same program bank to which a jump is to be made.
- ex. : Mnemonic Machine code JMP(1400H) 6C₁₆ 00₁₆ 14₁₆

Instruction : JMP

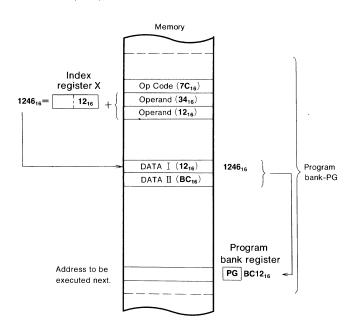


SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

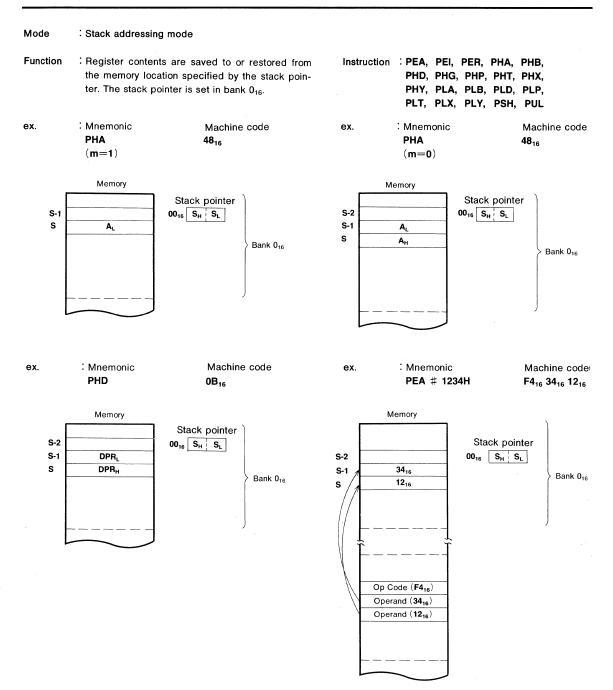
Instruction : JMP

Mode : Absolute indirect long addressing mode

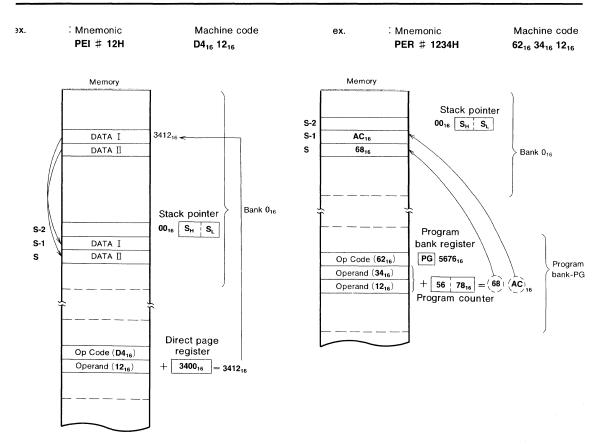
- Function : The instruction's second and third bytes specify 3 adjacent bytes in memory, and the contents of these bytes specify the address to which a jump is to be made.
- ex. : Mnemonic Machine code JMPL(1234H) DC₁₆ 34₁₆ 12₁₆


DATA III is loaded in the program bank register.

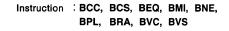
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

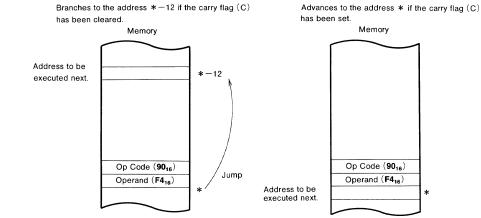

Mode : Absolute indexed X indirect addressing mode

- Function : The value obtained by adding the instruction's second and third bytes and the contents of the index register X spcifies 2 adjacent bytes in memory, and the contents of these bytes specify the address to which a jump is to be made.
- ex. : Mnemonic Machine code JMP(1234H, X) 7C₁₆ 34₁₆ 12₁₆ (x=1)

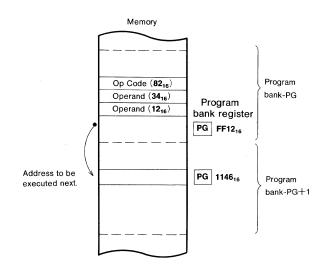


Instruction : JMP, JSR


SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER


Mode : Relative addressing mode

Function : Branching occurs to the address specified by the value resulting from addition of the contents of the program counter and the instruction's second byte. In the case of a long branch by the BRA instruction, a 15-bit signed numeric value formed by the contents of the instruction's second and third bytes is added to the program counter contents. If the addition generates a carry or borrow, 1 is added to or subtracted from the program bank register.

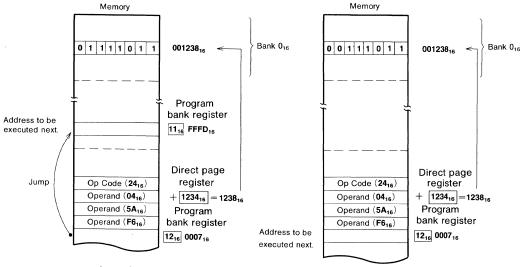

ex.

: Mnemonic BCC *-12 Machine code 90₁₆ F4₁₆

ex. : Mnemonic Machine code BRA 1234H 82₁₆ 34₁₆ 12₁₆

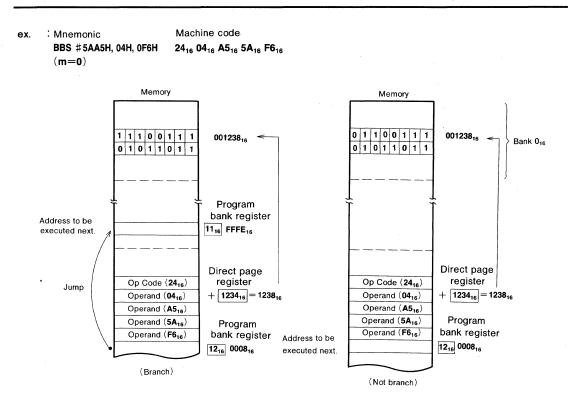
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

Mode : Direct bit relative addressing mode


Function : Specifies the bank 0_{16} memory location by the value obtained by adding the instruction's second byte to the direct page register's contents, and specifies the positions of multiple bits in the memory location by the bit pattern in the third and fourth bytes (the third byte only if the m flag is set to 1). Then, if the specified bits all satisfy the branching conditions, the instruction's fifth byte (or the fourth byte if the m flag is set to 1) is added to the program counter as a signed value, generating the branching destination address. If, however, addition of the instruction's second byte to the direct page register's contents result in a value that exceeds the bank 016 range, the specified location will be in bank 116.

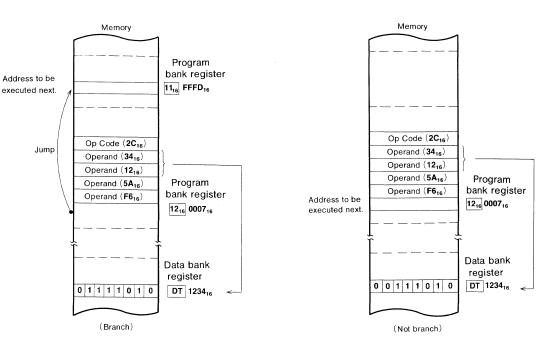
Machine code

ex.

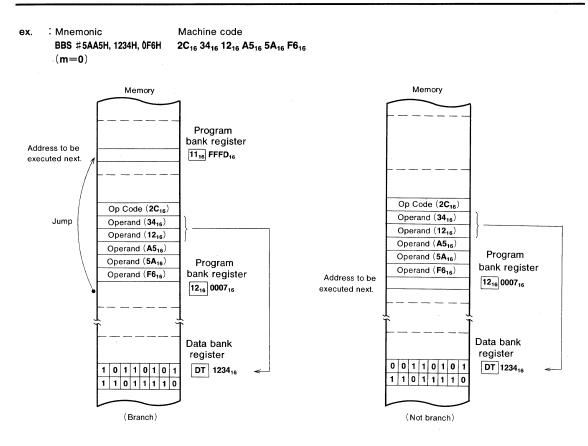


(Branch)

(Not branch)

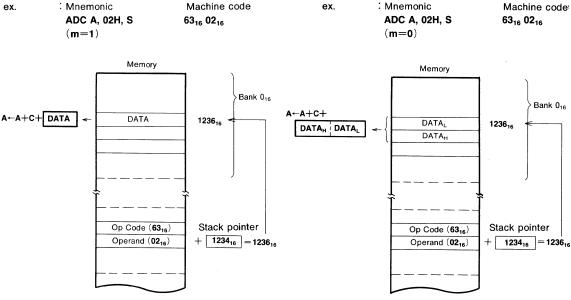


SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

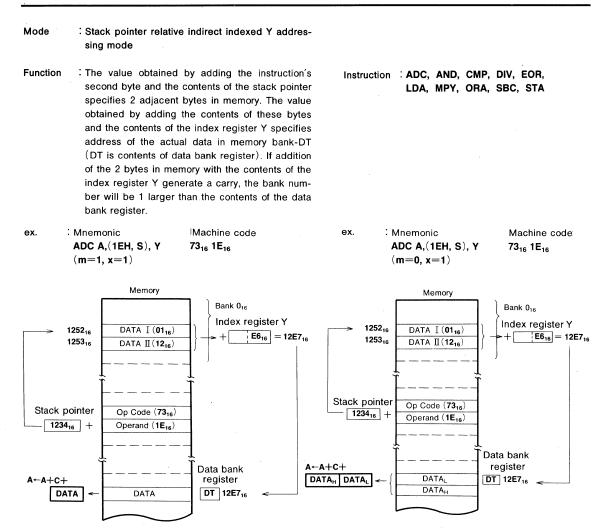

Instruction : BBC, BBS

Mode : Absolute bit relative addressing mode

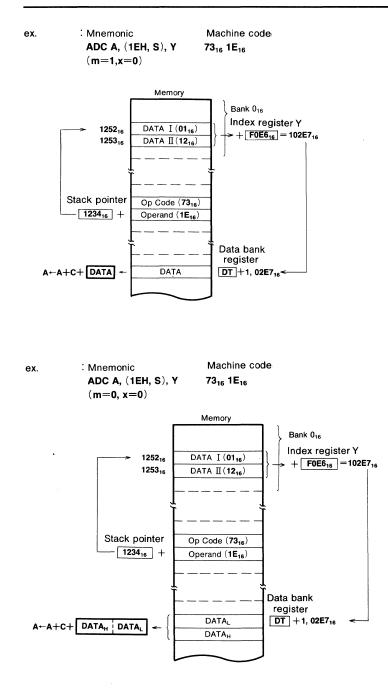
- Function : The instruction's second and third bytes and the contents of the data bank register specify the memory location, and data for the memory location's multiple bits is specified by a bit pattern in the instruction's fourth and fifth bytes (the fourth byte only if the m flag is set to 1). Then, if the specified bits all satisfy the branching conditions, the instruction's sixth byte (or the fifth byte if the m flag is set to 1) is added to the program counter as a signed value, generating the branching destination address.
- ex. : Mnemonic Machine code BBS #5AH, 1234H, 0F6H 2C₁₆ 34₁₆ 12₁₆ 5A₁₆ F6₁₆ (m=1)


SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

Mode : Stack pointer relative addressing mode


Function : The contents of a bank 016 memory location specified by the value resulting from addition of the instruction's second byte and the contents of the stack pointer become the actual data. If, however, the value obtained by adding the contents of the instruction's second byte and the stack pointer's contents exceeds the bank $\mathbf{0}_{16}$ range, the specified location will be in bank 116.

ex.


Instruction : ADC, AND, CMP, DIV, EOR, LDA, MPY, ORA, SBC, STA

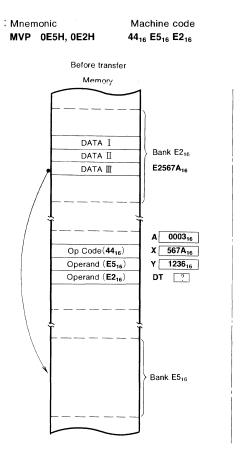
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

Instruction : MVN, MVP

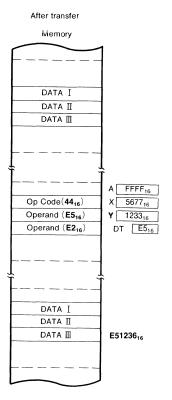
Mode : Block transfer addressing mode

Function : The instruction's second byte specifies the transfer-to data bank, and the contents of the index register Y specify the transfer - to address within the data bank. The instruction's third byte specifies the transfer-from data bank, and the contents of the index register X specify the address in the data bank where the data to be transferred is stored. The contents of the accumulator A constitute the number of bytes to be transfeered. Upon termination of transfer, the contents of the data bank register will specify the transfer-to data bank. The MVN instruction is used for transfer to lower address location. In this case, the contents of the index registers X and Y are incremented each time data is transferred. The MVP instruction is used for transfer to higher address location. In this case, the contents of the index registers X and Y are decremented each time data is transferred. The block of data to be transferred may cross over the bank boundary.

> : Mnemonic MVN 0E2H, 0E5H


ex.

Machine code 54₁₆ E2₁₆ E5₁₆



SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

ex.

