

To order Intel literature write or call:

Intel Literature Sales
P.O. Box 58130

LITERATURE

Toll Free Number:
(800) 548-4725*

Santa Clara, CA 95052-8130

Use the order blank on the facing page or call our Toll Free Number listed above to order literature.
Remember to add your local sales tax and a 10% postage charge for U.S. and Canada customers, 20% for
customers outside the U.S. Prices are subject to change.

1988 HANDBOOKS

Product line handbooks contain data sheets, application notes, article reprints and other design information.

NAME

COMPLETE SET OF 8 HANDBOOKS
Save $50.00 off the retail price of $175.00

AUTOMOTIVE HANDBOOK
(Not included in handbook Set)

COMPONENTS QUALITY/RELIABILITY HANDBOOK
(Available in July)

EMBEDDED CONTROLLER HANDBOOK
(2 Volume Set)

MEMORY COMPONENTS HANDBOOK

MICROCOMMUNICATIONS HANDBOOK

MICROPROCESSOR AND PERIPHERAL HANDBOOK
(2 Volume Set)

MILITARY HANDBOOK
(Not included in handbook Set)

OEM BOARDS AND SYSTEMS HANDBOOK

PROGRAMMABLE LOGIC HANDBOOK

SYSTEMS QUALITY /RELIABILITY HANDBOOK

PRODUCT GUIDE
Overview of Intel's complete product lines

DEVELOPMENT TOOLS CATALOG

INTEL PACKAGING OUTLINES AND DIMENSIONS
Packaging types, number ofleads, etc.

LITERATURE PRICE LIST
List of Intel Literature

*Good in the U.S. and Canada

ORDER NUMBER

231003

231792

210997

210918

210830

231658

230843

210461

280407

296083

231762

210846

280199

231369

210620

**PRICE IN
U.S. DOLLARS

$125.00

$20.00

$20.00

$23.00

$18.00

$22.00

$25.00

$18.00

$18.00

$18.00

$20.00

N/C

N/C

N/C

N/C

**These prices are for the U.S. and Canada only. In Europe and other international locations, please contact
your local Intel Sales Office or Distributor for literature prices.

About Our Cover:

Programmable logic devices are a seeming contradiction: standard devices that offer custom solutions.
Individual implementations are almost infinite in their variability, like the apparently simple game of chess.

intef
LITERATURE SALES ORDER FORM

NAME:-------------------------------
COMPANY: ___________________________ ~

ADDRESS: ____________________________ _

CITY:------------------ STATE: ____ ZIP:-----

COUNTRY:--------------------------~

PHONE NO.:(,___---!.-----------------------

ORDER NO.

Must add appropriate postage to subtotal
(10% U.S. and Canada, 20% all other)

TITLE QTY. PRICE TOTAL

__ x ___ = __ _

__ x ___ = __ _

__ x ___ = __ _

__ x ___ = __ _

__ x ___ = __ _

__ x ___ = __ _

__ x __ _

__ x ___ = __ _

__ x ___ = __ _

__ x ___ = __ _

Subtotal ___ _

Must Add Your
Local Sales Tax ___ _

Postage ___ _

Total ___ _

Pay by Visa, MasterCard, American Express, Check, Money Order, or company purchase order payable
to Intel Literature Sales. Allow 2-4 weeks for delivery.
0 Visa 0 MasterCard 0 American Express Expiration Date -----
Account No. _____________________________ _

Signature: _____________________________ _

Mail To: Intel Literature Sales
P.O. Box 58130
Santa Clara, CA
95052-8130

International Customers outside the U.S. and Canada
should contact their local Intel Sales Office or Distributor
listed in the back of most Intel literature.
European Literature Order Form in back of book.

Call Toll Free: (800) 548-4725 for phone orders
Prices good until 12/31 /88.

Source HB

Intel Llteratu!.:.J

~ur.~ate------~
" 1"$';rv1ce

Get Intel's Latest Technical
Literature, Automatically!

Exclusive, Intel Literature Update Service

Take advantage of Intel's year-long,- low cost Literature Update Service and you will receive
your first package of information followed by automatic quarterly updates on all the latest
product and service news from Intel.

Choose one or all five product categories update
Each product category update listed below covers in depth, all the latest Handbooks,
Data Sheets, Application Notes, Reliability Reports, Errata Reports, Article Reprints,
Promotional Offers, Brochures, Benchmark Reports, Technical Papers and much more ...

,.. 1. Microprocessors

Product line handbooks on Microprocessors, Embedded Controllers and Component
Quality/Reliability, Plus, the Product Guide, Literature Guide, Packaging Information
and 3 quarterly updates. $70.00 Order Number: 555110

,... 2. Peripherals---------------------­

Product line handbooks on Peripherals, Microcommunications, Embedded Controllers,
and Component Quality/Reliability, Plus, the Product Guide, Literature Guide,
Packaging Information and 3 quarterly updates. $50.00 Order Number: 555111

r-3.Memories-----------------------..
Product line handbooks on Memory Components, Programmable Logic and
Components Quality/Reliability, Plus, the Product Guide, Literature Guide, Packaging
Information and 3 quarterly updates.- $50.00 Order Number: 555112

,... 4. OEM Boards and Syatems----------------­

Product line handbooks on OEM Boards & Systems, SYstems Quality/Reliability, Plus,
the Product Guide, Literature Guide, Packaging Information and. 3 quarterly updates.

$50.00 Order Number: 555113

,-5.Software-------------------------..
Product line handbooks on Systems Quality/Reliability; Development Tools Catalog,
Plus, the Product Guide, Literature Guide, Packaging Information and 3 quarterly
updates. $35.00 Order Number: 555114

To subscribe, rush the Literature Order Form in this handbook,
or call today, toll free (800) 548-4725. *

Subscribe by March 31, 1988 and receive a valuable free gift.

The charge for this service covers our printing, postage and handling cost only.

Please note: Product manuals are not included in this offer.

Customers outside the U.S. and Canada should order directly from the U.S. inter
Offer expires 12/31188.

'Good in the U.S. and Canada.

CUSTOMER SUPPORT
CUSTOMER SUPPORT

Customer Support is Intel's complete support service that provides Intel customers with hardware support, software
support, customer training, and consulting services. For more information contact your local sales offices.

After a customer purchases any system hardware or software product, service and support become major factors in
determining whether that product will continue to meet a customer's expectations. Such support requires an interna­
tional support organll:ation and a breadth of programs to meet a variety of Customer needs. As you might expect,
Intel's customer support is quite extensive. It includes factory repair services and worldwide field service offices
providing hardware repair services, software support services, customer training classes, and consulting services.

HARDWARE SUPPORT SERVICES

Intel is committed to providing an international service support package through a wide variety of service offerings
available from Intel Hardware Support.

SOFI'WARE SUPPORT SERVICES

Intel's software support consists of two levels of contracts. Standard support includes TIPS (Technical Information
Phone Service), updates and subscription service (product-specific troubleshooting guides and COMMENTS Maga­
zine). Basic support includes updates and the subscription service. Contracts are sold in environments which repre­
sent product groupings (i.e., iRMX environment).

CONSULTING SERVICES

Intel provides field systems engineering services for any phase of your development or support effort. You can use
our systems engineers in a variety of ways ranging from assistance in using a new product, developing an application,
personalizing training, and customizing or tailoring an Intel product to providing technical and management con­
sulting. Systems Engineers are well versed in technical areas such as microcommunications, real-time applications,
embedded microcontrollers, and network services. You know your application needs; we know our products. Work­
ing together we can help you get a successful product to market in the least possible time.

CUSTOMER TRAINING

Intel offers a wide range of instructional programs covering various aspects of system design and implementation. In
just three to ten days a limited number of individuals learn more in a single workshop than in weeks of self-study.
For optimum convenience, workshops are scheduled regularly at Training Centers worldwide or we can take our
workshops to you for on-site instruction. Covering a wide variety of topics, Intel's major course categories include:
architecture and assembly language, programming and operating systems, bitbus and LAN applications.

intJ
Intel the Microcomputer Company:

When Intel invented the microprocessor in 1971, it created the era of
microcomputers .. Whether used as microcontrollers in automobiles or microwave

ovens, or as personal computers or supercomputers, Intel's microcomputers
have always offered leading-edge technology. In the second half of the 1980s, Intel

architectures have held at least a 75% market share of microprocessors at 16 bits and above.
Intel continues to strive for the highest standards in memory, microcomputer components,

modules, and systems to give its customers the best possible competitive advantages.

PROGRAMMABLE LOGIC
HANDBOOK

1988

Intel Corj>oration makes no warranty for the Us& of its prOducts and assumes no responsibllity for any errors
which may appear in this document nor does it make a commitment to update the information contained
herein.

Intel retains the right to make changes to these specifications at any time, without notice.

Contact your local sales office to obtain the latest specifications before placing your order.

The following are trademarks of Intel Corporation and may only be used to identify Intel Products:

Above, BITBUS, COMMputer, CREDIT, Data Pipeline, FASTPATH,
GENIUS, i, t, ICE, iCEL, ICS, iDBP, iDIS, 121CE, ILBX, im, IMDOX, iMMX,
Inboard, lnsite, Intel, infel, intelBOS, Intel Certified, lntelevision,
infeligent Identifier, infeligent Programming, lntellec, lntellink, IOSP,
iPOS, iPSC, iRMK, iRMX, iSBC, iSBX, iSOM, iSXM, KEPROM, Library
Manager, MAP-NET, MCS, Megachassis, MICROMAINFRAME,
MULTIBUS, MULTICHANNEL, MUL TIMODULE, MultiSERVER, ONCE,
OpenNET, OTP, PC-BUBBLE, Plug-A-Bubble, PROMPT, Promware,
QUEST, QueX, Quick-Pulse Programming, Ripplemode, RMX/80, RUPI,
Seamless, SLO, SugarCube, SupportNET, UPI, and VLSiCEL, and the
combination of ICE, iCS, iRMX, iSBC, iSBX, iSXM, MCS, or UPI and a
numerical suffix, 4-SITE.

MOS is an ordering code only and is not used as a product name or trademark. MOS• is a registered
trademark of Mohawk Data Sciences Corporation.

*MULTIBUS is a patented Intel bus.

Additional copies of this manual or other Intel literature may be obtained from:

Intel Corporation
Literature Distribution
Mail Stop SC6-59
3065 Bowers Avenue
Santa Clara, CA 95051

®INTEL CORPORATION 1987

Table of Contents

Alphanumeric Index . vii

CHAPTER 1
Overview

Overview. 1-1

CHAPTER 2
EPLDs-Erasable Programmable Logic Devices

DATA SHEETS
Data Sheet Specifications
5C031, 300-Gate CHMOS H-Series Erasable Programmable Logic Device

(H-EPLD)
5C032, 300-Gate CHMOS H-Series Erasable Programmable Logic Device

(H-EPLD)
5C060/5C090, 600-/900-Gate CHMOS H-Series Erasable Programmable Logic

Device (H-EPLD) .. ·
5C121, 1200-Gate CH MOS H-Series Erasable Programmable Logic Device
5C180, 1800-Gate CH MOS Erasable Programmable Logic Device
5AC312, Erasable Programmable Logic Device

APPLICATION BRIEFS
AB-8 Implementing Cascaded Logic in the 5C121
AB-9 5C121 As a Three and One-Half Digit Display Driver
AB-10 Square Pegs in Round Holes-A Fitting Tutorial for the 5C121
AB-11 16-Bit Binary Counter Implementation Using the 5C060 EPLD
AB-12 Designing a Mailbox Memory for Two 5C031 s
AB-16 Atypical Latch/Register Construction in EPLDs
AB-18 TTL Macro Library Listing for EPLD Designs

APPLICATION NOTES
AP-271 Applying the 5C121 Architecture
AP-272 The 5C060 Unification of a CHMOS System
AP-276 Implementing a CMOS Bus Arbiter/Controller in the 5C060 EPLD
AP-304 Simulation of EPLD Timing
AP-307 EPLDs, PLAs, and TTL-Comparing the "Hidden Costs" in Production

TECHNICAL PAPERS
Techniques for Modular EPLD Designs

ARTICLE REPRINTS
AR-450 Crosspoint Switch: A PLO Approach
AR-451 A Programmable Logic Mailbox for 80C31 Microcontrollers
AR-454 Regain Lost 1/0 Ports with Erasable PLDs

CHAPTER3
Advanced Architecture EPLDs

DATA SHEETS
5CBIC, Programmable BUS Interface Controller

APPLICATION NOTES
AP-305 Dual-Port Memory Control Using the 5CBIC
AP-308 The Multiplexed BUS Interface with the 5CBIC
AP-309 DRAM Address Interface with the 5CBIC

ARTICLE REPRINTS
AR-453 Programmable Logic Shrink Bus Interface Designs

CHAPTER4
Development Support Tools

DATA SHEETS
iPLDS II, The Intel Programmable Logic Development System Version II

v

2-1

2-2

2-14

2-27
2-45
2-61
2-91

2-108
2-113
2-118
2-130
2-140
2-154
2-161

2-165
2-177
2-188
2-198
2-212

2-234

2-244
2-248
2-251

3-1

3-19
3-26
3-34.

3-39

4-1

Table of Contents (Continued)

iUP-PC, Intel Universal Programmer for the Personal Computer 4-12
PRODUCT BRIEFS

SCHEMA 11-PLD . 4-18
Macro Librarian . 4-19

UTILITIES
Functional Simulator Utility . 4-20
PAL2ADF Utility. 4-21
JED2HEX Conversion Utility . 4-24

APPLICATION NOTES
AP-279 Implementing an EPLD Design Using Intel's Programmable Logic

Dt:Nelopment System . 4-25
AP-311 Using Macros in EPLD Designs . 4-79
AP-312 Creating Macros for EPLD Designs . 4-91

TECHNICAL PAPERS
Tools for Optimizing PLO Designs . 4-101

CHAPTERS
Appendix

Second Source Cross Reference . 5-1
PLA to EPLD Replacement . 5-2
Ordering Information . 5-3
Device Feature Comparison . 5-4
EPLD Customer Support . 5-5
Compatible Computers for iPLDS II . 5-6

vi

Alphanumeric Index

5AC312, Erasable Programmable Logic Device ;............................... 2-91
5CB~(?. Programmable BUS Interface Controller . • 3-1
5C031, 300-Gate CHMOS H-Series Erasable Programmable Logic Device (H-EPLD) 2-2
5C032, 30Q-Gate CHMOS H-Series Erasable Programmable Logic Device (H-EPLD) ' 2-14
5C060/5C090, 600-/900-Gate CHMOS H-Series Erasable Programmable Logic Device

(H-EPLD) • • . • • . 2-27
5C121, 1200-Gate CH MOS H-Series Erasable Programmable Logic Device 2-45
5C180, 1800-Gate CH MOS Erasable Programmable Logic Device • . . 2-61
iPLDS II, The Intel Programmable Logic Development System Version II 4-1
iUP-PC, Intel Universal Programmer for the Personal Computer . 4-12

vii

Overview 1

',/,

OVERVIEW

INTRODUCTION

In today's increasingly competitive marketplace, sys­
tem designers need to squeeze out every little edge they
can get from their designs. This has led to a trend
towards better performance, smaller system sizes, lower
power requirements and greater system reliability with
a strong emphasis on preventing easy duplication of the
s)'stem design. This trend provided the impetus to the
system designers to move away from standard SSI and
MSI logic components (54174 & 4000 series Bipolar
and CMOS families) towards a growing class of IC de­
vices variously called 'ASIC' (application specific IC),
'USIC' (user specific IC) or, as referred to in this docu­
ment, user defined logic.

User defined logic circuits allow system designers, for
the first time, to tailor the actual silicon building blocks
used in their systems to their individual system needs
and requirements. Such customization provides the
needed performance, reliability and compactness as
well as design security. Cost per gate of logic imple­
mented is also greatly reduced when user defined logic
solutions are chosen over standard components.

User defined logic has therefore emerged as the fastest
growing segment of the semiconductor industry and
has presented its users, the system designers, with a
wide range of implementation alternatives namely, pro­
grammable logic, gate arrays, standard cell and full
custom design. The tradeoffs between these alternatives
involves time7to-market, one-time engineering charges,
expected unit volume, ease of use of design tools and
familiarity with· the design methodology.

This document discusses the reasons for the trend to
user defined logic devices, briefly describes some of the
user defined logic implementation alternatives and cov­
ers details on programmable logic devices, the only al­
ternative that is completely user implementable. Tools
used to design with programmable logic· are also dis­
cussed here.

Details on Intel's programmable logic product line, in­
cluding device terminology and nomenclature, architec­
tural features and development tool features are also
described in this document.

WHY USER DEFINED LOGIC?

System designers prefer user customized ICs for the
following reasons:

1-1

a. SMALLER SYSTEM SIZES: Customized compo­
nents allow for reducing chip count and saving board
space, resulting in smaller system physical dimensions.

b. LOWER SYSTEM COSTS: When custom LSI or
VLSI components are used instead of standard SSI and
MSI logic elements, there is a considerable saving in
component cost per system, assembly and manufactur­
ing cost, printed circuit board area and board costs and
inventory costs.

c. HIGHER PERFORMANCE: Reduced number of
ICs contributes to faster system spei:ds as well as lower
power consumption.

d. HIGHER RELIABILITY: Since probability of fail­
ure is directly related to the number of ICs in the sys­
tem, a system composed of customized LSI & VLSI
chips is statistically much more reliable than the identi­
cal system made up of SSI/MSI devices.

e. mi;sIGN SECURITY: Systems designed with stan­
dard components can be replicated relatively easily
whereas systems that contain user customized ICs can­
not be copied because "reverse engineering" of the cus­
tomized components is extremely difficult. Thus, use of
customized ICs allows for the protection of proprietary
designs.

f. INCREASED FLEXIBILITY: Customized compo­
nents allow for the tailoring of systems to the end user's
specific needs relatively easily. This also allows for up­
gradability and obsolescence protection.

USER DEFINED IC­
IMPLEMENTATION ALTERNATIVES

Currently, the choices available to the system designer
for customization of ICs (see Figure 1) are as follows:

· (1) user programmable !Cs-programmable logic de-
vices

(2) mask programmable ICs--gate arrays

(3) standard cell based ICs

(4) full custom ICs

Alternatives (1) & (2) are usually called 'Semicustom'
because in these methods only a few (less than three) of
the mask layers involved in the manufacture of the IC,
are customized to the users' specifications. The later
two alternatives (3) & (4), involve customization of all
mask layers required to manufacture the ICs to the us­
ers' specifications and are therefore called 'Custom'.

intef OVERVIEW

I

USER DEFINED LOGIC
I

I
SEMICUSTOM CUSTOM

I
PROGRAMMABLE

LOGIC

I
I

GATE
ARRAYS

I
STANDARD

CELL

I
I

FULL
CUSTOM

296032-1

Figure 1. User Defined Logic
Implementation Choices

PROGRAMMABLE LOGIC

Most user Programmable Logic Devices (PLD) are in­
ternally structured as variations of the PLA (program­
mable logic array) architecture, that is composed of an
array of 'AND' gates connected to an array of 'OR'
gates (see Figure 2). Programmable logic devices make
use of the fact that any logic equation can be converted
to an equivalent 'Sum-of-Products' form and can thus
be implemented in the 'AND' and 'OR' architecture.
This basic PLA structure has been augmented in most
PLDs with input and output blocks containing regis­
ters, latches and feedback options, that let the user im­
plement sequential logic functions in addition to combi­
national logic.

The number and locations of the programmable con­
nections between the 'AND' and 'OR' matrices as well
as the input and output blocks are predetermined by
the archit«-ture of the PLD. The user, depending on

his logic requirements, determines which of these con­
nections he would like to remain open and which he
would like to close, through the programming of the
PLD. Programmability of these connections is achieved
using various memory technologies such as fuses,
EPROM cells, EEPROM cells or Static RAM cells (see
Figure 3).

User programmability allows for instant customization,
very similar to user programmable memories such as
PROMs or EPROMs. The user can purchase a PLD
off-the-shelf, use a development system running on a
personal computer and, in a matter of a few hours, have
customized silicon in his hands. Figure 4 compares
user-defmed logic alternatives.

memory cell
used as logic control element

296032-3

Figure 3. Programmable Connections

FEEDBACK (programmable)

INPUT---'"'
PIN--~,.,

INPUT BLOCK
(contains latches and other

programmable Input options)

PROGRAMMABLE
'AND' &: 'OR' ARRAY

OUTPUT BLOCK
(containing output

controls, registers, etc.)

Figure 2. General Architecture of a PLO

1-2

OUTPUT
PIN

296032-2

intJ OVERVIEW

I

I

USER DEFINED LOGIC
I

SEMICUSTOM
I

I I

I
CUSTOM

I
I

PROGRAMMABLE
LOGIC

GATE
ARRAYS

STANDARD
CELL

FULL
CUSTOM

DESIGN COMPLEXITY
DESIGN TIME at COST
LOWEST SYSTEM COST

FASTEST TIME TO MARKET
EASIEST DESIGN CHANGE IMPLEMENTATION.

296032-5

Figure 4. User Defined Logic
Alternatives Compared

LIMITATIONS OF BIPOLAR FUSE
TECHNOLOGY FOR PROGRAMMABLE
LOGIC DEVICES

Until 1985, all PLDs were built using Bipolar fuse tech­
nology. The bipolar fuse based devices, although offer­
ing the users the benefits of quick time to market and
low development costs, had several inher~t limita­
tions.

a. HIGH POWER CONSUMPTION: Bipolar pro­
cesses by nature are power hungry and as a conse­
quence also make for very hot systems, often requiring
cooling aids such as heat sinks and fans. They also can­
not operate at lower voltages (2-3V) and have a lower
level of noise immunity than MOS devices.

b. LOWER INTEGRATION: A fuse takes up a large
amount of silicon area; this fact in conjunction with the
large power requirements makes for smaller levels of
integration.

c. ONE-TIME PROGRAMMABILITY: Bipolar fuses
can only be blown once and cannot be reprogrammed.
This does not allow for easy prototyping and could re­
sult in significant losses when preprogrammed parts are
inventoried and design changes occur.

d. TESTABILITY: Since fuses can only be blown once,
bipolar PLDs. can only be destructively tested. Thus,
testing is usually done by sampling or through addi-

1-3

tional testing elements incorporated in the chips, which
can be blown to examine electrical characteristics.
However, such testing methods never allow for 100%
testability of all parts shipped. Thus, most users of bi­
polar programmable logic devices resort to extensive
post-programming testing, specific to their applica­
tions.

ERASABLE PROGRAMMABLE LOGIC
DEVICES

Erasable programmable logic devices (EPLD) result
from the matching of CHMOS EPROM technology
with the architectures of programmable logic devices.
EPLDs use EPROM cells as logic control elements and
therefore, when housed in windowed ceramic packages,
can be erased with UV light and reprogrammed. Figure
5 shows the architecture of Intel EPLDs.

Other than the obvious benefit of reprogrammability,
EPLDs offer sevetal very significant benefits over bipo­
lar PLDs. These are:

1. LOW POWER CONSUMPTION: Due to the
CMOS technology, these products consume an order of
magnitude less power than the equivalent bipolar devic­
es. This allows for the design of complete CMOS sys­
tems, that can operate at lower voltages (less than 5V).
Also, this makes for cooler systems that do not require
cooling systems like fans.

2. GREATER LOGIC DENSITY: EPROM cells are
an order of magnitude smaller than the smallest fuses.
This means that the same function can be accommodat­
ed in significantly smaller die area, or that greater
amounts of logic can now be incorporated on a single
chip. Thus higher integration programmable logic de­
vices result with the use of EPROM elements.

3. TESTABILITY: Since the EPROM cells are eras­
able, the entire EPROM array of the EPLD can be
100% factory tested. Thus, before the part is shipped to
the customers, it can be completely tested by the pro­
gramming and erasure of all the EPROM logic control
bits. This testing is therefore independent of any appli­
cation, in contrast to the bipolar PLDs that need appli­
cation specific testing.

4. ARCHITECTURAL ENHANCEMENTS: The in­
herent testability of the EPROM elements allows for

intef OVERVIEW

significant architectural improvements over bipolar
PLDs. New features, such as buried registers, program­
mable registers, programmable clock control, etc., can
now be incorporated because of this testability. These
new features allow for greatly increased utilization of
the EPLDs and use of these devices in newer applica-·
tions.

5. DESIGN SECURITY: EPLDs are provided with a
'security bit,' which when programmed does not allow
anyone to read the programmed pattern. The logic pro­
grammed in an EPLD cannot be seen even if the die is
examined (unlike bipolar PLDs-a blown fuse is clearly
visible) as the stored charges are captured on a buried
layer of polysilicon.

INPUT
PIN

INPUT BLOCK
(contains latches and other

programmable Input options)

F"EEDBACK (programmable)

PROGRAMMABLE
'AND' ARRAY

F"IXED
'OR'

ARRAY

OUTPUT BLOCK
(containing output

controls, registers, etc.)

OUTPUT
PIN

296032-4

Figure 5. Architecture of Intel EPLDs

USER

IIl

~
User
Speclflc
Resource or
Device Request

[fil

Device
Utlllzatlon
Report

DEVELOPMENT
SOFlWARE

~
Data

~
CONVERSION TO
BOOLEAN

Entry EQUATIONS

rn
LOGIC

~ MINIMIZATION TO
SUM-or-PRODUCTS
F"ORMAT

[fil
RESOURCE
MATCHING OPTIMAL
RESOURCE
ALLOCATION

[1J

PROGRAMMING JED EC
PATTERN
GENERATION Data

Fife

Figure 6. The PLD Design Process

1-4

_....
-,.

PROGRAMMING
HARDWARE

296032'-6

inter OVERVIEW

The steps in a generalized design process of program­
mable logic is shown in Figure 6 and described in the
following paragraphs.

STEP 1: The user decides on the logic he wants imple­
mented in the PLD and enters the design into the PC or
workstation. This Design Entry may be done by the
following methods: (i)SCHEMATIC CAPTURE-A
'Mouse' or some other graphics input device is used to
input schematics of the logic, (ii)NET LIST ENTRY­
If the user has a hand drawn schematic he can enter the
design into the computer by describing the symbols and
interconnections in words using a standardized format
called a net list (without using a graphics input device),
(iii)STATE EQUATION/DIAGRAM ENTRY-En­
try of a sequential design involving states and tran­
sitions between states. In the state diagram method cir­
cles represent states and the arrows interconnecting
them represent the transitions. Equations or a state ta­
ble can also be used to define a state machine, and
(iv)BOOLEAN EQUATIONS-this is the most com­
mon design entry method. The logic is described in
boolean algebraic equations.

STEP 2: The software converts all design entry data
into boolean equations.

STEP 3: The boolean equations entered are converted
to the sum of products format after logic reduction
(minimization of the logic through heuristic algo­
rithms).

STEP 4: The user has the ability to choose the PLD he
would like the design implemented on. He can enter
device choice and/or he can also enter in specific
choices on the device as regards pinout he would like
etc ...

STEP 5: The software optimizes the logic equations to
fit into the device using the minimum amount of re­
sources (resources are input pins, output pins, registers
and product terms and macrocells). This step is where
the user requirements as regards required pins are tak­
en into account. The user requests are viewed as con­
straints during the optimization process.

STEP 6: The software, at the end of the resource opti­
mization/allocation, produces a report detailing the re­
sources used up in fitting the design on the PLD. This
report allows the user to incrementally stuff in logic by
going back to Step 1 from this stage. Also, if the design
overflowed the PLD, i.e., did not fit in the user chosen
device, the software lists out the resources needed to
complete the fit. The requirements such as four more
inputs, one register more and one more output (are
needed to complete the design) gives the user data in
choosing a bigger PLO or in partitioning the intlal de­
sign to fit into two devices.

STEP 7: The next step is to generate the appropriate
programming pattern for the PLD. This is a standard

1-5

"JEDEC" format interface and allows the output of the
design software to be compatible with any piece of
PROM programming hardware.

STEP 8: PROM programmer is used to program the
pattern stored in the JEDEC file onto the PLD. Also,
at this stage fuse programmed PLDs (bipolar) are func­
tionally tested using test vectors included in the JE­
DEC file information.

CHMOS TECHNOLOGY IN EPLDs

EPLDs are manufactured with Intel's proprietary
CHMOS (Complementary High Performance MOS)
technology. The backbone of the process is the integra­
tion of both a P and an N channel MOS transistor on
the same substrate. In addition, EPLD's programmable
architecture makes use of Intel's proven EPROM cell
for programmable array interconnections as well as
macrocell configuration bits. These cells are pro­
grammed electrically and erased with ultraviolet light.
For details on Intel's CHMOS technology and
EPROM cells technology, refer to the Components
Quality/Reliability Handbook, Order Number 210997.

CHMOS DESIGN GUIDELINES

Designing with Intel EPLDs is relatively straightfor­
ward if the following guidelines are observed:

• Minimize the occurrence of ESD (electro-static dis­
charge) when storing or handling EPLDs.

• Observe good design rules in printed circuit board
layout.

• Provide adequate decoupling capacitance at both
the device and the board level.

• Connect all unused inputs to V cc or GND
(CHMOS inputs should not be left floating).

Electrostatic Discharge

The two most common sources of electrostatic dis­
charge are the human body and a charged environment.

A charged human body that touches a device lead
discharges electricity into the device. Electrostatic dis­
charge from people handling devices has long been rec­
ognized by manufacturers and users of all MOS prod­
ucts. Human body static electricity can be controlled by
using ground straps and anti-static spray on carpeted
floors. CHMOS devices should also be stored and car­
ried in conductive tubes or anti-static foam to minimize
exposure to ESD from people.

Discharge also occurs when an integrated circuit is
charged to one potential and then contacts a conductor
at another potential. This type of ESD can be reduced

intef OVERVIEW

by grounding all work surfaces, grounding all handling
equipment, removing static generators such as paper
from the work area, and erasing EPLDs in metal tubes,
metal trays, or conductive foam.

PCB Layout

The best PCB performance is obtained when close at­
tention is payed to V cc. GND, and signal traces. V cc
and GND should be gridded to minimize inductive
reactance and to approximate a trace layer. Clocks
should be layed out to minimize crosstalk. Ensure ade­
quate power supply and ground pins on the board con­
nector.

Decoupling

Decouple each EPLD with a ceramic capacitor in the
range of 0.01 to 0.2 µ.F, depending on board frequency
and current consumption. For most applications, a
0.1 µ.F capacitor will suffice. The following equation
produces the exact value:

where

c = alee
aV/aT

C = capacitor value

alee = maximum switched current

av = switching l~vel

a T = switching time

For boards that contain mixed logic (EPLDs and
TTL), observe both EPLD and TTL decoupling prac­
tices.

Unused Inputs

To minimize noise receptivity and power consumption,
all unused inputs to EPLDs should be connected to
V cc or GND. By default, iPLS II software assigns un­
used inputs to GND. These pins, shown on the pinout
representation of the iPLS II report file, should be con­
nected to ground on the PCB. Pins listed as RE­
SERVED on the report file must be left floating. Pins
marked N.C. have no internal device connections and
can also be left floating.

BOOLEAN MINIMIZATION
TECHNIQUES FOR PLA
ARCHITECTURES

Minimization plays an important role in logic design.
Methods for minimization can be grouped into two
classes. Class 1 includes manual methods for minimiza­
tion, such as Boolean reduction or Kamaugh mapping.
Class 2 is computer-assisted minimization.

1-6

Tabular methods like Kamaugh maps are efficient up
to a certain point. Past that point, however, computer­
assisted minimization plays a crucial part in efficient
design. Even at the computer-assisted stage, the choice
of minimizer software has an impact on time and the
confidence level of the reduced equation (i.e., is it in the
smallest possible form).

iPLS II software includes a minimizer that uses the
ESPRESSO algorithms. ESPRESSO was developed by
U.C. Berkeley during the summers of 1981 and 1982 in
an effort to study the various strategies used by the
MINI logic minimizer developed by IBM, [HON 74]
and PRESTO developed by D. Brown [BRO 81].
ESPRESSO uses many of the core principles in MINI
and PRESTO while improving on the speed and effi­
ciency of their algorithms.

The primary advantage of the ESPRESSO minimizer
becomes apparent when designing large finite state ma­
chines or complex, product-term intensive logic de­
signs. In these cases, ESPRESSO arrives at the mini­
mize solution sooner, and frequently reduces the logic
to a smaller number of product terms. In certain cases
where other CAD packages such as ABEL™ (PRES­
TO) or CUPL ™ minimize equations to greater than 8
product terms, iPLS II further reduces these equations
to allow the design to fit into devices supporting up to 8
product terms.

For more information on ESPRESSO, refer to Logic
Minimization Algorithms for VLSI Synthesis, Brayton,
Hachtel, McMullen, and Sangiovanni-Vincentelli, Klu­
wer Academic Publishers.

References
[BRO 81] D.W. Brown, "A State-Machine Synthesiz­

er-SMS", Proc. 18th Design Automation
Conference, pp. 301-304. Nashville, June
1981.

[HON 74] S. J. Hong, R. G. Cain and D. L. Ostapko,
"MINI: A heuristic approach to logic min­
imization." IBM Journal of Research and
Development, Vol. 18, pp. 443-458, Sep­
tember 1974.

ABEL™ is a trademark of Data 1/0 Corporation

CUPL™ is a trademark of Personal CAD Systems, Inc.

LOGIC REFRESHER COURSE

Minimization of EPLD logic equations is normally per­
formed by sophisticated algorithms that eliminate the
need for tedious manual reductions. The sections pro­
vided here contain logic reference tables for cases where
manual reduction techniques may be desirable.

intef OVERVIEW

Boolean Algebra

The Sum-of-Product architecture used in EPLDs
makes Boolean algebra ideal for design analysis. The
following tables summarize standard Boolean func­
tions.

Properties

A*B
A+8

= B *A
=8+A

Commutative Property

A • (8 • C) = (A • 8) • C Associative Property
A + (B + C) = (A + 8) + C

A • (8 + C) = A • 8 + A • C Distributive Property
A + 8 • C = (A + 8) • (A + C)

Postulates

0. 0 = 0 O+O=O 0 = 1
0 • 1 = 0 0 + 1 = 0 1=0
1 • 1 = 1 1 + 1 = 1

Theorems

A• 0 = 0 A+O=A A=A
A• 1 =A A+1=1
A *A= A A+A=A
A •A.= 0 A+A=1

DeMorgan's Theorems

(A+ B + C + D)
(A• B • C • D)

A.•s·c·o
A.+e+c+o

A*A
A+A
A

Logic Functions

A E9 B = A EXCLUSIVE OR B

A ANDA
AORA
ANOT

AB+ AB

1-7

Karnaugh Maps

Graphical representation of data is usually easier to an­
alyze than strings of ones and zeros. The Karnaugh
Map techniques take advantage of this capability and
provide an important tool to the logic designer.

Two Variables

296032-7

Three Variables

00 01 11 10

2 6 4

296032-8

Four Variables

00 01 11 10

00 0 4 12 8

01 1 5 13 9

11 3 7 15 11

10 2 6 14 10
296032-9

intJ OVERVIEW

Five Variables

BC A=O A=1 BC

DE 00 01 11 10 00 01 11 10

00 0 4 12 8 16 20 28 24 00

01 1 5 13 9 17 21 29 25 01

11 3 7 15 11 19 23 31 27 11

10 2 6 14 10 18 22 30 26 10

Six Variables

CD B=O
EF 00 01 11 10

00 0 4 12 8

01 1 5 13 9
A=O

11 3 7 15 11

10 2 6 14 10

00 32 36 44 40

01 33 37 45 41
A=1

11 35 39 47 43

10 34 38 46 42

ff
00 01 11 10

CD

Flip-Flop Tables

This subsection includes truth tables and excitation ta­
bles for the flip-flops supported by EPLDs.

D Truth Table

D QN QN+1

0 0 0
0 1 0
1 0 1
1 1 1

D Excitation Table

QN QN+1 D

0 0 0
0 1 1
1 0 0
1 1 1

1-8

B=1

00 01 11 10

16 20 28 24

17 21 29 25

19 23 31 27

18 22 30 26

48 52 60 56

49 53 61 57

51 55 63 59

50 54 62 58

00 01 11 10

T

0
0
1
1

QN

0
0
1
1

DE

296032-10

CD

EF

00

01

11

10

00

01

11

10

ff

CD
296032-11

T Truth Table

QN

0
1
0
1

T Excitation Table

QN+1

0
1
0
1

QN+1

0
1
1
0

T

0
1
1
0

OVERVIEW

JK Truth Table

J K ON

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

JK Excitation Table

ON ON+1 J

0 0 0
0 1 1
1 0 x
1 1 x

SR Truth Table

s R ON

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 o' ' 1

1 1 Illegal

JK Excitation Table

ON ON+1
,.

0
0
1
1

NOTES:
ON = Present State
QN + 1 = Next State
X = Don't Care

0
1
0
1

s
0
1
0
x

AUTOMATIC STANDBY MODE
(TURBO BIT)

0N+1

0
1
0
0
1
1
1
0

K

x
x
1
0

0N+1

0
1
0
Q
1
1

R -

x
0
1
0

INTEL EPLDs contain a programmable bit, the Turbo
Bit, that optimizes devices for speed or power savings.
When TURBO = ON, EPLDs are optimized for
speed. When TURBO = OFF, they are optimized for
power savings by automatically entering standby mode

when input transitions are not detected over a short
period of time. The following paragraphs describe how
.the Turbo Bit .affects power and speed in EPLDs.

Turbo Off (Low Power)

Intel EPLDs contain circuitry that.monitors all inputs
for transitions. When a transition is detected while the
device is in standby mode, the circuit generates an ac­
tive pulse. The leading edge of this pulse wakes the
device up and the device responds according to its pro­
gramming, changing outputs as necessary. If no new
transitions occur during the active pulse, the device en­
ters standby mode again. Outputs are always held'valid
in standby mode. Input transitions that occur during
the active mode interval retrigger the active pulse. The

· active pulse is different depending on the device
(5C060, 5AC312, etc), but is typically 2-4 times the
propagation delay for a particular device.

In applications with infrequent input transitions, stand­
by mode ca.n result in significant power savings (see the
appropriate data· sheet for standby power vs. active
power). The slight speed loss associated with waking up
a device is in the range of 0-JO ns, which is 'small
enough to allow standby mode to be used with most
applications (see the appropriate data sheet for effect of
Turbo Bit on performance).

· Turbo On (Faster Speed)

1-9

In cases where the slight speed loss associated with
waking a device from standby mode cannot be traded
off to save power, the Turbo bit can be enabled for
maximum speed operation. With the Turbo Bit en­
abled, the device is always in active mode, thus avoid­
ing the wakeup delay. Note that data sheet perform­
ance is specified with the Turbo Bit enabled.

The Turbo Bit is enabled/disabled via a TURBO =
ON or TURBO = OFF statement in an iPLS II ADF
OPTIONS: statement. It can also be enabled/disabled
by editing the JEDEC file using device programmable
software. With TURBO = ON the device will be pro­
grammed for high speed; with TURBO = OFF the
device will be programmed for automatic standby
(power savings). The default state is OFF.

PACKAGING

Intel EPLDs are available in several packages to meet
the wide requirements of customer· applications. Cur­
rent information on available packages is available from
your local Intel field sales engineer. Detailed informa­
tion on package dimensions, etc. for a particular pack­
age is provided in Packaging Outlines and Dimensions,
Order Number 321369, which covers all Intel packages.

intef OVERVIEW

ORDERING INFORMATION

Intel EPLDs are identified as follows:

5 x x

Device

Technology

C -CHMOS

AC- Advanced CHMOS

Package Type

A - Hermetic, Pin Grid Array

D - Hermetic, Type D (Cerdip) Dip

N - Plastic, Leaded Chip Carrier

CJ - Ceramic, J Leaded Chip Carrier

P - Plastic Dip and Plastic. Flatpack

R. - Hermetic, Leadless Chip Carrier

X - Unpackaged Device

x

A - Indicates automotive operating temperature range (-40"C to + 125°C)

s s ,-- ~
¥

Speed

J - Indicates a JAN qualified device, but is for internal identification purposes only. All JAN devices must be
ordered by M38510 part number. (Example: M38510/42001 BQB), and will be marked in accordance
with MIL-M-38510 specifications.

L - Indicates extended operating temperature range (-40°C to +85°C) express product with
160 + 8 hrs. dynamic burn-in.

"M - Indicates military operating temperature range (- 55°C to + 125°C)

Q - Indicates commercial temperature range (Q°C to 7Q°C) express product with 160 + 8 hrs. dynamic burn­
in.

T - Indicates extended temperature range (-40"C to + 85°C) express product without bum-in.

- No letter indicates commercial temperature range (Q°C to 7Q°C) without bum-in.

Examples:

QD5C060-45 Commercial with burn-in, ceramic Dip, 060 (600 gate) device, 45 nanosecond.

•0n military temperature devices, B suffix indicates MIL-STD-883C level B processing.

1-10

EPLDs Erasable Programmable 2
Logic Devices

DATA SHEET SPECIFICATIONS

The specifications in these data sheets reflect some changes in comparison to earlier
data sheets. These changes were made to provide more accurate and usable information
concerning Intel EPLDs. A summary of the changes follows.

D.C. Characteristics
Isa Standby Current (formerly called lcc1).
Ice Operating Current (formerly called lcc2). Test conditions have been specified

in greater detail.

A.C. Characteristics (Synchronous)
fMAX Maximum Frequency (new spec.). Maximum frequency operation with no

signals fed back to other macrocells.

fcNT

tco

tcNT

Maximum Counting Frequency (formerly called f1). Maximum frequency
operation with some signals fed back to other macrocells.

Output Register Valid from CLK (formerly called tco1).

Register Output Feedback to Register Input - Internal Path (formerly called
tp1).

A.C. Characteristics (Asynchronous)
fAMAX Maximum Frequency (new spec.). Maximum frequency operation with no

signals fed back to other macrocells.

fACNT Maximum Counting Frequency (formerly called fA1). Maximum frequency
operation with some signals fed back to other macrocells.

tACO Output Register Valid from CLK (formerly called tAC01).

tACNT Register Output Feedback to Register Input - Internal Path (formerly called
tAP1).

Non-Turbo Mode
The Non-Turbo Mode column in several of the data sheets shows the additional time
required to power-up the device from standby mode. The column applies only when the
device is operated in non-turbo mode (Turbo Bit Off) in an application where the device
enters standby mode. See "Automatic Standby-Mode" in the Overview for additional
information.

000274-1

2-1

intJ
5C031

300 GATE CHMOS H·SERIES ERASABLE
PROGRAMMABLE LOGIC DEVICE {H-EPLD}

• High Performance, Low Power
Replacement for SSI & MSI Devices
and Bipolar PLDs.

• Eight Macrocells with Programmable
1/0 Architecture.

• 100% Generically Testable EPROM
Logic Control Array.

• High Performance Upgrade for All
Commonly Used 20-pin PLDs.

INPUT/CLK

INPUT

INPUT

INPUT

INPUT

INPUT

INPUT

INPUT

GND

1

2

3

4

5

6

7

9

10

• CHMOS EPROM Technology Based UV
Erasable.

• Up to 18 Inputs (10 Dedicated & 8 110)
and 8 Outputs.

• Programmable "Security Bit" Allows
Total Protection of Proprietary Designs

• Ice (standby) 35 mA (max)
Ice (10 MHz) 40 mA (max)

• tpo = 40 ns (max)

• 20-pln 0.3" Windowed CERDIP Package
(See Packaging Spec., Order # 231369)

20 Vee
19 1/0
18 1/0

5C031 17 1/0

0
16 1/0
15 1/0

1/0
13 1/0
12 1/0
11 1/Vpp

290154-1

Pin Configuration

2-2
November 1987

Order Number: 290154-001

5C031

The Intel 5C031 H-EPLD (H-series Erasable Pro­
grammable Logic Device) is capable of implement­
ing over 300 equivalent gates of user-customized
logic functions through programming. This device
can be used to replace bipolar programmable logic
arrays and LS TIL and 74HC (CMOS) SSI and MSI
logic devices. The 5C031 can also be used as a
direct, low-power replacement for almost all com­
mon 20-pin fuse-based programmable logic devices.
With its flexible programmable 110 architecture, this
device has advanced functional capabilities beyond
that of typical programmable logic.

The 5C031 H-EPLD uses CHMOS EPROM (floating
gate) cells as logic control elements instead of fus­
es. The CHMOS EPROM technology reduces power
consumption of H-EPLDs to less than 20% of a
comparable bipolar device without sacrificing speed
performance. In addition, the use of Intel's advanced
CHMOS 11-E EPROM process technology enables
greater logic densities to be achieved with superior
speed and low-power performance over other com­
parable devices. EPROM technology allows these
devices to be 100% factory tested by programming
and erasing all the EPROM logic control elements.

The 5C031 is housed in a windowed 0.3* 20-pin DIP
and has the benefits of being an ideal prototyping
tool with its highly flexible 110 architecture.

2-3

ARCHITECTURE DESCRIPTION

The architecture of the 5C031 is based on the "Sum
of Products" PLA (Programmable Logic Array) struc­
ture with a programmable AND array feeding into a
fixed OR array. This device can accommodate both
combinational and sequential logic functions. A pro­
prietary programmable 1/0 architecture provides in­
dividual selection of either combinational or regis­
tered output and feedback signals, all with select·
able polarity.

The 5C031 contains 10 dedicated inputs as well as 8
input/output pins. These 1/0 pins can be individually
configured to be inputs, outputs or bi-directional 1/0
pins. Each of these 1/0 pins is connected to a mac­
rocell. The 5C031 contains 8 identical macrocells or­
ganized as shown in Figure 1.

Each macrocell (see Figure 2) consists of a PLA
(programmable logic array) block and an 1/0 archi­
tecture block, which contains a "D" type register.
The PLA block consists of eight 36-input AND gates
(TRUE & COMPLEMENT of 10 dedicated inputs
plus the 8 feedback inputs from the eight macro­
cells), feeding into an OR gate. The output of this
PLA block is fed into the 1/0 architecture block. The
different 1/0 and feedback options that are achiev­
able from the 5C031 1/0 block are shown in Figure
3.

intef 5C031

CLOCK .Q. 3 5 7 9 11 1 3 15 17 1 9 21 23 25 27 29 31 33 35

l 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

Figure 1. 5C031 Architecture

2-4

290154-2

OE

0

'Tl m 2
c en
;; ::IE

~ ~3
b I-
ta g"

~
n c ,. 0 ... D:::

ii'I D... 5

'<

f 1 6
n ...
0
~I 7

CLOCK

3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35
0 2 "' 6 8 10 12 I~ (- 16 18 20 22 2<1 26 2~ .. ~O 32 3<1

L
- g,

D 1
!ET CLOCK

DD1 '"'"mcru"' H) ..,. D CONTROL w i7ci

- D RESET

o) T

c"' ·~ c"' ·~ c"' ·~ '"' '"' '"' ·~ ·~ c"' ·~ '"' c"' ·~ '"' ·~ o) l i ~ ~l ii~~ i~ ~ l ~l ii~ l ii~ l i~ ~l ~ l ii~~~~

11 2 ;; 3 iii "' i7 5 iii 6 15 7 1<1

NOTE D = 1/0 PIN IN WHICH LOGIC ARRAY INPUT IS FROM FEEDBACK PATH

PLA BLOCK

8 13 9

1/0 ARCHITECTURE
BLOCK

290154-3

l

~

intef

OE

PRODUCT
TERMS

FEEDBACK

5C031

·--------------------------

CK

RESET

OUTPUT
SELECT

FEEDBACK
SELECT

·--------------------------

Figure 3. 5C031 1/0 Architecture Control

20 PIN CMOS COMPATIBILITY

290154-4

The 5C031 is architected to be a logical superset of most 20 pin bipolar programmable array logic (PAL*)
devices. The 1/0 and logic sections of the 5C031 device can be configured to emulate any of the devices
listed below. Designers can make use of this feature by reducing the power of PAL based systems (EPLDs are
much lower power), replacing multiple PAL inventory items with a single EPLD. Designers can also create new
20 pin PLO configurations by utilizing the indiyidual logic and output controls of each macrocell.

List of PAL devices logically compatible with the 5C031.
10H8 16L2
12H6 16L8
14H4 16R8
16H2 16R6
16H8 16R4
16C1 16P8A
10LB 16RP8A
12L6 16RP6A
14L4 16RP4A

*PAL is a registered trademark of Monolithic Memories, Inc.

2-6 •

intef 5C031

Erased-State Configuration

Prior to programming or after erasing, the 1/0 struc­
ture is configured for combinatorial active low output
with input (pin) feedback.

ERASURE CHARACTERISTICS

Erasure characteristics of the 5C031 are such that
erasure begins to occur upon exposure to light with
wavelengths shorter than approximately 4000A. It
should be noted that sunlight and certain types of
flourescent lamps have wavelengths in the 3000-
4000A. Data shows that constant exposure to room
level flourescent lighting could erase the typical
5C031 in approximately three years, while it would
take approximately one week to cause erasure when
exposed to direct sunlight. If the 5C031 is to be ex­
posed to these types of lighting conditions for ex­
tended periods of time, conductive opaque labels
should be placed over the device window to prevent
unintentional erasure.

The recommended- erasure procedure for the 5C031
is exposure to shortwave ultraviolet light with a
wavelength of 2537A. The integrated dose (i.e., UV
intensity x exposure time) for erasure should be a
minimum of fifteen (15) Wsec/cm2. The erasure
time with this dosage is approximately 15 to 20 min­
utes using an ultraviolet lamp with a 12,0001J.W/cm2
power rating. The 5C031 should be placed within
one inch of the lamp tubes during erasure. The maxi­
mum integrated dose the 5C031 can be exposed to
without damage is 7258 Wsec/cm2 (1 week at
12,0001J.W/cm2). Exposure to high intensity UV light
for longer periods may cause permanent damage to
the device.

PROGRAMMING CHARACTERISTICS

Initially, and after erasure, all the EPROM control
bits of the 5C031 are connected (in the "1" state).
Each of the connected control bits are selectively
disconnected by programming the EPROM cells into
their "O" state. Programming voltage and waveform
specifications are available by request from Intel to
support programming of the 5C031.

lnt8 11gent ProgrammlngTM Algorithm

The 5C031 supports the inteligent Programming Al­
gorithm which rapidly programs Intel H-ELPDs (and
EPROMs) using an efficient and reliable method.
The inteligent Programming Algorithm is particularly
suited to the production programming environ-

2-7

ment. This method greatly decreases the overall
programming time while programming reliability is
ensured as the incremental program margin of each
bit is continually monitored to determine when the bit
has been successfully programmed.

FUNCTIONAL TESTING

Since the logical operation of the 5C031 is con­
trolled by EPROM elements, the device is complete­
ly testable. Each programmable EPROM bit control­
ling the internal logic is tested using application-in­
dependent test program patterns. After testing, the
devices are erased before shipment to customers.
No post-programming tests of the EPROM array are
required.

The testability and reliability of EPROM-based pro­
grammable logic devices is an important feature
over similar devices based -on fuse technology.
Fuse-based programmable logic devices require a
user to perform post-programming tests to insure
proper programming. These tests must be done at
the device level because of the cummulative error
effect. For example, a board containing ten devices -
each possessing a 2% device fallout translates into
an 18% fallout at the board level (it should be noted
that programming fallout of fuse-based programma­
ble logic devices is typically 2% or higher).

DESIGN RECOMMENDATIONS

To take maximum advantage of EPLD technology, it
is recommended that the designer use the Modular
EPLD Logic Design (MELD) method. The MELD phi­
losophy is derived from the modular programming
method used in software development. In a modular
software development environment, _the engineer
designs a modular program (typically on a develop­
ment system), stores it in memory (EPROM), and
tests the module for functionality. A hardware de­
signer using EPLDs can use this same approach
when designing logic. The designer develops a mod­
ular logic design on the Intel Programmable Logic
Development System II (iPLDS II), stores it in "mem­
ory" (the EPROM control elements of the EPLD),
and again tests the module for functionality. If the
design is in error, the logic designer reprograms the
EPLD with his new design as easily as a software
designer can download a new program into memory.

The MELD philosophy is new to programmable logic
because EPROM-based PLDs are new. A modular
logic development process using fused-based PLDs
would be wasteful since a fused-based device can­
not be erased an re-used.

inter 5C031

For proper operation, it is recommended that all in­
put and output pins be constrained to the voltage
range GND < MN or Vour) < Vee- Unused inputs
should be tied to an appropriate logic level (e.g. ei­
ther Vee or GND) to minimize device power con­
sumption. Reserved pins (as indicated in the iPLDS
REPORT file) should be left floating (no connect) so
that the pin can attain the appropriate logic level. A
power supply decoupling capacitor of at least 0.2 µ,F
must be connected directly between Vee and GND
pins of the device.

DESIGN SECURITY

A single EPROM bit provides a programmable de­
sign security feature that controls the access to the
data programmed into the device. If this bit is set, a
proprietary design within the device cannot be cop­
ied. This EPROM security bit enables a higher de­
gree of design security than fused-based devices
since programmed data within EPROM cells is invisi­
ble even to microscopic evaluation. The EPROM se­
curity bit, along with all the other EPROM control
bits, will be reset by erasing the device.

LATCH-UP IMMUNITY

All of the input, 1/0, and clock pins of the 5C031
have been designed to resist latch-up which is inher­
ent in inferior CMOS structures. The 5C031 is de­
signed with Intel's proprietary CHMOS 11-E EPROM
process. Thus, each of the 5C031 pins will not expe­
rience latch-up with currents up to 100 mA and volt­
ages ranging from -1V to Vee+ 1V. Furthermore,
the programming pin is designed to resist latch-up to
the 13.5V maximum device limit.

INTEL PROGRAMMABLE LOGIC
DEVELOPMENT SYSTEM II (iPLDS II)

The iPLDS II graphically shown in Figure 5 provides
all the tools needed to design with Intel H-Series
EPLDs or compatible devices. In addition to provid­
ing development assistance, iPLDS II insulates the
user from having to know all the intricate details of
EPLD architecture (the machine will optimize a de­
sign to benefit from architectual features). It contains
comprehensive third generation software that sup­
ports four different design entry methops, minimizes

2-8

logic, does automatic pin assignments and produces
the best design fit for the selected EPLD. It is user
friendly with guided menus, on-line Help messages
and soft key inputs.

In addition, the iPLDS II contains programmer hard­
ware in the form of an iUP-PC Universal Program­
mer-Personal Computer to enable the user to pro­
gram EPLDs, read and verify programmed devices
and also to graphically. edit programming files. The
software generates industry standard JEDEC object
code output files which can be downloaded to other
programmers as well.

The iPLDS II has interfaces to popular schematic
capture packages (including Dash series from Fu­
tureNet• and PC CAPS from PCAD)** to enable de­
signs to be entered using schematics. A more inte­
grated schematic entry method is provided by
SCHEMA 11-PLD, a low-cost schematic capture
package that supports EPLD primitives and user-de­
fined macro symbols. SCHEMA 11-PLD contains the
EPLD Design Manager, which provides a single user
interface to both SCHEMA 11-PLD and iPLS II soft­
ware. The other design formats supported are Boo­
lean equation entry and State Machine design entry.

The iPLDS operates on the IBMt PC/XT, PC/ AT, or
other compatible machine with the following configu­
ration:

1. At least one floppy disk drive and hard disk drive.
2. MS-DOStt Operating System Version 3.0 or

greater.
3. 640K Memory.
4. Intel iUP-PC Universal Programmer-Personal

Computer and GUPI Adaptor (supplied with
iPLDS).

5. A color monitor is suggested.

Detailed information on the Intel Programmable Log­
ic Development System II is contained in a separate
Intel data sheet. (Order Number: 280168)

*FutureNet is a registered trademark of FutureNet
Corporation. DASH is a trademark of FutureNet
Corporation.

•*PC-CAPS is a trademark of P-CAD Corporation.

tlBM Personal Computer is a registered trade­
mark of International Business Machines Corpo­
ration.

ttMS-DOS is a registered trademark of Microsoft
Corporation.

::!! a
c ..
CD

~
:;;
r c
tn
= :; -!!. ,,
o' I

a ..
Ill
3

~ ii U>

I
0 a
c;
c
CD
<
CD
0
-0
3
CD
:J -tn
'<
fill -CD
3

IDGIC-·

OUT2=C1l'Ja
oun~Cl.l'flh

IG+llMI

IOOlEMllEOIAllDfemft'

IPLDS INTEL PROGRAMMABLE LOGIC DEVELOPMENT SYSTEM

ll1ll -~-· lift.II)

STATI -"'""'""'
-TC

lmY

"""""'

Intel Pregrm1111111111le logic
Development Syst• II

..... ---

""'

290154-5

l

g
w -

intef 5C031

ABSOLUTE MAXIMUM RATINGS*
Symbol Parameter Min Max Units

Vee Supply Voltage(1) -2.0 7.0 v
Vpp Programming -2.0 13.5 v

Supply Voltage(1)

V1 DC Input Voltage(1)(2) -0.5 Vee+0.5 v

lstg Storage Temperature -65 +150 ·c
lamb Ambient Temperature(3) -10 +85 ·c

NOTES:
1. Voltages with respect to ground.
2. Minimum DC input is -0.5V. During transitions, the in­
puts may undershoot to -2.0V for periods less than 20 ns
under no load conditions.
3. Under bias. Extended temperature versions are also
available.

•Notice: Stresses above those listed under "Abso­
lute Maximum Ratings" may cause permanent dam­
age to the device. This is a stress rating only and
functional operation of the device at these or any
other conditions above those indicated in the opera­
tional sections of this specification is not implied Ex­
posure to absolute maximum rating conditions for
extended periods may affect device reliability.

D.C. CHARACTERISTICS TA = 0° to + 10°c, Vee = 5V ± 5%

Symbol Parameter/Test Conditions Min Typ Max Unit

V1H(4) High Level Input Voltage 2.0 Vee+ 0.3 v
V1L(4) Low Level Input Voltage -0.3 0.8 v
VoH(5) High Level Output Voltage 2.4 v

lo = -4.0 mA D.C., Vee = min.

VoL Low Level Output Voltage 0.45 v
lo = 4.0 mA D.C., Vee = min.

11 Input Leakage Current ±10 µA
Vee = max., GND < Your < Vee

loz Output Leakage Current ±10 µA
Vee = max., GND < Vol.Jr < Vee

lsc(6) Output Short Circuit Current 10 mA
Vee = max., Your = 0.5V

Ice Power Supply Current 15 40 mA
Vee = max., V1N = Vee or GND
No Load, Input Freq. = 1 MHz
Active mode (Turbo = Off)
Device prog. as 8-bit Ctr.

NOTES:
4. Absolute values with respect to device GND; all over and undershoots due to system or tester noise are included.
5. lo at CMOS levels (3.84V) = -2 mA.
6. Not more than 1 output should be tested at a time. Duration of that test must not exceed 1 second.

2-10

A.C. TESTING LOAD CIRCUIT

---sv

DEVICE INPUT
RISE AND F'ALL

TIMES< 6 ns

CL (INCLUDES JIG
CAPACITANCE)

290154-6

5C031

A.C. TESTING INPUT, OUTPUT WAVEFORM

INPUT
3.0~

o~

OUTPUT 1~
290154-7

A.C. Testing: Inputs are Driven at 3.0V for a Logic "1" and OV for
a Logic "O". Timing Measurements are made at 2.0V for a Logic
"1" and o.ev !or a Logic "O" on inputs. Outputs are measured at
a 1.SV point.

A.C. CHARACTERISTICS TA = o•c to + 1o•c, Vee = 5V ± 5%, Turbo Bit Programmed<7l

5C031·40 5C031·50
Symbol From To Unit

Min Typ Max Min Typ Max

tpo 110 Comb. Output 40 50 ns

tpzx I orl/O Output Enable 40 50 ns

tpxz I orl/O Output Disable 40 50 ns

tcLR Asynch Reset QReset 40 50 ns

NOTES:
7. Typical Values are at TA = 25°C, Vee = 5V, Active Mode
8. tpzx and tpxz are measured at ± D.SV from steady state voltage as driven by spec. output load. tpxz is measured with
CL= 5 pF.

CAPACITANCE
Symbol Parameter Conditions Min Typ Max Unit

C1N Input Capacitance V1N = OV, f = 1.0 MHz 20 pF

Cour Output Capacitance Vour = ov, f = 1.0 MHz 20 pF

CcLK Clock Pin Capacitance Vour = OV, f = 1.0 MHz 20 pF

Cvpp VppPin Pin 11 50 pF

2-11

intef 5C031

SYNCHRONOUS CLOCK MODE A.C. CHARACTERISTICS
TA = 0°C to + 70°C, Vee = 5.0V ± 5%, Turbo Bit On(7)

Symbol Parameter
5C031·40 5C031·50

Unit
Min Typ Max Min Typ Max

fMAX Max. Frequency 29.5 22.5 MHz
1 I (teL + tcH)- No Feedback

feNT Max. Count Frequency 22 18 MHz
1 lteNT - With Feedback

tsu 1/0 Setup Time to CLK 30 32 ns

tH I or 1/0 Hold after CLK High 0 0 ns

tco CLK High to Output Valid 24 28 ns

tcNT Register Output Feedback to 45 55 ns
Register Input - Internal
Path

tcH CLK High Time 17 22 ns

tcL CLKLowTime 17 22 ns

ts ET Synch. Set to Q Set 40 50 ns

2-12

intef
SWITCHING WAVEFORMS

COMBINATORIAL MODE

INPUT OR 1/0 INPUT

COMBINATORIAL OUTPUT

COMBINATORIAL OR
REGISTERED OUTPUT

HIGH IMPEDANCE

3- STATE

SYNCHRONOUS CLOCK MODE

CLK1

INPUT MAY CHANGE

(FROM REGISTER
TO OUTPUT)