MELPS 7700 MACHINE INSTRUCTIONS

MACHINE INSTRUCTIONS

		· · ·											Ado	Ires	sing	g m	od	e									
Symbol	Function	Details	-	MP	+	IM			A	_	DI	-		IR,Ł			-		IR,	-		m			+	DIR)	
			op	n	-	-+-			n	_		1 #	-	n	_	-	+		n		-+	-			-	n	
ADC (Note 1,2)	A _{CC} ,C ← A _{CC} +M+C	Adds the carry, the accumulator and the memory contents. The result is entered into the accumulator. When the D flag is "0", binary additions is done, and when the D flag is "1", decimal addition is done.			4	12 4 12 4	2 2 1 3			2		5 3			L	2 7	2			4		3				8 2 10	
AND (Note 1,2)	$A_{CC} \leftarrow A_{CC} \wedge M$	Obtains the logical product of the contents of the accumu- lator and the contents of the memory. The result is en- tered into the accumulator.			4		2 2 1 3			4		2				2 7	2			4		3				210	
ASL (Note 1) .	$m=0$ $C \leftarrow b_{15} \cdots b_{0} \leftarrow 0$ $m=1$ $C \leftarrow b_{7} \cdots b_{0} \leftarrow 0$	Shifts the accumulator or the memory contents one bit to the left. "0" is entered into bit 0 of the accumulator or the memory. The contents of bit 15 (bit 7 when the m flag is "1") of the accumulator or memory before shift is entered into the C flag.							2		06 7	2			16	67	2										
BBC (Note 3,5)	Mb=0?	Tests the specified bit of the memory. Branches when all the contents of the specified bit is "0".																			Τ						
BBS (Note 3,5)	Mb=1?	Tests the specified bit of the memory. Branches when all the contents of the specified bit is "1".																		T	T				T	Π	
BCC (Note 3)	C=0?	Branches when the contents of the C flag is "0".	T			T	T	T						1	T					T	t				T	Ħ	
BCS (Note 3)	C=1 ?	Branches when the contents of the C flag is "1".				+		T	H			+-	T			T				t	+			1			
BEQ (Note 3)	Z=1 ?	Branches when the contents of the Z flag is "1".		H	1			T		1										+	+				t		
BMI (Note 3)	N=1 ?	Branches when the contents of the N flag is "1".			1	T		T		1	1					T	1	ŀ		Ť	T				1		
BNE (Note 3)	Z=0?	Branches when the contents of the Z flag is "0".				Ť		T				T			T	+-	T	-		+	T				1		_
BPL (Note 3)	N=0?	Branches when the contents of the N flag is "0".			1	+		T				+				T	1	ŀ		+	T						
BRA (Note 4)	PC←PC±offset PG←PG+1 (carry occured) PG←PG-1 (borrow occured)	Jumps to the address indicated by the program counter plus the offset value.																									
BRK	$\begin{array}{l} PC\!$	Executes software interruption.	00	15	2																						
BVC (Note 3)	V=0?	Branches when the contents of the V flag is "0".																									
BVS (Note 3)	V=1 ?	Branches when the contents of the V flag is "1".																			T						
CLB (Note 5)	МЬ⊷0	Makes the contents of the specified bit in the memory "0".											14	8	3						T				T		
CLC	C+-0	Makes the contents of the C flag "0".	18	2	1		1	T					T		1		T	t		T	+	T	Ħ	1		T	Γ
CLI	1⊷0	Makes the contents of the I flag "0".	58	8 2	1										T			T		T	T	ľ					Γ
CLM	m⊷0	Makes the contents of the m flag "0".	DE	8 2	1	Ţ		L																			Ĺ
CLP	PSb⊷0	Specifies the bit position in the processor status register by the bit pattern of the second byte in the instruction, and sets "0" in that bit.				C2	4 2	2																			
CLV	v ⊷0	Makes the contents of the V flag "0".	B	8 2	1	T														Ι							
CMP (Note 1,2)	A _{CC} -M	Compares the contents of the accumulator with the contents of the memory.					2 2					4 2 6 3			4		5 2 7 3			Z						1 8 2 10	

MITSUBISHI MICROCOMPUTERS MELPS 7700 MACHINE INSTRUCTIONS

																							_				Ad				an i																																Γ	_		-		-		-			gis		
(DIR)																																												RE							BS,			s			(S				BL			0	9			-	_			_	2	_	-
p n #	op	n	#	ŧ o	p I	n	#	ор	n	1	#	ор	r	1	#	oţ	r	١	#	ор	n	#	ŧ	op	n	#	op	b	n	#	oj	p	n	#	c	ρ	n	#	ор	1	1	#	op	n	\$	ŧ o	p	n	#	ор	n	#	0	p	n :	#	ор	n	#	oţ	r	#	;	IF	۶L		N	v	/ r	n			1		
7102									l								İ.	ł						75																															5								1		•	•	N	۷	1	•	•	•	•	4	4
	77	7		6	D					-		7D	1			79)			6F		1	1	12 7F				-							1	-	_				-				1.								6	3	7	1	73		Ì	L											_				
7102						Į	1														1			3F																	ļ														5				Ļ				1	•	•	•	N	ŀ	1	•	•	•	•	Z	2
2123 7	42 37		3 3	2	D	_	~ •			Ì.		42 3D		3		42 39		3		42 2F		5		42 3F	9	5																											4		7		42 33		3																
				0	E	7	3					1E	8	3	3																																															- 1997 - 1		•	•	•	N	•		•	•	•	•	Z	2
+			t		-	1	_						1	1	i		t											t	-							1	-			1	+				T	3	4	7	4	3C	8	5	t	+	+	1					t	+	•	•		•	•	•		•	•	•		•	•
++ ·	ľ		-	t	T				+	t							t		-		İ	-	-	-				t			ŀ	1			+		-			t	1				T	2	4	7	4	2C	8	5			t	1						t	ŀ	•	•	•	•	•		•	·	•	•	•	•
++-	-	-	-	+	T		••••		-	1	-						t	-	-	_		-	+			-	+	t				+				-+				-			90	4	2	2		-			t	T	t	t					-			1	•		•	•	•	•		•	•	•	•	•	•
++-	-		-	+	+				-	+		-	t	+			t	-			-							+				+		-	\dagger						+	-	B 0	4	2	2	1				-		+		+	+	-			+			+	+	•	•	•	•	-	•	•	•	•		•
	t			+	+	+			-	+	_			+			+					+.		-				T			t				+				-		1		FO	4	14	1	+				-	-	+			1	-				1	+	•	·	•	•	•	•	+	•	•	•	•	•	•
++				+	\dagger								+-				-				+-			-				+			+	1	-		+		-			t	+		30	4	2	2	+				-		+		+		_		-		+			·	•	•	•	•	+	•	•	•	•	•	•
+	╞			╉	+	+		-		+		-		-			t					-	+	-				+			ł	+			+	+	-			-			D 0	4	2	2	+						+	+			-			$\left \right $	-	+		•	•	•	•	•	+	•	•	•	•	•	•
++	t	+-	1	+	+					t	-		-				t	+		-				+		-		+			+		-	-	$\left \right $	+					+		10	4	12	2	t						+								+	+		•	•	•	•	•	+	•	•	•	•	•	•
	t					+				+	-			Ì					-				+			-	1	t			t					+	-			1	+		80	4	12	2					-	t	+	+		1				1	+	+	•	-	•	•	•	•		•	•	•	•		•
																																											82	4	3																														
																																																Balance M. Matthews and Matthews And Annual A Annual Annual br>Annual Annual r>Annual Annual r>Annual Annual Annu															•	•	•	•	•	•		•	•	•	•		
+	1-			1	T	t	-			T			-				T					t	t					T					-		t	1					t		50	4	1	2	+					1	1		T					ſ			ŀ		•	•	•	•	•	•	•	•	•	•	•
		t	1	+	+					t			-	+			T	+			-	+		+					ļ			t		-	+								70	4	2	:	-	1					t	+	•					.			•	•	•	•	•	•		•	•	•	•	•	•
			+	+-	t	1		IC	9	4	4			1		-	+-	+				-					t	t							t					+				-		+					+	-	T	+	+						1	+	•	·	•	•	•	•	•	•†	•	•	•	•	·
				t											_			+			-		t	+				+				+	_		t	+	-				+				+	+						-		+	-	1				t		-	+										•	+	-+-
+	-	-	+	+	+	+				+	-		-	+	_	_	-	-	_		-	-	+	+			$\left \right $	$\frac{1}{1}$	+			+	_	_	+	+	_		-	+	+	-			╞		+	-				-		+	+	+					-	+									•		•	•	
	t	1		+	+	+		-		+		-					-			-				+				t				t	-		t						1			-		+				-	-	-		+		+				$\left \right $	-		+	+	-+-	•	s	pe	cif	ied	t i		ag	1	
+	-	+		╀	+	+	_	-		+		-		-		_	-	+	-	_		+	+					+				+	-		+	+	-				+	-			-	+								-	+	+				$\left \right $	+	+	•		•			om 0		• "()". •			•	
7 10 2		1															ł.							DF 12								Ì																						3 5	5								•		•	•	N	•			•			z	

MITSUBISHI MICROCOMPUTERS MELPS 7700 MACHINE INSTRUCTIONS

			Γ									_	٩dd	res	sing	, m	ode								
Symbol	Function	Details	IN	ΛP	Τ	IMI	M	Γ	A	Τ	DI	R	D	R,b		DIR	,Х	D	R,Y	(1	DIR) ([DIR,X) (DIR)
			op	n #	‡ op	n	#	ор	n	# 0	p n	#	ор	n ‡	t op	n	#	ор	n #	ор	n :	‡ op	n	# o	ρn
CPX (Note 2)	х—м	Compares the contents of the index register X with the contents of the memory.			E0	2	2			E	4 4	2												T	11
CPY (Note 2)	Ү-М	Compares the contents of the index register Y with the contents of the memory.			C0	2	2			С	4 4	2	·											T	
DEC (Note 1)	A _{CC} ←A _{CC} −1 or M←M−1	Decrements the contents of the accumiator or memory by 1.							2 4		6 7	2			D6	7	2								
DEX	X←X−1	Decrements the contents of the index register X by 1.	CA	2 1	1	T					t		·		1							1	Ħ	t	++
DEY	Y⊷Y—1	Decrements the contents of the index register Y by 1.	88 2	2 1																				T	T
DIV (Note 2,10)	A(quotient)←B,A/M B(remainder)	The numeral that places the contents of accumulator B to the higher order and the contents of accumulator A to the lower order is divided by the contents of the memory. The quotient is entered into accumulator A and the remainder into accumulator B.			89 29		3			8 2		3			89 35	30	3			89 32		3 89 21		3 89 3	9 33 1
EOR (Note 1,2)	Acc←Acc₩M	Logical exclusive sum is obtained of the contents of the accumulator and the contents of the memory. The result is placed into the accumulator.				2 4	2				2 6	2				5					8		9 :		1 8 2 10 1
INC (Note 1)	A _{CC} ←A _{CC} +1 or M ←M+1	Increments the contents of the accumulator or memory by 1.							2		6 7	2			F6	7	2								
INX	x ← x +1	Increments the contents of the index register X by 1.	E8 2	2 1	+	$\left \right $			+	+	+			+	+-			-	+	Η		+-	+	+	++
INY	Y⊷Y+1	Increments the contents of the index register Y by 1.	C8 2	2 1	T	1					t							-	-		+	+		+	+-+
JMP	$\begin{array}{l} ABS\\ PC_L \leftarrow AD_L\\ PC_H \leftarrow AD_H\\ ABL\\ PC_L \leftarrow AD_L\\ PC_H \leftarrow AD_L\\ PC_H \leftarrow AD_H\\ PG \leftarrow AD_H\\ PG \leftarrow AD_H\\ PG \leftarrow AD_H\\ PG \leftarrow AD_H, AD_L + 1)\\ L(ABS)\\ PC_L \leftarrow (AD_H, AD_L + 1)\\ PC_H \leftarrow (AD_H, AD_L + 2)\\ (ABS, X)\\ PC_L \leftarrow (AD_H, AD_L + X)\\ PC_L \leftarrow (AD_H, AD_L + X)\\ PC_H \leftarrow (AD_H, AD_L + X)\\ PC_H \leftarrow (AD_H, AD_L + X)\\ PC_H \leftarrow (AD_H, AD_L + X)\\ PC_H \leftarrow (AD_H, AD_L + X)\\ PC_H \leftarrow (AD_H, AD_L + X)\\ PC_H \leftarrow (AD_H, AD_L + X)\\ PC_H \leftarrow AD_H, AD_L + X\\ +1)\end{array}$	Places a new address into the program counter and jumps to that new address.																							
	$\begin{array}{l} \text{ABS} \\ \text{M}(S) \leftarrow PC_H \\ \text{S} \leftarrow S - 1 \\ \text{M}(S) \leftarrow PC_L \\ \text{S} \leftarrow S - 1 \\ \text{P}C_L \leftarrow AD_L \\ \text{P}C_L \leftarrow AD_L \\ \text{P}C_H \leftarrow AD_H \\ \text{ABL} \\ \text{M}(S) \leftarrow PG \\ \text{S} \leftarrow S - 1 \\ \text{M}(S) \leftarrow PC_H \\ \text{S} \leftarrow S - 1 \\ \text{M}(S) \leftarrow PC_L \\ \text{S} \leftarrow S - 1 \\ \text{P}C_L \leftarrow AD_L \\ \text{P}C_H \leftarrow AD_H \\ \text{P}G \leftarrow AD_G \\ (\text{ABS}, X) \\ \text{M}(S) \leftarrow PC_L \\ \text{S} \leftarrow S - 1 \\ \text{M}(S) \leftarrow PC_H \\ \text{S} \leftarrow S - 1 \\ \text{M}(S) \leftarrow PC_L \\ \text{S} \leftarrow S - 1 \\ \text{P}C_H \leftarrow (AD_H, AD_L + X) \\ \text{P}C_H \leftarrow (AD_H, AD_L + X) \\ \text{P}C_H \leftarrow (AD_H, AD_L + X) \\ \text{H}) \end{array}$	Saves the contents of the program counter (also the con- tents of the program bank register for ABL) into the stack, and jumps to the new address.																							

MELPS 7700 MACHINE INSTRUCTIONS

																						F	٨dd	res	sin	g r	noc	le																				Τ	F	Proc	ess	or s	stat	us	regi	ste	er
D	IR)		(D	IR),	Y	AI	BS		AB	S,b		ABS	s,x	:	AB	S,Y		AB	L	A	BL	,х	(A	BS) L	A).	BS)(4	BS	X)	s	тк		RE	L	D	IR,b	,R	ABS	S,b,R		SR		(SR),Y	E	LK	10	9 0	8	7	6	5	4	3	2	1
n	#	Fo	p	n	# (p I	n :	#	p I	n ‡	‡ 0	ρn	#	‡ 0	p r	1 #	op	n	#	ор	n	#	ор	n	# 0	p r	n #	ор	n	#	ор	n	# 0	p n	#	ор	n	#	op	n #	i op	n	# 0	pp r	#	op	n ‡	#	IP	L	N	v	m	x	D	1	z
		T	1	T	Ε	C ·	4	3																				T				T																			N	•	•	•	•	•	Z
		1	1	4	_	+	_	+	4	_		_	-	_	_	_	_							_		_	_		_			_	_	1		1			_	1	ļ		_					_	_	-	ļ				_	_	
					þ	c o	4	3																																									•	•	N	·	•	•	•	•	Z
-	+	╀	+	+	+		_	-	+	+	-	- 0		+	+	+	+	-	-	-		-	-	-	+		+	+			-+	+	+	+-	+-	+					+	$\left \right $	-+	+-	+		-	+	+	-					-	+	-
					ſ	E	' ·	3			ľ	E 8	3																																			1.			N	·	•	•	•	•	2
-	+	+	+	-	+	+	_	+	-	+	+		+	+	+		-		-				_		+	+	+	-	-		-	+		-	-	╞					-	$\left \cdot \right $			+				+							+	
-	+	+	+	+	+	+	-	+	-	+	+		+-	+	+	+-	-	+-	-		-	-	-		+	+	-	-	-				+	_	-	+			_		+-			+	+			-	ŀ	+	-			·			Z
05		+	-					+	+	+			+			+	-		-	00	0.0	-	_	-+	+	+	-	+	-		+	+	+	-	-	-			-	-	-				+		-	+•	•	+	1	·	·	•	•		Z
35	3	8		6		19 2 D	9	4			89	9 31 D	1 4	8		1 4	2F		5	89 3F		5																			89 23		3 8	19 3: 13	3 3				•	•	N	v	•	•	•	•	z
																																									-		ľ														
10	2	2 5	71	1	24	D	4	3			50	D 6	3	3 5	9 6	5 3	4F	6	4	5F	7	4			Τ			Γ													43	5	2 5	63 8	2			•	•	•	N	•	•	•	•	•	z
12	2 3		21	3	3 4	21	6	4			4	2 8	4		28	1	42	2 8	5	42	9	5														1					42	7	3 4	211	13		1										
	ľ	5				D					50]	5		[4F		Ľ.	5F																					43			3	ľ												
		T	T	1	E	E	7	3			F	E 8	3	3					Ī						T			Γ			1	T	T							T									•	•	N	•	•	•	•	•	z
		Γ	T	T	T	T					Γ			I												T							1															•	•	•	Ν	•	•	•	•	•	z
	Γ	Γ	T		T			Τ	T		Γ	Γ	Γ	Γ	T									T	T	T	Τ	Γ				T	Ţ	Γ	Γ						Γ							•	•	•	N	•	•	•	•	•	z
					4	c	2	3			Τ			Τ			50	3 4	4				6C	4	3 C	00 8	3 3	70	6	3			Τ			Γ												•	•	•	•	•	•	•	•	•	•
						Ì																											Ì																								
																																																Ì									
		ļ																																																							
														1																																											
																		1																																							
																											1																														
																			İ.								İ.																													ĺ	
															ĺ																																										
			1		2	10	6	3									22	2 8	4									FC	8	3	ſ		ſ					ſ										•	•	•	•	•	•	•	•	•[•
																		ļ																																			-				
																		ĺ																																							
													ł																										l																		
													Ì						ĺ																																						
						1										1															1																										
											ł																																														
																																			ĺ																						
			1																																																						
ļ	1															į																							ļ																		
		1																																																							
																												1					1		1	1												1	ł						ĺ		
									1	1																			1 .		- L			1					- 1			1 1	- 1				- L					1 1		- 1			

MITSUBISHI MICROCOMPUTERS MELPS 7700 MACHINE INSTRUCTIONS

			L										Ad	ldre	ssi	ng	mo	de									
Symbol	Function	Details		IMF			М		A	-		IR		DIR	r	- i	IR,)	-+-		R,Y	+	DIR	0	(DIF	I,X)	(D	IR),
			ор	n		op r	-	- ·	n	#		n 1	-	n	-		_	_	op I	n #		\rightarrow	-+-			- · ·	n ‡
LDA (Note 1,2)	A _{CC} ← M	Enters the contents of the memory into the accumulator.				A9 2 42 4 A9						4 : 6 :				B5 42 B5	5 7	2			ŀ	8	34		3		8 2
LDM (Note 5)	M ← IMM	Enters the immediate value into the memory.									64	4	3	T		74	5	3						Ţ	t		T
LDT	DT ← IMM	Enters the immediate value into the data bank register.				89 5 C2	5 3						T														
LDX (Note 2)	Х ← М	Enters the contents of the memory into index register X.				A2 2	2 2				A 6	4 2	2					E	36 9	5 2							
LDY (Note 2)	Y ← M	Enters the contents of the memory into index register Y.				A0 2	2 2				A4	4	2			B 4	5	2									
LSR (Note 1)	$m=0$ $0 \rightarrow b_{15} \cdots b_{0} \rightarrow C$ $m=1$ $0 \rightarrow b_{7} \cdots b_{0} \rightarrow C$	Shifts the contents of the accumulator or the contents of the memory one bit to the right. The bit 0 of the accumulator or the memory is entered into the C flag. "0" is entered into bit 15 (bit 7 when the m flag is "1".)							2 4		46	7	2			56	7	2									
MPY (Note 2,11)	B, A⊷A * M	Multiplies the contents of accumulator A and the contents of the mem- ory. The higher order of the result of operation are entered into accu- mulator B, and the lower order into accumulator A.				89 1 09	63				89 05	18 3	3			89 15	19	3			89 12			19 2' 11		89 11	22 3
MVN (Note 8)	Mn+i⊷Mm+i	Transmits the data block. The transmission is done from the lower order address of the block.																									
MVP (Note 9)	Mn—i⊷Mm—i	Transmits the data block. Transmission is done form the higher order address of the data block.											Ī														
NOP	PC+PC+1	Advances the program counter, but performs nothing else.	EA	2	1		T	t	T			T	t					1	1				+		Π		+
ORA (Note 1,2)	A _{CC} ←A _{CC} VM	Logical sum per bit of the contents of the accumulator and the contents of the memory is obtained. The result is en- tered into the accumulator.				09 2 42 4 09						4 2 6 3					5 7		-			8		2 9	3		8 2
PEA	M(S)←IMM ₂ S←S−1 M(S)←IMM ₁ S←S−1	The 3rd and the 2nd bytes of the instruction are saved into the stack, in this order.																			12						
PEI		Specifies 2 sequential bytes in the direct page in the 2nd byte of the instruction, and saves the contents into the stack.																									
PER	$\begin{array}{l} EAR\leftarrowPC+IMM_2,IMM_1\\ M(S)\leftarrowEAR_H\\ S\leftarrowS-1\\ M(S)\leftarrowEAR_L\\ S\leftarrowS-1\\ S\leftarrowS-1 \end{array}$	Regards the 2nd and 3rd bytes of the instruction as 16-bit numerals, adds them to the program counter, and saves the result into the stack.																									
PHA		Saves the contents of accumulator A into the stack.																									-
РНВ		Saves the contents of accumulator B into the stack.																									
	m=1 M(S)←B _L S←S−1																										

MELPS 7700 MACHINE INSTRUCTIONS

																									4	٩do	dre	ess	sing	g r	mo	de																										F	roc	es	sor	sta	atus	s re	gis	ter	-
_(C	IR	L	(DI	IR),	γ	A	BS	;	A	BS	S,b	A	B	s,>		Aŧ	зs	Y,	Γ	AE	3L	Τ	AE	BL,	х	()	٩B	S)	L	(A	B	S)	(A	3S,	X)		sт	ĸ	Г	RE	L	T	DIR	,b,F		ABS	S,b,F	1	S	R	1	(SF	۲),۱		BL	ĸ	10	9	8	7	6	5	4	3	2	1	C
																																																			- 1		n ‡					IP	1	+		+	+	D		z	-
×7 1	0 2	В	711		2	D	4	3	-	t													3F				t	t	t	Ŧ	+	1	Ť		-	t	F	ł	ť	t	t	t	Ť	Ť	Ť	+	+						8 2		+	ľ	•	1	1	+	•	+	+	+	-	z	-
121		4:	21		3 4	12						42	2 8		4	42						5 4	12																									4	12		3 4	121	0 3														
7	-	В	7	-	_	ID IC	5	4		-	+	BC 9E	+-	5 4	-	B9			AF	-	+	E	BF	-				-	╞	+	+	_	_		_				-	-	-			+	+	+		ľ	43		E	33		+	-	-	•							+.			-
-	+	+	-		+		-	_			+			+	+				-			+						-	╞	-		_	_	_				-				+	+		+						+	-	+	-	-	-						•		•	•	.	+
	-	+	+	-		λE	4	3			+		+	+		BE	6	3	-	+	+	+							╞	+				_				-				+		+	+	+	-	-	+	-	+	-	-	+	-	-				N						z	-
		+		+				3		-	-	B	- e	5 :	3				-	╞	-	+	_						╞	+		-	_	-	-		-	+			-	+	-	-	+	-	-	+	-	-	+	-	_	+	-					N						z	-
			-	_			_	3					-	3 :	_					+	-	+	_							-	-	_	_			-		-			+			_	_	_	_	_	_	_	+	-	_	+						0						z	
							'	3				100		,																																																				2	
92 7	4 3	1	9 2 7	25 :	38	39)D	18	4				89 10	92	0	4	89 19	20	4	89 0F	921	0 9	5 8	39 2 IF	21	5							-																8	39 1 03	9 :		39 2 3	23	3			•	•	•	N	•	•	•	•	•	z	1
																																																						5	4 7	3	•	•	•	•	•	•	•	•	•	•	-
T	+													1																													T											4	4 9 +	3	•	•	•	•	•	•	•	•	•	•	-
1	-	╎		+		+	-		-		+	┢	╈	╈		-				t			+	-	_			-	+	-	+	_	-							T	t	+	+		+		-	+			+	+		t	2'	T	•			•	•	•	•	•	•	•	t
	0 2																						IF			1																											8 2				ŀ	•	•	N	•	•	•	•	•	z	
2 1 7	23	1	2 1 7	3	3 4	12 D	6	4				42		3	4	42 19	8	4	42 0F				12 1 F	9	5							_	_							Ĺ			1					0	42 03		3 4	12 1	0 3	\$													
																																				F4	5	3																			•	•	•	•	•	•	•	•	•	•	
																																				D4	6	2																	And an end of the second second second second second second second second second second second second second se		•	•	•	•	•	•	•	•	•	•	
																																				62	5	3																			•	•	•	•	•	•	•	•	•	•	
																																				48	4	1																			•	•		•	•	•	•	•	•	•	
																																				42 48	6	2																			•	•	•	•	•	•	•	•	•	•	

MITSUBISHI MICROCOMPUTERS MELPS 7700 MACHINE INSTRUCTIONS

										1		Add	dres	sin	g m	ode	•							
Symbol	Function	Details		I P	-	MN	_	A			DIR													DIR)
PHD	$ \begin{array}{c} M(S) \leftarrow DPR_{H} \\ S \leftarrow S - 1 \\ M(S) \leftarrow DPR_{L} \\ S \leftarrow S - 1 \end{array} $	Saves the contents of the direct page register into the stack.	ор	n #	ор	n	# c	ip n	n #	op	n ‡	t op	n	# 0	p n	#	op r	1 #	op	n #	; ob	n	‡ or	p n
PHG	M(S)←PG S←S−1	Saves the contents of the program bank register into the stack.										T		T			+			+			+	
РНР	M(S)←PS _H S←S-1 M(S)←PS _L S←S-1	Saves the contents of the program status register into the stack.																						
РНТ	M(S)←DT S←S−1	Saves the contents of the data bank register into the stack.																					T	
РНХ		Saves the contents of the index register X into the stack.																						
РНҮ	$\begin{array}{c} S{\leftarrow}S{-1} \\ x{=}0 \\ M(S){\leftarrow}Y_{H} \\ S{\leftarrow}S{-1} \\ M(S){\leftarrow}Y_{L} \\ S{\leftarrow}S{-1} \\ x{=}1 \\ M(S){\leftarrow}Y_{L} \end{array}$	Saves the contents of the index register Y into the stack.																						
PLA	$\begin{array}{l} S{\leftarrow}S{=}1 \\ m{=}0 \\ S{\leftarrow}S{+}1 \\ A_{L}{\leftarrow}M(S) \\ S{\leftarrow}S{+}1 \\ A_{H}{\leftarrow}M(S) \\ m{=}1 \\ S{\leftarrow}S{+}1 \\ A_{L}{\leftarrow}M(S) \end{array}$	Restores the contents of the stack on the accumulator A.																						
PLB	$\begin{array}{l} m=0 \\ S-S+1 \\ B_{L}\leftarrow M(S) \\ S-S+1 \\ B_{H}\leftarrow M(S) \\ m=1 \\ S\leftarrow S+1 \\ B_{L}\leftarrow M(S) \end{array}$	Restores the contents of the stack on the accumulator B.																						
PLD	S←S+1 DPRL←M(S) S←S+1 DPR _H ←M(S)	Restores the contents of the stack on the direct page reg- ister.																						
PLP	S←S+1 PSL←M(S) S←S+1 PS _H ←M(S)	Restores the contents of the stack on the processor status register.																						
PLT	S←S+1 DT←M(S)	Restores the contents of the stack on the data bank reg- ister.						+						T			t				+		+	
PLX		Restores the contents of the stack on the index register X.																						
-	x=1 S←S+1 XL←M(S)																							

MITSUBISHI MICROCOMPUTERS MELPS 7700 MACHINE INSTRUCTIONS

																				_		A	١dd	re	ssi	ng	ma	de	,					_																	1	P	roc	es	sor	sta	tus	reç	jist	er	
L(C																							(A												R				b,R					SR								9	8	-				3			
op	n ‡	¢ op	n	#	op	n	#	ор	n	#	ор	n	#	op	n	#	ор	n	#	ор	n	#	ор	n	#	op	n	#	ор	n					p r	ז #	; ot	n	#	ор	n	#	ор	n	#	ор	n ‡	‡ 0	p n	#		IPL	-	N	v	m	x	D	Τ	z	с
1																																B																			•						•		•	•	•
4	_																					_		_	_	_			_	_		B 3			_									_							•			•				•			
																															C	8 4	1																		•	•	•	•	•	•	•	•	•	•	•
																																в 3																			•	•	•	•	•	•	•	•	•	•	•
																															C	A 4	1 1																		•		•	-	-	•	•	•	•	•	•
																															5	A 4	1 1																		•	•	•	•	•	•	•	•	•	•	•
																															6	8 5	5 1																		•	•	•	N		•	•	•	•	Z	•
																															4	2 7	7 2	2																	•	•	•	N	•	•	•	•	•	Z	•
																															2	в 5	5 1												E						•	•	•	•	•	•	•	•	•	•	•
																																86																			v	alu	e s	ave	ed i	n s	tac	٢.		_	_
																																ве																			•				•		•	•			
																															F	AS	5 1																		•	•	•	Z	•	•	•	•	•	z	•