5C031

~~~------
rtpzx 

VALID I 
INPUT 

2-13 

HIGH IMPEDANCE 

3-STATE 

VALID OUTPUT 

ASYNCHRONOUSLY 
CLEAR OUTPUT 

INPUT MAY CHANGE 

VALID OUTPUT 

290154-8 

290154-9 



intef 
5C032 

• 

• 
• 
• 

300 GATE CHMOS H-SERIES ERASABLE 
PROGRAMMABLE LOGIC DEVICE {H·EPLD) 

High Performance, Low Power • CHMOS EPROM Technology Based UV 
Replacement for SSI & MSI Devices Erasable 
and Bipolar PLDs • Up to 18 Inputs (10 Dedicated & 8 1/0) 
Eight Macrocells with Programmable and 8 Outputs 
1/0 Architecture • Programmable "Security Bit" Allows 
100% Generically Testable EPROM Total Protection of Proprietary Designs 
Logic Control Array • lee (standby) 100 µA (max) 
High Performance Upgrade for All Ice (10 MHz) 25 mA (max) 
Commonly Used 20-pln PLDs • tpo = 25 ns (max) 

• 20-pin 0.3" Plastic DIP Package 
(See Packaging Spec., Order #231369) 

INPUT/CLK 1 20 Vee 
INPUT 2 19 1/0 
INPUT 3 18 1/0 
INPUT 4 5C032 17 1/0 
INPUT 5 

0 
16 1/0 

INPUT 6 15 1/0 
INPUT 7 14 1/0 
INPUT 8 13 1/0 
INPUT 9 12 1/0 

GND 10 11 l/Vpp 

290155-1 

Pin Configuration 

2-14 
November 1987 

Order Number: 290155-001 



5C032 

The Intel 5C032 H-EPLD (H-series Erasable Pro­
grammable Logic Device) is capable of implement­
ing over 300 equivalent gates of user-customized 
logic functions through programming. This device 
can be used to replace bipolar programmable logic 
arrays and LS TIL and 74HC (CMOS) SSI and MSI 
logic devices. The 5C032 can also be used as a 
direct, low-power replacement for almost all com­
mon 20-pin fuse.based programmable logic devices. 
With its flexible programmable 110 architecture, this 
device has advanced functional capabilities beyond 
that of typical programmable logic. 

The 5C032 H-EPLD uses CHMOS EPROM (floating 
gate) cells as logic control elements instead of fus­
es. The CHMOS EPROM technology reduces power 
consumption of H-EPLDs to less than 20% of a 
comparable bipolar device without sacrificing speed 
performance. In addition, the use of Intel's advanced 
CHMOS 11-E EPROM process technology enables 
greater logic densities to be achieved with superior 
speed and low-power performance over other com­
parable devices. Intel's 5C032 has the benefit of 
"zero" stand-by power not available on other pro­

, grammable logic devices. EPROM technology al-
lows these devices to be 100% factory tested by 
programming and erasing all the EPROM logic con­
trol elementS. · 

The 5C032 with its superior speed and power per­
formance and its plastic package is an ideal produc­
tion vehicle for high-volume manufacturing. Most 
commonly used 20-pin bipolar PLDs can be easily 
replaced with this device allowing for tremendous 
power consumption savings without sacrificing 
speed of operation. 

ARCHITECTURE DESCRIPTION 

The architecture of the 5C032 is based on the "Sum 
of Products" PLA (Programmable Logic Array) struc­
ture with a programmable AND array feeding into a 
fixed OR array. This device can accommodate both 
combinational and sequential logic functions. A pro­
prietary programmable 110 architecture provides in­
dividual selection of either combinational or regis­
tered output and feedback signals, all with select­
able polarity. 

The 5C032 contains 10 dedicated inputs as well as 8 
input/output pins. These 1/0 pins can be individually 
configured to be inputs, outputs or bi-directional 110 
pins. Each of these 110 pins is connected to a mac­
rocell. The 5C032 contains 8 Identical macrocells or­
ganized as shown in Figure 1. 

Each macrocell (see Figure 2) .consists of a PLA 
(programmable logic array) block and an 110 archi­
tecture block, which contains a "D" type register. 
The PLA block consists of eight 36-input AND gates 
(TRUE & COMPLEMENT of 10 dedicated inputs 
plus the 8 feedback Inputs from the eight macro­
cells), feeding into an OR gate. The output of this 
PLA block is fed into the 110 architecture block. The 
different 110 and feedback options that are available 
in the 5C032 110 block are shown in Figure 3. 

2-15 



intJ 

CLOCK 

5C032 

0 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 

Figure 1. 5C032 Architecture 

2-16 

290155-2 



OE 

0 

:!! 2 
IQ 

(/) c 
Cil ::I! 

el 3 
!'> f--

r- f--
0 g4 19. 0 

~ n 0 > g: 5 ...., 
~ 
DI 
'< 

~I 6 
n .,. 
gl 7 

~ 

CLOCK --- -

~ 
+ + + i- .¥ .!f 1~ .¥- .~9 21 2~ 25 27 29 3.1- 33 .~ 

2 4 6 8 10 1~ 14 1~ 1~ ~ ~~ '?¢ ~~ ~ ~µ ¥ ¥ 

8\ 
:= D. CLOCK 

. DD1 "'""'""'"' H> ...,. D CONTROL w Vo 

~ 
·~ ·~ c I'\ ·~ c I'\ ·~ c I'\ ·~ •>1 ·~ c I'\ ·~ •>1 ·~ •>1 ·~ •>1 ·~ o) ~ ~L ~ ~ ~ ~ ~ ~ ~~ ~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ L ~ ~ ~ L ~ ~ ~L ~ ""[ 

11 2 19 3 18 4 17 5 16 6 15 7 14 8 13 9 

NOTE 0=1/0 PIH IH WHICH LOGIC ARRAY INPUT IS FROM FEEDBACK PATH 

PLA BLOCK 1/0 ARCHITECTURE 
BLOCK 

290155-3 

l 

(11 

0 
Q 
(II) 
N 



inter 

PRODUCT 
TERMS 

OE 

FEEDBACK 

INVERT 
CONTROL 

5C032 

r--------------------

CLK 

MACROCELL 
REGISTER 

Figure 3. 5C032 1/0 Architecture Control 

20 PIN CMOS COMPATIBILITY 

1/0 

290155-10 

The 5C032 is architected to be a logical superset of most 20 pin bipolar programmable array logic (PAL*) 
devices. The 1/0 and logic sections of the 5C032 device can be configured to emulate any of the devices 
listed below. Designers can make use of this feature by reducing the power of PAL based systems (EPLDs are 
much lower power), replacing multiple PAL inventory items with a single EPLD. Designers 9an also create new 
20 pin PLO configurations by utilizing the individual logic and output controls of each macrocell. 

List of PAL devices logically compatible with the 5C032. 
10H8 16L2 
12H6 16L8 
14H4 16R8 
16H2 16R6 
16H8 16R4 
16C1 16P8A 
10LB 16RP8A 
12L6 16RP6A 
14L4 16RP4A 

*PAL is a registered trademark of Monolithic Memories, Inc. 

2-18 



5C032 

Erased-State Configuration 

Prior to programming or after erasing, the 1/0 struc­
ture is configured for combinatorial active low output 
with input (pin) feedback. 

ERASURE CHARACTERISTICS 

Erasure characteristics of the 5C032 are such that 
erasure begins to occur upon exposure to light with 
wavelengths shorter than approximately 4000A. It 
should be noted that sunlight and certain types of 
flourescent lamps have wavelengths in the 3000-
4000A. Data shows that constant exposure to room 
level flourescent lighting could erase the typical 
5C032 in approximately three years, while it would 
take approximately one week to cause erasure when 
exposed to direct sunlight. If the 5C032 is to be ex­
posed to these ·types of lighting conditions for ex­
tended periods of time, conductive opaque labels 
should be placed over the device window to prevent 
unintentional erasure. 

The recommended erasure procedure for the 5C032 
is exposure to shortwave ultraviolet light with a 
wavelength of 2537 A. The integrated dose (i.e., UV 
intensity x exposure time) for erasure should be a 
minimum of fifteen (15) Wsec/cm2. The erasure 
time with this dosage is approximately 15 to 20 min­
utes using an ultraviolet lamp with a 12,000 µ.W/cm2 
power rating. The 5C032 should be placed within 
one inch of the lamp tubes during erasure. The maxi­
mum integrated dose the 5C032 can be exposed to 
without damage is 7258 Wsec/cm2 (1 week at 
12,000 µ.W/cm2). Exposure to high intensity UV light 
for longer periods may cause permanent damage to 
the device. 

PROGRAMMING CHARACTERISTICS 

Initially, and after erasure, all the EPROM control 
bits of the 5C032 are connected (in the "1" state). 
Each of the connected control bits are selectively 
disconnected by programming the EPROM cells into 
their "O" state. Programming voltage and waveform 
specifications are available by request from Intel to 
support programming of the device. 

lntellgent ProgrammlngTM Algorithm 

The 5C032 supports the inteligent. Programming Al­
gorithm which rapidly programs Intel H-ELPDs (and 
EPROMs) using an efficient and reliable method. 
The inteligent Programming Algorithm is particularly 
suited to the production programming environ-

ment. This method greatly decreases the overall 
programming time while programming reliability is 
ensured as the incremental program margin of each 
bit is continually monitored to determine when the bit 
has been successfully programmed. 

FUNCTIONAL TESTING 

Since the logical operation of the 5C032 is con­
trolled by EPROM elements, the device is complete­
ly testable. Each programmable EPROM bit control­
ling the internal logic is tested using application-in­
dependent test program patterns. After testing, the 
devices are erased before shipment to customers. 
No post-programming tests of the EPROM array are 
required. 

The testability and reliability of EPROM-based pro­
grammable logic devices is an important feature 
over similar devices based on fuse technology. 
Fuse-based programmable logic devices require a 
user to perform post-programming tests to insure 
proper programming. These tests must be done at 
the device level because of the cummulative error 
effect. For example, a board containing ten devices 
each possessing a 2% device fallout translates into 
an 18% fallout at the board level (it should be noted 
that programming fallout of fuse-based programma­
ble logic devices is typically 2% or higher). 

2-19 

DESIGN RECOMMENDATIONS 

To take maximum advantage of EPLD technology, it 
is recommended that the designer use the Modular 
EPLD Logic Design (MELD) method. The MELD phi­
losophy is derived from the modular programming 
method used in software development. In a modular 
software development environment, the engineer 
designs a modular program (typically on a develop­
ment system), stores it in memory (EPROM), and 
tests the module for functionality. A hardware de­
signer using EPLDs <:an use this same approach 
when designing logic. The designer develops a mod­
ular logic design on the Intel Programmable Logic 
Development System II (iPLDS II), stores it in "mem­
ory" (the EPROM control elements of the EPLD), 
and again tests the module for functionality. If the 
design is in error, the logic designer reprograms the 
EPLD with his new design as easily as a software 
designer can download a new program into memory. 

The MELD philosophy is new to programmable logic 
because EPROM-based PLDs are new. A modular 
logic development process using fused-based PLDs 
would be wasteful since a fused-based device can­
not be erased an re-used. 



intef 5C032 

For proper operation, it is recommended that all in­
put and output pins be constrained to the voltage 
range GND < <VIN or Vour) < Vee. Unused inputs 
should be tied to an appropriate logic level (e.g. ei­
ther Vee or GND) to minimize device power con­
sumption. Reserved pins (as indicated in the iPLDS 
REPORT file) should be left floating (no connect) so 
that the pin can attain the appropriate logic level. A 
power supply decoupling capacitor of at least 0.2 µ.F 
must be connected directly between Vee and GND 
pins of the device. 

DESIGN SECURITY 

A 'single EPROM bit provides a programmable, de­
sign security feature that controls the access to the 
data programmed into the device. If this bit is set, a 
proprietary design within the device cannot be cop­
ied. This EPROM security bit enables a higher de­
gree of design security than fused-based devices 
since programmed data within EPROM cells is invisi­
ble even to microscopic evaluation. The EPROM se­
curity bit, along with all the other EPAOM control 
bits, will be reset by erasing the device. 

LATCH-UP IMMUNITY 

All of the input, 110, and clock pins of the 5C032 
have been designed to resist latch-up which is inher­
ent in inferior CMOS structures. The 5C032 is de­
signed with Intel's proprietary CHMOS 11-E EPROM 
process. Thus, each of the 5C032 pins will not expe­
rience latch-up with currents up to 100 mA and volt­
ages ranging from -1V to Vee + 1V. Furthermore, 
the programming pin is designed to resist latch-up to 
the 13.SV maximum device limit. ,, 

INTEL PROGRAMMABLE LOGIC 
DEVELOPMENT SYSTEM II (IPLDS II) 

The iPLDS II graphically shown in Figure 5 provides 
all the tools needed to design with Intel H-Series 
EPLDs or compatible devices. In addition to provid­
ing development assistance, iPLDS II insulates the 
user from having to know all the intricate details of 
EPLD architecture (the machine will optimize a de­
sign to benefit from architectual features). It contains 
comprehensive third generation software that sup­
ports four different design entry methods, minimizes 

2-20 

logic, does automatic pin assignments and produces 
the best design fit for the selected EPLD. It is user 
friendly with guided menus, on-line Help messages 
and soft key inputs. 

In addition, the iPLDS II contains programmer hard­
ware in the form of an iUP-PC Universal Program­
mer-Personal Computer to enable the user to pro­
gram EPLDs, read and verify programmed devices 
and also to graphically edit programming files. The 
software generates industry standard JEDEC object 
code output files which can be downloaded to other 
programmers as well. 

The iPLDS II has interfaces to popular schematic 
capture packages (including Dash series from 
FutureNet• and PC CAPS from PCAD)"* to enable 
designs to be entered using schematics. A more in­
tegrated schematic entry method is provided by 
SCHEMA II-PLO, a low-cost schematic capture 
package that supports EPLD primitives and user-de­
fined macro symbols. SCHEMA 11-PLD contains the 
EPLD Design Manager, which provides a single user 
interface to both SCHEMA 11-PLD and iPLS II soft­
ware. The other design formats supported are 
Boolean equation entry and State Machine design 
entry. 

The iPLDS operates on the IBMt PC/XT, PC/AT, or 
other compatible machine with the following configu­
ration: 

1. At least one floppy disk drive and hard disk drive. 
2. MS-DOStt Operating System Version 3.0 or 

greater. 
3. 640K Memory. 
4. Intel iUP-PC Universal Programmer-Personal 

Computer and GUPI Adaptor (supplied with 
iPLDS II). 

5. A color monitor is suggested. 

Detailed information on the Intel Programmable Log­
ic Development System II is contained in a separate 
Intel data sheet. (Order Number: 280168) 

*FutureNet is a registered trademark of FutureNet 
Corporation. DASH is a trademark of FutureNet 
Corporation. 

•*PC-CAPS is a trademark of P-CAD Corporation. 

tlBM Personal Computer is a registered trade­
mark of International Business Machines Corpo­
ration. 

ttMS-DOS is a registered trademark of Microsoft 
Corporation. 



'Tl 
~ c 
iii 
~ 
=a 
r-c 
0 

= 

~I I :ti'.Y-1 
Ol,f1·COCF(312) 
S12•Atll(S7.51t --- ..... 

IC ... 
II> 

I\) 3 

~ 3 

!I I 
oun.ru·ra 
OU1'3sQJ('(12+ 

lla+IMI 

llOOWllfQUITlOll ..... 

0 
IC 
c; 
c 
CD 
< 
CD 
0 
'a 
3 
CD a 
0 
'< 
Ill -CD 
3 

IPLDS INTEL PROGRAMMABLE LOGIC DEVELOPMENT SYSTEM 

11111. ---· lftS-

STATI --
.,_TIC 

"""' .......... 

Intel Progremm.1ble logic 
Development System II 

290155-5 

l 

~ a 
I\) 



intef 5C032 

ABSOLUTE MAXIMUM RATINGS* 
Symbol Parameter Min Max Unit 

Vee Supply Voltage(1 l -2.0 7.0 v 
Vpp Programming -2.0 13.5 v 

Supply Voltage(1 l 

v, DC Input Voltage(1)(2) -0.5 Vcc+0.5 v 
tstg Storage Temperature -65 +150 ·c 
tamb Ambient Temperature(4) -10 +85 ·c 

NOTES: 
1. Voltages with respect to ground. 
2. Minimum DC input is -0.5V. During transitions, the in­
puts may undershoot to - 2.0V for periods less than 20 ns 
under no load conditions. 
3. Under bias, Extended temperature versions are also 
available. 
4. Extended temperature versions also available. 

•Notice: Stresses above those listed under "Abso­
lute Maximum Ratings" may cause permanent dam­
age to the device. This is a stress rating only and 
functional operation of the device at these or any 
other conditions above those indicated in the opera­
tional sections of this specification is not implied. Ex­
posure to absolute maximum rating conditions for 
extended periods may affect device reliability. 

D.C. CHARACTERISTICS TA = o·c to 10°c, Vee = 5V ± 5% 

Symbol Parameter /Test Conditions Min Typ Max Unit 

V1H(5) High Level Input Voltage 2.0 Vee+ 0.3 v 
V1L(5) Low Level Input Voltage -0.3 0.8 v 
VoH(6) High Level Output Voltage 2.4 v 

lo = -4.0 mA D.C., Vee = min. 

Vol Low Level Output Voltage 0.45 v 
lo = 4.0 mA D.C., Vee = min. 

11 Input Leakage Current ±10 µA 
Vee = max., GND < VouT < Vee 

loz Output Leakage Current ±10 µA 
Vee = max., GND < Vour < Vee 

lsc(7) Output Short Circuit Current 10 mA 
Vee = max., Vour = 0.5V 

ls9(8) Standby Current 10 100 µA 
Vee = max., V1N = Vee or GND, 
Standby Mode 

lcc(9l Power Supply Current 15 25 mA 
Vee = max., V1N = Vee or GND, 
No Load, Input Freq. = 10 MHz 
Active Mode (Turbo = Off), 
Device Prog. as 8-bit Ctr. 

NOTES: 
5. Absolute values with respect to device GND; all over- and' undershoots due to system or tester noise are included. 
6. lo at CMOS levels (3.84V) = -2 mA. 
7. Not more than 1 output should be tested at a time. Duration of that test must not exceed 1 second. 
8. With Turbo Bit = Off, device automatically enters standby mode approximately 100 ns after last input transition. 
9. Maximum Active Current at operational frequency is less than 40 mA. 

2-22 



intJ 
A.C. TESTING LOAD CIRCUIT 

.----5V 

DEVICE INPUT 
RISE AND f"ALL 

TIMES< 6ns 

CL (INCLUDES JIG 
CAPACITANCE) 

5C032 

A.C. TESTING INPUT, OUTPUT WAVEFORM 

3-0~ .. 2.0 
INPUT . >TEST POINTS< 0.8 

0 0.8 

OUTPUT .1~· 
290155-7 .. 

A.e. Testing: Inputs are Drive'! at 3.0V for a Logic "1" and OV for 
a Logic "O". Timing Measurements are made at 2.0V for a Logic 
"1" and O.BV for a Logic "O" on Inputs. Outputs are measured at 
a 1.5V point 

290155-6 

A.C. CHARACTERISTICS TA= o•cto +70"C, Vee= 5V ±5%, TurboBitOnC10l 

From 
5C032·25 5C032·30 5C032·35 

Symbol To Unit 
Min Typ Max Min Typ Max Min Typ Max 

tpo I or 1/0 Comb. Output 25 30 35 ns 

tpzxC11) I or 110 Output Enable 25 30 35 ns 

tpxz(11) I or 1/0 Output Disable 25 30 35 ns 

NOTES: 
10. Typ. values are at TA = 25°C, Vee = 5V, Active Mode. 
11. tpzx and tpxz are measured at ±0.5V from steady state voltage as driven by spec. output load. tpxz is measured with 
CL= 5 pF. 

CAPACITANCE 
Symbol Parameter Conditions Min Typ Max Unit 

C1N Input Capacitance V1N = OV, f = 1.0 MHz 20 pF 

CouT Output Capacitance VouT = OV, f = 1.0 MHz 20 pF 

CcLK Clock Pin Capacitance VouT = ov, f = 1.0 MHz 20 pF 

Cvpp(12) VppPin 50 pF 

NOTE: 
12. Vpp is on Pin 11. 

2-23 



intJ 5C032 

A.C. CHARACTERISTICS TA = o•c to 10°c, Vee = 5V ± 5%, Turbo Bit On c1oi 

SYNCHRONOUS CLOCK MODE 

5C032·25 5C032·30 5C032·35 
Symbol Parameter Unit 

Min Typ Max Min Typ Max Min Typ Max 

fMAX Max. Frequency 47.6 43.5 40 MHz 
1 /tsu - No Feedback 

feNT Max. Count Frequency 33.3 28.5 25 MHz 
1 /teNT - witl1 Feedback 

tsu Input Setup Time to CLK 21 23 25 ns 

tH I or 1/0 Hold after CLK High 0 0 0 ns 

tea CLK High to Output Valid 16 17 20 ns 

teNT Register Output Feedback 30 35 40 ns 
to Register Input- Internal 
Path 

teH CLK High Time 10 11 12 ns 

teL CLKLowTime 10 11 12 ns 

2-24 



intJ 
SWITCHING WAVEFORMS 

COMBINATORIAL MODE 

INPUT OR 1/0 INPUT 

COMBINATORIAL OUTPUT 

COMBINATORIAL OR 
REGISTERED OUTPUT 

5C032 

~~1,...-------
I ~ HIGH IMPEDANCE 

./'i~~~~-3~-~S~~~TE~~~--

~-----------------------------------

HIGH IMPEDANCE 

3-STATE 

SYNCHRONOUS CLOCK MODE 

CLK1 

INPUT MAY CHANGE 

(FROM REGISTER 
TO OUTPUT) 

~~=1----------<k VALID OUTPUT 

VALID! 
INPUT 

2-25 

lcL 

290155-8 

INPUT MAY CHANGE 

VALID OUTPUT 

290155-9 



infef 

Current in Relation to Frequency 

SO.---.--,--.--....--.---.-..--~ 

40 t---+--+~t---+--+----+-+--l 

~ 30 ,,,,,,., 

_CURB~ 
20t1" 

10 ,l 
0 N~-~R~ 

0 s 10 1S 20 2S 30 3S 40 

290155-11 
Conditions: TA = O"C, Vee = 5.25V 

5C032 

Current in Relation to Temperature 

so.---~------~ 

40t--t-

30 1----+---+--==,,.... ..... ::+-1 

O'----'-~-'---.._ _ _.__. 
0 20 

Conditions: Vee = 5.25V 

40 

TEMP{C) 

60 80 8S 

290155-12 

Output Drive Current In Relation to Voltage 

100EE~~s~ 

2-26 



inter 5C060/5C090 
600-/900-GATE CHMOS 

H·SERIES ERASABLE PROGRAMMABLE 
LOGIC DEVICE {H-EPLD) 

• High Performance LSI Semi-Custom • Programmable Clock System with Two 
Logic Replacement for Low-End Gate Synchronous Clocks as Well as 
Arrays, TTL, and 74HC SSI and MSI Asynchronous Clocking Option on all 
Logic Registers 

• CHMOS EPROM Technology Based. UV • Programmable Output Registers. Can 
Erasable be Configured as D, T, SR, or JK Types 

• Low Power; 50 µA Typlcal Standby • Programmable Security Bit Allows Total 
Current Protection of Proprietary Designs 

• Erasable Array for 100% Generic 
Testability 

5C060 FEATURES: 5C090 FEATURES: 

• 16 Macrocells with Programmable 1/0 • 24 Macrocells with Programmable 1/0 
Architecture; up to 20 Inputs (4 Architecture; Up to 36 Inputs (12 
Dedicated, 16 1/0) or 16 Outputs Dedicated, 24 1/0) or 24 Outputs 

• High Speed tpo (max) 45 ns, 16.67 MHz • High Speed tpo (max) 50 ns, 16 MHz 
Performance Performance 

• High Performance Upgrade for • Logic and 1/0 Superset of the 5C060 
Commonly Used 24-Pln PLDs •• 40-Pln DIP Package for Expanded 1/0 

• Small Footprint 24-Pin 0.3" DIP Capability 
Package • 44-Pin J-Leaded Chip Carrier Package 

• 28 Pin J-Leaded Chip Carrier Package (See Packaging Spec., Order Number # 231369) 

(See Packaging Spec. Order # 231369) 

>= ~ "' "'-: ::> ;;: 8 ~ 
::> "'-: 

0 D.. ..J ~~ ~3 u > 

CLK1 Yee 
1/0.2 1/0.15 

INPUT1 INPUT4 

1/0.1 1/0.16 
1/0.3 1/0.14 

1/0.2 1/0.15 1/0.4 1/0.13 

vo:3 1/0.14 1/0.5 1/0.12 

1/0.4 1/0.13 1/0.11 

1/0.5 1/0.12 1/0.10 

1/0.11 NC NC 
1/0.10 

1/0.9 
cq ~ Q Q l:! ~ O? 

INPUT2 INPUT3 ts z 
~ ::> "' d ::> 0 

GND CLK2 - ~ ~-:::.. 
290104-28 

290104-1 

5C060 Pin Configurations 

2-27 
November 1987 

Order Number: 290104-005 



intJ 5C060/5C090 

N-O 
CLK1 VCC -~~::..... ::::t:~ 

INPUT1 INPUT12 0~~~~88~~~0 
INPUT11 

~!: !: !: u > > !: !: !:~ 

INPUT3 INPUT10 

1/0.1 1/0.24 1/0.2 NC 
1/0.2 6 1/0.23 1/0.3 1/0.23 
1/0.3 7 1/0.22 1/0.4 1/0.22 

1/0.4 8 1/0.21 1/0.5 1/0.21 

1/0.5 1/0.20 1/0.6 1/0.20 

1/0.6 1/0.19 1/0.7 1/0.19 

1/0.7 1/0.18 
1/0.8 1/0.18 
1/0.9 1/0.17 

1/0.8 1/0.17 1/0.10 1/0.16 
1/0.9 1/0.16 1/0.11 1/0.15 

1/0.10 1/0.15 NC 1/0.14 
1/0.11 1/0.14 

1/0.12 1/0.13 

~sss~~g555~ INPUT4 INPUT9 

INPUT5 INPUTS ~A. A. A.<:><:> u A. A. A.~ 
-!:!:!: !:!:!:-

290104-29 INPUT& INPUT7 

GND 

290104-2 

5C090 Pin Configurations 

The Intel 5C060 and 5C090 H-EPLDs (H-series Pro­
grammable Logic Devices) are capable of imple­
menting over 600 and 900 respectively of equivalent 
gates of user-customized logic functions through 
programming. Both devices can be used to replace 
low-end gate arrays, multiple programmable logic ar­
rays and LS TTL and 74HC (CMOS)' SSI and MSI 
logic devices. The 5C060 can also be used as a 
direct, low-power replacement for most, common 
24-pin fuse-based programmable logic devices. With 
their revolutionary programmable 1/0 architecture, 
both devices have advanced functional capabilities 
beyond that of typical programmable logic. 

The 5C060 and 5C090 H-EPLDs use CHMOS 
EPROM (floating gate) cells as logic control ele­
ments instead of fuses. The CHMOS EPROM tech­
nology reduces power consumption of H-EPLDs to 
less than 20% of a comparable bipolar device with­
out sacrificing speed performance. In addition, In­
tel's advanced CHMOS 11-E EPROM process tech­
nology enables greater logic densities to be 
achieved with superior speed and low-power per­
formance over other comparable devices. Intel's 
H-ELPDs add the benefits of "zero" stand-by power 
not available on other programmable logic devices. 
EPROM technology allows these devices to be 
100% factory tested by programming and erasing all 
the EPROM logic control elements. 

2-28 

The erasability of EPLDs introduces the designer to 
a new concept in hardware design called Modular 
EPLD Logic Design (MELD). Just as modular soft­
ware design speeds development time and reduces 
errors by isolating them to a specific module, the 
MELD philosophy aids in hardware design. A design­
er can develop his modular design on the Intel Pro­
grammable Logic Development System II (iPLDS II) 
and test individual modules for functionality. If one of 
the modules has a design flaw, the designer merely 
erases the part and starts anew (since the 5C060 
and 5C090 are EPROM-based, there is no waste 
associated with modular design as there would be in 
fuse-based PLDs). 

The architecture of the 5C060 and 5C090 is based 
on the "Sum of Products" PLA (Programmable Log­
ic Array) structure with a programmable AND array 
feeding into a fixed OR array. Both devices accomo­
date combinational and sequential logic functions. A 
proprietary programmable 1/0 architecture provides 
individual selection of either combinatorial or regis­
tered output and f~dback signals all with selectable 
polarity. 

A feature unique to the 5C060 and 5C090 is the abil­
ity to individually program the output registers as a 
D-, T-, SR-, or JK-type Flip-Flop without sacrificing 
the utilization of programmable AND logic. Addition­
ally, each output register can be individually clocked 
from any of the input or feedback paths available 



inter 5C060/5C090 

within the AND array. With these features, a wide 
variety of logic functions can be simultaneously im-
plemented-all on the same device. · 

ARCHITECTURE DESCRIPTION 

Externally, the 5C060 has 4 dedicated data input 
pins, 16 1/0 pins which may be configured for input, 
output, or bidirectional operations, and 2 synchro­
nous clock inputs. The 5C060 is contained in a 
24-pin windowed package (0.3 inch wide), and con­
tains 16 programmable registers. 

The 5C090 represents a superset of the 5C060 in 
capability. The 5C090 has 12 dedicated inputs, 24 
1/0 pins which may be configured for input, output, 
or bidirectional operations, and 2 synchronous clock 
inputs. The 5C090 is packaged in a 40-lead win­
dowed ceramic DIP and contains 24 programmable 
registers. 

AND ARRAY 

EPROM 
CONTROL 

BIT 

II 
\ 

The basic Macrocell architecture for both the 5C060 
and 5C090 is shown in Figure 1. The 5C060 has 16 
of these Macrocells while the 5C090 has 24 (one for 
each 1/0 pin). The Macrocell is organized in the fa­
miliar sum-of-products structure with a programma­
ble AND array attached to a fixed OR term. The in­
puts to the programmable AND array originate from 
the true and complement signals from each of the 
dedicated input pins and each of the 1/0 control 
blocks. The 40-input AND array of the 5C060 feeds 
160 AND gates (product terms) which are distributed 
among the 16 available Macrocells within that de­
vice. 

The AND array for the 5C090 has 72 inputs derived 
from the true and complement signals at the input 
and 1/0 pins. The AND array in the 5C090 encom­
passes 240 product terms which are distributed 
among the 24 Macrocells. The global device archi­
tectures are shown in Figure 2. 

SYNCHRONOUS 
CLOCK 

vcc OE/CLK 

CELECT 

OE 

OE/CLK 

H t-

-D 
1--

............. t-

© CLK 

8= 
8= 
8= 

OUTPUT 

~ 
REGISTER 

8= 
OUTPUT 
BUFFER 

~ 

~ ~ c~ ~ ~ ~ ~ c~ 
~REGISTER J .C~~ Ll ~.i ;i.~ i~ ~.ii~ i 

~ FEEDBACK 
INPUTS AND 1/0 

290104-3 

Figure 1. Basic Macrocell Architecture of the SC060 and SC090 

2-29 



intef 

5C060 - 16 Macrocells 

1/0 

1/0 

- 4 Dedicated Inputs 

MACROCELLS 

• • • 

5C060/5C090 

DEDICATED 
INPUTS 

GND 

AND RRAY 

DEDICATED 
INPUTS 

vcc 

Figure 2. 5C060 and 5C090 Global Architecture 

2-30 

5C090 - 24 Macrocells 
- 12 Dedicated Inputs 

MACROCELLS 

• • • 

1/0 

290104-4 



intef 5C060/5C090 

The Macrocells on both devices contain ten product 
terms total. Eight of the ten product terms (AND 
gates) are dedicated for logic implementation. One 
product term on each Macrocell is used for RESET 
control to the output register associated with the 
Macrocell. The final product term is used for OUT­
PUT ENABLE/ Asynchronous Clock implementation. 

Within the AND array, there is an EPROM connec­
tion at every intersection of an input signal (true and 
complement) and a product term to a given Macro­
cell. Before programming an erased device, every 
EPROM connection is made at every intersection. 
But during the programming process, these connec­
tions are opened so that only the desired connec­
tions remain.· Therefore, the true or complement of 
any input signal can be connected to any product 
term. If both the true and complement connections 
of any signal are left intact, a logical false results on 
the output of the AND gate. However, if both the true 
and complement connections are open, then a logic 
"don't care" results on the AND gate. Lastly, if all 
the inputs of a product term are programmed open, 
then a logical true results on the output of the AND 
gate. 

Both the 5C060 and 5C090 have two dedicated 
clock inputs to provide synchronous clock signals to 
the internal registers. Each of the clock signals con­
trols half the total registers within the given device. 
For example, CLK1 provides synchronous clocking 
to the registers in Macrocells in the left half of the 
array while CLK2 controls the registers associated 
with Macrocells in the right half of the array. The 
advanced 1/0 architecture allows for any number of 
the registers to be synchronously clocked (from 

2-31 

none to all). Both of the dedicated clock inputs latch 
the data into a given register when triggered on a 
positive edge. 

MACROCELL ARCHITECTURE 
SELECTION 

The 5C060 and 5C090 architecture provides each 
Macrocell with over 50 different possible 1/0 register 
configurations. Each 1/0 pin can be configured for 
combinatorial or registered output (true or comple­
ment) with feedback. In addition, four different types 
of output registers can be implemented into every 
1/0 pin without any additional logic requirements. 
The feedback mechanism for each register back into 
the AND array can be programmed to provide for 
either registered feedback from the Macrocell or in­
put feedback (treating the pin as an input). Another 
advantage of the advanced 1/0 capability of the 
5C060 and the 5C090 is the ability to individually 
clock each internal register from asynchronous 
clock signals. 

Output Enable (OE)/Clock Selection 

Two modes of operation are provided by the 
OE/CLK Select Multiplexer as a part of each Macro­
cell. One mode provides for three-state buffering of 
outputs while in the other mode, the outputs are al­
ways enabled. The operation of the OE/CLK Select 
Multiplexer sets the mode within a given Macrocell. 
Therefore, the output mode can be selected individ­
ually on every output. Figure 3 illustrates the two 
modes of OE/CLK operation. 



intJ 

OE CLK 

OE CLK 

SYNCHRONOUS 
CLOCK 

vcc OE/CLK 
SELECT 

5C060/5C090 

OE 

CLK- SYNCHRONOUS 

CLK 

OE-P..TERM CONTROLLED 

SYNCHRONOUS 
CLOCK 

VCC 

OUTPUT 
REGISTER 

OE/CLK 
SELECT 

MOOED 

OE 

OUTPUT 
BUFFER 

CLK -ASYNCHRONOUS 

CLK 

OUTPUT 
REGISTER 

MODE1 

OE-ENABLED 

OUTPUT 
BUFFER 

Figure 3. Output Enable/Clock Configuration 

2-32 

290104-5 

290104-6 



inter 5C060/5C090 

MODE 0: THREE·STATE BUFFERING 

In Mode 0, the three-state output buffer is controlled 
by a single product term originating from the AND 
array. The output is enabled when the product term 
is a logical true. Conversely, the output appears as 
high impedance when the product term is a logical 
false as shown in Table 1. In Mode 0, the Macrocell 
Flip-Flop is connected to its associated synchronous 
clock (either CLK1 or CLK2 depending upon the 
Macrocell's location within the device). Thus, the 
Macrocell Flip-Flop may be clocked by its respective 
synchronous clock but its output will not become 
valid until the output is enabled. 

Table 1. Mode 0 Output Selection 

Product Term Output Buffer 

FALSE Three-State 

L TRUE Enabled 

MODE 1: OUTPUT BUFFER ENABLED 

In Mode 1, the Output Buffer is always enabled. In 
addition, the Macrocell Flip-Flop is connected to the 
AND array. The Macrocell Flip-Flop may now be trig­
gered from an asynchronous clock signalgenerated 
by the AND array logic to the OE/CLK multiplexable 
term. Mode 1 allows the Macrocell Flip-Flops to be 
individually clocked from any of the available signals 
in the AND array. Since both true and complement 
values appear in the AND array, the Flip-Flop may 
be configured to trigger on positive or negative clock 
edges. Gated clock structures can be created since 
the Flip-Flop clock is created by a product term. 

Invert Select EPROM Bit 

The Invert Select EPROM bit is used to invert the 
product term input into the register. This applies to 
all inputs including double inputs on the JK and SR 
registers. 

REGISTER SELECTION 

The advanced 110 architecture of the 5C060 and the 
5C090 allows four different register types along with 
combinatorial output as illustrated in Figure 4. The 
register tYpes include a T, D, JK, or SR Flip-Flop and 
each Macrocell 1/0 structure may be indepen-

dently configured. In addition, all registers have an 
individual asynchronous RESET control from a dedi­
cated product term derived in the AND array. When 
this dedicated product term is a logical one, the 
Macrocell register is immediately cleared to a logical 
zero independent of the register clock. The RESET 
function occurs automatically on power-up. 

Output Register Configuration 

The four different register types shown in Figure 4 
are described below. 

2-33 

D- or T-type Flip-Flops 

When either a D- or T-type Flip-Flop is configured 
as part of the 1/0 structure, all eight of the product 
terms into the Macrocell are ORed together and 
fed into the register input. 

JK or SR Registers 

When either a JK or SR register is configured, the 
eight product terms are shared among two OR 
gates (one for the J or S input and the other for 
the K or R input). The allocation for these product 
terms for each of the register inputs is optimized 
by the iPLDS II development software. 

OUTPUT /FEEDBACK 

The Output Select Multiplexer allows for either regis­
tered, combinatorial or no output. 

The Feedback Select Multiplexer EPROM bit en­
ables registered, 1/0 (using the pin for bidirectional 
input or just input), or no feedback to the AND array. 

The Feedback Select is also important for building 
product terms with more than 8 products. The 8-
product product term of a Macrocell can be fed back 
into the AND array and combined with still more sig­
nals to create a much larger product term (of more 
than 8-inputs). In addition, if the feedback product 
term is not to be output, then the iPLDS II will re­
serve the associated Macrocell pin and indicate it in 
the REPORT file. A reserved pin should be left float­
ing (no connect) when assembled onto a circuit 
board. 

Any 1/0 pin may be configured as a dedicated input 
by selecting no output and pin feedback through the 
appropriate multiplexers. 



intef 

SYNCHRONOUS 
CLOCK 

vcc 

5C060/5C090 

1/0 SELECTION 
OUTPUT /POLARITY FEEDBACK 
Combinatorial/High Pin, None 
Combinatorial/Low Pin, None 

None Pin 

290104-7 

Figure 4a. Comblnatorlal 1/0 Configuration 

1/0 SELECTION 

OE 

OUTPUT/ 
POLARITY 

D-Register /High 
D-Register/Low 

None 
None 

FEEDBACK 

D-Register, Pin, None 
D-Register, Pin, None 

D-Registered 
Pin 

CLK FUNCTION TABLE 
D 

0 
0 
1 
1 

290104-8 

Figure 4b. D-Type Fllp-Flop Register Configuration 

2-34 

On On+ 1 

0 0 
1 0 
0 1 
1 1 



SYNCHRONOUS 
CLOCK 

vcc 

SYNCHRONOUS 
CLOCK 

vcc 

·-· 

5C060/5C090 

1/0 SELECTION 

OUTPUT/POLARITY 

T-Register/High 
T-Reglster/Low 

None 
None 

FEEDBACK 

T-Register, Pin, None 
T-Register, Pin, None 

T-Register 
Pin 

FUNCTION TABLE 

T On On+ 1 

0 0 0 
0 1 1 
1 0 1 
1 1 0 

290104-9 

Figure 4c. Toggle Fllp-Flop Register Configuration 

1/0 SELECTION 

OE 

OUTPUT/POLARITY 

JK Register/High 
JK Register/Low 

None 

FEEDBACK 

JK Register, None 
JK Register, None 

JK Register 

FUNCTION TABLE 
CLK J 

0 
0 
0 
0 
1 
1 
1 
1 

290104-10 

Figure 4d. JK Fllp·Flop Register Configuration 
2-35 

K 

0 
0 
1 
1 
0 
0 
1 
1 

On On+ 1 

0 0 
1 1 
0 0 
1 0 
0 1 
1 1 
0 1 
1 0 



intef 5C060/5C090 

SYNCHRONOUS 
CLOCK 

vcc. 

8-N 

INVERT 
SELECT 

OE 

Clk 

R RESET 

290104-11 

1/0 SELECTION 

OUTPUT/POLARITY 

SR Register/High 
SR Register/Low 

None 

FEEDBACK 

SR Register, None 
SR Register, None 

SR Register 

FUNCTION TABLE 

s R On On+ 1 

0 0 0 0 
0 0 1 1 
0 1 0 0 
0 1 1 0 
1 0 0 1 
1 0 1 1 

1 1 Illegal 

Figure 4e. SR Flip-Flop Register Configuration 

Erased-State Configuration 

Prior to programrriirig or after erasing, the 110 struc­
ture is configured for combinatorial active low output 
with input (pin) feedback. 

ERASURE CHARACTERISTICS 

Erasure characteristics of the 5C060 and 5C090 are 
such that erasure begins to occur upon exposure to 
light with wavelengths shorter than approximately 

2·36 

4000A. It should be noted that sunlight .and certain 
types of flourescent lamps have wavelengths in the 
3000-4000A. Data shows that constant exposure to 
room level floure~cent lightihg could erase the typi­
cal device in approximately three years, while it 
would take approximately one week to cause era­
sure when exposed to direct sunlight. If the 5C060 
or the 5C090 is to be exposeq to these types of 
lighting conditions for extended periods of time, con· 
ductive opaque labels should be placed over the de· 
vice window to prevent unintentional erasure. 



intJ 5C060/5C090 

The recommended erasure procedure for the 5C060 
and 5C090 is exposure to shortwave ultraviolet light 
with a wavelength of 2537 A. The integrated dose 
(i.e., UV intensity x exposure time) for erasure 
should be a minimum of fifteen (15) Wsec/cm2. The 
erasure time with this dosage is approximately 15 to 
20 minutes using an ultraviolet lamp with a 12,000 
µW/cm2 power rating. The 5C060 or 5C090 should 
be placed within one inch of the lamp tubes during 
erasure. The maximum integrated dose the 5C060 
or 5C090 can be exposed to without damage is 7258 
Wsec/cm2 (1 week at 12,000 µW/cm2). Exposure 
to high intensity UV light for longer periods may 
cause permanent damage to the device. 

PROGRAMMING CHARACTERISTICS 

Initially, and after erasure, all the EPROM control 
bits of the 5C060 and 5C090 are connected (in the 
"1" state). Each of the connected control bits are 
selectively disconnected by programming the 
EPROM cells into their "O" state. Programming volt­
age and waveform specifications are available by re­
quest from Intel to support programming of the 
5C060 and 5C090. 

int81igent ProgrammingTM Algorithm 

Both the 5C060 and 5C090 support the inteligent 
Programming Algorithm which rapidly programs Intel 
H-ELPDs (and EPROMs) using an efficient and reli­
able method. The inteligent Programming Algorithm 
is particularly suited to the production programming 
environment. This method greatly decreases the 
overall programming time while programming reli­
ability is ensured as the incremental program margin 
of each bit is continually monitored to determine 
when the bit has been successfully programmed. 

FUNCTIONAL TESTING 

Since the logical operation of the 5C060 and 5C090 
are controlled by EPROM elements, the device is 
completely testable. Each programmable EPROM 
bit controlling the internal logic is tested using appli­
cation-independent test program patterns. After 
testing, the devices are erased before shipment to 
customers. No post-programming tests of the 
EPROM array are required. 

2-37 

The testability and reliability of EPROM-based pro­
grammable logic devices is an important feature 
over similar devices based on fuse technology. 
Fuse-based programmable logic devices require a 
user to perform post-programming tests to insure 
proper programming. These tests must be done at 
the device level because of the cummulative error 
effect. For example, a board containing ten devices 
each possessing a 2% device fallout translates into 
an 18% fallout at the board level (it should be noted 
that programming fallout of fuse-based programma­
ble logic devices is typically 2% or higher). 

To enable functional evaluation of counter and 
state-machine applications, the 5C060 and 5C090 
contain register pre-load circuitry. This can be acti­
vated by interrupting the normal clocked sequence 
and applying V PP on pin 11 for the 5C060 or pin 17 
for the 5C090 to engage the pre-load state. Under 
these conditions, the Flip-Flops in the 5C060 and 
5C090 can be set to any logical condition and then 
return to normal operation. This process simplifies 
the input sequences necessary to evaluate the 
counter and state machine operations. 

DESIGN RECOMMENDATIONS 

To take maximum advantage of EPLD technology, it 
is recommended that the designer use the Modular 
EPLD Logic Design (MELD) method. The MELD phi­
losophy is derived from the modular programming 
method used in software development. In a modular 
software development environment, the engineer 
designs a modular program (typically on a develop­
ment system), stores it in memory (EPROM), and 
tests the module for functionality. A hardware de­
signer using EPLDs can use this same approach 
when designing logic. The designer develops a mod­
ular logic design on the Intel Programmable Logic 
Development System II (iPLDS II), stores it in "mem­
ory" (the EPROM control elements of the EPLD), 
and again tests the module for functionality. If the 
design is in error, the logic designer reprograms the 
EPLD with his new design as easily as a software 
designer can download a new program into memory. 

The MELD philosophy is new to programmable logic 
because EPROM-based PLDs are new. A modular 
logic development process using fused-based PLDs 
would be wasteful since a fused-based device can­
not be erased an re-used. 



5C060/5C090 

For proper operation, it is recommended that all in­
put and output pins be constrained to the voltage 
range GND < CV1N or VouT) <Vee· Unused inputs 
should be tied to an appropriate logic level (e.g. ei­
ther Vee or GND) to minimize device power con­
sumption. Reserved pins (as indicated in the iPLDS 
II REPORT file) should be left floating (no connect) 
so that the pin can attain the appropriate logic level. 
A power supply decoupling capacitor of at least 0.2 
µ.F must be connected directly between Vee and 
GND pins of the 5C060 and the 5C090. 

DESIGN SECURITY 

A single EPROM bit provides a programmable de­
sign security feature that controls the access to the 
data programmed into the device. If this bit is set, a 
proprietary design within the device cannot be cop­
ied. This EPROM security bit enables a higher de­
gree of design security than fused-based devices 
since programmed data within EPROM cells is invisi­
ble even to microscopic evaluation. The EPROM se­
curity bit, along with all the other EPROM control 
bits, will be reset by erasing the device. 

LATCH-UP IMMUNITY 

All of the input, 1/0, and clock pins of the 5C060 and 
5C090 have been designed to resist latch-up which 
is inherent in inferior CMOS structures. The 5C060 
and 5C090 are designed with Intel's proprietary 
CHMOS 11-E EPROM process. Thus, each of the 
5C060 and 5C090 pins will not experience latch-up 
with currents up to 100 mA and voltages ranging 
from -1V to Vee + 1V. Furthermore, the program­
ming pin is designed to resist latch-up to the 13.SV 
maximum device limit. 

INTEL PROGRAMMABLE LOGIC 
DEVELOPMENT SYSTEM 11 (iPLDS 11) 

The iPLDS II graphically shown in Figure 5 provides 
all the tools needed to design with Intel H-Series 
EPLDs or compatible devices. In addition to provid­
ing development assistance, iPLDS II insulates the 
user from having to know all the intricate details of 
EPLD architecture (the machine will optimize a de­
sign to benefit from architectual features). It contains 
comprehensive third generation software that sup­
ports four different design entry methods, minimizes 
logic, does automatic pin assignments and produces 

the best design fit for the selected EPLD. It is user 
friendly with guided menus, on-line Help messages 
and soft key inputs. 

In addition, the iPLDS II contains programmer hard­
ware in the form of an iUP-PC Universal Programmer 
Personal Computer to enable the user to program 
EPLDs, read and verify programmed devices and 
also to graphically edit programming files. The soft­
ware generates industry standard JEDEC object 
code output files which can be downloaded to other 
programmers as well. 

The iPLDS II has interfaces to popular schematic 
capture packages (including Dash series from 
FutureNet• and PC CAPS from PCAD)" • to enable 
designs to be entered using schematics. A more in­
tegrated schematic entry method is provided by 
SCHEMA 11-PLD, a low-cost schematic capture 
package that supports EPLD primitives and user-de­
fined macro symbols. SCHEMA 11-PLD contains the 
EPLD Design Manager, which provides a single user 
interface to both SCHEMA 11-PLD and iPLS II soft­
ware. The other design formats supported are Boole­
an equation entry and State Machine design entry. 

The iPLDS II operates on the IBMt PC/XT, PC/AT, 
or other compatible machine with the following con­
figuration: 

1. At least one floppy disk drive and hard disk drive. 
2. MS-DOStt Operating System Version 3.0 or 

greater. 
3. 640K Memory. 

2-38 

4. Intel iUP-PC Universa.1 Programmer Personal 
Computer and GUPI Adaptor (supplied with iPLDS 
II). 

5. A color monitor is suggested. 

Detailed information on the Intel Programmable Log­
ic Development System II is contained in a separate 
Intel data sheet. (Order Number: 280168) 

•FutureNet is a registered trademark of FutureNet 
Corporation. DASH is a trademark of FutureNet 
Corporation. 

"*PC-CAPS is a trademark of P-CAD Corporation. 

tlBM Personal Computer is a registered trade­
mark of International Business Machines Corpo­
ration. 

ttMS-DOS is a registered trademark of Microsoft 
Corporation. 



'Tl 
16 c 
Cil I I I 111n I Intel Programmable Logic 
~ ~. Development System II 
~ lil'lS~ 

![ .,, 
i8 ··-. 
DJ D1,F1~COCF~ I I ------~"- ~ &namR El.PO 
3 512·ANIJIS7,59) 

3 LOGICIWIE ... EllJSTEllTlll' 
DI 

l 

§!: LOGIC.,._ -~,. en 
CD COlftBI 0 
b 0 

I\) IQ O> 
1 - 00T2=CU<"lf3 MACRO 0 

Ca) n OUTl=CIJl.'(12. EXPMDEft .......... co c ,.,.,.., en 
CD 0 
< 0 
CD ,_ CO 
0 ~ 0 

'1:1 
3 
CD 
:::J -
~ 
.+ STATE 

CD -

j ~ 11 ~I~ 
C SIMllATIC 

0 -_,.... ..... 

290104-12 



intJ 5C060/5C090 

ABSOLUTE MAXIMUM RATINGS* 
Symbol Parameter Min Max 

Vee Supply Voltage!1l -2.0 7.0 

Vpp Programming -2.0 13.5 
Supply Voltage(1) 

V1 DC Input Voltage(1)(2) -0.5 Vcc+0.5 

Unlta 

v 
v 

v 

*Notice: Stresses above those listed under "Abso­
lute Maximum Ratings" may cause permanent dam­
age to the device. This is a stress rating only and 
functional operation of the device at these or any 
other conditions above those indicated in the opera­
tional sections of this specification is not implied. Ex­
posure to absolute maximum rating conditions for 
extended periods may affect device reliability. 

lstg Storage Temperature -65 +150 ·c 
lamb Ambient Temperature(3) -10 +85 ·c 

NOTES: 
1. Voltages with respect to ground. 
2. Minimum DC input is -0.5V. During transitions, the in­
puts may undershoot to - 2.0V for periods less than 20 ns 
under no load conditions. 
3. Under bias. Extended temperature versions are also 
available. 

D.C. CHARACTERISTICS TA = o•c to 70°C, Vee = 5.0V ± 5% 

Symbol Parameter Conditions 

V1H(4) HIGH Level Input Voltage 

V1L(4) LOW Level Input Voltage 

VoH(5) HIGH Level Output Voltage lo= -4.0 mA DC, Vee= Min. 

Vol LOW Level Output Voltage lo = 4.0 mA DC, Vee = Min. 

11 Input Leakage Current Vee = Max., GND < VouT < Vee 

loz Output Leakage Current Vee = Max., GND < VouT < Vee 

lsc(6) Output Short Circuit Current Vee = Max., VouT = 0.5V 

lss(7) Standby Current Vee= Max., 
5C060 (Standby) V1N ""' Vee or GND 

Ice Power Supply Current Vee= Max., No Load, 
5C060 (Active) (Turbo Bit Off) V1N = Vee or GND Input Freq. = 1 MHz 

Device Prog. as 16-Bit Ctr. 

lss(7) Standby Current Vee= Max., 
5C090 (Standby) V1N = Vee or GND 

Ice Power Supply Current Vee= Max., No Load, 
5C090 (Active) (Turbo Bit Off) V1N = Vee or GND Input Freq. = 1 MHz 

Device Prog. as Two 12-Bit Ctrs. 

NOTES: 

Min Typ Max 

2.0 Vee+ 0.3 

-0.3 0.8 

2.4 

0.45 

±10.0 

±10.0 

50 100 

10 15 

50 100 

15 25 

4. Absolute values With respect to device GND; all over and undershoots due to system or tester noise are included. 
5. lo at CMOS levels (3.84V) = -2 mA. 
6. Not more than 1 output should be tested at a time. Duration of that test must not exceed 1 second. 
7. With Turbo Bit Off, device automatically enters standby mode approximately 100 ns after last input transition. 

2-40 

Unit 

v 
v 
v 
v 

µA 

µA 

mA 

µA 

mA 

µA 

mA 



A.C. TESTING LOAD CIRCUIT 

DEVICE INPUT 
RISE AND rALL 
TIMES< 6nS 

5V 

5C060/5C090 

290104-13 

A.C. TESTING INPUT, OUTPUT WAVEFORM 

3.0 

~:: > TEST POINTS < INPUT 
0 

OUTPUT 

290104-14 

A.C. Testing: Inputs are Driven at 3.0V for a Logic "1" and OV for 
a Logic "O". Timing Measurements are made at 2.0V for a Logic 
"1" and o.av for a Logic "O" on Inputs. Outputs are measured at 
a 1.SV point. 

A.C. CHARACTERISTICS TA= 0°Cto10°c, Vee= 5V ±5%, TurboBitOn<B> 

Device Non.(10) 
Symbol From To 5C080-45 5C080·55 5C09G-50 5C09o-&O Turbo Unit 

Min Typ Max Min Typ Max Min Typ Max Min Typ Max Mode 

tpo1 Input Comb. Output 43 53 46 55 +25 ns 

tpo2 110 Comb. Output 45 55 50 60 +25 ns 

tpzx<Bl I or 110 Output Enable 45 55 50 60 +25 ns 

tpxz<B> I or 110 Output Disable 45 55 50 60 +25 ns 

tcLR Asynch. Q Reset 45 55 50 60 +25 ns 
Reset 

NOTES: 
8. Typical Values are at TA = 2s·c, Vee = sv, Active Mode. 
9. tpzx and tpxz are measured at ±0.SV from steady state voltage as driven by spec. output load'. tpxz is measured with 
CL= SpF. 
10. If device is operated with Turbo Bit Off (Non-Turbo Mode), increase time by amount shown. 

CAPACITANCE 
Symbol Parameter Conditions Min Typ Max Unit 

C1N Input Capacitance V1N = OV, f = 1.0 MHz 20 pF 

CouT Output Capacitance VouT = OV, f = 1.0 MHz 20 pF 

PcLK Clock Pin Capacitance VouT = ov, f = 1.0 MHz 20 pF 

Cvpp VppPin Pin 13 on 5C060 50 pF 

Pin 21 on 5C090 80 pF 

2-41 



intJ 5C060/5C090 

SYNCHRONOUS CLOCK MODE A.C. CHARACTERISTIC 
TA = o·c to 70°C, Vee = 5.ov ± 5%, Turbo Bit On(8l 

Device Non- Device 

Symbol Parameter 5C060-45 5C060·55 Turbo 5C090-50 5C090·60 

Min Typ Max Min Typ Max Mode Min Typ Max Min Typ .Max 

IMAX Max. Frequency 26.0 23.0 (11) 26.0 21.5 
(1 ltsu-No Feedback) 

fcNT Max. Count Frequency 22.0 18.0 (11) 20 16.5 
(1 /lcNr-With 
Feedback) 

tsu1 Input Setup Time to CLK 36 41 +25 36 43 

tsu2 1/0 Setup Time to CLK 38 43 +25 38 46 

tH I or I/ 0 Hold after 0 0 0 0 
CLKHigh 

tco CLK High to Output Valid 22 25 23 25 

lcNT Register Output 45 55 +25 50 60 
Feedback to Register 
Input-Internal Path 

lcH CLK High Time 17.5 21.5 17.5 23 

tcL CLKLowTime 17.5 21.5 17.5 23 

ASYNCHRONOUS CLOCK MODE A.C. CHARACTERISTICS 
TA = o·c to 70°C, Vee= 5.ov ±5%, Turbo Bit On(8l 

Device Non· Device 

Symbol Parameter 5C060-45 5C060-55 Turbo 5C090-50 5C09o-60 

Min Typ Max Min Typ Max Mode Min Typ Max Min Typ Max 

fACNT Max. Count Frequency 22.0 18.0 (11) 20 16.5 
(1 /tAcNr-With Feedback) 

tASU1 Input Setup Time to 10 10 +25 10 10 
Asynch. Clock 

tASU2 110 Setup Time to 12 12 +25 10 10 
Asynch. Clock 

tAH Input or 110 Hold After 15 15 15 15 
Asynch. Clock 

tAcO Asynch. CLK to Output Valid 52 62 60 70 

tACNT Register Output Feedback 45 55 +25 50 60 
to Register Input-Internal 
Path 

tACH Asynch. CLK High Time 17.5 21.5 20 25 

tACL Asynch. CLK Low Time 17.5 21.5 20 25 

NOTES: 
11. Recalculate frequency according to equation at left of table. 

2-42 

Non-!10) 
Turbo Unit 
Mode 

(11) MHz 

(11) MHz 

+25 ns 

+25 ns 

ns 

ns 

+25 ns 

ns 

ns 

Non-(10) 
Turbo Unit 
Mode 

(11) MHz 

+25 ns 

+25 ns 

ns 

ns 

+25 ns 

ns 

ns 



SWITCHING WAVEFORMS 

COMBINATORIAL MODE 

INPUT OR 1/0 INPUT 

COMBINATORIAL OUTPUT 

(FROM REGISTER 
TO OUTPUT} 

HIGH IMPEDANCE 

3- STATE 

SYNCHRONOUS CLOCK MODE · 

CLK1,CLK2 

INPUT MAY CHANGE 

(FROM REGISTER 
TO OUTPUT) 

5C060/5C090 

~'"=1------

tcLR 

1-- tpxz 

r--- tpzx 

VALID I 
INPUT 

2-43 

HIGH IMPEDANCE 

3-STATE 

VALID OUTPUT 

ASYNCHRONOUSLY 
CLEAR OUTPUT 

INPUT MAY CHANGE 

VALID OUTPUT 

290104-16 

290104-17 



intJ 5C060/5C090 

SWITCHING WAVEFORMS (Continued) 

ASYNCHRONOUS CLOCK MODE 

ASYN. 
CLOCK 
INPUT 

OTHER 
INPUT 

____ ,, 
INPUT MAY CHANGE INPUT MAY CHANGE 

(fROM REGISTER \ / VALID OUTPUT 
_______ To_ou_T_Pu_T_> __________ ./, \....._ ________ _ 

5C060 5C060 

290104-18 

Current in Relation to Frequency Current In Relation to Temperature 
120 

110 

100 

90 

80 

70 

< 60 

5 50 

" 40 .J.> 

30 

20 

10 

,/-
iz: 

LJ 
~r;C ... ~' 
£ 

!Mon-Turbo 

0 
0 5 10 15 20 25 30 35 

120 F':t;:~~J~~I:I:~ 
11of- fc•r=25MHz l""""1 

1::=::~:=1:=:=::=:: 
~ t-t-1- fcNr-10MHz 

60 ~-+---1---1-l_Ij__:t::::_,__-1-t-1= 
50 pl--llf:cNtT:=f1:MHfz'.::, ETu;rbto~ 

] 401--
30 f-->--1-----'--l+-_,___.____.____.___. 

.!cNT= 1MHz, Non-Turbo 
20 Fi'""'f1-1Hr=t;;;~:tl 
10f--1--t-+-l+-+--1--t-+4 
o~~~~~~~~ ....... 

0 20 40 60 8085 

fcNT (MHz) TEMP (C) 

290104-27 290104-25 

Conditions:/T A = o•c, Vee = s.2sv Conditions: Vee = 5.25V, TTL inputs 

5C060/090 
Output Drive Current In Relation to Voltage 

c 

~ 
0 

'S 
Cl. 

'S 
0 

~ 

100 r---r--.--...,..--,...--, 

1~----'--~-~-~~ 

0 2 3 4 5 

v0 Output Voltage (V) 

290104-26 

Conditions: TA = 25'C 

2-44 



5C121 
1200 GATE CHMOS 

H-SERIES ERASABLE PROGRAMMABLE LOGIC DEVICE 
• High Performance LSI Semi-Custom 

Logic Replacement for Gate Arrays and 
Conventional Fixed Logic 

• EPROM Technology Based. UV 
Erasable ' 

• Programmable Macrocell and 1/0 
Architecture; up to 36 Inputs or 24 
Outputs, 28 Macrocells Including 4 
Buried Registers 

• All Inputs are Latchable with a 
Programmable Latch Feature 

• High Speed tpo (Max) 50 ns Operating 
Frequency (Max) 20 MHz 

• Low Power; 15 mW Typical Standby 
Dissipation 

• Typical Usable Gate Count of 1200 
2-lnput NANO Gates 

• Advanced Architecture Features 
Including Programmable Output 
Polarity (Active High/Low), Register 
By-Pass and Reset Controls 

• Programmable Clock System for Input 
Latches and Output Registers 

• Product-Term Sharing and Local Bus 
Architecture for Optimized Array 
Performance 

• Compatible with LS TTL and 74HC 
CMOS Logic 

• Register Pre-Load and Erasable Array 
for 100% Generic Testability 

• Programmable "Security Bit" allows 
total protection of proprietary designs 

• Available in a 40-Lead Window Cerdlp 
Package (See Packaging spec, Order #231369) 

The Intel 5C121 H-EPLD (H-series Erasable Programmable Logic Device) is an LSI logic circuit that is user 
customizable through programming. This device can be used to replace gate arrays, multiple programmable 
logic arrays and LS TTL and 74HC CMOS SSI and MSI logic devices. The logic capacity of the 5C121 is 
typically equal to 1200 two-input NANO gates. 

The 5C121 H-EPLD uses CHMOS* EPROM (floating gate) cells as logic control elements instead of fuses. 
Use of Intel's advanced CHMOS 11-E EPROM process technology enables greater logic densities to be 
achieved with superior speed and power performance. The EPROM technology also enables these devices to 
be 100% factory tested by the programming and the erasure of all the EPROM logic control elements in the 
device. 

The architecture of the 5C121 is based on the 'Sum of Products' PLA (Programmable Logic Array) structure 
with a programmable AND array feeding into a fixed OR array. Flexibility in accommodating logical functions 
without the overhead of unnecessary product terms or speed penalties of programmable OR structures is 
achieved through the provision of a range of OR gate widths as well as through product term sharing. The use 
of a segmented PLA structure with local and global connectivity allows for further improvements in perform­
ance. The 5C121 also contains innovative architectural features that provide extensive Input/Output flexibility. 
*CHMOS is a patented process of Intel Corporation. 

RECOMMENDED OPERATING CONDITIONS 
Symbol Parameter Min Max Units 

Vee Supply Voltage 4.75 5.25 v 
V1 INPUT Voltage 0 Vee v 
Vo OUTPUT Voltage 0 Vee v 
TA Operating Temperature 0 70 ·c 
tR INPUT rise Time 500 ns 

tF INPUT fall Time 500 ns 

ILLUSTRATIONS COURTESY OF ALTERA CORPORATION. 

2-45 

Pin Configuration 

•12 7 34 12 

1/01 8 33 1, 

1/02 1/024 

1/03 1/023 

1/04 1/022 

1/05 1/021 

vo, 13 1/020 

1/07 14 1/019 

I/Os 15 26 1/0111 

l/Og 16 25 1/017 

1/010 17 1/016 

vo,, 18 1/015 

1/012 19 22 1/014 

21 1/013 
290098-1 

November 1987 
Order Number: 290098--004 



intef 5C121 

ARCHITECTURE DESCRIPTION 

The 5C121 H-EPLD has 12 dedicated inputs as well 
as 24 Input/Output pins. All inputs to the circuit 
(both dedicated and 1/0 inputs) may be latched us­
ing transparent 7475 type latches. In addition to 
these 36 input latches, 28 D type registers are also 
provided. 

The internal architecture of the 5C121 H-EPLD is 
based on 28 macrocells. Each macrocell (see Figure 
1) contains a PLA structure (programmable AND ar­
ray product terms connected to an OR gate) and an 
1/0 architecture control block (with a D Flip-Flop) 
that can be programmed to create many different 
output logic structures. This powerful 1/0 architec­
ture can be configured to support both active-high, 
active-low, 3-state, open drain and bi-directional 
data ports all on a 4-bit wide basis. They can also 
act as inputs on a nibble wide basis with optional 
input latching. 

Macrocells in each half of the circuit are grouped 
together for 110 architecture programming. Each 
bank of four macrocells can be further programmed 
on an individual macrocell basis to generate active 
high or active low outputs of the logic function from 
the PLA. 

The primary logic array of the 5C121 is segmented 
into two symmetrical halves that communicate via 
global bus signals. The main array contains some 
15104 programmable elements representing 236 
product terms (AND gates) each containing 64 input 
signals. 

The macrocells share a common programmable 
clock system (described in a later section) that con­
trols clocking of all registers and input latches. The 
device contains 8 modes of clock operation that al­
low logic transition to take place on either rising or 
falling edges of the clock signals. 

The device also contains four macrocells whose out­
puts are not tied to any 1/0 pin but feed back into 
the array to create buried state-functions. The feed­
back path may be either the registered or combina­
tional result of the PLA output. The use of the buried 
state macrocells provides maximum equivalent logic 
density without demanding higher pin-count pack­
ages that consume valuable board space. 

2-46 

MACROCELL 1/0 ARCHITECTURE 

The Input/Output architecture of the 5C121 macro­
cell (see Figure 1) can be programmed using both 
static and dynamic controls. The static controls re­
main fixed after the device is programmed whereas 
the dynamic controls may change state as a result 
of the signals applied to the device. 

The static controls set the inversion logic (i), register 
by-pass (ii) and input feedback multiplexers (iii). In 
the latter two cases these controls operate on four 
macrocells as a bank. 

The buried-state registers have simpler controls that 
determine if the feedback is to be registered or com­
binational. 

The inversion control logic, marked (i) in Figure 1, is 
achieved by programming the EPROM control bit 
connected to the same XOR gate as the output from 
the PLA structure. Programming or erasure of this 
EPROM element toggles the OR gate output of the 
PLA between active-high and active-low. The inver­
sion control operates on an individual macrocell ba­
sis. 

The register by-pass control, marked (ii) in Figure 1 
allows the PLA output to either flow through the D 
Flip-Flop as a registered output or by-pass the Flip­
Flop and be a combinational output. 

The dynamic controls consist of a programmable in­
put latch-enable as well as reset and output enable 
product terms. The latch-enable function is common 
throughout the 5C121 and once chosen, will latch all 
the inputs. This function is programmed by the clock 
control block but may also be driven by input signals 
applied to pin 1 (see clock modes-Table 1). 

The reset and output-enable controls are logically 
controlled by single product terms (the logic AND of 
programmed variables in the array). These terms 
have control over banks of four macrocells. 

The output-enable control may be used to generate 
architecture types that include bi-directional, 3-state, 
open drain, or input only structures. 



5C121 

---------------------------------------------------1 l 
I I 

/ 
I 

PLA BLOCK~ 

I I 
I I 

I I 
i 

I 
i 
i 

! 
1/0 ARCHITECTURE BLOC~ (.';)\ EPROM I 

\Y ~i~::::~ 2 I 
_______________ __J 

Figure 1. 5C121Macrocell1/0 Architecture 

INTERNAL BUS STRUCTURE 

The two identical halves of the 5C121 communicate 
via a series of bucses. The local bus structure used 
for communication within each half of the chip con­
tains 16 conductors that carry the TRUE and COM­
PLEMENT of 8 local macrocells. In the block dia­
gram (Figure 2) of the 5C121 the local macrocells 
are B-1 and B-2 on one hall and A-1 and A-2 en the 
other half. 

2-47 

The global busses (input bus & Global feedback 
from A-3 & B-3 macroceils & buried registers) are 
made up of 48 conductors that span the entire chip. 
These 48 conductors carry the TRUE and COMPLE­
MENT of the twelve primary inputs (pins 2 through 7 
and 33 through 38), signals from 4 Buried Registers 
as well as the global outputs of 8 macrocells in 
groups A-3 and B-3. · 



intJ 5C121 

A-1 MACROCELLS 

B-1 MACROCELLS 
290098-3 

L. ______ _ 
Figure 2. 5C121 Block Diagram 

2-48 



5C121 

A-2 MACROCELLS A-3 MACROCELLS 

8-2 MACROCELLS R-3 MACROCELLS 

290098-4 

___________________ .J 

Figure 2. 5C121 Block Diagram (Continued) 

2-49 



inter 

In this illustration a small group of 4 product-terms is 
shared by groups containing 8 product-terms each. 
This feature is most useful in counter applications 
where common terms exist in the functions. 

DETAILED CIRCUIT 
REPRESENTATION 

-0- = 64 INPUT AND GATE 
(ONE PRODUCT TERM) 

5C121 

Figure 3. Shared Product-Term Circuits 

2-50 

LOCAL GLOBAL INPUT 
BUS BUS BUS 

290098-5 



intef 5C121 

SHARED PRODUCT TERMS 

Macrocells 9 & 10, 11 & 12, 17 & 18 and 19 & 20 (in 
groups A-3 and B-3-the macrocells with global 
feedback) have the facility to share a total of 16 ad­
ditional product terms. This sharing takes place be­
tween pairs of adjacent macrocells. This capability 
enables, for example, macrocells 9 and 10 to ex­
pand to 16 and 8 effective product terms respective­
ly, and for macrocells 11 and 12 both to expand to 
12 effective product terms. Figure 3 shows this shar­
ing technique in detail. This facility is primarily of use 
in state machine and counter applications where 
common product terms are frequently required 
among output functions. 

MACROCELL·BUS INTERFACE 

As discussed earlier, the macrocells within the 
5C121 are interconnected to other macrocells and 
inputs to the device via three internal data busses. 

The product terms span the entire bus structure (lo­
cal feedback, global feedback and input buses) that 

At each intersecting point in the logic array there exists an 
£PROM-type programmable connection. Initially. all connections 
are complete. This means that both the true and complement of all 
inputs are connected to each product-term. Connections are 
opened during the programming process. Therefore any product 
term can be connected to the true or complement of any input 
When both the true and complement connections of any input are 
left intact, a logical false resufts on the output of the AND gate. If 
both the true and complement connections of any input are pro­
grammed open, then a logical "don't care" results for that input. If 
all inputs for a product term are programmed open, then a logical 
true results on the output of the AND gate. 

is adjacent to their macrocell (see Figure 4) so that 
they may produce a logical AND of any of the vari­
ables (or their complements) that are present on the 
busses. 

All macrocells have the ability to return data to the 
local or the global bus. Feedback data may originate 
from the output of the macrocell or from the 1/0 pin. 
Feedback to the global bus communicates through­
out the part. Macrocells that feedback to the local 
bus communicate only to their half of the 5C121. 
Connections to and from the signal busses are 
made with EPROM switches that provide the repro­
grammable logic capability of the circuit. 

Macrocells in groups A-3 and B-3 and the buried 
registers all have global bus connections while mac­
rocells in groups A-1, A-2 and B-1, B-2 have only 
local bus connections (see Block Diagram, Figure 2). 
Advanced features of the Intel Programmable Logic 
Development System II will, if desired, automatically 
select an appropriate macrocell to meet both the 
logic requirements and the connection to an appro­
priate signal bus to achieve the interconnection to 
other macrocells. 

64 INPUT AND GATE 

'--... 

EPROM@ 
CELL 

CONNECTION 11 

EPROM CELL LOCAL GLOBAL INPUT 
ARCHITECTURE FEEDBACK BUS BUS BUS 
SWITCH SIGNALS 

290098-6 

Figure 4. Macrocell-Bus Interface 

2-51 



inter 5C121 

CLOCK MODE CONTROL 

The 5C121 contains two internal clock data paths 
that drive the input latches (transparent 7475 type) 
and the output registers. These clocks may be pro­
grammed into one of 8 operating modes (see clock 
mode Table 1). Figure 1 shows a typical macrocell 
which is driven by the master clock signal CLK and 
the input latch-enable signal ILE. 

The master clock signal is input via pin 1. If pro­
grammed modes 4, 5, 6 & 7 are chosen, a second 
clock signal is required which is input via pin 38 (see 
Figure 5). Table 1 shows the operation of each clock 
programming mode. 

If modes 0, 1, 4, 5, 6 or 7 are chosen (i.e. latching of 
the inputs is required), all inputs, both dedicated and 
1/0, are latched with the same ILE signal. Data ap­
plied to the inputs when CLK1 is low (high) is latched 
when CLK1 goes high (low) and will stay latched as 
long as CLK1 stays high (low). Levels shown in pa­
renthesis are for modes 1, 5 & 7 and levels shown 
outside parenthesis are for modes O, 4 & 6. 

Care is required when using any of the clock modes 
4, 5, 6 or 7, that require two input clock signals to 
ensure that timing hazards are not created. 

ERASURE CHARACTERISTICS 

Erasure characteristics of the 5C121 are such that 
erasure begins to occur upon exposure to light with 
wavelengths shorter than approximately 4000A. It 
should be noted that sunlight and certain types of 
fluorescent lamps have wavelengths in the 3000-
4000A. Data shows that constant exposure to -room 
level fluorescent lighting could erase the typical 
5C121 in approximately three years, while it would 
take approximately one week to cause erasure when 
exposed to direct sunlight. If the 5C121 is to be ex­
posed to these types of lighting conditions for ex­
tended periods of time, conductive opaque labels 
should be placed over the window to prevent unin­
tentional erasure. 

The recommended erasure procedure for the 5C121 
is exposure to shortwave ultraviolet light which has 
the wavelength of 2537A. The integrated dose (i.e., 
UV intensity x exposure time) for erasure should be 
a minimum of fifteen (15) Wsec/cm2. The erasure 
time with this dosage is approximately 15 to 20 min­
utes using an ultraviolet lamp with a 12,000 µW/cm2 

2-52 

power rating. The 5C121 should be placed within 
one inch of the lamp tubes during erasure. The maxi­
mum integrated dose the 5C121 can be exposed to 
without damage is 7258 Wsec/cm2 (1 week @ 

12,000 µW/cm2). Exposure to high intensity UV light 
for longer periods may cause permanent damage. 

PROGRAMMING CHARACTERISTICS 

Initially, and after erasure, all the EPROM control 
bits of the 5C121 are connected (in the "1" state). 
Each of the connected control bits are selectively 
disconnected by programming the EPROM cell into 
their "O" state. Programming voltage and waveform 
specifications are available by request from Intel to 
support programming of the 5C121. 

int81igent ProgrammingTM Algorithm 

The 5C121 supports the inteligent Programming Al­
gorithm which rapidly programs Intel H-ELPDs (and 
EPROMs) using an efficient and reliable method. 
The inteligent Programming Algorithm is particularly 
suited to the production programming environment. 
This method greatly decreases the overall program­
ming time while programming reliability is ensured as 
the incremental program margin of each bit is con­
tinually monitored to determine when the bit has 
been successfully programmed. 

FUNCTIONAL TESTING 

Since the logical operation of the 5C121 is con­
trolled by EPROM elements, the device is complete­
ly factory tested. Each programmable EPROM bit 
controlling the internal logic including the buried 
state registers are tested using application-indepen­
dent test program patterns. After testing, the devic­
es are erased before shipment to customers. No 
post-programming tests of the EPROM array are 
necessary. 

To enable functional evaluation of counter and 
state-machine applications, the 5C121 contains reg­
ister pre-load circuitry. This can be activated by in­
terrupting the normal clocked sequence and apply­
ing Vpp on pin 2 to engage the pre-load state. Under 
these conditions the Flip Flops in the 5C121 can be 
set to any logical condition and then return to normal 
operation. This process simplifies the input se­
quences necessary to evaluate the counter and 
state machine operations. 



intef 5C121 

Table 1. Clock Programming (Key: L = Latched; T = Transparent) 

Programmed Input Signals 
Mode Are Latched When: 

0 CLK1 
_/\_ 

L 
(Pin 1) T 

1 CLK1 

~ 
T 

(Pin 1) L 

2 Inputs Not Latched 

3 Inputs Not Latched 

4 CLK1 
_/\_ 

L 
(Pin 1) T 

5. CLK1 

~ 
T 

(Pin 1) L 

6 CLK1 
_/\_ 

L 
(Pin 1) T 

7 CLK1 

~ 
T 

(Pin 1) L 

DESIGN RECOMMENDATIONS 

For proper operation it is recommended that input 
and output pins be constrained to the range GND < 
CV1N or Vour) < Vee- Unused inputs should be tied 
to an appropriate logic level (e.g. either Vee or GND) 
to minimize device power consumption. 

When utilizing a macrocell with an 1/0 pin connec­
tion as a buried macrocell (i.e. just using the macro­
cell for feedback purposes to other macrocells), its 
1/0 pin is a 'reserved pin'. (The Intel Programmable 
Logic Development System II will label the pin 'RE­
SERVED' in the utilization report that it generates.) 
Such an 1/0 pin will actually be an output pin and 
should not be grounded. It should be left unconnect­
ed such that it can go high or low depending on the 
state of the macrocell's output. 

In normal operation Vee/Vpp (pin 40) should be 
connected directly to Vee (pin 39). 

2-53 

Output Registers Clock 
Change State When: Configuration 

CLK1 1 Clock 
(Pin 1) '--
CLK1 _r 1 Clock 
(Pin 1) 

CLK1 

'--
1 Clock 

(Pin 1) 

CLK1 _r 1 Clock 
(Pin 1) 

CLK2 

'--
2Clocks 

(Pin38) 

CLK2 

'--
2Clock 

(Pin 38) 

CLK2 _r 2Clocks 
(Pin 38) 

CLK2 2Clocks 
(Pin38) _r 

DESIGN SECURITY 

A single EPROM bit provides a programmable de­
sign secruity feature that controls the access to the 
data programmed into the device. If this bit is set, a 
proprietary design within the device cannot be cop­
ied. This EPROM security bit enables a higher de­
gree of design security than fused-based devices 
since programmed data within EPROM cells is invisi­
ble even to microscopic evaluation. The EPROM se­
curity bit, along with all the other EPROM control 
bits, will be reset by erasing the device. 

LATCH-UP IMMUNITY 

All of the input, 1/0, and clock pins of the 5C121 
have been designed to resist latch-up which is inher­
ent in inferior CMOS structures. The 5C121 is de­
signed with Intel's proprietary CHMOS 11-E EPROM 
process. Thus, each of the 5C121 pins will not expe­
rience latch-up with currents up to 100 mA and volt­
ages ranging from -1V to Vee+ 1V. Furthermore, 
the programming pin is designed to resist latch-up to 
the 13.5V maximum device limit. 



intef 

ILE 

CLK 
(PIN 1) 

CLOCK SIGNALS TO 
'A' HALF' Of' CIRCUIT 

5C121. 

CLK-------. 

"CLOCK CONTROL 
LOGIC" 

TRANSPARENT 
INPUT LATCHES 

(7•75 TYPE} 

CLK =REGISTER CLOCK 
ILE= INPUT LATCH ENABLE 

13 1, 15 ~ CLK2 
OPTIONAL SECOND I '(~IN 38) 

CLOCK INPUT 
290098-7 

Figure 5. Programmable Clock Control System 

2-54 



intJ 5C121 

ABSOLUTE MAXIMUM RATINGS"' •Notice: Stresses above those listed under "Abso­
lute Maximum Ratings" may cause permanent dam­
age to the device. This is a stress rating only and 
functional operation of the device at these or any 
other conditions above those indicated in the opera­
tional sections of this specification is not implied. Ex­
posure to absolute maximum rating conditions for 
extended periods may affect device reliability. 

Symbol Parameter Min Max Unit 

Vee Supply Voltage(1) -2.0 7.0 v 
Vpp Programming -2.0 13.5 v 

$upply Voltage(1 l 

V1 DC Input Voltage(1)(2) -0.5 Vee+0.5 v 
Ice DC Vee Current(4) 100 mA 

Ts.!ll._ Storage Temperature -65 +150 ·c 
Tamb Ambient Temperature(3) -10 +85 ·c 
NOTES: 
1. Voltages with respect to ground. 
2. Minimum DC input is -0.5V. During transitions, the in­
puts may undershoot to - 2.0V for periods less than 20 ns 
under no load conditions. 
3. Under bias. 
4. With outputs tristated. 

D.C. CHARACTERISTICS TA = 0° to 10°c, Vee = 5.ov ± 5% 
Symbol Parameter Conditions Min Typ Max Unit 

V1H HIGH Level 2.0 Vee+0.3 v 
Input Voltage 

V1L LOW Level -0.3 0.8 v 
Input Voltage 

VoH HIGH Level lo= -4.0 mA DC 2.4 v 
Output Voltage 

Vol LOW Level lo= 4.0mADC 0.45 v 
Output Voltage 

11 Input Leakage Current V1 = Vee or GND ±10.0 JJ.A 

loz 3-State Output Vo = Vee or GND ±10.0 µA 
Off-State Current 

lss Vee Supply Current (Standby) v, = VccorGND CMOS Inputs 3 mA 
(Note6) 10 = o TILlnputs 30 

Ice Vee Supply Current (Active) No Load CMOS Inputs 50 mA 
f = 10MHz TILlnputs 100 

los Output Short Circuit Current (Note5) 130 mA 

NOTES: 
5. Output shorted for no more than 1 sec. and no more than one output shorted at a time. los is sampled but not 100% 
tested. 
6. Chip automatically goes into standby mode if logic transitions do not occur. (Approximately 100 ns after last transition.) 

A.C. TESTING LOAD CIRCUIT 

341.n 

OEVICE INPUT 
RISE AND FALL 
TIMES< 6nS 

eL=50pF 
290098-8 

2-55 

A.C. TESTING INPUT, OUTPUT WAVEFORM 

3.0 

~;>TEST POINTS< INPUT 

0 

OUTPUT 

290098-9 
A.e. Testing: Inputs are Driven at 3.0V for a Logic "1" and OV for 
a Logic "O". Timing Measurements are made at 2.0V for a Logic 
"1 " and 0.8V for a Logic "O" on inputs. Outputs are measured at 
a 1.5V point. 



5C121 

A C CHARACTERISTICS T . . A= O" t 70"C V 0 'fCC = 50V ±5% 

Symbol Parameter Device 5C121·50 5C121-65 5C121-90 Unit 
Conditions Min Max Min Max Min Max 

tpo Non-Registered Input or 1/0 50 65 90 ns 
Input to Non-Registered Output 

tpzx<7l Non-Registered Input or 1/0 CL= 30pF 50 65 90 ns 
Input to Output Enable 

tpxz<7l Non-Registered Input or 110 50 65 90 ns 
Input to Output Disable 

tsu Non-Registered Input or 1/0 37 47 62 ns 
Input to Output Register Setup 

tH Non-Registered Input or 1/0 0 0 0 ns 
Input to Output Register Hold 

tcH Clock High Time 20 25 30 ns 

tcL Clock Low Time CL=30pF 20 25 30 ns 

tco Clock to Output Delay 28 33 38 ns 

tcNT Minimum Clock Period (Register Output Feed- 50 55 75 ns 
back to Register Input-Internal Path) 

fcNT Maximum.Frequency (1 /tcNT) 20.0 18.0 13.0 MHz 

fMAX Maximum Frequency (1 ltsu) 25.0 20 16.0 MHz 

tRST Asynchronous Reset Time 50 65 90 ns 

t1LS Set Up Time for Latching Inputs 0 0 0 ns 

t1LH Hold Time for Latching Inputs 15 20 25 ns 

tc1c2 Minimum Clock 1 to Clock 2 Delay 40 50 65 ns 

t1LDFS Input Latch to D-FF Setup Time 
Mode0, 1 

40 50 65 ns 

toFILS D-FF to Input Latch Setup Time 25 30 35 ns 

tP3 Minimum Period for a 65 85 100 ns 
2-Clock System (T c1c2 + tco1l 

!3 Maximum Frequency (1 /tP3) 15.0 12.0 10.0 MHz 

NOTE: 
7. tpzx and tpxz are measured at ±0.5V from steady state voltage as driven by spec. output load. tpxz is measured with 
CL= 5 pF. 

SWITCHING WAVEFORMS 

INPUT OR 1/0 INPUT 

COMBINATIONAL OUTPUT 
INPUT MAY CHANGE 

t--lpxz~ 
HIGH IMPEDANCE 

3-STATE 

HIGH IMPEDANCE 
VALID OUTPUT !-STATE 

290098-11 
290098-10 

NOTE: 
Above waveforms shown for clock modes 2 or 3 (tsu & tH are as in modes 2 & 3; no ILE signal is used). 

2-56 



intJ SC121 

CLOCK MODES 
SWITCHING WAVEFORMS 

1-CLOCK SYSTEM: MODES 0 ANO 1 

CLK1 (PIN 1) 

ti LS 

INPUTS OR -'\ll-T"-""""1.ir----T--"'\ ,+--- ----
1/0 INPUTS -""-1---''---.....,io-- "+--""' ,, ___ _ 

REGISTERED 
OUTPUT----+------------''''"+--------

----tpo---

COMBINATIONAL 
__ .., _________ __,, 

COMBINATIONAL----------­
OR REGISTEREO 

OUTPUT-----------

tpzx==t 

INVERT CLK1 FOR MODE 0 

1-CLOCK SYSTEM: MODES 2 ANO 3 

CLK1 (PIN 1} 

ii't\'.~,1: =:f ""]€ .. 0-f _______ _ 
REGISTERED OUTPUT . ._ _______ _ 

INPUTS OR ~ t 1/0 INPUTS ------

COMBINATIONAL tpo f 
OUTPUT -------+-t-p-xz"""t- ~PZX 1:: 

COMBINATIONAL J 
OR REGISTERED ~>------1 

OUTPUT--------"""· 

INVERT CLK1 FOR MOOE 2 

2-57 

290098-12 

290098-13 



intJ 5C121 

CLOCK MODES 
SWITCHING WAVEFORMS (Continued) 

REGISTERED 

2-CLOCK SYSTEMS: MODES 4 THROUGH 7 
CLK1 PIN 1 CONTROLS THE INPUT LATCH CLOCK 

CLK2 PIN 38 CONTROLS THE 0-FF CLOCK. 

OUTPUT ---+------''"---...-ji-------
COMBINATIONAL ---+------1-----+------

0UTPUT ---+------ -----+------
- -----tp_xz_:j COMBINATIONAL -

OR REGISTERED 
OUTPUT--------

INVERT CLK1 FOR MODES 5 & 7 
INVERT CLK2 FOR MODES 4 & 5 

100~~~~~~~~~~ 

50 l===t=:;;;t;:::;;;if;e$~ -
20 L ~ 
10H---ll----ll----l---"i.------I 

loL loH1' 
s r+---11----11-----1----rU-,......_. 

"":\ 
~ 211---11----11-----1----1---ot 

1L---''----''----'---'~--" 

0 2 3 5 

v0 Output Voltage (V) 
290098-20 

Output Drive Current In Relation to Voltage 

2-58 

290098-14 



intef sc121 · 

Intel Programmable Logic 
Development System II (IPLDS II) 

The iPLDS II provides all the tools needed to design 
with Intel H-Series EPLDs or compatible devices 
(see Figure 6). It contains comprehensive third gen­
eration software that supports four different design 
entry methods, minimizes logic, does automatic pin 
assignments and produces the best design fit for the 
selected EPLD. It is user friendly with guided menus, 
on-line Help messages and soft key inputs. 

In addition, the iPLDS II contains programmer hard· 
ware in the form of an expansion card for the PC 
with programming software to enable the user to 
program EPLDs, read and verify programmed de­
vices and also to graphically edit programming files. 
The software generates industry standard JEDEC 
object code output files which can be downloaded to 
other programmers as well. 

The iPLDS II has interfaces to popular schematic 
capture packages (Dash series from Futurenet• and 
PC CAPS*• from PCAD) to enable designs to be 
entered using schematics. A more integrated sche· 
matic entry method is provided by SCHEMA 11-PLD, 
a low-cost schematic capture package that supports 
EPLD primitives and user-defined macro symbols. 

2-59 

SCHEMA 11-PLD contains the EPLD Design Manag­
er, which provides a single user interface to both 
SCHEMA 11-PLD and iPLS II software. The other de­
sign entry formats supported are Boolean equation 
entry and State Machine design entry. 

The iPLDS II runs on the IBMt PC, PC/XT or PC/AT 
and other compatible machines with the following 
configuration: 

(1) At least one floppy disk drive and hard disk drive 

(2) MS-DOStt Operating System Version 2.0 or lat-
er release 

(3) 640K Memory 

(4) Intel iUP-PC Universal Programmer-Personal 
Computer and GUPI Adaptor (supplied with 
iPLDS II). 

Detailed information on the Intel Programmable Log­
ic Development System II is contained in a separate 
Intel data sheet (Order Number: 280168). 

•FutureNet is a registered trademark of FutureNet Corpora­
tion. DASH is a trademark of FutureNet Corporation. 

.. PC-CAPS is a trademark of P-CAD Corporation. 

tlBM Personal Computer is a registered trademark of Inter­
national Business Machine Corporation. 

ttMS-DOS is a registered trademark of Microsoft Corpora• 
tion. 



Figure 6. Intel Programmable Logic Development System II 

2-60 



5C180 
1800-GATE CHMOS 

ERASABLE PROGRAMMABLE LOGIC DEVICE 
• High Performance LSI Semicustom 

Logic Replacement for TTL and 7 4HC 
SSI and MSI Logic 

• CHMOS EPROM Technology-Based UV 
Erasable 

• 48 Macrocells with Programmable 1/0 
Architecture; up to 64 Inputs (16 
Dedicated, 48 1/0) or 48 Outputs 

• High Speed tpo (max) 75 ns Operating 
Frequency (Max) 12 MHz 

• Low Power; 100 µW Typical Standby 
Dissipation 

• Programmable "Security Bit" Allows 
Total Protection of Proprietary Designs 

• Dual Feedback Signals Allowing 1/0 
Pins to Be Used for Buried Logic and 
Dedicated Input 

• Programmable Clock System with Four 
Synchronous Clocks as well as 
Asynchronous Clocking Option on All 
Registers 

• Programmable Registers. Can Be 
Configured as D, T, SR or JK Types 
with Individual Reset Controls 

• Register Pre-Load and Erasable Array 
for 100% Generic Testability 

• 68-Pin J-Lead Chip Carrier and Pin Grid 
Array Packages 
(See packaging spec., Order #231369) 

The Intel 5C180 EPLD (Erasable Programmable Logic Device) is a CH MOS LSI Logic Device capable of 
integrating 1800 to over 2000 equivalent gates of SSl/MSI logic. This user customizable Logic Device is 
available in a 68-pin J-Leaded chip carrier or Pin Grid Array package and has the benefits of low power and 
increased flexibility. 

The 5C180 EPLD uses CH MOS EPROM (floating gate) cells as logic control elements instead of fuses. Use of 
Intel's advanced CHMOS 11-E EPROM process technology enables greater logic densities to be achieved with 
superior speed and power performance. The EPROM technology also enables these devices to be 100% 
factory tested by the programming and the erasure of all the EPROM logic control elements in the device. 

The architecture of the 5C180 is based on the "Sum of Products" PLA (Programmable Logic Array) structure 
with a programmable AND array feeding into a fixed OR array. The 48 macrocells of the 5C180 can be 
partitioned into 4 identical quandrants ea.ch containing 12 macrocells. This device makes use of a segmented 
PLA structure with local and global bus structures to provide for increased performance and greater device 
utilization. The 5C180 has unique architectural features that allow programming of all 48 registers to D, T, SR 
or JK configurations without sacrificing product terms. These registers can be either clocked asynchronously 
or in banks with four synchronous clocks. In addition, the 16 global macrocells have two independent feed­
back paths to the array that allow for buried logic implementation together with use of the 1/0 pin for input 
functions. 

1/0 
1/0 

~~~~~~:'5-~~~~~~~~:s.~ 290111-1 

Figure 1. Pin Configuration

2-61

L 000000000
1/0 1/0 ' 00000000000 1/0 1/0
1/0 1/0 J 00 00 1/0 1/0
1/0 1/0 H QQ QQ 1/0 1/0
1/0 1/0 G 00 5C180 00 1/0 1/0

1/0 GNO r 00 (BOTTOM VIEW) 00 GNO 1/0

1/0 1/0 [00 00 1/0 1/0
1/0 1/0 0 QQ QQ 1/0 l/O

1/0 1/0 c 00 00 1/0 1/0

1/0 1/0 ' 00000000000 1/0 1/0
• 000000000

290111-35

Figure 2. PGA Pin Configuration

November 1987
Order Number: 29011 Hl04

intef 5C180

ARCHITECTURE DESCRIPTION

Externally, the 5C180 provides 12 dedicated data in­
puts, 4 synchronous clock inputs, and 48 1/0 pins
which may be individually programmed for input, out­
put, or bi-directional operation.

The Block Diagram is shown in Figure 2. The internal
architecture is organized in familiar sum-of-products
(AND-OR) structure. The 5C180 houses a total of
480 product terms distributed among 48 Macrocells.
The basic Macrocell structure is shown in Figure 3.
Input and feedback signals are selectively connect­
ed to product terms via EPROM cells. The output of
the AND array feeds a fixed OR gate to produce
sum-of-products logic. The final output may be com­
binatorial or registered, programmed active high or
low. Combinatorial, registered, or pin feedback is
also user-defined.

The 5C180 is portioned into 4 identical quadrants.
Each quadrant contains 12 Macrocells. Input signals
to the Macrocells come from the 5C180 Local and
Global bus structures. These two buses comprise an
88-input AND array for each quadrant. The output of
each Macrocell feeds an 1/0 Architecture Control
Block which contains output and feedback selection.

Four dedicated clock inputs provide synchronous
clock signals to the 5C180 internal registers. There
is one synchronous clock per quadrant. Therefore
each clock signal controls a bank of 12 registers.
CLK1 may be connected to registers in Macrocells
1-12, CLK2 with Macrocells 13-24, CLK3 with Mac­
rocells 25-36, and CLK4 with Macrocells 37-48.
With synchronous clocks, the flip-flops are positive
edge triggered. Both true and complement signals
for each dedicated clock input may also be used
within the AND array. All 48 internal registers may be
individually programmed for synchronous or asyn­
chronous clocking. Asynchronous clocking is possi­
ble via a Macrocell product term. Clock inputs not
used for synchronous clock signals may be used as
global bus inputs.

Invert Select EPROM Bit

The Invert Select EPROM bit is used to invert the
product term input into the register. This applies to
all inputs including double inputs on JK and SR reg­
isters. The invert option allows the highest possible
logic utilization by use of deMorgan logic inversion.

At each intersecting point in the logic array there
exists an EPROM-type programmable connection.
Initially, all connections are complete. This means
that both the true and complement of all inputs are
connected to each product.term. Connections are

2-62

opened during the programming process. Therefore
any product term can be connected to the true or
complement of any input. When both the true and
complement connections of any input are left intact,
a logical false results on the output of the AND gate.
If both the true and complement connections of any
input are programmed open, then a logical "don't
care" results for that input. If all inputs for a product
term are programmed open, then a logical true re­
sults on the output of the AND gate.

BUS STRUCTURE

Input and feedback signals are connected to each
5C180 Macrocell via a Local and Global Bus. Figure
4 shows the Macrocell-Bus interface for Quadrant D.
The Global Bus contains 64 input signals while the
Local Bus has 24.

Within the 5C180 Macrocell, the product.terms
share the entire bus structure. Therefore, a logical
AND of any of the variables (or their complements)
that is present on the buses may be produced by
each product term.

All quadrants share the same Global Bus. Inputs to
the bus come from the true and complement signals
of the 12 dedicated data inputs, 4 clock inputs, and
the 16 Global Macrocell pin feedback signals.

Each quadrant has its own Local Bus. Inputs to this
bus come from the 12 quadrant Macrocells. For the
eight Local Macrocells, the signals can be either
from the Macrocell internal logic or from the pin. For
the four Global Macrocells, the signals come from
the Macrocell internal logic only.

Table 1 summarizes the Macrocell interconnect.

Table 1. Macrocell Interconnect

Pin Macro- Feedback Feedback
cell# Structure Interconnect

Quad 2-9 1-8 Local Quad A
A 10-13 9-12 Local Quad A

Global All

Quad 23-26 13-16 Local QuadB
B Global All

27-34 17-24 Local QuadB

Quad 36-43 25-32 Local Quade
c 44-47 33-36 Local Quade

Global All

Quad 57-60 37-40 Local QuadD
D Global All

61-68 41-48 Local QuadD

infer

1/0

1/0

1/0

1/0

1/0

1/0

1/0

1/0

QUADRANT A

QUADRANT B

5C180

QUADRANT D

QUADRANT C

GLOBAL MACROCELLS
LOCAL MACROCELLS

Figure 2. 5C180 Block Diagram

2-63

1/0

1/0

1/0

1/0

1/0

1/0

1/0

1/0

1/0

1/0

1/0

1/0

INPUT

290111-2

intJ

EPROM
CELL

CONNECTION

AND ARRAY

INPUTS AND 1/0

5C180

SYNCHRONOUS
CLOCK

PRODUCT
TERM

j

vcc

CLK

Figure 3. Basic Macrocell Architecture of the 5C180

2-64

OE

1/0

290111-3

intef

GLOBAL BUS TO
OTHER QUADRANTS

5C180

MACROCELL 48

MACROCELL 47

MACROCELL 46

MACROCELL 45

MACROCELL 44

MACROCELL 43

MACROCELL 42

MACROCELL 4 1

MACROCELL 40

MACROCELL 39

MACROCELL 38

MACROCELL 37

Figure 4. Quadrant "D" Bus Interface

2-65

290111-4

inter 5C180

5C180 MACROCELLS

Within each 5C180 quadrant there are two different
types of Macrocells; Local Macrocells, Figure 5, and
Global Macrocells, Figure 6. Both types share an 88-
input AND array and contain a: total of ten product
terms. Eight product terms are dedicated for logic
implementation. One product term is reserved for
Asynchronous Clear to the Marcocell register. The
remaining product term is used for Output Enable/
Asynchronous Clock implementation. Each 5C180
product term represents an 88-input AND gate. The
1/0 Architecture Control Block provides each Mac­
rocell with both combinatorial and registered 1/0
configurations.

Local Macrocells provide one feedback path into the
AND array. Combinatorial, registered or pin feed­
back may be selected from the Feedback Select
Multiplexer. The selected feedback signal is then

routed to the quadrant local bus. Therefore, the Lo­
cal Macrocell feedback communicates only to Mac­
rocells within the same quadrant. There are a total of
32 Local Macrocells within the 5C180, with eight per
quadrant.

Global. Macrocells contain two independent feed­
back paths to the AND array. Combinatorial or regis­
tered feedback is supplied to the local bus and pin
feedback is supplied to the global bus. The "dual
feedback" capability allows the Macrocell to be
used for internal logic functions as well as a dedicat­
ed input pin. To obtain this configuration, the output
buffer must be disabled. If the Global Macrocell 1/0
pin is not being used as a dedicated input, the Mac­
rocell logic may be fed back along the global bus
allowing routing to any of the 5C180's 48 Macro­
cells. There are 16 Global Macrocells contained in
the 5C180, four per quadrant.

QUADRANT
SYNCHRONOUS

CLOCK

-GLOBAL BUS-LOCAL BUS-
OE

OE/ CLOCK 1-+:i;..-R;:._++~-~:;...--1~-.a::i::..+-I

~=---1~-,

LOCAL BUS

~ '-~~~-..J

GLOBAL QUADRANT QUADRANT
DEDICATED A,B,C,D LOCAL

INPUTS GLOBAL FEEDBACK
(16 INPUTS) FEEDBACK {12 MACROCELLS)

{ 1 6 MACROCELLS)

CLK

1/0
ARCHITECTURE

CONTROL

FEEDBACK
SELECT

Figure 5. Local Macrocell Logic Array

2-66

290111-5

5C180

QUADRANT
SYNCHRONOUS

CLOCK CLOCK
SELECT -GLOBAL BUS-LOCAL Bus-

Ot+t--tt--H------+tl---+l----tr+---1
1t-t-t--H--H------Ht---+t----l~--I

·~ 21-++--H--H------Hl---++---if+---f
~ 31-+l---t+--IH-----++---++----tt--~~--I
g 4t+t--tt--H------+tt---+l----lr+---I Q

1/0
ARCHITECTURE

CONTROL
f St-t-t--H--H------Ht---+t----1~--I

6t-t-t--H--H------Ht---+t----l~--I

7t+t--tt--H------+tt---+l----lr+---I

RESET t-t-t--H--H------Ht---+t----1~--I

LOCAL BUS

GLOBAL BUS

....____, "-----~
GLOBAL QUADRANT QUADRANT

DEDICATED A,B,C,D LOCAL
INPUTS GLOBAL FEEDBACK

(16 INPUTS) FEEDBACK (12 WACROCELLS)
(16 WACROCELLS)

290111-6

Figure 6. Global Macrocell Logic Array

MACROCELL LOGIC
CONFIGURATIONS

Comblnatorlal Selectlon

In the Combinatorial configuration, eight product
terms are ORed together to generate the output sig­
nal. The Invert Select EPROM bit controls output
polarity and the Output Enable buffer is product-term
controlled. The Feedback Select allows the user to
choose oombinatorial, 1/0 (pin) or no feedback to
the respective local and global buses.

REGISTER SELECTION

The advanced 1/0 architecture of the 5C180 allows
four different register types along with combinatorial
output as illustrated in Figures 7a-7e. The register
types include a T, D, JK, or SR Flip-Flop and each
Macrocell 1/0 structure may be independently con­
figured. In addition, all registers have an individual
asynchronous RESET control from a dedicated

2-67

product term derived in the AND array. When this
dedicated product term is a logical one, the Macro·
cell register is immediately cleared to a logical zero
independent of the register clock. The RESET func·
tion occurs automatically on power-up.

The four different register types shown in Figures
7b-7e are described below:

D- or T-type Flip-Flops

When either a D- or T-type Flip-Flop is configured
as part of the 1/0 structure, all eight of the prod­
uct terms into the Macrocell are ORed together
and fed into the register input.

JK or SR Registers

When either a JK or SR register is configured,
the eight product terms are shared among two
OR gates (one for the J or S input and the other
for the K or R input). The allocation for these
product terms for each of the register inputs is
optimized by the iPLDS II development software.

5C180

Buried Logic Selection

For Global Macrocells, if no output is selected, the
logic may be "buried" and the 1/0 pin can be used
as an additional dedicated input. The use of "dual
feedback" is accomplished by tri-stating the Output
Enable Buffer. Thus, up to 16 additional dedicated
inputs may be added without sacrificing the Macro­
cell internal logic.

In the erased state, the 1/0 architecture is config­
ured for combinatorial active low output with 1/0
(pin) feedback.

T

Q

RESET

RESET

D-

290111-7

Figure 7a. Combinatorial 1/0 Configuration

RESET

D

Q

RESET

290111-8

Figure 7b. D-Type Flip-Flop Register
Configuration

2-68

N

8-N

290111-9

Figure 7c. Toggle Flip-Flop Register
Configuration

INVERT
SELECT

CLK

K RESET

Q

290111-10

Figure 7d. JK Flip-Flop Register Configuration

5C180

N

8-N

INVERT
SELECT

CLK

Q

R RESET

290111-11

Figure 7e. SR Fllp-Flop Register Configuration

MACROCELL OE/CLK SELECT

Each 5C180 register may be clocked synchronously
or asynchronously. Figure Ba and 8b shows the
modes of operation provided by the OE/CLK Select
Multiplexers for both Local and Global Macrocells.

The operation of each multiplexer is controlled by
EPROM bits and may be individually configured for
each 5C180 Macrocell.

In Mode 0, the three-state output buffer is controlled
by a single product term. If the output of the AND
gate is a logical true then the output buffer is en­
abled. If a logical false resides on the output of the
AND' gate then the output buffer is seen as high im­
pedance. In this mode the Macrocell flip-flop may be
clocked by its quadrant synchronous clock input. In
the erased state, the 5C180 is configured as Mode
0.

· 1n Mode 1, the Output Buffer is always enabled. The
Macrocell flip-flop now may be triggered from an
asynchronous clock signal generated by the Macro­
cell product term. This mode allows individual clock­
ing of flip-flops from any available signal in the quad­
rant AND array. Because both true and complement
signals reside in the AND array, the flip-flops may be
configured for positive or negative edge triggered
operation. With the clock now controlled by a prod­
uct term, gate clock structures are also possible.

2-69

In Modes 2 and 3, the Output Buffer is alway~ dis­
abled. The Macrocell flip-flop may still be triggered
from clock signals generated from the Macrocell
product term or asynchronous clocks. This mode is
only possible for Global Macrocells.

OE/CLK

SYNCHRONOUS
CLOCK

vcc

5C180

MACROCELL
REGISTER

OE

CLK - SYNCHRONOUS

CLK

OE- P-TERM CONTROLLED

OUTPUT
BUFFER

290111-12
The register is clocked by the quadrant synchronous clock signal which is common to 11 other Macrocells. The output is enabled by the
logic from the product term.

OE/CLK

SYNCHRONOUS
CLOCK

vcc

MACROCELL
REGISTER

OE

CLK - ASYNCHRONOUS

CLK

OE-ENABLED

OUTPUT
BUFFER

290111-13
The output is permanenUy enabled and the register is clocked via the product term. This allows for gated clocks that may be generated
from elsewhere in the 5C180.

Figure 8a. Local Macrocell OE/CLK Selection

2-70

OE/CLK

SYNCHRONOUS
ClOCK

5C180

MACROCELL
REGISTER

OE

ClK - SYNCHRONOUS

Cl.K

OE-DISABLED

OUTPUT
BUFrER

290111-14
The output la permal*ltly disabled and the register clocked by the quadrant synchronous clock signal. The pin can be used as an Input
whlle the register or combinational output can be fed back.

OE/CLK

SYNCHRONOUS
CLOCK

MACROCELL
REGISTER

OE

CLK - ASYNCHRONOUS

CLK

OE- DISABLED

OUTPUT
BUFFER

290111-15
The output is permanently disabled and the register is clocked via the product term. This allows gated clocks that may be generated
elaewhere in the 5C180. The pin can be used as in input while the register or combinational output can be fed back.

Figure Sb. Global Macrocell Addltlonal OE/CLK Selection

2-71

5C180

MACROCELL LOGIC + 1/0
CONFIGURATIONS.

The 5C180 Input/Output Architecture provides each
Macrocell with over 50 possible 110 configurations.

VI

i

!

COMBINATORIAL
, 1/0 Selectlon

Output/Polarity Feedback Bus

Co(Tlbinatorial/High Comb, Pin, None Local
Combinatorial/L~w Comb, Pin, None Local

None Comb Local
None Pin Local

Figures 9and10 show the 5C180basic1/0 configu­
rations for both ·the Local and Global Macrocells.
Along with combinatorial, four register types are
available. Each Macrocell may be independently
programmed.

FEEDBACK
SELECT

290111-16

Figure 9. L.ocal Macrocell 1/0 Configurations

2-72

5C180

SYNCHRONOUS
CLOCK OE/CLOCK

Vee SELECT
OE

CLK

D Q

c

290111-17

D-TYPE FLIP-FLOP
110 Selection

Output/Polarity Feedback Bus

D-Register/High D-Register, Pin, None Local
D-Register/Low 0-Register, Pin, None Local

None D-Register Local
None Pin Local

Function Table

D On On+i
0 0 0
0 1 0
1 0 1
1 1 1

Figure 9. Local Macrocell 1/0 Configurations (Continued)

2-73

intef 5C180

SYNCHRONOUS
CLOCK OE/CLOCK

TOGGLE FLIP·FLOP
110 Selectlon

Output/Polarity Feedback

T-Register/High T-Register, Pin, None
T-Register/Low T-Register, Pin, None

None T-Register
None Pin

Function Table

T an an+1
0 0 0
0 1 1
1 0 1
1 1 0

Bus

Local
Local
Local
Local

SELECT

FEEDBACK
SELECT

OE

T Q

c

Figure 9. Local Macrocell 1/0 Configurations (Continued)

2-74

290111-18

5C180

SYNCHRONOUS
CLOCK OE/CLOCK

Vee SELECT
OE

CLK

Q

UI UI :::> :::> 8-N m m ...
~

K c
i g
c:> ...

INVERT
SELECT

290111-19

JK FLIP-FLOP
1/0 Selection

Output/Polarity Feedback Bus
JK Register/High JK Register, None Local
JK Register/Low JK Register, None Local

None JKR~ster Local

Function Table

J K ~ On+1
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 0

Figure 9. Local Macrocell 1/0 Configurations (Continued)

2-75

5C180

SYNCHRONOUS
CLOCK OE/CLOCK

SR FLIP-FLOP

Cll
::>
m
.....

~

8-N

1/0 Selectlon

Output/Polarlty Feedback
SR Register/High SR Register, None
SR Register/Low SR Register, None

None SR Register

Function Table

s R Qn Qn + 1

0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 1

Yee
SELECT

Bus
Local
Local
Local

INVERT
SELECT

FEEDBACK
SELECT

OE

CLK

R C

Figure 9. Local Macrocell 1/0 Configurations (Continued)

2-76

290111-20

W.~r· ···'e'. 5C180

290111-21

COMBINATORIAL
110 Selectlon

Output/Polarlty Feedback Bua
Combinatorial/High Comb, Pin, None Local, Global
Combinatorial/Low Comb, Pin, None Local, Global

None Comb Local, Global
None Pin Global
None Comb/Pin Local/Global

Figure 10. Global Macrocell 110 Configurations

2·77

5C180

SYNCHRONOUS
CLOCK CLOCK

SELECT

(f) (f) => => m m
...J ...J

~ <
0 0 0 ...J ...J

~

D·TYPE FLIP-FLOP
1/0 Selection

Output/Polarity Feedback Bus
0-Register/High 0-Register, Pin, None Local, Global
0-Register I Low 0-Register, Pin, None Local, Global

None 0-Register Local, Global
None Pin Global
None 0-Register/Pin Local/Global

Function Table

D On On+1
0 0 0
0 1 0
1 0 1
1 1 1

D

c

OE
SELECT

Q

OE

Figure 10. Global Macrocell 1/0 Configurations (Continued)

2-78

290111-22

intef 5C180

SYNCHRONOUS
CLOCK CLOCK

SELECT

(/) (/) ::> ::>
"' "'II
~ ~ 0 0II (!)

TOGGLE FLIP·FLOP
1/0 Selectlon

Output/Polarlty Feedback Bus
T-Register /High T-Register, Pin, None Local, Global
T-Register/Low T-Register, Pin, None Local, Global

None T-Register Local, Global
None Pin Global
None T-Register/Pin Local/Global

Function Table

T On On+1
0 0 0
0 1 1
1 0 1
1 1 0

T

c

OE
SELECT

Q

OE

Figure 10. Global Macrocell 1/0 Configurations (Continued)

2-79

290111-23

Ill Ill ::I ::I 8-N m m g ill
~ 0

JK FLIP-FLOP
1/0 Selectlon

Output/Polarlty Feedback
JK Register/High JK Register, None
JK Register/Low JK Register, None

None JK Register
None JK Register/Pin

Function Table

J K On On+1
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 0

5C180

SYNCHRONOUS
CLOCK CLOCK

SELECT

INVERT
SELECT

Bus
Local, Global
Local, Global

Local
Local/Global

CLK

K c

OE
SELECT

Q

OE

Figure 10. Global Macrocell 1/0 Configurations (Continued)

2-80

290111-24

intJ

N

8-N

SR FLIP-FLOP
1/0 Selection

Output/Polarity Feedback
SR Register/High SR Register, None
SR Register/Low SR Register, None

None SR Register
None SR Register/Pin

FuncUon Table

s R an an+1
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 1

5C180

SYNCHRONOUS
CLOCK CLOCK

Bus
Local, Global
local, Global

Local
Local/Global

SELECT

INVERT
SELECT

CLK

R C

OE
SELECT

Q

OE

Figure 10. Global Macrocell 1/0 Configurations (Continued)

2-81

290111-25

intJ 5C180

Erased-State Configuration

Prior to programming or after erasing, the 1/0 struc­
ture is configured for combinatorial active low output
with input (pin) feedback.

ERASURE CHARACTERISTICS

Erasure characteristics of the 5C180 are such that
erasure begins to occur upon exposure to light with
wavelengths shorter than approximately 4000A. It
should be noted that sunlight and certain types of
fluorescent lamps have wavelengths in the 3000A-
4000A range. Data .shows that constant exposure to
room level fluorescent lighting could erase the typi­
cal 5C180 in approximately three years, while it
would take approximately one week to cause era­
sure when exposed to direct sunlight. If the 5C180 is
to be exposed to these types of lighting conditions
for extended periods of time, conductive opaque la­
bels should be placed over the device window to
prevent unintentional erasure.

The recommended erasure procedure for the 5C180
is exposure to shortwave ultraviolet light with a
wavelength of 2537A. The integrated dose (i.e., UV
intensity x exposure time) for erasure should be a
minimum of fifteen (15) Wsec/ cm2. The erasure
time with this dosage is approximately 15 to 20 min­
utes using an ultraviolet lamp with a 12,000 µ.W/cm2
power rating. The 5C180 should be placed within
one inch of the lamp tubes during erasure. The maxi­
mum integrated dose the 5C180 can be exposed to
without damage is 7258 Wsec/cm2 (1 week at
12,000 µ.W /cm2). Exposure to high intensity UV light
for longer periods may cause permanenf'damage to
the device.