MELPS 7700 MACHINE INSTRUCTIONS

													4	١dd	res	sing	g m	od	e								
Symbol	Function	Details		IMI		_	1M		A	-	+	DIF			_	_			L		_	_	-		-	-	DIR)
PLY	$x=0$ $S \leftarrow S+1$ $Y_{L} \leftarrow M(S)$ $S \leftarrow S+1$ $Y_{H} \leftarrow M(S)$ $x=1$ $S \leftarrow S+1$ $Y \leftarrow M(C)$	Restores the contents of the stack on the index register Y.	ot	n	#	op	n ‡	# 0	p r	1	: op	n	#	op	n ‡	‡ or	n	#	op	n	# 0	p n	#	op	n 4	F of	n
PSH (Note 6)	Y _L ←M(S) M(S)←A, B, X…	Saves the registers among accumulator, index register, direct page register, data bank register, program bank register, or processor status register, specified by the bit pattern of the second byte of the instruction into the stack.																									
PUL (Note 7)	A, B, X…←M(S)	Restores the contents of the stack to the registers among accumulator, index register, direct page register, data bank register, or processor status register, specified by the bit pattern of the second byte of the instruction.																								T	
RLA (Note 13)	$m=0$ n bit rotate left $f(b_1) = b_0 f(b_0)$ $m=1$ n bit rotate left $f(b_1) = b_0 f(b_0)$	Rotates the contents of the accumulator A, n bits to the left.				89 49		3																			
ROL (Note 1)	$m=0$ $(b_{15}\cdots b_{0}) \leftarrow C \leftarrow 0$ $m=1$ $(b_{7}\cdots b_{0}) \leftarrow C \leftarrow 0$	Links the accumulator or the memory to C flag, and rotates result to the left by 1 bit.							A 2 2 4 A			7	2			36	5 7	2									
ROR (Note 1)	$m=0$ $f(C) \rightarrow b_{15} \ b_{0} \rightarrow b_{0}$ $m=1$ $f(C) \rightarrow b_{7} \ b_{0} \rightarrow b_{0}$	Links the accumulator or the memory to C flag, and rotates result to the right by 1 bit.							A 2 2 4 A			7	2			76	5 7	2									
RTI	$\begin{array}{c} S + S + 1 \\ P S_L + M(S) \\ S + S + 1 \\ P S_H + M(S) \\ S + S + 1 \\ P C_L + M(S) \\ S + S + 1 \\ P C_L + M(S) \\ S + S + 1 \\ P C_H + M(S) \\ S + S + 1 \\ P G + M(S) \end{array}$	Returns from the interruption routine.	4(11	1																						
RTL	$\begin{array}{l} S \leftarrow S+1 \\ PC_{L} \leftarrow M(S) \\ S \leftarrow S+1 \\ PC_{H} \leftarrow M(S) \\ S \leftarrow S+1 \\ PG \leftarrow M(S) \end{array}$	Returns from the subroutine. The contents of the program bank register are also restored.	66	8	1																						
RTS	S←S+1 PC _L ←M(S) S←S+1 PC _H ←M(S)	Returns from the subroutine. The contents of the program bank register are not restored.	60	5	1																					T	
SBC (Note 1,2)	A _{CC} , C←A _{CC} −M− ¯	Subtracts the contents of the memory and the borrow from the contents of the accumulator.				E9 42 E9						4						2			4		3				1 8 2 10

MITSUBISHI MICROCOMPUTERS MELPS 7700 MACHINE INSTRUCTIONS

																											Ad	Idr	es	ssi	ng	n	10	de			•																										Pro	000	ess	or	sta	itu:	s re	gi	ste	ər	-
L(D	IR	L	(DI	R),	Y	ļ	١B	s	1	٩B	S,	b	4	B	S,)	x	A	BS	Y,	Τ	A	ЗL		A	BL	,x	(A	35	;)	L(A	BS	;)	(AI	BS	X)		ST	ĸ	Τ	R	E	L	0	DIR,	b,R	1	ABS	6,b,I	R	;	SR	1	(5	SR)	,Y		BL	ĸ	10										2		0
op r	#	or	r		#	ор	n	#	0	p	n	#	or	r	n :	#	ор	n	#	0	p	n	#	ор	n	#	0	p	n	#	ор	n	1	#	qc	n	#	op	n	l‡	ŧ	p	n	#	or	o r	1	= 0	p	n :	#	op	n	#	ор	n	#					LF						-	-		1		
·	1	t	+	1	1	÷			t	+	+	-	ŀ	+	+	-	÷	-	ŀ	ť	+	+			-	1	ť	+	+	-		t	t	+	-			7A				+		-	ľ	+	+	1	Ŧ		-			-	1-1	-	-	1.1	-	1			-		_	•	-	-			+	+	•
																																																																								2	
_						-											_				-														_			EĐ	31;	2 2	2									-											•			•	•	•	•			-	•	•	•
																																						2	+ 2i1-	- +i2																																	
																																						FB 3i	3 14	4 2	2																				if	t t	ec	on	ne	s if	s	val		Α	of and		
																																																													•		•	•	•	•	•	•			•	•	•
						2E	7	3					36	8	3	3																																													•		•	•	N	•	•	•			•	z	c
						6E	7	3					7E	8	3	3																																													•		•	•	N	•	•	•			•	z	C
																																																														/al	ue	sa	ve	di	n s	itad	ck.				
																	*												-																																				•	•	•				•		•
E7 10 42 12 E7		1			- 1			1			-													FF 42 FF																											- I.	- 1			1		2				•			•	N	v	•	•			•	z	C

MELPS 7700 MACHINE INSTRUCTIONS

													A	dd	ress	sing	g n	nod	e			_		_				_
Symbol	Function	Details	L	MF			им	-	A			DIF	-		R,b	-		२, Х	-	DIR,			DIR)	-	DIR,		(DI	R),
			ор	n	#	ор	n	# 0	p n	#	ор	n	#	op	n ‡	ŧ op	n	1#	ор	n	#	ор	n i	‡ or	n	#	op	n
SEB (Note 5)	Mb←1	Makes the contents of the specified bit in the memory "1".											G	04	8 3													
SEC	C←1	Makes the contents of the C flag "1".	38	2	1																							_
SEI	+←1	Makes the contents of the I flag "1".	-	2																						Ц		
SEM	m⊷1	Makes the contents of the m flag "1".	F8	2	1																							
SEP	PSb←1	Set the specified bit of the processor status register's lower byte ($\mbox{PS}_{\mbox{L}})$ to "1".				E2	3	2																				
STA (Note 1)	M←A _{CC}	Stores the contents of the accumulator into the memory.									85 42 85						5 5 2 7 5								2 9	3 -	91 3 42 9 91	
STP		Stops the oscillation of the oscillator.	DB	3	1	-	-+	-	+	+	-	-			+	Ť	+	+	┢	-	-		+	f	+		+	+
STX	M←X	Stores the contents of the index register X into the memory.	T						+	1	86	4	2	1	+	t	t	+	96	5	2		+	+	\vdash	Π	+	+
STY	M←Y	Stores the contents of the index register Y into the memory.					1		1	1	84	4	2			94	4 5	5 2	T	1			1	1	T	Π	+	†
TAD	DPR←A	Transmits the contents of the accumulator A to the direct page register.	5B	2	1																							1
TAS	S←A	Transmits the contents of the accumulator A to the stack pointer.	1B	2	1			T			T	1					T							1		Π	+	1
ТАХ	X←A	Transmits the contents of the accumulator A to the index register X.	AA	2	1																						T	
TAY	Y←A	Transmits the contents of the accumulator A to the index register Y.	A8	2	1																							
TBD	DPR←B	Transmits the contents of the accumulator B to the direct page register.	42 5B		2																						T	
TBS	S←B	Transmits the contents of the accumulator B to the stack pointer.	42 1B		2																							
твх	Х←В	Transmits the contents of the accumulator B to the index register X.	42 AA		2																							T
ТВҮ	Ү←В	Transmits the contents of the accumulator B to the index register Y.	42 A8	4	2																				T			
TDA	A←DPR	Transmits the contents of the direct page register to the accumulator A.	7B	2	1																							T
TDB	B⊷DPR	Transmits the contents of the direct page register to the accumulator B.	42 7В		2																							
TSA	A←S	Transmits the contents of the stack pointer to the accumulator A.	3B	2	1																							
TSE	B⊷S	Transmits the contents of the stack pointer to the accumulator B.	42 3B		2																							
TSX	x←s	Transmits the contents of the stack pointer to the index register $\boldsymbol{X}.$	BA	2	1																							
ТХА	A←X	Transmits the contents of the index register X to the accumulator A.	8A	2	1																							
ТХВ	B←X	Transmits the contents of the index register X to the accumulator B.	42 8A	4	2																							
TXS	S←X	Transmits the contents of the index register X to the stack pointer.	9 A	2	1											T												
ТХҮ	Y←X	Transmits the contents of the index register X to the index register Y.	9E	2	1																							
ΤΥΑ	A←Y	Transmits the contents of the index register Y to the accumulator A.	98	2	1											T												
түв	B⊷Y	Transmits the contents of the index register Y to the accumulator B.	42 98		2																							
түх	X←Y	Transmits the contents of the index register Y to the index register X.	BE	2	1													T										_
WIT		Stops the internal clock.	CE	3 3	1																			Ι				
ХАВ	A≒B	Exchanges the contents of the accumulator A and the con- tents of the accumulator B.	89 28		2										T								IT				iT	

MELPS 7700 MACHINE INSTRUCTIONS

																										,	Ad	ldr	es	si	ng	n	100	de																												Ρ	roc	ces	sor	st	atu	ıs r	reg	ist	er	_
) L(AE								зs							٩B) (τł			RE				R,b			BS,				R			٦),			LK		10	9	8	7	6	5	5	4				
n	#	op	n	1 #	: 0	p r	۱	#	op	n	‡	‡	op	n	#	0	p	n	#	ор	n	#	1	р	n	#	op	5 I I	n	#	ор	n	1	‡ c	p	n	#	op	n	#	ор	'n	+	#	ор	n	#	oţ	n	n it	#	op I	n ‡	#	op	n	#	ор	n	#		IPL	-	N	ı١	/ n	n	x	D	I	z	0
					ĺ				00	9	4	4																	Ì							Ì														Ì			Ì								•	•	•	•	•	1	•	•	•	•	•	ľ
				L							Ī												ļ											ļ											_															+	•	•	•	+	+		-		•	•	•	+
+	-	-	+	+	╞	+	+			-	+	+		-		-	+	-	_	-		+	+	-	_		-	+	+	-	-	-	-	+	+	+	_	-				+	-	+	_			-	+	+	+		+	+	+	_	+	-	+	-	•	•	•	+	+	+		+	•	1	•	•
	+	┢		+	┢	+	+	-		-	t	┥	-			╞		1	-			-	╈	+	-			+	+	_				+			_	-				+	+	+				╞		+	+		+	+	-		-	+	+	-+-	•	•	•	5	Spe	cif	iec	1			L	L)e
7 10	2	97	7 1 1	1 2	81	- -	5	3			+	-	an	5	3	9	9 9	5	3	8F	6	4	1 9	F	7	4		-	-				-	+				_					+	+	_			-	-	+		33	5	20	33	8	2	+	+	+	•			+-	om	nes	Т	-	•	•	•	T.
			1		1		1						- 1						- 1	42																																12																				
7		42 97	7	-	80	2	_				-	c.	Ð			9	9			8F		-	9	F	_	_								-	-		_														8	33		2	93	_		_	_	4			L	1	-			_				+
+	-		-	-	81	E £	5	3		-	+		_	_		-	-	+				$\left \right $	+	+	-			-	-			-	+	+	-	-		-				+	+	+	-		-	$\left \right $	+	+	+		+	+	+	+	+	+	+	+	•	•	•	+-	+	+			•	•	•	+
					+) t	-	-			t					t							Ì										İ		Ì						L	T	I																		•	•	•	•	•		•	•	•	•	•	t
																																																													•	•	•	•	•	•	•	•	•	•	•	
Ĺ	t			1	t							1					Ţ	1					ţ					t	1				T	1							Ē		1						1	ļ							1			-+	•	•	+	-	•	_	•	-+	-+	•		+
																																																													•	•	•	r	•		•	•	•	•	z	
																																																													•	•	•	١	•		•	•	•	•	z	Ī
		T		t	t													1														ľ		1						-	T	t	T					T		t			1			1				1	•	•	•	ŀ	•		•	•	•	•	•	1
	-	t	+	+	t	╈		-			+	+	-			t	t		-		-						F	╀		-		ŀ	-		+	+	-				+				_			╞	+	+	1	+	+	+	1	+	+		-	-	•	•	•	+	•		•	•	•	•	•	ł
-	-				$\left \right $			-				+					+	+										+								-														+	+	-	+	+		-	-	-	+		•	•	•	r			•	•	•	•	z	
			T	+	t		-					+				t	t		-			t	+	1	-			+	+	-				1	1													+	t	+	+	+	+	1					-	-	•	•	•	٢	, •		•	•	•	•	z	
+					t			-			t						╎						t	+	_			+	+					1	+															t				-	-						•	•	•	٢			•	•	•	•	z	+
	+		1		+						t	+				+	╎	+	-				+	+				╈	+					+	+									+					+	+	+		+	-	-		+	-	_		•	•	•	٢	1.		•	•	•	•	z	
+	+		╉	+	+	+	-			1	t	+				┢	╈	+	-	_		-	+	+	-		t	╉	+			+		+	+	+	-					1	-	+		_		-	+	+	+		+	+	+	-	+				•	•	•	r				•	•	•	z	+
											T					I								T																										T											•	•	•	٢	•		•	•	•	•	z	Ì
	t				t		-				T	1				T		1				t	T	Ť	-		T	t								1												T	T	1			T	-							•	•	•	r	i ·		•	•	•	•	z	
	T	T			t	1					t					T											T	t																			-	I	1	1											•	•	•	٢			•	•	•	•	z	
					T						T					T		T										t					T	T									1					T		T			T				1				•	•	•	r		t	•	•	•	•	z	
t	T	T	ļ	T	t	T																	T				T	t				t	1											1			ſ	T		T	1	1	Ť		1						•	•	•	•	•	1	•	•	•	•	•	t
	T		l		t	T	Ť				T	Ť				T	T						Ť				ľ	t				ľ		T							ſ	T	T	1				ſ		T			T			1				1	•	•	•	٨	1.	t	•	•	•	•	z	
			Ì		t		1									T	T	1									T	T				ľ		T									t	1			t	t		T					1		1	1		1	•	•	ŀ	٢	•	t	•	•	•	•	z	
					T											l	T						t				T	t				T	T							ŀ		t	t	1			t	t		1	1		T			1					•	•	•	٢	•	t	•	•	•	•	z	
			T								T	1				T	t					T	t				t	T				ſ	1	T		1					T	T	t	1	-			t		1	+		t	1	1	+	1		1		·	•	•	٢	•	t	•	•	•	•	z	•
	t						1			t		1				T	t						1				t	t			-	t		+							ľ		t							+						-					•		•							•		
Γ			Γ	Τ	Γ	T	T	1			ſ	T				Γ	T	T				Γ	T				Γ	T	T			Γ	Τ	T	T					Γ	Γ	Γ	T						T	T	T	T	T	T			T	1	T	T	•	•	•	1	ı٦	Ī	•	•	•	•	z	Ī