PROGRAMMING CHARACTERISTICS

Initially, and after erasure, all the EPROM control
bits of the 5C180 are connected. Each of the con­
nected control bits are selectively disconnected by
programming the EPROM cells into their "on" state.
Programming voltage and waveform specifications
are available by request from Intel to support pro­
gramming of the 5C180.

inteligent ProgrammingTM Algorithm

The 5C180 supports the inteligent Programming Al­
gorithm which rapidly programs Intel H-ELPDs (and
EPROMs) using an efficient and reliable method.
The inteligent Programming Algorithm is particularly
suited to the production programming environment.
This method greatly decreases the overall program­
ming time while programming reliability is ensured as

the incremental program margin of each bit is con­
tinually monitored to determine when the bit has
been successfully programmed.

FUNCTIONAL TESTING

Since the logical operation of the 5C180 is con­
trolled by EPROM elements, the device is complete­
ly testable. Each programmable EPROM bit control­
ling the internal logic is tested using application-in­
dependent test program patterns. After testing, the
devices are erased before shipment to customers.
No post-programming tests of the EPROM array are
required.

The testability and reliability of EPROM-based pro­
grammable logic devices is an important feature
over similar devices based on fuse technology.
Fuse-based programmable logic devices require a
use to perform post-programming tests to insure
proper programming. These tests must be done at
the device level because of the cummulative error
effect. For example, a board containing ten devices
each possessing a 2% device fallout translates into
an 18% fallout at the board level (it should be noted
that programming fallout of fuse-based programma­
ble logic devices is typically 2% or higher).

2-82

DESIGN RECOMMENDATIONS

To take maximum advantage of EPLD technology, it
is recommended that the designer use the Modular
EPLD Logic Design (MELD) method. The MELD phi­
losophy is derived from the modular programming
method used in software development. In a modular
software development environment, the engineer
designs a modular program (typically on a develop­
ment system), stores it in memory (EPROM), and
tests the module for functionality. A hardware de­
signer using EPLDs can use this same approach
when designing logic. The designer develops a mod­
ular logic design on the Intel Programmable Logic
Development System (iPLDS), stores it in "memory"
(the EPROM control elements of the EPLD), and
again tests the module for functionality. If the design
is in error, the logic designer reprograms the EPLD
with his new design as easily as a software designer
can download a new program into memory.

The MELD philosophy is new to programmable logic
because EPROM-based PLDs are new. A modular
logic development process using fused-based PLDs
would be wasteful since a fuse-based device cannot
be erased and re-used.

intJ 5C180

For proper operation, it is recommended that all in­
put and output pins be constrained to the voltage
range GND < MN or Vour) < Vee. Unused inputs
should be tied to an appropriate logic level (e.g., ei­
ther Vee or GND) to minimize device power con­
sumption. Reserved pins (as indicated in the iPLS II
REPORT file) should be left floating (no connect) so
that the pin can attain the appropriate logic level. A
power supply decoupling capacitor of at least 0.2 µ.f
must be connected directly between Vee and GND.

DESIGN SECURITY

A single EPROM bit provides a programmable de­
sign security feature that controls the access to the
data programmed into the device. If this bit is set, a
proprietary design within the device cannot be cop­
ied. This EPROM security bit enables a higher de­
gree of design security than fused-based devices
since programmed data within EPROM cells is invisi­
ble even to microscopic evaluation. The EPROM se­
curity bit, along with all the other EPROM control
bits, will be reset by erasing the device.

LATCH-UP IMMUNITY

All of the input, 110, and clock pins of the 5C180
have been designed to resist latch-up which is inher­
ent in inferior CMOS structures. The 5C180 is de­
signed with Intel's proprietary CHMOS 11-E EPROM
process. Thus, each of the 5C180 pins will not expe­
rience latch-up with currents up to 100 mA and volt­
ages ranging fronm -1V to Vee + 1V. Furthermore,
the programming pin is designed to resist latch-up to
the 13.5V maximum device limit.

INTEL PROGRAMMABLE LOGIC
DEVELOPMENT SYSTEM II (IPLDS II)

The iPLDS II graphically shown in Figure 11 provides
all the tools needed to design with Intel H-Series
EPLDs or compatible devices. In addition to provid­
ing development assistance, iPLDS II insulates the
user from having to know all the intricate details of
EPLD architecture (the machine will optimize a de­
sign to benefit from architectural features). It con­
tains comprehensive third generation software that
supports four different design entry methods, mini-

2-83

mizes logic, does automatic pin assignments and
produces the best design fit for the selected EPLD.
It is user friendly with guided menus, on-line Help
messages and soft key inputs.

In addition, the iPLDS II contains programmer hard­
ware in the form of an iUP-PC Universal Program­
mer-Personal Computer to enable the user to pro­
gram EPLDs, read and verify programmed devices
and also to graphically edit programming files. The
software generates industry standard JEDEC object
code output files which can be downloaded to other
programmers as well.

iPLDS II has interfaces to popular schematic capture
packages (including Dash series from Future-NET"
and PC-CAPS** from P-CAD) to enable designs to
be entered using schematics. A more integrated
schematic entry method is provided by SCHEMA 11-
PLD, a low-cost schematic capture package that
supports EPLD primitives and user-defined macro
symbols. SCHEMA 11-PLD contains the EPLD Design
Manager, which provides a single user interface to
both SCHEMA 11-PLD and iPLS II software. The oth­
er design formats supported are Boolean equation
entry and State Machine design entry.

The iPLDS II operates on the IBMt PC/XT, PC/AT,
or .other compatible machine with the following con­
figuration:

1. At least one floppy disk drive and hard disk drive.

2. MS-DOS:!: Operating System Version 3.0 or great­
er.

3. 640K Memory.

4. Intel iUP-PC Universal Programmer-Personal
Computer (supplied with iPLDS II).

5. GUPI LOGIC Adaptor

6. A color monitor is suggested.

Detailed information on the Intel Programmable Log­
ic Development System II is contained in a separate
Intel data sheet. (Order Number: 280168)

••

t

FutureNET is a registered trademark of Future­
NET Corporation. DASH is a trademark of Fu­
tureNET Corporation.

PC-CAPS is a trademark of P-CAD Corpora­
tion.

IBM Personal Computer is a registered trade­
mark of International Business Machines Cor­
poration.

MS-DOS is a registered trademark of Micro­
soft Corporation.

5C180

Figure 11. IPLDS II Intel Programmable Logic Development System

2-84

5C180

ABSOLUTE MAXIMUM RATINGS*
Symbol Parameter Min Max

Vc,c Supply Voltage(1l. -2.0 7.0

Vpp Programming -2:0 13.5
Supply Voltage(1)

v, .OC Input Voltage(1)(2) -0.5 V-cc+0.5

tstg Storage Temperature -65 +150

iamb Ambient Temperatur~(3l -10 +85

NOTES:

Units

v
v

v
·c
·c

•Notice: Stresses above those Hsted under '~bso­
lute Maximum Ratings" may cause permanent dam­
age to the device. This is a stress rating only and
functional operation of the device at these or any
other conditions above those indicated in the opera-.
tional sections of this specification is not implied. Ex-.
posure to absolute maximum rating. conditions for
extended periods may affect device reliability.

NOTICE: Specifications contained within the
following tables are subject to change.

1. Voltages with respect to ground. .
2. Minimum DC input is -0.5V. During transitions, the inputs may undershoot to -2.0V for periods less than 20 ns under no
load conditions.
3. Under bias. Extended temperature versions are also available.

D.C. CHARACTERISTICS TA = o• to + 1o•c, Vee = 5V ± 5%

Symbol Parameter/Teat Conditions Min Typ Max Unit

V1H(4) High Level Input Voltage 2.0 Vee+ o.3 v
V1L(4) Low Level Input Voltage -0.3 0.8 v
VoH15l High Level Output Voltage 2.4 v

lo = -4.0 mA D.C., Vee = min.

Vol Low Level Output Voltage 0.45 v
lo = 4.0 mA D.C., Vee = min.

11 Input Leakage Curren~ ±10 /.LA
Vee = max., GND < Vour < Vee

loz Output Leakage Current ±10 /.LA
Vee = max .• GND < Vour < Vee

lsc(6) Output Short Circuit Current mA
Vee = max., Vour = o.5V

lsel7> Standby Current 20 150 /.LA
Vee = max., V1N = Vee or GND,
Standby mode

Ice Power Supply Current 30 45 mA
Vee = max., V1N = Vee or GND,
No load, Input Freq. = 1 .MHz
Active mode (Turbo = Off),

. Device prog. as 4 12-bit Ctr.

NOTES:
4. Absolute ·values with respect to device GND; all over and undershoots due to system or tester noise are included.
5. lo at CMOS levels (3.84 V) = -2 mA
6. Not more than 1 output should be tested at a time. Duration of that test must not exceed 1 second.
7. With Turbo Bit Off, device automatically enters standby mode approximately 100 ns after last input transition.

2-85

intef 5C180

A.C. TESTING LOAD CIRCUIT A.C. TESTING INPUT, OUTPUT WAVEFORM

5V

DEVICE C~+--+-C:> TO TEST
OUTPUT SYSTEM

. CL (INCLUDES JIG
CAPACITANCE)

INPUT

OUTPUT

3.0
2.0> ---0.8 TEST POINTS -......

0

DEVICE INPUT
RISE AND FALL
TIMES< 6nS

CL= SapF
290111-28

29a111-27
A.C. Testing: Inputs are Driven at 3.av for a Logic "1" and av for
a Logic "a". Timing Measurements are made at 2.av for a Logic
"1" and a.av for a Logic "a" on inputs. Outputs are measured at
a 1.5V point.

A.C. CHARACTERISTICS TA = o•c to + 1o·c, Vee = 5V ± 5%, Turbo Bit On(BJ

Symbol From To 5C180·75· 5C180·90 Non(10) Turbo
Unit

Min Typ Max Min Typ Max Adjust

tpo1 Input Comb. Output 70 85 +30 ns

tpo2 Local 1/0 Comb. Output 75 90 +30 ns

tpoG Global 110 Comb. Output 70 85' +30 ns

tpzx<9l I or 110 Output Enable 75 90 +30 ns

tpxz<9J I orl/O Output Disable 75 90 +30 ns

tcLR Asynch. Reset Q Reset 75 90 +30 ns

NOTES:
8. Typ. Values are at TA = 25'C, Vee = 5V, Active Mode.
9. tpzx and tpxz are measured at ± 0.5V from steady state voltage as driven by spec. output load. tpxz is measured with
CL= 5 pF.
10. If device is operated with Turbo Bit Off (Non-Turbo Mode), increase time by amount shown.

CAPACITANCE
Symbol Parameter Conditions Min Typ Max Unit

C1N Input Capacitance V1N = OV, f = 1.0 MHz 15 pF

Cour Output Capacitance Vour = ov, f = 1.0 MHz 15 pF

CcLK Clock Pin Capacitance Vour = ov, f = 1.0 MHz 25 pF

Cvpp Vpp Pin Capacitance Pin 19, Vour = ov, f = 1.0 MHz 160 pF

2-86

5C180

SYNCHRONOUS CLOCK MODE A.C. CHARACTERISTICS
TA= o•c to +1o•c, Vee= 5V ±5%, Turbo Bit on<11i

Symbol Parameter 5C180-75 5C180·90 Non(12) Turbo
Unit

Min Tyf> Max Min Typ Max Adjust
-"-

fMAX Max Frequency 19.6 16.1 MHz
1 ltsu-:-No Feedback

feNT Max. Count Frequency 15.1 12.2 MHz
1/tcNT-With Feedback

tsu1 Input Setup Time to Clk 51 62 +30. ns

tsu2 Local 1/0 Setup Time to Clk 56 67 +30 ns

tsuG Global 110 Setup Time to Clk 51 62 +30 ns

tH I or 1/0 Hole;! after Qlk High 0 0 ns

tco Clk High to Output Valid 30 35 ns

teNT Register Output Feedback 66 82 +30 ns
to Register ln~t-
Internal Path

tcH Clk High Time 25 30 ns

tcL ClklowTime 25 30 ns

NOTES:
11. Typ. Values are at TA = 2s•e, Vee = sv, Active Mode.
12. If device is operated with Turbo Bit Off (Non-Turbo Mode), Increase time by amount shown.

ASYNCHRONOUS CLOCK MODE A.C. CHARACTERISTICS
TA= o•c to +1o·c. Vee= 5V ±5%, Turbo Bit On(13)

Symbol Parameter 5C180-75 5C180-90 Non(14) Turbo
Unit

Min Typ Max Min Typ Max Adjust
-

fAMAX Max. Frequency 66.7 40.0 MHz
1 /tAsu-No Feedback

fAeNT Max. Frequency 15.1 12.2 MHz
1/tAeNT-With Feedback

tAsu1 Input Setup Time to Asynch. Clock 17 23 +30 ns

tASU2 1/0 Setup Time to Asynch. Clock 22 28 +30 ns

tAH Input or 110 Hold to Asynch. Clock 30 30 ns

tACO Asynch. Clk to Output Valid 75 90 ns

tAeNT Register Output Feedback 66 82 +30 ns
to Register Input-
Internal Path

tAeH Asynch. Clk High Time 25 30 ns

tAeL Asynch. Clk Low Time 25 30 ns

NOTES:
13. Typ. Values are at TA = 2s•e, Vee = sv. Active Mode.
14. If device is operated with Turbo Bit Off (Non-Turbo Mode), increase time by amount shown.