MELPS 7700 MACHINE INSTRUCTIONS

Symbol	Description	Symbol	Description
IMP	Implied addressing mode	\forall	Exclusive OR
IMM	Immediate addressing mode	_	Negation
A	Accumulator addressing mode	←	Movement to the arrow direction
DIR	Direct addressing mode	Acc	Accumulator
DIR, b	Direct bit addressing mode	Acch	Accumulator's upper 8 bits
DIR, X	Direct indexed X addressing mode	ACCL	Accumulator's lower 8 bits
DIR, Y	Direct indexed Y addressing mode	Α	Accumulator A
(DIR)	Direct indirect addressing mode	А _н	Accumulator A's upper 8 bits
(DIR, X)	Direct indexed X indirect addressing mode	AL	Accumulator A's lower 8 bits
(DIR), Y	Direct indirect indexed Y addressing mode	В	Accumulator B
L (DIR)	Direct indirect long addressing mode	Bн	Accumulator B's upper 8 bits
L (DIR), Y	Direct indirect long indexed Y addressing mode	B∟	Accumulator B's lower 8 bits
ABS	Absolute addressing mode	х	Index register X
ABS, b	Absolute bit addressing mode	Х _н	Index register X's upper 8 bits
ABS, X	Absolute indexed X addressing mode	XL	Index register X's lower 8 bits
ABS, Y	Absolute indexed Y addressing mode	Y	Index register Y
ABL	Absolute long addressing mode	Yн	Index register Y's upper 8 bits
ABL, X	Absolute long indexed X addressing mode	YL	Index register Y's lower 8 bits
(ABS)	Absolute indirect addressing mode	S	Stack pointer
L (ABS)	Absolute indirect long addressing mode	PC	Program counter
(ABS, X)	Absolute indexed X indirect addressing mode	PCH	Program counter's upper 8 bits
STK	Stack addressing mode	PC∟	Program counter's lower 8 bits
REL	Relative addressing mode	PG	Program bank register
DIR, b, REL	Direct bit relative addressing mode	DT	Data bank register
ABS, b, REL	Absolute bit relative addressing mode	DPR	Direct page register
SR	Stack pointer relative addressing mode	DPRH	Direct page register's upper 8 bits
(SR), Y	Stack pointer relative indirect indexed Y addressing	DPR∟	Direct page register's lower 8 bits
	mode	PS	Processor status register
BLK	Block transfer addressing mode	PSH	Processor status register's upper 8 bits
С	Carry flag	PSL	Processor status register's lower 8 bits
Z	Zero flag	PSb	Processor status register's b-th bit
1	Interrupt disable flag	M(S)	Contents of memory at address indicated by stac
D	Decimal operation mode flag		pointer
x	Index register length selection flag	Mb	b-th memory location
m	Data length selection flag	AD _G	Value of 24-bit address's upper 8-bit $(A_{23} \sim A_{16})$
V	Overflow flag	AD _H	Value of 24-bit address's middle 8-bit $(A_{15} \sim A_8)$
N	Negative flag	ADL	Value of 24-bit address's lower 8-bit $(A_7 \sim A_0)$
IPL	Processor interrupt priority level	ор	Operation code
+	Addition	n	Number of cycle
_	Subtraction	#	Number of byte
*	Multiplication	i	Number of transfer byte or rotation
/	Division	i ₁ , i ₂	Number of registers pushed or pulled
\wedge	Logical AND		
\vee	Logical OR		

Symbols in machine instructions table

MELPS 7700 MACHINE INSTRUCTIONS

The number of cycles shown in the table is described in case of the fastest mode for each instruction. The number of cycles shown in the table is calculated for DPR_=0. The number of cycles in the addressing mode concerning the DPR when DPR_+0 must be incremented by 1. The number of cycles shown in the table differs according to the bytes fetched into the instruction queue buffer, or according to whether the memory read/write address is odd or even. It also differs when the external region memory is accessed by BYTE="H".

Note 1. The operation code at the upper row is used for accumulator A, and the operation at the lower row is used for accumulator B.

Note 2. When setting flag m=0 to handle the data as 16-bit data in the immediate addressing mode, the number of bytes increments by 1.

- Note 3. The number of cycles increments by 2 when branching.
- Note 4. The operation code on the upper row is used for branching in the range of -128~+127, and the operation code on the lower row is used for branching in the range of -32768~+32767.
- Note 5. When handling 16-bit data with flag m=0, the byte in the table is incremented by 1.

Note 6.

Type of register	Α	В	X	Y	DPR	DT	PG	PS
Number of cycles	2	2	2	2	2	1	1	2

The number of cycles corresponding to the register to be pushed are added. The number of cycles when no pushing is done is 12. i₁ indicates the number of registers among A, B, X, Y, DPR, and PS to be saved, while i₂ indicates the number of registers among DT and PG to be saved.

Note 7.

Type of register	Α	В	X	Y	DPR	DT	PS
Number of cycles	3	3	3	3	4	3	3

The number of cycles corresponding to the register to be pulled are added. The number of cycles when no pulling is done is 14. i_1 indicates the number of registers among A, B, X, Y, DT, and PS to be restored, while $i_2=1$ when DPR is to be restored.

Note 8. The number of cycles is the case when the number of bytes to be transfered is even.

When the number of bytes to be transfered is odd, the number is calculated as;

 $7 + (i/2) \times 7 + 4$

Note that, (i/2) shows the integer part when i is divided by 2.

Note 9. The number of cycles is the case when the number of bytes to be transfered is even.

When the number of bytes to be transfered is odd, the number is calculated as;

 $9 + (i/2) \times 7 + 5$

Note that, (i/2) shows the integer part when i is divided by 2.

Note 10. The number of cycles is the case in the 16-bit+8-bit operation. The number of cycles is incremented by 16 for 32-bit+16-bit operation.

Note 11. The number of cycles is the case in the 8-bit×8-bit operation. The number of cycles is incremented by 8 for 16-bit×16-bit operation.

Note 12. When setting flag x=0 to handle the data as 16-bit data in the immediate addressing mode, the number of bytes increments by 1.

Note 13. When flag m is 0, the byte in the table is incremented by 1.

MELPS 7700 INSTRUCTION CODE TABLE

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

INSTRUCTION CODE TABLE-1

\bigtriangledown	$D_3 \sim D_0$	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
D ₇ ∼D₄ He	xadecimal notation	0	1	2	3	4	5	6	7	8	9	A	В	с	D	E	F
0000		DDV	ORA		ORA	SEB	ORA	ASL	ORA	500	ORA	ASL		SEB	ORA	ASL	ORA
0000	0	BRK	A,(DIR,X)		A,SR	DIR,b	A,DIR	DIR	A,L(DIR)	PHP	A,IMM	Α	PHD	ABS,b	A,ABS	ABS	A,ABL
0001	1	BPL	ORA	ORA	ORA	CLB	ORA	ASL	ORA	CLC	ORA	DEC	TAS	CLB	ORA	ASL	ORA
	'		A,(DIR),Y	A,(DIR)	A,(SR),Y	DIR,b	A,DIR,X	DIR,X	A,L(DIR),Y	010	A,ABS,Y	Α	170	ABS,b	A,ABS,X	ABS,X	A,ABL,X
0010	2	JSR	AND	JSR	AND	BBS	AND	ROL	AND	PLP	AND	ROL	PLD	BBS	AND	ROL	AND
	2	ABS	A,(DIR,X)	ABL	A,SR	DIR,b,R	A,DIR	DIR	A,L(DIR)		A,IMM	Α		ABS,b,R	A,ABS	ABS	A,ABL
0011	3	вмі	AND	AND	AND	BBC	AND	ROL	AND	SEC	AND	INC	TSA	BBC	AND	ROL	AND
0011		Divin	A,(DIR),Y	A,(DIR)	A,(SR),Y	DIR,b,R	A,DIR,X	DIR,X	A,L(DIR),Y	020	A,ABS,Y	Α	104	ABS,b,R	A,ABS,X	ABS,X	A,ABL,X
0100	4	BTI	EOR	Note 1	EOR	MVP	EOR	LSR	EOR	РНА	EOR	LSR	PHG	JMP	EOR	LSR	EOR
0100	-		A,(DIR,X)	Note I	A,SR		A,DIR	DIR	A,L(DIR)	1115	A,IMM	Α	- Thu	ABS	A,ABS	ABS	A,ABL
0101	5	BVC	EOR	EOR	EOR	MVN	EOR	LSR	EOR	CLI	EOR	РНҮ	TAD	JMP	EOR	LSR	EOR
	Ĵ		A,(DIR),Y	A,(DIR)	A,(SR),Y		A,DIR,X	DIR,X	A,L(DIR),Y		A,ABS,Y		170	ABL	A,ABS,X	ABS,X	A,ABL,X
0110	6	RTS	ADC	PER	ADC	LDM	ADC	ROR	ADC	PLA	ADC	ROR	RTL	JMP	ADC	ROR	ADC
	Ŭ		A,(DIR,X)		A,SR	DIR	A,DIR	DIR	A,L(DIR)		A,IMM	Α		(ABS)	A,ABS	ABS	A,ABL
0111	7	BVS	ADC	ADC	ADC	LDM	ADC	ROR	ADC	SEI	ADC	PLY	TDA	JMP	ADC	ROR	ADC
	,		A,(DIR),Y	A,(DIR)	A,(SR),Y	DIR,X	A,DIR,X	DIR,X	A,L(DIR),Y		A,ABS,Y			(ABS,X)	A,ABS,X	ABS,X	A,ABL,X
1000	8	BRA	STA	BRA	STA	STY	STA	STX	STA	DEY	Note 2	ТХА	РНТ	STY	STA	STX	STA
1000	Ŭ	REL	A,(DIR,X)	REL	A,SR	DIR	A,DIR	DIR	A,L(DIR)		NOLE 2	174	FIRE	ABS	A,ABS	ABS	A,ABL
1001	9	BCC	STA	STA	STA	STY	STA	STX	STA	τγά	STA	тхѕ	тхү	LDM	STA	LDM	STA
	Ŭ		A,(DIR),Y	A,(DIR)	A,(SR),Y	DIR,X	A,DIR,X	DIR,Y	A,L(DIR),Y		A,ABS,Y	170		ABS	A,ABS,X	ABS,X	A,ABL,X
1010	Α	LDY	LDA	LDX	LDA	LDY	LDA	LDX	LDA	ТАҮ	LDA	ТАХ	PLT	LDY	LDA	LDX	LDA
		IMM	A,(DIR,X)	ІММ	A,SR	DIR	A,DIR	DIR	A,L(DIR)		A,IMM			ABS	A,ABS	ABS	A,ABL
1011	в	BCS	LDA	LDA	LDA	LDY	LDA	LDX	LDA	CLV	LDA	тѕх	түх	LDY	LDA	LDX	LDA
			A,(DIR),Y	A,(DIR)	A,(SR),Y	DIR,X	A,DIR,X	DIR,Y	A,L(DIR),Y	021	A,ABS,Y	10/		ABS,X	A,ABS,X	ABS,Y	A,ABL,X
1100	c	CPY	СМР	CLP	СМР	CPY	СМР	DEC	СМР	INY	СМР	DEX	wit	CPY	CMP	DEC	СМР
L		IMM	A,(DIR,X)	імм	A,SR	DIR	A,DIR	DIR	A,L(DIR)		A,IMM	^		ABS	A,ABS	ABS	A,ABL
1101	D	BNE	СМР	СМР	СМР	PEI	СМР	DEC	CMP	CLM	СМР	РНХ	STP	JMP	CMP	DEC	СМР
				A,(DIR)			A,DIR,X	DIR,X	A,L(DIR),Y		A,ABS,Y			· · · · · · · · · · · · · · · · · · ·	A,ABS,X	· · · · · · · · · · · · · · · · · · ·	A,ABL,X
1110	E	CPX	SBC	SEP	SBC	СРХ	SBC	INC	SBC	INX	SBC	NOP	PSH	CPX	SBC	INC	SBC
		IMM	A,(DIR,X)	IMM	A,SR	DIR	A,DIR	DIR	A,L(DIR)		A,IMM			ABS	A,ABS	ABS	A,ABL
1111	F	BEQ	SBC	SBC	SBC	PEA	SBC	INC	SBC	SEM	SBC	PLX	PUL	JSR	SBC	INC	SBC
			A,(DIR),Y	A,(DIR)	A,(SR),Y	, `	A,DIR,X	DIR,X	A,L(DIR),Y		A,ABS,Y			(ABS,X)	A,ABS,X	ABS,X	A,ABL,X

Note 1 : 42₁₆ specifies the contents of the INSTRUCTION CODE TABLE-2.

About the second word's codes, refer to the INSTRUCTION CODE TABLE-2.

2 : 89₁₆ specifies the contents of the INSTRUCTION CODE TABLE-3. About the third word's codes, refer to the INSTRUCTION CODE TABLE-2.

MITSUBISHI MICROCOMPUTERS **MELPS 7700 INSTRUCTION** CODE TABLE

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

INSTR	υςτιο	N C	ODE	TAB	LE-2	(The	first	wor	rd's c	ode	of ea	ch ir	nstruc	ction	is 42	2 ₁₆)	
\bigvee	D ₃ ~D ₀	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
D ₇ ~D₄ H	exadecimal notation	0	1	2	3	4	5	6	7	8	9	А	в	С	D	E	F
0000	0		ORA		ORA		ORA		ORA		ORA	ASL			ORA		ORA
0000	Ŭ		B,(DIR,X)		B,SR		B,DIR		B,L(DIR)		B,IMM	в			B,ABS		B,ABL
0001	1		ORA	ORA	ORA		ORA		ORA		ORA	DEC	TBS		ORA		ORA
0001			B,(DIR),Y	B,(DIR)	B,(SR),Y		B,DIR,X		B,L(DIR),Y		B,ABS,Y	В	103		B,ABS,X		B,ABL,
0010	2		AND		. AND		AND		AND		AND	ROL			AND		AND
0010	2		B,(DIR,X)		B,SR		B,DIR		B,L(DIR)		B,IMM	в			B,ABS		B,ABL
0011	3		AND	AND	AND		AND		AND		AND	INC			AND		AND
0011	3		B,(DIR),Y	B,(DIR)	B,(SR),Y		B,DIR,X		B,L(DIR),Y		B,ABS,Y	в	TSB		B,ABS,X		B,ABL,
0100			EOR		EOR		EOR		EOR		EOR	LSR			EOR		EOR
0100	4		B,(DIR,X)		B,SR		B,DIR		B,L(DIR)	РНВ	в,імм	в			B,ABS		B,ABL
			EOR	EOR	EOR		EOR		EOR		EOR				EOR		EOR
0101	5		B.(DIR).Y	B,(DIR)	B.(SR).Y		B,DIR,X		B,L(DIR),Y		B,ABS,Y		TBD		B,ABS,X		B,ABL,
			ADC	_,(,	ADC		ADC	-	ADC		ADC	ROR			ADC		ADC
0110	6		B,(DIR,X)		B,SR		B,DIR		B,L(DIR)	PLB	B,IMM	в	в		B.ABS		B,ABL
			ADC	ADC	ADC		ADC		ADC		ADC				ADC		ADC
0111	7			B.(DIR)	B (SB) Y		B,DIR,X		B.L(DIR),Y		B,ABS,Y		TDB		B.ABS.X		B,ABL,)
······································			STA	0,(011)	STA		STA		STA		0,700,1				STA		STA
1000	8		B,(DIR,X)		B,SR		B,DIR		B,L(DIR)			тхв			B,ABS		B,ABL
			STA	STA	STA		STA		STA		STA				STA		STA
1001	9			B,(DIR)			B,DIR,X		B,L(DIR),Y	ТҮВ	B,ABS,Y				B,ABS,X		B,ABL,>
			LDA	D,(DIN)	LDA		LDA		LDA		LDA				LDA		LDA
1010	A		B,(DIR,X)		B,SR				B,L(DIR)	ТВҮ		твх					
			LDA	LDA	LDA		B,DIR LDA		LDA		B,IMM LDA				B,ABS LDA		B,ABL LDA
1011	в																
			B,(DIR),Y CMP	B,(DIR)	CMP		B,DIR,X CMP		B,L(DIR),Y CMP		B,ABS,Y CMP				B,ABS,X CMP		B,ABL,> CMP
1100	С																
	+		B,(DIR,X) CMP	CMP	B,SR CMP		B,DIR CMP		B,L(DIR) CMP		B,IMM CMP				B,ABS CMP		B,ABL CMP
1101	D			-													
			B,(DIR),Y SBC	B,(DIR)	B,(SR),Y SBC		B,DIR,X SBC		B,L(DIR),Y SBC		B,ABS,Y SBC				B,ABS,X SBC		B,ABL,> SBC
1110	E																
			B,(DIR,X) SBC	SBC	B,SR		B,DIR		B,L(DIR)		B,IMM				B,ABS		B,ABL SBC
1111	F				SBC		SBC		SBC		SBC				SBC		
			B,(DIR),Y	B,(DIR)	B,(SR),Y		B,DIR,X		B,L(DIR),Y	1	B,ABS,Y				B,ABS,X		B,ABL,X