2-87

SWITCHING WAVEFORMS

COMBINATORIAL MODE

INPUT OR 1/0 INPUT

COMBINATORIAL OUTPUT

COMBINATORIAL OR
REGISTERED OUTPUT

5C180

~~=1------
1--tPXZ-

~~~~~-H-~~H~IM~P~m~A~NC_E~~~-
/ 3-STATE 

r--tpzx={..._ ____ _ 
HIGH IMPEDANCE _ VALID OUTPUT 

3-STATE 

-~s 

2-88 

ASYNCHRONOUSLY 
CLEAR OUTPUT 

290111-29 



5C180 

SWITCHING WAVEFORMS (Continued) 

SYNCHRONOUS CLOCK MODE 

CLK1,CLK2, 

CLK3,CLK4 

INPUT MAY CHANGE 

(FROM REGISTER 
TO OUTPUT) 

ASYNCHRONOUS CLOCK MODE 

ASYN. 
CLOCK 
INPUT 

OTHER 
INPUT 

tACH 

INPUT MAY CHANGE 

(FROM REGISTER 
TO OUTPUT) 

VALIDI 
INPUT 

2-89 

INPUT MAY CHANGE 

VALID OUTPUT 

290111-30 

tACL 

INPUT MAY CHANGE 

VALID OUTPUT 

290111-31 



intef 

TA= o·c. Vee= 5.25V 

Vee= s.2sv 

'< 
5 
~ 

5C180 

240 
220 
200 
180 
160 

L 
L 

J 
140 
120 

o~ 
1-7LJ 
V JZ Non-Turbo 

100 
80 
60 
40 

i 
l 20 

0 
0 5 10 

fcNT (MHz) 

2 

20 

Current In Relation to Frequency 

240 
220 
200 
180 
160 
140 

'< 120 
5 100 
O' 

80 g, 
60 
40 
20 fcNT = 1 MHz,Non-Turbo 

0 
0 20 40 60 8085 

TEMP (C) 

Current in Relation to Temperature 

-c 
~ 
:> 

0 

20 z 

10 L 
loL 

21t---+~--+-~-J-~-+--j~ 

1'--~'--~'--~'-----''----" 

0 2 3 4 5 

v 0 Output Voltage (V) 

290111-32 

290111-33 

290111-34 

Output Drive Current In Relation to Voltage 
2-90 



5AC312 
ERASABLE PROGRAMMABLE 

LOGIC DEVICE 
• High Performance LSI Semi-Custom 

Logic Alternative for Low-End Gate 
Arrays, TTL, and 74HC· or 74HCT SSI 
and MSI l,.oglc 

• High Speed tpd (max) 25 ns, 40 MHz 
Operating Performance 

• Erasable Array for 100% Generic 
Testability 

5AC312 KEY FEATURES 
• 12 Macrocells with Programmable 1/0 

Architecture; Up To 22 Inputs (10 
Dedicated, 12 1/0) or 12 Outputs 

• 8 Programmable Inputs; Each Can Be 
Programmed Individually to Implement 
Latch, Register or Flow-Through 
Structure; Synchronous or 
Asynchronous Operation 

• Software-Supported Product Term 
Allocation between Adjacent 
Macrocells 

CLK/INP1 

1/0.11 

LINP1 3 

LINP2 

LINP3 

LINP8 

1/0.1 

GND 

Vee 
1/0.12 

1/0.9 

1/0.10 

1/0.7 

1/0.8 

1/0.6 

1/0.5 

1/0.4 

1/0.3 

1/0.2 

ILE/ICLK/INP2 

290156-1 

• CHMOS 111-E EPROM Technology 
based; UV-Erasable 

• Low Power; 150 µA Standby Current 

• Programmable Security Bit Allows 
100% Protection of Proprietary Designs 

• Dual Feedback on All Macrocells for 
Burled Register Implementation and 
Input Usage 

• 2 Product Terms on All Macrocell 
Control Signals 

• Programmable Power Option for 
"Stand-By" Operation 

• Available In 24-Pln 0.3" DIP and 28-Pin 
PLCC Packages 
(See Packaging Spec., Order Number # 231369) 

a: z ... a: ::: ~ 8 8 ci ~ ~~d > >::;,,.::;,,. 

LINP2 1/0.10 

1/0.7 

1/0.8 

1/0.6 

1/0.5 

LINP7 1/0.4 

N.C. N.C. 

GO ~ C !£ ~ C'i ~ 
~ ~ t5 ~~~~ 

"" .... 
!.! 
';:)-
= 

290156-2 

Figure 1. Pin Configurations 

2-91 
November 1987 

Order Number: 290156·001 



inter 5AC312 

INTRODUCTION 

The Intel 5AC312 CHMOS EPLD (Erasable Pro­
grammable Logic Device)' represents an innovative 
approach to overcoming the ·primary limitations of 
standard PLDs. Due to a proprietary 1/0 architecture 
and macrocell structure, the 5AC312 is capable of 
implementing high performance logic functions more 
effectively than previously possible. It can. be used 
as an alternative to low~end gate arrays, multiple 
programmable logic devices or LS-, HC- or HGT SSI 
and MSI logic devices. 

The 5AC312 uses advanced CHMOS EPROM cells 
as logic control elements instead of poly-silicon fus­
es. This technology allows the 5AC312 to operate at 
levels necessary in high performance systems while 
significantly reducing the power consumption of this 
device. Its programmable stand-by function reduces 
power consumption to almost "zero" in applications 
where speed is traded for power consumption. 

ARCHITECTURE DESCRIPTION 

The architecture of the 5AC312 is based on the fa­
miliar "Sum-Of-Products" programmable AND, fixed 
OR structure, though the 5AC312 macrocell eon­
tains a number of significant functional enhance­
ments. This device can implement both combina­
tional and sequential logic functions through 

a highly flexible macrocell and 1/0 structure. In addi­
tion, the 5AC312 has been designed to effectively 
Implement both combinational-register and register­
combinational-register forms of logic to easily ac­
commodate state machine designs. 

Figure 2 shows a global view of the 5AC312 archi­
tecture. The 5AC312 contains a total of 12 1/0 mac­
rocells, 8 user-programmable input structures, and 2 
inputs that ·can be programmed to serve as either 
combinatorial inputs or clock inputs for the input and 
output register functions. Each macrocell is further 
sub-divided into 16 Product Terms with 8 Product 
Terms dedicated to the control signals OE, PRE­
SET, ASYNCH. CLK and CLEAR, and 8 Product 
Terms available for the general data array. 

The basic macrocell architecture of the 5AC312, 
shown in Figure 3, includes a user-programmable 
AND array and a user-configurable OR array. The 
inputs to the programmable AND array originate 
from the true and complement signals from the pro­
grammable input structure, the dedicated inputs, and 
the 24 feedback paths from the 12 1/0 macrocells. 

2-92 

Programmable Input Structure 

Figure 4 shows a block diagram of the 5AC312 input 
architecture. This device contains 8 user-program-



5AC312 

RING 1 1/0 1/0.1 ·------ MACROCELL I 

LOGIC ARRAY I 
I 
I 
I 

CLK/INP1 
I 

1/0.2 ,------
I 
I 
I 
I 

INP I 
LINP1 REG/LATCH L------ 1/0.3 

I 
I 
I ., 
I 

INP 1 
1/0.4 LINP2 REG/LATCH r------

I 
I 
I 
I 

INP 
I 

LINP3 L--·--- 1/0.5 REG/LATCH I 
I 
I 
I 
I 

INP I 
LINP4 REG/LATCH ·------ 1/0.6 

LINPS INP ·------ 1/0.7 REG/LATCH I 
I 
I 
I 
I 

LINP6 INP I 
1/0.8 REG/LATCH ,------

I 
I 
I 
I 

INP I 
LINP7 L------ 1/0.9 REG/LATCH I 

1 
1 ., 
1 

LINPB INP 1 
1/0.10 REG/LATCH r-·--·-

1 
1 
1 
1 
1 

ILE/ICLK/INP2 L------ 1/0.11 I 
I 
I 
I 
I 
I ·------ 1/0.12 
RING 2 

290156-3 

Figure 2. 5AC312 Architecture 

2-93 



LOGIC ARRAY TO NEXT 
MACROCELL t T 

"Tl 
IE 
c ... 
ID 
w 

~I 11 I I II I L ~RHALF I -ri· I 
~ 

UI 

:b ~, I I~ I "" ii: 
t» n ... 
0 n 
~ 
!!l ... 
c n -c ... 
ID .. . ' . ~ 

TO PREVIOUS 
MACROCELL 

FROM NEXT 
MACRO CELL 

OUTPUT 

~ 

PRESET 

I 

INVERT c.:t\"- I MACROCELL 
REGISTER 

CLEAR 

FROM PREVIOUS 
MACROCELL 

OUTPUT 
MUX 

290156-4 

l 

~ 
w ... 
N 

~ 
l§! 

~ 
~ 
@ 
liiiil 
= 
~ 
"iiil 
@ 
2iJ 
~ 
~ 
~ = 
@ 
~ 



5AC312 

INP o-----+llN 
PIN 

OUT t----------.. LOGIC 
ARRAY 

P-TERM 

A 

ILE/ICLK c:-----------------­
PIN 

290156-5 

NOTE: 
Flow-through input selected by connecting ILE P-Term to Vee. 

Figure 4. 5AC312 Input Structure 

mable input structures that can be individually con­
figured to work in one of five modes: 

- tnput register (0-register), synchronous opera­
tion 

- Input register (0-register), asynchronous opera-
tion 

- Input latch (0-latch), synchronous operation 
- Input latch (0-latch), asynchronous operation 
- Flow-through input 

The configuration is accomplished through the pro­
gramming of EPROM architecture control bits by 
iPLS II V1 .5 under user-control. If synchronous oper- .. 
ation is chosen, pin 13 of the device becomes an 
ILE/ICLK (Input Latch Enable) input global to all in­
put latch/register structures. For asynchronous op­
eration, pin 13 can be used as a normal input (flow­
through input) to the device while a separate Prod­
uct Term in the control array is used to derive an 

2-95 

ILE/ICLK signal for the input structure. Because the 
clock signal for each input structure can be individu­
ally selected, a mix between synchronously and 
asynchronously clocked input structures is also pos­
sible. 

Table 1 shows the input latch/register function table 
with respect to the synchronous ILE/ICLK input. 

Table 1. 5AC312 Input Latch/Register Functions 

Input Type ILE/ICLK D Q 

Latch H H H 
Latch H L L 
Latch L x Qn 
0-FF J. H H 
0-FF J. L L 
Flow-Through x H H 
Flow-Through x L L 

H = HIGH Level L = LOW Level X = Don't Care 



5AC312 

Macrocell Array 

Each of 12 macrocells in the 5AC312 contains 8 
Product Terms to support logic functions. These 8 
Product Terms are subdivided into 2 groups each 
containing 4 Product Terms. This grouping of Prod­
uct Terms supports the proprietary Product Term al­
location scheme. 

In addition to these 8 Product Terms, each macro­
cell features .2 Product Terms for each of the four 
control signals. Control signals in the 5AC312 are: 
Output Enable (OE), asynchronous 1/0 register pre­
set (PRESET), asynchronous clock for 1/0 registers 
(ASYNCH. CLK), and asynchronous 1/0 register re­
set (CLEAR). 

Product Term Allocation 

Product Term allocation is defined as taking logic 
resources (p-terms) away from macrocells where 
they are not used to support demand for more than 
8 Product Terms in other areas of the chip. In the 
5AC312, this allocation can occur in increments of 4 
p-terms between adjacent macrocells. 

Example: 

The logic function in macrocell 4 requires 16 
p-terms. In this case, the iPLS II software allocates 4 
p-terms from the previous macrocell in Ring 1 (mac­
rocell 3) and 4 p-terms from the next macrocell in 
Ring 2 (macrocell 5) to accumulate a total of 16 
p-terms (8 + 4 + 4). This implementation leaves 
macrocells 3 and 5 with a remainder of 4 p-terms 
each. These remaining p-terms in macrocells 3 and 
5 can also be allocated away to or can be supple-

2-96 

mented with p-terms from their respective previous/ 
next macrocells in Ring 1. 

Applying this scheme to the 5AC312 it becomes 
clear that any macrocell inside the device can sup­
port logic functions requiring between O and 16 
Product Terms. Product Terms allocated away from 
a macrocell do not affect that macrocell's output 
structure. If all Product Terms are allocated ''away" 
from a macrocell, the input to that macrocell's 1/0 
control block is tied to GND. This polarity can be 
changed by programming the invert select EPROM 
bit. The 1/0 register as well as all secondary controls 
to this 1/0 control block are still available and can be 
used if needed. 

The 12 macrocells available in the 5AC312 are 
grouped into two "rings" with 6 macrocells per ring. 
Product Terms can be allocated in a "shift register" 
mode inside a ring; allocation of Product Terms be­
tween the rings is not supported. The two rings are 
shown in Figure 2 and listed in Table 2. 

The Product Term allocation scheme described 
above is automatically supported by iPLDS II V1 .5 
and is transparent to the user. Users can still use 
explicit pin assignments, but should assign pins in a 
way that does not conflict with p-term allocation. 

Table 2. Product Term Allocation Rings 
Ring 1 Rlng2 

Current Next Previous Current Next Previous 
Macro- Macro- Macro- Macro- Macro- Macro-

cell cell cell cell cell cell 

1 2 6 7 8 12 
2 3 1 8 9 7 
3 4 2 9 10 8 
4 5 3 10 11 9 
5 6 4 11 12 10 
6 1 5 12 7 11 



intef 

LOGIC ARRAY 

5AC312 

LOWER HALF 
P-TERilS 1-4 

UPPER HALF 
P-TERMS 5-8 

P-TERMS ALLOCATED TO 
MACROCELL #4 
(NEXT MACROCELL IN RING) 

UPPER HALF P-TERMS ALLOCATED TO 
P-TERMS 5-8 MACROCELL 14 

MACROCELL 
#3 

MACROCELL 
#4 

(PREVIOUS MACROCELL IN RING) 

Figure 5. Product Term Allocatlon (8 + 4 + 4) 

2-97 

MACROCELL 
#5 

290156-6 



intef 5AC312 

Invert Select EPROM Bit 

The invert select EPROM bit is used to invert the 
result of a logic combination achieved in a macrocell 
prior to its input into the 1/0 control block of this 
particular macrocell. By employing this invert bit, 
certain equations can experience . a reduction in 
Product Terms through the use of De Morgan's in­
version. This feature is also supported by iPLDS II 
V1 .5, though it can be disabled by the user. 

Macrocell 1/0 Control Block 

Each macrocell in the 5AC312 has the ability to im­
plement D, T, SR, and JK registered outputs as well 
as combinatorial outputs. The asynchronous set and 
reset inputs to each macrocell register allows imple­
mentation of true SR Flip-Flops. Registered outputs 
may be. clocked from the synchronous CLK/INP1 
pin or asynchronously clocked by the 2 Product 
Terms available for ASYNCH. CLK. The 5AC312 
also features separate input and feedback paths 
(dual feedback) on all macrocell 1/0 control blocks. 
This enables the designer to utilize input pins when 
the associated macrocells have been assigned a no 
output with buried feedback attribute .. Multiplexed 
1/0 is accomplished by controlling the output buffer 
associated with each macrocell using the 2 Product 
Terms set aside for implementing an OE function. 

Power-On Characteristics 
The 110 registers of the 5AC312 will experience a 
reset to their inactive state upon Vee power-up. Us­
ing the PRESET function available to each macro­
cell, any particular register preset can be achieved 
after power-up. 5AC312 inputs and outputs begin re­
sponding approximately 20 µ.s after Vee power-up 
or after a power-loss/power-up sequence. 

Stand-by Function 
By programming a certain bit location in the 5AC312, 
a trade off between speed and power consumption 
can be selected for this device. If this bit location, 
referred to as the "Turbo Bit", is left unprogrammed 
and no transition occurs at the device inputs for a 
period of approximately 100 ns, the device will pow­
er-down the internal array while leaving the outputs 
driving at their previous levels. Once an input tran­
sition occurs, the 5AC312 will pow~r-up the array 
and react to the change in input conditions. The ar­
ray power-up sequence requires an average of 1 O ns 
additional propagation delay for this function. Power 
supply current during power-down is typically no 
more than 150 µ.A. 

If this bit location is programmed, the power-down 
circuitry ·is disabled and the device will not power 
down even if there are "no activity" periods longer 
than 100 ns. This avoids the additional 1 O ns delay 
in applications where performance is more important 
than power savings. 

lnt8 11gent ProgrammlngTM Algorlthm 

The 5AC312 supports the inteligent Programming al­
gorithm which rapidly programs Intel H-EPLDs, 
EPROMs and Microcontrollers while maintaining a 
high degree of reliability. It is particularly suited for 
production programming environments. This method 
greatly· decreases the overall programming time 

. while programming reliability is ensured as the incre­
mental program margin of each bit has been verified 
in the programming process. (Programming informa­
tion for the 5AC312 is available from Intel by re­
quest.) 

2-98 



5AC312 

FUNCTIONAL TESTING 

Since the logical operation of the 5AC312 is con­
trolled by EPROM elements, the device is complete­
ly testable during the manufacturing process. Each 
programmable EPROM bit controlling the internal 
logic is tested using application-independent test 
patterns. EPROM cells in the 5AC312 are 100% 
tested for programming and erase. After testing, the 
devices are erased before shipments to the custom­
ers. No post-programming tests of the EPROM array 
are required. 

The testability and reliability of EPROM-based pro­
grammable logic devices is an important feature 
over similar devices based on fuse technology. 
Fuse-based programmable logic devices require a 
user to perform post-programming tests to insure 
device functionality. During the manufacturing pro­
cess, tests on these parts can only be performed in 
very restricted manners in order to avoid a pre-pro­
gramming of the array. 

INTEL PROGRAMMABLE LOGIC 
DEVELOPMENT SYSTEM II (IPLDS II) 

Release 1.5 of iPLDS II graphically shown in Figure 
6 provides all the tools needed to design with the 
5AC312 EPLD. In addition to providing development 
assistance, iPLDS II insulates the user from having 
to know all the intricate details of EPLD architecture 
(the machine will optimize a design to benefit from 
architectural features). It contains comprehensive 
third generation software that supports four different 
design entry methods, minimizes logic, does auto­
matic pin assignments and produces the best design. 
fit for the selected EPLD. It is user friendly with guid­
ed menus, on-line Help messages and soft key in­
puts. 

In addition, the iPLDS II contains programmer hard­
ware in the form of an iUP-PC Universal Program­
mer-Personal Computer to enable the user to pro­
gram EPLDs, read and verify programmed devices 

and also to graphically edit programming files. The 
software generates industry standard JEDEC object 
code output files which can be downloaded to other 
programmers as well. 

The iPLDS II has interfaces to popular schematic 
capture packages (including Dash series from Fu­
tureNet• and PC-CAPS** from PCAD) to enable de­
signs to be entered using schematics. A more inte­
grated schematic entry method is provided by 
SCHEMA 11-PLD, a low-cost schematic capture 
package that supports EPLD primitives and user-de­
fined macro symbols. SCHEMA 11-PLD contains the 
EPLD Design Manager, which provides a single user 
interface to both SCHEMA 11-PLD and iPLS II soft­
ware. The other design formats supported are Boo­
lean equation entry and State Machine design entry. 

The iPLDS operates on the IBMt PC/XT, PC/AT, or 
other compatible machine with the following configu­
ration: 

1. At least one floppy disk drive and hard disk drive. 

2. MS-DOStt Operating System Version 3.0 or 
greater. 

3. 640K Memory. 

4. Intel iUP-PC Universal Programmer-Personal 
Computer and GUPI Adaptor (supplied with 
iPLDS II) 

2-99 

5. A color monitor is suggested. 

Detailed information on the Intel Programmable Log­
ic Development System II is contained in a separate 
Intel data sheet. (Order Number: 280168) 

• FutureNet is a registered trademark of Future­
Net Corporation. DASH is a trademark of Fu­
tureNet Corporation. 

** PC-CAPS is a trademark of P-CAD Corporation. 

t IBM Personal Computer is a registered trade­
mark of lnternatiol')al Business Machines Cor­
poration. 

tt MS-DOS is a registered trademark of Microsoft 
Corporation. 



'Tl 
~i 
c 
; 
!" 

~I I jfy. 
D1,f1 .. COCF(312) 
512·AllD(S7,fft 

LOGIC U.DEIMETUST ENTRY 
:; .. 
!.. 
"U ... 
~, I 

OOT2 .. cu. ·a 
ii1 oun~a.M.·112+ 

IQ+IM) 

~ 3 
3 IOOLEM EQlMl'll)N en1iY 

0 Ill 
0 17 

ii' 
b 
a::i 
n 
0 : 
~ 
'O 
3 
CD 
::I .. 
en 
'< 
(IJ .. 
CD 
3 

SIA!t -""""""' 
..,_TIC -.......... 

'"" PARTS .,......, 

UJGIC -...,.. 
GAit 

llltllCOMCT -

Intel Progrem1111ble logic 
Development System II 

.. _ ---

fl.PD 

290156-17 

l 

en 

~ 
w .... 
N 

~ 
l§ 

~ 
~ 
© 
liiiiJ 
<= 
~ 
'iii) 
@ 
a9J 
~ 
~ 
C:::J 
<= 
© 
~ 



5AC312 

ABSOLUTE MAXIMUM RATINGS* 

Supply Voltage (Vee) (1) •••••••••• -2.0V to + 7.0V 

Programming Supply 
Voltage (Vpp) (1) ••••••••••••• -2.0V to+ 13.5V 

D.C. Input Voltage (Vi)C1, 2) ••• -0.5V to V cc + 0.5V 

Storage Temperature (T stg) ..... -65°C to + 15o•c 

Ambient Temperature (T amb) (3) •. -1 o·c to + 85°C 

NOTES: 
1. Voltages with respect to GNP. 

•Notice: Stresses above ihose lis'ted under '~bso­
lute Maximum Ratings" may cause permanent dam­
age to the device. This is a stress rating only and 
functional operation of the device at these or any 
other conditions above those indicated in the opera­
tional sections of this specification is not implied. Ex­
posure to absolute maximum rating conditions for 
extended periods may affect device reliability. 

NOTICE· Specifications contained within the 
following tables are subject to change. 

2. Minimum D.C. input is -0.SV. During transitions, the inputs may undershoot to -2.0V for periods of less than 20 ns under 
no load conditions. 
3. Under bias. Extended temperature range versions are available. 

D.C. CHARACTERISTICS TA= o•cto +1o•c, Vee= 5.ov ±5% 

Symbol Parameter Min Typ Max Unit Test Conditions 
V1H(4) High Level Input Voltage 2.0 Vee+ 0.3 v 

V1L(4) Low Level Input Voltage -0.3 0.8 v 
VoH(S) High Level Output Voltage 2.4 v lo = -4.0 mA D.C., 

Vee= min. 

Vol Low Level Output Voltage 0.45 v lo = 4.0 mA D.C., 
Vee= min. 

11 Input Leakage Current ±10 µ.A Vee= max., 
GND < VouT < Vee 

loz Output Leakage Current ±10 µA Vee= max., 
GND < VouT < Vee 

, lgc(6) Output. Short Circuit Current -30 -90 mA Vee= max., 
VouT = 0.5V 

lse<7l Standby Current 150 µA Vee= max., 
V1N = Vee or GND, 
Standby Mode 

Ice Power Supply Current 50 mA Vee= max., 
V1N = Vee or GND, 
No Load, Input Freq. = 1 MHz 
Active Mode (Turbo = Off), . 
Device Prog. as 12-Bit Ctr. 

NOTES: 
4. Absolute values with respect to device GNP; all over and undershoots due to system or tester noise are included. 
5. lo at CMOS levels (3.84V) = -2 mA. 
6. Not more than 1 output should be tested at a time. Duration of that test must not exceed 1 second. 
7. With Turbo Bit Off, device automatically enters standby mode approximately 100 ns after last input transition. 

CAPACITANCE 
Symbol Parameter Min Typ Max Unit Conditions 

C1N Input Capacitance 20 pF V1N = OV, f = 1.0 MHz 

CouT Output Capacitance 20 pF Vour = ov, f = 1.0 MHz 

CcLK Clock Pin Capacitance 20 pF VouT = ov. f = 1.0 MHz 

Cypp VppPin 50 pF Pin 1 

2-101 



A.C. TESTING LOAD CIRCUIT 

..---sv 

o~~~~o-+---c:> ~~s1ir~T 

DEVICE INPUT 
RISE AND FALL 

TIMES<6ns 

{INCLUDES JIG 
CAPACITANCE) 

5AC312 

A.C. TESTING INPUT, OUTPUT WAVEFORM 

3.0 
INPUT 

0 

2•0 > TEST POINTS < 
0.8 

2.0 

0.8 

OUTPUT 1.SV -TEST POINTS- 1.SV 

290156-8 
A.C. Testing: Inputs are driven at 3.0V for a Logic "1'" and OV for 
a Logic "O'". Timing Measurements are made at 2.0V for a Logic 
"1" and o.ev for a Logic "O'" on inputs. Outpu1s are measured 
at a 1.5V point. 

290156-7 

A.C. CHARACTERISTICS TA = o•c to + 70°C, Vee = 5.0V ± 5%, Turbo Bit "On"18l 

5AC312·25 5AC312·35 Non-(10) 
Symbol From To Turbo Unit 

Min Typ Max Min Typ Max Mode 

tpo1 Input Comb. Output 20 25 30 35 +10 ns 

tpo2 110 Comb. Output 20 25 30 35 +10 ns 

tpzxl9l I orl/O Output Enable 20 25 30 35 +10 ns 

tpxzl9l I orl/O Output Disable 20 25 30 35 +10 ns 

tcLR Asynch. Reset Q Reset 20 25 30 35 +10 ns 

ts ET Asynch. Set QSet 20 25 30 35 +10 ns 

NOTES: 
8. Typical values are at TA = 25'C, Vee = 5V, Active Mode. 
9. tpzx and tpxz are measured at ± 0.5V from steady-state voltage as driven by spec. output load. tpxz is measured with 
CL= 5 pF. 
10. If device is operated with Turbo Bit Off (Non-Turbo Mode), increase time by amount shown. 

SYNCHRONOUS CLOCK MODE (MACROCELLS) A.C. CHARACTERISTICS 
TA = o·c to +70°c, Vee= 5.ov ±5%, Turbo Bit On(Sl 

5AC312·25 5AC312·35 Non-(10) 
Symbol Parameter Turbo 

Min Typ Max Min Typ Max Mode 

fMAX Max. Frequency 50 66 40 50 NIA 
1 /tsu-No Feedback 

fcNT Max. Count Frequency 33 40 25 28.5 N/A 
1 /tcNr-with Feedback 

tsu1 Input Setup Time to CLK 20 15 25 20 +10 

tsu2 1/0 Setup Time to CLK 20 15 25 20 +10 

tH I or 1/0 Hold after CLK High 0 0 

tea CLK High to Output Valid 10 15 10 15 +10 

tcNT Register Output Feedback 25 30 35 40 +10 
to Register Input-Internal Path 

tcH CLK High Time 10 12.5 +10 

tcL CLKLowTime 10 12.5 +10 

2-102 

Unit 

MHz 

MHz 

ns 

ns 

ns 

ns 

ns 

ns 

ns 



SAC312 

SYNCHRONOUS CLOCK MODE (INPUT STRUCTURE) A.C. CHARACTERISTICS 
TA= o•c to +10°c, Vee= 5.ov ±5%, Turbo Bit on<Bl 

5AC312·25 5AC312·35 Non-(10) 
Symbol Parameter Turbo Unit 

Min Typ Max Min Typ Max Mode 

fMAXI Max. Frequency 40 50 28.5 33 NIA MHz 

tsu1R Input Register Setup Time 5 5 ns 
before ILE/ICLK J. 

tpu<11l Minimum Input Clock Period 20 25 30 35 +10 ns 

teOJ ICLK J. to Comb. Output 25 30 35 40 +10 ns 

tHI I Hold after ICLK/ILE J. 5 5 ns 

tEOI ILE f to Comb. Output 30 35 35 40 +10 ns 

tcHI ILE/ICLK High Time 10 12.5 +10 ns 

tell ILE/ICLK Low Time 10 12.5 +10 ns 

NOTE: 
11. tpu = Input signal through registers/latch to macrocell register input. 

ASYNCHRONOUS CLOCK MODE A.C. CHARACTERISTICS 
TA= O"C to +70°C, Vee= 5.0V ±5%, Turbo Bit On(B) 

5AC312·25 5AC312·35 Non-!10) 
Symbol Parameter Turbo Unit 

Min Typ ·Max Min Typ Max Mode 

INPUT STRUCTURE 

fAMAXI Max. Frequency Input Register 20 16.6 NIA MHz 
1/(tAeLI + tAeHJ) 

tASUI Input Register/Latch Setup 0 ·- 0 ns 
Time to Asynch. Clock 

tAHI Input Register/Latch Hold 23 16 30 25 +10 ns 
after Asynch. Clock 

tACOI Asynch. ICLK to Output Valid 40 48 50 60 +10 ns 

tAEOI Asynch. ILE f to Comb. Output 45 53 55 65 +10 ns 

tAeHI Asynch. ICLK High Time 25 30 +10 ns 

tAell Asynch. ICLK Low Time 25 30 +10 ns 

MACROCELLS 

fAMAX Max. Frequency 20 16.6 N/A MHz 
1/(tAeL + tAeH>-No Feedback 

fAeNT Max. Frequency 18.2 14.3 NIA MHz 
1 /tAeN-r-with Feedback 

fASU1 Input Setup Time to 7 10 +10 ns 
Asynch. Clock 

2-103 



5AC312 

ASYNCHRONOUS CLOCK MODE A.C. CHARACTERISTICS (Continued) 
TA= o•c to +1o•c, Vee= 5.ov ±5%, Turbo Bit On<&> 

5AC312·25 5AC312·35 Non..(10) 
Symbol Parameter Turbo Unit 

Min Typ Max Min Typ Max Mode 

MACROCELLS (Continued) 

tASU2 1/0 Setup Time to 7 10 +10 ns 
Asynch. Clock 

tAH Input or 110 Hold after 23 18 30 25 +10 ns 
Asynch. Clock 

tAco Asynch. CLK to Output Valid 30 35 45 50 +10 ns 

tACNT Register Output Feedback 50 55 65 70 +10 ns 
to Register Input-
Internal Path 

tACH Asynch. CLK High Time 25 30 +10 ns 

tACL Asynch. CLK Low Time 25 30 +10 ns 

INPUT ·CLOCK-TO·MACROCELL-CLOCK A.C. CHARACTERISTICS 
TA = 0°C to + 70-C, Vee = 5.0V ± 5%, Turbo Bit On(8) 

5AC312·25 5AC312·35 Non-(10) 
Symbol Parameter Turbo Unit 

Min Typ Max Min Typ Max Mode 

tc1c2 Synchronous ILE/ICLK 25 35 +10 ns 
Synchronous Macrocell CLK 

Synchronou~ ILE/ICLK 5 10 +10 ns 
Asynchronous Macrocell CLK 

Asynchronous I LE/ICLK 48 65 +10 ns 
Synchronous Macrocell CLK 

1 Asynchronous ILE/ICLK 20 50 +10 ns 
Asynchronous Macrocell CLK 

2-104 



5AC312 

SWITCHING WAVEFORMS 

COMBINATORIAL MODE 

INPUT OR 1/0 
'\/ 
_)'\_ 

1---tPD 

COMBINATORIAL OUTPUT \I 
_/\. 

tpxz 

COMBINATORIAL OR 
REGISTERED OUTPUT 

tpzx 

HIGH IMPEDANCE 

3-STATE 
t---tACLR-

1---t...sET-

VALID OUTPUT 

SYNCHRONOUS CLOCK MODE (MACROCELLS) 

CLK 

(FROM REGISTER 
TO OUTPUT) 

tco 

2-105 

HIGH IMPEDANCE 

3-STATE 

VALID OUTPUT 

ASYNCHRONOUSLY 
SET OR RESET OUTPUT 

INPUT MAY CHANGE 

VALID OUTPUT 

290156-9 

290156-10 



5AC312 

SWITCHING WAVEFORMS (Continued) 

SYNCHRONOUS CLOCK MODE (INPUT STRUCTURE) 

ILE,ICLK 

""1_su_1R __ tH1 

INPUT MAY ·CHANGE VALID 
INPUT INPUT MAY CHANGE 

INPUT MAY 
CHANGE 

- 1co1 

DATA VALID 
BEFORE ILE 
SEE NOTE 

i..----- 1EOI ---•I 

INPUT LATCH/REGISTER TO 
COMBINATORIAL OUTPUT 

NOTE: WHEN ILE GOES HIGH BEFORE DATA IS VALID, USE tpD 

INSTEAD OF 1EOI. 

ASYNCHRONOUS CLOCK MODE (INPUT STRUCTURE) 

ASYNCH. 
ILE/CLK 
INPUT 

INPUT MAY CHANGE 

VALID OUTPUT 

INPUT MAY CHANGE . INPUT MAY CHANGE 

INPUT MAY 
CHANGE 

14----1AEOI ---+! 

INPUT LATCH/REGISTER TO 
COMBINATIONAL OUTPUT 

NOTE: WHEN ILE GOES HIGH BEFORE DATA IS VALID, USE 1PD 
INSTEAD OF 1AEOI. 

2·106 

INPUT MAY CHANGE 

VALID OUTPUT 

290156-11 

290156-13 



5AC312 

SWITCHING WAVEFORMS (Continued) 

ASYNCHRONOUS CLOCK MODE (MACROCELLS) 

ASYNCH. 
CLOCK 
INPUT 

FLOW 
THROUGH 

INPUT 
INPUT MAY CHANGE 

FLOW THROUGH INPUT 
TO REGISTERED OUTPUT 

INPUT CLOCK· TO-MACROCELL CLOCK TIMING 

ILE,ICLK 

CLK 

INPUT MAY CHANGE 

VALID OUTPUT 

290156-18 

Output Drive Current In Relatlon to Voltage 

20I ~ 
10 ~ 
5 

21---+~--+~-+-~+----11 

1----'~-'-~-'-~....___. 

0 2 3 4 5 

Conditions: TA = + 25'C 
v0 Output Voltage (V) 

290156-16 

2-107 

290156-12 



APPLICATION 
BRIEF 

Implementing Cascaded 
Logic in the 5C121 

J. R. DONNELL 
APPLICATIO.NS ENGINEER 
PROGRAMMABLE LOGIC 

May 1986 

Order Number: 292003-001 
2-108 



AB-8 

PROBLEM 

Designs that utilize numerous levels of cascaded logic 
often result in excessive product terms when expressed 
in the sum-of-products form. Although this poses no 
problem when designing with discrete logic, EPL9s are 
generally optimized for the sum-of-product form. This 
stems from the architecture of the basic Macrocell. 

Macrocells typically consist of a programmable AND 
array feeding a fixed width OR gate. In the 5Cl21, OR 
gate widths range from four to sixteen inputs. For 
many applications, sixteen available product terms are 
sufficient. However, one example where product terms 
become an issue is cascaded exclusive-OR circuits. 
Here the number of product terms increase as 2nn 
where n equals the number of exclusive-OR gates. If 
the number of product terms exceeds sixteen, the equa­
tion will not fit directly in the 5C121. 

SOLUTION 

There is a simple solution· to reduce the product term 
requirements when using cascading XOR (or other) 
logic. Figure 1 shows a circuit cascading five exclusive 
ORs. As designed, this circuit expands to 32 product 
terms when expressed in the minimized sum-of-prod­
ucts form. (This is assuming that signals A thru F are 

single product terms themselves.) Figure 2 shows the 
minimized logic equation file produced by Intel's Logic 
Optimizing Compiler (iLOC). 

An easy solution to fitting this logic into the 5C121 is 
to cascade three exclusive ORs together and then send 
the result through a No Output Combinational Feed­
back primitive (NOCF). This signal can now be cascad­
ed through two more XOR's to get the five total. This 
circuit is shown in Figure 3. Figure 4 shows the logic 
equation file for this implementation. Note the reduc­
tion in product terms from Figure 2. If the buried regis­
ters are available, Intel's iPLDs software will automati­
cally assign the combinational feedback to a buried i;:eg­
ister thereby saving a pin. This technique can be used 
for any circuit that generates excessive product terms. 

The only penalty in this method is the added delay 
needed for the feedback path. The worst case lpc! (input 
to output delay) for the circuit in Figure 3 would be 
twice the specified Tpd in the 5C121-XX data sheet. 
Basically the signal mus.t go through the device twice. 
For the 5Cl21-90 the Tpd would be 180 ns worst case 
as implemented in Figure 3. 

Figure 5 shows the report file generated by the compil­
er. In this case the NOCF path was automatically as­
signed to the buried registers. 

:::J~D-::J~D-::)~· . ~- ----~ 
. L-/ E--J 1 1 OUT 

F" I I 

·-------· 292003-1 

Figure 1. Cascaded Excluslve-ORs 

-· 
E ~,- ----~ 

1 1 OUT 
I I 

·-------· 292003-2 

Figure 3. Cascaded Excluslve-ORs using Comblnatlonal Feedback 

2-109 



5Cl21 
cascading exclusive or's 
LB Version 3.0. Baseline 17x, 9/26/85 

PART: 
5Cl21 

INPUTS: 
Ap, Bp, Cp, Dp, Ep, Fp 

OUTPUTS: 
0 

NETWORK: 
A 
B 
c 
D 
E 
F 
0 

EQUATIONS: 
NO 

+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

INP(Ap) 
INP(Bp) 
INP(Cp) 
INP(Dp) 
INP(Ep) 
INP(Fp) 
CONF (NO, Veel 

F * E' • D' • C' • A' • B' 
F' * E • D' • C' • A' • B' 
F' • E' • D • C' • A' • B' 
F' • E' • D' • c • A' • B' 
F' • E' • D' • C' • A' • B 
F' • E' • D' • C' • A * B' 
F • E • D • c• • A' • B' 
F • E • D' • c • A' • B' 
F • E • D' • C' • A' • B 
F • E • D' • C' • A * B' 
F • E' • D • C • A' • B' 
F • E' • D • c• • A' • B 
F • E' • D • c• * A • B' 
F • E' • D' * C • A' • B 
F • E' • D' * C • A • B' 
F • E' • D' • C' • A • B 
F' • E * D • C • A' • B' 
F' • E • D • C' • A' • B 
F' • E • D * C' • A • B' 
F' • E • D' • C • A' • B 
F' • E • D' • C • A • B' 
F' • E • D' • C' • A • B 
F' • E' • D • C • A' • B 
F' • E' • D • C • A • B' 
F'* E' • D * C' * A • B 
F' • E' • D' * C * A * B 
F * E * D • C • A' • B 
F • E • D • C • A * B' 
F * E • D • C' * A * B 
F * E * D' • c • A • B 
F • E' * D * C • A * B 
F' * E • D • C • A • B; 

Figure 2. Minimized Logic Equations for Figure 1 

AB-8 

2-110 

5Cl21 
CASCADING 5XORS WITH COMBINATIONAL 
FEEDBACK 

LB Version 3.0, Baseline 17x, 9/26/85 

PART: 
5Cl21 

INPUTS: 
Ap, Bp, Cp, Dp, Ep, Fp 

OUTPUTS: 
0 

NETWORK: 
A INP(Ap) 
B INP(Bp) 
C INP(Cp) 
D INP(Dp) 
E INP(Ep) 
F INP(Fp) 
0 CONF (NO, Vee) 
N2 = NOCF (N3) 

EQUATIONS: 
N3 

NO 

D • C' • A' * B' 
+ D' * C * A' • B' 
+ D' • C' • A' * B 
+ D' • C' • A • B' 
+ D • C • A' • B 
+ D • C • A • B' 
+ D • C' • A • B 
+ D' • C • A • B; 

F • N2' * E' 
+ F' • N2' • E 
+ F' • N2 • E' 
+F*N2*E; 

Figure 4. Minimized Logic Equations for Figure 3 



AB-8 

Logic Optimizing Compiler- Utilization Report 

***** Design implemented successfully 

JRD 
INTEL 
October 8, 1 985 

1 
5Cl21 
CASCADING 5XORS WITH COMBINATIONAL FEEDBACK 
LB Version 3.0, Baseline 17x, 9/26/85 

5Cl21 

GND -I 1 401- Vee 
GND -I 2 391- Vee 
GND -I 3· 381- Ap 
GND -I 4 371- BP 
GND -I 5 361- Cp 
GND -I 6 351- Dp 
GND -I 7 341- Ep 
GND -I 8 331- Fp 
GND ·-: 9 321- 0 
GND -110 311- RESERVED 
GND -111 301- RESERVED 
GND -112 291- RESERVED 
GND -113 281- l\lND 
GND -114 271- GND 
GND -115 261- GND 
GND -116 251- GND 
GND -117 241- GND 
GND -118 231- GND 
GND -119 221- GND 
GND -120 211- GND 

**INPUTS** 

Name Pin Resource MCell 11· PTerms 

Fp 33 INP 

Ep 34 INP 

Dp 35 INP 

Cp 36 INP 

Bp 37 INP 

Ap 38 INP 

**OUTPUTS** 

Name Pin Resource MCell II PTerms 

0 32 CONF l 4/ 4 

2-111 

Feeds: 
MCells OE Clear Chick 

l 

l 

13 

13 

13 

13 

Feeds: 
MCells OE Clear 

292003-3 



AB-8 

**BURIED REGISTERS** 

F4'1eds: 
Name Pin Resource MCell II PTe1·ms MCells OE Clear 

NOCF 13 8/ 8 

**UNUSED RESOURCES** 

Name Pin Resource MCell PTerms 

1 
2 
3 
4 
5 
6 
7 
8 28 4 
9 27 10 

10 26 8 
11 25 6 
12 24 6 
13 23 8 
14 22 10 
15 21 4 
16 20 12 
17 19 4 
18 18 8 
19 17 8 
21 12 8 
22 11 8 
23 10 4 
24 9 12 
25 8 4 
26 .~ 7 10 
27 6 8 
28 5 6 
29 4 6 
30 3 8 
31 2 10 
NA 14 8 
NA 15 8 
NA 16 8 

**PART UTILIZATION** 

18% Pins 
7% MacroCell.s 
5% Pterms 

292003-4 

Figure 5. The Utilization Report 

2-112 



intJ APPLICATION 
BRIEF 

5C121 As A Three 
And One Half Digit 

Display Driver 

THOM BOWNS 
PROGRAMMABLE LOGIC APPLICATIONS 

INTEL CORPORATION 

AB-9 

May 1986 

Order Number: 292006-001 
2-113 



intJ AB-9 

INTRODUCTION 

Described is a method of constructing a multi-digit, 
seven segment decoder driver with latching capability 
in a single EPLD. The design is a simple, easily under­
stood method of using the 5Cl21 as a seven-segment 
display driver. 

This design has many advantages: (1) the ability to up­
date a single digit without disturbing the others, (2) 
Outputs are latched and retain their data without up­
date from the controlling device(s), (3) Input interfac­
ing is simple and straightforward, using four data in­
puts, two digit select lines, and a data strobe line. 

The display driver interface is therefore not limited to 
microprocessor applications only (although it can be 
used with them). Possible applications include a Mul­
timeter display, a clock or timer display, or a simple 
controller system display. 

PROBLEM 

The display driver needs to latch the incoming data at 
the correct time, route it to the correct digit, and then 
decode the four bit data into seven-segment output for­
mat. 

SOLUTION IN EPLD 

A simple solution to the display driver imagined above 
can be realized in the 5C121 EPLD. 

The 5Cl21 EPLD is organized in groups ofMacrocells. 
Each Macrocell contains a number of multiple input 
AND gates which are feeding an OR gate. The OR gate 
feeds a selectable registered output. This output may 
also be routed back into the array for feedback purpos­
es. 

Figure 1 shows a basic block diagram of the three and 
one half digit display driver. The data is input to a 
distribution block, which sends the data to one of four 
seven-segment decoders depending upon the digit se­
lected by the Digit Select inputs. The outputs are up­
dated by strobing the WR input. The data input is in a 
HEX format and may be in the range of 0 to F HEX (0 
to 15 Decimal). Digit select is placed upon the two 
select lines in a binary format; 0, 1, 2, 3. When data is 
present on the input lines and a digit is selected, the 
strobe line may be pulsed high and that output digit is 
then updated to the numeral suggested by the input 
data. 

Figure 2 illustrates the Boolean equivalents of the de­
sign in Figure I. In the NETWORK section of Figure 
2, the inputs and outputs of the design are described. 

For instance, the NETWORK equation 

SSA 1, SA 1 F = ROAF (ISA 1, WAN, GND, GND, VCC) 

represents that the output pin for segment "A" of the 
1st Seven Segment display (SSA!) results from a Regis­
tered Output Registered Feedback (RORF) structure in 
the EPLD. The feedback signal (SAlF) is the same as 
the signal output (SSA!). The RORF's D input is driv­
en by the signal ISA!, the clock input is driven by 
WRN, and reset, preset and output enable signals are 
tied to their default voltage levels (either GND or 
VCC). 

The EQUATION section of Figure 2 shows how the 
data distribution and decoding logic works. Equations 
starting with A-G are generic seven segment display 
equations. Segment decoding results from the combina­
tion of the true or false of the four data inputs (e.g., DO 
or !DO). 

Equations such as 

SE1 = (E • WE1) + (SE1F • !WE1) 

show how the data is distributed. Segment E of display 
1 (SEl) is valid (ON) if the "E" decode exists and dis­
play 1 is chosen by the address inputs (WEI = !AO • 
!A 1 ). It is also valid if it was previously turned on 
(SEIF) AND seven segment display 1 is not selected 
(!WEI). 

These equations may be entered using LB in the form 
of a Netlist, or may be entered directly into the ADF by 
means of a text editor. The ADF is then compiled and 
programmed into a 5Cl21 using iPLS. 

SUMMARY 

This method of using the SC 121 as a three and one half 
digit display driver is advantageous in respect to its 
simple interface, and its ability to hold all other digits 
stable while one is being updated. Displays with more 
than three and one half digits may be produced in the 
5C121 by using the input latches as data storage and by 
multiplexing the outputs in a scanning fashion. 

2-114 



intJ 

D00----1 

Dt e>--­

D2e>--­

D3e>---

A00----1 

At 0----1 

DATA 
DISTRIBUTION 

SELECTION 

AB·9 

DECODE 

Figure 1. Block Diagram 

2-115 

LATCHES 
_ ..... _ 

292006-1 



Thom Bowns 
Intel 
October 29, 1985 
U4 
1 
sc121· 
3.5 digit output dr.iver 

AB-9 

LB Version 3.0, Baseline 17x, 9/26/85 
PA~T: 5C121 . . 
INPUTS: AOp,Alp,DOp,Dlp,D2p,D3p,WRp 
OUTPUTS: SSAl.,SSBl ,SSC! ,SSDl ,SSEl ,SSFl ,SSGl ,SSA2, 
SSB2,SSC2,SSD2,SSE2,SSF2,SSG2,SSA3,SSB3,SSC3,SSD3,SSE3,SSF3,SSG3,SSA4 
NETWORK: 
SSAl,SAlF = RORF· (ISAl,WRN,,GND,GND,VCC) 
SSBl ,SBlF ::: RORF ( ISBl ,WRN,:GND,GND, VCC) 
SSCl,SClF = RORF (ISCl,WRN,'GND,GND,VCC!) 
SSDl,SDlF = RORF (ISDl,WRN,GND,GND,VCC) 
SSEl,SElF = RORF (SEl,WRN,GND,GND,VCC) 
SSFl,SFlF = RORF (SFl,WRN,GND,GND,VCC) 
SSGl,SGlF = RORF (SGl,WR~GND,GND,VCC) 
SSA2,SA2F = RORF (SA2,WRN°,GND,GND,VCC) 
SSB2,SB2F = RORF (SB2,WRN,GNb,GND,VCC) 
SSC2,SC2F = RORF (SC2,WRN,GND,GND,VCC) 
SSD2,SD2F = RORF (SD2,WRN,GND,GND,VCC) 
SSE2,SE2F = RORF (SE2,WRN,GND,GND,VCC) 
SSF2,SF2F = RORF (SF2,WRN,GND,GND,VCC) 
SSG2,SG2F = RORF (SG2,WRN,GND,GND,VCC) 
SSA3,SA3F = RORF (SA3,WRN,GND,GND,VCC) 
SSB3,SB3F = RORF (SB3,WRN,GND,GND,VCC) 
SSC3,SC3F = RORF (SC3,WRN,GND,GND,VCC) 
SSD3,SD3F = RORF (SD3,WRN,GND,GND,VCC) 
SSE3,SE3F = RORF (SE3,WRN,GND,GND,VCC) 
SSF3,SF3F = RORF (SF3,WRN,GND,GND,VCC) 
SSG3,SG3F = RORF (SG3,WRN,GND,GND,VCC) 
SSA4,SA4F = RORF (SA4,WRN,GND,GND,VCC) 
ISA! = NOCF (SAl) 
ISBl = NOCF (SBl) 
ISCl = NOCF (SC!) 
ISDl = NOCF (SDl) 
WRN = NOT (WR) 
WR = INP (WRp) 
DO = INP (DOp) 
Dl = INP (Olp) 
02 = INP (D2p) 
03 = INP (D3p) 
AO = INP (AOp) 
Al = INP (Alp) 
EQUATIONS: 
A = !D3*!D2*!Dl*DO + !D3*D2*!Dl*!DO + D3*!D2*Dl*DO + D3*D2*!Dl*DO; 
B - !D3*D2*!Dl*DO + D2*Dl*!DO + D3*D2*!Dl*!DO + D3*Dl*DO; 
C = ID3*!D2*Dl*!DO + D3*D2*!Dl*!DO + D3*D2*Dl; 
D = !D3*!D2*!Dl*DO + ID3*D2*1Dl*IDO + D2*Dl*DO + D3*!D2*Dl*!DO; 
E = !D3*!D2*DO + !D3>t:D2*1Dl + !D3*02*Dl*DO + D3*!D2*!Dl*DO; 
F = !D3*!D2*!Dl*DO + !D3*!D2*Dl + ID3*D2*Dl*DO + D3*D2*!Dl*DO; 
G -· !D3*!D2*!Dl + !D3*D2*Dl*DO + D3*D2*!Dl*!DO; 

Figure 2. ADF Listing 

2-116 

292006-2 



SE! 

SF! 

SGl 

SA2 

SB2 

SC2 

SD2 

SE2 

SF2 

SG2 

SA3 

SB3 

SC3 

SD3 

SE3 

SF3 

SG3 

SAl 

SBl 

SCl 

SD! 

AB-9 

(E * WE!) 
+ (SElF * !WE!); 

= (F * WE!) 
+ (SFlF * !WE!); 

= (G * WE!) 
+ (SGlF * !WE!); 

= (A * WE2) 
+ (SA2F * !WE2); 

= (B * WE2) 
+ (SB2F * !WE2); 

= (C * WE2) 
+ (SC2F * !WE2); 

= (D * WE2) 
+ (SD2F * !WE2); 

(E * WE2) 
+ (SE2F * !WE2); 

= (F * WE2) 
+ (SF2F * !WE2); 

= (G * WE2) 
+ (SG2F * !WE2); 

(A * WE3) 
+ (SA3F * !WE3); 

(B * WE3) 
+ (SB3F * !WE3); 

(C * WE3) 
+ (SC3F * !WE3); 

= (D * WEj) 
+ (SD3F * !WE3); 

= (E * WE3 ) 
+ (SE3F * !WE3); 

= (F * WE3) 
+ (SF3F * ! WE3); 

(G * WE3) 
+ (SG3F * ! WE3); 

: (A *WEl) 
+ (SAlF * ,!WEl) f · 

= (B * WE!) 
+ (SBlF * !WE!); 

= (C * WE!) 
+ (SClF * !WEf); 

= (D * WE!) 
+ (SDlF * !WE!); 

SA4 = ((!D3*!D2*!Dl*!DO) * WE4) + (SA4F * !WE4); 
WE! = !AO * !Al; 
WE2 AO * !Al; 
WE3 = !AO * Al; 
WE4 = AO* Al; 
END$ 

Figure 2. ADF Listing (Continued) 

2-117 

292006-3 



intef APPLICATION 
BRIEF 

AB-10 

June 1986 

Square Pegs in Round Holes-A 
Fitting Tutorial for the 5C121 

J. R. DONNELL 
PROGRAMMABLE LOGIC APPLICATIONS 

INTEL CORPORATION 

2-118 
Order Number: 292014-001 



inter AB-10 

INTRODUCTION 

This application brief explores the various techniques 
for getting the most out of Intel's line of Erasable Pro­
grammable Logic Devices (EPLDs). In many cases, 
techniques discussed here will not be needed due to the 
intelligent fitting algorithms built into Intel's Program­
mable Logic Software (iPLS). As a matter of fact, most 
designs can be implemented in EPLDs without any 
knowledge oft.he device architectures. For complex de­
signs, the designer will still need an in-depth under­
standing of the target EPLD in order to maximize the 
EPLD's utility. 

This application brief explores fitting techniques for the 
5C121, a 1200 gate equivalent CHMOS EPLD. The 
techniques described here will also apply to any EPLD 
that supports a similar architecture. 

FITTING 

When fitting logic designs into the 5C121 there are two 
typical scenarios: 1) The 5C121 design has been com­
pleted without pin assignments and the compiler warns 
the user that fitting may be time consuming, and 2) pin 
assignments have been made and the "***ERR-FIT 
. . . " message comes up. 

Let's look at the first situation. 

In general, ifthe designer does not care what signals get 
assigned to what pins, the choice can be left to the 
compiler and the compiler will make pin assignments. 
For simple designs pin assignments are very easy. How­
ever, designs that include a variety of different register 
types, feedback paths, and product term widths may 
take a long time for the compiler to fit. When the de­
signer is faced with the message, "Fitting may be time 
consuming", the compilation should be aborted, and 
intelligent pin assignments made. NOTE: Control C 
(AC) may be used to abort a design. The software will 
not stop immediately because the software does not poll 
the keyboard until it updates the display. Rebooting the 
system will also work. 

To make intelligent pin assignments, the designer needs 
a basic understanding of the architecture of the part. 
For the 5C121 this understanding should include the 
number of product terms supported in each Macrocell, 
what Macrocells support local feedback, and what 
Macrocells support global feedback. This information is 
easily found in the data sheet. One other point, the 
Macrocells in the 5Cl21 are grouped into groups of 
four. All Macrocells in a group must have the same 
output type. Therefore, if one output is registered, the 
other three must also be registered. This means that a 
combinatorial output could not be put into the same 
group as a registered output. Output enable (OE) terms 
are also based on Macrocell grouping. All four Macro­
cells are driven from the same OE term. 

Once the basic 5Cl21 architecture is understood, intel­
ligent pin assignments can be made. After assigning the 
pins recompile the design using iPLS. 

Compiling the design with pin assignments is a new ball 
game: This time it is fit or not fit. If the design does not 
fit, an error like: "***ERR-FIT-It is not possible to 
fit the specific pin requests you made" will occur. In 
most cases, the compiler will also ask if it can remove 
pin assignments and try its own. If the design has al­
ready been attempted without pin assignments, or if 
specific pin assignments are needed, answer no and iso­
late the problem. 

ISOLATE THE PROBLEM 

The first step towards isolating the problem is to print 
out a copy of the utilization report (<File­
name> .RPT), logic equation file (<Filename> .LEF), 
and the Advanced Design File (<Filename> .ADP). 
Next, fill out the 5Cl21 architecture worksheet includ­
ed in this application brief. Include the signal name for 
each pin, the type of output, and the number of product 
terms needed for each output. All this information is 
available in the files that were printed earlier. The next 
step is to identify the conflict . 

CONFLICTS 

There are three potential conflicts with pin assignments 
in the 5C121; incompatible output structures, excessive 
product terms, and local/global feedback conflicts. In­
compatible output structures and excessive product 
term errors are the easiest to spot. 

INCOMPATIBLE OUTPUT 
STRUCTURES 

As shown in the 5C121 Design Worksheet, the 5Cl21 
is divided into six Macrocell groupings. The data sheet 
refers to these as the A-1, B-1, A-2, B-2, A-3, and B-3 
Macrocells. One requirement of the 5Cl21 architecture 
is that Macrocells within the same grouping have the 
same output structure. This was discussed earlier, but it 
is worth revisiting. The file titled example 1 in the ap­
pendix shows an ADP for a design that contains such 
an I/O conflict. Following the ADP is a completed 
5C121 architecture worksheet with a number of prob­
lems. Concentrating on the incompatible output prob­
lemon the 5Cl21 worksheet, notice that pins 31 and 32 
belong to the same Macrocell group, and that they are 
assigned conflicting I/O structures. 

The solution to an incompatible output structure con­
flict may be as simple as reassigning pins. Another op­
tion may be to use a different output type for that sig-

2-119 



intef AB·10 

nal. This is very dependent on the design. Another op­
tion is possible when a Macrocell grouping has been 
assigned combinatorial output structure, and a regis­
tered output needs to be assigned to that same group. A 
possible solution is to use one of the buried registers 
configured as a NORF (No Output Registered Feed­
back) cell to hold the signal, and then send the signal 
out through a CONF (Combinatorial Output No Feed­
back) primitive. This output primitive is compatible 
with the other output primitives in that grouping, and 
the register output requirement has also been satisfied. 
The penalty is loss of speed due to the additional feed­
back path. 

EXCESSIVE PRODUCT TERMS 

Excessive product term conflicts are also easy to spot. 
(A product term consists of a set of signals ANDed 
together which are separated from other ANDed 
groups by an OR gate.) Written next to the 1/0 slot on 
the 5Cl21 architecture worksheet is the number of 
product terms that each Macrocell supports. Match 
that number with the number of product terms for each 
output indicated in the logic equation file (LEF). If 
more product terms are required of a output than are 
provided, there is a product term conflict. The utiliza­
tion report also shows the number of product terms 
used for each signal. 

The solution, again, may be as simple as reassigning 
pins since the 5Cl21 supports varying product term 
widths. In fact, the 5Cl21 supports up to 16 product 
terms on pins 16 and 24. Note that four of those prod­
uct terms are shared with the adjacent Macrocell. Shar­
ing means that those signals are common. It is not 
product term allocation. If the number of product 
terms exceeds the capability of the device, the design 
may still fit by splitting up long equations and inserting 
NOCF (No Output Combinatorial Feedback) primi­
tives. Again the price for using this solution is reduced 
speed. This technique is covered more thoroughly in 
AB-8 titled: Implementing Cascaded Logic in the 
5Cl21. 

LOCAL/GLOBAL FEEDBACK 

It is possible to encounter one other type of fitting con­
flict in the 5Cl21. This occurs when a feedback signal 
from the A-1 or A-2 Macrocells feeds the B-1 or B-2 
Macrocells. The issue is that these Macrocells feed bus­
ses that are local to one half of the chip. Therefore, the 
signal is not physically available to the other side of the 
device. 

The best way to understand the local and global buss­
ing in the 5Cl21 is to divide the chip in halflengthwise. 
One side contains the A Macrocells, and the other side 

contains the B Macrocells. The two sides are mirror 
images. Speaking generically now, the -1 and -2 Macro­
cells feed only local busses; local to their respective side 
of the device. The -3 Macrocells and the buried regis­
ters feed global busses which route signals to both sides 
of the device. Therefore a feedback signal coming from 
the A-I or A-2 group can only feed the A Macrocells, 
however, a feedback signal from the A-3 group could 
feed the B-1, B-2, B-3, or the B buried Macrocells. This 
local/global bussing applies to both feedback and input 
signals on the 1/0 pins. All of the dedicated inputs feed 
the global bus. 

Example I also shows a simple two bit counter with 
seven segment driver outputs. The worksheet shows 
that the counter registers were assigned to pins 27 and 
28, while the seven segment outputs were assigned to 
pins 8 thru 14. The seven segment outputs decode the 
feedback signals from the counter registers to generate 
the appropriate digit output, and therefore must have 
access to those signals. This presents a local/global 
feedback conflict. If the designer is locked into those 
specific pin assignments a design workaround is need­
ed. 

One solution might be to take the outputs of the coun­
ter and externally tie them to dedicated input pins 
thereby making those signals global. This would work 
but that solution ends up wasting input pins. A better 
solution would be to internally route the counter feed­
back signals through one of the buried registers config­
ured as a NOCF primitive. After passing through the 
buried register the signals become global. Both the in­
compatible output solution and this solution are shown 
in the worksheet, ADF, and utilization report shown as 
example 2. If we did not need the counter signals exter­
nally, it would of been wise to simply use the buried 
registers to perform the counting function. 

One final comment regarding the utilization report. 
The utilization report shown in example I indicates 
that signals CLK and CNT feed Macrocell lOCll and 
1002. These are fictitious Macrocell numbers that the 
software assigns to requests that cannot be met. In ex­
ample I, three requests were unfulfilled: REGOUT, 
LEDi and LEDO. REGOUT was unfulfilled because of 
incompatible output structures. LEDO and LEDi were 
unfulfilled because their feedback signals needed to 
drive the seven segment display outputs. This was im­
possible because the LED outputs were assigned to a 
local bus on the opposite side of the device. 

The files shown in example 2 fix the LED fitting prob­
lems by sending the feedback signals through the buried 
registers, thereby making them global. In the case of 
REGOUT, the buried register primitive NORF (No 
Output Registered Feedback) is used, allowing the out­
put primitive to be combinatorial. 

2-120 



intJ 
EXAMPLE 1 
ADF 

JR Donnell 
Intel 
April 3, 1986 

0 
60121 
Fittinf exaaple 
LB Veraion 3.0, Baaeline 17x, 9/26/86 
PART: 60121 
INPUTS: ONTe2,0LKel . 

AB-10 

OUTPUTS: LBDOe28,LBD1•27,RBGOUTe32,00NJOUTe31,SBGA•8, 
SBGBe9,SBGOelO,SIGD•ll,SBGl•l2,SIOrel3,SIOGel4 

NBTWORI: 
LIDO,A = Roar (NLBDOD,OLl,OND,GND,VOO) 
LBDl,B = RORJ (NLIDlD,OLl,GND,OND,VOO) 
RBGOUT = RONJ (NRIOOUTD,OLl,GND,GND,VOO) 
OONJOUT = CONJ (NOONJOUTIN,YOO) 
SIOA CONJ (NSBGAIN,VOO) 
SBGB CONJ (NSBGBIN,VOO) 
8100 OONF (NSBGOIN,VOO) 
SBOD CONJ (NSBGDIN,VOO) 
SBOB OONF (NSBOBIN,VOO) 
SBOF CONJ (NSBGFIN,VOO) 
SBOG OONF (NSBOGIN,VOO) 
OLI = INP (OLK) 
ONT = INP (ONT) 
IQUATIONS: 
NSBOGIN = 2 

+ 3; 
2 = 8*/A; 
3 = A*B; 
NLBDlD = /A$/B$0NT 

+· /A*U/ONT 
+ U/UONT 
+ A*U/ONT; 

NLBDOD = /A*B*ONT 
+ A*/8*/0NT 
+ A*/UONT 
+ A*U/ONT; 

NSBOFIN = 0; 
0 = /8*/A; 
NSBOBIN 0 

+ 2; 
NSBGDIN 0 

+ 2 
+ 3; 

NSBGOIN 0 
+ 1 
+ 3; 

1 = /B*A; 
NSIGBIN = 0 

+ 1 
+ 2 
+ 3; 

NSBGAIN 0 
+ 2 
+ 3; 

NOONJOUTIN A*B; 
NRBGOUTD = /A*/B; 
BND$ 

2-121 

292014-2 



AB-10 

SUMMARY 

As programmable logic devices become more dense, signal routing and resource partitioning becomes necessary. In 
general, these choices are made by the semiconductor manufacture to most efficiently utilize the available logic. In 
some cases though, these choices make certain designs more difficult to implement in a given device. Intelligent 
software, a basic knowledge of the device architecture, and a little experience in fitting techniques will always make 
the job easier. 

EXAMPLE 1 (Continued) 
5C121 Design Worksheet 

~ 

~ 

~ 

~ 

_gQL 

...illL 

...lli£... 

2-122 

~ 

~ 

....illQ.... 

~ 

292014-1 



intJ AB-10 

EXAMPLE 1 (Continued) 

Loaie Opti•i•ina Co•piler Utilization Report 

***** Unable to i•ple•ent deeian 

JR Donnell 
Intel 
April 3, 1986 

0 
6Cl21 
Fittina exe•ple 
LB Vereion 3.0, Baeeline 17x, 9/26/86 

6Cl21 

CLK -: 1 40:- Yee 
CHT -: 2 39:- Yee 
GHD -: 3 38:- GHD 
GHD -: 4 37:- GHD 
GHD -: 6 36:- GHD 
GHD -: 6 36:- GHD 
GHD -: 7 34:- GHD 

SBGA -: 8 33:- GHD 
SIGB -: 9 32:- RISBRVID 
SBGC -:10 31:- CO If FOUT 
SBGD -: 11 30:- RISBRVID 
SBGI -: 12 29:- RISIRVID 
SBGF -:13 28:- GHD 
SIGG -: 14 27:- GHD 

RISBRVID -: 16 26:- GHD 
GHD -:16 26:- GHD 
GHD -:17 24:- GHD 
GHD -: 18 23:- GHD 
GHD -: 19 22:- GHD 
GHD -:20 21:- GHD 

**IHPUTS** 

lfa•e Pin Reaource MCell t 

CLI IMP 

CHT 2 IHP 

UOUTPUTSU 

Ha•e Pin Reaource MCell I 

SBGA 8 COHF 28 

SBGB 9 COHF 27 

SBGC 10 COHF 26 

SBGD 11 COHF 25 

PTer•e 

PT er•• 

2/ 4 

2/10 

2/ 8 

2/ 6 

2-123 

Feede: 
MCelle 01 Clear Clock 

Rea 

1001 
1002 

Feede: 
MCelle 01 Clear 

292014-3 



intJ AB-10 . ·' 

EXAMPLE 1 (Continued) t." 

SIGI 12 CORP 24 1/ 8 -
nar 13 CONJ 23 1/ 8 

SIGG 14 CONJ 22 1/10 

CONfOUT 31 CONJ 2 1/10 

**UNfULFILLBD RBQUBSTS** 

UOUTPUTSU 

l••d•: 
Neae Pin Re•ource MCell t PTerae MCelle OB Clear 

RIGOUT RONr 1000 1 

LBDl aoar 1001 2 2 
22 
23 
25 
26 
28 

1000 
1001. 
1002 

LIDO aoar 1002 3 2 
23 
24 
25 
28 
27 
28 

1000 
1002 

**UNUSID RISOURCBS** 

Naae Pin Reeo11rce llCell PT era• 

3 
4 
15 
8 
7 

15 21 4 
16 20 12 
17 19 4 
18 18 8 
19 17 8 
21 12 8 
22 11 8 
23 10 4 
24 9 12 
25 8 4 
26 7 10 
27 6 8 
28 5 6 
29 4 6 
30 3 8 
32 1 4 292014-4 
33 
34 
35 
36 
37 
38 
NA 13 8 
NA 14 8 
NA 15 8 
NA 16 8 292014-5 

2-124 



EXAMPLE 2 
ADF 

JR Donnell 
Intel 
April 3, 1986 

0 
6Cl21 
Fittin( exe•ple 
LB Veraion 3.0, Ba•eline 17x, 9/26/86 
PART: 6Cl21 
INPUTS: CNTl2,CLl11 

AB-10 

OUTPUTS: I.BD0128,LID1127,RIGOUTl32,CONFOUT13l,SIGAl8, 
SIG819, SIGCllO, S.IGDlll, SIGll12, SIGFl13, SIGGl14 

NITWORI: 
LIDO,NATO)l()cr = RORF (NLIDOD,CLl,GND,GND,VCC) 
LIDl,NBTONOCr = RORr (NLIDlD,OLl,GND,GND,YCC) 
RIGOUT = CONF (NRIG.OUTIN, VCC) 
CONFOUT = CONF (NCONFOUTIN,YCC) 
SIGA CONF (NSIGAIN,VCC) 
SIGB CONF (NSIGBIN,YCC) 
SIGC C.ONJ' (NSIGCIN, VCC) 
SIGD CONF (NSIGDIN,VCC) 
SIGI CONF.(NSIGIIR,VCC) 
SIGF CONJ' (NSBGFIN,YCC) 
SIGG CONJ' (NSIGGIN,VCC) 
A = NOCF (NATONOCF) 
CLI = INP (CLI) 
B = NOCF (NBTONOCF) 
NRIGOUTIN = NORI' (NRIGOUTD,CLl,GND,GND) 
CNT = INP (CNT) . 
IQUATIONS: 
NLIDOD = /A$8$CNT 

+ U/8*/CNT 
+ U/UCNT 
+Uh/ONT; 

NLIDlD = /A$/l$CNT 
+ /UU/CNT 
+ U/UCNT 
+ UU/CNT; 

NCONFOUTIN = A•B; 
NSIGAIN ,. 0 

+ 2 
+ 3; 

NSBGBIN 0 
+ 1 
+ 2 
+ 3; 

NSIGCIN 0 
+ l 
+ 3; 

NSIGDIN = 0 
+ 2 
+ 3; 

NSIGIIN 0 
+ 2; 

NSIGFIN O; 
NSIGGIN 2 

+ 3; 
NRIGOUTD = /U/B; 
2 s 8*/A; 
3 = A$8; 
0 = /8$/A; 
1 = /8$A; 
IND$ 

2·125. 

292014-7 



intef 
EXAMPLE 2 (Continued) 
5C121 Design Worksheet 

_.£!:L 
PIN-NAl.IE 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

AB-10 

~ 

~ 

....ill?!!.. 

....ill.L 

292014-6 

2-126 



AB•10 

EXAMPLE 2 (Continued) 

Lofie Opti•isinf Co•piler Utilization Report 

***** De•ifn i•ple•ented aueee••fully 

JR Donnell 
Intel 
April 3, 1986 

0 
5Cl21 
Fittinf exa•ple 
LB Ver•ion 3.0, Baeeline 17x, 9/26/85 

5Cl21 

CLI -: l 40:- Vee 
CNT -: 2 39:- Vee 
ORD -: 3 38:- GND 
GND -: 4 37:- ORD 
GND -: 5 36:- GNI> 
GND -: 6 35:- GND 
ORD -: 7 34:- GND 

SBGA -: 8 33:- GND 
SBGB -: 9 32:- RB GOUT 
SBGC -:10 31:- CONFOUT 
SIGD -: 11 30:- RBSBRVID 
SIGB -: 12 29:- RISIRVID 
SBGF -113 28:- LIDO 
SIGG -114 27:- LBDl 

RBSIRVBD - : 115 26:- RBSIRVBD 
GND -: 16 25:- RBSBRVBD 
GND -: 17 24:- GND 
GND -118 23:- GND 
GND -: 19 22:- GND 
GND -:20 21:- GND 

UINPUTSU 

x .. e Pin Reaourc• MC ell ' 
CLI l INP 

CNT 2 INP 

UOUTPUTSU 

•••• Pin Reaource MCell I 

SBGA 8 CONF 28 

SIGB 9 CONF 27 

SIGC 10 CONF 26 

SIGD 11 CONF 25 

PTer•• 

PT er•• 

2/ 4 

2/10 

2/ 8 

2/ 6 

2-127 

Feed•: 
MCelh OB Cle•r Clock 

Ref 

5 
6 

Feed•: 
MCelh OB Clear 

292014-8 



2-128 



EXAMPLE 2 (Continued) 

30 
33 
34 
35 
36 
37 
38 
NA 

$$PART UTILIZATION$$ 

Pin• 
MacroCell• 
Pt er•• 

3 

16 

AB-10 

8 

8 

292014-10 

2-129 



intef APPLICATION 
BRIEF 

16-Bit Binary Counter 
Implementation 

Using the 5C060 EPLD 

KARL-HEINZ WEIGL 
INTEL CORPORATION 
MUNICH, GERMANY 

AB-11 

February 1987 

Order Number: 292015-002 
2-130 



AB-11 

INTRODUCTION 

System designers often use programmable logic devices 
to implement counters. Use of PLA devices lets the 
user build customized counters to suit individual appli­
cations. In most cases such counters are not available, 
'off-the-shelf' SSI/MSI devices. In other applications, 
the PLA implementation allows the designer to squeeze 
the counter function along with other 'glue' tasks into a 
single PLA, with the attendant higher integration bene­
fits. 

Use of traditional 20-pin and 24-pin PLAs, however, 
does not allow for the construction of large counters 
having greater than 10 significant bits. This is because 
these traditional PLAs have register and product term 
restrictions (even the larger bipolar PLAs have only 8 
to 10 registers and less than 8 product terms per regis­
ter). In contrast, the 5C060 24-pin erasable program­
mable logic device (EPLD) contains 16 registers that 
are programmable as 'D', 'T', 'RS' or 'JK' types. These 
16 programmable registers enable the construction of 
Up/Down counters with up to 16 significant bits. 

This application brief details the implementation of a 
16-bit binary counter in the 5C060 EPLD. The design 
also demonstrates efficient counter construction utiliz­
ing toggle flip-flops (T-FF) that allows for minimum 
product term utilization. 

DESIGN OBJECTIVE 

The objective of the design is to implement a counter 
with the following features: (i) 16-bit binary count, (ii) 
toggle flip-flops, (iii) asynchronous clear, (iv) RUN/ 
STOP function and (v) UP/DOWN function. The 
function table is shown in Figure I. 

RESET UP/DOWN RUN/STOP Function 

x x 0 Inhibit Counting 
0 0 1 Count Down 
0 1 1 Count Up 
1 x x Reset All Outputs 

to'LOW' 

Figure 1 

TOGGLE FLIP-FLOPS 

Counters can be most effectively implemented in PLA 
architectures using toggle flip-flops. This is because 
counters constructed with 'D' type flip-flops require an 
additional product term for every successive significant 
bit, whereas toggle flip-flop implementation requires 
only one product term per significant bit. Thus, the 
toggle flip-flop counter design is more miserly in prod­
uct term consumption than the 'D' register design. 
Since product term minimization is the key element to 
maximizing PLA utilization, the T-FF counter design 
is more efficient. The truth table for the toggle flip-flop 
is shown in Fig. 2. 

T Q(N) Q (N + 1) 

0 0 0 
0 1 1 
1 0 1 
1 1 0 

Figure 2 

SOLUTION 

The 16-bit binary counter function was implemented in 
the 5C060 EPLD using the Intel Programmable Logic 
Development System (iPLDS). The equations for the 
16-bit binary counter with the RESET, UP/DOWN 
and RUN/STOP functions are shown in the 'EQUA­
TIONS' section of the LEF (Fig. 4). The pinout of the 
5C060 with the implemented counter is shown in the 
RPT file (Utilization Report) Fig. 5. This RPT file also 
shows, under the 'OUTPUTS' section, that in each 
macrocell only one out of 8 product terms is used. In 
contrast the same 16-bit counter designed using 'D' 
type flip-flops would have required more than 16 prod­
uct terms for the last significant bit. 

2-131 



JNTBL CORPORATION 
JAN. 15, 1887 
1 
1.0 
5C080 

AB-11 

BINARY 18-BIT UP/DOllN COUllTlll llJTB RUN/STOP AND .ASYNCB. RISJ:'l' USING T-rr 

LB Version 4. 01, Baseline 27 .1 4/8/88 
OPTIONS: TURBO=ON 
PART' 50080 
INPUTS: RS, CLOCK, RISJ:T, UD 
OUTPUTS: QO ,Ql ,Q2 ,Q3,Q4 ,Q5 ,Q8,Q7 ,Q8 ,QB ,QA,QB,QC,QD,QS, QI' 
lllT1IORIC: 
QO,QOr = TOTr (QOT,CLK,CLR,GND,VCC) 
Ql,Qlf = TOTr (QlT,CLlt,CLR,GND,VCC) 
Q2,Q2f = TOTr (Q2T 0CL1t,CLR,GND, VCC) 
Q3,Q3r = TOTr (Q3T,CLK,CLR,GND,VCC) 
Q4,Q4f = TOTr (Q4T,CLK,CLR,GND, VCC) 
Q5 , Q5f = TOTr ( Q5T, CLK, CLR, GND, VCC J 
Q8,Q8f = TOTr (Q8T,CLlt,CLR,GND, VCC) 
Q7 , Q7f = TOTr ( Q7T, CLK, CLR, GND, VCC l 
Q8,Q8f = TOTr (QBT ,CLlt,CLR,GND, VCC) 
Q9,Q8f = T0Tr (Q8T ,CLlt,CLl,GND, VCC) 
QA,QAF = TOTr (QAT,CLlt,CLR,GND, VCC) 
QB, QBJ' = TOTF ( QBT, CLK, CLI, GND, VCC) 
QC,QCF = TOTr (QCT, CLlt, CLR, GND, VCC) 
QD,QDf = TOTr (QDT,CLK,CLR,GND,VCC) 
Ql,QD' = TOTr (QIT,CLlt,CLl,GND,VCC) 
QI' = TOllJ' ( QrT, CLlt, CLR, GND, VCC) 
QOT = OR (QOU,QOD) 
CLI = IMP (CLOCK) 
CLR • IMP ( RISJ:T l 
QlT = OR (QlU,QlDl 
Q2T.: OR (Q2U,Q2Dl 
QST = OR (Q3U,Q3DJ 
Q4T = OR (Q4U,Q4D) 
QH : OR (Q5U,Q5D) 
Q8T = OR (Q8U,Q8D) 
QTT = OR (Q7U,Q7D) 
Q8T = OR (Q8U,Q8DJ 
QIT = OR (QIU,Q8DJ 
QAT = OR (QAU,QAD) 
QBT = OR- (QBU,QBD) 
QCT = OR (QCU,QCD) 
QDT = OR (QDU,QDDl. 
1111' = OR (QIU,QSD) 
QrT = OR (QfU,QfD) 
RS = IMP (RS) 
UD = Jiii' CUD) 
llUD = NOT (UD) 
QOO = AND (UD,RS) 

Figure 3. Example .ADF 

2-132 

292015-1 



QlU = MID (OD,QOF,QOU) 
QIU = AllD (0D,Qlr,Q1U) 
QIU= MID (OD,QD,QZU) 
IMO = AllD (OD,Q3F,Q3U) 
QIU = AllD (OD,CMF,CMUJ 
QIU = MID (OD,Q&F,Q&U) 
QTU : AllD (OD, Q8J', QIU) 
QIU = AllD (OD, QTr, QTU) 
QIU • MID (OD, QIF, QBU) 
QAll • MID (OD. eer. QIU) 
Q8U = AllD (OD,QAr,QAU) 
QCU " MID (OD,QU,QllU) 
llDU = AllD I OD, QCr, QCU) 
QIU = AllD I OD, QDI', QDU) 
QrU = AllD (OD,Qlr ,QIU) 
llQOF = llOT IQOF) 
llQ1F = ROT ( Qlr) 
"'21' • llOT (QZF) 
llQH' = llOT IQ3FJ 
llCMI' • llOT <CMF) 
llQU =ROT (Q&F) 
llQ8r = llOT IQBF) 
llQTr • ROT (QTF) 
llQ8r • llOT (QIF) 
llQIF = llOT (~F) 
llQAJ' • llOT ( QAr) 
.., = ROT (Qlll') 
~ • llOT (QCr) 
llQlll' • ROT (QDI') 
llQD = llOT (Qlr) 
QOD s .&Ill> (111111. RS) 
Q1D = .&Ill> (IUD,llQOF,QOD) 
Q2D • AllD (IUD,11Qlr,Q1D) 
Q3D • .&Ill> (IUD,llQZr,QZD) 
CMD = .&Ill> (IUD,llQ3r,Q3D) 
QID • .&Ill> (IUD, RCMr, CMDJ 
Q8D = AllD (IUD,llQU',QID) 
QTD = AllD (IUD, llQBr, QID) 
QBD = AllD (IUD,llQTF,QTD) 
QID " AllD (IUD, llQBF, QBD) 
QAD = .&Ill> (IUD, llQllF, ClllD) 
QBD a A1111 (IUD, llQAJ' • QAD > 
QCD = ·MID (IUD, llQlll', QBD) 
CIDD =.&Ill> CIUD.~,QCD) 
QID • AID (IUD, llQDF ,QDD) 
QrD = AID (IUD, llQll', CllD) 
lllDI 

AB-11 

292015-2 

. Figure 3. Example .ADF (Continued) 

2-133 



intJ AB-11 

INTEL CORPORATION 
JAii. 15. 1987 
1 
1.0 
5C080 
BINARY 18-BIT UP/DOllll COUNTER WITH RUll/8TOP AND ASYllCB. RESET USING T-J'F 

LB Version 4.01, Baseline 27.1 4/9/86 
LEP Version 4. 01 Baseline 22. 2 2/4/86 
OPTIONS: TURBO=ON 
PART: 

5C060 
INPUTS: 

RS, CLOCK, RESET, UD 
OUTPUTS: 

NETWORK: 
QO.~.~.~.~.Q5.Q8.~.Q8.~.~.QB.~.~.QE.~ 

CLK = INP(CLOCK) 
RS = IllP(RS) 
CLR = INP(RESETJ 
UD = INP(UD) 
QO, QOP = TOTP(QOT, CLK, CLR, GND, VCC) 
Ql, QlP = TOTP(QlT, CLK, CLR, GND, VCC) 
Q2, Q2P = TOTP(Q2T, CLK, CLR, GND, VCC) 
Q3, Q3P = TOTP(Q3T, CLK, CLR, GND, VCC) 
Q4, Q4P = TOTP(Q4T, CLK, CLR, GND, VCC) 
Q5, Q5F = TOTP(Q5T, CLK, CLR, GND, VCC) 
Q8, Q6P = TOTP(Q6T, CLK, CLR, GND, VCC) 
Q7, Q7P = TOTP(Q7T, CLK, CLR, GND, VCC) 
Q8, Q8P = T0TP(Q8T, CLK, CLR, GND, VCC) 
Q9, Q9P = TOTP(Q9T, CLK, CLR, GND, VCC) 
~. QAP = TOTP(~T. CLK, CLR, GND, VCC) 
QB, QBP = TOTP(QBT, CLK, CLR, GND, VCC) 
~. ~p = TOTP(~T, CLK, CLR, GND, VCC) 
~. ~p = TOTP(QDT, CLK, CLR, GND, VCC) 
QI, QEP = TOTP(QET, CLK, CLR, GND, VCC) 
~ = TONP(QPT, CLK, CLR, GND, VCC) 

EQUATIONS: 
~T = UD' * QEP' * ~F' * ~p· * QBP' * QAP' * Q9P' * Q8P' * Q7P' * Q8P' * 

Q5P' * Q4P' * Q3P' * Q2F' * QlP' * QOF' * RS 
+UD*QEP*~*QCP*QBP*W*~*~*m*~*~* 

Q4P * Q3P * Q2P * QlF * QOP * RS; 

QET = UD' * ~p· * QCP' * QBP' * QAP' * QSF' * Q8P' * Q7F' * Q6F' * Q5F' * 
~p· * Q3P' * Q2F' * QlP' * QOP' * RS 
+UD*~*QCP•QBP•QAP*~*~*m*~*~*~* 

Q3F * Q2F * QlP * QOF * RS; 

QDT = UD' * QCP' * QBF' * QAP' * QSF' * Q8P' * Q7P' * Q8F' * Q5P' * ~p• * 
Q3F' * Q2P' * QlF' * QOP' * RS 
+UD•QCP•QBP•QAP*~*~*m*~*~*~*~* 

Q2P * QlP * QOF * RS; 

Figure 4. Example .LEF 

2-134 

292015-3 



INDI 

AB·11 

QCT = OD' * QBI" * QAI" * Q9F' * Q8F' * Q11' * QSF' * Q5F' * Q4F' * Q3J" * 
Q2'' * QlF' * QOF' * RS . 
+OD*~*~*~*~*~*~*~*~*~•QZJ• 

QlF * QOr * RS; 

QBT = OD' * ~· * Q9r' * Qar• * Q?r' * Q8r' * Q&r• * Q4r' * Q3r' * ear• * 
Qlr' * QOr' * RS 
+OD*~*~*~*~*~*~*~*~*Q2'*~* 

QOr * RS; 

QAT = OD' • eer• * Q8r' • Q1r· * ear• • Q&r• • Q4r' • Q3r' • ezr• • eir· • 
QOr' * RS 
+OD*~*~*~*~*~*~*~*Q2'*~*~* 

RS; 

QST = OD' • Qer' * Q7r' • Q8r' * Q&r· • Q4r' • Q3r' • Qzr· • Qlr' • QOr• • 
RS 

+ uo * ear • Q7r • Q8r • Q&r • QU • Q3' * ear • Qlr * QOr • RS; 

Q&T = OD' • e1r• • Q8r' • e&r• • Q4r' * Q3r' • Qzr• • Qlr' • QOr• • RS 
+ UD * Q7r • Q8r • Q5r • Q4r * Q3r * QZr * Qlr * QOr * RS; 

QTT = OD' * Q8r' * Q5r' * Q4r• * Q3'' * Q2r' * Qlr' * QOr' * RS 
+ OD • Q8r * Q5' * Q4r • Q3' * QZr * Qlr * QOr * RS; 

QST = OD' * Q5'' * QU' * Q3r' * QZr' * Qlr' * QOr' * RS 
+ uo * Q&r • Q4r • Q3r • ear * Qlr • QOr * RS; 

Q&T = OD' * Q4r' * Q3r' * QZJ' * Qlr' * QOr• * RS 
+ OD * QU * Q3' * Q2J * Qlr * QOr * RS; 

Q4T = OD' • Q3'' • ezr· • Qlr' • QOr· * RS 
+ UD * Q3' * QZr * Qlr * QOr * RS; 

Q3T = OD' * QZr' * Qlr' * QOr• * RS 
+ OD • ear * Qlr * eor * RS; 

Q2T = OD' * Qlr' * QOr•. * RS 
+ OD * Qlr * QOr * RS; 

QlT : UD' * QOr', * RS 
+ OD * QOr * 118; 

QOT = RS; 

Figure 4. Example .LEF (Continued) 

2-135 

292015-4 



Loaic Optimiaina C0111P1ler Utilization Report 
FIT Version 4.01 Baseline 27.1 4/9/86 

***** Desian impleaented successfully 

AB-11 

**** NOTI: Connect sillnal CLOCK to pin 1 AND pin ·13·. 

INTIL CORPORATION 
JAN. 16, 1987 
1 
1.0 
5C080 
BINARY 18-BIT UP/DOWN COUNTIR WITH RUN/STOP AND ASYNCH. RISBT USING T-JT 

LB Version 4.01, Baseline 27.1 4/9/88 
OPTIONS: TURBO=ON 

CLOCK -l 1 
GND -I 2 

QT -I 3 
Q8 -1 4 
Q6 -1 6 
Q4 -t 8 
Q3 ' 7 
Q2 -1 8 
Ql -1 9 
QO -110 
UD -111 

OND -112 

**INPUTS** 

N-e Pin 

CLOCK 

OD 11 

GND 12 

CLOCK 13 

RKSET 14 

6C080 

241-· Vee 
231- RS 
221- Qr 
211- QI 
2or- QD 
191- QC 
181- QB 
11:- QA 
181- Q9 
151- Q8 
141- RISBT 
131- CLOCK 

Resource MCell 

INP 

INP 

GND 

INP 

INP 

Feeds: • PTerme MCells OE 

l 
2 
3 
4 
5 
8 
7 
8 
9 

10 
11 
12 
13 
14 
15 

Figure 5. Example .RPT Fiie 

2-136 

Clear 

1 
2 
3 
4 
5 
8 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 

Clock 

CLKl 
CLK2 

CLKl 
CLK2 

292015-5 



AB-11 

RS 23 IMP 1 
2 
3 
4 
5 
8 
1 
8 
9 

10 
11 
12 
13 
14 
15 
18 

Vee 24 Vee 1 
2 
3 
4 
5 
6 
1 
8 
9 

10 
11 
12 
13 
14 
15 
18 

**OUTPllTS** 

r .. da: 
11 ... Pin Reeource !!Cell ti neras !!Cells 01 Clear Clock 

Q? TOTI' 9 2/ 8 1 
2 
3 
4 
5 
6 
1 
8 

Q6 4 TOTr 10 2/ 8 1 
2 
3 
4 
5 
8 
1 
8 
9 

QS TOTr 11 2/ 8 1 
2 
3 
4 
5 
6 
1 
8 
9 

10 

Q4 8 TOTr 12 2/ 8 1 
2 
3 
4 
5 
6 
1 
8 
9 

10 
11 

292015-6 

Figure 5. Example .APT Fiie (Continued) 

2-137 



AB-11 

Q3 7 TOTI' 13 2/ 8 1 
2 
3 
4 
5 
8 
7 
8 
9 

10 
11 
12 

Q2 8 TOTI' 14 2/ 8 1 
2 
3 
4 
5 
8 
7 
8 
9 

10 
11 
12 
13 

Ql 9 TOTI' 15 2/ 8 1 
2 
3 
4 
5 
8 
7 
8 
9 

10 
11 
12 
13 
14 

QO 10 TOTF 18 1/ 8 1 
2 
3 
4 
5 
8 
7 
8 
9 

10 
11 
12 
13 
14 
15 

QB 15 TOTr 8 2/ 8 1 
2 
3 
4 
5 
8 
7 

Q9 18 TOTI' 7 2/ 8 1 
2 
3 
4 
5 
8 

QA 17 TOTr 8 2/ 8 1 
2 
3 
4 
5 

292015-7 

Figure s. Example .RPT Fiie (Continued) 

2-138 



ir,1tel" 
1 {--

"'" 

QB 18 TOTJ 

QC 19 TOTJ 

QD 20 TOTr 

QI 21 TOTr 

QI' 22 TONI' 

Hue Pin Resource 

2 

**PART OTILIZATION** 

95111 Pina 
100111 KecroCella 
2'111 l't.el'll• 

AB-11 

5 2/ 8 1 
2 
3 
4 

4 2/ 8 1 
2 
3 

3 2/ 8 l 
2 

2 2/ 8 

2/ 8 

KCell PTeraa 

292015-8 

Figure 5. Example .RPT Fiie (Continued) 

2-139 



APPLICATION 
BRIEF 

AB-12 

October 1987 

Designing a Mailbox Memory for 
Two 80C31 Microcontrollers Using 

EPLDs 

K. WEIGL & J. STAHL 
INTEL CORPORATION 
MUNICH, GERMANY 

2-140 
Order Number: 292016-002 



INTRODUCTION 

Very often, complex systems involve two or more mi­
crocontrollers to ·fulfill the requirements defined by a 
given objective. Since the nature of microcontrollers 
does not allow for easy dual-port memory design (no 
"READY" input; no "HOLD/HLDA" interface; port­
oriented 1/0 etc.), design engineers are faced with the 
problem of interchanging information (data and status) 
betwc:en those microcontrollers. This application brief 
describes the design of a mailbox (or exchanging infor­
mation between two 80C3ls, using a 5C060 H-EPLD 
as a "back-to-back" register, and a 5C031 H-EPLD as 
an arbitration vehicle to eontrol ihe actions of the 
CPUs. 

THE 5C060 MAILBOX 

In this application, the 16 macrocells of the 5C060 are 
grouped into two sets of 8 so called "ROIF' (register 
output with input. feedback) primitives to implement 
the two 8 bit bus interfaces needed. The grouping is 
done according to the following picture. 

The 5C060 allows for independent clocking of 8 macro­
cells on each side of the chip, the two clock inputs are 
used to clock data from the microcontroller bus into 
the chip. To read the data written into the mailbox by 
one of the controllers, the RDA- (controller A is read­
ing) or RDB- (controller B is reading) line must be 
pulled low by activating the read command (/RD). In 
order to avoid spurious read-cycles, the /RD com­
mands from . both microcontrollers are logically 
"ORed" together with an active high CS-signal (Chip 
Select) inside the 5C060. The CS-signal for both ports is 
derived from address line Al5. Therefore, whenever 
A15 becomes a logic "1" (true), the mailbox is activat­
ed and ready to take or submit data. 

Address range for the mailbox: FOOO · · Hex to FFFF 
Hex 
(Upper 12 kbyte) . 

scoeo· 

WRB vcc 
CSA 2 ROB 

l/OAO 3 1/080 

l/OA1 4 21 1/081 

l/OA2 5 1/082 

GROUP A l/OA3 6 l/OJ13 GROUP 8 
.{MICROCON-

l/OA4 7 1/084 
(MICROCON-

TROLLER A) TROLLER 8} 
I/OAS 8 17 1/085 

I/OAS 9 16 1/086 

l/OA7 10 15 1/087 

RDA 11 CSB 

GND 12 13 WRA 

292016-15 

2-141 



intef AB-12 

THE 5C031 "MAILBOX CONTROLLER" 

To keep the two microcontrollers informed about the 
Status of their mailbox, the 5C03 l is programmed to 
supply the following signals to both controllers: 

/OBFA: "OUTPUT BUFFER FULL• FOR MC A 

/OBFB: "OUTPUT BUFFER FULL" FOR MC B 

/IBEA: "INPUT BUFFER EMPTY" FOR MC A 

/IBEB: "INPUT BUFFER EMPTY• FOR MC B 

/INTA: INTERRUPT TO MC A 

/INTB: INTERRUPT TO MC B 

The next section will discuss the meanings of these sig­
nals in more detail. 

Output Buffer Full: This flag is set whenever the con­
troller writes into its own output 
buffer. The flag remains valid, until 
the second controller has read the 
data. The flag is automatically re­
set to its inactive state when this 
read cycle is accomplished. 

NOTE: 
Both controllers can access (read or write) the mail­
box simultaneously. 

Input Buffer Empty: This flag indicates that there is no 
message in the mailbox. The flag 
will become inactive as soon as 
one microcontroller places a mes­
sage for the other one (or vice ver­
sa). 

Example: /IBEA remains 
"LOW" until micr0controller B 
places a message for controller A 
into the mailbox for A. /IBEA 
will go "HIGH" as soon as con­
troller B has accomplished its 
write cycle, and will not go 
"LOW" again until microcontrol­
ler A has read the message. 

Interrupt: The 5C03 l is programmed to supply inter­
rupts to both microcontrollers involved, on 
one of the following events. 

1. The /OBF flag of the opposite microcon­
troller becomes active; e.g. if controller A is 
placing a message for controller B, controller 
B receives an interrupt the same time as 
/OBFA becomes valid or vice versa. 

2. The /IBE flag of the opposite microcon­
troller goes active, indicating that this con­
troller has received the message; e.g. if con­
troller B reads the message stored by con­
troller A, its /IBEB flag goes active and con­
troller receives an interrupt indicating that 
the buffer is empty. 

The signals described above are necessary to accom­
plish a secure handshake without overwriting messages 
accidentally. In addition to that, the 5C03 l is issuing 
the actual write commands for the two register sets in­
side the 5C060. The /WRA and /WRB signals are re­
sults oflogical "AND" functions between the appropri­
ate CS- and /WR signals from the microcontrollers. 
Therefore, spurious write cycles are unlikely to happen. 

NOTE: 
This design can also be efficiently implemented in a 
single 5CBIC EPLD. 

2-142 



AB-12 

A B 
ADO-AD7 l-t_ _N k _N ADO-AD7 

PO 

1'4"" Q 74HCT373 i-J 
D0-07 D0-07 

rr ~ r1 
PO 

AO-A7 AO-A7 
~ 74HCT373 

~-~~[ nr ---~ OE CE 

~ ~ -" 
D27C64 D27C64 

~ ~ ALE ALE 
A8-A15 AS-12 AS-12 A8-A15 

P2 -v OE cs rr P2 cs OE 

PSEN ~ 1--- ~ µ~ ~~ 1--- ~ H PSEN 

k 
D0-07 D0-07 

P80C31BH ~ AO-A7 AO-A7 ~ P80C31BH 

RAM RAM 

-" IA_ 
A15 AS-12 AS-12 A15 

-v lmWIHs ~~RDl'I 

RD P3.7 ~ ::r 
J 11-i H RD P3.7 

WRP3.6 ~ H WRP3.6 

5C060 

_N IOA 109 IA_ 
.., 0-1 0-7 l'f 

M--- RiiA ROB 1---4 
CSA CSB 

~WA we 1-

5C031 

._,WA wet-........ WRA WRB 1--....___, RDA ROB 1----

CSA CSB 
P3.4 OBFA OBFB P3.4 
P3.5 iBEA iBEB P3.5 

RST P3.2 INTO INTA INTB INTOP3.2 

RESET 0 R5T OE~ RESET - ! T -
292016-1 

Block Diagram 

2-143 



WB 

IOAO 

IOA1 

IOA2 

IOA3 

IOA-4 

IOAS 

IOA6 

IOA7 

RDA 
CSA 

AB-12 

5C060 "BACK TO BACK REGISTER" 

l...._ r"'"""'T"" i- L....,......, _.... 
L H 

~ 
~ i...a.....I 

l.A. .. r--T-
I- l r"'T"""'I ..... 

~ i...-H 
~ 

.......... ............ 

l...._ ,........ 
i- L ....,......, _.... 

L H I-
~ 

i.....i... i...a.....I 

'l .A. r--T-
I- l ....,......, 

~~ ~ I-
D" I'" 

i.....i... ............ 

J ...._ r"'"""'T"" 
i- L ....,......, _.... 

'L H I-
~ 

.......... ....i...-1 

l.A. r--r-1 .... w ....,......, ......... 
~~ 

.... 
D" I'" 

~ i...a.....I 

l r--r-1 
1- l ....,......, 

~ 
H ......... 

~ ~ .......... ............ 

J ...._ r"'"""'T"" 
i- L ....,......, _.... 

L H I-
~ 

.......... ............ 

D- La 

2-144 

1080 

1081 

1082 

1083 

1084 

IOBS 

1086 

1087 

WA 

ROB 
CSB 

292016-2 



AB-12 

5C031 "MAIL BOX CONTROLLER" 

ROB OBF'A 

INTA 

RST 

INTB. 

RDA 
OBF'B 

IBEA 

CSB 
WB WRB 

Of 
-~2016-_3 

2-145 



intJ AB·12 

SC060 REGISTER ADF 

JUBRG STAHL 
INTBL ZUBRICH 
March 27, 1986 
80C31 MAILBOX MBMORY USING 5C060 / 5C031 
l 
5C060 

LB Varaion 3.0, Baseline 17x, 9/26/85 
PART: 5C060 

******************** ** BXAMPLB . ADF ** 
******************** 

INPUTS: WBel, CSAe2, CSB•l4, nRDAell, nRDBe23, WA813 
OUTPUTS: IOB7el5, IOA7110, IOB6116, IOA619, 

NBTWORK: 

IOB5817, IOA518, IOB4el8, IOA4e7, 
IOB3el9, IOA316, IOB2e20, IOA2e5, 
IOBle21, IOAle4, IOBOe22, IOAOe3 

IOB7,DB7 ROIF (DA7,WAC,GND,GND,RDBC) 
IOA7,DA7 ROIF (DB7,WBC,GND,GND,RDAC) 
IOB6,DB6 ROIF (DA6,WAC,GND,GND,RDBC) 
IOA6,DA6 ROU (DB6,WBC,GND,GND,RDAC) 
IOB5,DB5 ROU (DA5,WAC,GND,GND,RDBC) 
IOA5,DA5 ROIF (DB5,WBC,GND,GND,RDAC) 
IOB4,DB4 ROIF (DA4,WAC,GND,GND,RDBC) 
IOA4,DA4 ROIF (DB4,WBC,GND,GND,RDAC) 
IOB3,DB3 ROIF (DA3,WAC,GND,GND,RDBC) 
IOA3,DA3 ROIF (DB3,WBC,GND,GND,RDAC) 
IOB2,DB2 ROIF (DA2,WAC,GND,GND,RDBC) 
IOA2,DA2 ROIF (DB2,W8C,GND,GND,RDAC) 
IOBl,DBl ROU (DAl,WAC,GND,GND,RDBC) 
IOAl,DAl ROIF (DB1,W8C,GND,GND,RDAC) 
IOBO,DBO ROIF (DAO,WAC,GND,GND,RDBC) 
IOAO,DAO ROir (DBO,WBC,GND,GND,RDAC) 
WAC = INP (WA) 
RDBC = AND(CSBI,RDBI) 
WBC = INP (WB) 
RDAC = AND(CSAI,RDAI) 
CSBI = INP (CSB) 
nRDBI = INP(nRDB) 
nRDAI = INP(nRDA) 
CSAI INP(CSA) 
RDAI NOT(nRDAI) 
RDBI = NOT(nRDBI) 

END$ 

2-146 

292016-4 



AB-12 

SC060 REGISTER LEF 

JUBRO STAHL 
INTIL ZUBRICB 
March 27, 1986 ******************** ** BXAMPLB .LBF ** 
80CS1 MAILBOX MBMORY USING 5C060 I 5COS1 
l 

******************** 
5C060 

LB Ver•ion S.O, Baaeline 17x, 9/26/85 
LBF Veraioa 1.0 Baaeliae 1.51 02 Feb 1987 
PART: 

5C060 
INPUTS: 

WBel, CSAe2, CSBel4, nRDAell, nRDBe2S, WAelS 
OUTPUTS: 

NB TWO RI: 

IOB7•15, IOA7•10, IOBS•lS, IOAS•9, IOB5el7, IOA5•8, IOB4•18, IOA4e7, 
IOBSl19, IOASe6, IOB2e20, IOA2e5, IOBle21, IOAle4, IOBOe22, IOAOeS 

wee = INP(WB) 
WAC = INP(WA) 
CSAI = INP(CSA) 
CSBI = INP(CSB) 
nRDAI = INP(aRDA) 
nRDBI = INP(nRDB) 
IOB7, 087 ROIF(DA7, WAC, ONO, ONO, RDBC) 
IOA7, DA7 ROIF(DB7, wee, ONO, ONO, RDAC) 
1086, DBS ROIF(DA6, WAC, ONO, ONO, RDBC) 
IOA6, DAS ROIF(DB6, WBC, ONO, GND, RDAC) 
IOB5, 085 ROIF(DA5, WAC, ONO, ONO, RDBC) 
IOA5, DA5 ROIF(DB5, WBC, ONO, ONO, RDAC) 
1084, DB4 ROIF(DA4, WAC, GND, ONO, RDBC) 
IOA4, DA4 ROIF(DB4, WBC, ONO, ONO, BDAC) 
1083, DBS ROIF(DAS, WAC, GND, ONO, RDBC) 
JOAS, DAS ROIF(DBS, WBC, GND, GND, RDAC) 
1082, DB2 ROIF(DA2, WAC, GND, GND, RDBC) 
10!2, DA2 ROIF(DB2, WBC, ONO, ONO, RDAC) 
IOBl, DBl ROIF(DAl, WAC, GND, ONO, RDBC) 
IOAl, DAl ROIF(DBl, WBC, ONO, GND, RDAC) 
IOBO, DBO ROIF(DAO, WAC, ONO, ONO, RDBC) 
IOAO, DAO ROIF(DBO, WBC, ONO, ONO, RDAC) 

BQUATIONS: 
RDAC CSAI * nRDAI'; 

RDBC CSBI * nRDBI'; 

IND$ 

2-147 

292016-5 



AB-U 

5C060 REGISTER· UTILIZATION REPORT 

Lo1ic Opti•izin1 Co•piler Utilization Report 
FIT Veraion 1.0 Ba•ellne l.Ol 2/6/87 

•••** De•iln i•ple•ented •aceea•fally 

JUIRG STAHL 
JNTIL ZUIRICH 
March 27, 1986 
80C31 MAILBOX MBMORY USING 5C060 / 5C031 
1 
5C060 

LB Ver•ion 3.0, Ba•eline 17x, 9/26/85 

5C080 

WB -: I 24:- Vee 
CSA -: 2 23:- nRDB 

JOAO -: 3 22:- IOBO 
IOAI -: 4 21:- IOBI 
IOA2 -: 5 20:- 1082 
IOA3 -: 6 19:- IOB3 
IOA4 -: 7 18:- 1084 
IOA5 -: 8 17:- IOB5 
JOA& -: 9 16:- 1086 
JOA? -: 10 15:- IOB7 
nRDA -: 11 14:- CSB 

GND -: 12 13:- WA 

UJNPUTSU 

Na•e Pin Re•oarce MCell t PTer•• 

WB l INP 

CSA 2 INP 

nRDA 11 JNP 

GND 12 GND 

••••••••••••••••••••••••• U BXAMPLI .• RPT Fltl U · 
••••••••••••••••••••••••• 

reeda: 
Meell• OB Clear• Clock 

9· 
lD 
11 
12 
13 ·, 
14 
lll 
16 

9 
10 
11 
12 
13 
14 
15 
16 

l 
2 
3 
4 
5 
6 
7 
8 
9 

2-148 

292016-6 



intJ AB·12 

5C060 REGISTERUTILIZATION REPORT (Continued) 

10 
II 
12 
13 
14 
15 
16 

WA 13 !NP CLK2 

CSB 14 !NP l 
2 
3 
4 
5 
6 
7 
8 

nRDB 23 INP l 
2 
3 
4 
5 
6 
7 
8 

Yee 24 Yee 

UOIJTPIJTSU 

Feede: 
Na•e Pin Reeource MC ell • PTer•a MCelh OB Clear Clock 

IOAO ROif 9 l/ 8 

IOU 4 ROIF 10 l/ 8 2 

IOA2 5 ROIF 11 l/ 8 

IOA3 6 ROIF 12 l/ 8 4 

IOA4 7 ROif 13 l/ 8 5 

IOA5 8 ROIF 14 l/. 8 6 

IOA6 9 ROif 15 l/ 8 7 

IOA7 10 ROIF 16 l/ 8 8 

1087 15 ROIF 8 l/ 8 16 

1086 16 ROIF 7 l/ 8 15 

1085 17 ROif 6 l/ 8 14 

1084 18 ROIF 5 I/ 8 13 

1083 19 ROif 4 I/ 8 12 

1082 20 ROIF I/ 8 11 

1081 21 ROif 2 l/ 8 10 292016-7 

1010 22 ROIF l/ 8 9 

All Reaource• u•ed 

UP ART IJTILIZATIONU 

lOO• Pin• 
lOD• MacroC•lh 
12• Pt era• 

292016-8 

2-149 



AS..12 

5C031 ARBITER ADF 

JUIRG STAHL 
INTBL ZUIRICR 
March ZS, 1986 
80C31 MAILBOX MIMORY USING 50060 I 50031 
z 
5C031 

LB Yeraion 3.0, Baaeline 17x, 9/26/85 
PART: 5C031 

******************** ** llAMPLI .ADF ** 
******************** 

INPUTS: RST,nWRA,nRDB,CSA,nRDA,nWRB,OSB,nOI 
OUTPUTS: WA,nOBrA,nIBIB,nIMTA,nINTl,nOBrl,nillA,WB 
MBTWORI: 
nWRA = INP(nWRA) 
nRDB = INP(nRDI) 
RST = INP(RST) 
CSA = INP(OSA) 
nRDA = INP(nRDA) 
nWRI i: INP(nWRB) 
CBI INP(CSI) 
nOI INP(nOI) 
WRA = NOT(nWRA) 
WRB NOT(nWRI) 
RDA NOT(nRDA) 
RDI = NOT(nRDI) 
01 = NOT(nOI) 
nRST = NOT(RST) 
WA = CONr(WAd,YCO) 
WAd = AND(CSA,WRA) 
WI = CONr(Wld,YCO) 
Wld = AND(CSl,WRI) 
nRB = NAND(RDB,CSI) 
nRA = NAND(RDA,CSA) 
nWAd = NOT(WAd) 
nWld = llOT(Wld) 
nOIFA,nOBFA OOCF(nOlrAd,01) 
no1r1,no1r1 = cocr(no1r1d,OI) 
nillA,nIBIA = oocr(nillAd,01) 
nillB,nilll = COCF(nIBIBd,01) 
nINTA = CONF(nINTAd,01) 
nINTI = OONF(nINTBd,01) 
nINTAd = AND(nOIFA,nillA) 
nillTld AND(nOIFl,nilll) 
nOlrld NAND(nRA,nillA,nRST) 
nOIFAd NAND(nRl,nilll,nRST) 
nIBIBd NAND(aWAd,nOIFA) 
nillAd NAND(nWld,nOlrl) 

IND$ 

2-150 

292016-9 



AB·12 

5C031 ARBITER LEF 

JUBRG STAHL 
INTBL ZUBRICR 
March 28, 1986 
80C31 MAILBOX MBMORY USING 5C060 / 5C031 
2 
15C031 

LB Verdon 3.0, BHeline 17x, 9/26/815 
LIF Veraion 1.0 Ba•eline 1.151 02 Feb 1987 
PART: 

151:031 
INPUTS: 

******************** 
** BXAMPLI .LIF ** 
******************** 

HST, nWRA, nRDB, CSA, DRDA, nWRB, CSB, nOB 
OUTPUTS: 

NITWORI: 
WA, nOBFA, nIBBB, nINTA, nINTB, nOBFB, nIBIA, WB 

RST = INP(RST) 
nWRA = INP(nWRA) 
nRDB = INP(nRDB) 
CSA = INP(CSA) 
nRDA = INP(nRDA) 
nWRB = INP(nWRB) 
CSB = INP(CSB) 
nOI = INP(nOB) 
WA = CONF(WAd, VCC) 
nOBFA, nOBFA = COCF(nOBFAd, 01) 
nIBBB, nIBBB = cocr(nIBBBd, OB) 
nINTA = CONF(nINTAd, OB) 
nINTB = CONF(nINTBd, OB) 
noara, noarB • cocr(nOBFBd, Oil 
nIBIA, nIBBA = cocr(nIBIAd, OB) 
WB = CONF(WBd, VCC) 

BQUATIONS: . 

IND$ 

WBd = CSB * nWRB'; 

nIBBAd CSB * nWRB' 
+ nOBFB'; 

nOBFBd (nIBBA * HST' * CSA' 
+ nIBBA *HST' * nRDA)'; 

nINTBd nOBFB * nIBBB; 

nINTAd nOBFA * nIBBA; 

nIBBBd CSA * nWRA' 
+ nOBFA'; 

OB = nOB'; 

nOBFAd = (nIBBB * HST' * CSB' 
+ nIBBB *HST' * nRDB)'; 

WAd =CSA* nWRA'; 

2-151 

292016-10 



AB·12 

SC031 ARBITER LEF (Continued) 

Lofie Opti•izin& Co•piler Utilization Report 
FIT Yeraion 1.0 Baseline l.Oi 2/6/87 

***** Design i•ple•ented aueeesafully 

JUIRG STAHL 
INTKL ZUBRICH 
March 28, 1986 
80C31 MAILBOX MBMORY USING 5C060 I 5C031 
2 
5C031 

LB Version 3.0, Baseline 17x, 9/26/85 

5C031 

ONO l 20:- Yee 
GND - 2 19:- WB 
nOB - 3 18:- WA 
CSB - 4 17:- nOBFB 

nWRB -: 5 16:- nINTB 
nRDA - 6 15:- nINTA 

CSA - 7 14:- nIBIB 
nRDB -: 8 13:- nOBFA 
nWRA - 9 12: - nIBIA 

ONO - : 10 11 :- RST 

UINPUTSU 

Na•e Pin Resource MCell I PT er•• 

nOB 3 INP 

CSB 4 INP 

nWRB 5 INP 

nRDA 6 INP 

CSA 7 INP 

nRDB 8 INP 

nWRA 9 INP 

GND 10 GND 

RST 11 INP 

Yee 20 Yee 

••••••••••••••••••••••••• ** IXAMPLB .RPT FILE ** 
••••••••••••••••••••••••• 

MCel la 

1 
7 
8 

l 
8 

3 

2 
3 
6 

7 

2 
6 

Feeds: 
OE 

3 
4 
5 
6 
7 
8 

l 
2 

Clear 

2·152 

Preaat 

.,. 

292016-11 



UOUTPUTU$ 

Naae Pin Reeource 

nIBIA 12 cocr 

nOBFA 13 cocr 

nIBIB 14 cocr 

nINTA 16 CONF 

nINTB 16 CONF 

nOBFB 17 cocr 

WA lB CONF 

WB 19 CONF 

$$UNUSID RISOURCIS$$ 

Naae Pin Reeource 

l 
2 

UP ART UTILIZATION** 

BB• Pine 
lOO• MacroC'ell•' 
18' Pterae 

AEH2 

5C031 ARBITER UTILIZATION REPORT 

MC ell • PTerae 

B 2/ B 

7 2/ B 

6 2/ B 

6 l/ B 

4 l/ B 

3 2/ B 

2 l/ B 

l/ B 

MC ell PTerae 

2·153 

reed•: 
MCelle OB Cleer Preaet 

3 
5 

5 
6 

4 
7 

4 
B 

292016-12 



inter APPLICATION 
BRIEF 

Atypical Latch/Register 
Construction in EPLDs 

THOM BOWNS 
PROGRAMMABLE LOGIC APPLICATIONS 

INTEL CORPORATION 

AB-16 

October 1987 

Order Number: 292031-002 
2-154 



AB-18 

ATYPICAL LATCH/REGISTER 
CONSTRUCTION IN EPLDs 
Though Intel's EPLDs include many of the. typical 
latch and register types, some logic designs require reg­
ister. of latch configurations not directly supported in 
the current EPLDs. In many Cases these register and 
latch configurations can .be generated using the logic 
array and combinational feedback. A ''latch" is defined 
as a level-triggered, flow-through type such as the 
74373, and a "register'' is defined as an edge-triggered 
flip-flop such as the 7474. 

This application brief will detail the construction of a 
D-type latch, an RS latch and a D flip-flop using com­
binational logic and feedback. Also discussed is the 
construction of an RS flip-flop, a JK flip-flop and a T 
flip-flop using registered logic and feedback. 

The RS latch is the simplest latch configuration. The 
equations for it are as follows: QB = l(Q + S), Q = 
!(QB + R) where Q is the output of one NOR gate, and 
QB is the output of the other (Note: as a convention 

in this Ap brief, the "!" operator is used to signify in­
version). The schematic of the RS latch is shown in 
Figure la. 

Since cross coupled logic is not supported in EPLDs, 
we must convert the equation to a single term with 
feedback. 

ao, QF = COCF (Q, VCC) 

Q = S +IR• QF; 

where QF is the feedback from Q output. 

This circuit can be implemented in an EPLD macro­
cell. Where combinational feedback is not supported, 
VO feedback will suffice. The schematic of this imple­
mentation is shown in Figure lb. 

With the RS latch, the inputs are normally low. A logi­
cal one on S sets Q to l, and a one on R resets Q to a 0. 
Logical ones on both inputs simultaneously cause the 
output to remain at a high level since S takes prece­
dence over R in this implementation. 

R~NOR2 Q 

B 
s . 

NOR2 
292031-1 

(a) 

292031-2 

(b) 

Figure 1. RS Latch Implementation In a) Discrete Gates and b) EPLD Logic 

2-155 



inter AB·16 

Another latch is the 74373 type, or D latch. This latch 
works by either enabling input data to appear at the 
output, or by holding the output to the last input data 
state. Its equation is this: QB = !(!(!D*E)"Q), Q = 
!(!(O*E)*QB). Again, Q is the output of one NANO 
gate, and QB is the output of the other:· Figure 2a 
shows this version of the design. 

Again, we must convert to an EPLD-type equation and 
schematic: 

(a) 

(b) 

. 00, QF = .COCF (Q,VCC) 

Q = D • E + IE • OF; 

QF is the feedback from the COCF. In this circuit, 
when E is high, data flows through transparently. 
When E is brought low, data is latched. Wl:ien using 
input feedback, care must be taken when tri-stating the 
output as data will no longer be latched. The EPLD 
implementation is given in Figure 2b. 

292031-3 

292031-4 

Figure 2. Implementation of a D Type Latch Using a) Discrete Gates and b) EPLD Logic 

2-156 



intJ AB·16 

This latch can be cascaded with a second latch to pro­
duce an edge triggered, master/slave D flip-flop, using 
combinational logic. The flip-flop is a solution to using 
asynchronous clocking, preset and clear functions when 
they aren't supported. Also, if an 1/0 conflict exists 
within a macrocell group when using registered logic, 
this design will fit since it uses combinational logic. 
Figure 3 shows the schematic for this design. 

This design does consume two macrocells, but in many 
cases, that isn!t a problem. 

The boolean equation of the D flip-flop is this: 

QO,QF = COCF (Q,VCC) 

YF = NOCFM 

Y = D • !CLOCK + YF • CLOCK; 

Q = YF • CLOCK + QF • !CLOCK; 

Q is the flip-flop output and Y is the first latch output. 
Data is latched in to the second latch on the low-going 
edge of clock, and is clocked out to Q on the high-going 
edge of clock. 

292031-5 

Figure 3. Comblnatlonal Logic Implementation of a D Fllp·Flop 

2-157 



intJ AB·1.I 

Preset and clear can be added into the equations as 
well: 

QO,QF = COCF (Q,VCC) 

YF = NOCF (Y) 

Y = D • ·!CLOCK + YF • CLOCK; 

Q = YF • CLOCK • I (CLEAR TERM) + 
(PRESET TERM) + 
QF • !CLOCK • I (CLEAR TERM); 

When the PRESET TERM is logically true, Q is asyn­
chronously set to l. 

When the CLEAR TERM is logically true, Q is asyn­
chronously cleared to 0. 
The PRESET TERM takes priority over the CLEAR 
TERM. 
This schematic is shown in Figure 4. 

Due to the nature of the design, input delays plus array 
delays plus feedback delays must be added and used to 
determine a maximum operating frequency. In this ex­
ample, tIN + tT AD + tCF + tAD = 113 ns for a 
-65 5Cl21, leaving a maximum frequency of 8.8 
MHz. 

CLEAR TERM -C>--1 ~O+--+-IAN 

PRESET TERM -C>----------' '----------' 
292031-6 

Figure 4. D Flip-Flop with Added Preset and Clear Terms 

2-158 



intef AB-16 

Other useful workarounds involve D registers and logic 
in constructing RS, JK and T flip-flops, for use in 
EPLDs not supporting these configurations. The RS 
flip-flop is simply the RS latch discussed earlier cou­
pled to registered feedback. 

00,QF = ROAF (Q,CLOCK,GND,GND;VCC) 

Q = S +OF• !R; 

Normally, S and R will remain high. When S is brought 
low, Q0 will become 1 on the next clock trigger edge. 
When R is brought low, Q0 wiJI become 0 on the next 
clock trigger edge. The schematic is given in Figure 5. 

INP 

The JK flip-flop is another useful and easily implement­
ed register: 

00,QF = ROAF (Q,CLOCK,GND,GND,VCC) 

Q = J • !QF + !K • OF 

When J = K = 1, Q0 toggles to opposite state on next 
clock trigger. When J = K = 0, Q0 remains the same. 
When J does not equal K, Q0 wiJI follow J on next 
clock trigger. The schematic is shown in Figure 6. 

292031-7 

Figure 5. EPLD lmplementatlon of an RS Flip-Flop 

INP 

292031-8 

Figure 6. EPLD Implementation of a JK Flip-Flop 

2-159 



AB-16 

The T flip-flop is also easily constructed: 

00,0F = RORF (0,CLOCK,GND,GND,VCC) 

0 = T * I OF + I T • OF; 

When T is high, Q0 will toggle to opposite state on next 
trigger. When Tis low, QO will remain the same. Fig­
ure 7 shows the T flip-flop design schematic. 

Each of these designs uses a minimum number of p­
terms; adding p-terms is possible to the limit of the 
macrocell being used. It is possible to substitute an en­
tire logical expression for each input listed (except 

register clock), as long as the minimized logic equations 
resulting do not exceed the macrocells p-term count. 

For example, consider using the J-K register. Setting 
J = A • B • C + D and setting K = E • IF * IG + 
H + I then the minimized p-term count will expand 
from two p-terms to five p-terms, which would still be 
okay within a macrocell with more than five p-terms. 

Using logic gates and combinational or registered feed­
back, one can easily implement many types of latches 
and registers. Regardless of the EPLD type, there exists 
the resources to implement any of the discussed circuit­
ry. 

292031-9 

Figure 7. lmplementatlon of a T Fllp-Flop 

2-160 



intJ APPLICATION 
BRIEF 

AB-18 

October 1987 

TTL Macro Library Listing 
. for EPLD Designs 

PROGRAMMABLE LOGIC APPLICATIONS 
INTEL CORPORATION 

2-161 
Order Number: 292037-002 



intef AB·18 

TTL Macros 

The following is a partial list of TTL macros that are 
available through the Intel EPLD customer hot line. 

These macros are used with the SCHEMA 11-PLD 
schematic capture package. They can also be used in 
ADFs (Advanced Design Files) created using a text 
editor. 

THIS LIST REPRESENTS VERSION 3.4 OF THE 
TTL MACRO LIBRARY. FUTURE VERSIONS 
ARE SUBJECT TO CHANGE. 

SSIGATES 

7400 2 Input NANO 

7402 2 Input NOR 

7404 1 Input INVERTER 

7408 2 Input AND 

7410 3 Input NANO 

7411 3 Input AND 

7420 4 Input NANO 

7421 4 Input AND 

7427 3 Input NOR 

7430 8 Input NANO 

7432 2 Input OR 

7486 2 Input XOR 

MSI FUNCTIONS 

Decoders/Demultiplexers 

7442 

7444 

7447X 

7449 

74138 

(10) BCD to Decimal 

(10) Excess-3-Gray to Decimal 

(7) BCD to 7-Segment-Active Low Out­
put 

(7) BCD to 7-Segment-Active High 
Output 

(8) 1-of-8 Decoder 

74139 (4) Single 1-of-4 Decoder 

74145 

74154 

74155 

(10) BCD to Decimal 

(16) 1-of-16 Decoder 

(8) Dual 1-of-4 

74156 (8) Dual 1-of-4 

Multiplexers 

74151 (2) 8-to-1 

74153 (2) Dual 4-to-1-Active High Output 

74157 (4) Quad 2-to-1-Active High Output 

74158 (4) Quad 2-to-1-Active Low Output 

74253 (2) Dual 4-to-1-Three-State Output 

74257X (4) Quad 2-to-1-Active High, Three-
State Output 

74258X (4) Quad 2-to-1-Active Low, Three-
State Output 

74298XA (4) Quad 2-to-1-Active High with Stor­
age 

74298XB (4) Quad 2-to-1-Active High with Stor­
age 

74352 (2) Dual 4-to-1-Active Low Output 

2-162 



intJ 
Counters 

Type 
7490XD (4) BCD Decade 
7490XQ (4) · Bi-Quinai'y · 
741'60 (5) BCD Decade 
74161 (5) 4-Bit Binal'Y 
74162 (5) BCD Decade 
74163 (5) .. 4-Bit Binary 
74168 (5) BCD DecadEI. 
74169 (5) 4·Bit Binary 
74176XD (4) BCD Decade 
74176XQ (4) Bi-Quinary 
74177X (4) 4-Bit'Binary 
74190XA (6) BCD Decade 
74190XB (6) BCD Decade 
74191XA (7) 4-Bit Binary 
74290XD (4) BCD Decade 
74290XQ (4) Bi-Qui nary 
74390X (4) Bi-Quinary /BCD 
74393XA (4) 4-Bit Binary 
74393XB (4) 4-Bit Binary 

AB-18 

Clear Load 
s 9 
s 9 
A s 
A s 
s s 
s s 

s 
s 

A s 
A s 
A s 

s 
s 
s 

s 9 
s 9 
A 
A 
A 

Clk 
A 
A 
A 
A 
A 
A 
A 
A 
A 
A 
A 
A 
A 
A 
A 
A 
F 
F 
F 

RCO 
RCO 
RCO 
RCO 

Extras· 

U/D, RCO 
U/D,RCO 

U/D,RCO,MM 
U/D,RCO,MM 
U/D,RCO,MM 

S = Synchronous R = Rising-Edge Triggered 
A = Asynchronous F == Falling-Edge Triggered 
9 = Synchronous Set-to-9 

U/D = Up/Down 
RCO = Ripple carry Output 
MM = Max/Min Output 

Single Fllp-Flops 

7472XA (2) AND-.Gated JK Master/Slave 

7472XB (2) AND-Gated JK Master/Slave 

7473X (2) JK with Clear 

7474X (2) D with Pr~et and Clear 

74112XA (3) JK with Preset and Clear 
74112XB (2) JK with Clear 

Multlple Fllp-Flops (Registers) 

74174X 

74175X 

74273X 

74377 

74378 

(6) Hex D 

(8) Quad D with Q and IQ 

(8) Octal D 

(8) Octal D with Common Enable 

(6) Hex D 

Latches 

7475X (8) 4-Bit Bistable 

7477X (4) Quad D-Type 

74259XA (8) Octal Addressable D-Type 

74259XB (8) Octal Addressable D-Type 

74373X (8) Octal D-Type 

2-163 



intef AB-18 

Shift Registers 

7491 (8) 8-Bit-Serial-ln, Serial-Out 

7495XA (4) 4-Bit-Serial-In/Parallel-ln, 
Parallel-Out 

7495XB (4) 4-Bit-Serial-In/Parallel-ln, 
Parallel-Out 

7495XC (4) 4-Bit-Serial-In/Parallel-In, 
Parallel -Out 

7496X (5) 5-Bit-Serial-In/Parallel-ln, 
Parallel-Out 

74164 (8) 8-Bit-Serial-In, 
Parallel-Out 

74165X (9) 8-Bit-Serial-In/Parallel-ln, 
Serial-Out 

74194 (4) 4-Bit Bi-Directional-
Serial-In/Parallel-In, Parallel-Out 

74395XA (5) 4-Bit Cascadable­
Serial-In/Parallel-In, Parallel-Out 

74395XA (5) 4-Bit Cascadable­
Serial-In/Parallel-In, Parallel-Out 

Miscellaneous 

7482X 

7483X 

7485X 

7487 

74143X 

74180X 

74180XA 

74182 

74183 

74280X 

(4) 2-Bit Adder 

(8) 4-Bit Adder 

(7) 4-Bit Magnitude Comparator 

(4) 4-Bit True/Complement Element 

(17) 4-Bit Counter; 4-Bit Latch; 7 Segment 
Decoder 

(4) 8-Bit Parity Generator/Checker 

(4) 8-Bit Parity Generator/Checker · 

(5) Look-Ahead Carry Generator 

(2) Single-Bit Full Adder 
with Carry/Save 

(5) 9-Bit Odd/Even Parity Generator/ 
Checker 

DEMORGAN EQUIVALENTS 
(BUBBLE GATES} 

Bubble Bubble Bubble Bubble 
AND NANO NOR OR 

(NOR) (OR) (AND) (NANO) 
2 Input BAND2 BNAND2 BNOR2 BOR2 
3 Input BAND3 BNAND3 BNOR3 BOR3 
4 Input BAND4 BNAND4 BNOR4 BOR4 
S Input BANDS BNANDS BNORS BORS 
S Input BANDS BNANDS BNORS BORS 

12 Input BAND12 BNAND12 BNOR12 BOR12 

INPUT /OUTPUT MACROS 

INPUT N/A Generates Input Pin and Node in 
ADF 

OUTPUT (!) Generates Enabled Output Buffer in 
ADF 

OUTP (I) Output Pin (Used in SCHEMA 11-
PLD) 

74125 (I) Single Three-State Output, Active 
Low Enable 

74126 (1) Single Three-State Output, Active 
High Enable 

NOTES: 
1. All TTL macros duplicate TTL function only. They 
DO NOT DUPLICATE performance characteristics 
such as open-collector, totem-pole, or high-drive out­
put. 
2. Any TTL macros which deviate in some way from 
standard TTL function are denoted with an appended 
"X" (see device .DOC file for details). Appended 
"D"s and "Q"s indicate counters configured to Deci­
mal or bi-Quinary mode; appended "A''s and "B"s in­
dicate a macro configured for a family of EPLD de­
vices (e.g. 5C060, 5C090, 5Cl80). 
3. The(#) indicates the maximum number of EPLD 
macrocells consumed if all outputs are used. If an out­
put is not used, the macro compression phase of the 
Macro Expander will remove the signal unless it is 
used as feedback inside the macro definition. 
4. /Q's should be avoided as pin outputs if possible. 
The EPLD is structured such that the Q is readily 
available as a pin output and both the Q and /Q are 
readily available as feedbacks. Using /Q as a pin out­
put, however, requires an extra macrocell and adds to 
the propagation delay. 

2-1S4 



intJ APPLICATION 
NOTE 

AP-271 

April 1986 

Applying The 5C121 Architecture 

JIM DONNELL 
PROGRAMMABLE LOGIC APPLICATIONS 

INTEL CORPORATION 

2-165 
Order Number: 292008-001 



AP-271 

INTRODUCTION 

Intel's 5Cl21 Erasable Programmable Logic Device 
represents a new breed in the world of programmable 
logic. With gate densities approaching those of gate ar­
rays and a reconfigurable architecture, the logic design­
er is freed from choosing between scores of generic pro­
grammable logic to perhaps find an acceptable match 
for his or her design needs. Adding to the list of benefits 
is the fact that the 5Cl2 l is erasable. Now sections of 
the design can actually be programmed and tested in 
the device - without sacrificing a part to the circular 
file. In addition, there is no longer a need to generate 
test vectors to qualify the programming of the parts. 
EPLDs are erasable and therefore 100% testable at the 
factory. 

OBJECTIVE 

The purpose of this application note is to demonstrate 
the architectural options of the 5Cl21 by designing a 
digital crosspoint switch. Conceptually, a digital cross­
point switch switches data from any input to any out­
put. Figure 1 shows a block diagram of a bytewide 
crosspoint switch. 

10-17 

DIGITAL 
CROSSPOINT 

SWITCH 

03 04 05 
OUTPUT SELECT 

Q0-07 

292008-1 

Figure 1. Functional Diagram of a Digital 
Crosspoint Switch 

This design will employ features such as: registered out­
put with registered feedback, combinational feedback, 
input latches, buried registers, and dual clock options. 
The digital crosspoint switch in this design can route 
data from one of eight inputs to one of eight outputs in 
a single clock cycle. Options for holding the deselected 
outputs at previous levels, latching inputs, and fitting 
considerations are explored. 

THE BASIC ARCHITECTURE 

The 5Cl21 contains 28 Macrocells, 12 dedicated in­
puts, 24 programmable I/O lines, and two clocks input 
pins. Inputs may be flow through, or latched on the 
rising or falling edge of either clock. Output options 

include registered or combinational output. In addition, 
each output may be fed back into the array in both the 
true and complement version. For a more complete de­
scription of the 5Cl21 architecture the reader is re­
ferred to the 5Cl2 l data sheet. 

COMBINATIONAL FEEDBACK 

Feedback in logic designs is used for a variety of rea­
sons. Combinational feedback in the 5Cl21 is often 
used to reduce the number of product terms feeding one 
Macrocell. Though the 5Cl21 has Macrocells that can 
accept up to 16 product terms, all Macrocells are not 
that wide. 

Let's look at an example. Equation 1 represents one of 
the eight Boolean expressions necessary to implement a 
digital crosspoint switch. Logically, this expression se­
lects one of eight input signals (IO-I7), and routes that 
signal to QO. Data bits DO, Dl, and D2 select one of the 
eight input lines. In this case, data bits !D3, !D4, and 
!D5 select output QO. (The exclamation point is used to 
indicate a logical complement of the signal.) Equations 
for Q 1 through Q7 are very similar and will be dis­
cussed later. 

ao = c 10 x 1D2 x 1D1 x tDo 
+ 11 X ID2 X ID1 x DO 
+ 12 x !D2 x D1 X !DO 
+ 13 X ID2 X D1 x DO 
+ 14 x D2 x !D1 x !DO 
+ 15 x D2 x !D1 x DO 
+ 16 X D2 x D1 X !DO 
+ 17 x D2 x D1 x DO) x ID5 x !D4 x ID3; (1) 

SELECTEQ = 10 X ID2 X ID1 x !DO 
+ 11 x ID2 x !D1 x DO 
+ 12 x !D2 x D1 x !DO 
+ 13 x !D2 x D1 x DO 
+ 14 x D2 x !D1 x !DO 
+ 15 x D2 x ID1 x DO 
+ 16 X D2 X D1 x !DO 
+ 17 x D2 x D1 x DO; (2) 

Equation 2 contains the terms that will be common to 
all eight output equations. Both equations in this case 
contain eight product terms. By treating equation 2 as 
one common signal and routing that signal through 
combinational feedback, we can reduce the number of 
product terms in equations Q0 thru Q7 to one p-term 
each. The advantage is that the outputs can now be 
placed in any of the 24 I/0 Macrocells available in the 
5Cl21. In addition, the 5Cl21 contains four buried reg­
isters. (Buried registers have no output and are used 
solely for feedback.) If a buried register is available, 
iPLDs (Intel's Programmable Logic Development Sys­
tem) will automatically assign the No Output - Com­
binational Feedback function to a buried register. This 
increases the flexibility for pin assignments and makes 

2-166 



intef AP-271 

COMBINATIONAL FEEDBACK 
(Continued) 

p-terms available in case a design change is needed. 
Equations 3 thru 10 reflect this improvement. 

00 = SELECTEO x !05 x !04 x !03; (3) 

01 = SELECTEO X 105 x 104 X 03; (4) 

02 = SELECTEO x 105 x 04 x !03; (5) 

03 = SELECTEO X 105 x 04 x 03; (6) 

04 = SELECTEO x 05 x 104 x 103; (7) 

05 = SELECTEO x 05 x 104 x 03; (8) 

Q6 = SELECTEO x 05 x 04 x 103; (9) 

07 = SELECTEO X 05 x 04 x 03; (10) 

REGISTERED FEEDBACK 

Registered feedback is also employed in a variety of 
applications such as counters and state machines. In 
this particular example, the registered feedback signal 
can be used to hold the deselected outputs of the switch 
at their previous level until that output is selected 
again. This is accomplished by simply "ANDing" the 
feedback signal with the inversion of the output select 
signal. The result is then "ORed" with the equation for 
the given output. Holding the previous output might be 
useful in control applications or when interfacing to 
slow peripherals. Equations 11 thru 18 are the result. 

00 = SELECTEO x 105 x 104 x 103 + 1(05 x 104 
x 103) x 00-fdbk; (11) 

01 = SELECTEO x !05 x !04 x 03 + !(!05 x 104 
x 03) x 01-fdbk; (12) 

02 = SELECTEO x !05 x 04 x !03 + !(105 x 04 
x !03) x 02-fdbk; (13) 

03 = SELECTEO x !05 x 04 x 03 + !(!05 x 04 
x 03) x 03-fdbk; (14) 

04 = SELECTEO X 05 X 104 X 03 + 1(05 X 104 
x 103) x 04-fdbk; (15) 

05 = SELECTEO x 05 x 104 x 03 + !(05 x 104 
x 03) x 05-fdbk; (16) 

06 = SELECTEO X 05 X 04 X 103 + 1(05 X 04 
x 103) x 06-fdbk; (17) 

07 = SELECTEO x 05 x DR x 03 + !(05 x 04 
X DE) X 07-fdbk; (18) 

Equations 11 thru 18 are all that are necessary to im­
plement a digital crosspoint switch with the output 
hold feature. Each equation contains only four product 
terms when written in the expanded form and could 
therefore fit into any Macrocell in the 5Cl21. The ap­
pendix contains the report and ADF files generated by 
the iPLDs software. 

TIMING ANALYSIS 

Figure 2 shows the internal delay paths associated with 
this design in the 5Cl21. The frequency at which the 
5Cl21 may be clocked can be determined by examining 
the internal delay elements of the 5Cl21. These include 
the input delay (Tin), two array delays (Tad), and the 
combinational feedback delay (Tct). Table l gives the 
simulation data for each of these paths in a 5Cl21-50. 

REG OUTPUT ......,.._. _ _. 

292008-2 

Figure 2. Crosspoint Delay Path 

2-167 



intef AP-271 

TIMING ANALYSIS (Continued) 

Table 1. 5C121·50 Simulation Data 

Model Delay(ns) Parameter 

Tad 38 

Trd 7 

Tod 8 

Tin 10 

Tic 8 

Trf 5 

Tcf 5 

The sum of the delays before the register input equal 
the set-up time Tsu with reference to the internal clock. 
By substracting the input clock delay Tic we shift the 
reference to the external clock pin. The set-up time 
with reference to external signals is shown in equation 
19. Inverting this signal yields the maximum clock fre­
quency, fmax. The maximum clock frequency is shown 
in equation 20. 

Tsu = Tin + 2Tad + Tel - Tic; 

fmax = 1 Tsu 

(19) 

(20) 

Therefore, this configuration of the 5C121-50 could be 
clocked at 10 MHz, allowing a data transfer rate of 10 
Mbits/second. By paralleling six 5C12 ls together, eight 

CLK 

bits could be switched per cycle. Figure 3 shows the 
timing diagram for this configuration of the 5C121 digi­
tal crosspoint switch. Included in the appendix is the 
Advanced Design File (ADF), Logic Equation File 
(LEF), and Utilization report generated by Intel's Pro­
grammable Logic Software (iPLS) for this design. 

INPUT LATCHES 

One point must be raised about Figure 3. Notice that 
the time allowed for external data set-up is only 17 ns. 
Therefore, 17 ns after the rising edge of the clock, data 
must be stable and remain stable at the input pins until 
the next clock pulse. In most systems this would be a 
very stringent requirement. Fortunately the 5C121 has 
the ability to latch the data at the input pins with 7475 
type transparent latches. Employing this feature eases 
the data set-up requirement as shown in Figure 4. 

SUMMARY 

The flexible architecture of the 5Cl21 gives the design­
er a variety of options for input and output configura­
tions. Inputs may be latched to ease system timing re­
quirements. Outputs may be clocked for synchronous 
systems or fed directly out as asynchronous signals. 
Feedback can be used to reduce product term require­
ments, to save present state information for state ma­
chines and counters, or simply to hold deselected out­
puts as shown in this example. Imagine the possibilities. 

J. R. Donnell 
PLDO Applications 

100ns ---------i 

!+----- Tsu (83NS) ____ __.., 

DATA OUT VALID 

292008-3 

Figure 3. Crosspoint Timing Diagram 

2-168 



intef AP-271 

100ns --------+! 

CLK 

----- Tsu(83NS) -----+I 

LATCHED INPUTS INPUT STABLE 

LATCH ENABLE 

DATA TO PINS x EXTERNAL DATA SET-UP DATA STABLE X------------
DATA OUT----------------.~ T~l~,....--D-A-TA-OU_T_V_A_L-ID __ __ 

(Teo! =Tic+ Trd +Tod) 
292008-4 

Figure 4. Crosspoint Timing Diagram with Input Latches 

2-169 



ADF Fiie 

0 
5Cl21 
Digital Crosspoin~ Switch 

AP-271 

APPENDIX 

LB Version 3.0, Baseline 17x, 9/26/85 
PART: 5Cl21 
INPUTS: I00837,I01836,I02835,I03834,I0488,I0589,I06810,I07811,Il0833,Ill832 

,Il2831,Il3830,Il4829,Il5828,Il6827,Il7826,CLK838,D082,Dl83,D284,D385 
,D486,D587,ILE81 

OUTPUTS: Q00812,Q01813,Q02814,Q03815,Q048161Q05817,Q06818,Q07819,Ql0824,Qll823 
,Ql2@22,Ql3821 

NETWORK: 
QOO,QOOFBK RORF 
QOl,QOlFBK RORF 
Q02,Q02FBK ~ RORF 
Q03,Q03FBK RORF 
Q04,Q04FBK RORF 
Q05,Q05FBK RORF 
Q06,Q06FBK RORF 
Q07,Q07FBK RORF 
QlO,QlOFBK RORF 
Qll,QllFBK RORF 
Ql2,Ql2FBK RORF 
Ql3,Ql3FBK RORF 
CLK = INP (CLK) 

(QOOD,CLK,GND,GND,VCC) 
(QOlD,CLK,GND,GND,VCC) 
(Q02D,CLK,GND,GND,VCC) 
(Q03D,CLK,GND;GND,VCC) 
(Q04D,CLK,GND,GND,VCC) 
(Q05D,CLK,GND,GND,VCC) 
(Q06D,CLK,GND,GND,VCC) 
(Q07D,CLK,GND,GND,VCC) 
(QlOD,CLK,GND,GND,VCC) 
(QllD,CLK,GND,GND,VCC) 
(Ql2D,CLK,GND,GND,VCC) 
(Ql3D,CLK,GND,GND,VCC) 

' BIT 0 OUTPUTS ' 

' 4 OF THE 8, BIT 0 OUTPUTS' 

D5 = LINP (D5,ILE) 'OUTPUT SELECT CONTROL BITS' 
ILE = INP (ILE) 
D4 LINP (D4,ILE) 
D3 LINP (D3,ILE) 
D2 = LINP (D2,ILE) ' INPUT SELECT CONTROL BITS ' 
Dl = LINP (Dl,ILE) 
DO= LINP (DO,ILE) 
100 LINP (100,ILE) 
IOl LINP (IOl,ILE) 
I02 LINP (I02,ILE) 
I03 LINP (I03,ILE) 
104 LINP (I04,ILE) 
105 LINP (105,ILE) 
106 LINP (106,ILE) 
107 LINP (107,ILE) 
110 LINP (IlO,ILE) ' INPUTS FOR BIT 1 SWITCH' 
Ill LINP (Ill,ILE) 
Il2 LINP (Il2,ILE) 
Il3 LINP (Il3,ILE) 
Il4 LINP (114,ILE) 
Il5 LINP (115,ILE) 
116 LINP (116,ILE) 
117 LINP (117,ILE) 
SELECTEQOF = NOCF (SELECTEQO) 
SELECTEQlF = NOCF (SELECTEQl) 
EQUATIONS: 
QOOD SELECTEQOF*!D5*!D4*!D3 

QOlD 

Q02D 

Q03D 

Q04D 

Q05D 

+ !(!D5*!D4*!D3)*000FBK; 
SELECTEQOF*!D5*!D4* D3 

+ !(!D5*!D4* D3)*001FBK; 
SELECTEQOF*!D5* D4*!D3 

+ !(!D5* D4*!D3)*002FBK; 
SELECTEQOF*!D5* D4* D3 

+ !(!D5* D4* D3)*003FBK; 
SELECTEQOF* D5*!D4*!D3 

+ !( D5*!D4*!D3)*004FBK; 
SELECTEQOF* D5*!D4* D3 

2-170 

292008-5 



ADF Fiie (Continued) 

+ !( 05*!04* 03)*005JBK; 
Q060 SBLBCTBQOF* 05* 04*!03 

+ !( 05* 04*!03)*006JBK; 
Q070 SBLBCTBQOF* 05* 04* 03 

+ !( 05* 04* 03)*007JBK; 
QlOO SBLBCTBQ1F*!05*!04*!03 

+ !(!05*!04*!03)*010JBK; 
QllO SBLBCTBQ1F*!D5*!04* 03 

+ !(!05*!04* 03)*011JBK; 
Ql2D SBLBCTBQ1F*!05* D4*!03 

+ !(t05* 04*!03)*012JBK; 
Ql3D ·~ SILBCTBQ1F*!05* 04* D3 

+ !(!D5* 04* 03)*013FBK; 

AP·271 

SILBCTIQO = IOO*!D2*!Dl*!DO ' COMMON IQUATION FOR BIT 0 ' 
+ I0l*!D2*~Dl$DO 
+ I02*!D2*Dl*!DO 
+ I03*!02*DUOO 
+ I04*D2*!Dl*!DO 
+ I05*02*!0UOO 
+ I06*D2*D U ! DO 
+ I07*D2*DUDO; 

SBLBCTBQl = Il0$!D2*!Dl*!DO ' COMMON EQUATION FOR BIT 1 ' 
+ Ill*!02*!Dl*OO 
+ Il2*!D2*Dl*!DO 
+ Il3*!D2*DUOO 
+ Il4*D2*!0l*!DO 
+ 115*02* ! OUDO 
+ Il6*D2*DU!DO 
+ Il7*D2*Dl*DO; 

BND$ 

2-171 

292008-6 



LEF File 
JR Donnell 
Intel 
January 24, 1986 

0 
5Cl21 
Digital Crosspoint Switch 

AP~271 

LB Version 3.0, Baseline 17x, 9/26/85 
PART: 

5Cl21 
INPUTS: 

I00@37, I01@36, I02@35, I03@34, I04@8, I05@9, I06@10, I07@11, Il0@33, 
Ill@32, Il2@31, Il3@30, Il4829, Il5@28, Il6@27, Il7@26, CLK@38, D0@2, 
Dl@3, D2@4, D3@5, D4@6, D5@7, ILE@l 

OUTPUTS: 
QOO@l2, Q01813, Q02814, Q03815, Q04816, Q05817, Q06@18, ·Q07@19, Ql0@24, 

NETWORK: 
Qll@23, Ql2@22, Ql3@21 

CLK INP(CLK) 
ILE INP(ILB) 
IOO LINP(IOO, ILE) 
IOl LINP(IOl, ILE) 
I02 LINP(I02, ILE) 
I03 LINP(I03, ILE) 
I04 LINP(I04, ILE) 
I05 LINP(I05, ILE) 
I06 LINP(I06, ILE) 
107 LINP(I07, ILE) 
110 LINP(IlO, ILE) 
Ill LINP(Ill, ILE) 
112 LINP(Il2, ILE) 
113 LINP(Il3, ILE) 
Il4 LINP(Il4, ILE) 
115 LINP(Il5, ILE) 
Il6 LINP(Il6, ILE) 
117 LINP(Il7, ILE) 
DO LINP(DO, ILE) 
Dl LINP(Dl, ILE) 
D2 LINP(D2, ILE) 
D3 LINP(D3, ILE) 
D4 LINP(D4, ILE) 
D5 LINP(D5, ILE) 
QOO, QOOFBK RORF(QOOD, CLK, GND, GND, VCC) 
QOl, QOlFBK RORF(QOlD, CLK, GND, GND, VCC) 
Q02, Q02FBK RORF(Q02D, CLK, GND, GND, VCC) 
Q03, Q03FBK RORF(Q03D, CLK, GND, GND, VCC) 
Q04, Q04FBK RORF(Q04D, CLK, GND, GND, VCC) 
Q05, Q05FBK RORF(Q05D, CLK, GND, GND, VCC) 
Q06, Q06FBK RORF(Q06D, CLK, GND, GND, VCC) 
Q07, Q07FBK RORF(Q07D, CLK, GND, GND, VCC) 
QlO, QlOFBK RORF(QlOD, CLK, GND, GND, VCC) 
Qll, QllFBK RORF(QllD, CLK, GND, GND, VCC) 
Ql2, Ql2FBK RORF(Ql2D, CLK, GND, GND, VCC) 
Ql3, Ql3FBK RORF(Ql3D, CLK, GND, GND, VCC) 
SELECTEQOF = NOCF(SELECTEQO) 
SELECTEQlF = NOCF(SELECTEQl) 

EQUATIONS: 
SELECTEQl IlO * D2' * Dl' *DO' 

+ D2 * Dl' * DO' * Il4 
+ D2' * Dl * DO' * Il2 
+ D2' * Dl' *DO * Ill 
+ D2 * Dl * DO' * Il6 
+ D2 * Dl' * DO * Il5 
+ D2' * Dl * DO * 113 

2-172 

292008-12 



AP-271 

LEF File (Continued) 

IND$ 

+ D2 * Dl * DO * 117; 

SBLBCTBQO 100 * D2' * Dl' * DO' 
+ D2 * Dl' *DO' * 104 
+ D2' * D l * DO' * 102 
+ D2' * D l' * DO * I 0 l 
+ D2 * Dl * DO' * 106 
+ D2 * Dl' *DO * 105 
+ D2' * Dl * DO * 103 
+ D2 * Dl * DO * 107; 

Ql3D D3' * Ql3FBK 
+ D4' * Ql3FBK 
+ D5 * Ql3FBK 
+ SBLBCTBQlF * D5' * D4 * D3; 

Ql2D D4' * Ql2FBK 
+ D3 * Ql2FBK 
+ D5 * Ql2FBK 
+ SBLBCTBQlF * D5' * D4 * D3'; 

QllD D3' * QllFBK 
+ D4 * QllFBK 
+ D5 * QllFBK 
+ SBLBCTBQlF * D5' * D4' * D3; 

QlOD D3 * QlOFBK 
+ D4 * QlOFBK 
+ D5 * QlOFBK 
+ SBLBCTBQlF * D5' * D4' * D3'; 

Q07D D3' * Q07FBK 
+ D4' * Q07FBK 
+ D5' * Q07FBK 
+ SBLBCTBQOF * D5 * D4 * D3; 

QOSD D4' * Q06FBK 
+ D5' * Q06FBK 
+ D3 * Q06FBK 
+ SBLBCTl!QOF * D5 * D4 * D3.; 

Q05D D3' * Q05FBK 
+ D5' * Q05FBK 
+ D4 * Q05FBK 
+ Sl!Ll!CTBQOF * D5 * D4' * il3; 

Q04D D5' * Q04FBK 
+ D3 * Q04FBK 
+ D4 * Q04FBK 
+ Sl!Ll!CTBQOF * D5 * D4' * D3'; 

Q03D D3' * Q03FBK 
+ D4' * Q03FBK 
+ D5 * Q03FBK 
+ Sl!Ll!CTl!QOF * D5' * D4 * D3; 

Q02D D4' * Q02FBK 
+ D3 * Q02FBK 
+ D5 * Q02FBK 
+ SBLBCTl!QOF * D5' * D4 * D3.; 

QOlD D3' * QOlFl!K 
+ D4 * QOlFBK 
+ D5 * QOlFBK 
+ SBLl!CTl!QOF * D5' * D4' * D3; 

QOOD D3 * QOOFBK 
+ D4 * QOOFBK 
+ D5 * QOOFBK 
+ SBLl!CTl!QOF * D5' * D4' * D3'; 

2-173 

292008-13 

292008-14 



AP·271 

RPT File 

Logic Opti•izing Co•piler Utilization Report 

***** Design i•ple•ented aucceaafully 

JR Donnell 
Intel 
January 24, 1986 

0 
5Cl21 
Digital Croaapoint Switch 
LB Veraion 3.0, Baaeline 17x, 9/26/85 

5Cl21 

ILi -: 1 40:- Vee 
DO -: 2 39:- Vee 
Dl -: 3 38:- CLK 
D2 - 4 37:- 100 
D3 -: 5 36:- 101 
D4 -: 6 35:- 102 
D5 -: 7 34:- 103 

104 -: 8 33:- 110 
105 - 9 32:- Ill 
106 -: 10 31:- 112 
107 -: ll 30:- 113 
QOO -: 12 29:- 114 
QOl -:13 28:- 115 
Q02 -:14 27:- 116 
Q03 -:15 26:- 117 
Q04 -: 16 25:- GND 
Q05 -: 17 24:- QlO 
Q06 -: 18 23:- Qll 
Q07 -: 19 22:- Ql2 
GND -:20 21 :- 013 

**INPUTS** 

Na•e Pin Resource MCell • 
ILi l INP 

DO 2 LINP 

Dl 3 LINP 

D2 4 LINP 

D3 5 LINP 

PTer•• 

2·174 

Feed•: 
MCella OB Clear Clock 

Latch 

13 
15 

13 
15 

13 
15 

9 
10 
11 
12 
17 
18 
19 
20 
Zl 

292008-9 



intef AP-271 

RPT File (Continued) 

22 
23 
24 

D4 6 LIMP 9 
10 
11 
12 
17 
18 
19 
20 
21 
22 
23 
24 

D5 7 LINP 9 
10 
u 
12 

' 17 
18 
19 
20 
21 
22 
23 
24 

I04 8 LINP 28 0/ 4 Hi 

I05 9 LINP 27 0/10 15 

I06 10 LINP 26 0/ 8 15 _':"i ·-
107 11 LINP 25' 0/ 6 16 

117 26 LINP 7 0/10 13 

116 27 LINP 6 0/ 8 13 

115 28 LINP 5 0/ 6 13 

114 29 LINP 4 0/ 6 13 

113 30 LINP 3 0/ 8 13 

112 31 liINP 2 0/10 13 

Ill 32 LINP 1 0/ 4 13 

110 33 LINP 13 -
I03 34 LINP 15 

I02 35 LINP 15 .,.. 

IOl 36 LINP 15 

IOO 37 LIMP 15 

CLK 38 INP Reg 

29_2008-10 

2-175 



intef AP..271 

RPT Fiie (Continued) 

UOUTPUTSU 

Feeds: 
Naae Pin Resource MCell # PTeras MC ells OB Clear 

QOO 12 RORF 24 4/ 6 24 

QOl 13 RORF 23 4/ 8 23 

Q02 14 RORF 22 4/10 22 

Q03 15 RORF 21 4/ 4 21 

Q04 16 RORF 20 4/12 20 

Q05 17 RORF 19 4/ 4 19 

Q06 18 RORF 18 4/ 8 18 

Q07 19 RORF 17 4/ 8 17 

Ql3 21 RORF 12 4/ 8 12 

Ql2 22 RORF 11 4/ 8 11 

Qll 23 RORF 10 4/ 4 10 

QlO 24 RORF 9 4/12 9 

**BURIED RBGISTBRS** 

Feeds: 
Naae Pin Resource MCell # PTeras MCells OB Clear 

NOCF 13 8/ 8 9 
10 
li 
12 

NOCF 15 8/ 8 17 
18 
19 
20 
21 
22 
23 
24 

**UNUSED RBSOURCBS** 

Naae Pin Resource MC ell PTeraa 

25 8 4 
NA 14 8 
NA 16 8 

**PART UTILIZATION** 

97- Pina 
89- MacroCella 
30- Pt eras 

292008-11 

2-176 



intef APPLICATION 
NOTE 

AP-272 

June 1986 

The 5C060 
Unification of a CHMOS System 

J. R. DONNELL 
PROGRAMMABLE LOGIC APPLICATIONS 

INTEL CORPORATION 

2-177 
Order Number: 292009-003 



inter AP-272 

INTRODUCTION 

From an outside glance, the world of computers and 
microprocessors seems filled with dedicated ICs that 
fulfill a variety of system needs. Upon closer inspection 
we find that designers must still reach into their bag of 
random logic to link together all of the parts of the 
system. It seems a shame to stuff a board full of high 
powered peripherals and still have portions of that 
board wasted on decoders, latches, and other miscella­
neous random logic. 

True, programmable logic has been around a long time. 
But that logic is somewhat rigid in form, one time pro­
grammable, and can also double as space heaters. These 
devices are totally unacceptable for a CMOS system. 
What is needed is a flexible PLA architecture, erasabili­
ty for prototyping, and CMOS for low power. In addi­
tion, for this particular application the device must per­
form from static operation to 10 MHz. 

OBJECTIVE 

This application note covers the design of three sepa­
rate circuits for Intel's CHMOS Design Kit. The func­
tions performed by the 5C060 are: Memory decoding, 
wait state generation, and the power down circuitry for 
the 80C88 system clock. 

MEMORY DECODING 

The system in question supports one 32K bank of 
EPROM memory, and four banks of 4K static RAM. 
Figure l shows the memory map of this system. Ad­
dress lines Al9, Al3, and Al2 will be used to decode 
the address space. PWR_DWN and S2-MIO serve as 
enables. In addition, to avoid data bus contention sig­
nals memory read (MRDC) and advanced memory 
write (AMWC) are decoded along with the address 
lines for RAM chip selects. This is necessary for devic­
es without output enables (OE) on multiplexed ad­
dress/data busses. 

FFFFF 

EPROM 

80000 

• • 
• • 
• • 

03FFF 

RAM18K 

03000 

RAM8K 

02000 01FFF 

RAM4K 

01000 

RAMO 

00000 
292009-1 

Figure 1. 80C88 Memory Map 

2-178 



intef AP·272 

Figure 2 shows a discrete implementation of the chip select decoding logic. 

A12 ----1 

A13 ----1 

A 

B 

A19 ----1 C 

S2M10 ----1 G1 

G2A 

74138 

MRDC 
vo 

Y1 AMWC 

Y2 

V3 RAM4KCS 

Y4 

vs 

Yi 

Y7 

292009-2 

Figure 2. Discrete Decoding Logic Solution 

Several options for entering this design are available 
through Intel's Programmable Logic Development Sys­
tem (iPLDS). (For a more complete description of 
iPLDS the reader is referred to the iPLDS data sheet.) 
The design entry vehicle chosen for this application 
note is the Logic Builder. (Logic Builder is an interac­
tive netlist method of design entry especially suited to 
Boolean equation entry and entry from existing sche­
matics.) Several reasons are behind this decision. First, 
the Logic Builder software is included in iPLDS. In 
addition, Logic Builder entry is very fast, the designer 
may choose either netlist entry or Boolean equations, 
and finally, the Logic Builder software makes additions 
and corrections of design very easy. 

Using Logic Builder, the first step for this design is to 
determine the equations for the 3 to 8 decoder shown in 
Figure 2. These equations are simply the decoding of 
the address lines ANDed with the enable signal. Equa­
tions 0 thru 8 implement the decoding function of Fig­
ure 2. 

/YO= /Al9°/A13°/Al2°ENABLE; 
/Yl = /AI9•/Al3•Al2°ENABLE; 
/Y2 = I Al9• Al3• I A12•ENABLE; 
/Y3. = /Al9.Al3.Al2*ENABLE; 
/Y4 = Al9°/Al3•/Al2•ENABLE; 
!Y5 = A19• I A13* A12•ENABLE; 
!Y6 = Al9.Al3*/Al2*ENABLE; 
!Y7 = Al9.Al3*AI2•ENABLE; 
ENABLE = /PWRDWN*S2MIO; 

(0) 
(1) 
(2) 
(3) 
(4) 
(5) 
(6) 
(7) 
(8) 

Armed with this knowledge it becomes trivial to enter 
the circuit of Figure 2 into Logic Builder. Included in 
the Appendix is the Advanced Design File (ADF) cre­
ated by Logic Builder for this circuit (ADF-1). Typical­
ly the ADF would now be submitted to the Logic Opti­
mizing Compiler (LOC) for Boolean minimization and 
design fitting. In this case we have used only a small 
portion if the logic available in the 5C060 so let us 
continue with the wait state generator and power down 
circuitry. 

Power Down 
Since this design is based on the 80C88 we can actually 
stop the system clock for extended periods of time and 
power back up as if nothing had occurred. The circuit 
to achieve this power down is shown in Figure 3. 

As long as the PWRDWN signal is low the 82C84 
clock output is OR'ed with a logical zero from the 
PWRDWN flip-flop. As a result the 82C84 drives the 
80C88. system clock. If PWRDWN goes HIGH, the 
rising edge of the next 82C84 clock will set the output 
of the PWRDWN flip-flop HIGH inhibiting the fall of 
the next clock cycle. The 80C88 system clock will re­
main HIGH until PWRDWN goes LOW and the 
PWRDWN flip-flop is clocked from the 82C84 clock. 
Using this configuration we avoid partial clock cycles 
for the 80C88 system clock. 

2-179 



intJ AP·272 

12C84CLK 
PIN OUT IN OUT 

INP CLKB 

GND Yee 

,-- 2°-R"oiiF"1 
I 

-i - -
1 
I .___.....__.D OHH>--o...;1- STOPCLK 

'--- - - - FBK 

Yee 

80C88CLK 

292009-3 

Figure 3. 80C88 Power Down Circuit 

Again, entering this circuit into Logic Builder is trivial. 
In fact it can be added directly to the decoder circuit 
shown above. The ADF file for this addition is shown 
in the appendix under ADF-2. 

Walt States 

The majority of memory and peripheral devices which 
fail to operate at the maximum CPU frequency typical­
ly do not require more than one wait state. The circuit 
shown in Figure 4 is an example of a simple wait state 
generator. The circuit operation is as follows. Given 
that a memory location requiring a wait state has been 
selected, ALE in conjunction witli /W AITCS will clear 
the flip-flop-driving the 82C84RDY line high low. 
The 82C84 samples the RDY line during T2 of the 
80C88 bus cycle, and in this case detects a wait state. 
The rising edge of T2 then clocks the 82C84RDY line 
high thereby inserting only one wait state. 

Once again, adding this circuit to the existing decoder 
and power down design is simple. The final ADF file is 
given in the appendix under ADF-3. Once the final 
design has been completed the ADF is submitted to the 
Logic Optimizing Compiler. LOC compiles the design, 
performs Boolean minimization, and fits the design into 
the target EPLD. In addition, LOC produces two files. 
The JED EC programming file, the Logic Equation File 

(LEF), and the Utilization Report. These are also in­
cluded in the appendix for each step in this design pro­
cess. 

LOC FILES 

The JEDEC Fiie 

The JEDEC file is analogous to the object code file that 
is used to program EPROMs. This file is used by the 
Logic Programming Software (LPS) to program Intel's 
EPLDs. 

The LEF File 

The LEF file is an optional file produced by the compil­
er. The LEF file contains the minimized Boolean equa­
tions which resulted from the original ADF. Some in­
teresting points can be raised concerning the LEF file. 
Looking at LEF-3, first recall that the EPROM chip 
select was a function of Al9, Al3, Al2, and the enable 
signals. It turns out that after minimization the 
EPROM chip select depends only on Al9 and the en­
able signals (/PWRDWN and S2MIO). This is shown 
in the LEF file. One other point, the initial wait state 
circuitry employed a JK flip-flop. The compiler auto­
matically minimized this circuit into a D-type flip-flop 
with feedback achieving the same functionality. 

2-180 



AP-272 

ONO Vee 

INP 

292009-4 

Figure 4. Single Walt State Generator for the 80C88 

The Utlllzatlon Report 

Finally, the Utilization Report contains the pin-out for 
the design, information about the architectural layout 
of the design, and a percent utilization for pins, macro­
cells, and product terms. Examining the utilization re­
port for this design we find that two of the sixteen mac­
rocells are still available. We could therefore add more 
functionality in the same 24 pin package. Possible addi­
tions would be more memory decoding, invalid memo­
ry detection, additional wait state generators, etc. One 
point should be raised: The circuitry designed in this 
applications note is relatively simple compared to the 
complex logic functions that could be implemented in 
the 5C060. 

SUMMARY 

The designs shown in this applications note are typical 
requirements of any microprocessor system. The 5C060 
provided a single chip solution to bind together the pri­
mary elements of that system. Few other types of pro­
grammable logic could implement the same logic in a 
single package. None could do it in CMOS erasable 
logic. The 5C060 has room for more. 

2-181 



AP-272 

APPENDIX 

.111 Dnnn.,\1 
Tntttl 
.T1tnuary :n, l !11111 
llCOllO 
0 
llCOllO 

ADF-1 

Dftr.tuh"' fQr RCICll8 •Y•t.ftll - l6l RAM and upp•r 11121 IPROM 
U Ynr11tnn :i.O, Rn•r.llnn 17x, !l/26/1111 
PART: 5C080 
INPUTS: Al9,Al:i,Al2.PWRDWN,R2MIO,AMWC,MRDC 
Olf'l'PllTS: RAMOCR. RAM4KCll. RAMllKCS. RAMl llllCll, RPROMCll 
NITWORll: 
RAMOCS • CONF (RAMOCS,VCCl 
RAM4KCll = CONF.IRAM4KCS.YCCl 
RAM81CS = cowr (RAM81CS,VCC) 
RAMlllKCS = CoNF IRAMl611CR,YCCl 
RPROMCS = CONF llPROMCS,VCCl 
AIR = TNP IAl!ll 
AU = INP 1Al3l 
A12 = TNP (A12l 
PWRDWN = lNP (PWRDWNl 
R2MTO = TNP 1112MTOl . 
MRDC = INP (MRDCl 
AMWC = TNP IAMWC) 
RQllATlONll: 
RAMRKCll = /l/MRDC•Y2 

+ I AMWC*Y2): 
RAMlRKCll = /l/MRDCtY:i 

+ I AMWC•Y3 l: 
RPROMCR /(/Y7 

+ /YR 
+ /Y~ 

+ /Y4): 
Y7 /IAl!ltAl~*A12•RNARtRl: 
YR /IA19tA13•1Al2•BNABLBl: 
Y~ /IA19t/Al:itAl2tRNARtR): 
Y4 /(Al9t/Al3t/Al2*BNABLBl: 
RNART.I! = /PWRDWN•R2MTO: 
Y3 = /(/Al!ltA13*Al2*BNABLll: 
Y2 = /l/A1R•Al:i•IA12•RNARtRl: 
llAM41CS = /l/MRDCtYl 

+ I AMWC•Yll: 
Yl = /(/Al9•/Al3•Al2*1NABLB): 
RAMOCR = l(/MRDC*YO 

+ /AMWC*YO); 
YO• /l/Al!lt/Al~t/~12*RNARtRl: 
RNDt 

2-182 

292009-5 



intef AP-272 

.JR Dnnnr.11 
Intel 
,Jftnunr:v 31. HIR& 
111:0110 
0 
111:080 

ADF-2 

Decoder for 80C88 •Y•tft• - 181 RMI and upper 11121 IP110M 
Plu• pnwnr dnwn r.irr.uit 
T.8 Veraion 3.0, Beaeline 17x, 9/28/811 
PA RT: 111:0110 • 
TMPUTS: Al9,Al3,Al2,PWRDWM,S2MIO,AMWC,MRDC,82C84CLI 
011TPllT8: RANOC8, RAN4KCS. RANRKllS, RANI BltllS. RPRONllll, llTOPllT.lt, RO<:RRlll.11 
NITWOH: 
RAMOCS = COMr (RAMOCS,VCC) 
RAN41tllR = CONr (RAN4KCS,VCCl 
RAMBICS = COMr (RAMBICS,VCC) 
RANI llltCS = CONJ (RANlflltCll, VCC l 
RPROMCS = COMr (BPROMCS,VCC) 
RTOPCl.K,llTOPCl.Kr z RORr (PWR11WN.R2CR4CUR,Cl1111,ClND,VCCl 
ROCR81ltl = COMr (80C88CLl,VCC) 
PWRDWN z TNP IPWRDWN) 
R21lR4Ctl8 = CLIB (82C84CL1l 
ROCRRCT.K =OR (8TOPC1.llr,R2CR4CT.Kl 
R2C84CLI = INP IR21lR4Ctll 
AHi = TNP (Al!ll 
Al3 = IMP (Al3l 
Al2 = TNP (Al2l 
82MIO = IMP IR2MIOl 
NRDC = TNP INRDCl 
AMWC = IMP IAMWC) 
ROllATTONS: 
RAMOCS = /(/NRDC•YO 

+ /ANWll*YOl: 
RAM41CS /(/NRDC*Yl 

+ /ANWC•Vll: 
RAMBICS = /(/NRDC*Y2 

+ /ANWC*Y2l: 
RAM161CS = /l/MRDC*Y3 

+ /ANWC•Y:tl: 
RPROMCS /(/Y7 

+ /Yll 
+ /Y5 
+ /Y4l: 

YO /(/Al9*/Al3•/Al2*1MABLB 
YI /l/AIA•IAl3•Al2•RNARLRl 
Y2 /(/Al9•Al3•1Al2•BNABL1l 
Y3 /l/AIA*Al3tAl2$RNARLRl: 
Y7 /(AlA•Al3tA12tBNABLB): 
Yll /(AIA$Al3*/Al2tRNARtRl 
Y5 /(Al9t/Al3•Al2tlNABLll 
Y4 /(AIAt/Al3$/Al2UNARl.R 
RMABLI = /PWRDWMtSZMIO: 
RND• . 

2-183 

292009-6 



JR Dnnnell 
Tntel 
January 31, 1986 
110080 
0 
50080 

AP-272 

ADF-3 

D•r.nder tnr ROCRR •v•tea - 161 RAM and upper 5121 IPROM 
Plu• pnwAr dnwn nirr.uit 
Plue wait etate circuit 
T.11 Vnninn :LO, Ruftlinf! 17x, ll/2fl/R5 
P.\RT: 50060 
INPUTS: Al9,Al3,Al2,PWRDWN,S2MIO,AMWC,MIDC,82C84CLl,ALl,WAITCI 
OIJ'l'PIJfll: RANOCS, RAN4KCS, RANRllCS. RANI flllCS, RPRONCS, S'l'OPCJ.11, ROCRRCl.11, R2CR4RDY 
NITWORI: 
RAMOCS = CONF IRAMOCS,VCCl 
RAN411CS • CONr (RAN411CS,VCC) 
RAMllCS = CONF (RAMllCS,VCC) 
RANlllllCS = CONr IRANlflllCS,VCCl 
llPIOMCS = CONF (BPROMCS,VCC) 
R'l'OPCl.11,S'l'OPCT.KF = RORr IPWRDWN,R2CR4Cl;llR,GND,Glm,vcc1 
ROCR8Ctl,80C88CLIF • COIF 180C88CLl,VCCl 
R2CR4RDY = RONF I R2CR4RDYD, ROCRRCT,1111, R2CR4RDYC, GND, VCC l 
PWRDWN = lNP (PWRDWN) 
R2CR4Cl.llA = Cl.llR I R2CR4Cl.ll) 
ROCRBCtK = OR (STOPCLKF,82C84CLKl 
R2CR4Cl.ll = TNP I R2CR4CJ.11 l 
Al9 = INP 1Al9l 
A I 3 = TNP (AU) 
A 12 = INP ( Al2 l 
S2MTO = TNP IS2NTO) 
NRDC = INP CMRDC) 
ANWC = TNP IANWCl 
ROCRRCtKB = CLKB (80C88CLlf l 
WAT'l'CS = TNP (WAT'l'CS) 
ALI = INP (ALI) 
ROIJA'l'TONS: 
RAMOCS = /(/NROC$YO 

+ I ANWC•YO l : 
RAM4KCS /(/NRDC•Yl 

+ I ANWC*YI l; 
RAMBKCS = /l/MRDC•Y2 

+ I ANWC$Y2 l; 
R.\Ml6KCS = /(/MRDC*Y3 

+ I ANWC$V3) ; 
llPROMCS = /(/Y7 

+ /Vil 
+ /¥5 
+ /Y4): 

YO • /(/.\l9$/Al3•/Al2•1NABLBl; 
YI /l/Alll•IAl3•Al2•11NARtlll: 
Y2 /(/Al9*Al3*/Al2*1NAILBl: 
Y3 /l/Alll•A13•A12•RNARtR): 
Y7 /(Al9•Al3•Al2•BNABLI); 
Vil /(Alll•A13•/A12•RNARtR): 
VIS /(Al9•/Al3•Al2•BNABLI); 
Y4 • /(Alll•IA13•/A12•RNARtR): 
RNABLI = /PWIDWN•l2MIO: 
R2CR4RDTD /R2CR4RDYC; 
R2C84RDYC • /WAtTCS•ALI; 
llNDS 

2-184 

292009-7 



intJ AP·272 

,JR """'""'11 
tntel 
Jnnunrv 31. 19R6 
fiCOllO 

LEF-3 
0 
liC060 
Decoder for BOC88 •Y•te• - 161 RAM and upper 5121 BPROM 
PluR powP.r down r.irr.uit 
Plu• wait •tate circuit 
tR Yftroinn 3.0, Rftoftlin~ 17x. 9/26/Rli 
PART: 

150060 
TNPUTS: 

Al9, Al3, Al2, PWRDWN, S2MIO, AMWC, MRDC, 82C84CLI, ALB, WAITCS 
OUTPUTS: 

NRTWORK: 

RAMOCS, RAM41CS, RAMBICS, RAM16lCS, BPROMCS, STOPCLI, BOCBBCLl, 
R2CR4RDY 

419 INPI Al9) 
Alli = TNPf Al3) 
Al2 = INPIA12) 
PWRDWN = TNPIPWRDWN) 
S2MIO = INPIS2MIO) 
AMWC = TNP(AMWC) 
MRDC = tNPIMRDC) 
R2CR4CtK = TNPIR2CR4CtK) 
ALB = INP(ALB) 

'WATTCS = TNPIWATTCS) 
RAMOCS = CORF(RAMOCS, YCCl 
RAM4KCS = CONFIRAM4KCS, YCCl 
RAMBICS = CONFIRAMBICS, YCCl 
RAM16KCS = CONFIRAM16KCS, VCCl 
RPROMCS = CONFIBPROMCS, YCCl 
.. SGOOOD = CtKRfR2CR4CtKR) 
STOPCLI, STOPCLKF = RORF(PWRDWN, .. SGOOOO, GND, GND, VCCl 
ROCRRCJ.K, ROCRRCJ.KF • C:OTFIROC:RRCl.K. VCCl 
.• SGOOlD = CLlBl80C:R8CtKBl 
R2CR4RDY = RONFfR2CR4RDYD, .. SG0010, R2CR4RDYC, GND, YCC) 

RQ1JATIONS: 
82C84RDYC = WAITCS' * ALB: 

.. SGOOlO = ROCRRC:tKF: 

R2C:84RDYD = IWAITCS' * ALBl': 

ROCRRCl.1! ( S'l'OPCl.l!F' * R2CR4CJ.K' l ': 

.. SGOOOO 82C84CLK: 

RPROMCS = IA19 * PWRDWN'··* S2MTOl': 

RAM16lCS = MRDC * AMWC 
+ Al9' * Al3 * Al2 PWRDWN' * S2MIO: 

RAMRKCS = MRDC * AMWC 
+ Al9' * Al3 * Al2' PWRDWN' * S2MIO: 

RAM411CS MRDC * AMWC 
+ AlA' * Al3' * Al2 * PWRDWN' * S2MIO; 

RAMOCS MRDC * AMWC 
+ Al9' • Al3' * Al2' * PWRDWN' * S2MIO; 

2-185 

292009-8 



AP-272 

RPT-3 
•n~•~ Ontt•i•in( Cnapiler Utilisation Report 

.J& Donnell 
Jn tel 
.January 31, 1986 
llC060 
0 
llCORO 
Dar.odar for 80C88 eyate• - 161 RAM and upper 5121 IPROM 
PluR ~nwftr-down r.trr.uit 
Plua wait etate circuit 
l.R varalon· ~.O. Rna1tlh1n 17x. 11/28/115 

llC080 

ClND -: 1 24:- Vcc 
PWRDWll -: 2 2~:- A 111 

ClND -: 3 22:- STOPCLI 
ClllD -: 4 21:- R2CR4RDY 

WAtTCS - 5 20:- 80CBBCLI 
AT.I! -: R 1!1:- RPRONCS 

R2C84CLI -: 7 18:- R4Ml61CS 
NRDC -: R 17:- RANRllCS 
.\MWC - 9 16:- RAM4KCS 

S2NJO -: 10 111:- RANOCS 
A12 -: 11 14:- U3 
ClND - : 12 1~:- ClND 

- -. 
UTNPllTSU 

NR•~ Pin R111t11nurr.fl NCr.l l II PTftr•11 NCr.l IA 

PWRDWll 2 INP 1 
4 
!I 
R 
7 
R 

WATTCS II TllP 11 0/ R 2 

.\LB 6 INP 12 0/ 8 2 

R2CR4Cl.ll 7 TNP 1~ 0/ R ~ 

NRDC 8 INP 14 01 8 5 
6 
7 
R 

ANWC II lllP 111 0/ R II 
R .,. 
II 

112NTO 10 TllP 18 0/ R 4 
·II 

2-186 

J'fl!,,-rt11: 
OR C1~nr Clnr.k 

-2 

2 

292009-9 



~ AP·212 

6 
7 
R 

A12 11 TNP II 
II 
7 
R 

A13 14 TNP II 
fl 
7 
R 

Al!I 23 TNP 4 
II 
fl 
7 
R 

UOllTPIJTS U 

r1u1da: 
Nfl•f'I Pin Rcuu')urr.n NCnll II PTr.r•111 NCr.11~ OR Clr.nr Ctnr.k 

RA.MOOS 15 CONF B 2/ B 

RAN4ttCS 111 coilr 7 21 R 

RlMBKCS 17 CONf II 2/ B 

RANlllttCS lR CONJ' II 21 R 

RPROMCS 19 CONr 4 1/ B 

ROCRRCT.tt 20 COTY 3 l / R 2 

R2C84RDY 21 RONFl 2 1/ B 

R'tOPCl.tt 22 Rl>RFA · 1f'ii 

UIJNIJlllO RiSOURciBi** 

Naae Pin Reaour:ce ·MC1tll · PTe.r-ae 

1 . '-
3 !I II 
4 10 R 

13 

UPART IJTTT.T7.ATTONU 

11i. Pine 
R711: M1tnrnCelle 
!1111 Pt er•• 

292009-10 

2-187 



intJ APPLICATION 
NOTE 

AP-276 

Implementing a CMOS Bus 
Arbiter /Controller in the 

5C060 EPLD 

DANIEL E. SMITH 
APPLICATIONS ENGINEERING 

INTEL CORPORATION 

June 1986 

Order Number: 292012-001 
2-188 



AP-276 

INTRODUCTION 

This application note shows how to implement a 
CMOS Bus Arbiter/Controller in an Intel 5C060 
EPLD (Erasable Programmable Logic Device). The 
note includes a brief overview of a similar circuit imple­
mented with typical PLA devices, a more detailed dis­
cussion of the 5C060 implementation, and a summary. 

The bus priority resolution and arbitration scheme se­
lected for the circuit is that used by the industry-stan­
dard MULTIBUS I interface. Operation and timing for 
the MULTIBUS I interface is well understood by most 
engineers and is described in readily available Intel 
publications. Thus, a description of the MULTIBUS I 
interface is not included here. The bus arbiter/control­
ler functions shown here support both serial and paral­
lel priority resolution between bus masters. Timing is 
equivalent to MULTIBUS I specifications. Electrical 
specifications for both the PLA and EPLD approaches 
vary from MULTIBUS I standards. Neither of the two 
circuits discussed here provide the full current sink ca­
pability for all MULTIBUS I signals. Because the 
EPLD implementation is designed for CMOS systems, 
however, this requirement is not relevant for the 5C060 
implementation. 

PLA APPROACH 

The functional equivalent of a MULTIBUS I arbiter/ 
controller can be implemented in two 20-pin PLA-type 
devices as shown in Figures 1 and 2. (Figure 1 shows 
the logic for the arbiter device. Figure 2 shows the logic 
for the controller and the connections to the arbiter.) 
Figure 3 shows the arbiter list file as an example of 
PLA-type files. Two different 20-pin PLA devices are 
required to implement the arbiter and controller func­
tions, a 16R4-type device and a 16L8-type device. 

Implementation of logic devices in PLA-type devices, 
such as those shown here, has proven to be quite benefi­
cial. Development time and cost is much less than for 
custom silicon device designs. The two PLA-type devic­
es take up less board space than a discrete TTL imple­
mentation of the same functions. In addition, the two 
raw devices can also be used for different functions in 
other products, thereby reducing inventory costs. As a 
result of these factors (and others), use of PLA-type 
devices has grown substantially in recent years. 

With the increased density and flexibility of EPLD de­
vices over typical PLA-type devices, even greater space, 
inventory, and cost savings can be obtained by using 
EPLDs. The following section shows an implementa­
tion of the same arbiter/controller functions in a single 
24-pin 5C060 EPLD device. 

5C060 IMPLEMENTATION 

The equivalent functions for both the MULTIBUS I 
arbiter and controller fit inside a single 5C060 EPLD 
device. The 5C060 device is available in a 24-pin 0.3n 
DIP package. Figures 4 and 5 show logic diagrams for 
the arbiter and controller functions. When compared 
with the PLA implementation, some differences in the 
design are immediately apparent. These differences re­
sult from the characteristics of the EPLD macrocell or 
from corrections to the circuit used in Figures 1 and 2. 

The major change resulting from the EPLD macrocell 
structure concerns the EPLD output buffers. Since out­
put buffers from macrocells are non-inverting (PLA­
type devices typically contain inverting buffers), signals 
enter the buffers in the same logic orientation from 
which they are to appear at the output. The logic for 
the EPLD (shown in Figures 4 and 5) incorporates this 
change. 

Some errors in the PLA-type implementation have also 
been corrected in the EPLD design. These changes are 
as follows: 

• The M/10 input to the MRDC/ and MWTC/ gates 
is inverted. M/10 distinguishes between memory 
and 1/0 cycles. The PLA-type implementation does 
not use this signal properly; the PLA-type controller 
generates read or write commands to both memory 
and 1/0 at the same time, which can result in con­
tention between memory and 1/0 during bus trans­
fers. 

• BPRO/ is gated by BPRN/ in the EPLD design. 
When using serial priority resolution, this allows the 
highest priority arbiter to prevent all other masters 
from controlling the bus. (In the PLA design, 
BPRO/ is enabled/disabled only by a local request. 
Higher priority arbiters cannot disable all other ar­
biters. This can result in contention between bus 
masters. By gating BPRO/ with BPRN/ in the 
EPLD design, this source of bus contention is pre­
vented.) 

Figure 6 shows the list file for the arbiter/controller 
device. Figure 7 shows the report file produced by the 
iPLDS software. This file contains a pinout diagram of 
the final programmed device and provides a resource 
usage map for the device. 

Most of the input and output signals are self-explanato­
ry to those familiar with Intel processors and the 
MULTIBUS I interface. The XREQ input is the bus 
transfer request signal from the address decode logic. 
The BUSY I and CBRQ/ outputs are bi-directional, 
simulated open-collector outputs. These outputs use the 
iPLDS 5C060 (Combinational-Output 1/0-Feedback) 
primitive in the list file. The BUSY I signal serves to 
illustrate this use of EPLD outputs. 

2-189 



AP-276 

A pull-up resistor is used externally (i.e., on the back­
plane) to hold BUSY I high when no arbiter is in con­
trol of the bus. When the arbiter is granted control of 
the bus, AEN is clocked high, which enables the output 
of the BUSY I driver. Since the input to· the BUSY I 
driver is low during normal operation (RESET/ invert­
ed), the enabled driver pulls BUSY I low to signal other 
arbiters that the bus is in use. When the arbiter is fin­
ished using the bus, AEN goes low to disable the 
BUSY I driver (three-state output). The pull-up resistor 
pulls BUSY I high to signal other arbiters that the bus 
is free for use if needed. 

Note that BUSY I is also routed into the bus grant logic 
as input BSI. BSI prevents the arbiter from taking con­
trol of the bus (and driving BUSY I low) when some 
other arbiter already has control of the bus. Thus only 
one arbiter may pull BUSY I low at any one. time. 

The one difference between standard MULTIBUS I 
logic levels and the EPLD implementation described 
here relates to the BCLK/ signal. MULTIBUS I bus 
arbitration uses the negative-going edge of BCLK/ to 
synchronize events. All 5C060 flip-flops, however, 
clock on the positive-going edge of BCLK/. If all bus 
masters in the system use the same arbiter impleq:ienta­
tion, this poses no problem. Otherwise, an external in-
verter is required for the BCLK/ input. · 

COMPARISON/SUMMARY 

Both the PLA and EPLD implementations of the bus 
arbiter/controller result in a lower device count than a 
discrete logic circuit. Lower device count means less 
p.c. board space, fewer assembly steps, and fewer device 
interconnects. Both PLA and· EPLD implementations 
are quicker and Jess expensive to develop than a custom 
gate array or dedicated silicon device. 

In contrast to the PLA approach, however, the EPLD 
implementation requires only a single device, while the 
PLA approach requires two different devices. Thus the 
EPLD approach results in twice the cost savings (in­
ventory and assembly) and halfthe programming activ­
ity to produce the device. Fewer device interconnects 
also means greater reliability. In addition, programmed 
EPLD devices can be erased and reprogrammed for a 
different application if needed, a feature not available 
with PLAs. 

Overall, the greater flexibility, and the incremental de­
sign, manufacturing, and cost adVantages of EPLD de­
vices make them ideal for many applications where 
PLA devices would otherwise be used. 

2-190 



RESET 

SREQ 

RD 

WR 

AP-276 

BPRO (REQ) 

BCLK----------+--------' 
292012-1 

RESET----t 

AEN ---t--f""""'\ 

BPRO """1-t-r-t-­
WR --t-+-+--t 

BPRN --+-+--L-" 
BUSY --t-+-+--t 

CBREQ----t 

BCLK------------' 

B) Grant/ Access Logic 

A) Request Synchronizer 

AEN (GRANT} 

292012-2 

SREQ D Q OEN 
RESET =P-tJ-

AEN 

BCLK --------' 

"' ir=O--i ""' BPRO~ 
AEN~ 

Lo-t>o-- BUSY 

292012-3 

C) Bus Transfer Control 

Figure 1. PLA Approach to a Bus Arbiter 

2-191 



intJ 

Ril--+-+--1 

WR""""'"-<1---i 
SREQ-4---1 

BPRN----1 

RESET----1 

PLA 
16R4 

AP-276 

---t-AEN 

J----BREQ 

J----CBREQ 

J----BUSY 

J----BPRO ..._ __ .. 
'-------- BCLK 

BUS ARBITER 

BUS CONTROL 
LOGIC 

Figure 2. Bus Controller with Arbiter Connected 

PLA16R4 PLA DBSIGN FILI 
ARBOOl D. B. BNGR. 1/1/86 
MULTIBUS I ARBITBR 
SOMB SYSTBM COMPANY 
BCLK /WR /RD /SRBQ /RBSBT /BPRN NC NC NC GND 
/B /CBRBQ /BUSY /SYNC /BPRO /ABN /OBN /BRBQ NC YCC 

SYNC : = /RBSBT*8RBQ*llR + 
/RBSBT*SRBQ*RD 

BPRO : = /RBSBT*8YNC 

ABN : = /RBSBT* ABN*BPRO*WR + 
/RBSBT* ABN*BPRO*RD + 
/RBSBT*BPRO*BPRN*/BUSY + 
/RBSBT* ABN*BPRN*/CBRBQ 

OEN := /RBSBT*SRBQ*ABN 

IF(BPRO*/ABN) CBRBQ = BPRO*/ABN 

IF(ABN) BUSY = ABN 

BRBQ BPRO + 
ABN 

Figure 3. List Fiie for PLA Arbiter 

2-192 

292012-4 

·292012-5 



RESET D __ _. _ _,, 

XREQ D-----1........J 

AP-276 

BCLKD~--------..... --------' 

BPRND----t >C:>-----------------' 

A) Request 

RESET ----+--1 

SREQ ---+--+--r~ 

BPRN --+--t--t--t...--' 
es1------t 

ce1------1 
BCLK---------------' 

B) Grant 

292012-6 

AEN 

292012-7 

RE:: ___ ~_. >-
9

-S-.J---<:J BUSY 
RESET ~ 

x:~:---~ Ct.4DEN 

BCLK -
292012-8 

C) Command Enable D)Busy 

SREQ ____......._..------.... 

AEN ---.___-

292012-10 

E)CBRQ 
Figure 4. Logic Diagram of Bus Arbiter Functions 

2-193 

292012-9 



intef AP-276 

292012-11 

Figure 5. Logic Diagram of Bus Controller Functions 

2-194 



DANIBL B. SMITH 
INTBL CORPORATION 
MARCH 27, 1986 
VBRSION l. l 
RBY. A 
5C060 
CMOS BUS ARBITBR/CONTROLLBR 

PART: 5C060 

AP-276 

INPUTS: BCLK, XRBQ, RBSBT, BPRN, MIO, RD, WR, INTAIN 
OUTPUTS: BPRO, ABN, BRBQ, CBRQ, BUSY, INTA, MRDC, MWTC, IORC, IOWC 

NBTWORK: 

BCLB 
INTAIN 
XRBQ 
RBSBT 
BPRN 
MIO 
RD 
WR 
BPRO 
ABN,ABN 
BBBQ 
CBRQ,CBI 
BUSY,BSI 
INTA 
MRDC 
MWTC 
IORC 
IOWC 
SRBQ 
SYNC 
CMDBN 

INP (BCLB) 
INP (INTAIN) 
INP (XREQ) 
INP (RBSBT) 

= INP (BPRN) 
INP (MIO) 
INP (RD) 
INP (WR) 
CONF (BPROc,YCC) 
RORF (AENd,BCLK,GND,GND,YCC) 
CONF (BREQc,YCC) 
COIF (CBRQcl,CBRQc2) 
COIF (BUSYc,ABN) 
CONF (INTAIN,AEN) 
CONF (MRDCc,ABN) 
CONF (MWTCc,ABN) 
CONF (IORCc,ABN) 
CONF (IOWCc,ABN) 
NORF (SREQd,BCLK,GND,GND) 
NORF (SYNCd,BCLK,GND,GND) 
NORF (CMDENd,BCLK,GND,GND) 

•BUS CLOCK INPUT• 
•INT. ACK. INPUT• 
.SYSTEM REQUEST INPUT• , 
•RBSBT INPUU 
•aus PRIORITY INPUT• 
•MIMORY/IO INPUT• 
•READ INPUU 
•WRITE INPUU 
•aus PRIORITY OUTPUT• 
•ADDRESS BNABLE (GRANT)• 
nus RBQUBSU 
•CBRQ/ -- SIMULATED o.c.• 
•BUSY/ -- SIMULATED o.c.• 
•INT. ACK. OUTPUT• 
•MEMORY READ COMMAND• 
•MBMORY WRITE COMMAND• 
•I/O READ COMMAND• 
•I/0 WRITE COMMAND• 
•VALID BUS REQUEST• 
•SYNCHRONIZED RBQUBST• 
•COMMAND KNABLE• 

BQUATIONS: 

BPROc 
AINd 

BRIQc 
BUS Ye 
CBRQcl 
CBRQc2 
MRDCc 
MWTCc 
IORCc 
IOWCc 
SRBQd 
SYNCd 
CMDBNd 

BNDt 

= (SREQ * /BPRN); 
• RISBT * SRBQ * /BPRN * BSI + 

RESIT * SREQ * AEN + 
RBSBT * /BPRN * ABN * CBI; 
/(SREQ + ABN); 

= /RBSBT; 
= /(SRBQ * /ABN); 
= SRIQ * /AIN; = /MIO + RD + CMDEN; 
= /MIO + WR + CMDBN; 

MIO + RD + CMDEN; 
MIO + WR + CMDIN; 

• RBSBT * SYNC; 
= RISBT * IRIQ; 

/(RESET * XRBQ * AEN); 

Figure 6. IPLDS Network List Fiie 

2-195 

292012-13 

292012-12 



Lofic Opti•iainf Co•piler Utilisation Report 

••••• Deaifn i•ple•ented aucceeafully 

DANIBL I. SMITH 
INTIL CORPORATION 
MARCH 27, 1986 
YIRSION 1.1 
RIV. A 
5C060 
CMOS BUS ARBITIR/CONTROLLIR 

5C060 

ICLI -: 1 24:- Vee 
MIO -: 2 23:- IRIQ 

RISIRVID -: 3 22:- INTA 
RBSBRVID -: 4 21 :- IOWC 
RISIRVID -: 5 20:- IORC 

AIR -: 6 19:- OTC 
IPRO -: 7 18:- MRDC 

INTAIR -: 8 17:- BUSY 
WR -: 9 16:- CIRQ 
RD -:10 151- IRIQ 

IPRN -: 11 14:- RISH 
GND -: 12 13:- ORD· 

'*INPUTS'* 

N ... Pin Reeource 

BCLI 1 INP 

MIO 2 INP 

IRTAIN 8 IMP 

WR 9 IMP 

RD 10 INP 

BPRN 11 IMP 

RISIT 14 IMP 

IRIQ 23 INP 

MCeU • PTerila 

14 0/ 8 

15 0/ 8 

16 0/ 8 

, ..... , 
MCelle '• OI Clear Clock 

2 
3 
4 
5 

2 
4 

3 
5 

12 
13 

6 
9 

10 
11 
12 

9 
10 

CLltl 

Figure 7. IPLDS Report Fiie 

2-196 

292012-14 



inter AP-276 

OOUTPUTSO 

reede: .... PiD leaource llCell I PTer•• llCelb OB Cle•r Clock 

ABI' 6 aoar 12 3/ 8 7 -7 
8 1 
9 2 

12 3 
4 
II 
6 

IPRO 7 COl'r 13 1/ 8 

IRIQ 16 COl'r 8 1/ 8 

CIRQ 16 COIF 7 1/ 8 12 

IUIY 17 COIF 6 1/ 8 12 

llRDC 18 COl'r 6 1/ 8 

llWTC 19 co•r 4 1/ 8 

IORC 20 CONJ 3 1/ 8 

IOWC 21 CONJ 2 1/ 8 

IHA 22 COl'r 1 1/ 8 

**IURIID RIGIITBR8$$ 

reede: .... PiD le•ource llCell • PT er•• llCelle OB Clear Clock 

3 .-oar 9 1/ 8 2 
3 
4 
6 

4 •oar 10 1/ 8 11 

II •oar 11 1/ 8 7 7 
8 

12 
13 

••Ul'UIBD RISOURCll$$ .... PiD Reaou.rce llCell PTer•a 

13 

OPART UTILIZATIOl'O 

911111 Pin• 
100111 llacroCell• 
11111 Pter•a 

292012-15 

Figure 7. IPLDS Report Fiie (Continued) 

2-197 



intJ APPLICATION 
NOTE 

. ' ~· 

AP-304 

March 1987 

Simulation of EPLD Timing 

PEDRO VARGAS 
PROGRAMMABLE LOGIC APPLICATIONS 

INTEL CORPORATION 

2-198 
Order Number: 292027-001 



AP·304 

INTRODUCTION 

Though there are many important activities that are 
considered iii a design, timing analysis usually heads 
the list when it comes to evaluating functionality and 
performance. Timing issues are prevalent during de­
si~, and at reviews when worst case analysis is per­
formed. By being familiar with timing specifics of 
EPLD architecture, the designer can assess timing is­
sues throughout the design phase. 

OBJECTIVE 

This application note details the internal timing of Intel 
EPLDs. It breaks down the internal architecture into 
functional timing elements to extract timing data, and 
then presents a method of timing simulation. The rela­
tionship of these elements to data sheet parameters is 
also shown by several examples. By applying these con-

2 + 4. 
7 • ,, 13 15 17 19 21 ' 23 

0 8 I 10 12 14 11 11 "2 22 
OE 

24 

cepts, engineers will be able to simulate their designs 
and have a better understanding of EPLD timing. 

EPLD STRUCTURE 

Intel EPLDs consist of a programmable logic array and 
a configurable 1/0 block as shown in Figure 1. The 
array is composed of two-level logic, incorpprating a 
programmable AND array and a fixed OR array. The 
AND matrix is a crosshatch of the true and comple­
ments of all the pin inputs and the AND array inputs. 
At each intersection there exists an EPROM cell that 
determines if that input feeds tbe AND gate. By selec­
tively programming these EPROM cells, complex logic 
functions are implemented in the familiar sum of prod­
ucts form. The output of the OR gate feeds an 1/0 
architecture block that has a variety of programmable 
options. Combined, the logic array and 1/0 block is 
called a macrocell. Each macrocell output exits via an 
1/0 pin. 

CLOCK 

25 27 21 31 33 .. 
¥ ¥ 30 32 34 Lr-'\. 

p 
~ ClOCK 

@> AACHITECIURE t 
CONTROL & 

~ 
"· "· ?-. " r-. ?-. ?-. " "· ?\ "" r r. "· ?-. " " ~ Q ~ 2 3 ~~ • l . 

11 19 11 17 11 15 14 13 

NOTE C =1/0 PtN IN WHICH LOGIC ARRAY INPUT IS F'ROM FEEDBACK PATH 

PLA BLOCK 

Figure 1. EPLD Macrocell 

2-199 

FEEDBACK 

1/0 ARCHITECTURE 
BLOCK 

292027-1 



AP·304 

EPLDs have two specifications that influence delays 
within the component, maximum propagation delay 
(tPD), and minimum clock period (tPl). Propagation 
delay is the time that it takes a signal to appear at the 
output relative to the input. tPD is defined for combi­
natorial outputs. Minimum clock period is the smallest 
allowable clock cycle that determines maximum operat­
ing frequency. Maximum operating frequency (fMAX) 
is defined for registered functions: 

Unlike gate arrays that deal with individual gate delays, 
EPLDs have internal delays that are grouped different­
ly, With a gate array, a logic function may have differ­
ent speed paths for each product term, depending on 
the number of tWo input NANO gates. in each path. In 
an EPLD, each product term is the equivalent of a mul­
ti-input AND gate. Figure 2 shows a comparison of 
gate delays and array delays. 

The top figure shows that SIGNAL A. has two cumula­
tive speed paths in the gate array circuit. In the EPLD 
inplementation, each product term has the same delay 
and there is only one array delay. Intel EPLDs have 
inputs that range from 18 (SC031) to 64 (SC180). Be­
cause the parts are characterized at worst case, the ar­
ray delay is the same regardless of inputs used. In the 
case of product terms, .the EPLD family supports from 
74 to 480. Here again, the number of product· terms 
does not affect the array delay. 

The I/O block varies in complexity within the EPLD 
family, but a typical arrangement is shown in Figure 3. 
I/O programmability is accomplished ·by configuring 
for register types and choosing one of several outputs or 
feedback paths. Timing paths and delays depend on the · 
way the output and feedback muxes are configured. 

. Gate Array Delays 

292027-2 

l!PLD Array Delays 

SIGNAL ABCDEf 

292027-3 

Figure 2. Logic Delays 

2-200 



AP-304 

MORE ON ARRAY DELA VS 

The number of inputs and product terms used in an'EPLD array doesn't change the array delay because the 
EPROM cells are always connected, whether they are programmed or not. AB a result, when a device is tested 
the array delay is at worst case load already. When the same design is implemented in a different EPLD, the 
array delay will be different, due to the different IC geometries. For example, a simple three to eight decoder 
implemented in a SC032 will have an array delay of 17 ns. The same decoder when implemented in a SC060 will 
have an array delay of 30 ns. 

u 
292027-4 

IAo = 17 ns 

Designing an EPLD circuit involves working with the 
Intel iPLS[3] (Intel Programmable Logic Software) log­
ic primitives. Logic primitives are functional building 
blocks that the EPLD software requires to implement a 
circuit. The primitives consist of input, logic, and out­
put functions such as INP, AND, OR, CONF, RORF 
etc. Because of the modular nature of the design primi­
tives, the resulting logic implementation is very modu" 
larized and lends itself well to an analysis of timing 
paths. The following sections detail the delays invoJved 
with each primitive. 

TIMING ELEMENTS 

Each EPLD macrocell can be functionally modeled 
with the seven blocks shown in Figure 4. 

The macrocell timing model consists of input buffer 
delay for the inputs and the clock, array delay, register 
delay and output delay. The model shows the feed for- -
ward path as well as the combinatorial and registered 
feedback paths. the feedback paths may apply depend­
ing on the application, and whe.ther the design is com­
binatorial or registered. The model also applies 
to devices that have global and local buses. 

Combinatorial designs with no feedback contain three 
functional blocks for input, array, and output delays. 
Four blocks are required for a design with feedback. 
Register designs may be more complex but contain at 
least five blocks. These are: input, array, output, regis­
ter, and clock delays. The delay for each block is de­
fined as: 

1. Input Buffer Delay (tJN)-The delay associated with 
the input pin and buffers. One delay value applies to 
both true and complementary buffers that drive the 
AND array. 

2. Array Delay (tAD)-The time that it takes a signal· 
to propagate through the AND array and appear at 
the output of the OR gate. This delay is character­
ized at worst case and is independent of number of 
inputs or product terms. 

292027-5 
IAo = 30 ns 

3. Output Buffer Delay (ton)-The delay associated 
with the output pin and buffer of each macrocell. 
Combinatorial outputs have a delay measured from 
the output of the OR gate to the pin. Registered out­
puts have the delay measured from the register out­
put to the pin. The delay value is the same for either 
output configuration. 

4. Combinatorial Feedback Delay (tcp)-The delay 
from the output of the OR gate to the input of the 
AND array. The delay is measured when both the 
true and complement of the signal appear at the in­
put of the array. 

S. Register Delay (tRD)-The delay through any flip­
flop. The delay is measured from the triggering clock 
edge to the time when data is valid at the output of 
the register. 

6. Register Feedback Delay (tRF)-The delay from the 
data valid at the flip-flop output to the time it ap­
pears in true and complement form at the array in­
put. 

7. Input Clock Delay (t1c)-The time that the clock is 
delayed in reaching the input of the internal register. 

Use of these delay paths depends on the EPLD output 
configuration. Figure S introduces the concept of tim­
ing elements that is used throughout this application 
note. Use of these elements depends on the application. 
If a design is combinatorial, then the only paths to con­
sider are the input buffer, the array, the output buffer, 
and the combinatorial feedback path. Conversely, if a 
design is registered, the paths to consider are all of the 
previously listed delays, with the addition of the regis­
ter delay, the clock delay, and the registered feedback 
path. 

The_manner in which the delay values are used is called 
simulation. Simulating a EPLD circuit means calculat­
ing the output timing of a device from internal timing 
with the aid of timing data and simulation model (like 
Figure 5). Before we get into simulation let's examine 
how these internal timing elements relate to the data 
sheet specifications of each device. 

2-201 



intJ 

NOTE: 

OE 

PRODUCT 
TERMS 

rEEDBACK 

CK 

I 

AP-304 

OUTPUT 
SELECT 

FEEDBACK 
SELECT 

·--------------------------· 

Controls shaded in gray are available on the 5C031 only. 

l> 
CLOCK 
DELAY 
(tic) 

=l [$: 
INPUT 
DELAY 
(t1N) 

Figure 3. 1/0 Architecture Control 

COMBINATORIAL 
FEEDBACK 

DELAY(tcr) 

REGISTERED 
FEEDBACK 

DELAY(tRr) 

INTERNAL CLOCK 

REGISTER 
DELAY 
(tRo) 

Figure 4. EPLD Delay Blocks 

2-202 

292027-6 

OUTPUT 
DELAY 
(tool 

292027-7 



AP.304 

Comblnatori81 
292027-8 

292027-9 . 
Registered 

Figure 5. EPLD Delay Paths 

DATA SHEET SPECIFICATIONS 

Timing specifications for EPLDs are found in the data 
sheets under "A.C. Characteristics". Data sheet values 
are derived by testing a device under worst case condi­
tions. Test conditions are both static and dynamic 
based on several variables like input levels, output load­
ing, frequency, and temperature. Characterizing a de­
vice involves detailed testing of specific device functions 
and correlating test data to performance analysis done 
during design. The results are placed in the data sheets, 

1. Propagation Delay (tpn) 

which provide the designer with the worst case data 
that they may need for their application. 

The timing data found in EPLD data sheets is derived 
from the timing elements previously described. Since an 
EPLD design can be broken down into either a combi­
natorial or registered macrocell, the data sheets contain 
specific information for each mode. Figures 6 through 
10 correlate the timing elements to data sheet values. 
Each figure shows the delay path as it applies to the 
Intel design primitives and the simulation model. 

Defined as the time required for an external input to travel through any combinatorial logic and appear at the 
external EPLD pin. This specification applies tO combinatorial logic with non-registered output. Figure 6 shows 
that this specification is the sum of t1N• tAD• and ton· 

INP 
COMBINATORIAL 

LOGIC 

I DESIGN PRIMITIVES I 
• • tAo • • 

ARRAY 

DATA SHEET MODEL 

!po t1N + IAo + too 

~D-i 

INPUT=::::>.< INPUT OR 1/0 DATA VALID 

. j:: tpo :j 
OUTPUT x"_co_M-Bl_NA_TO_R_IA_L_O_UTP_U_T_V_A_LID-

292027-11 

SIMULATION MODEL I 
i---------tp0--------io 

292027-10 

Figure 6. Propagation Delay (tpo) 

2-203 



A~304 

2. Setup Time (tsu) 

The set-up time is the time required for the input to settle at the input of a register before the triggering clock edge. 
Set-up time is the sum of tIN, tAD• minus the m,ternal clock delay. This relation is shown in Figure 7. 

DATA SHEET MODEL 

lsu l1N + IAD ~ ~c. 
-\· . 

INPUT 

tic t-
~~_r I ~ .. --___ r 

- . l-- liN+IAD =:1 
~~~ X"--DELA--YED-DA-JA--

292027-13
ARRAY Setup Time (lsul

SIMULATION MODEL
292027-12

·Figure 7. Setup Time (tsu)

3. Clock to Output Delay (tco1)

Defined as the time required for a signal to pass through a register and appear at the EPLD external ·pin relative to
the exteinal triggering edge of the clock. This delay is the sum of tic tJm, and· ton as shown in Figure 8.

INP INPUT

DESIGN PRIMmVES
114-----tic

INPUT

SIMULATION MODEL

DATA SHEET t<IODEL

tco1 tic + IRD + too

CLOCK J.
-I tic r-

~~ _J .. --:1 __ ...
. . . 1.- tim•too j

OUTPUT x" ___ DELA_YED_DA-TA __ _

__ r

292027-15.

292027-14

Figure 8. Clock to Output Delay (tcc>1)

2-204

intef AP-304

4. Minimum Internal Clock Period (tp1)

Defined as the maximum frequency at which an EPLD can operate when register inputs are dependent on internal
logic only, and not affected by external inputs. Another way to think of this time is, as the fastest rate that a signal
can be routed from register to register through the array via an internal feedback path. This minimum period is
the sum of tRD, tRF• and tAo as shown in Figure 9.

DESIGN PRIMITIVES

>------tRr----1

SIMULATION MODEL

DATA SHEET MODEL

IP1 IRo + IRF + IAo

292027-16

-----tp1-----i

CLOCK_j
(INTERNAL)

I ::x DATA SOUP AND VALID REG 1 INPUT X,. ___ _
~'RD:j

______ }C,. ___ R_EG_1_0U_W_U_T----x::

~'ilr:j
}C'"-DA-TA_A_T_A-RR_A_Y -IN-PUT--

------~ tAD:j __ _

------------x REG2 INPUT
292027-17

Figure 9. Minimum Internal Clock Period (tp1)

5. Registered Feedback to Combinatorial Output (tco2)

This is the time required for an input to propagate through a register, feedback to combinatorial logic and appear
at the external pin, relative to the external clock. This time is the sum oft1c. tRD• tRF• tAD• and too as shown in
Figure 10.

SIMULATION MODEL

DATA SHEET MODEL

tco2 lie + IRo + IRF + IAo + too

CLOCK~~
I

292027-18

::x DATA SETUP AND VALID REG 1 INPUT

~tic+ tRo + tRr + tAo +too :j

------------}('"D-AT_A_O_U_T_V-AL-ID-

292027-19

Figure 10. Registered Feedback to Comblnatorlal Output (tco2)

2-205

intJ AP-304

When simulating EPLD designs with data from the
simulation tables, it is possible that there. may be a
small discrepancy between simulation and data sheet
values. Because our simulations deal with ideal wave­
forms, rise and fall times are not taken into considera­
tion. Also, characterization and final test of these devic­
es by QA is usually guardbanded[2] by several nano­
seconds. The combination of these two items might re­
sult in a simulated parameter that is slightly off from
the data sheet. For this reason, the simulated results
should be considered "typical worst case" and not "ab­
solute".

SIMULATION CONCEPTS AND
EXAMPLES

Simulation of EPLD logic designs provides a quick way
to evaluate a particular path within the device. While
this might not seem important when the flexibility and
the speed of EPLD development is considered, it is ad­
vantageous for making design judgements that best uti­
lize device resources. Simulation also proves useful
when working with a design that consists of several
EPLDs, or other types of logic. In a case like this, it
may be desirable to simulate a complex path that prop­
agates through several devices. To simulate a design the
engineer needs to either implement it with the iPLS
design primitives or understand how the circuit will be

i70 ... ----IWR2 iVR---_,,

A15-"""'-­
A14
A13
A12--1--

IWR1

292027-20
IWR1 = i70 'WR 'A15'A14'A13'A12
IWR2 = i70 ' W1'i

Figure 11. Decode Circuit

implemented by the software. This provides the modu­
larized layout that is needed to choose a model.

The decoder circuit shown in Figure 11 serves as a
good starting point for simulation. Decoding two con­
trol lines (l/O*, WR*) and four addresses, the circuit
might be used to select a peripheral controller residing
in that memory area (FOOOH) with output IWRl. It's
also common to use intermediate decodes in other parts
of the system for other functions, IWR2 accomplishes
this. The gate drawing of Figure 11 shows us that the
design is combinatorial and can be modeled with the
elements introduced in Figure 5. The design, converted
to iPLS primitives is shown in Figure 12. The imple­
mentation consists of six input primitives (INP), three
logic primitives (NOR2, AND4, AND2), and two out­
put primitives (CONF). In this case, tpo is simulated
for a 5C031-50 by plugging in the numbers for the
model which requires t1N• tAD, and too. The result of
51 ns is very close to the data sheet value of 50.

A15
A14 r....~__.-.....

A13 C:>---1
A12 C:>--t

~-------~292027-21
tpo = t1N + IAo + too
Simulated for a 5C031-50:
tpo = 10 + 31 + 10
lpo = 51 ns

Figure 12. IPLS Implementation
of Decode Circuit

2-206

intef AP·304

The second example is the wait state circuit shown in
Figure 13. The circuit shows one way that a synchro­
nous wait state can be generated in an EPLD. This
~rcuit would be used with a microprocessor that sam­
ples a WAIT signal on the falling edge of the Tl clock.
If WAIT is valid, the micro inserts an extra cycle into
the memory operation. After the wait state, the cycle
ends normally. The circuit is first converted to the Intel
design primitives for further observation. The iPLS de-
11ign is shown in Figure 14. One difference from the
previous circuit is the addition of a register primitive, in
this case a NORF (No Output Registered Feedback).
In this application the critical path tco2 is evaluated to
insure that the wait signal is sampled at the appropriate
time. The modularized layout of the primitives shows
that this circuit can be simulated with the registered

Walt.Stata Generator

292027-22

model of Figure 5. The result is simulated for a
5C032-35 by adding tic. tRD, tRF• tAD, and too·

Our last example is the asynchronous R-S latch, shown
in Figure 15. Applications that use EPLDs without
configurable output registers may use this. crrcuit as a
work around solution. The output primitive of Figure
16 is a COCF (Combinatorial Output Combinatorial
Feedback) being driven by two NOR2 gates. Because
combinatorial feedback to the same macrocell is being
used, care must be taken that the input pulses are long
enough to avoid output glitches. In this example, the
input pulses should be longer than tAD + tcF for prop­
er latching. For this example, tpo is the critical param­
eter. Simulation results in tpo equal the sum of tJN,
tAO• and too·

Timing Slgnate

CU<

MEM•RD

WAIT r-1 ·s
292027-23

Figure 13. Walt State Circuit

14~-----~.tic-----­
~t1N------tAD----

~KD------+----,

MEM o-------r-, _____ ...
RDC)---------1:.::.::;~

I I

i------tAD -----•I"·,__· -~D-_::r
lco2 = tic + IRo + IRF + IAO + too
Simulated for a 5C032·35:
lco2 = 5 + 7 + 3 + 17 + 8
lco2 = 40 ns

Figure 14. IPLS Implementation of Walt Circuit

2-207

292027-24

AP-304

:®'
R s Q

0 0 Latch
0 1 I
1 0 0

1 • •
292027-25 "Indeterminate State

Figure 15. R-S Flip-Flop

SIMULATION CHARTS

The charts of Figures 17 through 22 make up the simu­
lation database for EPLDs. Each chart contains the
combinatorial and registered models as well as the de­
lay values for each timing element. Feedback paths are
shown open because their use depends on the specific
application. To simulate a EPLD design the following
steps are required:

Combinatorial

292027-27

Element Delay{ns)
Formulas:

t1N 10
tAD 31
tRo 8
too 10
tic 8

292027-26
tpo = t1N + tAo + loo

Figure 16. IPLS Implementation of R-S Flip-Flop

1. Convert the design to iPLS primitives.

2. Pick the appropriate model from the device simula­
tion chart.

3. Connect any necessary feedback paths.

4. Calculate the simulated timing with the element val­
ues.

Registered

292027-28

AC Model Sheet
Parameter (ns) {ns)

tpo 51 50
tsu 33 30
tco1 26 28
tco2 61 65

tcF
tRF

4
4

tco2 = tic + tRo + tRF
+ tAo +too

tp1 43 42
Typical Model Delays for 5C031-50

Figure 17. 5C031 Timing Elements

2-208

intef

Combinatorial

Element Delay (ns)

t1N 8
tAo 17
tRo 7
too 8
tic 5
tcF 3
tRF 3

Combinatorial

Element Delay (ns)

t1N 10
tAo 30
tRo 7
too 10
tic 8
tcF 5
tRF 5

AP·304

Registered

292027-29

292027-30

Formula•·
AC Model Sheet

Parameter (ns) (ns)

tpo 33 35
tsu 20 25
tco1 20 20
tco2 40 42
tp1 27 30 tco2 = tic + tRo + tRF

+ tAo +too
Typical Model Delays for 5C032-35

Figure 18. SC032 Timing Elements

Registered

tic 'I
~
lt1NltAo~ tRo ~001

ARRAY

292027-31

292027-32

Formulas:
AC Model Sheet

Parameter (ns) (ns)

tpo 50 55
tsu 32 35
tco1 25 25
tco2 62 60
tp1 42 55 tco2 = tic + tRo + tRF

+ tAo +too
Typical Model Delays for 5C060-55

Figure 19. SC060 Timing Elements

2-209

Element

t1N
tAO
tRO
too
tic
tcF
tRF

Element

t1N
tAo
tRo
too
tic
tcF
tRF

Comblnatorlal

Delay(ns)

10
37
7
10
7
5
5

comblnatorlal

AP-304

Formulas:

tp0 = t1N + tAo + too

tsu = t1N + tAo - tic

tco1 = tic + lflo + too

tco2 = tic + tRo + tRF
+ tAo +too

Figure 2o. 5C090 Timing Elements

'---;,JJ
Delay(ns)

12
44
7
12
16
5
5

292027-35

Formulas:

tpo = t1N + tAo + too

tsu = t1N + tAo - tic

tco1 = t1c + tRo + too

tco2 = tic + tRo + tRF
+ tAo +too

Figure 21. 5C121 Timing Elements
2-210

Registered

AC Model Sheet
Parameter (ns) (ns)

tpo 57 50
tsu 40 45
tco1 24 20
tco2 61 55
tp1 49 50

Typical Model Delays for 5C090-45

Registered

292027-36

AC Model Sheet
Parameter (ns) (ns)

tpo 68 65
tsu 40 47
tco1 35 33
tco2 80 75,
tp1 56 1 55 J

Typical Model Delays for 5C12Hl5

Combllllltorlal

Element Delay(ns)

t1N 12
t10 20
tAo 44
too 19
tic 30
tics 3
tcF 5
tRF 10
tsu 14
tH 13

AP-304

292027-37

Formulas:

tpo = t1N + tAo + too

tsu = t1N + tAo - tics

tco1 = tics + tH + too

, tco2 = tics + tH + tAo + too

tp1 = tH + tRF, + tAO

Figure 22. 5C180 Timing Elements

Registered

292027-38

AC Model Sheet
Parameter (ns) (ns)

tpo 75 75
tsu 53 56
tco1 35 30
tco2 79 82
tp1 67 65

Typical Model Delays for 5C180-75

SUMMARY REFERENCES
1. Intel User Defined Logic Handbook. EPLD Volume. Timing simulation provides a way to verify a delay path

without resorting to external measurements or bread­
boarding a design. Simulation of EPLDs can be done
by implementing the design with the iPLS design primi­
tives, modeling the device, and using the simulation
charts. By applying these concepts, the engineer can
simulate EPLD designs incorporated in one or more
EPLDs.

2. Intel Components Quality/Reliability Handbook.

3. Intel Programmable Logic Software User Guide.

2-211

intef APPLICATION
NOTE

AP-307

January 1987

EPLDs, PLAs and TTL
Comparing the "Hidden Costs"

in Production

PEDRO VARGAS
PROGRAMMABLE LOGIC APPLICATIONS

INTEL CORPORATION

2-212
Order Number: 292030-001

AP·307

INTRODUCTION

When· comparing logi~ alternatives, too often the out­
come is dominated by the· piece price of the compo­
nents. A side by side comparison based on component
costs bnly, may give the appearance that EPLDs are
cost prohibitive. However, when the overall cost of
manufacturing a system is Con,sidered, the higher inte­
gration of EPLDs proves to be a cost-effective solution.

OBJECTIVE

This application note examines the total costs associat­
ed with designing, prototyping, and manufacturing a
system .. Once these costs have been examined, a com­
parison is made between EPLDs and other logic alter­
natives. By being aware of these additional costs, the
engineer can make a more.llCCurate cost comparison as
a design is begun.

COSTS DEFINED

Costs can be difficult to pinpoint, let alone measure.
However, with a bit of examination, we can break down
costs into the following categories;

• Design costs - the cost of conceiving a prOduct

• Prototype costs - first implementation of the prod­
uct idea

• Production costs - volume manufacturing of the
product

Usually, the brunt of the cost for the first two catego­
ries is dismissed as NRE (non recurring expense). The
.effect of these costs on the overall project is examined
later, let's look at the third category. Production costs,
can be further broken down into;

• Component costs·~ the cost of the parts per board

• Inspection costs - labor costs· for receiving the
parts

• Inventory costs - the cost for storing, handling
and dispensing the parts

• PCB fabrication - the cost for labor and equipment
used in building a board

• Integration costs - the cost of harnesses, enclosures,
nuts and bolts etc.

It's important to understand how the cost of a product
is affected not only by the 'cost of the ICs used, but also
by· the other costs listed above. Figure 1 is a graph
which shows this relationship.

COST OF'
CIRCUITS

MSl-------------VLSI
CIRCUIT COMPLEXITY

292030-1

Figure 1. Optimizing Circuit Complexity

2-213

intef

RESET

SREO

BPRN

iiSi

AEN

Cei
BCLK

RESET D---+-1""\
XREO D----L:J

U3

LS21

U3

LS21

BCLKD--------.... ------...J
iiPRMC>---c:~------------...J

AP-3ct7

AEN

LS74

292030-2

iiiEO

iiPRO

292030-3

Arbiter

Controller

-~ XREO ~ 0 CMii£li
AEN LS10 ·

BCLK LS74

292030-4

REW BUSY

AEN AfN

iiSi
292030-5

CiiiO

SREO

mi
LSOB Cei

292030-6

292030-7

Figure 2. MULTIBUS Arbiter/Controller-TTL Implementation

2-214

intef AP•307

The graph shows that as the density of the components
used in a system progresses from SSI to VLSI, the cost
for these devices increases. This isn't surprising, denser
chips cost more to make. At the same time, by using
denser deVices, system· hardware cost decreases. This is
shown by the center line, which encompasses all the
costs listed above. The bathtub curve above these shows
the effect that denser ICs has on a system. That is, by
using higher integration ICs, more functions are re­
moved from the board. This in turn reduces the cost of
the system in labor and parts costs.

A cost-effective product is one that uses the most effi­
cient logic for the application. It's important to note
that use of the least expensive component may not
translate into system cost savings.

PAL• is a registered trademark of Monolithic Memories Inc.

ARBITER CIRCUIT

Let's explore costs in more detail with an example. The
example used here is the circuit of Figure 2, a
MULTIBUS® I arbiter/controller. The circuit is used
by bus masters arbitrating for control of the bus. Our
implementation comparison contrasts TTL, PAL•, and
EPLD solutions.

lmplementatlon Requirements

The TTL implementation is typical of many board level
designs in the sense that it relies on inexpensive
LSTTL. Figure 2 shows that the implementation is
composed of standard logic gates and D-latches. The
component list in Table l shows the circuit breakdown
in more detail. (20)

BUS CONTROL
LOGIC

iiD--11-1--t

WR--11-<1--t

SREQ ~.,_--t

BPRN----1

RESET----

PLA
16R4

1----t-CMDEN

1----AEN

1----BREQ

1----CBREQ
BUS ARBITER

----BUSY

----BPRO ___ ..
--------BCLK

Figure 3. MULTIBUS Arbiter/Controller-PAL Implementation

2-215

292030-8

intef AP·307

Table 1. Arbiter/Controller TTL Component List

IC Type DIP lcc(mA) Area (in2) Cost$

U1 LS08 14 PIN 8.8 0.21 0.18
U2 LS74 14 PIN 8 0.21 0.24
U3 LS21 14 PIN 4.4 0.21 0.22
U4 LS10 14 PIN 3.3 0.21 0.16
us LS11 14 PIN 6.6 0.21 0.22
U6 LS02 14 PIN 5.4 0.21 0.17
U7 LS27 14 PIN 6.8 0.21 0.23
u0 LS27 14 PIN 6.8 0.21 0.23
U9 LS366 16 PIN 21 0.24 0.39
U10 LS126 14 PIN 22 0.21 0.39
un LS04 14 PIN 6.6 0.21 0.16

The PAL version of the circuit is shown in Figure 3.
Two P ALs are used due to the requirement of regis­
tered outputs on several of the signals.120]

The complete circuit can also be designed in one 5C060
EPLD (Fignre 4).U8] Looking at the three figures
quickly points out the amount of circuit board space
required by each version. The three implementations
are compared side by side in Table 2.

5C060

BCLK 1 24 Vee
MIO 2 23 XREQ

RESERVED 3 22 INTA
RESERVED 4 21 IOWC
RESERVED 5 20 IORC

AEN 6 19 MWTC
BPRO 7 18 MRDC

INTAIN 8 17 BUSY
WR 9 16 CBRQ
RD 10 15 BREQ

BPRN 11 14 RESET
GND 12 13 GND

292030-9

Figure 4. MULTIBUS Arbiter/Controller-EPLD
Implementation

Table 2. Implementation i:tesults
for Arbiter/Controller

Item TTL PLA EPLD

IC Count 11 2 1
Pin Count 156 40 24
lnterconn 36 7 0
Area 2.34 0.6 0.36
Ice (mA) 100 240 15
Pwr(mW) 500 1,200 75

•IC Count

•Pin Count

- The total chip count

- The total number of IC pins

• Interconnections - The traces required to con-
nect logic gates together

• Area (inches-square)- The sum of the area of all ICs

• Ice (mA) - The current consumed while
active

- Total power consumption at
5VDC.

Production Costs

Earlier, we noted that production costs consist of many
variables. Usually, these variables are lumped together
under the term "hidden cost". Although hidden costs
are kept in mind by engineers, lack of tangible figures
usually precludes their use in detailed cost breakdowns.
For this reason, several manufacturers and consulting
firms have come up with typical costs per IC and per
pin.

For example, SOURCE III (San Jose, CA) reports in
one of their studies that the manufacturing cost of a
system translates to about 0.35 cents per IC pin. ICE
Corporation (Scottsdale, AZ) and EON magazine con­
cur that the inserted cost of an IC is about $2 dollars.
DAT AQUEST also published a cost of about $2 to $4
per IC. While the data seems to be consistent, most
engineers want to see for themselves how figures like
these might be arrived at. The next sections provide
insight into this process.

COMPONENTS

The cost of the component is the easiest value to obtain.
A quick call to a distributer or (at worst) a scan
through the back of BYTE magazine (for TTL) gives us
this cost. Table 3 shows the breakdown of component
costs for each version of our MULTIBUS I circuit.

Table 3. Average Component Costs

Package TTL PLA EPLD

DIP14 $0.25
DIP16 $0.35
DIP20 $0.55 $1.50
DIP24 $2.90 $6.00

The price of TTL has changed very little for the last
few yearsl24] while EPLDs are dropping in price tre­
mendously. PALs have also leveled off in pricing.
Why? Figure 5 shows the life cycle curve of IC prod­
ucts used by the semiconductor industry. From the
curve we see that TTL is in the stable range and prices
are not likely to drop much more. P ALs are also ma­
turing and approaching a stable pricing range. EPLDs
however, are in a growth area and historically this is

2-216

intef AP-307

-20%

INTRODUCTION GROWTH MATURITY SATURATION DECLINE (OBSOLETE)

{ EPLD
1987 PAL

LSTIL STIL TIL

1988{
EPLD

PAL
LSTIL STIL TIL

1989[
EPLD

I lsnL TIL
PAL

LSTIL
292030-10

Figure 5. Typical Price Changes Through Semiconductor Product Life Cycle

where the heaviest pricing pressure is. This means that
while EPLDs might be expensive (per part) right now,
it's not out of the question to expect a 30% per year
price reduction as the process is honed and perfected.
In other words, it's also important to consider the price
of a component at the projected production date, not
just at design time.

Life cycle position is also impdrtant in understanding
the gate cost that is associated with programmable logic
devices like P ALs and EPLDs. This relationship is
shown in Figure 6. The curves translate our observation
that newer devices have steeper price cuts during their
introduction phase. The PAL curve shows that the cost
per gate is leveling off due to the maturity of the device.
In contrast, the EPLD is in the growth region, and
based on the traditional price reductions, shows a cost
per gate that intersects and bypasses the PAL curve.

INCOMING INSPECTION

For most companies, incoming inspection is more than
taking the parts and putting them on the shelf. Most
have visual checking as well as some form ofIC testing.
The variables here are, what amount of human inter­
vention is needed, are automatic handlers needed, are
"go/no go" tests or "binning" done automatically? The
typical scenario means that components are graded and
tested individually, and then placed into one of several
bins or kitted. Because the operators handle a large va­
riety of pinned devices (resistors, capacitors, ICs), the
cost can be distributed on a per pin basis. Many compa­
nies use a penny per pin for this cost.l16]

Inspection cost = $0.01 per pin

2-217

intef AP·307

$COST/GATE

0.03

0.0025

Q4'85 Q4'86 Q4'87 Q4'88 Q4'89 Q4'90
292030-11

Figure 6. Projected Cost Per Gate

INVENTORY

While most engineers agree that reducing parts count
on their board makes the cost of inventory less, they
usually attribute this to the reduction in component
costs alone. In reality, the overhead of C!lfl)'ing inven­
tory is made up ofthe following factors;l2ll

• Cost of the component

• Cost of storage

• Maintenance costs

• Data processing

• Usage

• Taxes insurance and interest

• Turnover rate

The American Production and Inventory Control Soci­
ety (APICS) reports that since 1973 the median cost of
carrying inventory has been about 25% of total produc­
tion costs. They also note that the largest contributing
factors are the cost of materials handling storage, and
data processing. For simplicity, let's limit our inventory
cost to these items.

Inventory cost = storage + maintenance + processing

Depending on the locale of a company, the cost of stor­
age can vary greatly. However, this cost is charged on a
square foot per year basis. Lets assume a conservative
figure of $20 dollars and distribute this amoung the ICs
in our example circuit.

storage = [Total IC area (sq. ft.) x $20]/IC count

Maintenance refers to the cost of handling, counting,
marking, and auditing each IC. Each production man­
ager has their own way of keeping tabs on this. One
way is to charge on a per part basis. A review from
several production oriented journals cites $0.3 cents as
the typical handling charge for 16 pin devices.l23]

Maintenance = $0.03 per 16 pin part.

Processingl2 l] usually entails a parts log that tracks
each part by manufacturer, cost, second source etc.
Also, monthly shortage reports are quite common as
are quarterly orders and audits. Limiting this cost to
paper only, at one sheet of paper per week, per. year, at
a cost of a penny per part type;

Processing = $0.52 per part type per year

PCB FABRICATION

The cost of manufacturing (cutting, etching, drilling) a
circuit board seems to vary around two pricing meth­
ods. Some fab houses charge on a square inch basis.
Others base their price on a gut feeling based on previ­
ous jobs. The square inch method is the most common.

Items of interest in evaluating PCB costs are, number
of ICs, number of traces and vias, and in general, the
complexity of the board. Traces that are smaller than
10 mils require extra care in etching. Depending on
complexity, and additional charge might be added to
the area cost. This charge covers material loss in case of
low etch yields. Yield is directly dependent on the num­
ber of ICs on a board. In other words, more ICs mean
more holes, tighter traces, and a greater chance of los­
ing some boards in their processing. The average going

2-218

intef Al'-307

rate is $0.20 cents per inch for double-sided boards.
The price increases by about 40% for every two layers.
This extra charge, however is too subjective to consider
in our comparison.

PCB Fab = [$0.20 x total IC area (sq. inch)]/IC count

Traces

There is a real cost involved with traces, which doesn't
surface until later in the production cycle or on a later
board revision. A technical paper presented at the 1984
international Test ConferenceUI estimates that the cost
of a trace on a board is ten to thirty times that of one
made in silicon. The cost of traces is taken up by:

• Increased drilling (more traces = more vias =
more holes)

• Lower PCB yield (smaller mill lines drop the board
yield)

• Increased risk of trace to trace shorts (lower reliabil­
ity)

• More expensive artwork mods (it costs more to
move traces around on a board)

• More expensive PCB mods (cost of cuts, jumpers,
and rework)

In our circuit example, an extra trace is that which is
unnecessary in contrasting implementations. For exam­
ple, referring to Figure 2, of all the traces required to
connect/RESET in the TTL implementation, only one
will be required for the EPLD and PAL circuit (the
input); the others won't be needed.

For our comparison, let's take the median value of
twenty as our multiplying factor. Since a silicon trace
costs an order of magnitude less than an EPLD gate
($0.01), the resulting cost of a PCB trace is;

($0.01/10) x 20 = $0.02 cents per trace

Trace cost = [total trace count x $0.02)/IC count

ATE

AISEM•LY

The cost of assembling a board is largely dependent on
labor charges and capital. Assembly consists of lead
forming, component insertion, and soldering. The labor
charge is hourly and varies between domestic and off­
shore assembly houses. While machines can certainly
do lead cutting, crimping, and insertion, human inter­
vention is still an expensive presence. Assembly costs
can be charged on a per board or per chip basis. The
latter is more appropriate for our comparison. The av­
erage charge (domestically) is about $0.10 per IC.

Assembly= $0.10per16 pin part

One important result of using high integration parts
like EPLDs is that the assembly procedures (manual or
automatic) go smoother. This is due to fewer parts be­
ing handled, and less overheating of the equipment.
Overall, the industry reports less insertion faults (parts
stuffed wrong) as denser ICs are used and as insertion
equipment matures with them.

TEIT

Test strategies can vary, but the typical test flow for a
board[3) is shown in Figure 7. The process is basically
taking a board through increasing complexity levels of
testing. For example, ATE might be a bed of nails fix­
ture that catches 60 percent of the faults. Test bed is
usually a backplane with all boards known good except
for the one under test. System test is the final integra­
tion of all the boards that were tested individually.

ST
IED

SYSTEM
TEST

292030-12

Figure 7. Ty111lcal Test Flow

2-219

intef AP-307

BOARDS IN--- BOARD
TEST

TO NEXT LEVEL
Of" TEST OR
SHIPPING

ANALYSIS Tlt.4E

REPAIR Tlt.4E

292030-13

Figure 8. Typical Test and Repair Loop

Errors can occur at any step of the test flow; each time
this happens, a test loop is initiated. This loop is depict­
ed in Figure 8. The cost for testing a device depends on
the cost of the equipment, depreciation, the labor rate,
and other factors that are company dependent. There
are several ways to reduce test costs, but the best way is
to reduce the probability of errors occuring. There is no
question that as the number of ICs increases, so does
the probability of error.

With all things considered, the industry reforts a nomi­
nal test cost of about $0.15 .per IC.127](28

Test cost= $0.15 per 16 pin IC

REWORK

The cost of rework is best understood by considering
the cause of errors in more detail. Errors are typically
caused by poor board quality, inadequate solder pro­
cess, tolerance of insertion, and of course, bad chips.
Table 4 shows the average board fault spectrum. The
figures are a conclusion reached by EVALUATION
ENGINEERING magazineUO) as to what the industry
is currently seeing. The table shows that the majority of
board errors is due to solder shorts. These errors are
the result of traces or IC holes being too close, which is
what happens on densely populated boards.

Table 4. Average Board Fault Spectrum

Tolerance
Shorts
Insertion
Bad Parts

20%
40%
30%
10%

Of all the material costs associated with rework, the
main cost is the time spent on a repair. Considering
that it takes approximately two minutes to desolder,

insert, resolder, and clean a component pinl9l, one can
see that more ICs on a board directly affect cost. Repair
times also increase dramatically on multi-layer boards
that might have been doubled sided if denser logic was
used.

For our comparison, let's assume that our test equip­
ment is 95% efficient in finding solder faults on the
first pass (no loop). This leaves 5% of the faults that go
undetected and eventually must be found and repaired.
The estimated cost per pin based on a $6.00 hourly
wage and the two minute repair time is approximately
$0.02 cents.

Rework = ($0.02 x total pin count)/IC count

It is important to note that the _probability of errors is
based on a Poisson distributionl8) that increases expo­
nentially with the number of pins and components.
This distribution is used in wave solder processing to
correct for solder errors. Mathematically this is ex­
pressed as:

e-nP(np}x
p = XI

where; P = The probability that a defect will occur
n = The number of components
p = The fraction defective
x = The actual number of defects

This means that the TTL and PAL version of the arbi­
ter have a higher probability of error than the EPLD
version. However, to make our comparison easier, let's
simplify this to more of a linear relation. For each im­
plementation, the rework cost per IC is calculated by;

Rework cost = [(total pin count) x (5%) x ($0.02 cents))/IC count

2-220

inter AP-307

PARTS
WAREHOUSE

INCOMPLETE
A.I. KITS

PRETEST M------t

WAVE
SOLDER

SOLDER
TOUCH-UP

INCOMPLETE
FINAL ASSEMBLY

------ KITS

AFTER
PRETEST

OPERATION

PC
LINE STOCK

SYSTEM TEST
KITTING

292030-14

Figure 9. Example of a Production Line

QUALITY CONTROL

In most production operations, boards go through sev­
eral steps of quality inspection.· The bare board might
be inspected after preliminary tests and after system
tests. Although 100% inspection should theoretically
eliminate all errors, in real life this rarely happens. The
main reason for this is the complexity of the production
and rework loops as shown in Figure 9.

Quality control's purpose is to remove defective prod­
ucts and either junk them or rework them, neither of
which is cost effective. The best approach is to design
the quality in, not fix it in. One way to design in quality
is by reducing the possibility of errors and increasing
the reliability of a product. This is one of the primary
advantages of dense logic (like EPLDs and PALs) over
TTL.

A survey conducted by CIRCUITS MANUFACTUR­
ING magazinel8] yielded the cost of $10 to $50 dollars
to. inspect, find, and repair a defect on a board. They
summarized that the actual cost of inspection is about
$0.004 for each hole on a board. With this in mind, let
us assume a 100% inspection of our arbiter circuit for
each implementation. This means that each pin (and
every trace via) will have to be looked at. The calcula­
tion for this is;

QC cost = (total pin count x $0.004)/IC count

POWER SUPPLY

Price for 5V, single output, switching power supplies as
advertised by several vendors is $1.00 per watt. The
calculation for determining power supply costs in our
comparison is:

Power cost ~ [(SVDC x Ice (mA)) x $1.00 per watt)/IC count

Additional Costs

In addition to the more obvious costs, there are several
other items that contribute to the "hidden cost" of a
system.

PROGRAMMING LOSS

Because P ALs are a one time programmable type of
device, full testing can't be done on them without de­
stroying the user's fuses. For this reason PALs have a
published programming loss of 2%1201. The cost for
this is:

Programming loss = (PAL IC count x 0.02) x PAL cost
per IC

2-221

intef AP-307

EPLDs, because they are based on EPROM cells, can
be programmed for different patterns, fully tested be­
fore customer delivery, and then erased. The result is a
near 100% percent programming yield[22].

PROGRAMMING FEE

Programming fee is the cost of programming a device.
While many companies have in-house programmers, it
is quite common for programming to be done by the
distributor. In some cases, and at low volumes, the pro­
gramming may be done free of charge. However, at
larger volumes a programming charge is not uncom­
mon. The charge varies with volume, programmer
availability and in general, your state of affairs with the
distributor. The cost for programming EPLDs and
P ALs is the same per device and averages about $0.25
cents.

Programming fee = $0.25 cents

SAFETY STOCK

Although this particular item was not mentioned in the
inventory section, it plays a very important role in the
production world. Safety stock[21] is extra ICs ordered
to cover for unexpected events. Unexpected here might
be a large unforeseen customer order or simply a bad
batch of parts.

While industry seems to strive for the optimum JIT
(just in time) production[14][16], which stresses mini­
mal inventory until needed, it's not unusual for produc­
tion managers to carry a five to ten percent inventory
buffer depending on the cost of the part. In most cases,
the larger expensive parts like microprocessors, periph­
eral controllers, and other LSI devices are safety
stocked in smaller quantities.

Let's assume that the safety stock is to be a maximum
of 10%. Five percent might be used to cover for the
unexpected occurrences, and five for WIP (work in pro­
cess) modifications. Since all parts have the same prob­
ability of unexpected events we can assign that percent­
age equally. Justifying the second 5% depends on the
IC technology itself. For instance, WIP modifications
usually require cuts and jumpers on TTL, therefore it's
unnecessary to order the additional 5%. In process
modifications to an EPLD are done simply by repro­
gramming it, here again there is no need for the addi­
tional 5%. PALs however cannot be cut and jumpered
(internally) nor can they be reprogrammed. Also, there
is the possbility that "on the shelf' P ALs will be pro­
grammed in advance, therefore a WIP mod that im­
pacts their function means that those parts must be
obsoleted (junked). In this case, an additional 5% is
justifiable.

Let us assume that the production manager reduces
safety stock by a moderate amount, let's say 3%. In a
case like this, usually the larger more expensive parts
are curtailed first. Since EPLDs provide good coverage
for work in progress and because they are more expen­
sive by comparison, we can reduce the total safety stock
to 2 % and not compromise our safety margin. Because
TTL is inexpensive it tends to suffer more of the "gun­
shot" approach in testing[7J. This means that the use­
age rate is greater because production technicians tend
to replace TTL parts with more liberty. For this reason
let's leave the TTL safety stock as it stands. P ALs
could be reduced, but faced with the fact that the pro­
gramming yield is 2% and that internal modifications
can't be made, the production manager might decide
not to change the safety stock for P ALs. These results
are shown in Table 5.

Table 5. Safety Stock

TTL PAL EPLD

Unexpected
5% 5% 2%

Events

WIP
0 5% 0

MODS

Total 5% 10% 2%

The safety stock calculation for each implementation is:

Safety stock = (% of stock x IC type x IC type cost)/IC count

DE·COUPLING CAPACITORS

While adding caps solves many problems due to system
noise, it also increases the cost of PCB layout, PCB fab,
and adds an additional burden on all of our other costs.
For a TTL system, a good de-coupling rule of thumb is
to use one 0.01 µf per each synchronous driven gate
and at least 0.1 µf per 20 gates regardless of synchro­
nicity. Engineers recognize the need for decoupling and
usually take it a step further by using one capacitor per
IC. Most boards reflect this practice, which, in itself is
very good. However, the addition of all these caps is
definitely measurable, in both component and systems
cost.

The average cost of a ceramic. capacitor in moderate
quantities is about half a cent. For our comparison we
will follow the accepted practice and de-couple each
TTL, PAL, and EPLD device. Our capacitor cost is
then:

De-coupling cost = $0.005 x IC count

2-222

intef AP-307

$5

AUTOMATED
BOARD
TEST

--;..-."ESCAPE"
$50

SYSTEM
TEST

$500

FIELD
TEST

: ~6~U~~~tLE~E~~?:E~STICS :
• UNSTRUCTURED DIAGNOSTICS •SAME AS SYSTEM TEST

+ • HIGH SKILL REQUIRED
• DIAGNOSTICS TIME

(SECONDS TO MINUTES)
• DIAGNOSTICS TIME

(MINUTES TO HOURS)
•TRAVEL OVERHEAD
•"LOST" CUSTOMER GOODWILL

292030-15

Figure 10. Escape Costs

Other Costs To Consider

Eventually, some place toward the end of a production
line, a board becomes part of a system. At this point it
is housed in an enclosure and all the necessary cabling
is done. Even here, however, the impact of using a par­
ticular IC technology can still be felt.

DEFECT ESCAPES

One very significant item that the test community ac­
knowledges is the cost of "escapes"l4l. "Escape" is de­
fined as a fault that goes through the early stages of
board test undetected. Figure 10 shows the escape rela­
tionship. An industry rule of thumb states that the cost
to detect a fault increases by an order of magnitude at
each stage. This means that if it costs $5 to find a fault
at the board test level, that same fault might cost $50 at
the system level and $500 at the field level. An impor­
tant relationship to remember, is that the number of
faults per board increases logarithmically, as the num­
ber of components on the board increasesl6l. The cost
of an "escape" is difficult to quantify, but generally, a
board with a higher component count has a greater
costl2][8],

CABLES/WIRING HARNESS

When the number of components or the power require­
ments of a system are reduced, a reduction in cables
and wiring is usually expected. The cost savings here is
either in the elimination of cables (because more func­
tions are condensed into an IC) or the reduction of
cable gauge or length (because less power is required, in
the case of EPLDs). Also, fewer cables means fewer
cable ties, connector pins, and mounting hardware.
While this is a subjective figure, lets assume that the
distributed cost of system cables is $0.25 per IC.

Cable cost = $0.25 x IC count

ENCLOSURE

Certain applications require reduced packaging or en­
closure size. In industrial control for example, each line
might require a complete system to monitor it's opera­
tion. In a case like this, a large bulky box full of boards
might not be appropriate. A good example of the bene­
fits that high integration logic provide enclosures, is the
third market versions of the popular PC. Many of these
companies have fully compatible versions that fit on a
single board. EPLDs and P ALs are capable of provid­
ing a cost savings in this respect. However, while PALs
approach the density requirements, their large power
needs render them counterproductive to the low power
specs of small systems. TTL is just not as effective as
either P ALs or EPLDs.

For our comparison let us assume the cost of enclosure
per chip is $0. 75. The calculation is:

Enclosure cost = $0.75 x IC count

Table 6 shows the cable and enclosure costs for the
MULTIBUS I circuit. Although the results are based
on assumed values, we can see that a larger IC count
influences the burdened cost of the system. Our final
comparison will not use these figures, but they should
be considered.

Table 6. Other Production Costs for
Multibus I Circuit

TTL PLA EPLD

Wiring/harness $2.750 $0.500 $0.250
Enclosure $8.250 $1.500 $0.750

2-223

inter AP·307

Arbiter Circuit Conclusion were done on a Lotus 1-2-3 worksheet that the individ­
ual engineer can modify with their specific values. The
worksheet is available, and can be downloaded from the
Intel EPLD bulletin board. Table 8 shows our calcula­
tion results for three years of production.

A compilation of the cost variables for our comparison
is shown in Table 7a and 7b. Because the cost may
differ for each company, the comparison calculations

Inventory:

Incoming insp. ($/pin)
Storage ($/sq.ft./yr)
Maintenance ($/part)

Costs

$0.010
$20.000

$0.030
Processing ($/part type/yr) $0.520
Safety stock(%) 2%

Manufacturing: Costs

PCB tab. ($/sq.in.) $0.200
Assembly ($/part) $0.100
Test ($/part) $0.150
Rework ($/pin) $0.020
QC ($/pin) $0.004
Power ($/watt) $1.000
lnterconn $0.020
Program ($/part) $0.250
Caps. (each) $0.005

(a)

Integrated Circuits

Component Count:

Packl(lge TTL PLA EPLD

DIP14 10
DIP16 1
DIP20 0 2
DIP24 1

Circuit Requirements: Ice (max)

TTL circuit (total mA). 100
PLA circuit (total mA). 240
EPLD circuit (total mA). 15

(b)

I Cs Types

TTL 10
PLA 2

EPLD 1

Interconnects

36
7
0

Tables 7a and b. Multibus Arbiter/Controller Cost Variables

2-224

intef AP-307

Table 8. MULTIBUS I Arbiter/Controller Production Costs

AVERAGE COMPONENT COST

Year 1 Year2 Year3

Package TTL PLA EPLD TTL PLA EPLD TTL PLA EPLD

DIP14 $0.25 $0.20 $0.19
DIP16 $0.35 $0.30 $0.27
DIP20 $0.55 $2.00 $0.38 $1.70 $0.35 $1.56
DIP24 $6.00 $4.20 $2.90

PRODUCTION COSTS

Year 1 Year 2 Year3

Item
TTL PLA EPLD TTL PLA EPLD TTL PLA EPLD

{costs per part)

Components $0.259 $2.000 $6.000 $0.209 $1.700 $4.200 $0.197 $1.560 $2.900

Incoming lnsp. $0.142 $0.200 $0.240 $0.142 $0.200 $0.240 $0.142 $0.200 $0.240

Inventory
Maintenance $0.027 $0.038 $0.045 $0.027 $0.038 $0.045 $0.027 $0.038 $0.045
Storage $0.030 $0.042 $0.050 $0.030 $0.042 $0.050 $0.030 $0.042 $0.050
Processing $0.473 $0.520 $0.520 $0.473 $0.520 $0.520 $0.473 $0.520 $0.520

Printed Circuit Board
Fabrication $0.043 $0.060 $0.072 $0.043 $0.060 $0.072 $0.043 $0.060 $0.072
Trace costs $0.065 $0.070 $0.000 $0.065 $0.070 $0.000 $0.065 $0.070 $0.000
Assembly $0.089 $0.125 $0.150 $0.089 $0.125 $0.150 $0.089 $0.125 $0.150
Board test $0.150 $0.150 $0.150 $0.150 $0.150 $0.150 $0.150 $0.150 $0.150
Rework $0.014 $0.020 $0.024 $0.014 $0.020 $0.024 $0.014 $0.020 $0.024
QC $0.057 $0.080 $0.096 $0.057 $0.080 $0.096 $0.057 $0.080 $0.096

Power Supply $0.045 $0.600 $0.075 $0.045 $0.600 $0.075 $0.045 $0.600 $0.075

Total Cost/Part $1.393 $3.904 $7.422 $1.343 $3.604 $5.622 $1.331 $3.464 $4.322

Total Cost/System $15.321 $7.808 $7.422 $14.771 $7.208 $5.622 $14.641 $6.928 $4.322

Additional Costs/System
Programming loss $0.000 $0.080 $0.000 $0.000 $0.068 $0.000 $0.000 $0.062 $0.000
Safety stock $0.143 $0.400 $0.120 $0.115 $0.340 $0.084 $0.109 $0.312 $0.058
Programming fee $0.000 $0.500 $0.250 $0.000 $0.500 $0.250 $0.000 $0.500 $0.250
De-coupling caps $0.055 $0.010 $0.005 $0.055 $0.010 $0.005 $0.055 $0.010 $0.005

True mfg. cost/system $15.518 $8.798 $7.797 $14.941 $8.126 $5.961 $14.804 $7.813 $4.635

2-225

intJ AP-307

The comparison in component costs shows that the
EPLD costs more than either a TIL or PAL IC. As
costs are added, the figures for TIL and P ALs begin to
approach the cost of an EPLD. These are shown on the
line labeled "Total cost/part".

The "Total cost/system" line shows the actual cost
when all the ICs are considered. For the first year, the
TIL version is the more expensive implementation, and
the EPLD numbers look very favorable.

The "True mfg. cost/system" line results after. addi­
tional costs are figured in. Here we see that the first
year, the EPLD version already provides a $1 savings
over the PAL version, and that the cost of the TIL
implementation is very high. Also, the inserted cost per
IC at this point is, $1.15 for TIL, $2.40 for PAL and
$1.80 for the EPLD. This is in line with the inserted
costs that we mentioned earlier.·

The production costs for two additional years shows
that the decreasing price of EPLDs (based on the curve
of Figure 5) will continue to provide costs savings as
production ramps up in quantities.

In terms of functional benefits, the EPLD implementa­
tion is the most beneficial because;

• The. chip count has gone down, one EPLD has re­
placed 11 TIL ICs in one implementation, and 2
PALS in the other, reducing the cost and time of:
-board layout
-board fab
-assembly
-rework

• The reliability of the board has increased. Fewer
components translates into less probability of error.

• Modifications are easier to make. Instead gf cuts
and jumpers (for TIL), or throwing away a PAL, a
change is re-programmed.

• The need for de-coupling caps is reduced. All those
individual ICs are eliminated and in some cases the
distributed capacitance of the board may be enough
de-coupling.

• Power supply requirements are small. The active
current requirements are much smaller with
EPLDs. This in turn reduces the need for large pow­
er supplies and fans.

• Cable requirements and enclosure benefits have been
improved. Since EPLDs provide better integration
over TIL and P ALs, the size of the system will be
smaller. This translates into fewer boards and ca­
bles.

• Inventory is reduced. One EPLD replaces many
TIL devices. Also, "on the shelf' programmed
EPLDs can be reused in a pinch, P ALs can't.

Less expense and probability of "escapes". The time
and cost of finding and fixing escape problems is re-

duced to one reprogrammable IC. In the field, this
translates into less "down time" for the customer and a
higher level of customer "goodwill" for the OEM.

Allows capability for customized hardware. Specific
customer requirements can be implemented. Also, DIP
switches and configuration jumpers may not be neces­
sary in many cases, since configurations can be pro­
grammed into the EPLD.

Development Costs

As mentioned earlier, the costs of development are usu­
ally dismissed as NRE. One reason for this is the diffi­
culty in pegging down these costs. However, while
money might be expendable at this stage, time is usual­
ly critical. Time saved at the fronf end can make a
difference in beating the competition to market. The
following topics are presented for consideration. No
costs are assigned to them.

RESEARCH

The amount of time spent researching components,
component sources, and technical data can be very
large. Designs done with a large IC count require more
research and analysis time. Higher integration devices
require learning curve time, but, in the long run this
tends to reduce research time, especially in future de­
signs.

PROTOTYPING

For most companies, prototypes are three to five level
wire wrap boards built by inhouse technicians or out­
side contractors. During prototype fab, a certain
amount of work has to be done to each IC. Part of this
work is, adding bypass caps, labeling chips, and lead
forming. In smaller companies, the board might be
hand wrapped. Larger companies might use an auto­
matic wrapper. Once the board is wrapped, a continuity
check is done on each wire net to insure connections
and minimize shorts.

The turn around time for a protoboard is one to two
weeks and can be shortened by paying a premium price.
An alternate way of shortening this time is to simplify
the board by using denser ICs.

DEBUGGING

Fixing bugs on a protoboard involves unwrapping and
wrapping connections, as well as replacing ICs. Making
mods on a TIL board is very time consuming and error
prone due to the large numbers of wires. Making mods
with P ALs is expensive since the part usually has to be
junked. EPLDs in contrast, are re-programmable and
lend themselves to all the revisions that are common in
the early design stages.

2-226

AP·307

sv

9
CLR 8

L QD
C11

D
7
6 w,

U3 QC
C10 c 5

U6 4
LS162 C9 LS42 3

QB B
2 LS112

CLK C8
QA A

p T 0
sv

CLR

L QD
C7

D

u2 Qc
C6 c us

LS162 cs LS42
QB B

vco
CLK C4

QA A
p T sv

W2

CLR

L QD
C3

D
LS112

C2
U1 QC c

U4
LS162 C1 LS42

QB B

CLK co
QA A

p T

sv
292030-16

TIME-DIVISION
~SYNC PULSE n n n fl_ MULTIPLEXED n SIGNAL

U9-PR

U9-CLR

w,

U9-PR -u u
U9-CLR ~ u

W2 _Jl n_
292030-17

Figure 11. Time Window Generator, TTL Circuit

2-227

intef AP-307

PCB LAYOUT

Artwork quotes are based on several factors. These are,
board size, number of 16-pin chip equivalents, pad
count, and the chip to board packing ratio. The chip
equivalents are calculated by taking the total lead count
(ICs and discretes) and dividing by 16. Pad count is the
number of holes in the board. The packing ratio deter­
mines how much room an IC has around it. This is
critical because space is ne.eded to place sockets, vias,
and trace bends. Currently, most service bureaus con­
sider 0.75 square inches per IC to be the minimum
packing density. This figure applies. to DIPs only, other
packages like SMT (Surface Mount Technology) will
improve on this. However, for standard DIPs anything
less than this might push the board into a multi-layer.