MITSUBISHI MICROCOMPUTERS MELPS 7700 INSTRUCTION CODE TABLE

INSTR	υςτιο	N C	ODE	TAE	LE-3	(The	first	wor	d's c	ode	of ea	ch ir	nstruc	ction	is 89) ₁₆)	
\bigwedge	D ₃ ~D ₀	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
D ₇ ~D₄ H	exadecimal notation	0	1	2	- 3	4	5	6	7	8	9	A	в	с	D	E	F
0000	0		MPY		MPY		MPY		MPY		MPY				MPY		MPY
0000	Ū		(DIR,X)		SR		DIR		L(DIR)		імм				ABS		ABL
0001	1		MPY	MPY	MPY		MPY		MPY		MPY			{	MPY		MPY
			(DIR),Y	(DIR)	(SR),Y		DIR,X		L(DIR),Y		ABS,Y				ABS,X		ABL,X
0010	2		DIV		DIV		DIV		DIV	ХАВ	DIV				DIV		DIV
			(DIR,X)		SR		DIR		L(DIR)		ІММ				ABS		ABL
0011	3		DIV	DIV	DIV		DIV		DIV		DIV				DIV		DIV
0011	3		(DIR),Y	(DIR)	(SR),Y		DIR,X		L(DIR),Y		ABS,Y				ABS,X		ABL,X
0100	4										RLA						
0100	4										імм				1		
0101	5																
0110	6																
0111	7																
	,																
1000	8																
1001	. 9																
1010	A										-						
1011	в																
				LDT													
1100	С			ІММ													
1101	D																
1110	E																
1111	F																

PRECAUTIONS

5

PRECAUTIONS

This chapter describes PRECAUTIONS about the single-chip 16-bit microcomputers MELPS 7700.

These precautions are intended for each group which is printed in this book(refer to Figure 1).

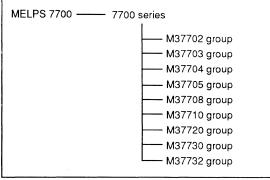
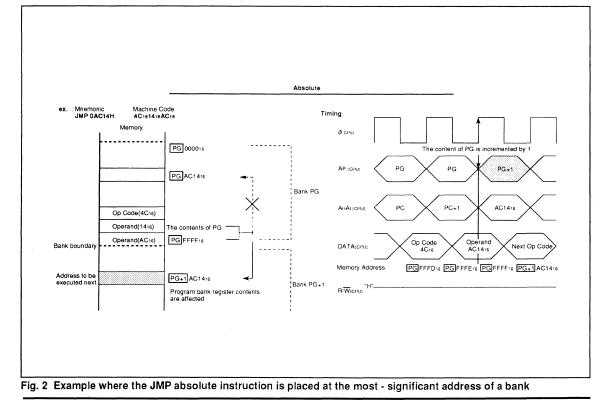


Fig. 1 7700 series

1. NOTES ON SOFTWARE Notes on using instructions

When programming to the MELPS 7700, the remark described below applies when any of the instructions of the Table 2 is at the most - significant address of the bank or is spread over the bank boundary.


Table 2 Instructions needing notes

Instruction	Addressing mode	Bytes
RTS	Implied	1
JMP	Absolute	3
	Absolute Indirect	3
	Absolute Indirect Long	3
	Absolute Indexed x Indirect	3
JSR	Absolute	3
	Absolute Indexed x Indirect	3

[Note]

When any of the above instructions, which do not set the program bank register (PG), is at the most - significant address of the bank or is spread over the bank boundary, the content of the program bank register (PG) is automatically incremented by 1 when a carry is generated by incrementing of the program counter's (PC) content.

An example where the JMP absolute instruction is placed at the most - significant address of a bank is shown in the Figure 2.

The influence of the m and x flags when MVN/MVP instructions are executed

The block transfer instructions (MVN and MVP) are affected by the m and x flags, and care must be taken regarding the status of these flags when block transfer instructions are executed. The influence of the m and x flags when block transfer instructions are executed are described below.

- •m flagAffects the number of bytes transferred (the transfer units are not affected by the m flag).
- •When m = 0 :

The maximum number of bytes that can be transferred is 65535.

•When m = 1 :

The maximum number of bytes that can be transferred is 255.

•x flag .. Affects transfer source and destination addresses. •When x = 0 :

The values (016 to FFFF16) to be used as the transfer

source and destination start addresses can be set into the X and Y registers. The bank will be incremented or decremented in accordance with the transfer, so there is no need to be conscious of the bank boundaries.

•When x = 1 :

The values (016 to FF16) to be used as the transfer source and destination start addresses can be set into the lower byte of the X and Y registers. However, when the transfer will cross the FF16 and 0016 address boundaries, you must pay attention to the transfer region, and for this reason we recommend that you use the block transfer instruction with x = 0 (operation of the block transfer instruction with x = 1and the situation above is shown in the Figure 3).

The Figure 3 indicates the operation of the **MVN** and **MVP** transfer instructions when x = 1, and the transfer crosses the boundary of XXFF₁₆ and XX00₁₆.

The same transfer operation (address change) is performed on both the transfer source and the transfer destination, so here we only illustrate the transfer source transfer operation.

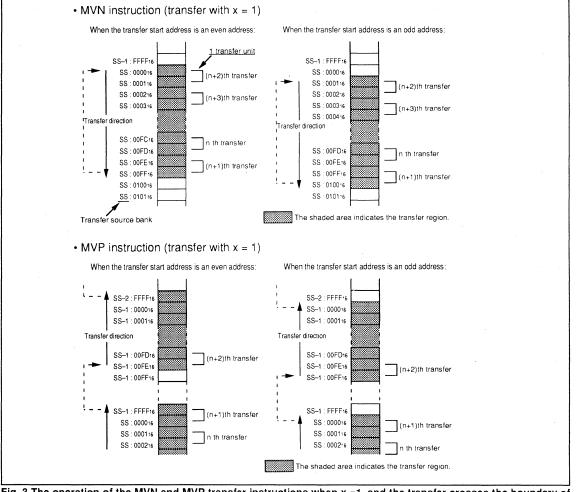
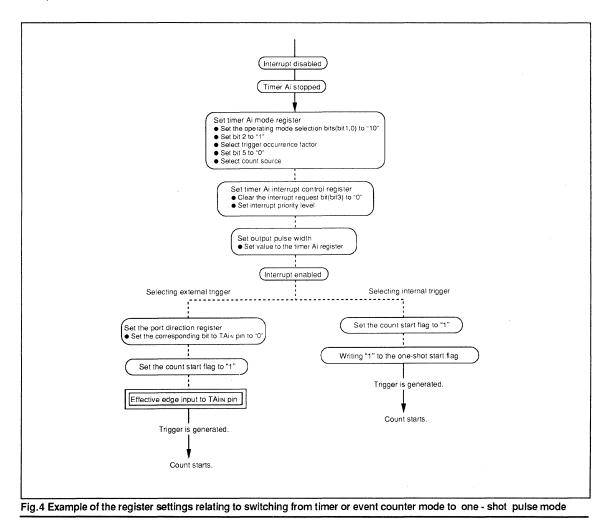


Fig. 3 The operation of the MVN and MVP transfer instructions when x =1, and the transfer crosses the boundary of XXFF16 and XX0016

2. NOTES ON TIMER A

One - shot pulse mode and PWM mode

Take note of the following when using timer Ai (i = 0 to 4) of the MELPS 7700 (timer Aj (j = 2 to 4) on the M37720S1AFP) with the one - shot pulse or pulse width modulation mode (here after PWM), and when using the timer Ai (or Aj) interrupts or interrupt request bit.


[Note]

After switching between the modes listed below, the interrupt request bit becomes "1". Therefore, clear the interrupt request bit to "0" after switching modes.

•From timer mode to one - shot pulse mode

- •From timer mode to PWM mode
- From event counter mode to one shot pulse mode
- •From event counter mode to PWM mode

The Figure 4 shows an example of the register settings relating to switching from timer or event counter mode to one shot pulse mode.

Timer A two - phase pulse signal processing bits

Use **LDM** or **STA** instruction to write to timers A4 to A2 two phase pulse signal processing bits (bit 7 to bit 5 of address 4416). Do not use **SEB** or **CLB** instruction.

It is possible to use **SEB** or **CLB** instruction to write to timers A4 to A0 up - down flags (bit 4 to bit 0 of address 4416). When **SEB** or **CLB** instruction is used timers A4 to A0 up - down flags, the contents of bit 7 to bit 5 do not change.

- •How to write timers A4 to A2 two phase signal processing bits
- a. Use LDM instruction when all bits of address 4416 are known.
 - (ex.) LDM #01100000B, 44H ; Set bit 7 to "0". Set bit 6 and bit 5 to "1".
- b: Use **STA** instruction when all bits of address 4416 are not known.

(ex.) LDM A,	44H	; The contents of ad dress
		4416 are read.
ORA A,	#00100000B	; Set bit 5 to "1".
AND A,	#01111111B	; Clear bit 7 to "0".
STA A,	44H	; Write to address 4416.

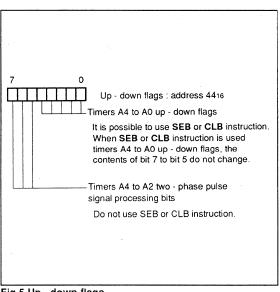


Fig.5 Up - down flags

3.NOTES ON A-D CONVERTER

Setting of unused pins

Connect the AVcc pin to Vcc when it is not used. Figure 6 shows the setting example of unused pins with the M37702 group.

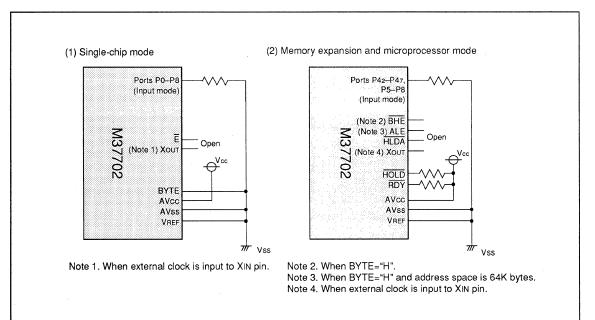


Fig.6 Setting example of unused pins with M37702 group

4. NOTES ON SERIAL I/O

Clock synchronous serial I/O (selecting external clock)

In case using external input clock for the clock synchronous serial I/O and start transmitting/receiving from halt state, perform the following (), (2) setting for starting transmitting/receiving when the external input clock is at "H" level.

However, when setting the next data to transmit data continuously, it is impossible that the external input clock is at "H" or "L" level.

① Set the UARTi transmit/receive control register 1

Transmit enable bit

Set the bit 0 to "1"

Receive enable bit

Set the bit 2 to "1".

② UARTi transmission buffer register Set transmit data in UARTi transmission buffer register.

[Note 1]

In case the transmitting/receiving starts when the external input clock through the CLKi pin is at "L" level by noises and so on, the following may occurs.

Be sure that noises do not generate on the external clock line.

Transmitting

The transmission register empty flag (which is the bit 3 in the UARTi transmit/receive control register 0) would be set to "1" before the external clock is input 8 times. Accordingly, the transmit operation completes under the condition which is that all data (8 bits) is not transmitted. When transmitting continuously, all data is not transmitted and the next contents of the UARTi transmission buffer register is transferred to the UARTi transmission register. Accordingly, some bits of the next data are transmitted with left clocks which were for transmitting the last data.

Receiving

The receive completion flag (which is the bit 3 in the UARTi transmit/receive control register 1) and the interrupt request bit (which is the bit 3 in the UARTi receive interrupt control register) are not set to "1" when the external clock is input 8 times or more.

Accordingly, the receive operation does not complete and correct data cannot be read.

When noises easily generate, it is possible to detect the errors at transmitting/receiving by the program example shown in the Figure 8.

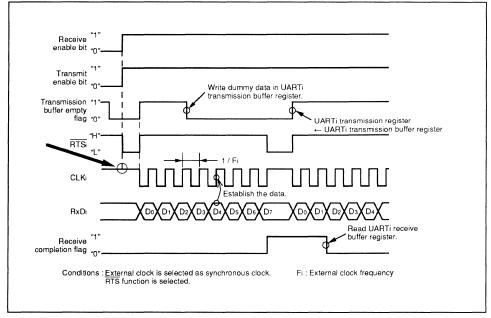
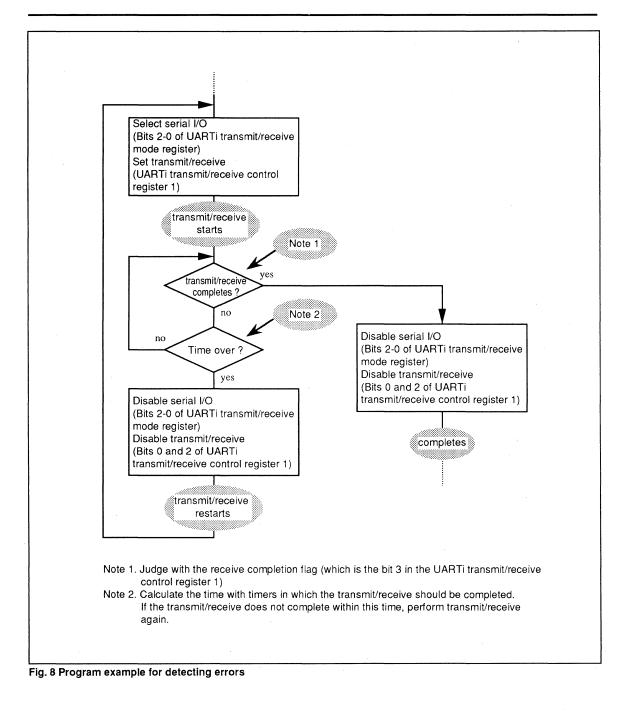



Fig. 7 Clock synchronous serial I/O timing diagram at receiving (selecting external clock)

5. NOTES ON INTERRUPTS

Setting of each interrupt control register

Use the SEB and CLB instructions for setting each interrupt control register.