During schematic evaluation, the bureau doesn't usual­
ly charge for traces directly. Because they can't foresee
the exact count, and they don't have time to count
them on the sheets, they make a judgment based on
previous jobs. If the board appears to be tight, their
autorouter (CAD based) won't be as efficient, and more
hand layout will have to be done. However, as more
CAD based service bureaus integrate schematic capture
front ends, the cost of traces and vias will be more
visible.

Because the evaluation is subjective, the final cost var­
ies, and is a combination of charges. However, because
pad count can be determined easily, the overall price is
usually gauged against a pad price.

WINDOW CIRCUIT

Background Information

In applications that involve time-division multiplexing,
it is useful to have a circuit that windows a specific area
of the bit stream [27). The circuit of Figure 11 is a TTL
implementation of such a circuit. The idea is to count
time slots from a known reference and at a certain de­
code, set and clear a latch. The output of the latch is
the time window, which might be us.ed for further gat­
ing in other parts of the circuit. The TTL parts list is
detailed in Table 9.

The PAL alternative of Figure 12 is comprised of two
16L8s and one ;16R4. While the component count has
been reduced from nine to three,, there are still fourteen
extra interconnections.

One 5C060 is needed to integrate the complete circuit.
Fourteen out of the sixteen EPLD macrocells are used;
and exernal traces are only the three 1/0 pins as shown
in Figure 13.

Production Costs

The production variables for the window circuit are
shown in Table lOa and lOb, and the production costs
in Table 11. The comparison shows three years of sys­
tem costs for each implementation.

2-228

AP..307

Table 9. TTL Component List for Window Generator

IC Type DIP lcc(mA) Area(ln2) $

U1 LS162 16 32 .24 .49
U2 LS162 16 32 .24 .49
U3 LS162 16 32 .24 .49
U4 LS42 16 13 .24 .39
us LS42 16 13 .24 .39
U6 LS42 14 13 ,24 .39
U7 LS32 14 9.8 .21 .18
U8 LS32 14 9.8 .21 .18
U9 . LS112 14 6 .21 .29

_vco
~ I 1--

1--
0 ~C11

U2 0

16R8 0
C10

0
C9

~I 0
C8

0
C7

RCO

oW c&i......___, I I
I~

0 I
I!---'

0
C5

I
I C4

U3 U1 0 I

16R8
C3

16R4
I

0 I

0
C2

I
11--

0 W1--:>
C1

0 I
0

W2 :;::::: co ~
0 I

292030-18

Figure 12. Time Window Generator, PAL Circuit

c::~~-f CLK1 Vee

l I

1/0

GND CLK2
292030-19

Figure 13. Time Window Generator, EPLD Circuit

2-229

.

Inventory: Costs

Incoming insp. ($/pin) $0.010
Storage ($/sq. ft./ yr) $20.000
Maintenance ($/part) $0.030
Processing ($/part type/yr) $0.520
Safety stock(%) 2%

Manufacturing: Costs

PCB fab. ($/sq.in.) $0.200
Assembly ($/part) $0.100
Test ($/part) $0.150
Rework ($/pin) $0.020
QC ($/pin) $0.004
Power ($/watt) $1.000
lnterconn $0.020
Program ($/part) $0.250
Caps. (each) $0.005

(a)

lfttetratM Circuits

Component Count:

Package TTL ll'LA EPLD I Cs Types

DIP14 3 TIL 4
DIP16 6 PLA 2
DIP20 3 EPLD 1
DIP24 . 1

Circuit Requirements:
'

lcc(max) Interconnects

TIL circuit (total mA). 160 52
PLA circuit (total mA). 360 14
EPLD circuit (total mA). 15 0

(b)

Tables 10a anti It. WlnHw Circuit Cost Variables

2-230

AP-307

Table 11. Window Circuit Production Costs

AVERAGE COMPONENT COST

Year 1 Year2 Year3

Package TTL PLA EPLD TTL PLA EPLD TTL PLA EPLD

DIP14 $0.22 $0.19 $0.17
DIP16 $0.44 $0.37 $0.26
DIP20 $2.00 $1.70 $1.56
DIP24 $6.00 $4.20 $2.90

PRODUCTION COSTS

Year 1 Year2 Year3

Item
TTL PLA EPLD TTL PLA EPLD TTL PLA EPLD

(costs per part)

Components $0.367 $2.000 $6.000 $0.310 $1.700 $4.200 $0.230 $1.560 $2.900

Incoming lnsp. $0.153 $0.200 $0.240 $0.153 $0.200 $0.240 $0.153 $0.200 $0.240

Inventory
Maintenance $0.029 $0.038 $0.045 $0.029 $0.038 $0.045 $0.029 $0.038 $0.045
Storage $0.032 $0.042 $0.050 $0.032 $0.042 $0.050 $0.032 $0.042 $0.050
Processing $0.231 $0.347 $0.520 $0.231 $0.347 $0.520 $0.231 $0.347 $0.520

Printed Circuit Board
Fabrication $0.046 $0.060 $0.072 $0.046 $0.060 $0.072 $0.046 $0.060 $0.072
Trace costs $0.116 $0.093 $0.000 $0.116 $0.093 $0.000 $0.116 $0.093 $0.000
Assembly $0.096 $0.125 $0.150 $0.096 $0.125 $0.150 $0.096 $0.125 $0.150
Board test $0.150 $0.150 $0.150 $0.150 $0.150 $0.150 $0.150 $0.150 $0.150
Rework $0.015 $0.020 $0.024 $0.015 $0.020 $0.024 $0.015 $0.020 $0.024
QC $0.061 $0.080 $0.096 $0.061 $0.080 $0.096 $0.061 $0.080 $0.096

Power Supply $0.089 $0.600 $0.075 $0.089 $0.600 $0.075 $0.089 $0.600 $0.075

Total Cost/Part $1.385 $3.754 $7.422 $1.328 $3.454 $5.622 $1.248 $3.314 $4.322

Total Cost/System $12.463 $11.263 $7.422 $11.953 $10.363 $5.622 $11.233 $9.943 $4.322

Additional Costs/System
Programming loss $0.000 $0.120 $0.000 $0.000 $0.102 $0.000 $0.000 $0.094 $0.000
Safety stock $0.165 $0.SOO $0.120 $0.140 $0.510 $0.084 $0.104 $0.468 $0.058
Programming fee $0.000 $0.750 $0.250 $0.000 $0.750 $0.250 $0.000 $0.750 $0.250
De-coupling caps $0.045 $0.015 $0.005 $0.045 $0.015 $0.005 $0.045 $0.015 $0.005

True mfg. cost/system $12.673 $12.748 $7.797 $12.137 $11.740 $5.961 $11.381 $11.269 $4.635

2-231

AP-307

The production costs again show that the system cost
for the first year is better with EPLDs. The two consec­
utive years show that the declining price of EPLDs
make them an excellent candidate for systems that will
ramp up production at that time. ·

Window Circuit.Conclusion

The TTL version of the circuit was implemented with
MSI counters and.decoders. As a result, the PAL im­
plementation was bound by the number of count bi~
and had to be programmed into two P ALs. In circwts
like this, it is useful to rewire the decode for different
counts depending on the application. The PAL imple­
mentation allows this by incorporating the decode and
output latches into one IC.

The EPLD implementation tackles the MSI integration
quite easily and also proVides the capability to repro­
gram the decoder. Since the counter aµd output latches
consist of fowteen registered outputs, the sixteen mac­
rocells of the 5C060 easily _accommi>date the needed
functions.

SUMMARY
We have examined the hidden costs of production and
how they differ for several logic alternatives. By exam­
ining these costs, we have shown that while an EPLD is
presently a more expensive part, it's level of integration
reduces system costs and improves reliability. The fol­
lowing items should be considered when evaluating log-
ic alternatives: ·

• system cost is determined by more than component
cost

-
• system cost and reliability is influenced by the type

and amount of components used

• semiconductors have ·a life cycle that determines
their present price at design, and at production time

In summary, when all system costs are considered,
EPLDs can proVide cost saVings to the design and pro­
duction of most board designs.

REFERENCES
1. The Future Is Now: Extending CAB into test of cus-

tom VLSI. .
Robert S. Broughton, Tektronix.
Michael G. Brashier, Tektronix.
IEEE International Test Conference Proceedings,
1984

2. Reducing The Cost of Quality Through Test Data
Managment.
Paul N. Manikas, GenRad Inc.
Stephen G. Eichenlaub, Harvard University.
IEEE International Test Conference Proceedings,
1983 .

3. A Quantitative Analysis. Of The Trade-offs Between
Higher Capital Investment and Higher Yield In PCB
Testing.
Mark A. Myers, Teradyne Inc.
IEEE International Test Conference Proceedings,
1984

4. An Analysis Of The Cost And Quality Impact Of
LSI/VLSI Technology On PCB Test Strategies.
Mark A. Myers, Teradyne Inc.
IEEE International Test Conference Proceedings,
1983

S. IC Quality Control By The User.
Roger Dunn, Xerox Corp.
IEEE International Test Conference Proceedings,
1983

6. An Analysis Of The Economics of Self Test.
P. Varma, University of Manchester.
A. P. Ambler, University of Manchester.
K. Baker, GEC Research LabS.
IEEE International Test Conference Proceedings,
1984

7. In Circuit Testability Factors: Shoot With A Rifle.
Douglas W. Raymond, Zehntel Production Services.
IEEE International Test Conference Proceedings,
1984

8. Seven Steps To Zero Defects.
D. W. Rudd, AT&T Technologies.
Circuits Manufacturing, June 1986

9. Rework Forum
Donald Ford, Senior Editor.
Circuits Manufacturing, September 1986

10. Manufacturing Defect Analyzers: Annual Round­
up.
Evaluation Engineering magazine, August 1986

11. Assembly: Automation Makes It Better.
Roland W. Roy and Gordon Weeks, Andover Con­
trols.
Circuits Manufacturing, February 1986

12. Shrinking Lines Squeeze Processes.
Jerry Murray, West Coast Editor.
Circuits Manufaeturing, September 1986

13. Ribbon Cable for Reliable Interconnections.
Bennett W. Brachman, Xport Trading Inc.
Electronic Packaging and Production magazine,
July 1986

2-232

intef AP-307

14. TQC and JIT: Partners In Production.
Rick Walleigh, Hewlett Packard.
Circuits Manufacturing, February 1986

15. Automated Handling/Sorting: Multisite Develop­
ment Moves to Back Burner.
Evaluation Engineering magazine, May 1986

16. Software Charts The Course of Component Test­
ing.
Ronald Pound, Editor.
Electronic Packaging and Production magazine,
June 1986

17. Complexity, .PLDs Drive The Market.
Evaluation Engineering magazine, July 1986

18. Intel User Defined Logic Handbook.
Intel Corp. 1986

19. VLSI Semicustom Design Guide.
CMP Publications, Summer 1986

20. AMD Programmable Array Logic Handbook.
Advanced Micro Devices, 1984

21. Handbook Of Industrial Engineering.
Gavriel Salvendy, Editor, Purdue University
John Wiley & Sons Publications

22. Components Quality/Reliability Handbook.
Intel Corporation.

23. The Cost Edge.
DM DATA Corp.
Scottsdale, AZ

24. Semiconductor Purchasing Strategies Integrated
Circuits Engineering Corp.
Scottsdale, AZ

25. Status 1986 Integrated Circuits Engineering Corp.
Sqottsdale, AZ

26. EDN Semicustom Design Series
EDN Magazine, 1985

27. EDN Design Ideas
EDN Magazine, 1985

2-233

Techniques for Modular EPLD Designs

Lawrence Pa 11 ey
PLDO Product Marketing Manager

Intel Corporation
lSl Blue Ravine Road

Folsom, CA 95630

INTRODUCTION

Advances in both programmable logic
devices and the tools used. to configure them
now enable new design techniques for custom
logic applications. New high capacity flexible
arch i tectured EPLDs (erasab"l e and e 1 ectr i ca 11 y
programmable logic devices) allow for complete
single chip integration of one or more logic
configurations. Additionally, devtlopment
tools make use of these capabilities by
providing alternatives for design input, high
speed logic compilation and minimization,
heuristic logic fitting into EPLD devices, and
superior reporting documentation. Designers
can take advantage of these advances with a new
Modular EPLD logic design (MELD)technique, to
accelerate their product development.

ADVANCES IN EPLDs

Traditional PLDs relied on boolean
equation entry and compilation methods for
combinatorial function implementation. The
primary applications were as SSI/MSI replace­
ments for implementing decode "glue" in
microprocessor based systems. PLDs came in
bipolar versions with total logic content under
400 gates of equivalent logic. Tools to
develop the programmable logic implementation
of a function didn't require a high degree of
sophistication - the devices for which they
were optimizing designs had relatively little
logic and little logic flexibility.

Newer EPLDs incorporate several features
which broaden their application base. Besides
their low power CMOS technology, they incor­
porate individually configurable register and
I/0 logic for each macrocell. Devices such as
the SC060 incorporate 16 macrocells with
registers programmable into D, or JK con·
figurations. Each register is also
programmably configured to be clocked by
synchronous or asynchronous clocks.
Additionally, outputs and feedback paths for
each pin can be combinatorial or registered.
The combination of this level of flexibility
and gate counts of some devices exceeding 1200,
EPLDs have moved programmable logic well past
simple combinatorial functions.

To make optimum use of the new EPLD device
technology, design tools needed to improve to
allow more freedom or design input, better

"This manuscript originally prepared
for and presented at Electro/86."

logic optimization for maximum device utili·
zation, and improved reporting documentation.
Intel's programmable logic development system
provides these improvements. Input methods
include the choice of (and combination of)
schematic, netlist, state machine, or boolean
entry. Besides boolean equation minimi·
zation,the optimizer program optimally matches
I/0 and register resources required by the
design with what's available in EPLD devices.
It then reports on how the logic entry was
reduced, which resources were re· quired, and
how the design was placed in a given device.
Resources still available in the devices or not
able to fit in to the device are also
documented.

!filQ

Making use of both the advances in EPLD
devices and their development tools, engineers
can now design hardware (logic) in much the
same way as software is developed. This new
design technique called MELD (Modular EPLD
Logic Design) is shown in Figure l. Design
Entry, in any of the typical engineering
formats, is entered on a development station
(in this case a personal computer). Using EPLD
development system software, the design is then
compiled for EPLD implementation. Object code
or (in the case of an EPLD) a JEDEC l's and O's
file are the result. The unique capability of
EPLDs is to test a part of a partitioned design
in silicon, erase the EPLD, test the next
design, and finally to merge the designs
together. This powerful 1 ogi c design methodo-
1 ogy allows for the partitioning of a complex
logic function into smaller sub-functions that
can be individually designed and debugged using
the design tools and the erasability feature of
EPLDs. After the individual modules are proved
to be functional as desired, they can be com­
bined on the same EPLD, allowing for higher
integration and its attendant benefits.

2-234

DESIGN
REPORT
WITH
EilRORS

SOFTWARE
DES !GN

'

~
---~---, OTHER

TEST

DES !GN
SECTrONS

t>

EPLO
DES !GN

OTHER ,...,.,,....,.,...,.+,..,.,,..-niM
DESIGN

SECTIONS

TEST

ES!GN
REPORT

(TH
EV!CE

UTfLIZA-
TlON

"" z
-' I

:=:-1
~,

~· 81

~I
~I

i

Figure l. EPLO design process comoared with software
design process

NOTE: Tne MELO techn i cue wou 1 d i nvo 1 ve this oes i gn process
shown above to oe 1mplementeo for aifferent suo-moaules
ana combining of the suo-•unctions into the compieteo
high-integration EPLO design.

A MELD Example:

This Modular EPLD logic design (MELO)
methodology is now illustrated with an example.
The example shown here is a design which
implements a BCD-counter which is encoded into
a seven-segment display.

Figure 2 shows the design of a BCD-counter
designed using state machine entry. This
design was compiled (Figure 3) and individually
tested in-circuit.

Figure 4 shows a design for implementing
the seven-segment display shown in Figure 5.
It uses boolean design methods, although not
yet optimized. This design has been tested out
in several previous designs. An additional
section called "LINK EQUATIONS" is now used to
connect the BCD-counter with the seven-segment
display.

2-235

The two design files, BCD-Counter and
SEGEQS, are now compiled together in the LOC
(Logic Optimizing Compiler) of the Intel
Programmable Logic Development System (Figure
6) to yield the combined file, BCD-Counter, of
Figure 7.

When implemented in the SC121 EPLD, the
utilization report of Figure 8 results. It
shows a pinout designated by the compiler, the
routing of inputs, the source of outputs,
unused device resources, and some figure of
merit about how the design used SC121
resources. This data can be used to test the
device to as feedback for new design inputs.
An example of such an input would be to assign
signals to SC121 pins so that PCB layout is
simple.

LSP
INTEL
February 7, 1986
0
0
5Cl21
BCD COUNTER

FIGURE 2

LB Version 3.0, Baseline 17x, 9/2S/B5
PART: 5Cl21

.. INPUTS: CLK,ENABLE,RESET
OUTPUTS: BCDO,BCD1,BCD2,BCD3
MACHINE:BCD_COUNTER .

CLOCK: CLK

STATES: [BCD3 BCD2 BCD l BCDOl
so 0 0 0 0
Sl 0 0 0 l
S2 0 0 l 0
S3 0 0 l l
S4 0 l 0 0
S5 0 l 0 l
SS 0 l l 0
S7 0 l l J
SB l 0 0 0
S9 l 0 0 l

%TRANS IT IONS\

SO:
lF RESET THEN so
IF ENABLE THEN Sl

Sl:
IF RESET THEN so
IF ENABLE. THEN S2

S?·
IF RESET THEN so
IF ENABLE THEN S3

S3:
IF RESET THEN SO
IF ENABLE THEN S4

S4:
IF RESET THEN so
IF ENABLE THEN_ S5

S5:
IF llESET THEN so
IF ENABLE THEN SS

S6:
IF RESET THEN so
IF ENABLE THEN Si

S7:
IF RESET THEN so
IF ENABLE THEN SB

s 8':
IF RESET THEN so
IF ENABLE THEN S9

59:
IF RESET THEN so
IF ENABLE THEN so

ENDS

LSP
INTEL
February 7, 1986
0
0
5Cl21
BCD COUNTER

FIGURE 3

LB Version 3.0, Baseline 17x, 9/26/85SMV Version 1.-0 Baseline 1.3 ~5112/13 00:12:~

PART: 5Cl21

INPUTS:
CLK, ENABLE, RESET

OUTPUTS:
BCDO, BCDl, BCD2, BCD3

NETWORK:
CLK = INP(CLK)
ENABLE = INPIENABLE)
RESET = INP(RESETJ

' I/O's for State Machine "BCD_COUNTER"

' BCD3,
BCD2,
BCDl,
BCDO,

BCD3
BCD2
BCD l
BCDO

EQUATIONS:

'

RORF(BCD3.d,
RORF(BCD2.d,
RORF(BCDl. d,
RORF(BCDO.d,

C LK,
CLK,
CLK,
CLK,

GND, GND, VCCl
GND, GND, VCC,
GND, GND, VCC l
GND, GND, VCC)

Boolean Equations for State Machine "BCD_COUNTER"

' ' Current State Equations for "BCD_COUNTER"

' SO BCD3'*BCD2'$~Dl'$BCDO';
Sl BCD3'$BCD2'•BCD1'$8CDO:
S2 BCD3'$BCD2'•BCDl•BCDO':
S3 BCD3'$BCD2'*BCDl*BCDO:
S4 BCD3'•BC02$8CDl'*BCDO':
S5 8CD3'•BCD2•BCDl'*BCDO:
S6 8CD3'•BCD2$8CDl*BCDO':
S7 BCD3'*BCD2$8CDl•BCDO:
SB 8CD3•BCD2'*8CDl'*BCDO':
S9 BCD3$BCD2'*BCDl'*BCDO:

' SV Defining ~q~at1ons for State ~achine "BCD_COUNTER"
%
BCD3.d

BCD2.d

BCD l. d

BCDO.d

S8.n
+ S9.n;

S4.n
+ S5.n
+ S6.n
+ S7.n;

S2.n
+ S3.n
+ S6.n
+ S7.n;

S l. n
+ S3.n
+ S5.n
+ S7.n
+ S9.n;

FIGURE 3 (CONTINUED)

!llext State Equations for State "lach1ne "BCD COUNTER" ..
S l. n Sl * (ENABLE J' * RESET l'

+ so * ENABLE * CRESET'':
S2.n S2 * t ENABLE l' * RESET 1 '

+ ,S l * ENABLE * I RESET '.
S3.n SJ • c ENABLE)' * <RESET 1'

+ S2 * ENABLE * CRESET!':
S4.n S4 * I ENABLE l' * (RESET' '

+ S3 * ENABLE * IRESETi':
S5.n S5 * i ENABLE l' * 1RESETl'

+ S4 * ENABLE * <RESET ..
S6.n SJ * <ENABLE I' * RESETl'

+ S5 * ENABLE * I RESET ..
57.n = S7 * r ENABLE)' * ; RESET)'

... S6 * ENABLE * 1RESET ..
58.n SB * 'ENABLEl' * ·HESET, .

... S7 * ENABLE * iRESET t:.

S9.n S9 * IENABLEl' * :RESET1'
+ SS * ENABLE * CRESET, ..

END$

2·2S8

LSP
INTEL
February 7, 1986
0
0
5Cl21

FIGURE 4

SBVBN SEGMENT DECODERS FOR BCD COUNTER
LB Version 3.0, Baseline 17x, 9/26/85
PART: 5Cl21
INPUTS:
OUTPUTS: SEGA,SEGB,SEGC,SEGD,SBGE,SEGF,SEGG
NITWORK:
SIGA CONF <SEGA,VCCl
SBGB CONF {SEGB,VCC)
SBGC CON~ {SBGC,VCC)
SEGO CONF ISEGD,VCC)
SEGE CONF (SEGE,VCCJ
SIGF CONF (SEGF,VCCJ
SEGG CONF (SEGG,VCCl
EQUATIONS:
SBGA 0 + 2 + 3 .,. 5 + 7 + 8 + 9;

SEGB 0 + + 2 + 3

SEGC 0 + .. 3 + 4

SEGO 0 + 2 + 3 .,. 5
SEGE 0 + 2 + 6 + 8;
SEGF 0 ... 4 + 5 + 6
SEGG 2 + 3 + 4 + 5

0 !03$/02$/Dl•IDO:
l /03$tD2•1Dl$DO;
2 /D3•/D2• Dl•/DO;
3 /03$/D2• Dl$00;
4 /D3• 02$/Dl•/DO:
5 /03$ 02$/Dl•DO:
6 /D3$ 02• Dl•IDO:
7 /D3• D2• Dl•DO:
8 D3•/D2•/Dl*/DO;
9 D3$/D2$/Dl•DO;
'LINK EQUATIONS '

DO BCDO;
Dl BCDl;
D2 BCD2;
D3 BCD3;

ENDS

+ 4 + 6 + 7

+ 5 + 6 + 7

+ 6 + 8;

+ 8 - 9;
+ 6 + 8 ... 9:

+ 8 + 9·:

.. 8 .. 9;

FIGURE 6
Intel Progra••able Logic Software

LOC Menu
Fl Help
F2 iPLS Menu
F3 Input For•at ADF
F4 File Na•e A:BCD A:SEGEQS
F5 Mini•ization Yes
F6 Inversion Control No
F7 LBF Analysis Yes

2-239

LSP
INTEL
February 7, 1986
0
0
5Cl21
BCD COUNTER

FIGURE 7

LB Version 3.0, Baseline 17i<, 9/261B5SMV Version 1.0 BaseUne 1.3 85/12/1300:12:5

PART:
5Cl21

INPUTS:
CLK, ENABLE, RESET

OUTPUTS:
BCDO, BCDl, BCD2, BCD3, SEGA, SEGB, SEGC, SEGD, SEGE,.SEGF,~SEGG

NETWORK:
CLK ~ INP!CLK l
ENABLE = INPIENABLEj
RESET = INP<RESETl
BCDO, BCDO RORF(BCDO.d, CLK, GND,
BCDl, BCDl = RORFCBCDl.d, CLK, GND,
BCD2, BCD2 = RORFIBCD2.d, CLK, GND,
BCD3, BCD3 = RORF<BCD3.d, CLK, GND,
SEGA CONFISEGA, VCCl
SEGB CONF<SEGB, vcc·
SEGC CONFI SEGC, VCC l
SEGO CONF(SEGD, VCC,
SEGE CONF(SEGE, VCC l
SEGF CONF(SEGF, VCC,
SEGG CONF<SEGG, VCCl

GND, VCC l
GND,. VCC l
GND, VCC l
GND, VCC i

EQUATIONS:
SEGG BCDl * BCD3' * BCD2'

• BCDl' * BCD3' * BCD2
BCDl' * BCD3 * BCD2'

+ BCDl * BCD3' * BCDO':

SEGF BCD3' * BCDl' * BCDO'
+ BCD3' * BCD2 * BCDl'
• BCD3 * BCD2' * BCDl'
+ BCD3' * BCD2 * BCDO':

SEGE BCD2' * BCD 1' * BCDO'
+ BCD3' * BCDl * BCDO';

SEGO BCD2' * BCD 1' * BCDO'
+ BCD3' * BCD2' * BCD!
- BCD3' * BCDI * BCDO'
+ BCD3' * BCD2 * BCD 1'

SEGC BCD2' * BCD 1'
+ BCD3' * BCD2
+ BCD3' * BCDO:

SEGB BCD2' * BCD l'
+ BCD3' * BCDO'
+ BCD3' * llCD 1:

SEGA BCD3' * BCD2' * BCDO'
+ BCD3 * BCD2' * BCD I'
+ BCD3' * BCD2' * BCDl
+ BCD3' * BCD2 * BCDO:

* BCDO;

BCD3. d BCD3 * BCD2' * BCD I' * BCDO' * RESET'
+ BCD3 * BCD2' * BCDI' *ENABLE' * RESET'
+ BCD3' * BCD2 * BCDl * BCDO *ENABLE* RESET':

2·240

ENDS

FIGURE 7 (CONTINUED)

BCD2.d BCD3' * BCD2 * BCDO' * RESET'
+ BCD3' * BCD2 * BCDl' * RESET'
+ BCD3' * BCD2 * ENABLE' * RESET'
+ BCD3' * BCD2' * BCDl * BCDO *ENABLE* RESET':

BCDl.d BCD3' * BCDl * BCDO' * RESET'
+ BCD3' * BCDl * ENABLE' * RESET'
+ BCD3' * BCDl' * BCDO *ENABLE* RESET';

BCDO.d BCD3' * BCDO' * ENABLE * RESET'
+ BCD3' * BCDO * ENABLE' * RESET'
• BCD2' * BCDl' * BCDO * ENABLI!' *RESET'
+ BCD2' * BCD l' * BCDO' * ENABLE * RESET';

FIGURE 8

Logic Optimizing Compiler Utilization Report

***** Design implemented successfully

LSP
INTEL
February 7, l 986
0
0
5Cl21
BCD COUNTER
LB Version 3.0, Baseline 17x, 9/26/85SMV Version 1.0 Baseline 1.3 85/12/13 00:12:5

5Cl2l

CLK - 40 - Vee
GND 2 39:- Vee
GND 3 38'- ENABLE
<.iND - 4 :l7: - RESET
GND - : 5 36.- GND
GND - ti 35' - GND
GND - 7 34:- GND

SEGD - : 8 33:- GND
RESERVED - 9 32; - SEGG
RESERVED - : 10 31:- RESERVED
RESERVED - : 11 30:- RESERVED

SEGA - 12 29:- SEGC
RESERVED - : 13 28:- SEGB
RESERVED - '14 27:- RESERVED

SEGE - : 15 26:- RESERVED
RESl!RVED - '16 25' - SEGF

BCD2 - ' l 7 24:- RESERVED
RESERVED - '18 23:- BCD3
RESERVED - : 19 22: ~ BCD l

GND -:20 21' - BCDO

2-241

UINPUTSU FIGURE 8 (CONTINUED)

Feeds:
Name Pin Resource MC ell • PTerms MCe l ls OE Clear Clock

CLK I 'IP Reg

RESET 37 INP 10
11
12
19

ENABLE 38 INP 10
11
12
19

UOUTPUTSU

Feeds:
Name Pin Resource MCe l l • PTerms MCells OE Clear

SEGO 8 CONF :.!8 :i

SEGA 12 CO'IF 24 4 6

SEGE 15 CONF 21 ., 4

BCD:? 17 RORF 19 4 :i 1
4
5
8

10
12
19
:.?l
24
28

BCDO 21 RORF 12 41 8 1
4
'5
8

10
11
12
19
~l

2-t
28

BCD! ::!2 RORF 11 3' 8 l
4
5
8

10
11
12
19
21
24
28

2·242

FIGURE 8 (CONTINUED)
BCD3 23

SEGF 25

SEGB 2B

SEGC 29

SEGG 32

UNUSED RESOURCES

RORF

CONF

CONF

CONF

CONF

Na•e Pin Resource

3
4
5
6
7
9

10
11
13
14
16
18
19
:!4
26

30
31
33
.14
35
36
NA
NA
NA
NA

PART UTILIZATION

37\ Pins
39' ~acroCells
18' Pterms

CONCLUSIONS

10

8

5

4

'!r· .. 11

27
26
25
23
22
20
18
17

9
7
6
:1
2

13
14
15
16

The complete design took less than an hour
to enter, compile, and link with EPLDs. The
ability to partition designs, then individually
implement those designs in the logic design

3 4 l
4
5
8

10
11
12
19
21
24
28

41 ,4 -
3/ 6

31 6

-!• 4

PT..,rms

10
H
6
8

10
12

8
B

12
10

8
8

10

8
8
8
8

entry of choice, and finally to link designs
together is a new design method only available
with advances in programmable logic and their
design tools. By taking advantage of these
capabilities, designers can bring logic
implementations to market faster and with a
high degree of integration.

2-243

AR-450

VLSI DESIGN TECHNOLOGY

Crosspoint Switch:
A PLO Approach
by Jim Donnell, Intel Corp.

Erasable programmable logic devices (EPLDsJ combine
the gate densities of low-end gate arrays with the short
development time and low cost of EPROMs. This

merging of technologies produces a device with features suited
to a wide range of digital applications. Jn contrast to the long
development times (and higher costs) for gate arrays. EPLDs
require minimal frontend design time. Jn just a few hou".
EPLD designs can be developed, modified and verified. Also.
core elements from one EPLD design can be incorporated in­
to new designs as quickly as standard software subroutines from
one program can be modified and used in other programs.

The design of a digital crosspoint
switch using an Intel 5Cl21 EPLD il­
lustrates these features. Digital Design
implemented a crosspoint switch in a gate
array last year (see Digital Design.
January through March. 1985). Applica­
tions that require a data transfer from one
of several inputs to one of several outputs
frequently use a digital crosspoint switch.
Using the 5Cl21 EPLD, Intel Corp. (San­
ta Clara, CA) designed three different
configurations of a crosspoint switch.

Offered in a 40-pin package that pro­
vides up to 36 inputs or 24 outputs. the
5Cl21 supports up to 28 macrocells (in­
cluding four buried registers) and 236
productterms (p-terms). Logic density in
the 5Cl21 is the equivalent of 1,200
usable NANO gates. Maximum power
requirements are 100 mA active and 30
mA standby with TTL input levels. With
CMOS input levels, a 5Cl21 requires 50
mA active and 3 mA standby.

device dictates tht.' numhcr of ~v. itche~ tha1 can he dcl\igned into
a ~inglc device.

Configuration 1
The fir~t circuit (figure 1) cons1Jcred i~ a digital cro:..spoint
switch with eight input~ and a 3-hit word width. Thi:.. switch
tram.fers a 3-bit word coming frrnn one of eight source~ to a par­
ticular output. The number ot device~ .. OR-tied" tu each out­
put pin detennine:-i the number nf output~. Selecting one of eight
data inputs from each oft he three channeb I All to A7. BO to 87
and Cllto C7). the switch mut°' that data toa single output (QA,
QB and QC). Each output can he OR-tied to more than one

Two major parameters determine the
complexity and configuration of a digital
crosspoint switch: the number of possi­
ble switching locations for each bit (in­
puts and outputs), and the numberofbits
transferred in one clock pulse (word
width). The availability of 110 pins,
macrocells and p-terms for a given EPLD

Figure 1: Configuration 1 uses a three-channel eight-to-one multiplexer circuit with latching in­
puts. Each output can drive rnult:ple. 1ndiv1dual!y selected inputs to complete the digital cross­
point switch. By connecting inputs to the EPLD cutouts 1n an "OR-tied" conf1gurat1on, with only
one input enabled at any time, the multiplexer c1rcu1t becomes a crosspoint switch

© Intel Corporation, 1986
Reprinted with permission from Digital Design

2-244

VLSI DESIGN TECHNOLOGY

three-state input to complete the switch (only one input can be
enabled at a time). Three additional control bits (DO to D2)
select one of the eight different inputs. All three channels
operate in parallel. Separate input and output clocks allow a
high data rate and relax input set-up and hold times. Input data
for all three channels, along with the three select bits, are
latched by ILE. Data at the inputs can change state after being
latched and data is clocked out of the switch by CLK.

Equation I shows the Boolean expression for a single chan­
nel in the sum-of-products form. (See Table I for all equations.)
The Boolean expression for the remaining two channels is
similar: the designer need only change the A in the equations
to a B or C.

Timing Analysis
The internal delay paths determine the circuit's maximum
operating frequency (fmax). In this configuration there is an in­
put delay (Tin), an array delay (Tad), a register delay (Trd) and
an output delay (Tod). The fmax is a function of the signals that
must settle at the input of the output register before the rising
edge of the clock. In this case, signals propagate only through
the input latches and the array. Therefore, the data must be valid
at the inputs Tin + Tad just nanoseconds before the rising edge
of the internal clock signal (CLK). However, because of the in­
herent delay of the CLK signal, this reference must be shifted
to the rising edge of the external clock signal by subtracting the
internal clock delay (Tic). The external data set-up time (Tsu)
is shown in Equation 2. Inverting this time requirement yields
the maximum operating frequency.

As the output flip-flops are clocked, data propagates through
the register to the output pin. With reference to the external
clock pin, data becomes valid at the outputs Tic + Trd + Tod
nanoseconds afterthe rising edge of the clock. Figure 2 shows
the timing requirements for this circuit, including the input latch
signal.

Using a 5Cl21-50 (50-nsec propagation delay), data can be
sent through this switch configuration at 25 Mbits/sec. This
transfer rate remains independent of the word width. Since one
5Cl21 EPLD in this configuration can simultaneously transfer
three bits of information, three 5Cl2l's are required to transfer
a byte of data during each clock cycle. This configuration of a
digital crosspoint switch uses 86% of the 40 pins, 71 % of the
macrocells and II% of the available p-terms in the 5Cl21 EPLD.

Configuration 2
The second circmt (Figure 3) also selects one of eight inputs
(IO to 17), but this time data is routed to one of eight different

Figure 3: Configuration 2 uses a single-bit eight-input/eight-output
digital crosspoint switch. Designers can Implement this for either opti­
mal package count (see Figure 4) or for optima! speed (see Figure 5)

outputs IQO to\])). Six control bits are required for each
transfer: three to select the input path (DO to D2); three to select
the output path (D3 to D5). By selecting a single output path and
clocking ali output registers simultaneously, deselected outputs
are automatically cleared. This is useful for designs where only
the most current data is needed. Equation 4 is the common
equation to select one of eight input paths. Equations 5 to U
complete the Boolean equations for this example.

The previous equations would contain eight product terms if
they were wntten in expanded form. However, by treating
SELECTEQ as one signal. each equation contains only one
product term. Both options are available in the SC121. But, there

In contrast to the long
development times for

gate arrays, EPLDs
require minimal frontend

design time.
are advantages and disadvantages to the two methods. If
SELECTEQ is implemented as one signal through a combina­
tional feedback option. one and one-half crosspoint switches
can be implemented in one 5CJ21(Figure4). The trade-off is
faster speed for low chip count. By design, only 18 macrocells
in the SCl21 can support eight product terms. On the other
hand, selecting the combinational option reduces the p-terms
but introduces an additional input mux delay.

Figure 4 shows that an input signal must pass through four
delays before.reaching the input to the !lip-flop. Again, subtrac­
ting the input clock delay to shift the reference point yields
Equation 13 for the set-up time. Inverting Tsu gives the max­
imum operating frequency. In this configuration, data can be
clocked through at 12 Mbits/sec. This layout utilizes "7 % of the

available pins, 89 % of the available
macrocells and l3 % of the product terms.
Six SC121s would be required to imple­
ment a byte-wide switch with this layout.

Figure 2: A40-nsec internal set-up time (prior to clocking data through the output flip-flop) marks
Configuration 1. Data clocked into all eight input latches at the rising edge of one ILE/CLK cycle
is selected and clocked out of the output flip-flop on the next rising edge of ILE/CLK.

If the combinational feedback option is
not used, there are eight output equa­
tions, each containing eight product
terms. Assigning these equations to the
macrocell s that support eight p-terms
shows that only a single, one-of-eight
s~lei..:t line digital crosspoint switch fits
into one 5CJ21. Thus, the design requires
eight 5Ci2Js to complete a byte-wide

DIGITAL DESIGN • .JULY 1986

2-245

VLSI DESIGN TECHNOLOGY

parallel transfer. Since the signal paths are identical to Con­
figuration l, the same timing analysis applies here.

This layout (Figure 5) utilizes 65 % of the pins, 39 % of the
macrocells and 30% of the p-terms. Though the utilization
numbers are lower for this example, the actual available pins
and macrocells in the 5Cl21 are higher than initially visible.
Since macrocells in the 5Cl21 are organized into groups of four,
when one output structure in a macrocell group is defined the
other three must be of the same structure. Many times, this
results in unused pins being labeled "RESERVED" in the util­
ization report.

Configuration 3
The final circuit (Figure 6) again uses eight inputs (IO to 17) and
eight outputs (QO to Q7), though this time the deselected out­
puts "remember" their previously selected state. With the
5Cl21's register feedback option, deselected outputs can hold
the last data bit sent to that output. New data appears when the
output. is selected again.

Equations 14 to 22 express the Boolean terms necessary to
implement this hold feature in the digital crosspoint switch.
Note that each output is now a function of both the present inputs
and the previous output (Qnfbk), which implements the regis­
tered feedback. Data bits D3, D4 and D5 determine which data
bit will pass to the output. Again, the number of p-terms dic­
tates the use of combinational feedback, as in Configuration 2.

Figure 4: Configuration 2 features a low package count layout. Note that
one and one-half switches fit into each 5C121 EPLD. This configuration
uses combinatorial feedbacks to simplify the logic equations, thus
eliminating the requirement for eight product terms per output.

Timing Analysis
This configuration's timing analysis is similar to Configuration
2's combinational feedback analysis, with the exception of a
register feedback delay (Tri). Trf is the time that the data is pre­
sent at the output of the flip-flop to the time that data is available
to the array.

The total delay associated with the registered feedback con­
sists of the Trd, the Trfand the Tad. Data from the flip-flop out­
put reaches the input in about 50 nsec. The delay associated with
data coming from the input pins is the same as that of Configura­
tion 2 with combinational feedback- approximately 83 nsec.
Using this as the clock period, there is ample time to implement
the register feedback without affecting the cycle time. In this
configuration, data could be clocked through at 12 Mbits/sec.

Combinational feedback reduces the p-term requirement to
two p-terms per equation. This allows one and one-half cross­
point switches to fit into one 5Cl21. The design utilizes 64 % of
the available pins, 42 % of the macrocells and II% of the prod­
uct terms. Six devices would be required to implement a byte­
wide switch.

All of the configurations function differently, and no one con­
figuration is optimum for all applications. A designer can
customize a device to meet the needs of an application, whether
those needs include higher speed or lower chip count. A second
device can be quickly developed for a different application.
Designers are no longer restricted to a single device type that
must be adapted to an application with additional logic devices.

,JULY 1986 •DIGITAL DESIGIN

2-246

VLSI DESIGN TECHNOLOGY'

An original design can be developed in an afternoon. Additional
devices derived from an original design can be developed in a
few hours. Also, the ability to erase an EPLD and reprogram
it allows design errors to be corrected immediately. Instead of
several weeks delay with gate arrays, a designer using EPLDs
can have working silicon devices in one day.

Both the flexibility and shon design times associated with
EPLDs make them a good choice for applications that benefit

Figure 5: This circuit (Configuration 2 optimized for speed) combines
the multiplexer and demultiplexer functions tor each channel in a single
array. Since each output equatt0n uses eight product terms, only one
switching channel can fit into each 5C121 package.

Figure 6: Configurat10n 3 shows the use of registered feedback to allow
deselected outputs to retain their previously selected data. The logic
for a representative channel is shown. As with Configuration 2. this con­
figuration can be optimized for package count or speed.

from custom silicon devices. Today, EPLDs offer designers the
densities aud configuration flexibility of gate arrays, along with
the shon development time and cost associated with EPROMs.

CID

..JULY 1886 • DIGITAL DESIGN

2-247

AR-451
Designer's Corner

A Programmable Logic Mailbox for
80C31 Microcontrollers
Karlheinz Weigl and Jim Donnell, Intel Corp .. Frankturt. West Germany, and Folsoz;n, CA

This article describes the imple·
mentation of a semi-intelligent in·
terface between two 80C3 l mi·

crocontrollers, using a mailbox
protocol. Applications for an interfa~e
such as the the one described here are
often found in industrial control areas
where multiple microcontrollers are
used to accomplish a given task. Due to
the architecture of the microcontroller
(i.e .. no READY input; no HOLD/HLDA
interface; port-oriented 1/0; etc.), ex­
changing data and status between these
devices becomes a cumbersome task.
Given this directive, it becomes the de­
signer's task to develop a multi-port
memory interface that allows for zero
wait-state operation (i.e., no READY sig­
nal required), that electrically isolates
the microcontroller buses, and that per·
mits asynchronous access. Synchroniza­
tion would result in the generation of
wait states.

We realize the logic necessary to im­
plement the desired functions in two
erasable programmable logic devices
(EPLDs). One device, the 5C031, con·
tains roughly the equivalent of 300 2-
input NAND gates, while the other EPLD,
the 5C060, can implement designs with
up to approximately 600 gates.

The Mailbox Principle
And its Implementation

In a mailbox memory system, the mi­
crocontrollers exchange information as
bytes of data written to or read from a
mailbox register. Control logic permits
simultaneous access to the mailbox, thus
eliminating the need for arbitration be­
tween the microcontrollers. Implement­
ing the data exchange in this form
achieves most of the design criteria giv­
en above.

FIGURE 1. Schematic of mailbox memory system.

A voiding bus arbitration together
with the short propagation delays of the

EPLDs provides zero wait-state operation
of the data exchange. Electrical isolation
of the address and data buses is achieved
by using the high-impedance output ca­
pability of the 5C060. Simultaneous,
asynchronous access is achieved by sep­
arating the RD and WR strobes issued by
each microcontroller.

With a mailbox memory system, there

Copyright© 1987 by CMP Publications, Inc., 600 Community Drive, Manhasset, NY 11030.
Reprinted with permission from VLSI Systems Design.

2-248

is an obvious need for some type of
communication protocol to confirm the
reception of a message, or the presence
of data in the mailbox. In addition, the
read and write logic must be defined
such that simultaneous access to the
mailbox is permitted. In order to seg­
ment the task, the design will be ap­
proached in terms of two separate mod-

ules: the mailbox (memory section), and
the the control logic (protocol).

To begin the design of the memory
section, it is first helpful to identify the
resources required for the design. The
mailbox requires a total of 16 memory
storage registers (two bytes of data), tri­
state output control, and two separate
clock lines used to write the memory
registers.

The 5C060 EPLD was chosen to imple­
ment the memory section. This device
contains 16 programmable register
groups that may be configured to operate
as JK-, RS-, D-, and T-type flip-flops.
Each register group feeds a bi-direction­
al input/output pin, which may be tri­
stated via an output-enable product
term. These 110 pins may also serve as
data inputs when the register output is
tri-stated. This feature forms the basis of
the read-signal logic required in the de­
sign. Write logic can be accomplished
through the two synchronous clock in­
puts provided in the 5C060. Each syn­
chronous clock drives a set of eight
registers in the device. The operation of
the memory section of the mailbox
memory may now be solidified.

As shown in Figure 1, the two micro­
controllers are separated into controller
A and controller B. Register group A
(signals IOAO to IOA7) serves as an input
buffer to rnicrocontroller A. This buffer
receives information from microcon­
troller B's data bus. The write control for
register group A comes from microcon­
troller B.

Again, referring to Figure I, it can be
seen that register group B serves as an
output buffer to microcontroller B. This
buffer gets information from microcon­
troller A and is therefore write-con­
trolled by microcontroller A.

Data Transfer

In order to read data from the mail­
box, the microcontroller must initiate a
read cycle addressing the mailbox. The
read signal (RDA for microcontroller A,
RDB for microcontroller B) enables the
tri-state outputs of the 5C060, revealing
the appropriate data. Spurious read cy­
cles are avoided by logically combining
the read signal with a chip select signal
(CSA orCSB) within the chip. The exam­
ple shown utilizes address bit A 15 as the

FIGURE 2. Schematic of register interface.

Group A
(micro<:ontroller A)

WR8-
CSA-

{
:g~~:
IOA2·
IOA3•
IOA4·
IOA5-
IOA6-
IOA7·
RDA·
GND-

FIGURE 3. Pin"OUt for register interface.

-VCC
-ROB

-.1.0. a. o·.J
-1081
·1082
·1083
-1004
-1065
-1066
-1087
·CSB
;WRA

Group B
(microcontro1fer 8)

VLSI SYSTEMS DESIGN January 1987

Delignel'1 Comer

CSA
WliA
RST

chip-select signal, thereby reserving the
upper 32K bytes of memory spacefor the
mailbox.

Protocol Control Logic

Having defined the memory section of
the mailbox, we next must orchestrate
the control logic. To guarantee reliable
data transfers, both microcontrollers
need feedback about the status of their
respective input and output buffers.

In order to achieve a maximum data
transfer rate, an interrupt-driven proto­
col may be used. The signals necessary
to achieve the transfer protocol are:

OBFA (A's output buffer full)
OBFB (B's output buffer full)
!BEA (A's input buffer empty)
IBEB (B's input buffer empty)
INTA (A's data ready interrupt)
INTB (B's data ready interrupt)

Further definitions of the control signals
can be made as follows.

Output Buffer Full. This flag is set
whenever a controller writes to the mail­
box. The flag remains valid until the
second controller has read the data. The

WA

Olm

im

W1'5
W8

iNTA

Qm1A

. ilfi

flag is reset when the recipient controller
reads the data from the mailbox.

Input Buffer Empty. This flag indi­
cates that there is no message in the
mailbox and that the mailbox can be
written without corrupting the data. This
flag is set whenever a controller reads
data from the mailbox. The flag remains
set until <i;ita is placed in the mailbox.

Interrupt. The 5C03I is programmed
to supply interrupts to both microcon­
trollers involved, when either one of two
events occurs. First, the recipient micro­
controller receives an interrupt when its
OBF flag goes active. This signals the
recipient that data is available in the
mailbox. Secondly, the originator mi­
crocontroller receives an interrupt when
data placed by that microcontroller in
the mailbox has been received by the
recipient microcontroller. This interrupt
indicates that data has been received and
that it is safe to write data to the
mailbox.

The signals described above form the
basis for clean and efficient data transfer
between tl)e two microcontrollers. The
transfer time is limited only to the over-

2-250

head of the interrupt service routines.
The 5C060 can accept data at clock rates
in excess of 20 MHz.

Programming the EPLDs

Figures 2 and 3 show the schematics
and pin-out for the memory section, and
Figure 4 is a schematic of the protocol
sections in the mailbox memory. Using
Intel's Programmable Logic Develop­
ment System, these schematics can be
transformed with ease into the logic
equations that represent the desired
function. The development system ac­
cepts a variety of entry methods, includ­
ing schematic, netlist, state machine,
and text file entry.

Once the design has been entered, the
file is submitted to the Logic Optimizing
Compiler (LOC), which performs an op­
tional Boolean minimization, including
De Morgan's inversion, and logically
fits the design into the target EPLD.

The development system generates
three output files. The Logic Equation
File (LEF) contains the result of the mini­
mization process, the Utilization Report
File (RPT) contains the final device pin­
out, information about the internal logic
routing, and a percent utilization for
pins, macrocells, and product terms. Fi­
nally, the JEDEC fjle (JED) contains the
device programming information re­
quired to program the EPLDs. These files
are available from the authors.

Programming of the EPLDs is accom­
plished through Intel's Logic Program-

. ming Software (LPS) and the iUP-PC pro­
gramming hardware. Designs also may
be logically simulated through the us.e of
Intel's FSIM software.

Summary
Applications such as industrial auto­

mation often require communication be­
tween multiple microcontrollers. Unfor­
tunate I y this communication is
hampered by the port orientation and
lack of bus control signals within the
microcontroller environment: One solu­
tion-as presented here--is the mailbox
memory. The mailbox memory serves as
an effective method fQr transferring data
between microcontrollers, while the
flexibility of the EPLDs serves as an
effective way to implement the mailbox
itself. D

VLSI SYSTEMS DESIGN January 1987

inter AR-454
~I ~~~DE_S_IG_N_A_P_PL-IC-A-JIO_N_S~~~I

B.ECTRONC DESIGN EXCLUSIVE

Regain lost 1/0 ports
with erasable PLDs
Daniel E. Smith a1d Thomas 8. Bowns
Wei Cap., 1900 Praiie City Rd., Folsom, CA 95630; (916) 351·2747.

As a means for reconstructing or regaining micro­
controller 1/0 ports lost to memory expansion,
erasable programmable logic devices, or EPLDs,
contain all the necessary functions. In fact, EPLDs
perform more functions than most programmable
logic arrays, and offer the additional benefits of
EPROM-like erasability, the low power consump­
tion of CMOS technology, and gate densities near
those of low-end gate arrays.

Lost I /0 ports can be externally reconstructed

Erasable PLDs cut the
space and power
usually needed to
reconstruct 110 ports.
They can even build
new ports, adding to
a chip's capab/111/es.

with standard SSI
packages. EPLDs, how­
ever, supply an alterna­
tive that reduces the ex­
ternal approach's
impact on power and
space consumption.

The computing
power of one-chip mi­
crocontrollers plays a
role in many applica-
tions. But the growing

complexity of these devices, as designers shift from
8- to 16-bit controllers, has strained their I /0 ca­
pacity.

A typical 8-bit microcontroller in a 40-pin pack­
age contains a 4- to 8-kbyte program memory and
32 1/0 pins, usually grouped into 8-bit ports. The
16-bit devices contain 8-kbyte memories and up to
40 1/0 pins in packages that range from 48 to 68
pins. The possible number of ports falls short for
some complex tasks in switching circuits, robotics,
and automotive systems.

The 1/0 shortage is aggravated when the chip's
internal program memory is too small for a given
task. While tacking on external memory is easy
enough, the addition consumes 1/0 pins.

Although some details vary, the basic techniques
for reconstructing these lost I /0 ports with EPLDs
are the same for most microcontrollers. An example
describes a SC121 EPLD and an 8096 16-bit mi­
crocontroller, noting details specific to the micro-

controller.
These techniques not only reconstruct ports on

any available microcontroller, but they also are
suited to adding new ports. For the 8096, the de­
signer can add two new ports, 5 and 6, by changing
to 1 FFC-1 FFF the hexadecimal address range in
which the external memory is deselected. The new
ports create a system with 56 1/0 signals. The
tradeoffs of this addition are the board space
needed for two more EPLDs and two more bytes of
reserved memory space at IFFC and 1 FFD.

The first consideration in reconstructing a port is
the microcontroller's fixed-memory and 1/0 ad­
dress map. In the 8096, memory-address ranges 0
to FF and 2000-3FFF contain on-chip registers, in­
terrupt vectors, factory test code, and program
memory. Expansion memory can go into the 100 to
1 FFD range, a capacity of 8k bytes minus the first
256 and the last 2 bytes, and into the 4000 to FFFF
range, another 8 kbytes.

The mierocontroller has five 8-bit ports, three of
which (Oto 2) are dedicated to 1/0 functions. Ports
3 and 4, however, are memory-mapped to lFFE
and 1 FFF, respectively. These two ports reside
right above the lower section of expansion memory
space. (Other microcontrollers have the same func­
tions, but their address ranges may vary.)

External memory, therefore, connects to the pins
reserved for ports 3 and 4, eliminating them as gen­
eral 1/0 ports. Reclamation of these ports calls for
external latches and decode logic that disables the
external memory and enables the latches at I FFE
and 1 FFF. This logic decodes signals Ao and Byte
High Enable, BHE, to select ports 3 and 4. The
ports are selected either separately for 8-bit data
transfers or together for 16-bit transfers.

The microcontroller multiplexes address and
data on signal lines AD0 to AD15 • As a result, Ad­
dress Latch Enable, ALE, must latch the address as
each bus cycle starts and keep it there for the cycle
duration. Then the lines can transfer data through­
out the cycle. Because BHE has the same timing as

"Reprinted with permission from Electronic Design (Vol. 35, No. 7) March 19, 1987. Copyright 1987 Hayden Publishing Co., Inc.,
a subsidiary of VNU." 2-251

DESIGN APPUCA TIONS • Erasable PLDs restore ports

the address, ALE must also latch BHE.
Reconstruction of both ports without EPLDs requires

14 SSI packages if the high-current sink capability of
open-collector drivers is needed. If not, nine packages
will do.

Besides the address-decoding logic, the input ports
need octal latches. The outputs contain octal latches, but
inverting buffers are also needed. If the output does in­
clude open-collector drivers, the designer must add an­
other set of inverting buffers to compensate for the
drivers' inversion of the signal. In addition, a discrete flip­
flop latches BHE, and discrete gates decode the port se­
lection and RD and WR signals.

On the other hand, reconstructing ports with EPLDs
requires no logic outside of the EPLDs themselves (Fig.
1). Each device decodes its respective memory-mapped
address, and one device disables the external memory at
both lFFE and lFFF.

The EPLDs can sink 4 mA, which puts them in the
same range as an SSI version without open-collector
drivers. The designer can add open-collector drivers if a
higher-current sink is needed.

The design process leading to port reconstruction be-

gins with defining the functions required of the EPLD
and then creating a design file that can be translated into
a Jedec file. Next, the designer programs the EPLD and
tests the final circuit. Software can automate much of this
procedure.

The first step is to list the functions the EPLD must
perform. Then the designer identifies which EPLD fea­
ture best satisfies that need, becauSe as with SSI logic, the
device can accomplish its task in different ways.

In general, a device reconstructing a port must latch
and decode address information from a multiplexed bus.
The chip then produces an internal port-selection signal
and an external memory-selection signal; the latter in ad­
dress range lFFE-lFFF. Moreover, the device acts as a
bidirectional data path and decodes the RD and WR
signals, routing the data with the port-selection signal
(Fig. 2).

Drawing a schematic diagram of the EPLD helps iso­
late the circuit into functional blocks. In the example,
combinatorial logic and three latches do the decoding at
port 3.

Address lines AD 1 through AD 11 pass through an
AND gate and are latched as LADA. Address lines A12

1. Two erasable programmable logic devices contain all the logic required to reconstruct ports 3 and 4 of
an 8096 mlcrocontroller. The two latches and two EPROMs comprise the external memory.

Electronic Design• March 19, 1987

2-252

and inverted signals AD, 3

through AD 15 pass through an
AND gate and are latched as
LAD8 . These two latched sig­
n a ls pass through another
AND gate to create the Mem­
ory Disable Signal, MDS,
which deactivates the
EPROMs. Combined with
LAD 0 (address signal AD 0

inverted and latched), LADA
and LAD8 generate the port­
selection signal.

PARALLEL FORMAT SAVES TIME

The EPLD decodes and
latches signals AD 1 through
AD11 and AD12 through AD15
in parallel to minimize the time
between address setup and
ALE going low. An inverted
ALE clocks the latches, which
also store decoded addres.ses
while the microcontroller trans­
fers data over the bus.

Two combinatorial-output,
internal. feedback (COIF)
primitives create a double­
feedback loop with all output
enables to the microcontroller
bus controlled by OE,, which is
active during read operations.
Output enables on the 1/0 side
of the EPLD are controlled by
OE2 , which is active during
write operations. Thus data is
valid at the inputs or outputs
only while the ~ropriate com­
mand, RD or WR, is active.

If the application calls for
latched outputs, the designer
can create them from logic on
the EPLD. One configuration is
a D-type latch activated by the
trailingedgeofWR (Fig. 3). In
this circuit, the outputs are al­
ways enabled, except during
reads, when they are placed in a
high-impedance state. The Re­
set signal clears the outputs to a
logic 0 during initialization.

The fourth port's schematic
varies little from that of the
third. Because port 4 handles
data transfers on the micro-

2. The schematic tor the port 3 EPlD contains a bldlrectlonal path that in­
cludes parallel address decoding that speeds clrcuH operation. In the port 3
device, Ao Is Inverted and latched, then used to qualify reads and writes; the
port 4 EPlD relies on BHE tor quallttcatlon.

Electronic Design• Morch 19, 1987

2-253

DESIGN APPLICATIONS • Erasable PLDs restore ports

controller's high byte, the data path connects to AD8

through AD, 5• The BHE signal replaces AD0 and be­
comes LAD, which combines with LADA and LAD8 to
select the correct port.

A microcontroller with a different address map or bus
interface may require some variations in address decode
logic. The basic techniques for regaining .I/O ports with
EPLDs, however, remain the same.

DESIGN FILE CREATED

The next step in the port-reconstruction process is to
create from the schematic diagram a design file that can
be automatically converted to a Jedec file by Intel's Pro­
grammable Logic Software II (iPLSII) program. Four
types of inputs are acceptable: a net list file, Boolean
equations, state variables, and files from any of several
schematic-entry packages that run on personal comput-

3. If a designer needs latChed outputs, they can be
bullf without addltlonal logic. This D-type ftlp-tlop II
made of logic elements contained In the EPLD.

ers. The designer can write a net list file With a word­
processing program in a nondocument mode, but an eas­
ier way is to work with iPLS Il's Logic Builder.

The Logic Builder prompts tlte user for the information
it needs. After establishing the file with sqme background
information, the program asks for lists of all the input and
output pin names (the user can assign a name to a specific
pin number). Next come the internal assignments and
connections, and finally, the logic equations needed.

The designer must list all the COIFs that form the bidi­
rectional data path. For example, the entries that create
the data line between AD0 and P3o (see Fig. 2 again) are
as follows:

ADo, ADo = COIF (P30, OE,)
P3o, P30 = COIF (ADo. OEz)

The iPLS II program contains a logic-optimizing com­
piler that translates the schematic's net list, or other suit­
able input, into a Jedec programming file. The compiler,
which is selected from the program's main menu, opti­
mize.s the logic equations and assigns I/O pins and other
EPLD resources.

ERROR MESSAGES POINT OUT PROBLEM

The program's outputs are the programming file and a
device report file that shows the pinout of the pro­
grammed device and describes the use of the device's re­
sources. If the compiler cannot translate the file, error
messages indicate the design-file entry that caused the
problem.

Programming the EPLD is very similar to program­
ming EPROMs. The designer com;1ects an EPLD pro­
gramming module to the workstation, inserts an uri­
programmed device into the socket, and calls up the

4. A block dlG9rcJm of an ELPD's Internal delays shawl how users can determine the maximum delay for
each signal path and, as a result, the porrs maximum oP•ratlng frequency. .

Electronlc Design• March 19, 1987

2-254

DESIGN APPLICATIONS • Erasable PLOs restore l'OrfS

programming menu. The menu asks for the device's type
and the Jedec file name, and the system then programs
and verifies the chip.

Considering how straightforward the port-recon­
struction functions are, the best test of the programmed
EPLD is to plug it into a circuit and see if it works. An
EPROM-based microcontroller with some simple read
and write routines to exercize the device works well. The
designer can also use an in-circuit emulator for the micro­
controller, if one is available.

Any bugs can be fixed quickly. To correct a bug the
user erases the EPLD file and changes the design file,
which then can be recompiled and the device repro­
grammed.

A timing analysis confirms the EPLD's compatibility
with different microcontroller clock speeds. The analysis
amounts to adding the internal delays for paths through
the EPLD and comparing these path delays to the micro­
controller's timing requirements.

The three paths of interest are Address Setup to ALE,
which must take no longer than l 16nsforan 8096operat­
ing at 6 MHz; and no longer than 50 nsat 10 MHz. Other
maximum values are: Data Valid From RD, 358 ns and
230 ns; and Data Valid Before Write, 272 ns and 130 ns.

A block diagram of the specific device with each inter­
nal delay is needed for the timing analysis. For the exam­
ple circuit, the Address Setup to ALE delay for the port 3
EPLD is 49 ns (Fig. 4). This value, achieved by decoding
and latching AD1 to AD11 in parallel with AD12 to AD1s.
just meets the maximum delay at 10 MHz.

The delay for Data Valid From RD is the sum of delays
in the enable path and the data path, or 136 ns. The delay
path for the write operations is shorter: It is that for the
enable path added to 41 ns for the data path (after elimi­
nating a 30-ns overlap in enable and data timing), or
106 ns. Both are well within limits. D

Daniel E. Smith, a senior technical writer at Intel, has
also worked in microcomputer-systems testing and
written manuals for microprocessors, development
software, and bubble memories. He has a BA in history
from San Jose University and an MA in biblical studies
from the Graduate Theological Union/Jesuit School of
Theology in Berkeley, Calif

Thomas B. Bowns is an application engineer for In­
tel's EPLD operation. He also has worked as a techni­
cian on the company's EPROM line. Bowns studied
digital and microwave electronics at American River
College in Carmichael, Calif

Electronlc Design• March 19, 1987

2-255

Advanced Architecture
EPLDs

3

intJ
SCBIC

PROGRAMMABLE BUS
INTERFACE CONTROLLER

• Higher Integration Alternative to
Transceivers, Latches, Multiplexers and
PAL• Functions

• Appllcatlons Include Dual Port Control,
Multiplexed Bus Interface, DRAM
Control and Slmllar Functions

• Port-Oriented Bus Management Unit
Supports:
- 3-Way Asynchronous Data Transfer

on Byte-Wide Buses
- Programmable Option of Latched or

Real Time Data
- True or Complement Data Path

• Macrocell-Based Programmable Logic
Unit Provides:
- Variable Input and Output

Architecture
- On-Chip Controls for the Bus

Management Unit

- Up to Eight Burled Registers
- Programmable Registers can be

Configured as Positive Edge­
Triggered D-, J-K, R-S or T • Types

-Asynchronous Preset and Clear on
All Registers

- Option of Latched Inputs

• Low Power: 75 µA Typical Standby

• CHMOS EPROM Technology Based:
- Max Bus Port Drive Capability: 16 mA
- Typical Data Transfer Delay Between

Ports= 25 ns
- Logic Array Operating Frequency =

20 MHz

• Available In 44-Lead PLCC Package
(See Packaging Spec., Order # 231369)

The Intel SCBIC is useful in implementing bus interfacing logic functions that have traditionally been done
using SSl/MSI TIL components. Core bus functions are provided that can be customized using EPROM bits
for specific applications. Control logic can also be implemented through a sum of products architecture that is
included in this 44-lead PLCC package. Such levels of integration are realized utilizing the benefits of Intel's
advanced CHMOSll-E process.

This general purpose architecture is supported by iPLDS II, Intel's Programmable Logic Development System,
to develop the design and program the devices. Several methods of entry facilitate the design resulting in
shorter completion times.
*PAL is a trademark of Monolithic Memories, Inc.

PORT A BUS MANAGEMENT
UNIT

Figure 1. Block Diagram

PORT B

PORT C

INPUTS/
OUTPUTS

290126-1

3-1

104

Vee
IN3

103

102

IN2

IN1

<O - ~ft) ft) If) If)
Q Q ~ o m > o m o m o

39 87

38 A7

37 A6

36 AS

44 PAD PLCC 35 A4

0.650" x 0.650" 34 Vee
TOP VIEW

33 A3

32 A2

31 A1

30 AO

29 86

290126-2

Figure 2. Lead Configuration

November 1987
Order Number: 290126-003

intef SCBIC

FUNCTIONAL DESCRIPTION

As the name suggests, this programmable bus inter­
face controller offers a high integration solution to
design problems involving data transfer on bus lines
and the logic needed to control these transfers. This
integration directly· translates into savings in board
space and lower system cost for equivalent func­
tions implemented using conventional SSl/MSI
components.

Present in the port-oriented 5CBIC are two function­
al blocks that enable complex bus functions to be
realized: the Bus Management Unit (BMU) and the
Programmable Logic Unit (Pl,.U). These two units
communicate with each other through the input and
the feedback buses. A control section shown in Fig­
ure 3 steers signals from the PLU to the two units
through the control bus.

ARCHITECTURE DESCRIPTION

The innovative architecture of the 5CBIC incorporat­
ing a port-oriented approach for bus interface con-

2

PORT A

3

INPUT
PORT

PORT
CONTROL

trol is illustrated in Figure 5. The Bus Management
Unit (BMU) and the Programmable Logic Unit (PLU)
interface to the feedback and the control busses.
The macrocells in the PLU feed the input bus.

Bus Management Unit (BMU)

The Bus Management Unit (BMU) comprises three
ports: PA, PB and PC (Figure 4a). Each of these
ports is bidirectional and 8 bits wide. Data can be
routed from any port to any other port.

Data into any port can be user-selected to be
latched by a port Latch Enable signal, (LE). Routing
of latched or unlatched data between · ports is
achieved using a combination of EPROM architec­
ture and dynamic control signals defined by the user.
Data out of any port can be programmed to have an
inverted sense through EPROM architecture control
(INV).

Each bidirectional port can be dynamically config­
ured as an input or an output depending on the con­
trol signals OEA, OEB and OEC. Latched data from

OUTPUT
PORT

FEEDBACK
BUS MANAGEMENT

UNIT

INO

• 7

0

INPUT
MACROCELL

PROGRAMMABLE LOGIC UNIT

ARRAY
INPUT/OUTPUT

LOGIC
MACROCELL

···--·~ 1/07

M--1-•l/01
M-+---.1/00

290126-3

In the tridirectional BMU, any port can be steered to any other port. In this diagram, Port A can be directed to Port B or Port C or both. The PLU
provides a 600-gate equivalent PAL function.

Figure 3. Functional Blocks In the SCBIC

3-2

PORT A---+--.-0
(INPUT PORT)

FROM TO
CONTROl FEEDBACK

BUS BUS

5CBIC

rROM PORT C

8 '+....,,.. ____ PORT C

Each bidirectional port can be dynamically configured as an input or an output depend­
ing on the control signals OEA, OEB and OEC. The feedback to the array is controlled
by TFB 1, TFB2 and port routing occurs through SELA, SELB and SELC. In the dia·
gram, Port A is the input port with possible outputs at Port B and Port C.

Figure 4a. Bus Management Unit Block Diagram

PORT A

TO FEEDBACK BUS 290126-23

LEGEND:

290126-5

OEA, OEB, OEC, SELA, SELB, SELC, LEA, LEB, LEC, TFB1 and TFB2 are the control outputs for the BMU derived from
the control bus.
MPCA, MPCB and MPCC are dynamic multiplexers controlled by SELA, SELB and SELC for port selection.
MUXA, MUXB, INVA, INVB and INVC are static multiplexers controlled by architecture bits (EPROM bits).
All latches are the "transparent" type.

Figure 4b. BMU Logic Diagram

any incoming port can be fed internally to the array
through TFB1 and TFB2. The three ports can be
time-multiplexed, if needed. Port routing is controlled
by signals SELA, SELB and SELC (Figure 4b).

3-3

Programmable Logic Unit (PLU)

An on-chip 600-gate-equivalent EPLD supplies the
control signals to the bus unit and related applica-

BMU

AO

A1

AZ

A3 ..
AS

A6

A7

INMC =Input Macro Cell
IOMC = Input/Output Macro Cell
p-term = Product Terms through the logic array

5CBIC

BUS
LOGIC

(PORT A)

80 81 82 83 84 85 86 87

BUS
LOGIC

(PORT B)

BUS
LOGIC

(PORT C)

CO Ct C2 C3 C4 CS C& C7

Figure 5. The SCBIC Architecture

3-4

CONTROL

ELB

290126-4

SCBIC

100 I01 102 103 IO• 105 106 107

PLU

290126-21

3-5

5CBIC

EPROM
CONTROL

BIT

PROGRAMMABLE AND ARRAY

PRODUCT
TERMS

INPUT AND FEEDBACK BUSES
290126-6

Figure &; The Array Structure

tion functions in the system. A dedicated input port
and a bidirectional 110 port, each 8 bits wide, allows
control logic implementation in the 5CBIC. The mac­
rocell based architecture enables the designer to
use up to 24 inputs and 8 outputs.

The inputs, array and 1/0 marcrocells generate a
sum-of-products (AND-OR) representation of any
given logic. Within the AND array, there is an
EPROM connection at every intersection of an in­
coming signal (true and complement) and a product
term to a given macrocell (Figure 6). Before pro­
gramming an erased device an EPROM connection
exists at every intersection. It is during the program­
ming process that these connections are opened to
generate the required connections.

The bidirectional 1/0 port, when configured as an
input, is identical to the input port in that inputs may
be latched by a signal from the control bus as shown
in Figure 7. An additional flow-through option for the
data inputs is available in the input macrocell.

The variable output architecture in the PLU allows
the designer to select the combinatorial or regis­
tered output types on a macrocell basis. This may

3-6

be implemented by selecting the architecture bit
MARB1 and the edge-triggered flip-flop (Figure 7).
The Macrocells support D, T, S-R or J-K type regis­
ters for optimal design. Truth tables for these are
listed in Figure 8 for easy reference. Whereas all
eight of the product terms are OR-ed together at the
register input for the D- and the T- registers, the J-K
and the S-R configurations employ sharing of the
product terms among two OR-gates.

The registers receive inputs at its data, clock, set
and reset lines. Eight product terms are available for
the data input and one each for the set and the clear
inputs.

The clock, output enable and the latching signals
can be selected by architecture bits MARB2, 6 and 3
respectively to be outputs from the control bus or
one product term from the array. Designers thus
have more options available for asynchronous
clocking and output controls.

The macrocell output can be fed back to the array
through the feedback bus or to the control bus. Fig­
ure 9 summarizes the bus structure and its relation­
ship to the relevant units in the 5CBIC.

SCBIC

INPUT PIN

290126-7

Figure 7. The Programmable Logic Unit

Input and Input/Output Logic Macrocell

I/)
:::> .,
_,

LATCH
0

"' I-z I/)

INPUT PIH 0 I/) :::>
0 :::> ., .,

"' ~ I- '.:l :::> "' Q. ~ "' ~

MARB6

THESE SIGNALS ARE COMMON
MOE

290126-8

Figure Sa. Comblnatlonal

3-7

intJ 5CBIC

Input and Input/Output Logic Macrocell

"' iil

INPUT PIN

LATCH I "' ii iil

I s ..
;r;

VO:C

Function Table
On On OnH

0 0 0
0 1 0
1 0 1
1 1 1

Figure Sb. D-Type Fllp-Flop

Input and Input/Output Logic Macrocell

"' iil

LATCH
cl
~

INPUT PIN 8 "' ii iil
~ s 1/0 PIN

~ ~

290126-10

Function Table
T On 0.11
0 0 0
0 1 1
1 0 1
1 1 0

Figure Sc. Toggle Fllp-Flop

3-8

Function Table
J K On On+ 1

0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 0

INPUT PIN

Function Table
s R On On+ 1

0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 1

1 1 Illegal

5CBIC

Input and Input/Output Logic Macrocell

Figure 8d. J·K Fllp-Flop

Input and Input/Output Logic Macrocell

Figure Be. S·R Fllp·Flop
3-9

290126-11

5CBIC

INPUT FROM: FEEDBACK:

INPUT:[} FROM~ MACROCELLS BMU . 1. 6
TO ARRAY TO ARRAY

1/0 . FROM 1/0 . 8
MACROCELLS MACROCELLS

INPUT BUS FEEDBACK BUS

FROM INPUT ..----,...2.!.L..o.. ::~~LS MACROCELL _....,.....__,

FROM 1/0_.____. -----M· 1:18 TOi/o
~;~~L MACROCELLS CONTROL MACROCELL

...._ __ ---.~ ~=ELL CONTROL

CONTROL BUS
290126-13

Figure 9. The 5CBIC Bus Organization

Configuring the 5CBIC

The Device Configuration Manager (DCM) in
iPLS II provides a high-level graphic design entry al­
ternative that allows bus configurations to be imple­
mented in minutes. A more detailed explanation is
given in the iPLS II manual. An ADF (Advanced De­
sign File) is then automatically generated that de­
fines the logic network using primitives.

The primitive necessary for configuring inter-port
communication is the "BMU", while the one required
for internal feedback from the BMU to the PLU is the
feedback primitive "BFMUX". Tables 1 through 4
define these primitives and their fields/bits.

Table 1. BMU Architecture Bits

Architecture Selects Bit

MUXA,MUXB Latched or Flow-Through
Port Data

INVA, INVB, INVC True or Inverted Oata Output

OeA
SelA
LeA
OeB
SelB
LeB
OeC
Sele
Lee

Name:

ADFSyntax:

Table 2. BMU Primitive

8 bit PA
110 PB
Ports PC

BMU

BMU (Bus Management (Unit)

PortA, Porte, Porte = BMU (Type,
OeA, SelA, LeA, OeB, SelB, LeB,
OeC, SelC, LeC)

Description: Port A = connection to 8 parallel 110
pins labeled AO-A7

3-10

Port B = connection to 8 parallel 110
pins labeled B0-87

Port C' = connection to 8 parallel 110
pins labeled CO-C7

OeA "."' output enable for Port A

SelA= select B or C internal con­
nection to Port A (0 = C,
1 = B)

LeA = input latch enable for Port A

OeB = output enable for Port B

SelB= select A or C internal con-
nection to Port B (O = C,
1 =A)

LeB = input latch enable for Port B

OeC = output enable for Port C

SelC= select A or B internal con-
nection to Port C (O = A,
1 = B)

LeC = input latch enable for Port C

5CBIC

Inversion Control Input Latch

Port: A B c A B· c
Bit: s· 4 3 2 1 0

0 Invert Output · Invert Output Invert Output Latched A Latched B Latched C

1 No Invert No Invert No Invert
'If LeC is contlnually high, the C latch is transparent.

Table 3. Bu• Feedback.Multlpler Primitive

BFMX

[0:7]

Name: BFMX (Bus Feedback Multiplexer

ADF Syntax: Fbk[0:7] = BFMX (TFB1, TFB2)

Description: Outputs.

Fbk = 8 parallel lines of feedback to
logic array.

Inputs:

TFB 1, TFB2 = By appling 0 or 1 as
shown on the chart above, select
feedback from Port A, B, or C. TFB1
·and TFB2 can be set to VCC or GND,
or they can be connected to any inter­
nal feedback or input node. The ports
are defined in the BMU primitive sec­
tion.

3-11

Direct A Direct B Latched c•

Table 4. PLU Architecture Bits

Architecture
Selects

Bit

MAR BO Output Polarity
MARB1 Combinatorial or Registered Outputs
MARB2 Clock Source
MARB3 Latching Signal Source
MARB4 Combinatorial or Registered

Feedback to the Logic Array
MARB5 Input Source to the Control Bus
MARB6 tri-state Control Signal

intef 5CBIC

ABSOLUTE MAXIMUM RATINGS*
Symbol Parameter Min Max Units

!Vee Supply Voltage(1) -2.0 7.0 v
jvpp Programming -2.0 13.5 v

Supply Voltage(1)

lv1 DC Input Voltage(1)(2) -0.5 Vee+0.5 v
stg Storage Temperature -65 +150 ·c

amb Ambient Temperature(3) -10 +85 ·c

NOTES:
1. Voltages with respect to ground.
2. Minimum DC input is -0.5V. During transitipns, the in­
puts may undershoot to - 2.0V for periods less than 20 ns
under no load conditions.
3. Under bias. Extended temperature versions are also
available. ·

•Notice: Stresses above those listed under '~bso­
lute Maximum Ratings" may cause permanent dam­
age to the device. This is a stress rating only and
functional operation of the device at these or any
other conditions above those indicated in the opera­
tional sections of this specification is not implied. Ex­
posure to absolute maximum rating conditions for
extended periods may affect device reliability.

NOTICE· Specifications contained within the
following tables are subject to change.

D.C. CHARACTERISTICS TA= o•cto +70°c, Vee= 5.0V ±5%

Parameter Description Min Max Unit Test Conditions

Port A Port B, C 1,1/0
VoH Output High Voltage 2.4 v TIL:loH -1 mA -5mA -1 mA

Vee= Min

Port A Port B, C I, 1/0
Vol Output Low Voltage 0.45 v loL 5mA 16mA 5mA

Vee= Min

V1H Input High Level 2.0 Vee +o.3 v
V1L Input Low Level -0.3 0.8 v
1, Input Leakage Current 10 p.A Vss ~ V1N < Vee. Vee = Max

loz Output Leakage Current 10 p.A Vss ~ Vour ~ Vee. Vee = Max

los<4l Output Short Circuit Current BMU 80 mA Vee = Max, Vour = 0.5
PLU 16 mA

lg9(S) Operating Current 75 p.A V1N = Vee or Gnd,
(standby, low power mode) 10 = o

lcc2 Operating Current 20 mA V1N = Vee or Gnd,
(active, low power mode) f = 1 MHz, No Load

Ices Operating Current 108 mA V1N = Vee or Gnd,
(active, turbo mode) f = 1 MHz, No Load

CtN Input Pin Capacitance 30 pF

Cour Output Pin Capacitance 40 pF

NOTES:
4. Output shorted for no more than 1 sec. and only one output shorted at a time.
5. Chip automatically goes into standby mode if logic transitions do not occur at input pins. (Approximately 100 ns after last
transition).

3-12

SCBIC

290126-14
NOTES:
1. CL includes jig capacitance
2. Device input rise and fall times < 6 ns

Figure 10A. A.C. Testing Load Circuit

3.0~
INPUT O~

OUTPUT

2!19126-16

A.C. Testing: Inputs are driven et 3.0V for a Logic "1" and OV for a Logic "O". Timing
measuremenlS are made at 2.0V for a Logic "1" and o.ev for a Logic "O" on Inputs.
Outputs are measured at a 1.SV p'C;nt

Figure 108. A.C. Testing Input, Output Waveform

Switching Characteristics

Timing Referenc9d to
Notation: SUfflJi Control From:

1 direct Input pin
2 product term
3 control bus

PORT VALID INPUTS

Tusu1 T1,1Ho1
Tusu3 TLIH03

LATCH
ENABLE

TLEH

OUTPUT.
ENABLE

TauSPD

PORT
OUTPUTS

A) Latched Port Inputs

Tpzx1
Tpzx3

PORT -------"\.l.1--VA-L-ID-----------­

INPUTS --------'I"------''----------

OUTPUT
ENABLE

PORT

TausPD

OUTPUTS ----------'l'--""I

B) Direct Port Inputs

Figure 10C. ·aus Management Unit

3-13

290126-15

290126-17

290126-22

5CBIC

Switching Characteristics (Continued)

INPUTS OR ------'\. 1-------,1,,....------------
1/0 INPUTS ------- ___ vA_L_iD ____ --------------

LATCH
ENABLE

CLOCK

OUTPUT
ENABLE

COMBINATORIAL

T LISU2 T LIH02
T LISU3 T LIH03

Tc1su2 --...i.--TcLEH
Tc1su3

Tepo

OUTPUT --------------~-- -----"

REGISTERED

OUTPUT -------------------'!'----""!
A) Latched Inputs

Tpzx2
Tpzx3

290126-18

INPUTS OR ------- -------- --------------
VALID 1/0 INPUTS OR

REGISTERED FEEDBACK ------- '-------- --------------

CLOCK

OUTPUT
ENABLE

COMBINATORIAL
OUTPUT

REGISTERED
OUTPUT

SET, RESET
INPUT

ASYNCHRONOUSL Y
SET, RESET

/

i.-----TcwH---~~

T
i--Tcpo--+j PXZ2-.. PZX2

Tpxz3 Tpzx3

~
TRPDh
TRPD3

)(./I
·~

Tspw

~
Tspo

- ---------T-RP_o-3-----------------

OUTPUT -----------
290126-19

B) Direct Inputs

Figure 100. Programmable Logic Unit

3-14

irtJ SCBIC

AC CHARACTERISTICS

BUS MANAGEMENT UNIT

Symbol Parameter
-25 -35 -45

Unlta
Min Typ Ma~ Min Typ Max Min Typ Max

TLISU1 Port Input Setup Time to 0 0 0 ns
Latch Enable (Fast Option)

Tusua Port Input Setup Time to 0 0 0 ns
Latch Enable (Control Bus)

TuH01 Port Input Hold Time to 25 35 45 ns
Latch Enable (Fast Option)

TuH03 Port Input Hold Time to 75 85 95 ns
Latch Enable (Control Bus)

TLEH Latch Enable High Time 25 35 45 ns

TeuSPD Port to Port Propagation Delay 15 25 25 35 35 45 ns

Tpxz1 Valid Output to High Impedance 15 25 25 35 35 45 ns
(OE From Fast Option)

Tpxza Valid Output to High Impedance 75 85 95 ns
(OE From Control Bus)

Tpzx1 High Impedance to Valid Output 15 25 25 35 35 45 ns
(OE From Fast Option)

Tpzxa High Impedance to Valid Output 75 85 95 ns
(OE From Control Bus)

fLEPD1 Latch Enable (From Fast Option) 15 25 25 35 35 40 ns
To Port Output Delay

TLEPD3 Latch Enable (From Control Bus) 75 85 95 ns
To Port Output Delay

PROGRAMMABLE LOGIC UNITS

Symbol Parameter
-25 -35 -45

Unlta
Min Typ Max Min Typ Max Min Typ Max

Tusu2 Input Setup Time to Latch Enabl.e 0 0 0 ns
(P-Term)

Tusua Input Setup lime to Latch Enable 0 0 0 ns
(Control Bus)

TuH02 Input Hold Time to Latch Enable 50 30 70 50 80 60 ns
(P-Term)

TuH03 Input Hold Time to Latch Enable 70 50 80 60 90 70 ns
(Control Bus)

Tc1su2 Input Setup Time to Clock (P-Term) 0 0 0 ns

Tc1sua Input Setup Time to Clock (Control Bus) 0 0 0 ns

TcLEH. Clock to Latch Enable Hold Time 5 5 5 ns

Tcpo Combinatorial Output Delay 40 65 50 75 60 85 ns

3-15

intef 5CBIC

PROGRAMMABLE LOGIC UNITS (Continued)

Symbol Parameter

TRPD2 Registered Output from Clock (P-Term)

TRPD3 Registered Output from Clock (Control Bus)

T1H02 Input Hold Time to Clock (P-Term)

T1H03 Input Hold Time to Clock
(Control Bus)

TcwH Minimum Clock Width High

TcwL Minimum Clock Width Low

Tspo Set Output Delay

TRPD Reset Output Delay

Tspw SET iRESET Pulse Width

Tpxz2 Valid Output to High"lmpedance
(OE from P-Term)

Tpxza Valid Output to High Impedance
(OE from Control Bus)

Tpzx2 High Impedance to Valid Output
(OE from P~Term)

Tpzxa High Impedance to Valid Output
(OE from Control Bus)

Tcp1 Minimum Clock Period (Register Output
to Register Input Through Feedback Path)

F1 Maximum Internal Frequency

Tcp2 Minimum Clock Period Between
Logic Transitions (Inputs to Outputs)

F2 Maximum External Frequency

lnt81igent Programming AlgorlthmTM

The 5CBIC supports the inteligent Programming Al·
gorithm whicti rapidly programs Intel H-ELPDs (and
EPROMs) using an efficient and reliable method.
The inteligent Programming Algorithm is particularly
suited to the production programming environment.
This method greatly decreases the overall program­
ming time while programming reliability is ensured as
the incremental program margin of each bit is con­
tinually monitored to determine when the bit has
been successfully programmed.

FUNCTIONAL TESTING

Since the logical operation of the 5CBIC is
controlled by EPROM elements, the device is com­
pletely testable. Each programmable EPROM bit
controlling the internal logic is tested using applica­
tion-independent test program patterns. After test-

-25 -35 -45
Units

Min Typ Max Min Typ Max Min Typ Max

20 30 30 40 40 45 ns

30 35 30 40 40 45 ns

50 30 70 50 80 60 ns

70 50 80 60 90 70 ns

33 38 43 ns

33 38 43 ns

65 75 85 ns

65 75 85 ns

33 38 43 ns

65 75 85 ns

75 85 95 ns

65 75 ·es ns

75 85 95 ns

50 70 80 ns

20.0 14.3 12.5 MHz

50 80 80 110 100 120 ns

12.5 20.0 9.09 12.5 8.0 10.0 MHz

3-16

ing, the devices are erased before shipmentto cus­
tomers. No post-programming tests of the EPROM
array are required.

The testability and reliability of EPROM-based pro­
grammable logic devices is an important feature
over similar devices based on fuse technology.
Fuse-based programmable logic devices require a
user to perform post-programming tests to insure
proper programming.

DESIGN SECURITY

A single EPROM bit provides a programmable de­
sign security feature that controls the access to the
data programmed into the device. If this bit is set, a
proprietary design within the device cannot be cop­
ied. This EPROM security bit enables a higher de­
gree of design security than fused-based devices
since programmed data within EPROM cells is invisi-

5CBIC

ble even to microscopic evaluation. The EPROM se­
curity bit, along with all the other EPROM control
bits, will be reset by erasing the device.

TURBO-BIT

The device will consume quiescent current (75 µ.A,
typically) if no transitions are detected in the array
for 50 ns or more. This mode, the power-down
mode, can be enabled by selecting the Turbo Bit
OFF. If this bit is enabled, however, the device con­
sumes active current. The power-down mode will re­
vert to its active state if a transition is detected in the
array, at an extra delay of 3 ns in speed paths.

LATCH-UP IMMUNITY
All pins of the 5CBIC have been designed to resist
latch-up which is inherent in inferior CMOS struc­
tures. The 5CBIC designed with Intel's proprietary
CHMOS 11-E EPROM process. Thus, pins will not ex­
perience latch-up with currents up to 100 mA and
voltages ranging from -1V to Vee + 1V. Further­
more, the programming pin is designed to resist
latch-up to the 13.5V maximum device limit.

INTEL PROGRAMMABLE LOGIC
DEVELOPMENT SYSTEM (IPLDS II)
The iPLDS II graphically shown in Figure 11 provides
all the tools needed to design with Intel H-Series
EPLDs or compatible devices. In addition to provid­
ing development assistance, iPLDS II insulates the
user from having to know all the intricate details of
EPLD architecture (the machine will optimize a de-··
sign to benefit from architectual features). It contains
comprehensive third generation software that sup­
ports four different design entry methods, minimizes
logic, does automatic pin assignments and produces
the best design fit for the selected EPLD. It is user
friendly with guided menus, on-line Help messages
and soft key inputs.

In addition, the iPLDS II contains programmer hard­
ware in the form of an iUP-PC Universal Program-

mer-Personal Computer to enable the user to pro­
gram EPLDs, read and verify programmed devices
and also to graphically edit programming files. The
software generates industry standard JEDEC object
code output files which can be downloaded to other
programmers as well.