Changing the interrupt priority level

It is necessary for rewriting the interrupt priority level selection bit (Note 1) to take 1 to 4 cycles after executing the instruction for it. The number of cycles for rewriting are different with the interrupt priority detection time (Note 2).

- Note 1. Selects the interrupt priority level with bit 2 to of each interrupt control register.
- Note 2. Selects the interrupt priority level detection time with the bits 5, 4 of the processor mode register.

[Note]

Time enough for changing the interrupt priority level shall be taken in case of changing the interrupt priority level of the same interrupt sources in a short execution time among a few instructions. Therefore, program as the Figure 9.

Select 2 cycles for the interrupt priority level detection time as much as possible.

SEB	; rewrite the interrupt priority level selection bit (level 0→1 to 7) ; add NOP or instructions which have same cycles of NOP (except SEB and CLB) (Note.3)
CLB	; rewrite the interrupt priority level selection bit (level 1 to $7 \rightarrow 0$)

Note.3 The number of instructions are different with the interrupt priority detection time.

The number of added instructions

The interrupt priority detection time	The number of added instructions			
2 cycles	1			
4 cycles	2			
7 cycles	4			

Fig. 9 Program example

INTi interrupt (selecting level sense mode)

When the $\overline{INT_i}$ interrupt is used in level sense, the $\overline{INT_i}$ interrupt request bit's function is not available.

[Note 1]

The interrupt request is not retained when changing from valid level to invalid level if the interrupt request is not accepted during valid level. Figure 10 shows the INT interrupt during level sense mode.

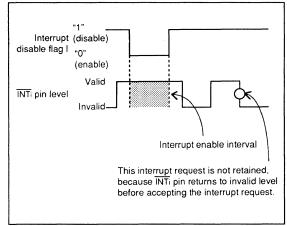
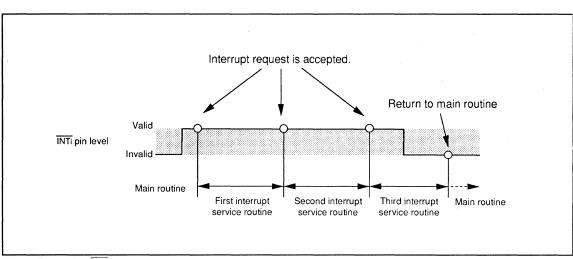


Fig. 10 INTi interrupt during level sense mode

[Note 2]


If the level of the $\overline{INT_i}$ pin is valid (did not change from valid level to invalid level) when returning to the original routine after processing an interrupt, $\overline{INT_i}$ interrupt is occurred as shown in Figure 11.

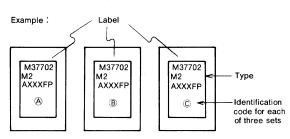
[Note 3]

To change the $\overline{INT_i}$ interrupt from level sense to edge sense, set the $\overline{INT_i}$ interrupt control register in the sequence bellow :

- Disable INTi interrupt (set the interrupt priority level to level
 0.)
- ② Select edge sense (set the Level sense/Edge sense selection bit to "0".)
- 3 Clear the interrupt request bit to "0".
- In Enable the accepting of INT interrupt request (set the interrupt priority level to level 1–7.)

APPENDICES

MITSUBISHI MICROCOMPUTERS MELPS 7700 MASK ROM ORDERING METHOD


MASK ROM ORDERING METHOD

Mitsubishi Electric corp. accepts order to transfer EPROM supplied program data into the mask ROMs in single-chip 16-bit microcomputers. When placing such order, please submit the information described below.

- 2. Data to be written into mask ROM EPROM (Please provide three sets containing the identical data.)
- 3. Mark Specification Form1 set

NOTES

- Acceptable EPROM type Any EPROM made by Mitsubishi Electric corp. that is listed in the Mask RCM Order Confirmation Form may be used.
- (2) EPROM window labeling Please write the model name and the identification code (A, B, C) on the label for each of the three sets of data EPROMs provided.

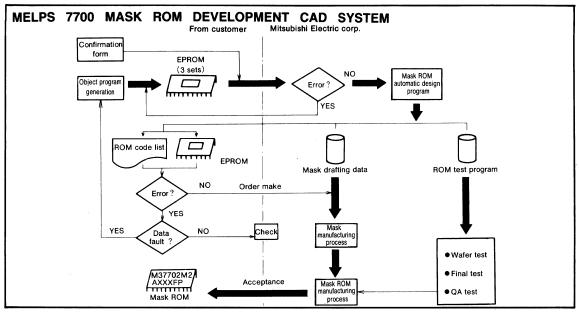
- (3) Calculation and indication of check sum code
 - Please calculate the total number of data in words in the EPROM, and write the number in 4-digit hexadecimal form in the check sum code field of the Mask ROM Order Confirmation Form.
- (4) Options

Refer to the appropriate data book entry and write the desired options on the Mask ROM Order Confirmation Form.

(5) Marking specification method

The permissible marking specifications differ depending on the shape of package. Please fill out the Marking Specification Form and attach it to the Mask ROM Order Confirmation Form.

OUTLINE OF ORDER PROCESSING


Mitsubishi Electric corp. will produce the mask ROM if at least two of the three EPROM sets submitted contain identical data.

If we find error when the submitted EPROMs are compared, we will contact your representative. Thus, we assume responsibility only when we produce the mask ROMs that contain data other than the data correctly provided by the customer.

Mitsubishi Electric corp. uses an automatic mask ROM design program to generated the forlling:

- 1 : Drafting data for mask ROM production;
- 2 : ROM code listing or EPROM for mask ROM production error check work;
- 3 : Mask ROM test program.

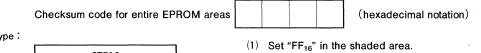
The chart below shows the flow of mask ROM production.

GZZ-SH07-25A < 33A0 >

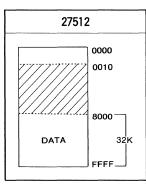
MELPS 7700 MASK ROM ORDER CONFIRMATION FORM SINGLE-CHIP 16-BIT MICROCOMPUTER M37710M4BXXXFP **MITSUBISHI ELECTRIC**

Mask ROM number								
	Date :							
Receipt	Section head signature	Supervisor signature						

Note : Please fill in all items marked **


		Company		TEL			Responsible officer	Supervisor
*	Customer	name		()	atur		
		Date issued	Date :			lssı sign		

%1. Confirmation


Specify the name of the product being ordered and the type of EPROMs submitted.

Three sets of EPROMs are required for each pattern.

If at least two of the three sets of EPROMs submitted contain the identical data, we will produce masks based on this data. We shall assume the responsibility for errors only if the mask ROM data on the products we produce differ from this data. Thus, the customer must be especially careful in verifying the data contained in the EPROMs submitted.

EPROM Type :

(2) Address 0_{16} to 10_{16} are the area for storing the data on model designation and options. This area must be written with the data shown below. Details for option data are given next in the sec-

tion describing the STP instruction option.

Address and data are written in hexadecimal notation.

	Address		Address		Address
4D	0	42	8	Option data	10
33	1	FF	9		
37	2	FF	A		
37	3	FF	В		
31	4	FF	С		
30	5	FF	D		
4D	6	FF	Е		
34	7	FF	F		

% 2. STP instruction option

One of the following sets of data should be written to the option data address (10₁₆) of the EPROM you have ordered. Check @ in the appropriate box.

□ STP instruction enable

Address 10₁₆ 01₁₆ STP instruction disable 0016

Address 10₁₆

※ 3. Mark specification

Mark specification must be submitted using the correct form for the type of package being ordered fill out the appropriate 80P6N Mark Specification Form (for M37710M4BXXXFP) and attach to the Mask ROM Order Confirmation Form.

%4. Comments

Mask ROM number

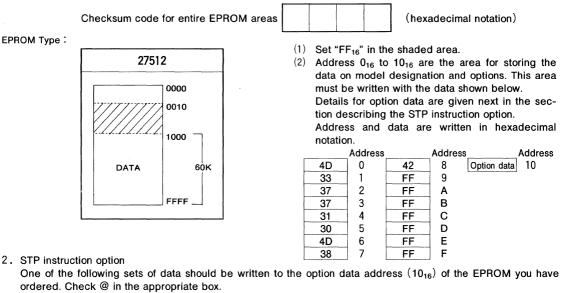
MELPS 7700 MASK ROM ORDERING METHOD

GZZ-SH07-82A < 38A0 >

MELPS 7700 MASK ROM ORDER CONFIRMATION FORM SINGLE-CHIP 16-BIT MICROCOMPUTER M37710M8BXXXFP **MITSUBISHI ELECTRIC**

	Date :	
Receipt	Section head signature	Supervisor signature

Note : Please fill in all items marked *


*	Customer	Company name		TEL ()	uance atures	Responsible officer	Supervisor
*		Date issued	Date :			lssu signa		

※1. Confirmation

Specify the name of the product being ordered and the type of EPROMs submitted.

Three sets of EPROMs are required for each pattern.

If at least two of the three sets of EPROMs submitted contain the identical data, we will produce masks based on this data. We shall assume the responsibility for errors only if the mask ROM data on the products we produce differ from this data. Thus, the customer must be especially careful in verifying the data contained in the EPROMs submitted.

※ 2. STP instruction option

STP instruction enable

STP instruction disable

Address 10₁₆ Address 10₁₆

01₁₆

00₁₆

※ 3. Mark specification

Mark specification must be submitted using the correct form for the type of package being ordered fill out the appropriate 80P6N Mark Specification Form (for M37710M8BXXXFP) and attach to the Mask ROM Order Confirmation Form.

※4. Comments

MITSUBISHI MICROCOMPUTERS MELPS 7700 MASK ROM ORDERING METHOD

GZZ-SH07-83A< 38A0>

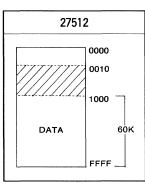
MELPS 7700 MASK ROM ORDER CONFIRMATION FORM SINGLE-CHIP 16-BIT MICROCOMPUTER M37710M8LXXXHP MITSUBISHI ELECTRIC

	Mask ROM number								
		Date :							
	¥	Section head signature	Supervisor signature						
	Receipt								
	Re								

Note : Please fill in all items marked **

		Company name		TEL ,	,	nce	Responsible officer	Supervisor
*	Customer	Date issued	Date :	(,	Issuar signatı		

%1. Confirmation

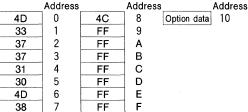

Specify the name of the product being ordered and the type of EPROMs submitted.

Three sets of EPROMs are required for each pattern.

If at least two of the three sets of EPROMs submitted contain the identical data, we will produce masks based on this data. We shall assume the responsibility for errors only if the mask ROM data on the products we produce differ from this data. Thus, the customer must be especially careful in verifying the data contained in the EPROMs submitted.

Checksum code for entire EPROM areas (hexadecimal notation)

EPROM Type :



(1) Set "FF₁₆" in the shaded area.

(2) Address 0₁₆ to 10₁₆ are the area for storing the data on model designation and options. This area must be written with the data shown below. Details for option data are given next in the sec-

tion describing the STP instruction option. Address and data are written in hexadecimal

notation.

※ 2. STP instruction option

One of the following sets of data should be written to the option data address (10_{16}) of the EPROM you have ordered. Check @ in the appropriate box.

STP instruction enable

□ STP instruction disable

Address 10₁₆ Address 10₁₆

01₁₆

0016

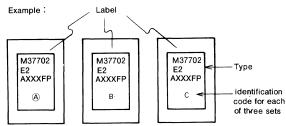
% 3. Mark specification

Mark specification must be submitted using the correct form for the type of package being ordered fill out the appropriate 80P6D Mark Specification Form (for M37710M8LXXXHP) and attach to the Mask ROM Order Confirmation Form.

%4. Comments

MELPS 7700 PROM ORDERING METHOD

PROM ORDERING METHOD


Mitsubishi Electric corp. accepts order to transfer EPROM supplied program data into the one time PROMs in singlechip 16-bit microcomputers. When placing such order, please submit the information described below.

- 1. Writing to PROM Order Confirmation Form1 set (There is a specific form to be used for each model.)
- 2. Data to be written into PROM built in EPROM (Please provide three sets containing the identical data.)
- 3. Mark Specification Form1 set

NOTES

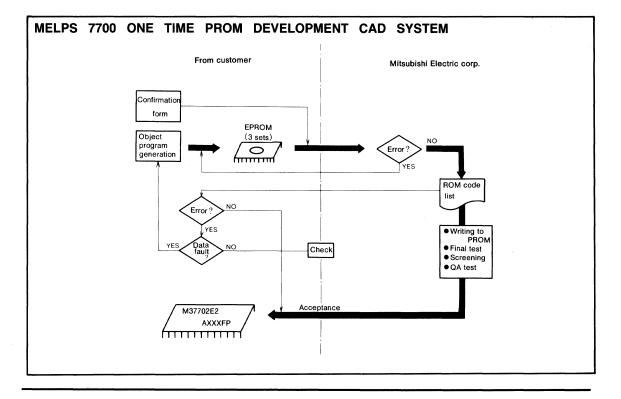
(1) Acceptable EPROM type Any EPROM made by Mitsubishi Electric corp. that is

listed in the Writing to PROM Order Confirmation Form may be used.

(2) EPROM window labeling

Please write the model name and the identification code (A, B, C) on the label for each of the three sets of data EPROMs provided.

- (3) Calculation and indication of check sum code Please calculate the total number of data in words in the EPROM, and write the number in 4-digit hexadecimal form in the check sum code field of the Writing to PROM Order Confirmation Form.
- (4) Marking specification method


The permissible marking specifications differ depending on the shape of package. Please fill out the Marking Specification Form and attach it to the Writing to PROM Order Confirmation Form.

OUTLINE OF ORDER PROCESSING

Mitsubishi Electric corp. will produce Writing to PROM if at least two of the three EPROM sets submitted contain identical data.

If we find error when the submitted EPROMs are compared, we will contact your representative. Thus, we assume responsibility only when we produce Writing to PROMs that contain data other than the data correctly provided by the customer.

The chart below shows the flow of one time PROM production.

MELPS 7700 PROM ORDERING METHOD

GZZ-SH06-38A < 28A0 >

MELPS 7700 WRITING TO PROM ORDER CONFIRMATION FORM SINGLE-CHIP 16-BIT MICROCOMPUTER M37710E4BXXXFP MITSUBISHI ELECTRIC

RO	M number	
	Date :	
Receipt	Section head signature	Supervisor signature

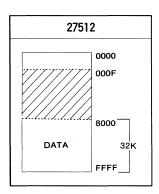
Note : Please fill in all items marked **

*	Customer	Company name		TEL (Jance atures	Responsible officer	Supervisor
		Date issued	Date :		lssi sign		

% 1. Confirmation

Specify the name of the product being ordered and the type of EPROMs submitted.