The iPLDS II has interfaces to popular schematic
capture packages (including Dash series from Fu­
turenet• and PC CAPS from PCAD ..) to enable de­
signs to be entered using schematics. A more inte­
grated schematic entry method is provided by
SCHEMA 11-PLD, a low-cost schematic capture
package that supports EPLD primitives and user-de­
fined macro symbols. SCHEMA 11-PLD contains the
EPLD Design Manager, which provides a single user
interface to both SCHEMA 11-PLD and iPLS II soft­
ware. The other design formats supported are Boo­
lean equation entry and State Machine design entry.

The iPLDS II operates on the IBMt PC.XT, PC/AT,
or other compatible machine with the following con­
figuration:

1. At least one floppy disk drive and hard disk drive.

2. MS-DOStt Operation System Version 3.0 or
greater.

3. 512K Memory.

4. Intel iUP-PC Universal Programmer-Personal
Computer

5. A GUPI LOGIC Adaptor

6. A color monitor is suggested.

Detailed information on the Intel Programmable Log­
ic Developement System is contained in a separate
Intel data sheet.

•FutureNet is a registered trademark of FutureNet
Corporation. DASH is a trademark of FutureNet
Corporation.

.. PC-CAPS is a trademark of P-CAD Corporation.

tlBM Personal Computer is a registered trade­
mark of International Business Machines Corpo­
ration.

ttMS-DOS is a registered trademark of Microsoft
Corporation.

3-17

intef SCBIC

Figure 11. IPLDS II Intel Programmable Logic Development System

3-18

intef APPLICATION
NOTE

AP-305

October 1987

Dual-Port Memory Control
Using The 5CBIC

NAGEEN SHARMA
PROGRAMMABLE LOGIC APPLICATIONS

INTEL CORPORATION

3-19
Order Number: 292032-002

intJ AP-305

INTRODUCTION

One of the popular multi-port configurations common­
ly used in multiple microprocessor systems is the dual
port. Because each processor is now capable of han­
dling separate tasks in parallel, such designs offer
improved performance and throughput. Sharing re­
sources, such as large amounts of meinory, is an opti­
mizing trade-off to keep the system efficient and, at the
same time, cost-effective.

The scheme discussed here consists of two processors
sharing memory through some intermediate logic. Typ­
ically, such logic consists of data transceivers, address
latches, SSl/MSI arbitration logic (AND gates,
OR gates, FLIP-FLOPS etc.). With the 5CBIC imple­
mentation, it is possible to reduce the overall chip count
by over three times.

A block diagram of the dual-port scheme is shown in
Figure 1 for two sixteen-bit processors accessing shared
memory. Two 5CBIC's are required for the implemen­
tation as all ports in the chip are byte-wide. The first
device provides the isolation of the memory and proces­
sors' high-byte data bus; it also includes the necessary
arbitration logic. The second 5CBIC interfaces the low­
byte data bus and implements a 7-bit counter with a

PROCESSOR 1

PORT A
5CBIC

SYNCHRONIZER
ARBITER
CONTROL

PORT C

parallel-load capability. The lead configurations of the
devices are given in Figures 2 and 3.

A bus-arbitration flow-diagram and the state machine
diagram for the arbiter are shown in Figures 4 and 5,
respectively. These diagrams are translated into equa­
tions, which are shown in Figures 6 and 7.

DESCRIPTION

The block diagram (Figure 1) shows two processors,
Processor 1 and Processor 2, in a minimal memory sys­
tem. The interface logic can be condensed to two
5CBIC's. These devices provide the necessary isolation
of the shared memory data bus (MDATA (0 .. 15])
from each of the processors' data bus (PlDATA
(0 .. 15) and P2DATA (0 .. 15)).

Similar isolation is required for the address bus. This is
implemented by a set of latches. It is interesting to note
that these latches can also be easily configured in an
extra 5CBIC. An implementation of latches can be
found in another application note that serves as a multi­
plexed address/ data interface.

DATA 0 .. 15

PORT B

PORT A
5CBIC

7 - BIT COUNTER COUNTER
OUTPUTS

CONTROLS
PROCESSOR 2

292032-1

Figure 1. The Dual-Port Block Diagram

3-20

AP·305

The control bus provides all the necessary signals that
are used to initiate requests (PlMRD, PlMWR,
P2MWR), or simply to provide handshaking signals in­
dicating cycle termination etc.

The arbitration scheme is shown in Figure 4 with the
help of a flow-chart. In this example, Processor 1 has
been assigned higher priority than Processor 2 to pre­
vent contention. If Processor 2 requests an access while
Processor 1 has control of the system bus, the Processor
2 bus cycle is extended by inserting wait states. The
cycle remains extended until the arbiter grants access to
Processor 2 and enables the appropriate port (PORT B)
of the Bus Management Unit (BMU) in the SCBIC.

PIOT

P2MWR

OE_PC

OE_PB

P214RD

Yee
CLK1

OE_PA

MEM_WR

PIMWR

PIMRD

High Byte Data Transfer
and Arbitration Logic

HBYTE_B(7)

HBYTE_A(7)

HBYTE_A.(6)

HBYTE_A(S)

HBYTE_A(4)

Vee
HBYTE_A(3)

HBYTE_A(2)

HBYTE_A(1)

HBYTE_A(O)

HBYTE_B(6)

292032-2

Figure 2. Lead Configuration

3-21

After the data transfer has occurred, an acknowledge
signal signifies cycle completion.

The state machine diagram of the arbitration algorithm
is shown in Figure 5. Upon receiving a request from
Processor l, the arbiter will move from it's IDLE state
to GRANT! state and.cycle back only after completing
the memory access. If Processor 2 requests for a memo­
ry access while the arbiter is in the IDLE state, tran­
sition to GRANT2 state will occur only if Processor 1
is not requesting access. Different arbitration algo­
rithms are possible; these would translate into different
state-machines.

ENABLE

LOAD

QS.T

Q4.T

OE_PC

Vee
CLK1

Q3,T

02.T

OLPB

OE_PA

Low Byte Data Transfer
and Seven-Bit Counter

LBYTLB(7)

LBYTLA(7)

LBYTLA(8)

LBYTLA(S)

LBYTLA(4)

Vee
LBYTLA(3)

LBYTE_A(2)

LBYTE_A(1)

LBYTE_A(O)

LBYTE_S(6)

292032-3

Figure 3. Lead Configuration

intef

HIGHER PRIORlY
(PROCESSOR 1)

PROCESSOR 1 REQUIRES
MEMORY ACCESS ------+

(DRIVE P1 REQ ACTIVE)

ENABLE PROCESSOR 1 MEMORY ACCESS LOGIC
(DISABLE PROCESSOR 2 MEMORY ACCESS LOGIC)

!
DATA TRANSF'ER IN PROGRESS

DATA TRANSF'ER COMPLETE

END OF' CYCLE

PROCESSOR 1 DOES NOT REQUIRE
MEMORY ACCESS

AP·305

IDLE STATE

I
ARBITRATE

IDLE STATE

i
ARBITRATE

I

LOWER PRIORlY
(PROCESSOR 2)

PROCESSOR 2 REQUIRES +------ MEMORY ACCESS
(DRIVE P2REQ ACTIVE)

PROCESSOR 2 REQUEST PENDING

ENABLE PROCESSOR 2 MEMORY ACCESS LOGIC
• (DISABLE PROCESSOR 1 MEMORY ACCESS LOGIC)

!
DATA TRANSF'ER IN PROGRESS

DATA TRANSF'ER COMPLETE

.r--------- END OF' CYCLE

IDLE STATE

!
(CONTINUE)

i
292032-9

Figure 4. Bus Arbitration Flow Diagram

3-22

PIREQ ENDC1

RESET

P2REQ • PIREQ ENDC2

292032-4

Figure 5. State Diagram

AP-305

3-23

States State Variables

P1GNT P2GNT
IDLE 0 0
GRANT1 1 0
GRANT2 0 1
ILLEGAL 1 1

It should be pointed out that since Processor 2 could be
running on a different clock than Processor 1, it may be
necessary to synchronize the requests using the system
clock (say Processsor 1). This is conveniently done us­
ing buried master/slave flip-flops to prevent erroneous
requests or noise from triggering the arbiter states.

The. outputs from the arbiter (MEM_ WR, PlADEN,
P2ADEN) control the cycle type (READ/WRITE)
and the control signals that provide address and data
isolation. For the data path, these are generated in the
Programmable Logic Unit (PLU) and internally routed
to the Bus Management Unit (BMU). This saves board
space that is normally occupied by interconnecting
traces.

The Bus Management Unit (BMU) is easily configured
using the iPLS II Device Configuration Module
(DCM) in a high-level graphic fashion. The logic for
the arbiter or the 7-bit counter can be entered using the
Logic Builder. It should be noted that the 7-bit counter
with parallel load is implemented using buried registers
with an output BOC (end of count), indicating the com­
pletion of the desired count. The load operation is per­
formed using PORT A fed internally to the program­
mable EPROM atray.

N. SHARMA
INTEL .CORP.
NOVEMBER 10, 1986
l
A
5C8IC
Dual-Port.ADF

OPTIONS: TURBO= OFF
PART: SCBIC
INPUTS: RESET PlMRD. PlMWR P211RD P211WR PlDT P2DT CLKl :r Control Inputs :r
OUTPUTS: P lADEN P2ADEN MEM_WR OE_PA OE_PB OE_PC

HBYTE_A HBYTE_B HBYTE_C :r Port I/O and
Control outputs Z

N£TWORK:

SINPUTS:i .
CLK ·= INP(CLKl)
RESET · INP (RESET)
PlMRD INP(PlMRD)
PlMWR = INP(PlMWR)
P2MRD = INP(P211RD)
P.211WR = INP(P211WR)
·p10f = INP(PlDT}
P2DT =. INP(P2DT)

:lOUTP\ITS:l

:r SvstH clock I
:r Resest inPtlt :r
I'. Proc. l. 1te1tOry read. I'.

· :r Proc. 1 ...aorv write :r
I Proc. 2cry read I
:r Proc. 2 -rv write :r
:r· Proc·. l data (tranS11a/receive' l :r
:r Proc. 2 data (transmit/receive') :r

PlADEN,PlADEN RQRF .. «P1GNT,CLK,GND,GND,YCC) :r Proc. l address/data enable :r
. · P2ADEN,P2ADEN " ROAF (P2GNl ,CLK,GND,GND,YCC) :r Proc. 2 address/data enable :r

MEM_NR = CONF (l~E!t_WR,YCC) :r Dual-Port -llOry write :r
OE_PA;OEPA COCF' (OE_PA,YCC) :r Control for Port A OE control :r
OE_J!B,OEPB = COCF (OE_PB,YCC) :r Control for Port B OE control :r
OE_PC,OEPC = COCF (OE_PC,YCC) :r control for Port C OE control :r

P2REQ = NORF (SYN_P2RO,CLK,GND,GND) :r Synchronized processor 2 raquest:r

:r· PORTS 'IN BMU. :r

HB_Y.TE_A,HBYTE_B,HBYTE_C

EQUATIONS,.

:r llRB'ITRATION :r

BMU (ObllOOOO,OEPA,GND,.YCC,
OE:PB ,GND, vce;OEPC,PlADEN, YCC)

PlGNT /RESET * (PlREQ * ./PlADEN .* /P2ADEN +
. /P2ADEN * PlADEN * /ENDCl ; I Proe. l granted access z

P2GNT /RESET * (SYN_P2RQ * /PlREQ * /P2ADEN * /PlADEN +
P2ADEN * /PlADEN • /ENDC2) ; :r Proc. 2 granted access :r

:r CONTROL :r

PlREQ = PlMRD + PlMWR ;
SYN_P2RQ = P2MRD + P2MWR
ENDCl = /PlREQ
ENDC2 = /SYN_P2RQ ;
MEM_WR = PlMWR * PlADEN +

% Proc. l request I
I Proc. 2 request :Z

:r Proc. 1 end of cycle :r
Z Proc. 2 end of cycle I

P2MWR * P2ADEN; :r Memory write :r
OE_PA
OE_PB
OE_PC

ENDS

PlADEN * /PlDT ; :r Control signal for Port A :r
P2ADEN * /P2DT ; :r Control signal for Port B :r
PlADEN * PlDT + P2ADEN * P2DT ; :r Control signal for Port c :r

Figure 6. ADF Ustlng tor Arbiter and High Byte Data Transfer Logic

3-24

292032-5

292032-6

N. SIWUIA
INTEL CORP.
AUGUST 31, 1987
2
A
5CBIC

AP-305

Dual-Port (LOw byte) .ADF AND AN ADDRESSABLE SEVEN-BIT DOWN COUNTER

OPTIONS : TUUO-OFF
PART: 5CBIC
INPUTS: CLKl RISET OB_PA OB_PB OE_PC LOAD ENABLE P1ADEN

' Control Inputs t
OUTPUTS: :::;B-~l,;8"~~":; ~:;E-~4.T Q5.T Q&.T BOC

t BMU and counter outputs

NETWORK:

UNPUTH
CLK • J:NP (CLltl) t System clock t gH: : ~: 1g:-:::
OB-PC • INP (OB-PC)
LOi'D • INP (LOAD)
CLBAR • INP (Rl8'T)
P1ADEN • INP (P1ADEN)
P2ADBll •· INP (P2ADBll)
ENABLE • INP (ENABLE)

\OUTPUT5'
QO.T,QO • TOTI' (QO.T,CLK,CL&AR,GND,VCC)
Ql.'1',Ql • TOTI' (Ql.'1',CLK,CL&AR,GND,VCC)
Q2.T,Q2 • TO!!' (Q2.T,CLK,CLSAR,GND,VCC)
Q3,'1',Q3 • 'l'Oft' (Q3.T,CLK,CL&AR1 GlrlD,VCC)
Qt.'1',Qt • TOft' (Q4.T,CLIC,CI.BAR,GNI>,VCC)
Q5.T,Q5 •TOTI' (QS.T,CLlt,CLBAR,GHD,VCC)
Q6.T,Q6 • TOTI' (Q6.T,CLlt,CL&AR,GND,VCC J

\ COUNT&R STATES \

BOC • COllF IEOCT, VCC) \ OUTPUT FOR SYSTIM \

\ PORTS IN _, \

LBYTB_A, LBYTB_B, LBY'l'B_C • BMU (Ob110000,0B_PA,GND,VCC,
O&_PB,GHD, VCC, OB_PC, Pl.ADEN, VCC)

DATA(0:7] • BFMX (GND,GND) \ BYTB FOR INITIALIZING COUNTBR \
BQUATIOllS:

QO.T • ILOAD * IDATA(O] * /QOI + l/DATA(OJ * QO) + \ LOAD OPl!IRATIOll \
(/LOAD * BllABLB) ' COUNT \

Ql.T • (LOAD * IDATA(l] * /Ql) + (/DATAfli • Ql) I +
/LOAD * PABLI: * /QO I I

Q2.T • (LOAD * (DATA(Z] * /QZ) + l/DATA(ZJ • Q21) +
(/LOAD * UABLB * /Ql * /QO) I

Q3.T • (LOAD * (DATA(3J * /Q3) + (/DATA(3J * Q3) I +
(/LOAD * BllABLB * /Q2 * /Ql * /QOI I

Qt.T • (LOAD * (DATA(t] * /Qt) + l/DATA(t) * Qt)) +
(/LOAD * BllABLB * /Q3 * /Q2 * /Ql * /QO I

Q5.T • ILOAD * (DATA(5] * /Q5) + (/DATA(5] * Q51 I +
(/LOAD * ENABLB * /Qt * /Q3 * /Q2 * /Ql * /QO) I

Q6.T • (LOAD * (DATA(6] * /Q6) + (/DATA(6] • Q6)) +
(/LOAD * IBllABLB * /Q5 * /Qt * /Q3 * /Q2 • /Ql * /QO)

EOCT • /Q6 * /Q5 * /Qt * /Q3 * /Q2 * /Ql * /QO '

292032-7

292032-8

Figure 7. ADF Listing for Low Byte Data Transfer Logic and Seven-Bit Addressable Counter

3-25

intef APPLICATION
NOTE

AP-308

October 1987

The Multiplexed Bus Interface
with the 5CBIC

NAGEEN SHARMA
PROGRAMMABLE LOGIC APPLICATIONS

INTEL CORPORATION

3-26
Order Number: 292035-002

intJ AP-308

INTRODUCTION

When designing with microprocessors or other LSI
chips that employ time-multiplexed buses, the de­
multiplexing logic typically consists of latches and
transceivers. Further, decoding is accomplished using
extra chips to generate chip selects. It is also common
to need a wait-state generator to accommodate devices
with different access times. Other specialized functions,
like a barrel-shifter, are also frequently needed to shift
data in data-processing applications and floating point
arithmetic.

The Intel 5CBIC EPLD has the logic density and ar­
chitectural flexibility to combine all these functions in a
single device. This integration results in a three-fold
savings in device count over an SSI/MSI approach for
a typical multiplexed bus interface used in 16-bit micro­
processor systems.

A block diagram of the system is shown in Figure 1
with the lead configurations of the two 5CBIC's in Fig­
ures 2 and 3. The address map for the decoder and the
state-table for the wait-state generator are shown in
Figures 4 and 5, respectively. The truth table for the
barrel-shifter is given in Figure 6 and 'the block diagram
in Figure 7. The equations implementing the high-byte
demultiplexing of the address/ data bus, address decod-

... 08 .. 15

'-.----~/I PORT"

ing and generating the appropriate number of wait­
states, are listed in the .adf (advanced design file) for­
mat in Figure 8. The equations for the corresponding
low-byte demultiplexing logic and an eight bit barrel­
shifter are listed in Figure 9.

DESCRIPTION

Since the 5CBIC is a byte-oriented device, two devices
are required when interfacing to a 16-bit microproces­
sor or microcontroller. The address/data bus from the
processor is connected to Port A of the 5CBIC, with
the demultiplexed data bus and address bus on the high
drive Ports B and C, respectively. The logic between
Port A and Port B consists of a transceiver; the logic
between Ports A and C is configured as a transparent
latch.

The high-order address bits are internally fed from the
Bus Management Unit (BMU) to the Programmable
Logic Unit (PLU) for decoding. This example uses a
microprocessor with a 20-bit address bus, and therefore
the high-address lines Al7 ... Al9 can be latched in
the PLU input macrocells. This scheme can be config­
ured using the Device Configuration Manager (DCM)
in a high-level graphic fashion, available in the iPLDS-
11 (Intel Programmable Logic Development System).

08 .. 15

MWTC 5CBIC

PROCESSOR
WITH

MULTIPLEXED

READY

"DDRE~~/om l/L-~L,.L.~ PORT"

{CLK)

("LE)

{OT /R•)

DEMULTIPLXER
{TRANSCEIVER, Ll.TCH)

B"RREL SHIFTER

5CBIC

l/L='---1'> SYSTEM DATA BUS
l'-r--~/ {LOW BYTE)

DOUT0 .. 7

292035-1

Figure 1. Block Diagram of a Minimal System Using Multiplexed Address/Data Bus

3-27

intef AP·308

Decoding is accomplished using the latched addresses
and the appropriate control signals. Along with the
chip-selects, buried logic implements a wait-state gener­
ator to introduce up to six extra states in the processor
cycle. (Buried logic means that the macrocells in the
PLU can be used independently of their input pins).
Figure 5 shows the table for a down counter with load
capability and the corresponding number of wait-states
for the devices in the system.

PA [O .. 7) = Port A (Address/Data)
PB [O .. 71 = Port B (Data)
PC [O .. 7) = Port C (Address)

IODEV1

A17

Vee
A18

EPROMSEL

RAMSEL

A19

ALE

The lower address/data bus lines are demultiplexed us­
ing the second 5CBIC, the equations for this device are
listed in Figure 9. The PLU here is used to implement
an eight-bit barrel-shifter, that shifts the data (loaded
through the BMU, Port B) a fixed number of bits based
on status lines SO .. S2. The outputs are made avail­
.able on the 1/0 port in the PLU.

P87

P'47

PA6

P'45

P'44

Vee
P.U

PA2

P'41

P'40

P86

292035-2

Figure 2. SCBIC Lead Configuration (High Byte Demultlplexlng, Decoder and Walt-State Generator)

PA [O .. 7) = Port A (Address/Data)
PB [O .. 7) = Port B (Data)
PC [O .. 7) = Port C (Address)

DOUT5

DOUT4

so
Vee

OE_C

DOUT3

DOUT2

DT/R•

'4LE

~ i:: ~ "' ::> ::>
ffi u 8 g 0..

iii ~~f~f~ 0..

P87

38 PA7

37 P'46

36 PA5

35 PA4

34 Vee
33 PA3

32 PA2

31 P'41

30 P'40

29 P86

292035-3

Figure 3. SCBIC Lead Configuration (Low Byte Demultlplexlng and Barrel-Shifter)

3-28

G 00000 H

9FFFF H

EJ CAOOO H

FDFFF H

EJ 1000 H

1FFFH

EJ 2000H

2FFFH

Figure 4. Address Map

AP-308

This implementation illustrates not only a path of high­
er integration in this very common design, but also the
benefits that can be realized if the system is viewed as a
collection of smaller functions. These can then be
paired together to best exploit the full capability of the
5CBIC.

The amount of shift in data output is determined by the
select lines SO, SI and S2. This can be used for format­
ting data needed in other sections in a system.

State Variables #Walt States Device

02 01 00

1 1 1 7
1 1 0 6 IODEV2
1 0 1 5
1 0 0 4
0 1 1 3
0 1 0 2 IODEV1
0 0 1 1 EPROM
0 0 0 0 ENABLE READY

The READY signal is used to increase cycle time; for
devices that cannot transfer data at maximum proces­
sor bus bandwidth.

Figure Sa. State Table for
the Walt-State Generator

SYSTEM I'
CLOCK

MEMORY,
1/0 CYCLE

READY

T1

ONE COMPLETE PROCESSOR CYCLE
(WITH ONE WAIT- STATE}

T2 T3 TWAIT T4

READY

WAIT

Figure Sb. Waveforms Showing Walt State Insertion In Processor Cycle

3-29

·1

292035-4

S2 S1 so DOUT_7

0 0 0 DIN_7
0 0 1 DIN_6
0 1 0 DIN_5
0 1 1 DIN_4
1 0 0 DIN_3
1 0 1 DIN--2
1 1 0 DIN_1
1 1 1 DIN_O

S2 O

S1 O

so 0

AP-308

DOUT_6 DOUT_5 DOUT_4 DOUT_3 DOUT-2 DOUT_1

DIN_6 DIN_5 DIN_4 DIN_3 DIN--2 DIN_1
DIN_5 DIN_4 DIN_3 DIN--2 DIN_1 DIN_O
DIN_4 DIN_3 OIN--2 DIN_1 DIN_O DIN_7
DIN_3 DIN--2 DIN_1 DIN_O DIN_7 DIN_6
DIN--2 DIN_1 DIN_O DIN_7 OIN_6 DIN_5
DIN_1 DIN_O DIN_7 DIN_6 DIN_5 OIN;._4
DIN_O DIN_7 DIN_6 DIN_5 DIN_4 DIN_3
DIN_7 DIN_6 DIN_5 DIN_4 DIN_3 DIN--2

Figure 6. Truth-Table for the Barrel-Shifter

DATA IN FROM BMU PORTA
7 6 5 4 3 2 1 0

SHIFT 0

7 6 5 4 3 2 1 0

S2 O

SI

so

DATA IN FROM BMU PORT A
7 6 5 4 3 2 1 0

SHIFT 3

4 3 2 1 0 7 6 5

DOUT_O

DIN_O
DIN_7
DIN_6
DIN_5
DIN_4
DIN_3
DIN--2
DIN_1

292035-5

Figure 7. Block Diagram of Barrel Shifter

3-30

intJ

N. SHARMA
INTEL CORP.
AUGUST 31, 1987
2
A
SCBIC

AP·308

MUL.ADF -- DEMULTIPLEXER, DECODER, WAIT-STATE GENERATOR

OPTIONS: TURBO•OFF
PART: SCBIC
INPUTS: CLK ALE Al9 Al8 Al7 IORC IOWC MRDC MWTC DT/R•
OUTPUTS: PA_ADDT PB_DT PC_AD RAMSEL EPROMSEL IODEVl IODEV2 OE_C READY

NETWORK:
CLK • INP (CLK)
Al9 • LINP (Al9)
Al8 • LINP (Al8)
Al7 • LINP (Al7)
ALE = INP (ALE)
IORC • INP (IORC)
IOWC • INP (IOWC)
MRDC • INP (MRDC)
MWTC • INP (MWTC)
DTR • INP (DT/R•)

PA ADDT,PB DT,PC AD • BMU (0blll0ll,OE A,VCC,ALE,OE B,GND,VCC,OE C,GND,VCC)
LA[0:7) • BFMX (VCC,GND) % LATCHED ADDRESSES 8~.15 FED BACK-INTO %

% THE PLU FOR I/O DECODING %
OE_C,OE_C • COCF(OEC,VCC) % OUTPUT CONTROL FOR PORT C

RAMSEL • CONF (RAMSL,VCC)
EPROMSEL,EPROMSEL • COCF (&PROMSL,VCC)
IODEVl,IODEVl • COCF (IODVl,VCC)
IODEV2,IODEV2 • COCF (IODV2,VCC)

READY • CONF (RDY,RDYOE)

% RAM SELECT %
% EPROM SELECT %

% I/O DEVICE l SELECT
% I/O DEVICE 2 SELECT

READY FOR CYCLE COMPLETION

QO • NORF (QOD,CLK,GND,GND)
Ql = NORF (QlD,CLK,GND,GND)
Q2 = NORF (Q2D,CLK,GND,GND)

STATES Q0 .. Q2 FOR WAIT-STATE
GENERATION (USING BURIED

REGISTERS)

EQUATIONS:

% DECODE EQUATIONS

RAMSL • /Al8 * /Al7 * MREQ ; % OOOOOH - 9FFFFH %
EPROMSL • Al9 * Al8 * LA[7) * MREQ ; % CAOOOH - FDFFFH %
IODVl • /LA[7) * /LA[6) * /LA[S) * LA[4) * IOREQ ; % lOOOH - lFFFH
IODV2 • /LA[7] * /LA[6) * LA[SJ * /LA[4] * IOREQ ; % 2000H - 2FFFH

MREQ • (MRDC + MWTC) ; % INTERMEDIATE EQUATIONS FOR MEMORY
IOREQ • (IORC + IOWC); % AND I/0 REQUESTS %
OE A • DTR
OE-B • /DTR ;
OEC • MRDC + MWTC + IORC + IOWC ;

THE FOLLOWING IS A WAIT-STATE GENERATOR FOR MEMORY AND I/0 REQUESTS %

QOD • /QO * /ALE
+ EPROMSEL * ALE

QlD • Ql * /QO * /ALE
+ /Ql * /QO * /ALE
+ IODEVl * ALE
+ IODEV2 * ALE ;

Q2D • Q2 * /Ql * /QO * /ALE
+ /Q2 * /Ql * /QO * /ALE
+ IODEV2 * ALE

ROY • GND ;
RDYOE • /QO * /Ql * /Q2

END$

292035-6

292035-7

Figure 8. ADF Listing for Demultiplexing Higher Address/Data Byte, Decoder, Walt-State Generator

3-31

intJ

N. SHARMA
INTEL CORP.
AUGUST 31, 1987
2
A
SCBIC
MULH. ADF -- DEMULTIPLEXER, BARREL SHIFTER

OPTIONS: TURBO•OFF
PART: SCBIC

AP·308

INPUTS: CLK ALE DT/R* OE_C SO Sl S2 ENABLE
OUTPUTS: PA ADDTL PB DTL PC AOL DOUTO DOUTl DOUT2 DOUT3 DOUT4 DOUTS

DOUT 6 DOUT7
\ PA ADDTL • ADDRESS/DATA BUS ON PORT A (LOW BYTE)
\ PB-DTL • SYSTEM DATA BUS ON PORT B (LOW BYTE)
\ PC-AOL • SYSTEM ADDRESS BUS ON PORT C (LOW BYTE)
\ DOUTO •• 7 • SHIFTED DATA OUTPUT ON I/O PORT

NETWORK:
CLK • INP (CLK)
ALE • INP (ALE)
DTR • INP (DT/R*)
OE C • INP (OE C)
SO-· INP (SO) -
Sl • INP (Sl)
S2 • INP (S2)
ENABLE • INP (ENABLE)

PA_ADDTL, PB_DTL, PC_ADL • BMU (0bl11011, OE_A, VCC, ALE,OE_B, GND, VCC, OE_C,GND, VCC)

D_IN[O: 7] • BFMUX (VCC,GND) \ DATA LOADED INTO
\ THE PLU FOR SHIFTING
\ FROM PORT A

DOUTO
DOUTl
DOUT2
DOUT3
DOUT4
DOUTS
DOUT6
DOUT7

• RONF (DOO,CLK,GND,GND,ENABLE) \ DATA OUTPUT
• RONF (001,CLK,GND,GND,ENABLE)
• RONF (D02,CLK,GND,GND,ENABLE)
• RONF (D03,CLK,GND,GND,ENABLE)
• RONF (D04,CLK,GND,GND,ENABLE)
• RONF (DOS, CLK, GND, GND, ENABLE)
• RONF (D06, CLK, GND, GND, ENABLE)
• RONF (D07, CLK, GND, GND, ENABLE)

EQUATIONS:

\ CONTROL INPUTS TO THE BMU l

OEA•DTR;
OE-B • /DTR ;
\ OE_C IS AN INPUT FROM THE HIGHER BYTE DEMULTIPLEXING SCBIC

\ THE FOLLOWING IMPLEMENTS A BARREL SHIFTER \
SHIFTO • /S2 * /Sl * /SO ; \ INTERMl:DIAT&: SHIFT EQUATIONS \
SHIFTl • /S2 * /Sl * SO ;
SHIFT2 • /S2 * Sl * /SO ;
SHIFT3 • /S2 * Sl * SO ;
SHIFT4 • S2 * /Sl * ISO ;
SHIFTS • S2 * /Sl * SO ;
SHIFT6 • S2 * Sl * /SO ;
SHIFT7 • S2 * Sl * SO ;

DOO • SHIFTO * D IN[O]
+ SHIFTl * ii IN[7]
+ SHIFT2 * D-IN[6]
+ SHIFT3 * D-IN[SJ
+ SHIFT4 * D-IN[4]
+ SHIFTS * D-IN[3]
+ SHIFT6 * D-IN[2]
+ SHIFT7 * D=IN[l]

001 • SHIFTO * D IN[l]
+ SHIFTl * ii IN[OJ
+ SHIFT2 * D-IN[7]
+ SHIFT3 * D-IN[6]
+ SHIFT4 * D-IN[SJ
+ SHIFTS * D-IN[4]
+ SHIFT6 * D-IN[3]
+ SHIFT7 * D=IN[2]

002 • SHIFTO * D IN [2 J
+ SHIFTl * ii IN[l]
+ SHIFT2 * D-IN[OJ
+ SHIFT3 * D-IN[7]
+ SHIFT4 * D-IN[6]
+ SHIFTS * D-IN[SJ
+ SHIFT6 * D-IN[4]
+ SHIFT7 * D=IN[3]

292035-8

292035-9

Figure 9. ADF Listing for Oemultlplexlng Lower Address/Data Byte and Barrel-Shifter

3-32

AP·308

003 • SHIFTO * D_IN[3)
+ SHIFTl * D IN[2)
+ SHIFT2 * D-IN[l)
+ SHIFT3 * o:IN[O)
+ SHIFT4 * D IN[7)
+ SHIFTS * D-IN[6)
+ SHIFT6 * o:IN[SJ
+ SHIFT7 * D_IN[4)

004 • SHIFTO * D_IN[4)
+ SHIFTl * D IN[3)
+ SHIFT2 * D-IN[2)
+ SHIFT3 * o:IN[l)
+ SHIFT4 * D_IN[O)
+ SHIFTS * D IN[7)
+ SHIFT6 * o:IN[6)
+ SHIFT7 * D_IN[S)

DOS • SHIFTO * D IN[S)
+ SHIFTl * D IN[4)
+ SHIFT2 * D-IN[3)
+ SHIFT3 * o:IN(2)
+ SHIFT4 * D_IN[l)
+ SHIFTS * D IN[O)
+ SHIFT6 * o:IN[7)
+ SHIFT7 * D_IN(6)

006 • SHIFTO * D_IN[6)
+ SHIFTl * D_IN[SJ
+ SHIFT2 * D IN[4)
+ SHIFT3 * o:IN[3)
+ SHIFT4 * D_IN(2)
+ SHIFTS * D IN[l)
+ SHIFT6 * o:IN[O)
+ SHIFT7 * D_IN[7)

007 • SHIFTO * D IN[7)
+ SHIFTl * D IN[6)
+ SHIFT2 * D-IN(S)
+ SHIFT3 * D-IN(4)
+ SHIFT4 * D-1N[3] .
+ SHIFTS * D-IN[2]
+ SHIFT6 * D-IN(l)
+ SHIFT7 * o:IN[O)

END$
292035-10

Figure 9. ADF Listing for Demultlplexlng Lower Address/Data Byte and Barrel-Shifter (Continued)

3-33

inter APPLICATION
NOTE

AP-309

January 1987

DRAM Address Interface
with the 5CBIC

NAGEEN SHARMA
PROGRAMMABLE LOGIC APPLICATIONS

3-34
Order Number: 292036-001

AP·309

INTRODUCTION

In most DRAM applications, the row and the column
addresses for data transfers must be multiplexed on a
common bus. Refresh circuitry, however, provides the
refresh address at fixed intervals. This note describes an
implementation of both the multiplexing circuitry and
the refresh address logic in a one-chip replacement of
the two multiplexers and one counter needed in a con-
ventional SSI/MSI design. ·

The block diagram of the DRAM address interface is
shown in Figure 1. The lead configuration of the
SCBIC is shown in Figure 2. The equations for the
design are provided in Figure 3 in the advanced design
file (ADF).

ROW L
ADDRESS .1'

DESCRIPTION

The block diagram shown in Figure 1 is the address
interface needed in dynamic RAM circuits. The port­
oriented SCBIC provides a high integration alternative
to discrete SSI/MSI devices such as multiplexers and
counters. The row address bus is connected to Port A
while the column address is connected to Port B of the
Bus Management Unit (BMU). The multiplexed ad­
dress bus is Port C, a high drive port, that is connected
to the DRAM address inputs. The controlling signal
for the multiplexing is provided by a memory controller
(easily configurable in another EPLD).

MULTIPLEXED
ADDRESS.I\ DRAM

AO ••• A7
COLUMN I'

MULTIPLEXERS ,,(. ~ -y
ADDRESS J\

µ.P

SELECT-y

MULOE::

"""'
AD ••. A7

CLK REFRESH
ADDRESS

CNTR_OE..a.
COUNTER

292036-1

a. Discrete SSl/MSI Approach (Minimum of Three Devices)

ROW MULTIPLEXED
ADDRESS J\

SCBIC ADDRESS --" DRAM
PORT A PORT C AO ••• A7

COLUMN I'
MULTIPLEXER bll

I'

ADDRESS J\
µ.P] PORT B

SELECT-y AO ••• A7

MUX_OE::

CLK REFRESH

CNTR OE ADDRESS
-,. COUNTER

292036-2

b. High Integration SCBIC Implementation (Single Device)

Figure 1. Block Diagram of DRAM Address Interface

3-35

AP-309

GND PB7
GND PA7
A5.T PAS
A4.T PA5
GND 35 PA4
VCC 34 VCC

CNTR_O£ 33 PA3
A3.T 32 PA2
A2.T 31 PAI

SELECT 30 PAO
wux_oE 29 PB6

18 19 20 21 22 23 24 25 26 27 28

PA[0 .. 7) = Port A (Row Address)
PB[0 .. 7] = Port B (Column Address)
PC[0 .. 7) = Port C (Multiplexed Address)

292036-3

Figure 2, Lead Configuration of the 5CBIC

The BMU is configured by using the iPLDS II (Pro­
grammable Logic Development System). The Device
Configuration Manager (DCM) in that· software facili­
tates design entry using high-level graphics to configure
the BMU.

The refresh address counter provides the row refresh
address to the dynamic RAM. An octal up-counter is
adequate for most DRAM's (as a number of them re­
quire fewer than eight address lines for refresh). Since
the outputs of the Programmable Logic Unit can be
controlled by a tri-state buffer, the 1/0 port en-

3-36

ables the buffer only while directly providing the re­
fresh address. The equations of this counter are given in
Figure 3.

The counter holds the state of the last row address re­
freshed and increments it after receiving the appropri­
ate control signal from the memory controller. The out­
put-enable signals of the multiplexer and the counter
are the only other control signals required for this cir­
cuit.

11. lllAlllA
IllTIL CORP, .,..,..,.r Z, l•
l

' llCIIC
DIUll •lUpl...- lllld 119tr.b AddrM9 Gmerator

OPTIOlll: TUllO-orr
P.AllT: llCIIC

AP-309

Ill'UTI: CJ.It llJl_OI IUIC'I Cll'lll_IJI • Caatrol IDP1&t• •
OU'l'PUTll: PA_IDll Pl_(lOL PCJlll.111

.IO.T Al.r d.T A3.T M.T AIS.T .Al.T '7.T
• Ml ud -ter output• •
• PA_IDll • IDll AlllllUB IllPUT Al POllT A •
• Pl_OOL • OOLllll ADDllll Illl'Ur Ar POllT I •
• PC_DIMI • llJLTIPJ.IDD ADDml OUTPUT 1'1111 •
• l'Oft c. 'IO DllMI. •
• AO. r .. A7. r • BrDlll ADDllll COUll'rll OU'll'UTI •

R'lllOll:

•IllPDl'n
Cl.I = I•(CLI) • CLOCI IJllUft
llll_OI • IllP(llJl_OI) • llJLTIPLIDB OUTPUT lllWILI •
Cll'llLOI = IllP(CllTll_OI) • OOUllTlll OU'l'PUT lllWILI •
SILICT • IllP (SIJ.ICT) • lllLTIPLIDI OUTPUT SILICT •

.auTPUTS•
AO, T, AO • '1'0Tr (VCC,CJ.11,GllD,GllD,Cll'l'll_OI)
Al.T,Al • '1'0Tr (Al.T,CLl,GllD,GllD,CllTl_OI)
.A2.T,d • TOTI' (.A2.T,cut,GllD,GllD,CllTl_OI)
A3.T,A3 • TOTr (A3.T,Cl.l,GllD,GllD,CNTB_OI)
M.T,M • '1'0Tr (M.T,CJ.11,GllD,GllD,CllTl_OI)
A5.T,A5 = '1'0Tr (A5.T,CLl,ClllD,Ollll,CllTl_OI)
MJ, T,Mll = TOTI' (.All. t,CJ.11,GllD,Gllll,Cll'l'll_OI)
A7.T • TOD (A7.T,Cl.l,GllD,Gllll,CllTl_OI)

• POll'l'8 IN Ml •

• OOUll'l'll STATBI •

PA.,IDll, Pl_OOL, PC_DIUll • Ml (ObOOOlll ,Gllll ,Ollll, VCC,
GllD,ClllD, VCC,Ol_PC,UL_l'C,Ollll)

292036-4

Figure 3. ADF Uatlng of the Addreaa Multiplexer and the Refresh Addreaa Counter

3-37

intef

IQUATIOHS:
lllUlC OB = /MllX OB ;
Ol_Pii • IMIX_oi ;
BBL_PC = BBLBCT ;

Al.T • AO ;

A2.T • Al * AO

A3. T = A2 * Al * AO ;

A4.T = A3 * A2 * Al *AO

A15, T = A4 * A3 * A2 * Al * AO

A6. T = A5 * A4 * A3 * A2 * Al * AO

A7. T = A6 * Al5 * A4 * A3 * A2 * Al * AO

IND$

AP-309

292036-5

3-38

inter AR-4sa
l~~~~-0-ES-IG_N_E-NT_R_Y~~~~I

ELECTRONC DESIGN EXCLUSIVE

Programmable logic shrinks
bus-interface designs
Nageen Sharma
Intel Corp., 1900 Pr<*ie City Rd., Folsom, CA 95630; (916) 351·2758.

Most microprocessor- or microcontroller-based cir­
cuits need external logic to bridge address and data
buses to the rest of the system, including memory
and serial or parallel inputs and outputs. Designers
usually rely on various TTL devices to perform this
task. Such assortments of components significantly
raise board space and power dissipation. As a result
they often require cooling, reduce reliability, and
add cost.

Most interfaces, for example, contain bus drivers
and transceivers; encod­
ers, decoders and multi­

A CMOS LSI circuit
offers high-drive ports
for data transfer and
programmable con­
trols for bus Inter­
laces. It also cuts
power dissipation.

plexers; and assorted
latches, flip-flops, and
counters. Depending on
the complexity of the
system, these devices
make up 70% to 90% of
the total chip count and
fill almost that percent­
age of the board -space.
The advent of dedicated

LSI interface chips has eased the congestion some­
what, but many designs still call for a number of
SSI and MSI devices.

The 5CBIC bus interface controller brings a
fresh approach to the issue by integrating high­
drive bus ports and control logic in one package.
The chip contains a 600-gate equivalent program­
mable logic array and tridirectional (three-way)
bus transfer logic, housed in a 44-pin plastic leaded
chip carrier. The packaging and, behind the scene,
a proprietary CMOS 11-E EPROM process cut
board space by three or four times compared with
discrete circuits.

The CMOS process also enhances the basic attri­
butes called for in bus interface logic: speed and
high drive current. The maximum data delay be­
tween ports is 25 to 35 ns; and the array can operate
in TTL or CMOS systems at clock speeds to 12.5
MHz. The high-drive ports can sink 16 mA from a
300-pF load. The EPROM technology also permits

I 00% device testing.
Another benefit of the chips that TTL devices do

not offer is an optional "zero-standby~ power mode.
If the chip's inputs are static for more than 50 to
100 ns, the device powers down from its normal
operating current of about 108 mA at I MHz to its
quiescent current of several microamps.

The controller's two major functional blocks are
the bus management unit and the programmable
logic unit. The two circuits communicate by way of
internal signal paths that replace the external logic
and traces of conventional interfaces.

The device has five 8-bit ports (Fig. 1). Three
ports on the bus-management unit make possible
three-way asynchronous data flow, and thus are
equivalent to three bidirectional chips. The two
other ports are a dedicated input and an I/O poet
for the programmable logic unit.

DATA ROUTED THROUGH THREE PORTS

The bus-management unit's main task is to route
real-time or transparent-latched data, which can be
inverted. The unit does this through the three ports,
which can be programmed as inputs or outputs. A
direction-control unit dynamically selects the de­
sired port and routes the data accordingly.

In addition, the bus unit can send latched data
from any input port to _the programmable logic unit,
whose architecture is similar to that of EPROM­
based EPLDs. The primary difference is the addi­
tion of up to eight buried registers, asynchronous
controls, and an extra set of inputs from the three
bus-management-unit ports. In all, inputs to the
programmable logic unit include a dedicated port to
the input logic macrocells, a bus unit feedback path,
an I/O port, and feedback from I/O logic macro­
cells.

A conventional sum-of-products array and a
logic macrocell stivcture perform the logic unit's
control functions. The user programs the input and
1/0 logic macrocells to supply either latched or
real-time data. Polarity is also determined by the

"Reprinted with permission from Electronic Design (Vol. 35, No. 3) February 5, 1987. Copyright 1987 Hayden Publishing Co., Inc.,
a subsidiary of VNU." 3-39

DESIGN ENTRY • Programmable bus Interface

user, permitting the device to handle either active-high or
active-low outputs.

Besides its flexible input structure, the logic array in ev­
ery 1/0 macrocell offers 13 product terms, each equal to a
64-input AND gate. Sequential and combinatorial logic
are possible, since the macrocells contain registers (Fig.
2). Data can also feed back to the array. The user config­
ures the macrocell for a specific task by choosing among
positive-edge-triggered D, T, SR, and JK flip-flops.

For maximum control, an asynchronous clock can be
derived from one to eight product terms. Each flip-flop
also has an asynchronous set and reset. A programmable
Output Enable signal selectively enables outputs to emu­
late open-collector operation.

Three buses carry the chip's internal communication
and control signals. The input bus serves the input macro­
cells, as well as the I/Omacrocells configured as inputs.
The feedback bus provides bus unit and 1/0-macrocell
feedback. Finally, the control bus steers the data through
the various ports connecting the bus management and
programmable logic units. It also supplies complex con­
trol signals for the bus functions, like Direction Control,
Latching,, and Output Enable, as well as Clock, Set, Re­
set, Latching and Output Enable source signals for the
logic unit.

Although the bus-interface controller has several ad­
van'tages over conventional TTL interfaces, designers
might question the time needed to develop and program
complex LSI devices. That time, however, is cut to
minutes through use of the Programmable Logic Devel­
opment System software, known in its second revision as
iPLDS-11. The system includes several modules that min­
imize design and development time. The modules offer
high-level primitives that define the design and serve as
logic building blocks. .

To best apply the bus controller in a system, a designer
exploits its high level of integration. A system with a dual­
port memory shared by two processors offers a good ex­
ample. Such designs are helpful when resources, such as
large amounts of data in a memory, must be shared.

Data flowing between the memory and the two micro­
processors needs buffering and arbitration to prevent con­
tention. The usual solution is for data transceivers to iso­
late the data from the shared memory and for a controller
to arbitrate the demands of the processors.

However, the bus-interface controller performs these
functions with the minimum chip count. The program­
mable logic unit arbitrates data requests according to a
predefined protocol that establishes priorities, and the bus
management unit's three ports isolate the data. Moreover,

1. With the 5CBIC bus Interface controller, a bus management unit communicates with a programmable loglc
unit through a segmented bus structure. The feedback and control buses llnk the two units and the Input bus
leeds the array from the Input and 1/0 macrocells.

Electronic Design• February 5, 1987

3-40

the control section supplies feedback paths, eliminating
chips that would be needed in a conventional design.

In the example, two cascaded controllers handle 16-
bit-wide data. Since the system needs only one logic array,
the second is available for whatever the designer may
need, including an up/down octal counter; memory, I/O,
or interrupt controller; or an addressable 8-bit register.

Ports A and B of the bus-management unit connect to
the two processors, and Port C connects to the system
memory (Fig. 3). If the processors run on different clocks,
the controller must synchronize the access requests of one
unit with those of the second. The programmable logic
unit performs all sampling, synchronization, and arbi­
tration, and the registers within it supply the control sig­
nals needed by the bus unit. The I/O pins serve as inputs
without sacrificing the sum-of-products logic that is im­
portant to effective gate use.

The system's arbitration scheme is straightforward.
Only one processor at a time may have access to the sys­
tem bus, with processor I having the higher priority in the
event of a simultaneous request. If the second processor
requests an access while the first has control of the bus,

wait states extend the second unit's bus cycle. When the
first data transfer is completed, the programmable logic
unit grants access to the second processor and enables the
address latches and data transceivers.

In a second example, the device functions as a demul­
tiplexer for microprocessors, microcontrollers, and pe­
ripheral controllers with combined address and data
buses. The time-multiplexed buses use package pins more
efficiently, but the address and data signals must be sepa­
rated before interfacing with memories or I/O devices.

Once again, two bus controllers accommodate 16-bit
data, this time from an 8096 microcontroller (Fig. 4). In a
system containing only a RAM, an EPROM, and I/Ode­
vices, the two A ports of the bus management units con­
nect to the 8096's Ports 3 and 4. Ports Band C connect di­
rectly to the system data and address buses. In this
application, Ports A and B are bidirectional, and Port C is
an output only. As a result, Port A is the only input to
Ports B and C, and Port B is the only input to Port A (dur­
ing a memory-read cycle).

The user programs the chip to latch the addresses with

2. The Input and 110 logic macrocells Include architecture bits MARBo through MARB6 and a choice of control
signals that permit numerous configurations, such as latching, Inversion, asynchronous clocking, set, reset, and
output enable.

Electronic Design• February 5, 1987

3-41

DESIGN ENTRY • Programmable bus interface

3. Two controller chips handle 16-blt-wlde data in a
system with a dual-port memory. The chips Isolate
data as well as supply signals for arbitration, syn­
chronization, and extemal control.

4. The bus controller serves as a demultiplexer and
separates data and address signals for a micro­
controller with a combined data and address bus. In
this application, the device replaces two trans­
ceivers, two latches, two decoders, and several
logic circuits.

the microcontroller's Address Latch Enable signal and
route them to Port C. The data shows up at Port B later in
the write cycle. The Latched Address 0 and Latched Bus
High Enable signals select the upper- and lower-byte
memory chips. Finally, the bus-management unit feeds
the upper latched addresses directly to the programmable
logic unit, which generates the system chip selects.

In this application, the bus controller replaces two
transceivers, two latches, two decoders, and several logic
circuits. In doing so, it offers the designer a second
600-gate array for additional logic. D

Nageen Sharma is a technical marketing engineer in
Intel's programmable logic group. He has a BSEE
from the University of Delhi, India and an MSEE from
the University of Maryland.

Electronic Design• February 5, 1987

3-42

Development Support Tools 4

intJ iPLDS II

•

•

•

•
•

THE INTEL PROGRAMMABLE LOGIC
DEVELOPMENT SYSTEM VERSION II

Hardware and Software Necessary to • Supports a Variety of Input Methods:
Turn Design Concepts into Functional Schematic Entry
Erasable Programmable Logic Devices - TTL Library
(EPLDs) - EPLD Primitives Library
Menu-driven Software with On-line Help Text Editor Entry
Messages for All Stages of the Design - State Machine
Process - Boolean Equations
iUP-PC Hardware Programs Intel • Macro Expander Accepts TTL, and
EPLD's, EPROM's, E2PROM's, User-Defined Macros and Expands
Peripherals, and Microcontrollers with Them into Equivalent EPLD Primitives
one PC-based System • Espresso*• Minimizer Reduces Logic
All Equipment Interfaces with the IBM Equations to Least Number of Product
PC/XT*, PC/ AT*, and True Compatibles Terms
JEDEC Standard Design File, Part • Supports All Intel EPLD's Including the
Utilization Report, Minimized Equation 5CBIC and 5AC312
File, and Compiler Error File All
Available as Outputs

Release 1.5 of Intel's Programmable Logic Development System II (iPLDS II) is a powerful set of tools for
transforming a logic design into customized silicon. The system provides design entry, logic compilation, and
device programming capability on a desktop using an IBM PC/XT, PC/ AT, or compatible.

290134-1
iPLDS II Components Picture

'IBM PC/XT, PC/AT are registered trademarks of :nternational Business Machines Corporation.

•'ESPRESSO is a copyrighted by the University of California at Berkeley and is used with permission.

4-1
November 1987

Order Number: 290134-003

IPLDS II

INTRODUCTION TO PROGRAMMABLE
LOGIC DESIGN .

When performing a programmable logic design on a
CAD system, the design must first be entered using
one of a variety of entry methods. These methods
typically include schematic capture or Boolean
equation entry using a standard' text editor. Less typ­
ical entry methods include netlist entry, whereby a
hand drawn schematic can be entered in a node-by•
node fashion, or state machine entry in a text or
graphical mode.

Once the design has been entered into the CAD
package, several processing steps may occur. The
design is usually translated into a format usable by
the software, logic reduction may be performed,
and, finally, some form of programming file can be
produced. Most CAD packages also produce docu­
mentation of the minimization and device fitting re­
sults, including the final pin assignments.

Once the programming file has been generated, the
design can be transferred into silicon in a program­
ming manner similar to that used for EPROMs.

4-2

FUNCTIONAL DESCRIPTION OF
IPLDS II

All of the design entry methods with the exception of
graphic state machine entry are supported by the
iPLDS II software. iPLDSJI supports netlistand Boo­
lean equation entry using any standard text editor.
State machine software and schematic capture li­
braries are also available from Intel as optional entry
methods. Depending on the entry format used, the
design may require translation into Advanced De­
sign File (ADF) forniat. Once the design is in ADF
form, the Logic Optimizing Compiler expands any
TTL macros, minimizes all equations, and fits the
design into a device-specific JEDEC Design File.
The JEDEC Design File is programmed into the
EPLD by the Logic Programrn~r Software using the
iUP-PC hardware. Thus, the circuit design is trans­
formed into an operating EPLD on one workstation.

The Intel Programmable Logic.Software II (iPLS II) is
composed of four functional mOdules: design entry,
netllst conversion, file compilation· and device pro­
gramming.

Design Entry

Design entry is typically accomplished by creating an
ADF using an ASCII text editor, or by using a sche­
matic capture package.

IPLDS II

4-3

intJ IPLDS II

Netllst Conversion

If schematic capture of state machine entry is used,
the design must be converted into an ADF format.
The optional SCHEMA II-PLO schematic capture
package is a low-cost way to enter schematic de­
signs. SCHEMA II-PLO supports EPLD primitives
and user-defined macro symbols. It also outputs di­
rectly in ADF format. SCHEMA II-PLO contains the
EPLD Manager, which provides a single user inter­
face to both SCHEMA II-PLO and iPLS II software.
The P-CADtt and Futurenett systems may be used
to capture EPLD symbols provided the EPLD librar­
ies and ADF convertors are used. State machine en­
try may be performed via the iST ATE software and a
standard text editor.

tFuturenet is a registered trademark of FutureNet Corpora­
tion.

ttP-CAD is a registered trademark of P-CAD Corporation.

File Compilation

File compilation is performed by the LOGIC OPTI­
MIZING COMPILER. The LOC accepts an ADF and
converts it into an industry standard JEDEC file
which is used to program the device. As a part of
this process, the LOC expands TTL macros into
equivalent EPLD logic, minimizes the logic equations
using the Espresso algorithm, and maps the network
and logic equations into a cell map for the selected
device. The final output of the LOC is a JEDEC De­
sign File. The JEDEC Design File describes the input
design for the designated EPLD in JEDEC standard
format.

For designs using the 5AC312, iPLS II R1.5 utilizes
proprietary algorithms to efficiently use the device
resources. The improved Fitter in R1.5 optimizes fit­
ting for all devices.

lnt:P.1 F·r·ncwdmm"-~bl..-::> Loq1c Software II

LUC Mi;mu
F 1
F~~

F:5
F4
F5
F6
F7
F8
F9

ADF M1rnmJ .. '.dt.Jon l~F-~lnalysis.
XCUNTROL

***INFU-·LOL-Hey1n ~~:ecut.1on
***INFCJ-LUC-4 mac:r·ofunct1ons r·esolved in XCONTROL
***INFO-LOC-AIJF c:urivtirt.ed to LEF: XCONTROL
***INFO-LOC-Sum Of Prod1..1cts <S.0.P) LEF pr·oduced
***INFll-·LOC>-LEF r·~duced

***INFO-UJC···LEF an.al y.zed
***I NF IJ-·Ll1C--Resetur·ce dem.:1nd determ1 nE.>d
***INFO-LDC-Design fitt1nq complete *** INFO-·LOC-JEDEC 11 le uL1tput

LOC cycle suc.c:essfully completed

Would yt)Ll like to 1111plem~mt .;;r1othi;.-,- des1gn lY/fll)".'

Logic Optimizing Compiler Main Menu

4-4

290134-9

IPLDS II

Device Programming
The programming hardware is controlled by the LOGIC PROGRAMMER SOFTWARE. LPS takes the JEDEC
file produced by the LOC and programs it into the device. LPS can also read a programmed device or verify
that a device has been programmed correctly.

Uev1ce:

r·ogr· ammer war·e
Copyriqht (c) 1987, INTEL Cor-por-ation
3065 Bower·s Ave, Santa Clara, CA 950~!1

(408) 987 - 8080
AL TERA Corpor-ati on

B!CTEST. JED SEM!N?\RI. JED SEM!NAR2. JED
XCONTROL. JED

290134-10

Logic Programmer Software Main Menu

The Intel Universal Programmer for the Personal
Computer (iUP-PC) is a versatile programming solu­
tion in a PC-based system. Installed in an IBM
PC/XT, PC/ AT or compatible host, the iUP-PC emu­
lates the performance of the standalone INTEL
iUP-200A Universal Programmers. As such, it sup­
ports the iUP Generic Universal Programmer Inter­
face (iUP-GUPI). With the appropriate socket adapt­
ers for the iUP-GUPI, the iUP-PC supports all Intel
EPLDs. Future EPLDs will be supported by new
GUPI adapters or adapter upgrades. Other Intel de­
vices-EPROMs, EEPROMs, and microcontrol­
lers-are also supported by the GUPI. The iUP-PC is
controlled by the LPS or the iPPS (Intel PROM Pro­
grammer Software). iPLDS II includes the iUP-PC,
which contains the iPPS, PCPP programming card,
interconnect cable, and the GUPI base. GUPI adapt­
ers are available separately.

IPLS II SOFTWARE

The Intel Programmable Logic Software II (iPLS II)
has many options and enhancements for implement­
ing a logic design. iPLS II accommodates a wide
variety of design input methods. Schematics, state
machines or Boolean equations may all be used
provided the proper formats and convertors are im­
plemented as needed. No matter what method is

4-5

chosen, the Logic Optimizing Compiler will minimize
and fit the design during compilation. Finally, iPLS II
contains the Logic Programmer Software which con­
trols the iUP-PC programming hardware for all Intel
EPLDs.

I. Design Input

The entire spectrum of design input methods is
available to the logic designer in iPLS II. Everything
from TIL schematics to Boolean equations are ac­
cepted and processed by the LOC.

A. TTL SCHEMATIC ENTRY

SCHEMA 11-PLD is an optional software package
that allows EPLD design to be implemented with
standard TIL functions. SCHEMA 11-PLD contains a
symbol library that includes common 551/MSI TIL
symbols. SCHEMA 11-PLD also outputs directly in
ADF format. The TIL symbols appear in the ADF in
the form of macro calls. During compilation, iPLS II
automatically expands these calls from its TIL mac­
ro library. Thus, with SCHEMA 11-PLD, conversion to
EPLD logic primitives is performed automatically in a
manner completely transparent to the user. ·

intef iPLDS II

Only parts supported by the SCHEMA 11-PLD TTL
symbol library and the iPLS II TTL macro definition
library may be used for TTL schematic entry. In most
cases, this won't be a limitation as the most com­
mon parts are included in both libraries. Parts not in
the macro libraries may be created by the user and
stored in proprietary user libraries. SCHEMA 11-PLD
also supports creating of user-defined macro sym­
bols. The optional iPLS II Macro Librarian supports
creation of iPLS II macro libraries.

B. SCHEMATIC ENTRY WITH
INTEL SYMBOL LIBRARY

If the user prefers designing with EPLD logic primi­
tives but still wants to use schematic entry,
SCHEMA 11-PLD, in addition to supporting TTL sche­
matic capture, also supports design using EPLD
primitive symbols. Users can enter their design and
have both a schematic drawing and an ADF version
of the design. The logic symbols are loaded from the
Intel library and connected in the usual manner. Op­
tional symbol libraries are also available for PC­
CAPS *by P-CAD Corporation and DASH-2, -3, -4**
by FutureNet (iSLIBPCAD, iSLIBFNET). The iSIMLIB
optional library is available for simulating logic de­
signs with P-CAD's PC-LOGS logic simulator.

C. TEXT EDITOR ENTRY

Designers who are familiar with the logic primitives
and the Advanced Design File format can directly
enter ADFs with a standard text editor. The bulk of
the design entry can be accomplished using Boole­
an Equations obtained from a Karnaugh map or truth
table. Hence, the need for conversion to gates is
eliminated. This method of entry is useful for sub-cir­
cuits that will be incorporated into larger designs.

*PC-CAPS and PC-LOGS are registered trademarks of
P-CAD Corporation.

••oASH-2, -3, -4 are registered trademarks of FutureNet
Corporation.

4-6

D. STATE MACHINE ENTRY

In the past, state diagrams or flowcharts (ASM
charts) were merely abstractions used to obtain the
logic equations necessary to implement TTL de­
signs. With the advent of the iPLS II state machine
convertor (iST ATE), this is no longer the case. Using
an IF THEN I ELSE format, the designer may enter
the state machine description without having to ex­
tract the logic and convert the equations into TTL
components. The state machine to Boolean logic
conversion is handled by the state machine conver­
tor, provided the input file adheres to the specified
State Machine File (SMF) format.

Summary of Optional Entry Requirements:

TTL Schematic Capture

1. TTL Macro Libraries

2. SCHEMA 11-PLD

PC-CAPS

1. Intel Library used to design logic circuit

2. Component List Output

3. PCAD convertor used in LOC

(Library and convertor contained in iSLIBPCAD)

DASH-2, -3, -4

1. Intel Library used to design logic circuit

2. Pin List Output

3. FutureNet convertor used in LOC

(Library and convertor contained in iSLIBFNET)

State Machines

1. State Machine File (SMF) format used

2. Optional state machine convertor used in LOC

(Convertor contained in iST ATE)

II. Logic File Compilation

Before programming the part, the designer must
compile the input design file into a JEDEC standard
file. This function is performed by the Logic Optimiz­
ing Compiler.

~
in
= c
ID
!!!.
IQ
:I

'" :I -... f" '<
-..J D>

:I a.

6
0
'"Tl
0 :e
n
':I"
D>
;::i.

SCHEMA II - PLO

---------------------------------· I I
I

SCHADF \ .le=:: I
IPLS II

SYMBOL

LIBRARIES ___ .. -- EPLD

-TTL

ISLIBPCAD

INTEL
EPLD

SYMBOL
LIBRARY

EPLD

1 USER-DEFINED

I
I
I

f"UTURENET I

-------------·
INTEL
EPLD

SYMBOL
LIBRARY

iSLIBFNET

I
I
I
I

·-----------·
INTERACTIVE

NETLIST ENTRY

iSLIBFNET

LOGIC OPTIMIZING COMPILER
(LOC)

MACRO I ESPRESSO
EXPANDER MINIMIZER FITTER

N ETLIST ENTRY

··-------· I TEXT EDITOR I L__lQ.
I
I

:
!STATE

I
I

I "--""" I

·--------·
STATE MACHINE ENTRY

·--------· : ATEXT EDITOR:
I I
I STATE I
I I

I
I
I

I "--""" I

·--------·

JEDEC

290134-6

l

=a
r
c en
=

"@)
a2J
liUiJ
F

~
~
~

~

IPLDS II

LOGIC OPTIMIZING COMPILER (LOC)

Once the input file is in Advanced Design File (ADF)
format, the LOC will compile it into a device-specific
JEDEC Design File. The first phase of this compila­
tion is performed by the MACRO EXPANDER. The
Macro Expander expands Intel or TTL macros into
equivalent EPLD equations. The second phase is
performed by the ESPRESSO MINIMIZER. The min­
imizer reduces all the logic equations to their sim­
plest form using the ESPRESSO 11-MV algorithm.
The final phase of compilation is performed by the
FITTER. The Fitter creates a cell map of the mini­
mized equations according to the resources avail­
able within the specified device.

MACRO EXPANDER

The input design file is initially passed through the
MACRO EXPANDER. The Macro Expander
searches the file for any non-EPLD network ele­
ments. If found, the Expander then searches the
User Libraries and TTL Library for the unidentified
element. Once the element is located, the design file
element is replaced by the equivalent EPLD primitive
implementation found in the library. Having the Ex­
pander search the User Libraries allows the user to
create his own macros. User macro files are created
with a standard ASCII text editor and are stored in
libraries by the optional iPLS II Macro Librarian.

ESPRESSO MINIMIZER

The minimization in the LOC is performed by the
ESPRESSO 11-MV MINIMIZER. Developed by the
University of California at Berkeley, the ESPRESSO
11-MV algorithm is regarded by many as being the
best minimization method available. ESPRESSO 11-
MV uses DeMorgan's and other logic theorems to
reduce the equations to the least number of product
terms possible. Since product terms are the key vari­
able in the EPLD architecture, the ESPRESSO 11-MV
Minimizer provides the simplest equations possible.
As a result, the success rate for fitting large designs
is dramatically increased.

FITTER

The FITTER examines the architecture of the speci­
fied device, then tries to map the minimized equa­
tions into the resources available. The Fitter auto­
matically assigns pins unless pin assignments are
already specified in the design input file. The fitting
sequence continues until a successful fit is accom­
plished or all possible implementations are exhaust­
ed. Release 1.5 of iPLS II includes a new, faster
Fitter that supports PGA packages and the 5AC312.
Also included in this new Fitter is the capability to
allocate p-terms to adjacent macrocells for devices
such as the 5AC312 that support p-term allocation.

4-8

OUTPUT FILES

- JEDEC Design File
A properly designed circuit results in the desired
file from the LOC-the JEDEC Design File. The
JEDEC Design File is a device-tailored EPROM
cell programming map expressed in JEDEC stan­
dard format.

- Resource Utilization Report
The Resource Utilization Report gives an in­
depth view of what was used inside the EPLD.
Items such as device pinout, macrocell usage,
and feedback arrangements are all listed. Un­
used resources are also listed to aid the user in
adding logic or merging EPLD designs.

- Logic Equation File
The LEF file lists the logic equations after they
have passed through the minimizer. It is these
equations that are actually implemented in the
final design.

- Compiler Error File
If a logic circuit is incorrectly designed, mes­
sages are produced by the LOC denoting the er­
rors. To assist the redesign, these errors are
placed into the Compiler Error File for later refer­
ence.

FILE MERGING

Once a design is successfully implemented, the LOC
can merge it with other designs by simultaneously
running the two ADF's. In this manner, LSI circuits
can be broken into manageable chunks that can be
implemented and tested individually. After each por­
tion is completed, the subcircuits can be merged into
one ADF to implement the total design.

Ill. Device Programming

After the design has been successfully entered, min­
imized and fitted, the designer programs his part us­
ing the JEDEC file produced by the LOC. Program­
ming is accomplished by running the Logic Program­
mer Software.

LOGIC PROGRAMMER SOFTWARE

To program a device with the LPS, the user enters
the file name and device to be programmed. The
LPS checks if the device is blank, programs the de­
vice, then verifies that the device was programmed
correctly. As a part of the Intel EPLD Programming
Algorithm, each programmed cell is checked. Add­
ing the complete device check after programming
gives double verification that the part has been suc­
cessfully programmed.

intJ IPLDS II

, ______ ,

~-I,...,

I --

I
I

---- -.

, _________________ ,

·----------------------· I
I
I
I
I
I

......... --.., : ·------ ·----------------------·
(SIDE VIEW or p :c. HOST)

INTERCONNECT CABLE

IUP- GUPI ADAPTER

IUP - GUPI BASE MODULE
290134-7

The Intel Universal Programmer for the Personal Computer (IUP-PC)

It is also possible to read a pre-programmed device
and program other devices with the program read.
The JEDEC Editor in LPS provides a hierarchical
view of the device from the pin level, to the macro­
cell level, to the product term level. At the product
term level, individual EPROM cells may be set or
reset to connect or disconnect the logic equation
inputs.

If the user does not want an EPLD to be read, the
Security bit may be set when running the LPS. The
Security Bit prevents a device from being examined
after it has been programmed. This function is useful
for protecting confidential designs.

IUP-PC HARDWARE

The Intel Universal Programmer for the Personal
Computer consists of the PCPP programming card,
50-lead interconnect cable, GUPI base and GUPI
adapter. Together they form a system for program­
ming most PROM-type Intel devices directly from
the PC host.

PCPP

The Personal Computer Personal Programmer
(PCPP) is the programmer interface card that fits
into the IBM AT/XT or true compatible. It is capable
of driving both the iUP-GUPI base and the iUP­
FAST27K personality module. The PCPP emulates
the performance of the Intel iUP-200A. The LPS or
iPPS (Intel PROM Programmer Software) controls
the PCPP, causing the programming card to gener­
ate the control signals for the GUPI base.

4-9

GUPIBASE

The Generic Universal Programmer Interface (GUPI)
is used for all programmable logic support. As all
signal generation to devices is done by the GUPI,
the programming waveforms are extremely reliable.
Using the GUPI also allows upgrading for future de­
vices with the simple addition of a plug-in adaptor.
Future Intel EPLDs will be supported by the GUPI
system.

GUPIADAPTERS

Table 1 details the GUPI adapters required for the
logic devices. The adapters available for program­
ming EPROM's, E2PROM's and microcontrollers
can be found in the data sheet for the iUP-PC (Intel
order number 290130). The adapters contain the de­
vice description data for a family of similar devices.
New devices will be supported by new adapters or
by a firmware upgrades in existing adapters.

SPECIFICATIONS

Host System

The iPLDS II software requires an IBM PC/XT,
PC/ AT or other true compatible computer capable
of running MS-DOS* version 2.0 or later. The com­
puter must have a 360KB double-sided, double-den­
sity diskdrive, a hard disk, and 512KB of RAM. Addi­
tional memory is required for the optional schematic
capture programs. A color monitor is recommended,

intef IPLDS II

Table 1. Intel Programmable Logic Development System II Programming Support

Device Equlvalent Number of iUP-GUPI Package Type
Gate Count Macrocells Adapter Supported

5C031 EP310 300 8 GUPI LOGIC-12 20 Pin DIP

5C032 EP320 300 8 GUPI LOGIC-12 20 Pin DIP

5C060 EP600 600 16 GUPI LOGIC-9 24 Pin DIP
or GUPI LOGIC-llD

5C090 EP900 900 24 GUPI LOGIC-9 40 Pin DIP
or GUPI LOGIC-llD

5C121 EP1200 1200 28 GUPI LOGIC-12 40 Pin DIP

5C180.EP1800 1800 48 GUPI LQGIC-18 68 Pin PLCC and JLCC

5C180PGA 1800 48 GUPI LOGIC-18PGA 68 Pin PGA

5CBIC 1200 (inPLU):8 GUPI LOGIC-SIC 44 Pin PLCC
(# of Ports):5

5AC312 1200 12 GUPI LOGIC-llD 24 Pin DIP

(EPXXX Devices from Altera Corp.)

as the color graphics available provide a better rep­
resentation of the data than a monochrome display.
The PCPP programming card requires one full-size
card slot in the host computer.

•MS-DOS is a trademark of Microsoft Corporation

Operating Environment

Electrical Characteristics

PCPP: Worst Case Power Consumption at IBM
PC 1/0 Channel

Supply Voltage Personallty
Voltage Variance Module

+5V +5%, -4% FAST27K
-12V +10%, -9% FAST27K
+12V +5%,-4% GUPI

Physical Characteristics

PCPP:

Length: 13.3 inches (33.9 cm)

Height: 3.9 inches (10.0 cm)

INTERCONNECT CABLE:

50 lead ribbon cable

Length: 3.0 feet (91.4 cm)

Width: 2.43 inches (5.5 cm)

Max. Current
Drain

1.898A
102.9 mA

530mA

GUPI:

Length: 7.0 inches (17.8 cm)

Width: 5.5 inches (1.4 cm)

Height: 1.6 inches (4.1 cm)

Environmental Characteristics

Operating Temperature: 1o·c to 4o·c
Operating Relative Humidity: 85% Maximum

Equipment Supplied

HARDWARE

- PCPP programming card

- Interconnect cable

- GUPI base

- (GUPl-LOGIC adaptors purchased separately)

SOFTWARE

- iPLS II (5 diskettes)

- iPPS (2 diskettes)

DOCUMENTATION

- iPLS II User's Guide (order number 450196)

- iPLS II Release 1.5 Supplement (order number
#453703)

- PCPP User's Guide (order number 168161)

4-10

intef iPLDS II

ORDERING INFORMATION

Order Code

iPLDSll

iPLSll

iUP-PC

MLIB

iSTATE

iSLIBFNET

iSLIBPCAD

iSIMLIB

Product Description

Intel Programmable Logic De­
velopment System II: iPLS
software, iUP-PC, iPLS II Us­
er's Guide
Intel Programmable Logic
Software II: Logic Builder de­
sign entry, Logic Optimizing
Compiler, Logic Programmer
Software, iPLS II User's Guide
Intel Universal Programmer
for the Personal Computer:
PCPP programming card, in­
terconnect cable, iUP-GUPI
base, Intel PROM Program­
ming Software PCPP User's
Guide

iPLS II Macro Librarian: Macro
Librarian Software and User's
Guide Supplement for creat­
ing.user-defined macro librar­
ies: ·

Intel State Machine Software:
Entry format documentation,
state machine convertor for
LOG
Intel Symbol Library-Future­
Net: EPLD symbol library for
FutureNet DASH-2 schematic
capture package, Futurenet
Pinlist convertor for LOG

Intel Symbol Library-PCAD:
EPLD symbol library for PCAD
PC-CAPS schematic capture
package, PCAD Component
List convertor for LOG

Intel Simulation Library (PC­
LOGS): EPLD simulation li­
brary for PC-LOGS simulator
by PCAD

4-11

iUP-GUPI Intel Universal Programmer­
Generic Universal Programmer
Interface: Generic programmer
base which holds GUPI adaptors

GUPI LOGIC-llD GUPI Adaptor for the 5AC312,
5C060, 5C090, and future 24-pin
and 40-pin EPLDs.

GUPI LOGIC-09 GUPI Adaptor for the 5C060 and
5C090 DIP EPLDs

GUPI LOGIC-12 GUPI Adaptor for the 5C031,
5C032, 5C121 and future 20 pin
DIP EPLDs

GUPl-LOGIC-18 GUPI Adaptor for the 5C180 and
future 68 pin PLCC and JLCC
EPLDs

GUPI LOGIC- GUPI Adaptor for the 5C180 de-
18PGA vice in a 68 pin PGA package.

GUPl-LOGIC-BIC GUPI Adaptor for the 5CBIC and
follow-on products

ADAPT24T028 Adapts 24 pin DIP socket to 28
pin PLCC socket; for use with
GUPI LOGIC-09 and GUPI
LOGIC-llD.

ADAPT40T048 Adapts 40 pin DIP socket to 44
pin PLCC socket; for use with
GUPI LOGIC-09 and GUPI
LOGIC-llD.

IPLDS II UTILITIES

TTL Macro Library TTL Macro Library Macros ac­
cessed by Macro Expander for
most standard TTL symbols

SIM EPLD Functional Simulator Func­
tional simulator for most EPLD
logic designs.

iUP-PC
INTEL UNIVERSAL PROGRAMMER
FOR THE PERSONAL COMPUTER

• Personal Computer Version of the iUP-
200A/201 A Universal Programmers

• Runs on an IBM PC/AT*, PC/XT* or
True Compatible

• GUPI and FAST27K Personality
Modules Provide Support for Numerous
Device Families

• Utilizes the inteligentTM and Quick-
Pulse ProgrammingTM Algorithms

• Easily Upgradable for new Devices
Through Low-Cost Plug-In Adapters

• Extremely Versatile-Programs Intel or
Intel-Compatible EPROM, E2PROMs,
EPLDs, Peripherals and Micro­
Controllers, Including the New 5AC312
EPLD

The Intel Universal Programmer for the Personal Computer, iUP-PC, provides a high performance program­
ming solution from a PC host Through plug-in adapters for the Generic Universal Programmer Interface (iUP­
GUPI), the iUP-PC supports virtually all programmable Intel devices. Upgrades for new devices are made by
the simple addition of a GUPI adapter or the upgrade of an existing adapter.

NOTE:
GUPI Adapter NOT included.
'IBM PC/ AT and PC/XT am registered trademarks of International Business Machines Corporation.

4-12

290130-1

November 1987
Order Number: 290130-002

intef iUP-PC

FUNCTIONAL DESCRIPTION

The iUP-PC provides a fast, versatile and reliable
programming solution from a Personal Computer
host. Downloading to a stand-alone programmer or
moving from one workstation to another is no longer
required. With the iUP-PC, the designer may do his
development and programming on one workstation.
Through the Generic Universal Programmer Inter­
face (iUP-GUPI), the iUP-PC is made extremely ver­
satile. With the iUP-GUPI the designer may program
across EPROM, E2PROM, Microcontroller, Peripher­
al and EPLD device categories with the mere
change of a plug in adapter. No other hardware or
software addition is needed. As all of the program­
ming signals are generated at the GUPI base, ex­
tremely reliable waveforms reach the device.

COMPONENTS

The iUP-PC programming system consists of five
components:

PCPP-The Personal Computer Personal Program­
mer (PCPP) is an IBM PC/XT form factor expansion
card which fits into an IBM PC/XT, PC/AT or true
compatible.

Interconnect Cable-A 50 lead ribbon cable con­
nects the PCPP to the iUP-GUPI.

iUP-GUPl-The Intel Universal Programmer-Ge­
neric Universal Programmer Interface (iUP-GUPI) is

, ______ ,
....

-------~---------1 ·----------------------· I
I
I
I
I
I

••' I

c:.-=.·.·-- ·' ~ - - - - - - - - - -- - - - - - - - - - - - •
(SIDE VIEW OF P.C. HOST)

the programming base which holds the device
adapters.

GUPI Adapters 0 -The GUPI Adapters plug-in to the
iUP-GUPI base. They carry the sockets and hard­
ware for a particular device family.

iPPS-The Intel PROM Programmer Software (iPPS)
runs on a personal computer under DOS and con­
trols the PCPP/host communication.

*NOTE:
Though the iUP-GUPI base is included in the iUP­
PC package, the GUPI Adapters are NOT included.
The desired adapters must be ordered separately.

PCPP CARD

The PCPP is an 8085 based co-processor board.
Communication between the host and the PCPP
may be controlled by the iPPS or LPS (Logic Pro­
grammer Software). Version 2.3 or greater of iPPS is
required for running the iUP-PC on a personal com­
puter. LPS is the programming software included in
Intel's Programmable Logic Software II (iPLS II).

The PCPP is capable of driving the iUP-GUPI and
FAST27 /K modules. Future Intel devices will be
supported by an iUP-GUPI adapter or adapter up­
grade.

INTERCONNECT CABLE

iUP - GUPI ADAPTER

!UP - GUPI BASE MODULE
290130-2

Figure 1. The Intel Universal Programmer for the Personal Computer (iUP-PC)

4-13

intef IUP-PC

iUP-GUPI MODULE

The iUP-GUPI is a generic base module that enables
the iUP-PC system to accept low-cost plug-in adapt­
ers. These adapters configure the system to support
a wide variety of programmable devices-EPROMs,
microcontrollers, and EPLDs-as well as device
package types (refer to Table 1).

The iUP-GUPI module connects to the PCPP card
via a ribbon cable. An opening in the top of the iUP­
GUPI provides easy plug-in installation of the GUPI
adapters (refer to Figure 2).

The iUP-GUPI offers the programming performance
of earlier Intel personality modules, with the fastest
Intel programming algorithms for each device type.
For example, the iUP-GUPI uses the new Quick­
Pulse Programming algorithm to program the 1-Meg
EPROM in seconds.

iUP-GUPI
GENERIC BASE MOOlR.E

290130-3

Figure 2. GUPI Adapter Installation

GUPIADAPTERS

The iUP-GUPI adapters provide the final link of the
iUP-PC programming system. The adapters provide
the proper sockets and characteristic information for
families of Intel devices.

The iUP-GUPI LOGIC adapters complete the pro­
gramming solution of the Intel Programmable Logic
Development System II (iPLDS II). The GUPI LOGIC
adapters provide support for the entire range of
Erasable Programmable Logic Devices (EPLDs).
The adapters support families EPLDs with similar ar­
chitecture, such as the 5C060 and 5C090. All future
EPLDs will be supported by the GUPI LOGIC adapt­
er system.

Intel's one megabit EPROMs are also supported
with GUPI adapters. Adapters are available for the
27010, 27011, and 2721 O. The page mode of the
27011 is supported by the GUPI 27011 adapter. Oth­
er Intel EPROM support is provided with the
FAST27 /K personality module.

The MCS-51 and MCS-96 microcontroller families
are supported by the GUPI MSC-51 and GUPI 8796
adapters. Supplemental adapters provide support
for the variety of microcontroller package types. The
8741 and 8742 peripheral components are support­
ed by the GUPI 8742 adapter.

Table 1 displays a cross-reference of the EPLD
GUPI adapters and the devices they support. Table
2 displays a cross-reference of the EPROM/Micro­
controller adapters and the devices they support.
Note that these tables are current at the time of
printing. Contact your Intel sales representative for
information on current support.

Table 1. EPLD GUPI Module Adapters

Device GUPI GUPI GUPI GUPI GUPI GUPI
Type Logic-HD Loglc-09 Loglc-12 Loglc-18 Loglc-18PGA Loglc-BIC

EPLD 5C031
5C032

5C060 5C060
5C090 5C090

5C121
5C180

5C180G
5CBIC

5AC312

Package Types DIP* DIP* DIP PLCC PGA PLCC
CJ

•ADAPT units available to adapt DIP socket for PLCC package.

4-14

intJ iUP-PC

Table 2. EPROM/Mlcrocontroller GUPI Module Adapters

Device GUPI GUPI GUPI
Type 27010 27011 27210

EPROM 27010
27011 27210

Peripheral

Microcontroller

Package Types DIP DIP DIP

The iUP-Fast 27 /K Personality Module

With the iUP-Fast 27 /K personality module the user
can program, read, and verify the contents of Intel's
high density EPROMs, from the page-programmable
(512K) 27513, to the CMOS 27C64, 27C256, and
87C64 EPROMs. This personality module supports
the inteligent Programming algorithms and the
infeligent Identifier™. The infeligent Identifier lets
the personality module interrogate the PROM device
in the program/master socket. It determines wheth­
er the type selected matches the type of PROM de­
vice installed and then selects the proper inteligent
Programming algorithm. The inteligent Programming
algorithms reduce programming time up to a factor
of 10.

Low cost, plug-in upgrade kits allow addition of sup­
port for Intel's latest EPROMs. The first upgrade kit
added support for the 27512 and innovative page­
programmable 27513 plus the 27128A and 2817A. It
has now been replaced by a second upgrade kit,
iUP-Fast 27 /K-U2 adding support for Intel's new
CMOS EPROMs. (refer to Table 3).

As shown in Figure 3 the iUP-Fast 27 /K personality
module contains two 28-pin sockets, a hexadecimal
display (0 through F), and a red LED that indicates
when power is being applied to a socket. The pro­
gram socket holds the device being programmed.
The master socket will be used in future upgrades.

4-15

GUPI GUPI GUPI GUPI
8742 MCS-51 8796 8796LCC

8741AH
8742AH

87C51
8752BH
87C252

8794BH
8795BH
8796BH 8796BH
8797BH 8797BH

DIP PLCC PGA LCC
DIP DIP

The hexadecimal display shows the PROM device
type selected.

Table 3. FAST27 /K Module Device Support

Prom
Fast Fast Fast

Type
27/K 27/K U2 27/K-CON*

Module Kit Kit

EPROM
2764 2764 2764

2764A 2764A 2764A
27C64 27C64
87C64 87C64

27128 27128 27128
27128A 27128A

27256 27256 27256
27C256 27C256
27512 27512
27513 27513

E2PROM 2817A 2817A

•uses Quick-Pulse Programming Algorithm.

THE iPPS SOFTWARE

The iPPS software, included with the iUP-PC brings
increased flexibility to PROM programming. The

intJ iUP-PC

0-27&.4

{
2764A

1_ 27C64
87C64

2-27128 D 3-{27128A
4 27256

27C256
5-27512
6-27513
7-2817A
8-27916

PROM
DEVICE
TYPE
HEXADECIMAL
DISPLAY

290130-4

Figure 3. IUP-Fast 27 /K Personality Module with U2 Upgrade

iPPS software provides user control through an
easy-to-use interactive interface and performs the
following functions to make programming quick and
easy:

• Reads PROMs, ROMs and EPLDs.

• Programs PROMs directly or from a file.

• Verifies PROM data with buffer data.

• Prints PROM buffer, or device file contents on the
system printer.

• Performs interactive formatting operations such
as interleaving, nibble swapping, bit reversal, and
block moves.

• Programs multiple PROMs from the source file,
prompting the user to insert new PROMs.

• Uses a buffer to change PROM contents.

With the iPPS software the user can load programs
from system memory or directly from a disk file. Ac­
cess to the disk lets the user create and manipulate
data in a virtual buffer. This block of data can be
formatted into different PROM word sizes for pro­
gram storage into several different PROM types. In
addition, a program stored in the target PROM, the
system memory, or a system disk file can be inter­
leaved with ~ second program and entered into a
specific target PROM or PROMs.

The iPPS software supports data manipulation in the
following Intel formats: 8080 hexadecimal ASCII,
8080 absolute object, 8086 hexadecimal ASCII,
8086 absolute object, 80286 absolute object, and
80386 bootloadable object. Addresses and data can
be displayed in binary, octal, decimal, or hexadeci­
mal. The user can easily change default data for­
mats as well as number bases.

4-16

intef IUP-PC

IUP·PC SPECIFICATIONS

HOST SYSTEM

The iPPS will run on an IBM PC/XT, PC/ AT or other
true compatible with a DOS operating system. The
PCPP requires one full-sized card slot inside the PC.

OPERATING ENVIRONMENT

Electrical Characteristics

PCPP:
Worst Case Power Consumption at

IBM PC 1/0 Channel

Supply Voltage Personality
Voltage Variance Module

+5V +5%, -4% FAST27K

-12V +10%, -9% FAST27K

+12V +5%,-4% GUPI

Physlcal Characteristics

PCPP:

Length: 13.3 inches (33.9 cm)
Height: 3.9 inches (10.0 cm)

Interconnect Cable:

50 lead ribbon cable
Length: 3.0 feet (91.4 cm)
Width: 2.43 inches (5.5 cm)

IUP-GUPI:

Length: 7.0 inches (17.8 cm)
Width: 5.5 inches (1.4 cm)
Height: 1.6 inches (4.1 cm)

Max. Current
Drain

1.898 A

102.9 mA

530mA

Environmental Characteristics

Environmental Class: B

Temperature:
Operating 10 to 40 degrees C
Non-Operating - 40 to 70 degrees C

Relative Humidity:

Operating
Non-Operating

85% Maximum
95% Maximum

DOCUMENTATION

168161-PCPP .User's Guide

166428-iUP-GUPI Module User's Guide

User's Guides for Adaptors, FAST 27/K Modules,
and upgrades included with respective units.

ORDERING INFORMATION

Order Code
iUPPC

Product Description
Universal Programmer for the
Personal Computer: PCPP Pro­
gramming Card, 50-Lead Inter­
connect Cable, iUP-GUPI,
iPPS, PCPP User's Guide

ADAPT24T028 28-Pin PLCC Socket Adapter
for GUPI LOGIC-09 and GUPI
LOGIC-llD

ADAPT 40T044 44-Pin PLCC Socket Adapter
for GUPI LOGIC-09 and GUPI
LOGIC-llD

4-17

piUPGUPI

GUPI LOGICllD

GUPI LOGIC09

GUPI LOGIC12

Generic Universal Programmer
Interface (Base)

iUP-GUPI Logic Adapter

iUP-GUPI Logic Adapter

iUP-GUPI Logic Adapter

GUPI LOGIC18 iUP-GUPI Logic Adapter

GUPI LOGIC18PGA iUP-GUPI Logic Adapter for
5C180 PGA

GUPI LOGICBIC

GUP127010

GUPl27011

GUPl27210

GUPl8742

GUPIMCS51

GUPl8796

GUPl8796LCC

piUPFAST 27K

iUPFAST 27KU2

iUP-GUPI Logic Adapter

iUP-GUPI EPROM Adapter

iUP-GUPI EPROM Adapter

iUP-GUPI EPROM Adapter

iUP-GUPI Peripheral Adapter

iUP-GUPI Microcontroller
Adapter

iUP-GUPI Microcontroller
Adapter

iUP-GUPI Microcontroller
Adapter

EPROM Personality Module

FAST 27 /K Upgrade Kit

iUPFAST 27KCON Adds Quick-Pulse algorithm
and device support

iUPFAST 27KIT Combines piUPFAST 27K and
iUPFAST 27KU2

SCHEMA 11-PLD

SCHEMATIC CAPTURE SOFTWARE

SCHEMA II-PLO is a powerful, low-cost schematic capture software package for designing
with Intel EPLDs and with standard MSI, SSI, and discrete components. For EPLD designs,
SCHEMA II-PLO outputs Advanced Design Files (ADFs) that can subsequently be com­
piled by iPLS II software. SCHEMA II-PLO supports EPLD symbols as well as MSI and
SSI macro symbols, allowing designs to combine TTL and EPLD symbols as needed. The
ability to create user-defined macro symbols that can be translated into ADF macro calls
adds to SCHEMA 11-PLD's power and versatility.