Three sets of EPROMs are required for each pattern.


If at least two of the three sets of EPROMs submitted contain the identical data, we will produce writing to PROM based on this data. We shall assume the responsibility for errors only if the written PROM data on the products we produce differ from this data. Thus, the customer must be especially careful in verifying the data contained in the EPROMs submitted.

Checksum code for entire EPROM areas

(hexadecimal notation)

EPROM Type :

(1) Set "FF₁₆" in the shaded area.

(2) Address 0₁₆ to 0F₁₆ are the area for storing the data on model designation. This area must be written with the data shown below.

Address and data are written in hexadecimal notation.

	Address		Address
4D	0	42	8
33	1	FF	9
37	2	FF	Α
37	3	FF	В
31	4	FF	С
30	5	FF	D
45	6	FF	Е
45 34] 7	FF	F

※ 2. Mark specification

Mark specification must be submitted using the correct form for the type of package being ordered fill out the appropriate 80P6N Mark Specification Form (for M37710E4BXXXFP) and attach to the Writing to PROM Order Confirmation Form.

% 3. Comments

MELPS 7700 PROM ORDERING METHOD

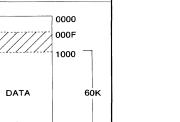
GZZ-SH07-80A<38A0>

MELPS 7700 WRITING TO PROM ORDER CONFIRMATION FORM SINGLE-CHIP 16-BIT MICROCOMPUTER M37710E8BXXXFP MITSUBISHI ELECTRIC

RUN	number	
	Date :	
pt	Section head signature	Supervisor signature
Receipt		
œ		

Note : Please fill in all items marked **

*	nar	Company	Company	TEL		~	Responsible officer	Supervisor
		name		()	atur		
		Date issued	Date :			lssı sign		


※1. Confirmation

Specify the name of the product being ordered and the type of EPROMs submitted.

Three sets of EPROMs are required for each pattern.

If at least two of the three sets of EPROMs submitted contain the identical data, we will produce writing to PROM based on this data. We shall assume the responsibility for errors only if the written PROM data on the products we produce differ from this data. Thus, the customer must be especially careful in verifying the data contained in the EPROMs submitted.

FFFF

data on model designation. This area must be written with the data shown below.

Address and data are written in hexadecimal notation.

	Address		Address
4D	0	42	8
33	1	FF	9
37	2 3	FF	A
37	3	FF	В
31	4	FF	С
30	5 6	FF	D
45	6	FF	E F
38] 7	FF	F

※ 2. Mark specification

Mark specification must be submitted using the correct form for the type of package being ordered fill out the appropriate 80P6N Mark Specification Form (for M37710E8BXXXFP) and attach to the Writing to PROM Order Confirmation Form.

% 3. Comments

MELPS 7700 PROM ORDERING METHOD

GZZ-SH07-81A < 38A0 >

MELPS 7700 WRITING TO PROM ORDER CONFIRMATION FORM SINGLE-CHIP 16-BIT MICROCOMPUTER M37710E8LXXXHP MITSUBISHI ELECTRIC

RO	V number	
	-	
	Date :	
ъ	Section head signature	Supervisor signature
Receipt		
å		

Note : Please fill in all items marked **

		Company	TEL		e s	Responsible officer	Supervisor	
*	Customer	name		()	uance ature		
		Date issued	Date :			Issu		

%1. Confirmation

Specify the name of the product being ordered and the type of EPROMs submitted.

Three sets of EPROMs are required for each pattern.

0000

000F

1000

FFFF

60K

DATA

If at least two of the three sets of EPROMs submitted contain the identical data, we will produce writing to PROM based on this data. We shall assume the responsibility for errors only if the written PROM data on the products we produce differ from this data. Thus, the customer must be especially careful in verifying the data contained in the EPROMs submitted.

EPROM Type : 27512 (hexadecimal notation) (hexadecimal notation) (hexadecimal notation) (hexadecimal notation) (hexadecimal notation) (hexadecimal notation) (hexadecimal notation) (hexadecimal notation)

(2) Address 0₁₆ to 0F₁₆ are the area for storing the data on model designation. This area must be written with the data shown below.

Address and data are written in hexadecimal notation.

Address		Address
0	4C	8
1	FF	9
2	FF	Α
3	FF	В
4	FF	С
5	FF	D
6	FF	E
7	FF] F
	0 1 2 3 4 5 6	0 4C 1 FF 2 FF 3 FF 4 FF 5 FF 6 FF

- ※ 2. Mark specification

Mark specification must be submitted using the correct form for the type of package being ordered fill out the appropriate 80P6D Mark Specification Form (for M37710E8LXXXHP) and attach to the Writing to PROM Order Confirmation Form.

% 3. Comments

MARK SPECIFICATION FORM

MARK SPECIFICATION FORM

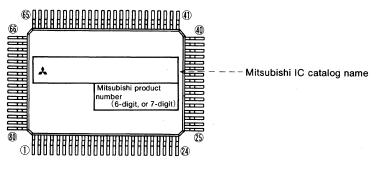
Mark specification format differs depending on the package type.

Fill out the Mark Specification Form for the package type being ordered, and submit the form with the Mask ROM Confirmation Form.

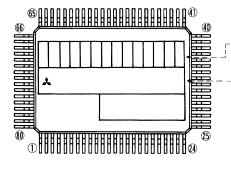
80P6N (80-PIN QFP) MARK SPECIFICATION FORM

Mitsubishi IC catalog name

Please choose one of the marking types below (A, B, C), and enter the Mitsubishi IC catalog name and the special mark (if needed).


A. Standard Mitsubishi Mark

C. Special Mark Required


66

TT

....

B. Customer's Parts Number + Mitsubishi IC Catalog Name

- Customer's Parts Number
- Note : The fonts and size of characters are standard Mitsubishi type.
- Mitsubishi IC catalog name
- Note1 : The mark field should be written right aligned.
 - 2 The fonts and size of characters are standard Mitsubishi type.
 - 3: Customer's parts number can be up to 14 alphanumeric characters for capital letters, hyphens, commas, periods and so on.
 - 4 : If the Mitsubishi logo ♣ is not required, check the box below.

★Mitsubishi logo is not required

- Note1 : If special mark is to be printed, indicate the desired layout of the mark in the left figure. The layout will be duplicated technically as close as possible. Mitsubishi product number (6-digit, or 7-digit) and Mask ROM number (3-digit) are always marked for sorting the products.
 - 2: If special character fonts (e.g., customer's trade mark logo) must be used in Special Mark, check the box below.
 - For the new special character fonts, a clean font original (ideally logo drawing) must be submitted.

Special character fonts required

80P6S (80-PIN QFP) MARK SPECIFICATION FORM 80P6D (80-PIN Fine-pitch QFP)

Mitsubishi IC catalog name

Please choose one of the marking types below (A, B, C), and enter the Mitsubishi IC catalog name and the special mark (if needed).

1997 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 -1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 -

CONTACT ADDRESSES FOR FURTHER INFORMATION

JAPAN =

Overseas Marketing Division Semiconductors Mitsubishi Electric Corporation 2-3, Marunouchi 2-chome Chiyoda-ku, Tokyo 100, Japan Telephone: (03) 3218-2863 Facsimile: (03) 3218-2852

Overseas Marketing Manager Kita-Itami Works 4-1, Mizuhara, Itami-shi, Hyogo-ken 664, Japan Telex: 526408 KMELCO J Telephone: (0727) 82-5131 Facsimile: (0727) 72-2329

HONG KONG =

Mitsubishi Electric (H.K.) Ltd. 41st fl., Manulife Tower, 169, Electric Road, North Point, Hong Kong Telex: 60800 MELCO HX Telephone: 510-9555 Facsimile: 510-9830, 510-9822, 510-9803

SINGAPORE =

MELCO SALES SINGAPORE PTE, LTD. 307 Alexandra Road # 05-01/02 Mitsubishi Electric Building Singapore 0315 Telex: RS 20845 MELCO Telephone: 4732308 Facsimile: 4738944

TAIWAN =

MELCO-TAIWAN CO., Ltd. 1st fl., Chung-Ling Bldg., 363, Sec. 2, Fu-Hsing S Road, Taipei R.O.C. Telephone: (02) 735-3030 Facsimile: (02) 735-6771 Telex: 25433 CHURYO "MELCO-TAIWAN"

U.S.A.

Mitsubishi Electronics America, Inc. 1070 East Arques Avenue Sunnyvale, CA 94086 Telephone: (408) 730-5900 Facsimile: (408) 730-4972

SOUTHWEST

Mitsubishi Electronics America, Inc. 5665 Plaza Drive Cypress, CA 90630-0007 Telephone: (714) 236-6270 Facsimile: (714) 236-6184

ROCKY MOUNTAIN

Mitsubishi Electronics America, Inc. 1113 Spruce Street, Suite 503 Boulder, CO 80302 Telephone: (303) 546-6300 Facsimile: (303) 546-6242

NORTHERN

Mitsubishi Electronics America, Inc. 9800 Bren Road East, Suite 243 Minnetonka, MN 55343-9671 Telephone: (612) 938-7779 Facsimile: (612) 938-5125

NORTH CENTRAL

Mitsubishi Electronics America, Inc. 800 N. Bierman Court Mt. Prospect, IL 60056 Telephone: (708) 298-9223 Facsimile: (708) 803-4224

SOUTH CENTRAL

Mitsubishi Electronics America, Inc. 9000 Royal Lane Irving, TX 75063 Telephone: (214) 929-0046 Facsimile: (214) 929-5363

NORTHEAST

Mitsubishi Electronics America, Inc. 200 Unicorn Park Drive Woburn, MA 01801 Telephone: (617) 937-4300 Facsimile: (617) 938-1075

MID-ATLANTIC

Mitsubishi Electronics America, Inc. 800 Cottontail Lane Somerset, NJ 08873 Telephone: (908) 469-8833 Facsimile: (908) 469-1909

SOUTH ATLANTIC

Mitsubishi Electronics America, Inc. 2500 Gateway Center Blvd., Suite 500 Cary, NC 27560 Telephone: (919) 460-0404 Facsimile: (919) 460-6205

SOUTHEAST

Mitsubishi Electronics America, Inc. Town Executive Center 6100 Glades Road #210 Boca Raton, FL 33433 Telephone: (407) 487-7747 Facsimile: (407) 487-2046

ATLANTA

Mitsubishi Electronics America, Inc. 6100 Atlantic Blvd. Norcross, GA 30071 Telephone: (404) 368-4852 Facsimile: (404) 662-5208

SAN DIEGO

Mitsubishi Electronics America, Inc. 16980 Via Tazon, Suite 220 San Diego, CA 92127 Telephone: (619) 451-9618 Facsimile: (619) 592-0242

NEW YORK

Mitsubishi Electronics America, Inc. 300 Westgate Business Cntr., Ste. 160 Fishkill, NY 12524 Telephone: (914) 896-0896 Facsimile: (914) 896-8639

PUERTO RICO

Mitsubishi Electronics America, Inc. American Airlines Building, Suite 500 1509 Lopez Landron Santurce, PR 00911 Telephone: (809) 728-5040 Facsimile: (809) 728-5180

CANADA

Mitsubishi Electric Sales Canada, Inc. 6185 Ordan Drive, Unit ♯110 Mississauga, Ontario, Canada L5T 2E1 Telephone: (416) 670-8711 Facsimile: (416) 670-8715

Mitsubishi Electronic Sales Canada, Inc. 340 March Road, Suite 502

Kanata, Ontario, Canada K2K 2E4 Telephone: (613) 591-3348 Facsimile: (613) 591-3948

GERMANY =

Mitsubishi Electric Europe GmbH Headquarters Gothaer Str. 8 40880 Ratingen, Germany Telephone: 2102-486-0 Facsimile: 2102-486-367

Mitsubishi Electric Europe GmbH Munich Office Fraunhoferstr. 85737 Ismaning, Germany Telephone: 89-96 07 94 30 Facsimile: 89-96 07 94 11

Mitsubishi Electric Europe GmbH Stuttgart Office Zettachring 12 70567 Stuttgart, Germany Telephone: 711-728 74 70 Facsimile: 711-72 47 21

Mitsubishi Electric Europe GmbH Frankfurt Office (Power Semiconductors) Promenadenstr. 16 64625 Bensheim, Germany Telephone: 6251-62097 Facsimile: 6251-62099

FRANCE =

Mitsubishi Electric France S. A. 55, Avenue de Colmar 92563 Rueil Malmaison Cedex, France Telephone: 1-47, 08, 78, 00 Facsimile: 1-47, 51, 36, 22

ITALY _____

Mitsubishi Electric Europe GmbH Milano Branch Office Centro Direzionale Colleoni Palazzo Perseo 2 20041 Agrate Brianza, Milano, Italy Telephone: 39-605 31 Facsimile: 39-605 32 12

SWEDEN =

Mitsubishi Electric Europe GmbH Hammarbacken 14 19127 Sollentuna, Sweden Telephone: 8-625 10 00 Facsimile: 8-625 10 33

SPAIN =

MELCO Iberica, S. A. Parque Empresarial San Fernando Av. de Castilla, 2-Edif, Italia, I. Pl. 28831 San Fernando de Henares Madrid, Spain Telephone: 1-677 56 53 Facsimile: 1-677 55 62

U.K. =

Mitsubishi Electric (U.K.) Ltd. Travellers Lane Haffield Herts AL10 8×B, U.K. Telephone: 707-27 61 00 Facsimile: 707-27 86 92

AUSTRALIA =

Milsubishi Electric Australia Pty. Ltd. 348 Victoria Road Rydalmere Nsw 2116, Australia Private Bag No.2 Rydalmere Nsw 2116 Telex: MESYDAA 126614 Telephone: (02) 684-7200 Facsimile: (02) 638-7072

MITSUBISHI DATA BOOK SINGLE-CHIP 16-BIT MICROCOMPUTERS Vol.2

Nov. First Edition 1993

Editioned by

Committee of editing of Mitsubishi Semiconductor Data Book

Published by

Mitsubishi Electric Corp., Semiconductor Division

This book, or parts thereof, may not be reproduced in any form without permission of Mitsubishi Electric Corporation.

© 1993 MITSUBISHI ELECTRIC CORPORATION Printed in Japan

MITSUBISHI SEMICONDUCTORS SINGLE-CHIP 16-BIT MICROCOMPUTERS Vol. 2

If these products or technologies fall under Japanese and/or COCOM strategic restrictions, diversion contrary thereto is prohibited.

H-DC215-A KI-9311 Printed in Japan (ROD) © 1993 MITSUBISHI ELECTRIC CORPORATION New publication, effective Nov. 1993. Specifications subject to change without notice.