The EPLD Manager included in SCHEMA II-PLO provides a single user interface to both
SCHEMA II-PLO and iPLS II software. EPLD Manager software i.s also available separately
for users who already own SCHEMA II.

000275-1

4-18

iPLS II MACRO LIBRARIAN

The iPLS II (Intel Programmable Logic Software II) Macro Librarian is an optional software
package that allows designers to create user-defined macro libraries for EPLD designs.
User-defined macro functions are first developed as individual macro files using an ASCII
text editor. These files are then combined into macro libraries by the Macro Librarian.
Macro calls to use the functions can then be placed in iPLS II ADFs (Advanced Design
Files) where they will be expanded during compilation by the iPLS II Macro Expander. Use
of macros in iPLS II Advanced Design Files (ADFs) allows EPLD design to proceed at a
higher level than with EPLD primitives alone.

Note that a preconfigured library of TTL macro functions is available from Intel to all
registered iPLS II users. The Macro Librarian is not needed to use this TTL library. It is
designed for users who need to create libraries that contain user-defined macros.

000275-2

4-19

UTILlflES
''tt"•,

FU~CTIONAL SIMULATOR UTILITY
Description: ,

· .· Sin,iul~tion of E.PLDs is S1Jpported .with Intel's SIM .(Functional Simulator): Combinatorial as,well
a8 registered designs can be simulated and circuit operation verified before a device is programmed.
The design is simulated with a user generated vectorfile. ·

Avallablllty: ··
SIM is a standaione:utility that·runs. on any IBM PC, XT, ·p;r or coropatible. The simulator is

available at no cost-to Intel EPLD customers;· Contact yoor.local 1ntel. sales 9ffice.,

4-20

PAL2ADF UTILITY
Description

This document is a brief note on the use of the PAL2ADF program in translating PALASM 1 files
into Intel's Advanced Design File (ADF) format. Descriptions for actual use can be found on the
accompanying Manual page in the file PAL2ADF.MAN.

The PALASM file serves as a template for mapping the PALASM equations into ADF. The
translation is performed as follows:

1) Read PAL description, and set the PAL pins to their appropriate EPLD primitive
counterparts

2) Parse file and produce network description
3) Translate equations to ADF

PAL Configuration Database
When it is translating a PALASM file, PAL2ADF reads a database (default:PAL2ADF.DAT) that
tells it:

• How many pins the PAL has
• Which default EPLD to translate to
• What pins are special inputs (Clock and Output Enable defaults)
• What EPLD 1/0 primitives to use for each PAL pin

The EPLD 1/0 primitives specify the network architecture that the EPLD must take on in order
to mimic the functionality of the PAL. See the PAL2ADF.DAT file for more information.

Reconfiguring Outputs
In step (2) above, several checks are done in order to make sure that the network is configured
appropriately. These primarily involve output pins, although input pins can be specified as well.

The first reconfiguration is for active low outputs in their equations. i.e.,

PALASM: /SIGNAL = A * /B + C
becomes

ADF: SIGNAL= /(A* /B + C);

The other reconfigurations are slightly more complex. Consider a PAL pin X which is an output
with a D-latch. The output value is fed back into the P-term array after the Output Enable. This
is described as a Registered Output Registered Feedback (ROAF) in the Intel EPLDs. The default
network description for this pin then is:

NETWORK:

X,X = ROAF (Xp,CLK,GND,GND,OE)

where CLK and OE are the default Clock and Output Enable signals.

Normally, there would be an equation that would describe Xp. (The 'p' is used to name the
P-term value.) If, however, the X feedback is never used in an equation, then the 1/0 macrocell
is reconfigured to a Registered Output No Feedback (RONF).

4-21

NETWORK:

X = RONF (Xp,CLK,GND,GND,OE)

For those 1/0 pins on the PAL which are used strictly as inputs, these use the Combinatorial
Output 1/0 Feedback (COIF) primitive, with the Output Enable shut off (GND). The P-term is tied
to the feedback, in order to satisfy the semantics of ADF.

NETWORK:

YY,YY = COIF (YYp,GND)

EQUATIONS:

YYp = YY;

If the PAL pin is being used strictly as an output and is never used in an equation, then the
primitive is reconfigured to a Combinatorial Output No Feedback (CONF).

NETWORK:

YY,YY =COIF (YYp,GND)

This is the same as above where a RORF is reconfigured to a RONF.

Multiple PAL Designs into 1 EPLD
It is possible to incorporate multiple PALASM descriptions into one EPLD. If each PALASM
description is disjoint, (i.e., they have different pin names for each pin) then you can simply
translate each file (with the pinlist information OFF) and compile them together with the iPLS
Logic Optimizing Compiler (LOC).

The compiler allows you to specify multiple ADF files, allowing different subnetworks within one
EPLD. You will probably want to use a larger EPLD to fit all the designs in.

If the PAL designs are not disjoint, then there are some steps that can be done by hand to
integrate the designs. A simple example would be where one PAL feeds another a signal, and
the second uses that to generate another signal.

~B c------

4-22

In this case, C is an output of PAL 1, and an input to PAL2. In PAL2, C,Z, and W generate the
signal X. Suppose we have the equations:

PAL1
/C=A*/B

PAL2
X = /C*Z*W

+ C*/Z*W

In the resulting ADFs, the following NETWORKS are produced:

ADF for PAL 1 :
NETWORK:
A = INP(A)
B = INP(B)
C = CONF(Cp,VCC)
EQUATIONS:

C = /(A* /B);

ADF for PAL2:
NETWORK:
Z = INP(Z)
W = INP(W)
C = INP(C) .
X,X = RORF(Xp, CLK, GND, GND, OE)
EQUATIONS:
Xp = /C*Z*W

+ C*/Z*W;

These can be joined together into a single ADF:

NETWORK:
A = INP(A)
B = INP(B)
Z = INP(Z)
W = INP(W)
X,X = ROAF (Xp, CLK, GND, GND, OE)
EQUATIONS:
C = /(A* /B);
Xp = /C*Z*W

+ C*/Z*W;

Notice how C is now an intermediate variable rather than an actual signal. This is obviously a
simple example, yet similar techniques can be applied to more complex cases. As much more
logic can be placed into larger EPLDs, the job of splitting functions across multiple devices is
reduced.

Availability
The PAL2ADF utility is available at no cost to Intel EPLD customers. Contact your local Intel
sales office.

4-23

JED2HEX CONVERSION UTILITY

Description
JED2HEX is a utility to convert JEDEC files created by iPLS (.JED) into lntellec HEX files which
can then be read by Intel's iPPS software. This allows programming of EPLDs via Intel's iUP200AI
201A using a GUP I base and the appropriate adaptor (e.g. LOGIC-12). The following diagram
represents a typical development cycle.

~~iP_L_s~_,.-~~-·J_ED~~••I JE02HEX
.HEX ~ -·L:J

t
.TTF

INSTALLATION: To install the utility and its device specific files, place the master disk in drive
A: and invoke the JINSTALL.BAT batch file with the destination path for the utility and device
files. Example:

A: JINSTALL C: MYPATH

When using JED2HEX, attach the package description letter when entering the device type.
That is, enter 5C121D for a 5C121 ceramic DIP when prompted for the device type. Entering
5C121 will result in:

***ERROR: Device File Missing

To determine the packages supported in your JED2HEX software, examine all the .ttf extension
files; it is the .ttf files which the device type command attempts to match.

When using iPPS, a file format of 8080 or 8086 must be specified when copying the JED2HEX
generated HEX file to the buffer or directly into a device. If 8080 or 8086 is not specified, the
default file format type of 80386 will be chosen and a "GENERAL ERROR - ILLEGAL FILE
TYPE SPECIFIED" will result. An example of the proper COPY format:

PPS> COPY a: filename.HEX TO PROM 86

Availability
The JED2HEX Conversion Utility is available at no cost to Intel EPLD Customers. Contact your
local Intel sales office.

4-24

intJ APPLICATION
NOTE

AP-279

October 1987

Implementing an EPLD Design
Using Intel's Programmable
Logic Development System

LAKSHMI JAYANTHI
DSO APPLICATIONS

NOTE

This design can also be developed on iPLS II (Version II of Intel's
Programmable Logic Software). Some of the prompts or message
may vary slightly, but the overall procedure is identical.

INTEL CORPORATION, 1986 Order Number 280310-002
4-25

AP-279

OVERVIEW

Welcome to the fascinating world of ERASABLE PRO­
GRAMMABLE LOGIC DEVICES (EPLDs) and Intel's
Programmable Logic Development System (iPLDS). This
application note has been written for the newcomer to
Intel's devices and design tools. It has been designed as a
step-by-step guide through the tools but should also prove
useful as a reference document for the experienced logic
designer.

By the end of this application note you will have
designed/solved multiple logic problems and be in a posi­
tion to implement solutions to many of the digital design
challenges you face today. It is anticipated that this appli­
cation note will be used in conjunction with Intel's iPLS
software. To increase the usefulness of this application
note, Intel will supply a PCB card for you to experiment
on and a sample diskette (see Appendix E for details).

This application note is divided into the following three
sections:

1. An introduction to Erasable Programmable Logic
Devices (EPLD)

2. An introduction to Intel's Programmable Logic De­
velopment System (iPLDS)

3. Implementation of EPLD and iPLDS using detailed
examples to implement a logic design.

INTRODUCTION

Programmable logic in the form of PALs have been availa­
ble for some time. They have become more complex as
Large Scale Integration (LSI) techniques have been ap­
plied to this technology.

The benefits of Large Scale Integration circuits are many
fold. These circuits offer lower manufacturing costs,
since the use of customized LSI circuits reduces required
printed circuit board space, thereby significantly reducing
board costs. These circuits also consume lower power so
less expensive power supplies are required and cooling
fans are also eliminated. LSI circuits also have higher reli­
ability than equivalent systems comprised of many low
density standard components.

As end users of semiconductors moved into higher and
higher levels of integration, chip designers found it more
and more difficult to define larger and larger blocks of
logic. These difficulties led to the emergence o~ th~
user-defined Application Specific Integrated Cucu1t
(ASIC).

The options available for application specific logic are ex­
plained below and shown in Figure l.

I n cuJTOM n
PROGRAM· GATE STANDARD FULL

MABLE ARRAY CELL CUSTOM
LOGIC

2442

Figure 1. Logic Options

Full Custom: These circuits can be tailored to give the
best functional performance with the highest level of inte­
gration, the smallest silicon area, the lowest power use,
and be produced for the least cost at high production
volumes.

Standard Cell Library: This approach represents an in·
tegrated circuit which is composed of predesigned and
precharacterized cells chosen from a computer data base
library of cells.

Gate Arrays: These are integrated circuits that contain a
regular, usually square, matrix of predefined logic gates.

User Programmable Logic: The concept of user pro­
grammable logic is to provide the designer with the bene­
fits of custom LSI chips from standard products.

A recent innovation in the programmable logic field has
been Intel's introduction of an ERASABLE Program­
mable Logic Device. Using the same technology used in
the manufacture of EPROMs, Intel now offers increased
flexibility to the logic designer.

Intel has addressed the limitations of gate arrays and fuse
programming logic with its EPLD products and develop­
ment system support tools. The benefits to the system de­
signer are:

• Greatly reduced lead times

• Low design costs

• Ease of design changes

• Low power dissipation from CHMOS technology

• Multiple programming facility

• Maximum flexibility in each chip and the ability to
erase and reprogram

• High density products that maximize function, integra­
tion, and quality

• A self-contained, low-cost sophisticated development
system based upon the industry standard IBM PC XT
or AT.

4-26

intJ AP-279

Table 1. lntels EPLDs

EPLD Gates Pins
Dedicated

1/0
l~ts

5C031 300 20 10 8
5C060 600 24 4 16
5C090 900 40 12 24
5C121 1200 40 13 24
5C180 1800 68 12 48

EPLDs are now a cost-effective solution to the problem of
large scale logic integration. EPLDs are the simplest form
of high density application-specific logic to implement.
At present, the following logic devices are available from
Intel as shown in Table I.

Intel's EPLDs use the "Sum Of Products" architecture
with programmable AND and fixed OR gates to drive a
combinatorial or registered output. Each of the devices
listed in Tuble I has different attributes and resources tar­
geted at specific applications.

In general each device contains multiple sets of program­
mable MACROCELLS as shown in Figure 2.

Everything is programmable (and erasable if you need to
make modifications). Product terms may be generated
from any combination of input terms-any terms not used
are considered a "don't-care" in the array. The output
register is also programmable-you can choose D-type,
Toggle, SR, or even JK FLIP-FLOPs; you can even
choose no output register if you only require combinato­
rial outputs. The clock and output enables are also
programmable.

"' ::&
a:
w
I-

I-
0

AND ARRAY

:::> c
0
a: ...

OR
ARRAY

--------------------- ---

INPUT TERMS
(INCLUDING FEEDBACK)

Figure 2.

Intel EPLD devices are available in many configurations
to fit most applications. A complete listing of data sheet
availability is covered in Appendix E.

DESIGN TECHNIQUES USING INTEL'S
EPLDS

Designing with EPLDs is similar to designing with stan­
dard TTL logic circuits. The focus moves from "how can
I configure this design yvith standard parts" to "what else
could I replace using this EPLD". Remember, if you ever
use all of an EPLDs resources you just move up the de­
vice chain to the next bigger component-all of the work
you did is DIRECTLY PORTABLE to a larger device.

Any network, either combinatorial or registered, has an
equivalent two level form. Any logic circuit consisting of
AND, OR, NOR, NAND, XOR Logic can easily be con­
verted into the corresponding truth table. Any Boolean
expression, no matter how complex, may be written in
Sum-Of-Products form. This Sum-Of-Products expres­
sion that has been derived from the truth table can be re­
duced until it has as few product terms as possible. This
procedure can be repeated for any complex network.

Let us consider a very simple network as shown in Figure
3. This logic circuit consists of an AND gate, an OR gate
and a NOT gate. The inputs are A, B, C, and the output
is Y.

For this simple network, the truth table is shown in
Table 2:

A Boolean expression can easily be written from the truth
table in a Sum-Of-Products form. This expression con­
tains the relationship between the inputs and the output.

CLOCK OUTPUT
ENABLE

O/P OUTPUT
REG PIN

FEEDBACK

2443

Macrocell Arch

4-27

intJ AP-279

A

B

Figure 3. Simple Network

2444

Note that the output Y is true in five of these eight states
(0,2,4,6, and 7) so expressing Y in the form
"Sum-Of-Products" by writing the ones in terms of A, B,
and C yields:

Y = /A•IB•/C + /A•B•/C + A•/B•/C
+ A•B•/C + A•B•C

He11ce, given any network, that network can be converted
into its truth table. Next, a Sum-Of-Products expression
that has the same truth table can be derived. If so desired,
this Sum-Of-Products expression can be reduced using
DeMorgan's theorem to simplify the circuit (you will see
later that this will not be required).

DEVELOPMENT SUPPORT
Development tools are critical to the use of new technolo­
gies because tools allow you to control and use a new
technology. Good tools help you, the designer, to work in
familiar methods, then translate the design to the device.

Good tools broaden the applications by making it easy to
use new technology in designs. They are not a barrier to
using the technology, but encourage its use and
applications.

Advanced and innovative technologies need similar ad­
vancements and innovations in the corresponding tools.

Table 2.

STATE INPUT OUTPUT
A B c y

0 0 0 0 1
1 0 0 1 0
2 0 1 0 1
3 0 1 1 0
4 1 0 0 1
5 1 0 1 0
6 1 1 0 1
7 1 1 1 1

iPLDS, Intel's Programmable Logic Development Sys­
tem, provides a full spectrum of ways to design and use a
variety of design tools with fast, ea.sy-to-use entry
software.

The iPLDS contains all the software, hardware, documen­
tation and devices needed to program EPLDs. iPLDS are
the most advanced PLD design tools available. It provides
better utilization of device resources (more gates per
chip) than any other development software. These versa­
tile tools are for users with different skill levels and appli­
cations. iPLDS tools handle the details of converting your
design to working silicon on the personal computer.

The iPLDS contains the three fundamental modules

• Logic Builder (LB)

• Logic Optimizimg Compiler (LOC)

• Logic Programmer Software (LPS)

To implement the logic design we will use the iPLDS
modules in the order listed above.

The modules are essentially independant modules that use
special data files to pass information as shown in Figure
4. These data files are the ADF, RPI', LEF, and JED files.

The Advanced Design File (*.ADF) is generated from
the Logic Builder and contains the Inputs/outputs and all
the primitive equations.

The Logic Equation File (*.LEF) contains the primitive
equations that have been minimized by the Logic Opti­
mizing Compiler.

The Utilization Report File (*.RPI') contains information
on the macrocell and pin assignments.

The JEDEC File (*.JED) is the file generated by the
Logic Optimizing Compiler used to program the device
using the Logic Programmer.

Before implementing the logic design using the iPLDS,
let us briefly discuss the iPLDS family of parts to be fa­
miliar with the iPLDS modules.

4-28

Logic Builder (LB)

The Logic Builder module guides you through the entire
process of design entry by prompting for necessary infor­
mation and showing a screen display (one primitive at a
time) with input signals on the left side and output signals
on the right side. The Logic Builder is used to generate an
Advanced Design File (or ADF) by inputting the data in
netlists or Boolean equations.

After all required data are entered, the Logic Builder
module indicates whether the circuit is complete and
properly connected. If any changes need to be made, the
module enables you to edit the circuit design either by

intJ AP·279

~ LEF ANALYZER, .. l

LOGIC
BUILDER

(LB) TRANSLATO
EXPANDER

LOGIC
MINIMIZER

I
I

DESIGN
REQUIREMENT

FITTER

DEMANDER/
FITTER/

ASSEMBLER

LOGIC
PROG.

(LP)

2445

Figure 4. Block Diagram of iPLDS Modules

systematically scanning through the primitives in the Ad­
vanced Design File (ADF) or by directly finding a primi­
tive by the name of a node connected to it.

Any circuit may be edited. The Logic Builder reads in the
ADF and prompts you for changes. The Logic Builder
also allows two or more partially complete ADF files to
be MELDED together to form a more complex function.
This concept is not discussed in this application note but
will be a topic of a future application note.

Logic Optimizing Compiler {LOC)

The Logic Optimizing Compiler provides an easy-to-use
interface to the Logic User System software. Regardless
of the type of design entry method used, the LOC first
translates an Advanced Design File (ADF) into internal
logic equations; then it performs a Boolean reduction on
the translated design, and finally produces a JED EC Stan­
dard File, which is then used to program an Intel EPLD.
In addition, you have the option of requesting an analysis
of the Logic Equation File (LEF) as output by the
Minimizer module.

The LOC performs the following functions:

• The TRANSLA1DR translates the ADF into an inter­
mediate Logic Equation File (LEF). (Most errors are
detected and corrected).

• The EXPANDER expands the Boolean equations into
Sum-Of-Products form, removes redundant factors
from product terms, and produces another LEF.

• The MINIMIZER performs a sophisticated Boolean re­
duction on the translated design to maximize utilization
of the EPLD.

• The LEF Analyzer converts the LEF output by the
MINIMIZER into a human readable file to allow you to
see your design. (*.LEF)

• The DEMANDER organizes the file output by the
MINIMIZER.

4-29

• The FITTER matches your design requirements with
the known resources of the Intel device.

• The ASSEMBLER converts the fitted requests into
JEDEC file.

Logic Programmer Software {LPS)

The Logic Programmer Software provides a user inter­
face to the JED EC Standard File output of the Logic Opti­
mizing Compiler and to the Logic Programmer Interface.
You can use the Logic Programmer Software to view
JEDEC files and to program your designs into EPLDs.

The Logic Programmer Software is used

• to program your designs into EPLDs

• to verify the validity of data in the device

• to read data from the device

• to display JEDEC data graphically

• to edit JEDEC data

HARDWARE REQUIREMENTS

The iPLDS requires an IBM PC XT, PC AT, or other
compatible computer. A color monitor is preferred. The
computer must have at least one 360K double-sided
double-density disk drive, a second 360K floppy disk or
hard disk, and at least 512K bytes of RAM memory.

The iPLDS consists of the Logic Programmer Interface
card, and the programming unit needed to program and
verify EPLDs. The Intel iUP 201 with a GUPI adapter
may be used as an alternate system to program the EPLD
devices.

SOFTWARE REQUIREMENTS

The personal computer should be capable of running DOS
V3.0 or a higher version. The Intel Programmable Logic

intef AP-279

Software (iPLS) that contains the software controlling the
logic programmer interface and assisting in the design of
Intel applications is shipped on floppy diskettes.

PROBLEM DEFINITION

We are going to use iPLDS to implement a medium com­
plexity logic function. As a vehicle to show the usage of
the tools and design techniques we will design a circuit
that will roll and spin a pair of dice. The design has been
split into multiple stages for illustration purposes.

This example has been chosen since it incorporates many
of a typical logic design tradeoffs and also solves many of
the typical problems a hardware logic designer will
encounter.

Appendix A contains some basic definitions that may be
useful when reading through the design and its
implementation.

DESIGN SAMPLE

Problem Set-up

The circuit is designed to set both of the dice spinning
when you push a switch and display a random set of num­
bers when you release the switch. The dice will spin at a
rate that is visually pleasing and roll at the highest possi­
ble rate to ensure randomness.

You will implement the design in the following steps:

A. One dice that will roll out a number.

B. Add a switch that will control the roll/not roll action.

C. Add a second dice to roll a number.

D. Add a spinning option to both dice.

E. Retro-fit a power save feature to extend battery life.

Hence, at the end of the five design steps you will have a
pair of dice spinning and showing a pair of numbers be­
tween l and 6 in a very random manner. At the end of the
five design steps, you will have added a very realistic and
practical feature to your design and that is extending the
battery life by a power saving option. It is important to
note that the five steps mentioned above are sequential
steps in that step C can be achieved only after steps A and
B etc. Let us describe the sample circuit for the dice roll­
ing example. It is a very simple circuit allowing you to
concentrate upon the design process. It illustrates the pos­
sible design stages and considerations in detail.

PART A

Four Outputs-IA, IB, IC, ID are required to drive the
LEDs arranged in a DICE pattern as shown in Figure 5.

18 •

10 •

1C e
• 1A

e 1C

• 10

• 18

Figure 5. Dice Configuration

2452

Operating sequence-Rolling dice from l to 6 and the
block diagram of the circuit, both shown in Figure 6.

The total number of states that are possible is 16 since the
four LED pairs generate a permutation of (2* *4) = 16.
The LEDs should be lit up such that any number between
l and 6 inclusive is shown. Hence, out of the 16 possible
states, only .six states are valid. This leaves ten invalid
states.

If the LEDs come up in a valid state upon power up, then a
number between I and 6 will be displayed.

However, if the LEDs come up in an invalid state upon
power up, then you have to design the circuit such that any
one of the ten invalid states will fall into a valid state.

If the LEDs fall into any one of the ten invalid states, then
you have designed the circuit to move into a state where
IA, lB, lC, ID have zero logic values respectively on the
next clock edge. Every time a zero logic value appears in
the invalid states, then at the next clock edge, LED lA
gets lit up generating a valid state. Since l is a valid state,
the numbers between l and 6 inclusive will be displayed
at all subsequent clock edges.

Listed below are the steps involved in designing the logic
circuit.

STEP l. Generate the state diagram to clearly show the
operating sequence including the status of the outputs for
each state and the influence of the inputs on the next state
transitions as shown in Figure 7. We have arbitrarily cho­
sen that the states should count 1,2,3,4,5,6, and repeat.
You could have implemented the design using any se­
quence but we chose the most obvious. Note how most of
the invalid states move you to state 0 which then puts us
into a valid state which then repeats forever.

STEP 2. Generate a truth table with entries for all availa­
ble states and combinations of inputs, and use the next
states resulting from these as shown in Table 3. The
bracketed numbers, (3) etc., show the number being

4-30

intJ AP-279

reel
Li

fi:9l
LI a • •

Figure 6. Rolling Sequence

displayed on the dice and the 0, I values of ID, IC, 18,
and IA indicate which LEDs should be OFF/ON to dis­
play the required dice pattern.

STEP 3. Convert the truth table directly into
Sum-Of-Products equations as shown below:

DICEIA has four entries; 3 from the valid states and one
to control the invalid states

DICE1A = (/1A*1B*f1C*/1D + /1A*1B*1C*/1D
+ /1A*1B*1C*1D + /1A*/1B*/1C*/1D)

DICEIB has five entries from valid states

DICE1B = (1A*/1B*/1C*/1D + /1A*1B*f1C*/1D
+ 1A*1B*/1C*/1D + /1A*1B*1C*/1D
+ 1A*1B*1C*/1D)

DICEIC has three entries from valid states

DICE1C = (1A*1B*/1C*/1D + /1A*1B*1C*/1D
+ 1A*1B*1C*/1D)

2451

--------INVALID---------------VALID--------

2453

Figure 7.

4-31

AP-279

Table 3. Ti'uth Table for OICE1

Input State Output State

1A 18 1C 10 1A 18 1C 10 1A 18 1C 10

Valid state Invalid state

CHANGE TO THE NEXT VALID STATE

1 0 0 0(1) 0 1 0 0(2)
0 1 0 0(2) 1 1 0 0(3)
1 1 0 0(3) 0 1 1 0(4)
0 1 1 0(4) 1 1 1 0(5)
1 1 1 0(5) 0 1 1 1(6)
0 1 1 1(6) 1 0 0 0(1)

CONTROL THE INVALID STATES

0 0 1 0
1 0 1 0
0 0 0 1
1 0 0 1
0 1 0 1
1 1 0 1
0 0 1 1
1 0 1 1
1 1 1 1
0 0 0 0

DICEID has one valid entry

DICE10 " (f1A*1B*1C*1D)

Note that no attempt has been made to minimize these
equations - the iPLS software that you will use later con­
tains reducing algorithms and other techniques to opti­
mize the design. This allows you to focus upon the
problem and not on tasks such as Karnaugh map reduction
which a computer can often do better anyway.

Having designed part A of the circuit, you can now move
on to tool usage to implement the design. Refer to the
Intel Programmable Logic Software Manual if you have
not installed the iPLS software.

In order to invoke iPLS type the following command

C:\IPLS>IPLS <Enter>

The iPLS menu will appear as shown in Screen 1.

The number to the left of each function allows you to se­
lect a function with a function key. Two kinds of function
keys are available: toggle keys and field keys.< F3 > and
< F4 > are toggle keys. All other keys are field keys.
Functions beyond <FlO> are executed by pressing the
<Shift> key together with the function key. Press
< F3 > to invoke the Logic Builder and observe the Logic
Builder menu as shown in Screen 2.

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0(1)

The first prompt asks for the file name. If the file already
exists, its header information and primary inputs and out­
puts are displayed. If you enter a new file name, the Logic
Builder module prompts for all the functions remaining
on the screen.

Enter: DICE1 <Enter>
Create New Netlist<YIN> :Y

In this sample session, user entries are all in uppercase
letters. Note: IPLS is case sensitive.

When initially invoked; the Logic Builder module dis­
plays its configuration menu. The Logic Builder configu­
ration menu shows "5C121" as the default Intel part and,
on the right side of the menu, displays those primitives
that are legal for use with the 5C 121. As soon as you enter
another part (e.g. 5C060) the list of primitives changes to
display the primitives applicable to that specific part.

Press < F6 > and enter 5C060 when prompted for user
. entry.

4-32

Screen 2 shows the Logic Builder Configuration Menu for
the 5C060.

• The left side of the screen shows a menu of functions,
each preceded by a function key number.

iPL
FL
F2
F3
Flt
FS
Fb
F7
F6 F,
FLDI

AP-279

Intel Programmable Logic Softvare

iPLS Version 3.0, Copyright <Cl L,65, Intel Corporation
Copyright <Cl L,65, Altera Corporation

Select a function:

Logic '~uilder Config Menu:
FL ,

Fi?
F3
Flt
FS dice J.
Fb SCDbO,
F7
F6

Screen 1.

Intel Programmable Logic System

F, ~arch b, J.,6b
FL
If
IF
If
IF

<--

Screen2.

J'..

AP-279

Table 4.

Prom__e! User En!IY_
f6 EPLD SC060
f7 Designer Your Name
f& Company Your Company
f'l Date Present Date
FJ.O Comment Our first design
!Fl. Part Number 0.1
!f2 Revision 1.0
!f3 Inputs CLOCKil1
!f4 Outputs DICE1Ai110,DICE1Bil'l,DICE1Cil&,DICE1Dil7

• The right side of the screen shows the list of available
primitives (these are discussed in detail later).

• The two lines at the bottom of the screen are designated
for comments (first line) and prompts (second line).

• The center of the screen is used to show a representa­
tion of the primitive; name and pictorial representation
are in the middle, input signals are to the left, and out­
put signals are to the right of the primitive.

• The direction of the arrow located on the left side of the
screen below the list of functions determines the start­
ing point and direction of design entry. If the arrow
points to the left, entry is from output pins to input
pins. If the arrow points to the right, entry is from input
pins to output pins.

NOOE

We have assigned pin numbers to pin names by
using the "@" symbol within the name of the
logic variable. Specific pin numbers need not
be assigned if not desired. In that case, the
Logic Builder will assign its pin numbers for
you.

Type in the information as given in Tuble 4 in the Logic
Builder Config Menu. The information is also shown in
Screen 3. After entering all of this required information,
iPLDS will automatically prompt you through defining
the circuit, starting with a primitive to drive the last out­
put specified.

Once in the Logic Builder main menu, you are guided
with.prompts to enter information as follows:

Enter the name of the primitive to connect to the first
node. The name may be entered by typing the name of the
primitive, which highlights the appropriate primitive on
the right side of the menu, then pressing <Enter>.

Subsequently; a representation of the primitive is dis­
played in the center of the screen surrounded by input and
output signals. You are prompted for names of nodes to
connect to each of the signals. The Design Primitives li­
brary contains approximately 80 basic functional blocks
needed for designing circuits in programmable logic
products.

4.34

Design Primitives are divided into the following groups:

• Input Primitives (INP,LINP)

• Logic Primitives
(AND,GND,CLKB,NOf, VCC,OR,NAND,NOR,XOR)

• Equation Primitives (EQN)

• IIO Primitives (JOJF, NOJF, NORF, RORF, etc)

Refer to Appendix A for an explanation of the Primi­
tives used in this example.

The logic is based on input clock transitions. At the rising
edge of the clock we want the LEDs to generate a particu­
lar state depending on the input state. You want the output
of the LEDs to follow the input, which is basically a
D-TYPE FLIP-FLOP. You also require the feedback to
generate the next state, which means that you should use a
D-TYPE FLIP-FLOP with FEEDBACK or RORF as
shown in Screen 4.

NOTE

,.he Logic Builder module starts with the la!j.t
output entered.

When you are prompted to select a primitive to drive
DICE ID enter:

Select a primitive to drive DICE1D~7:
RORF <Enter>

Now you are prompted for the remaining connections:

For FBK: 1D <Enter>

For OE, P, C: Press <Enter> C VCC, GND are
the defaults l ·

For.D: IN1D <Enter>

For CLK: CLOCK <Enter>

SelPct a primitive to drive CLOCK: INP
<Enter>

intef

Logic
FJ.
F2
F3
f'§
FS
Fb
F7
F&
F'I
FJ.
tFJ.
tF2
tf3
tf4'

<--

AP-279

Intel Programmable Logic System

Builder Config Menu:

dice 1
SCDbD
Your name
Your company
March b, l'l&b
Our first design
a.1
],.0
clocki1 ,
DICE1Ai1D,DICE1Bi'l,DICE1Ci&,DICE1Di7

Outputs:DICE1Ai1D,DICE1B~'l,DICE1Ci&,DICE1Di7

Logic Builder Main Menu:
FJ.
F2
F3
f4
FS
Fb
F7
F&
F'I

<--
Pin=?

Fbk:J.d

Screen 3.

Intel Programmable Logic System

Oe
p
c
D

.Clk
~.1.J:
->L ..

RORF

Screen 4.

4-35

Out diceld
Fbk

IMP MO.J:F
UN NORf'

cu:a Hosf
ANJ NOTF

MAND ROlF
.NOfl RONf
NOT flOflF

Oft toNF
xott sosf"

'Ctlf'. UIF
CONT T01'F
JO.If .TOYF
.IOtfF

intJ AP-279

In: CLOCK <Enter>

Select a primitive to drive IN1D: EQN
<Enter>

To save the configuration and return to iPLS menu you
must press < F6> (Save-Exit).

After you are prompted for the equation, type it in as de­
rived in the Problem Set-up section. Please note that "/"
indicates a logical "NOf", "*" indicates a logical
"AND", and " + " indicates a logical "OR". The equa­
tion is terminated by a ";" as shown in Screen 5.

Note that you are saving the Advanced Design File (ADF)
that is generated by the Logic Builder.

You can print the ADF file that has been created at the end
of this session if you so desire. You can use < FlO>
when in the iPLS main menu to print the ADF file for a
listing. You can verify your file with the DICE! .ADF file
given in Appendix D. If you desire a listing, while you are
in the iPLS main menu, type the following:

IN1D = C1A * 18*1C * /1Dl; <Enter>

The following prompts and design entries, as shown in
Table 5, are needed to complete the design entries for
DICElC, DICElB, and DICElA respectively.

<F10> <Enter>

PRINT DICE1 • ADF <Enter>
The Logic Builder will stop prompting for primitives once
you have entered the complete design.

Press < F8 > to show the design so far as shown in
Screen 6.

Submitting the ADF to the LOC

This ADF file is now compiled using the Logic Optimiz­
ing Compiler. To enter the ADF created with the Logic
Builder module into the Logic Optimizing Compiler
(LOC), press < F4 > to access the LOC menu.

Press < F2 > to exit.

The Logic Builder main menu is cleared, replaced by the
Logic Builder exit menu.

Tables.

PROMPT USER ENTRY
Select a primitive to drive 1C: RORF <Enter>

Out: I>ICEJ.C <Enter>
Oe: VCC<Enter>
P: GNI> <Enter>
(: GNI> <Enter>
!): IN1C <Enter>
Select a primitive to drive IN1C: £:QN <Enter>

INJ.C: (1A*1B*/1C*/1I>l+(/1A*1B*1C*/1I>l+(1A*1B*1C*/1J));

<Enter>

Select a primitive to drive 18: RORF <Enter>
out: I>ICEJ.B <Enter>
Oe: VCC <Enter>
p: 6NI> <Enter>
c: GNI> <Enter>
!): IN1B <Enter>

Select a primitive to drive IN1B: EQN <Enter>

IN18: (1A*/1B*/1C*/1I>l+(/1A*1B*/1C*/1I>l+<1A*1B*/1C*/1I>l

+(/1A*1B*1C*/1I>l+<1A*1B*1C*/1I>l;<Enter>
Select a primitive to drive J.A: RORF <Enter>
Out: I>ICEJ.A <Enter>
Oe: - VCC <Enter>
P: GNI> <Enter>
c: GNI> <Enter>
!): !NJ.A <Enter>
Select a primitive to drive IN1A: EQN <Enter>
!NJ.A: (/1A*1B*/1C*/1I>l+(/1A*1B*1C*/1I>l+(/1A*1B*1C*1I>l

+(/1A*l1B*/1C*/1J)l;<Enter>

4-36

AP.279

Intal Programmable Logic Systam

Logic Builder Main Menu:
Flo
Fa
F3
Flf
FS
Fl.
F7
Fii F,

<--
Pin•7

YCC
GND
GND

inld
clock

Oe
p
c
D

Clk

RORF

Out diceld
Fbk ld

llP ,,, ,,
.CLKl<lttV

m .ttttf'
twit «tifi'

. ltlhlltOllfi',,
... ;$t5'

·cottr••zr
¢.OIF Tffl
JtJfi tO:'tfi
JOIF

Screen 5.

Once the LOC menu is displayed, you are prompted
through the LOC menu functions as follows:

The Input Format prompts you to specify your form of
input: If input is in the form of a pinlist as output by
DASH-2, enter P, if input is an Advanced Design File,
enter an ADF or press <Enter> (ADF is the default). If
output is a component list from PCAD, enter C.

INPUT FORMAT: A <Enter>

FILE NAME: DICE1 <Enter>

. MINIMIZATION: <Enter to select default>

INVERSION CONTROL: <Enter to select
default>

LEF ANALYSIS: <Enter to select default>

After you have answered atl the prompts, you are asked if
you wish to run under the above conditions as shown in
Screen 7.

DO YOU lllISH TO RUN UNDER THE ABOVE CONDI­
TIONS CY /Nlf

Enter: Y

4-37

Finally you are prompted with:

WOULD YOU LIKE TO IMPLEMENT ANOTHER DE­
SIGN CY/Nlf

Enter: N

Note that the LOC generates a synopsis of its progress as
shown in Screen 8. You are returned to the iPLS menu.

At the end of the LOC a JEDEC Standard File has been
created which we will use in the Logic Programmer,
DICE I.JED. .

Also at the end of the LOC a report file is create9,
DICEl.RPf, which gives the pin configuration menu of
the device. The DICE! .RPI' file is given in Appendix D.

Programming the EPLD

Finally, you submit your design to the Logic Programmer.
In order for you to use the Logic Programmer, you must
have the prognunming card plugged in. Please refer to the
Intel Programmable Logic Software User Manual for in­
stallation instructions.

Alternatively you can use Intel's GUPI (Generic Universal
Programmer Interface) to program your device.

intef

Logic Builder
Fl. tf!~fif
F2 $!(#)'
F3
F'q
P.S
Fb
F7
Fii
F'I

<--

Main Menu:
clockill.
dice1ail10
dice1bil9
dice1cilll
dice1dil . .7
vcc
GND
1d
in1d
clock
J.a
1b
1c
in1c
in1b
inJ.a

Unconnected nodes are bold
Press a function key:

LOC Menu
F1 Help
F2 i~(.Sil'lllni.i
F3 :rihP9.t fOt'll•t ADF

AP-279

Intel Programmable Logic System

Screen 6.

Intel Programmable Logic Syste~

F4 FV• N••e dice1
F S M~l'f~[ll.i1'.tJl\lri Yes
Fb. ~n~e')~J9J'I (ontrol No
F7 ttF Al'!;i~ysls . Yes

Do you wish to run 'under the abo·ve conditions CY /NJ?

Screen 7.

INP filcO . .IF
E:lll'N ··· NOitF

CU::9'lf0$.f
AltJ•ltOTT

NA8J Rttf
NOT 1'1 ., .
H

COIF'
¢4Nf'; TONI'
JcOJf TOtf
JONI"

The iUP-GUPI and assorted GUPI LQGIC adaptors pro­
vide an alternative programming solution for Intel's
H-series and EPLD devices, when purchased with the
iPLS. This complete set of software Is available without
the Logic Programmer pod and the IBM interface card.

While you are still in the iPLS menu, press < F5 > . ·This
function allows you to access the Logic Programmer Soft­
ware. The Logic Programmer will now come up as shown
in Screen 9.

4-38

inter

LOC Menu
F1 Help
F2 iPLS "enu
F3 Input for•at
F4 file Na.e
FS Minimization
Fb Inversion Control
F7 LEF Analysis

AP-279

Intel Programmable Logic Software

ADF Minimization LEF-Analysis
di.ce1

***INFO-LOC-Begin execution
***INFO-LOC-ADF converted to LEF
***INFO-LOC-s.o.p. LEF produced
***INFO-LOC-LEF reduced
***INFO-LOC-LEF analyzed
***INFO-LOC-Resource demand determined
***INFO-LOC-Design fitting complete
***INFO-LOC-JEDEC file output

LOC cycle successfully completed

Would you like to implement another design CY/NJ?

' Screen 8.

Use the cursor keys to select "Program Device" option.

When you are prompted

Enter JEDEC file name

Enter: DICE1. JED <Enter>

When you are prompted for:

Select Device For Programming

Enter: SCObO <Enter>

When you are prompted for:

Do you wish to enable verify protection? [YIN 1?

Enter: N

When you are prompted for:

Do you wish to enable turbo-bit? [YI N]?

Enter: N

Once you have answered all the prompts, the device is
programmed and ready to be used in an actual circuit, as
shown in Screen 10.

Exit from the Logic Programmer after saving the JEDEC
file by using the "EXIT" option.

4-39

This completes part A of the design, which was to roll a
single dice. The programmed device can be tested as de­
scribed in Appendix C.

PARTB

Now that you have a good understanding of the manner in
which a .circuit is designed and also a good understanding
of how the programming tools are used to program the
device, you can proceed to the next step in the five stages
of the dice design. According to the truth table generated
in part A, the dice will roll a number between I and 6
inclusive as long as you supply a power source. When you
disconnect the power source, all the LEDs will tum off.
This will not be much help since you can only see the dice
roll, but not actually see a number displayed.

Let us include an additional feature into the rolling dice.
Let us include a switch to control the rolling and display
of the dice.

You could choose to gate the clock of the dice or add the
necessary inputs to the product terms to effect this design.
If you were to stop after this step, then gating the clock
would be a simpler choice, however, you will require the
dice to roll during part D of the design; so we will choose
to add product terms at this stage. This also results in a
better engineering solution since gated clocks often cause
problems in large systems, and it has been shown that
synchronous systems are more reliable.

AP-279

Device: LOGIC PROGRAMMER

Program Device
file name [.JEDJ: DICE1.JED

Directory of .JED files for: C:\IPLS

Screen9.

Designer: Your Name
Company: Your Company
Part •:
Revision: 0. 0
EPLD: SCObO

Comment: PART A: DICE ROLLING
LB Version 3.0, Baseline 17x, 9/2b/85

the socket

Screen 10.

4-40

intef AP-279

Since you already have a proven design of a rolling dice
from part A, we shall use the Logic Builder and edit that
design. You may wish to save the original design at this
stage. You can do this by using the <FlO> key in the
Main Menu. Press < FI 0 > and issue the• following com­
mand before re-entering the iPLS menu:

COPYDICE1·* DICE1A·*

The truth table is shown in Table 6.

Now you can use the iPLDS to design and program the
device.

Go through the same steps to program the device as in
Part A of the design example. Use the Logic builder, the
Logic Optimizing Compiler, and the Logic Programmer
respectively. The Logic Optimizing Compiler and the
Logic Programmer steps are identical to the correspond­
ing steps explained in part A of the design example. How­
ever, the Logic Builder will be used to. edit the existing
file, DICE I, to include the switch feature as follows:

Invoke the Logic Builder Menu from the iPLS main menu
by pressing the < F3 > key. Once you obtain the Logic
Builder Configuration Menu, type in DICE! as your input
file name.

Use (Shift)(F3) to get the Inputs option and then add
switch at pin #2 to it.

Inputs: CLOCK, SWITCHQl2 <Enter>

Now press < F2 > to exit to the Logic Builder Main
Menu and answer the prompts as given in Table 7.

All that is left to do now is to edit the four equations,
INIA, INIB, INIC, INID to add the SWITCH option to
it. Edit the four equations as follows:

Edit Function

When you press the "Edit" function key, < F6 > , while
in the main menu, the edit menu is displayed on the left
side of the screen as shown in Screen 11. If you wish to
edit an EQN Primitive displayed on the screen, press
< F6 > . Then the equation is moved to the prompt line
where it can be edited.

Hence, the Boolean expressions for this case would con­
sider the situations of when the switch was ON as well as
OFF. The Boolean equations would contain the expres­
sion for the switch as follows.

4-41

DICE1A ((1A*/1 B*/1C*/1D) + (1AU1 B*/1C*/1D)
+(1A*1B*1C*/1D)
+ (/1 A*/1 B*i1C*/1 D))*/SWITCH
+ ((/1A*1B*/1C*/1D) + (/1A*1B*1C*/1D)
+(/1A*1B*1C*1D)
+ (11 A*/1 B*/1 C*/1 D))*SWITCH

DICE1 B ((/1A*1 B*/1 C*/10) + (1A* 1B*i1C*l1D)
+ (/1A*1B*1C*l1D) +(1A*1 B*1C*/1 D)
+(11A*1B*1C*1D))*ISWITCH
+((1A*l1B*l1C*/1D)
+ (/1A* 1B*l1C*/1D) + (1A*1B*l1C*/1 D)
+(/1A*1B*1C*/1D)
+(1A*1B*1C*l1D))*SWITCH

DICE1C ((/1A*1B*1C*/1D)
+(1A*1B*1C*l1D)
+(/1A*1B*1C*1D))*ISWITCH
+ ((1A*1 B*/1 C*/1 D) + (/1A*1B* 1C*l1 D)
+(1A*1B*1C*/1D))*SWITCH

DICE1D (/1A*1B*1C*1D)*/SWITCH
+(1A*1B*1C*/1D)*SWITCH

The equation primitive must be displayed on the screen in
order to edit that equation. In order to display the equa­
tion on the screen, use the "Find" command, < F5 >, to
find it.

The "Find" command prompts for a node name: then
searches the design for that node and displays it. If the
direction arrow points to the left, the primitive on the out­
put side of the node is shown. If the direction arrow points
to the right, the first primitive on the input side is shown.

After you have modified all four equations to include the
SWITCH feature, return to the iPLDS main menu using
the < F5 > key and save the design using the < F6 > key.
You can verify your ADF file with the ADF file for part B
given in Appendix D.

The file is ready to be compiled using the LOC, and the
device is ready to be programmed using the LP.

The steps required to use the LOC and the LP are identi­
cal to the steps in part A.

Now the device that has been programmed is ready to be
tested. At this stage in the design, you have completed
part B of the design which is to add a switch to give the
roll/no-roll option.

The programmed device can be tested as described in
Appendix C.

Let us summarize before moving on to the next part of the
design.

inter AP-279

Table 6. li"uth Table for DICE1

Input State Output State

SWITCH 1A 18 1C 1D 1A 18 1C 1D 1A 18 1C 1D

Valid state Invalid state

REMAIN IN THE SAME STATE

0 1 0 0 0 1 0 0 0(1)
0 0 1 0 0 0 0 0(2)
0 1 0 0 1 0 0(3)
0 0 0 0 0(4)
0 1 0 1 0(5)
0 0 1 0 1(6)

CONTROL THE INVALID STATES
0 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 1 0 0 0 0
0 1 1 0 1 0 0 0 0
0 0 0 0 0 0 0
0 1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0(1)

CHANGE TO THE NEXT VALID STATE*

1 0 0 0(1) 0 0 0(2)
0 0 0(2) 1 0 0(3)
1 0 0(3) 0 0(4)
0 0(4) 1 1 0(5)
1 0(5) 0 1 1 1(6)
0 1(6) 0 0 0(1)

CONTROL THE INVALID STATES

0 0 0 0 0 0 0
1 0 1 0 0 0 0 0

1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
1 0 0 0 0 0 0

1 1 0 0 0 0 0
0 0 0 0 0 0

1 0 0 0 0 0
1 1 1 1 1 0 0 0 0
1 0 0 0 0 1 0 0 0(1)

Note: This part of the truth table is identical to Table 3.

We have briefly discussed the EPLD and the IPLDS fam- Builder, Logic Optimizing Compiler, and the Logic
ily of parts. We have also defined the design problem. We Programmer.
have implemented the design using the state equations and
the truth table, edited an existing design to add features, Our logic in implementing the dice example is to use the
and actually programmed a device using the Logic LED pairs in outputs IA, IB, IC, and ID respectively as

4-42

intJ AP-279

Table 7.

Prom~s User En!.!l.,

Select a primitive for switchil2 to drive: INP <Enter>
Out: SWITCH<Enter>
Select a primitive for switch to drive: EQN<Enter>

shown in Figure 8. These LEDs are lit up to generate
numbers between 1 and 6 · inclusive. We are using a
D-TYPE FLIP-FLOP to implement the truth table. The
clock is a free running clock. A push button switch is also
supplied to give the roll/no-roll option. Whenever the
switch is ON, the LEDs roll, and when the switch is OFF,
the LEDs display a number between I and 6, as long as
the clock is supplied to the device.

After seeing the dice roll and display a number, you can
either quit or move onto parts C, D and E of the design
process. The following three parts describe a versatile use
of the EPLD concept.

PARTC

We are using an EPLD 5C060 which is a 24 pin, 600 gate
device. It has four dedicated input pins and 16
input/output pins. Up to this point you have used only one
input pin which is the switch and only four input/output
pins for the four LEDs IA, IB, IC, ID.

/

Part C of the design is to include a second dice with the
first dice. This is a step towards real-world application
since dice are usually rolled in pairs. At the end of this
section, you will have a pair of dice rolling and displaying
a pair of numbers. All the conditions and truth tables and
Boolean expressions that were designed for part B, hold
good for DICE!. The equations for DICE2 would change
slightly as explained below.

You have designed a 6 state counter and can define a carry
out (fortunately you can use state 6 and do not require
extra logic). You can use the carry out as an enable input
to form two cascaded counters.

The carry out of 1 D is used as an enable input to DICE2.
Hence, ID performs the same function as the push button
switch performed in dice I. Therefore, whenever ID is
enabled or logic high, DICE2 is enabled and rolls a num­
ber. DICE2 displays the number when ID is disabled or
logic is low. This configuration is shown in Figure 9.

Intel Programmable Logic System

Logic Builder Main Menu
F1 Help
F2 Exit
f3 Nelol
F4 Open
F 5 f'i.nd
F6 Edit
f7 conng
F!! No1" List
F9 Redraw

-->

1a
1b [i] in1d
1c
1d

inld=C1a•1b•1c•/1dl;
inld=C/1a•1b•1c•1dl•/switch+(/1a•1b•1c•1dl•switch\

Screen 11.

4-43

INPNOJF
EQN. NORf

c.t.KI . NO$f
ANI NOTf'

NA'NP ROtf
NOR Rl>NF
NOT Ro.RF

OR SONf
XOR S:OS:F

COii'' TOif
C.ONf' TONF
JOJf TOTF
JONF

intJ AP-279

Table 8.

PROMPTS
Find:
CNow use the <cursor left> key to obtain the EQN Primitive.)
Edit:

IN1D= C/1A*1B*1C*lDl*/SWITCH+C1A*1B*1C*/1Dl*SWITCH;<Enter>

Find:
C Now use the <cursor left>.key to obtain the EQN Primitive.)
Edit:

IN1C = CC/1A*1B*1C*/1Dl+C1A*1B*1C*/1Dl+C/1A*1B•1C*1Dll*/SWITCH
+CC1A*1B*/1C*/1Dl+C/1A*1B*1C*/1Dl+C1A*1B*1C•/1Dll*SWITCH;
<Enter>

Find:
CNow use the <cursor left> key to obtain the EQN Primitive.)
Edit:

IN1B = CC/1A*1B*/1C*/1Dl+C1A•1B*/1C*/1Dl+C/1A*1B•1C•1Dl+C1A•1B*1C*/1Dl
+C/1A*1B*1C*1D>l•/SWITCH
+CC1A*/1B*/1C•/1Dl+C/1A*1B*/1C*/1Dl+C1A*1B*/1C*/1Dl+
C/1A•1B•1C•/1Dl+C1A*1B*1C•/1Dl>*SWITCH;<Enter>

find:
CNow use the <cursor left> key to obtain the EQN Primitive.)
Edit:
IN1A=CC1A*/1B*/1C•/1Dl+C1A*1B•l1C*/1Dl+C1A*1B*1C*/1Dl+
C/1A*/1B*/1C*/1Dll*/SWITCH+CC/1A•1B*/1C•/1Dl+C/1A*1B*1C*/1Dl
+C/1A*1B*1C*1Dl+C/1A*/1B*/1C•/1Dll*SWITCH;<Enter>

The two conditions obtained are as follows:

When power is ON and lD is enabled, DICE2 will roll.

When power is ON and lD is disabled, DICE2 will dis­
play.

For DICE!, the logic conditions remain the same as in
part A. Just as you used the switch to enable and disable

(SWITCH)

ENABLE IN

1A

ENABLE IN

CLOCK

USER ENTRY

IN1D <Enter>

IN1C <Enter>

IN1B <Enter>

IN1A <Enter>

1A

1B

1C

10

1B
CARRYOUT

1C 2A

CLK 10 2B
2

2C

CARRYOUT 20

2447
2446

Figure 8. Figure 9.

4-44

intJ AP-279

DICEl, you will use the switch as well as the output of
LED lD to enable and disable DICE2; because the num­
ber on DICE2 is a function of both the switch and the
present state of LED lD, as explained above.

Now write down the truth table since the state diagrams
can easily be inferred from the truth table. Please note
that the truth table is identical to the one for DICEl ex­
•cept for the switch input. For DICE2, you will have the
combination of the switch and the lD, as shown in
Table9.

The Boolean expressions for part C will consider the situ­
ation when the switch is ON as well as OFF and also lD

·enabled or disabled respectively. The Boolean equations
will contain the expression for the switch and LED ID, as
shown below.

DICE2A = ((2A*'2B•i2C*'20)+(2A•2B•/2C•/20)
+ (2A•2B•2C*'2D) + (/2A•/2B•/2C•/2D))
•(/SWITCH•/1 D)
+ ((/2A•2B•/2C•/20) + (/2A•2B•2C•/20)
+(/2A•2B•2C•2D) + (/2A•/2B•/2C•/20))
•(SWITCH•1D)

DICE2B = ((/2A•2B•/2C•/2D) + (2A•2B•/2C•/20)
+ (/2A•2B•2C•/2D) + (2A•2B•2C•/20)
+(/2A•2B•2C•2D))•(/SWITCH•/1D)
+ ((2A*'2B•/2C•/2D)
+ (/2A•2B•/2C•/2D) + (2A•2B•/2C•/2D)
+ (/2A•2B•2C•/2D)
+(2A•2B•2C•/2D))*(SWITCH•1D)

DICE2C = ((/2A•2B•2C•/20) + (2A•2B•2C•/20)
+ (/2A•2B•2C•2D))•(/SWITCH•/1 D)
+ ((2A•2B•/2C•/2D)
+ (/2A•2B•2C•/2D) + (2A•2B•2C•/20))
•(SWITCH•1D)

DICE2D = (/2A•2B•2C•2D)•(/SWITCH•/10)
+ (2A•2B•2C•/2D)•(SWITCH*1 D)

Now you can use the iPLDS to program and test the de­
vice as explained in appendix C. At this stage in design,
you have completed part C of the design which is to add a
. second DICE to the first one giving the the roll/no-roll
option.

·1n part C of the design process, you have used one dedi­
cated input which is the switch, and a total of eight output
pins for the two pairs of LEDs, IA, lB, IC, lD and 2A,
2B, 2C, 2D respectively. You have also used the RORF
primitive, since the design logic was the same for DICE2
as it was for DICE!. This leaves 3 dedicated inputs and 8
1/0 pins on the 5C060 device.

You can stop the design now or go onto part D which gives
the next option, which is adding the spin.

4-45

PARTD

This is the fourth step in our design process and adds the
spin option to the two dice that are rolling when the switch
is pushed and display a number when the switch is re­
leased. The logic used to implement the spin concept is as
follows:

When the power is ON and the switch is OFF, DICE! and
DICE2 display a random number according to the logic
defined in parts B and C respectively.

But, when power is ON and the switch is ON, the two dice
spin by lighting the LEDs B, C, and D. That is, DICEl
will light LEDs lB, IC, lD while DICE2 will light LEDs
2B, 2C, and 2D. This pattern on the LEDs will generate
the spinning pattern. The logic is shown in the truth table
in Tuble 10. The schematic is shown in Figure 10.

As you can see from the truth table, when the present state
is any of the three valid states, then the two dice will spin.
The dice will also spin if the present state is an invalid
state, because all the invalid states go to "O 0 0 O" in the
next state. But from the truth table in Tub le IO, you see
that this particular state is a valid state lighting LED C.

The spin frequency should be chosen to be visually ap­
pealing and should be high enough to ensure randomness
of the dice. If we use the "carry out" state ofDICE2, then
the spin pattern will only change once for every combina­
tion of the two dice. This will ensure randomness. The
"carry out" of DICE2 is signal 2d; we do not need extra
terms to derive it.

Thus we have achieved our objective of adding the spin­
ning option to the two dice.

The Boolean equations tltat are obtained from the above
truth table are as follows:

SPIN1B = (SWITCH•2d•/S1D•/S1C•/S1B•S1A)

SPIN1C = (SWITCH•2d•/S1D•/S1C•/S1B•/S1A)

SPIN1D = (SWITCH•2d•/S1D•S1C•/S1B•/S1A)

SPIN2B = (SWITCH•2d•/S2D•/S2C•/S2B•S2A)

SPIN2C = (SWITCH•2d•/S2D•/S2C•/S2B•/S2A)

SPIN2D = (SWITCH•2d•/S2D•S2C•/S2B•/S2A)

Please note in the above equations that A, B, C, and D
refer to both DICE! and DICE2. FOr DICE! the above set
of equations would be IA, lB, IC, and lD. For DICE2
the above set of equations would be 2A, 2B, 2C, and 2D
respectively. SD is the feedback obtained from IN D of
both DICE! and DICE2 respectively. If the switch is not
ON, the dice will not spin and a random pair of numbers
will be displayed by the two dice; but, ifthe switch is ON,
then the two dice will spin according to the truth table and
Boolean expression given in Tuble 10.

intef AP-279

Table 9; "D'uth Table for DICE2

Input State Output State

(SWITCH*10) 2A 28 1C 20 2A 28 2C 20 2A 28 2C 20

Valid state Invalid state

REMAIN IN THE SAME STATE

0 1 0 0 0 1 0 0 0(1)
0 0 1 0 0 0 1 0 0(2)
0 1 1 0 0 1 1 0 0(3)
0 0 1 1 0 0 1 1 0(4)
0 1 1 1 0 1 1 1 0(5)
0 0 1 1 1 0 1 1 1(6)

CONTROL THE INVALID STATES
0 0 0 1 0 0 0 0 0
0 1 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 1 0 0 1 0 0 0 0
0 0 1 0 1 0 0 0 0
0 1 1 0 1 0 0 0 0
0 0 0 1 1 0 0 0 0
0 1 1 1 1 0 0 0 0
0 0 0 0 0 1 0 0 0(1)

CHANGE TO THE NEXT VALID STATE*

1 1 0 0 0(1) 0 1 0 0(2)
1 0 1 0 0(2) 1 1 0 0(3)
1 1 1 0 0(3) 0 1 1 0(4)
1 0 1 1 0(4) 1 1 . 1 0(5)
1 1 1 1 0(5) 0 1 1 1(6)
1 0 1 1 1(6) 1 0 0 0(1)

CONTROL THE INVALID STATES

1 0 0 1 0 0 0 0 0
1 1 0 1 0 0 0 0 0

1 0 0 0 1 0 0 0 0
1 1 0 0 1 0 0 0 0

1 0 1 0 1 0 0 0 0

1 1 1 0 1 () 0 0 0

1 0 0 1 1 0 0 0 0

1 1 0 1 1 0 0 0 0

1 1 1 1 1 0 0 0 0

1 0 0 0 0 1 0 0 0(1)

Note the extreme similarity between this truth table and the one given in Table 3.

4-46

inl:J AP-279

· Table 10. Truth Table to Spin Two Dice spinning when the switch is on and displaying a number

lnputS~te. Output State

SWITCH A B c D A B c D

CHANGE TO THE NEXT VALID STATE

1 0 0 0 0 0 0 1 0
1 0 0 0 1 0 1 0 0
1 0 0 1 (} 0 0 0 1
1 0 1 0 0 -0 0 0 0

ROLLING INTO A VALID STATE

1 1 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0
1 1 0 1 0 0 0 0 0
1 0 1 1 0 0 0 0 0
1 1 1 1 0 0 0 0 0
1 1 0 0 1 o. 0 0 0
1 0 1 0 1 0 0 0 0
1 1 1 0 1 0 0 0 0
1 0 0 1 1 0 0 0 0
1 1 0 1 1 0 0 0 0
1 0 1 1 1 0 0 0 0
1 1 1 1 1 0 0 0 0

We have chosen the following two primitives for part D:

Registered Output Registered Feedback (RORF)

No output JK Feedback (NOJF)

For the dice spinning option you will use the RORF and
for the dice not spinning option you will use the NOJF;·
while using the Logic Builder.

When you add the spinning option to the pair of rolling
dice, you obtain the following boolean equations. (These
Boolean equations satisfy the requirements of the two dice

ROLL
LOGIC

CARRY
OUT

ENABLE SPIN
LOGIC

when the switch is ofl).

SPIN1A = (/SWITCH*1A)

SPIN1B = (/SWITCH*1B)
+ (SWITCH*2d*/S1D*/S1C*/S1B*S1A)

SPIN1C = (/SWITCH*1C)
+ (SWITCH*2d*/S1D*/S1C*/S1B*/S1A)
+ (SWITCH*/2d*S1C)

SPIN1D = (/SWITCH*1D)
+ (SWITClh2d*/S1 D*S1 C*/S1 B*/S1A)

SPIN2A = (/SWITCH*2A)

SPIN2B = (/SWITCH*2B)
+ (SWITCH*2d*/S2D*/S2C*/S2B*S2A)

SPIN2C = (/SWITCH*2C)
+ (SWITCH*2d*/S2D*/S2C*/S2B*/S2A)

SPIN2D = (/SWITCH*2D)
+ (SWITCH*2d*/S2D*S2C*/S2B*/S2A)

At the end of the design step, you have completed all the
design steps. You can now program the device using
iPLDS.

The correct ADF file is included in Appendix D for your
reference. You can refer to it to verify the ADF file you
have created.

The programmed device can be tested on:

• A PCB with slow clock

For information on this board and on testing your design,
please refer to Appendix C.

It works!

RE:.~~ERS t---~- DISPLAY

2448

Figure 10.

4-47

intJ AP-279

LATE NEWS FLASH

The PCBs have been made and we have units in the field.
Now Marketing wants the design updated! Field trials of
the dice showed that the battery needed to last longer. A
simple mod to the design, chop the drive to the LEDs,
extends the battery life.

This is very simple using the EPLDs. Reprogram the
EPLD and test it. Imagine how difficult it would have
been without using EPLDs.

PART E: MORE POWER SAVINGS

This step of the design process is to modify the existing
circuit to add the power save feature which will extend the
battery life. This can easily be done by chopping the drive
to the LEDs. Chopping the drive to the LEDs can be done
as follows:

When you designed the circuit and implemented it using
the iPLS, you have set the output enable (Oe) to VCC
supply. This means that the LEDs are enabled 100% of
the time. You can "chop" the drive to the LEDs with a
conveniant high (above 50Hz) signal that will not be visi­
ble to the human eye.

To reduce current consumption by the LEDs, modify
the NETWORK: Section of the ADF as follows:

1) Change the node name for the RORF Output Enables
(Oe) from VCC to OE.

2) Insert an OENB (Output Enable Buffer) primitive to
allow the logic array to drive the output enables.

3) Include an INP primitive to connect the output en­
able to an input pin.

These changes can appear as follows:

spinla, sla = RORF (in la, clock 1, GND, GND, OE)

OE = OENB (OEN)

OEN = INP (OEN)

Remember to include ,OEN in your INPUTS: declara­
tion. The OEN input on the programmed part can now
be connected to an appropriate clock signal to obtain
the desired power savings.

CONCLUSION

You should now have a comprehensive knowledge of
Intel's EPLD and iPLDS family of devices.

With this knowledge you will be able to implement de­
signs using the iPLDS tools.

Good Luck!

4-48

A~279

APPENDIX A:
BASIC DEFINITIONS

4~9

..

'
,.J-.j. ;t':

intJ AP-279

BASIC DEFINITIONS

Logic Design - A systematic procedure for realizing
specified tenninal characterisitics of digital networks, at
either the device or system level.

CLOCKED FLIP-FLOP - Output detennined by the
leading or trailing edge of clock pulse.

T FLIP-FLOP - Output changes value with every input
clock pulse.

T FLIP·FLOP

D FLIP-FLOP - Output determined by the input signal
when clock pulse present.

x===:r:1 -__ :
D FLIP.FLOP

S-R FLIP-FLOP - Output states synchronized with the
clock pulse and controlled by the input signals, S and R.

S-R FLIP·FLOP

J-K FLIP-FLOP - Output states synchronized with the
clock pulse and controlled by the input signals, J and K.

~=======~l~~i'""~1-~~~-A l ------A ...__,.9
R

J-K FLIP-FLOP

COMBINATORIAL CIRCUIT - Output determined by
current value of input signal.

REGISTERED CIRCUIT - Output detennined by se­
quence of input signals.

Intel Schematic Primitive - One of the basic functional
blocks needed to design circuits for Intel programmable
logic products.

Truth Table - A list of all the input-output possibilities of
a logic circuit.

Boolean Logic - Describes logic that obeys the theorems
of Boolean algebra. The Boolean portion of a design is
that portion which can be implemented in the AND-OR
matrix.

4-50

State Diagram - A diagram that shows the succession of
output states through which the circuit passes as its input
signals vary.

INP-Input

PIN·NAME c=:::::>-- 1

INP

Input Primitive

GND-Ground

GND

Ground Signal Name

intJ
VCC-Signal

Vee

T
Signal Name

EQN - Equation

0 = ARBITRARY BOOLEAN EXPRESSION;

EQN

Equation Name

Registered Output Registered Feedback (RORF)

F

No Output Registered Feedback (NORF)

NORI'
F---~

AP-279

4-51

No Output JK Feedback (NOJF)

NOJF
F------'

JK Output JK Feedback (JOJF)

F------

Security Bit - A feature that prevents the device from
being interrogated or being accidentally programmed.

Turbo-bit - A control bit that allows you to choose the
speed and .power characteristics of the device. If the in­
puts are static for approximately 50 ns and the Turbo-bit
is not programmed, the device will enter power down
mode. When the input changes, the device will take an
extra 3-5 ns to wake-up and react to the change. Program­
ming the Turbo-bit inhibits the power down.

Macrocell - A basic building block of Intel's program­
mable logic devices·. A macrocell consists of two sections:
combinatorial logic and output logic. The combinatorial
logic allows a wide variety of logic functions. The output
logic has two data paths: one leads to the other macrocells
or feeds back to the macrocell itself: the other is confi­
gured as a pin configuration acting as input, output, or
bi-directional 1/0 port on the chip.

Node - A wire connecting two or more primitives in a
schematic.

Pin - A node that is connected to an input or 110 primi­
tive on one end and a pin of the chip on the other end.

Product tern (P-Term) - Two or more factors in a boolean
expression combined with the AND operator consitutes a
logic product term.

AP-279

JEDEC Standard File - An. industry-wiqe standard for
the transfer of information between a data preparation
system and a logic device programmer.

EPLD PROGRAMMING TECHNIQUES

You can enter your design in the following ways

1. BOOLEAN EQUATION - entering the design in
BOOLEAN equations or expressions.

2. NETLIST CAPTURE - selecting components and
specifying interconnections until all elements are
specified.

3. SCHEMATIC CAPTURE - using a mouse and
menu driven environment.

4. STATE MACHINE - specifying states and condi­
tional branches and also inputs/outputs to the state
machines.

4-52

AP-279

'APPENDIX B:
COMPONENTS LIST

4-53

AP-279

COMPONENTS USED IN DESIGN

In order to implement the EPLD program, you should use
the following:

• An 5C060 EPLD

• A pair of seven discrete LEDs (Dice I, Dice 2)

• A timer to generate a clock signal (NE555)

• A voltage regulator to generate a fixed voltage of 5
volts (7805)

4-54

• A push button switch to control the spinning
mechanism

• A 9-Volt DC battery source to generate the power
supply

• Capacitors Cl =0.1 MF, C2=0.0l MF

• Resistors RI = 390K, R2 = lOOK

• A PCB as explained in Appendix C

:'\"

..

:~.:

APPENDIXC:
PCB DESCRJPTION '~, >

4-55

intJ AP-279

4

555

U2

VOLTAGE
REGULATOR

-----1
8

3

v ..

i-----------
: 1

!
!13
~

..I
5C060

22 I
21 I
20
19

7
8
g

10 11
12 I

DICE2
i--;-----;--IE"1>"1-:1~-----;-Te-014----1

LED11' • LED12 !
' LED9 ' • LED10 I

LEDS _j

• LED3

' ·--------------------------
S cl U3 l L ~-""T":"1=-2- :

T

TIMER ---- ----E"i>i"o

2449

Figure C·1

You can test each part of your design using the PCB with a
slow clock on it.

The PCB is a board that is very specific to the dice exam­
ple. The PCB is portable, approximately 2" x 3". All
the components. except for the EPLD are easily available
commercially. A complete list of all the components that
are required for the PCB is given in Appendix B. The
circuit can easily be connected and tested using the ~ircuit

diagram given below. After the four steps of the design
are completed, the PCB can be used to throw a pair of
dice in any home games such as Monopoly etc.

After the EPLD is programmed using the Logic Program­
mer, it can be inserted into the PCB. For design steps B,
C, and D the push button switch can be used to generate
the roll/no-roll or the spin/no spin option.

4-56

intJ AP-279

2450

Figure C-2

4-57

intJ AP-279

APPENDIX D

4-58

intef AP-279

ADF FOR PART A: SINGLE DICE ROLLING

Lakshmi Jayanthi
DSO Applications
February 19, 1986

58060

Part A: DICE ROLLING

LB Version 3.0, Baseline 17x, 9/26/85
PART: 5C060

INPUTS: clt•c:kl

OUTPUTS: dicela@10,dicelb@9,dicelc:@8,diceld@7

NETWORI<:

dicela,la
diceib,lb
dicelc,lc
diceld,id

RORF linla,clockl,GND,GND,VCCl
RORF linlb,clockl,GND,GND,VCCl
RORF linlc,clockl,GND,GND,VCCJ
RORF linld,clock1,GND,GND,VCCI

clock1 = INP lclockll

EQUATIONS:

inla =l/la*lb*/1c*/1dl
+(/la*lb*lc•·/ldl
+l/1a*lb·M-1c*ldl
+l/1a•/1b*/1c*/ldl;

inlb =lla*/1b*/lc*/1dl
+C/la*lb*/lc*/ldl
+lla*lb*/lc::*/ldl
+C/la*lb*lc*/ldl
+(1a*lb*1C*/1d);

inlc =lla*lb*/lc*/ldl
+l/1a*lb*1c*/1dl
+(la*lb•·lc::*/ldl;

inld =lla*lb*lc*/ldl;

END$

4.59

AP.279.

RPT FOR PART A: SINGLE DICE ROLLING

Logic Optimizing Compiler Utilization Report

***** Design implemented successfully

Lakshmi Jayanthi
DSO Applications
February 19, 1986

5C060

Part A1 DICE ROLLING

LB Version 3.0, Baseline 17x, 9/26/85

5C060

clockl -I 1 241- Vee
GND -I 2 231- GND
GND -I 3 221- GND
GND -I 4 21 I- GND
GND -I 5 201- GND
GND -I 6 191- GND

diceld -I 7 181- GND
dicelc -I 8 171- GND
dicelb -I 9 161- GND
dicela -I 10 151- GND

GND -111 141- GND
GND -112 131- GND

INPUTS

Name Pin Resource MCell ti

clockl INP

OUTPUTS

Name Pin Resource MCell ti

diceld 7 RORF 13

dicelc 8 RORF 14

dicelb 9 RORF 15

dicela 10 RORF 16

PT er ms

PT er ms

1/ 8

2/ 8

2/ 8

2/ 8

Feeds:
MCel l~ OE 'clear Clock

CLKl

Feeds:
MCells OE Clear Clock

13
14
15
16

13
14
15
16

13
14
15
16

13
14
15
16

**UNUSED RESOURCES*"·

Name Pin Resource

2
3
4
5
6

11
13
14
15
16
17
18
19
20
21
22
23

PAR r UTILIZATION

22% Pins
25% MacroCells
5% Pterms

MCel 1

9
10
11
12

8
7
6
5
4
3
2
1

AP-;279

PT er ms

8
8
8
8

8
8
8
8
8
8
8
8

NOfE: Since part A is a simple design, the part utilization is very low.

4-61

AP-279

AIJF FOR PART B: SINGLE DICE ROLL/NOT ROLL

Lakshmi Jayanthi
DSO Applications
February 19, 1986

5C060

PART B: DICE ROLL AND NOT ROLL

LB Version 3.0, Baseline 17x, 9/26/85
PART: 5C060

I~PUTS: clock1,switch@2

OUTPUTS: d ice1a@10 ,d ice1b;i)9, d ice1c0>8, d ice1d;i)7

NETWORK:

dice1a,1a
dice lb, lb
dice1c,1c
dice1d,1d

RORF <in1a,clock1,GND,GND,VCCl
RORF (in1b,clock1,GND,GND,VCCl
RORF (in1c,clock1,GND,GND,VCCl
RORF < i nld 1 c lc•ck 1, GND, GND, VCC l

clock1 INP (clc•ck1)

switch INP\switchl

EQUATIONS:

in1a =C/1a*/1b*/1c*/1d*/switchl
+(la*/1b*/1c*/1d•/switchl
+(1a*1b*/1c•/1d*/switchl
+(1a*1b*1c*/1d*/switchl
+(/1a*/1b*/1c*/1d*switch}
+(/1a*1b*/1c*/1d*switchl
+(/1a*1b*1C*/1d*switchl
+(/1a•1b*1c*1d*switchl;

in1b =(/1a•1b*/1c*/1d•1sw1"tc:111
+(1a•1b*/1c*/1d*/switchl
+l/1a*1b•1c*/1d•/switchl
+(la*lb•lc*/ld*/switchl
+(/1a•1b*1c•1d*/switchl
+(la*/lb•/lc•/ld•switch)
+(/1a*1b•/1c•/1d•switch)
+(1a•1b•/1c•/1d•switchl
+(/1a•1b•lc•/1d•switchl
+(1a•lb•lc•/1d•switchl;

in!c •(/1a•1b*1c•/1d•/switchl
+(1a•lb•1c•/1d•/switchl
+(/1a•1b•1c•ld*/switchl
+(1a•1b•/1c•/1d•switchl
+(/1a•1b•1c•/1d•switchl
+(1a•1b•1c•/1d•switchl;

in1d =(/1a*1b•1c•1d*/switchl
+(1a•1b•lc•/1d•switchl;

ENO$

4-62

AP.279

RPT FOR PART B: SINGLE DICE ROLL/NOT ROLL

Logic Optimizing Compiler Utilization Report

***** Design implemented sLtccessfully

Lakshmi Jayanthi
DSO Applications
FebrLtary 19, 1986

5C060

PART B: DICE ROLL AND NOT ROLL

LB Version 3.0, Baseline 17x, 9/26/85

5L060

clockl -: 1 24 - Vee
switch -: 2 23 - GNO

GND -: 3 22 - GND
GND -: 4 21 - GND
GND - 5 20 - GND
GND - 6 19 - GND

diceld - 7 18 - GND
dicelc - 8 17 - GND
dicelb -: 9 16 ·- GND
dicela -: 10 15:- GND

GND - : 11 141- GND
Gi'ID - : 12 131- GND

INPUTS

Name Pin Resource MCell #

clockl INP

2 INP'

Name Pin Resource MCell #

diceld 7 RIJRF 13

dic:elc 8 RDRF 14

PTerms

PTer·ms

2/ 8

31 8

4-63

Feeds:
MCells DE Clear Clock

13
14
15
1.6

Feeds:
MCells OE Clear Clock

13
14
15
16

1 :::i
1 '+
15
16

dice1b 9 RORF

dicela 10 RORF

UNUSED RESOURCES

Name Pin Resource

3
4
5
6

11
13
14
15
16
17
18
19
20
21
22
23

PART UTILIZATION

27% Pins
25% MacroCells
10% Pterms

15

16

MCell

9
10
11
12

8
7
6
5
4
3
2

AP.279

3/ 8

5/ 8

PT er ms

8
8
8
8

8
8
8
8
8
8
's
8

13
14
15
16

13
14
15
16

NOTE: Part B of the design gets more complicated, hence the part utilization of the pins,

macrocells and the Pterms is higher.

4-64

AP.279

AUF FOR PART C: TWO DI CE ROLLING

Lakshmi Jayanthi
DSO Applications
February 19, 1986

5C060

PART C: TWO DICE ROLL AND NOT ROLL

B Version 3.0, Baseline 17x, 9/26/85
PART: 5C060

INPUTS: clock1,clock2,switch@2

OUTPUTS: dice1a@10,dice1b@9,dice1c@8,dice1d@7,dice2a@19,dice2b@20,dice2c@21,dicE
2d;i)22

NETWOR~'.:

dice1a,1a
dicelb, lb
dice1c,1c
dic:eld,ld

RORF (inla,clockl,GND,GND,VCCI
RORF Cin1b,c:loc:k1 1 GND,GND,VCCI
RORF Cin1c,clock1,GND,GND,VCCI
RORF Cin1d,clock1 1 GND,GND,VCCI

dice2a,2a
dice2b,2b
dice2c,2c
dic:e2d,2d

RORF (in2a,c:loc:k2,GND,GND,VCCI
RORF (in2b,c:loc:k2,GND,GND,VCCI
RORF (in2c,clock2,GND,GND,VCCI
RORF (in2d,cloc:k2,GND,GND,VCCI

clc•ckl
c: lc•ck2

switch

INP (clc•c:kl I
INP Cc lc•ck2 I

INF' <switch)

EDUATIONS:

inla =(/1a*/1b*/1c•/1d*/switch)
+C1a*/1b*/1c*/1d*/switc:hl
+(1a*1b*/1c*/1d*/switc:hl
+C1a*1b*1c*/1d*/switc:hl
+(/1a•/1b*/1c*/1d•sw1tch)
+(/la*1b*/1c*/1d*switch)
+(/1a*1b*lc*/1d*switc:hl
+(/1a*1b•lc*ld*switchl;

1nlb =1 1a•lb•/1c•/1d*/sw1tch)
• (la+ lb• lc•ild•/sw1tch)
+11la•lb•lc*/ld•/switch)
•1la•lb•lc:•1ld•/sw1tc:hl
+1 la•lb•lc:*ld•/switc:hl
~c1a•1lb•/lc*/ld*switch)

+1 la•lb•'lc•/ld•switch)
+1la•lb•1!c•/ld•sw1tchl
+1 la•lb•lc: .. /ld•switc:hl
+ 1 1a•lb .. 1c•/ ld•sw1 tch);

:nl~ =~ la•lb•lc•11d*/switchl
~~la•lO•lc*/ld*/switch)

+1/la•lb•lc•ld•/switc:hl
+(1a .. 10 .. 1lc•/ld .. sw1tch)
+>. la .. lb•lc•/ld•switch)
~,la•lb*lc*/ld*switch);

<ila•lo•lc .. ld•/switc:hl
+1la•lb•lc:•/ld•switchl;

4-65

AP·279

i~~a =1.2a•/2b•12c•/2d•/11d•switchll
•i2a•/2b•/2c•/2d•/11d•switchll
•12a•2b•/2c•/2d•/lld*switchll
•12a•2b•2c•/2d•/11d•switchll
•l/2a•/2b•/2c•/2d•l1d•switchll
+(/2a•2b•/2c•/2d•lld•switchll
+1i2a•2b•2c•/2d•l1d•switchll
+1;2a•2b•2c•2d•l1d*switchll;

in2o =C/2a•2b•/2c•/2d•/11d•switchll
+(2a•2b•/2c•/2d•/lld•switchll
+(/2a•2b•2c•/2d•/lld*?Witchll
+(2a•2b•2c•/2d•/11d•switchll
•1/2a•2b•2c•2d•/lld•switchll
•'2a•/2b•/2c•/2d•lld•switchll
+(/2a•2b•/2c•/2d•lld•switchll
+ (2a•2b•/2c•/,2d•(ld•swi tch I I
+l/2a•2b•2c•/2d•lld•switchll
+12a•2b•2c•/2d•l1d*switchl);

in2c =!/2a•2b•2c•/2d•/11d•switchll
+12a•2b•2c•/2d•/~ld•switchll
+'/2a•2b•2c•2d•/(ld•switchll
+12a•2b•/2c•/2d•lld•switchll
+l/2a•2b•2c•/2d•lld•switchll
+12a•2o•2c•/2d•Cld•switch)l;

•n2d =•/2a•2b•2c•2d•/lld•switchll
+'2a•2b•2c•/2d•lld•switchll;

AP-279

RPT FUR PART C: TWO DICE ROLLING

Logic Optimizing Compiler Utilization Report

***** Design implemented successfully

Lakshmi Jayanthi
DSO Applications
February 19, 1986

5C060

PART C: TWO DICE ROLL AND NOT ROLL

B Version 3.0, Baseline 17x, 9/26/85

5C060

clc•ekl -: 1 241- Vee
switch -: 2 231- GND

GND -: 3 221- dice2d
GND -: 4 21 l - dice2e
GND -I 5 201- dice2b
GND -I 6 191- dice2a

diceld - 7 181- GND
dicelc -I 8 171- GND
dicelb -I 9 161- GND
dieela -: 10 15:- GND

GND - l 11 141 ·- GND
GND -: 12 131- elc•ck2

INPUTS

Name Pin Resource MCell #

clc•ckl INP

switch 2 INP

clock2 13 INP

OUTPUTS

Name Pin Resource MCel l #

diceld 7 RORF 13

PTerms

2/ 8

4-67

Feeds:
MCells OE Clear Clock

1
2
3
4

13
14
15
16

Feeds:

CL~::1

CLl<2

MCells OE Clear Clock

1
2
:3

·. 4
13
14
15
16

inter AN7.9 "'f'°'

dicelc 8 RORF 14 3/ 8 13
14
15
16

dice lb 9 RORF 15 3/ 8 13 :..;:,:;··

14
15
16

dice la 10 RORF 16 5/ 8 13
14
~5
16

dice2a 19 RORF 4 7/ 8 1 "'
2
3
4

dice2b 20 RORF 3 4/ 8 1 -
e
3
4 . H

dice2c 21 RORF 4/ 8 1
,; ·2

3
4

dice2d 22 RtJRF 3/ 8 1
2
3
4

UNUSED RESOURCES
J

Name Pin Resource MCell PT er ms

3 9 8
4 10 8
5 11 8
6 12 8

11
14 ..:

15 8 8
16 7 8
17 6 8

18 5 8
23

PART UTILIZATION

50% Pins
50% MacroCells
24% Pterms

NOl'E: in part C of the design you have added the second dice. Hence you can see that fifty
percent of the device has been used.

ADF FOR PART D: TWO DICE SPINNING

Lakshmi Jayanthi
DSO Applications
February 19, 1986

5C060

PART D: TWO DICE SPINNING

B Version 3.0, Bast!!line 17x, 9/26/85
PART: 5C060

INPUTS: clock1,clock2,switch@2

AP.279

OUTPUTS: spin1a@10,spin1b@9 1 spin1c@8 1 spin1d@7,spin2a@l9,spin2b@20,spin2c@21,spir
2d@22

NETWORK:

la NOJF lin1a,clock1 1 in11a,GND,GND>
lb NOJF linlb,clockl,inilb,GND,GND>
le NOJF lin1c,clock1,in1lc,GND,GND>
id NOJF linld,clockl,inlld,GND,GNDI

2a NOJF lin2a,clock2,in22a,GND,GND>
2b NOJF lin2b,clockE,in22b,GND,GNDI
2c NOJF lin2c,clock2,in22c,GND,GND>
2d NOJF I in2d ,clc•ck2, in22d ,GND,GND)

in1 la
inllb
in11c
i.nl id

in22a
in22b
in22c
in22d

NOT< inlal
NOT< inlb I
NOT< inlc>
NOTlinld)

NOT<in2a>
NOT< in2b >
NOT< in2c)
N0Tlin2d)

spinla,sla
spinlb,slb
spin1c,s1c
spinld,sld

= RORF
RORF
RORF
RORF

lins1a,clock1,GND,GND,VCC)
linslb,clockl,GND,GNb,VCCI
Cinslc,clockl,GND,GND,VCC>
linsld,clockl,GND,GND,VCC)

spin2a,s2a
spin2b,s2b
spin2c,s2c
spin2d,s2d

RORF
RORF
RORF
RORF

lins2a,clock2,GND,GND,VCC>
<ins2b,c:lock2,GND,GND,VCC>
lins2c,clock2,GND,GND,VCC>
<ins2d,clock2,GND,GND,VCC>

clock!
clock2

switch

INP lcloc:kl)
INP (c:lc•ck21

INP <switch)

EQUATIONS:

inia =l/la*/lb*/lc*/id*/switch)
+lla*/1b*/1c*/1d*/switch)
+(la*lb*/lc*/ld*/switchl
+11a*lb*lc*/1d*/switch)

4·69

intJ AP-279

+l/1a•/1b•/1c•/1d•switchl
+(/la•lb•/lc•/ld•switchl
+l/la•lb•lc•/ld•switchl
+(/la•lb•lc•ld•switchl;

inlb =l/la•lb•/lc•/ld•/switchl
+lla•lb•/lc•/ld•/switchl
+l/la•lb•lc•/ld•/switchl
+lla•lb•lc•/ld•/switchl
+l/la•lb•lc•ld•lswitchl
+lla•/1b•/lc•/1d•switchl
+l/la•lb•/lc•/ld•switchl
+Cla•lb•/lc•/ld•switchl
+l/la•lb•lc•/ld•switchl
+(1a•lb•lc•/ld•switchl;

inlc =l/la•lb•lc•/ld•/switchl
+lla•lb•lc•/ld•/switchl
+l/la•lb•lc•ld•/switchl
+lla•lb•/lc•/ld•switch)
+l/1a•1b•lc•/ld•switchl
+lla•lb•lc•/ld•switchl;

inld =l/1a•1b•1c•ld•/switchl
+(1a•1b•lc•/1d•switchl;

in2a =l/2a•/2b•/2c•/2d•/lld•switchll
+12a•/2b•/2c•/2d•/lld•sw1tchl'
+(2a•2b•/2c•/2d•/lld•switchll
+(2a•2b•2c•/2d•/lld•9witchll
+(/2a•/2b•/2c•/2d•l1d•switchll
+C/2a•2b•/2c•/2d•Cld•switchll
+l/2a•2b•2c•/2d•lld•switchll
+l/2a•2b•2c•2d•l1d•switchll;

in2b =l/2a•2b•/2c•/2d•/11d•switchll
+12a•2b•/2c•/2d•/lld•switchll
+l/2a•2b•2c•/2d•/lld•switchll
+(2a•2b•2c•/2d•/11d•switchll
+l/2a•2b•2c•2d•/11d•switchll
+(2a•/2b•/2c•/2d•lld•switchll
+l/2a•2b•/2c•/2d•lld•switchll
+12a•2b•/2c•/2d•lld•switchll
+(/2a•2b•2c•/2d•lld•switchll
+12a•2b•2c•/2d•lld•switchlJ;

in2c =l/2a•2b•2c•/2d•/lld•switchll
+C2a•2b•2c•/2d•/Cld•switchll
+C/2a•2b•2c•2d•/11d•switchll
+12a•2b•/2c•/2d•l1d•switchll
+l/2a•2b•2c•/2d•l1d•switchll
+12a•2b•2c•/2d•lld•switchll;

1n2d =l/2a•2b•2c•2d•/11d•switchll
+C2a•2b•2c•/2d•l1d•switchll;

l/switch•lal; insla
ins lb

inslc

insld

l/switch•lbl
+IC2d•switchl•s1d•/slc•/s1b•/slal;
C/switch•lcl
+112d•switchl•/s1a•/s1b•/slc•/s1dl;
(/switch•ldl
+Cl2d•switchl•/sla•/s1b•slc•/s1dl;

ins2a
ins2b

ins2c:

ins2d

END$

(/switchi<·2al;
l/switch•2bl
+112d•switchl•s2d•/s2c•/s2b•/s2al;
l/switch•2c::I
+112d•switchl•/s2a•/s2b•/s2c•/s2dl;
l/switch•2dl
+112d•switchl•/s2a•/s2b•s2c•/s2dl;

4-70.

LEF FOR PART D: TWO DICE SPINNING

Lakshmi Jayanthi
DSO Applications
February 19, 1986

5C060

PART:
5C060

INPUTS:

clock!, clock2, switch@2

OUTPUTS:

spin1a@10, spinlb@9, spin1c@8, spinld@7, spin2a@19, spin8b@20,
spin2c@21, spin2d@22

NETWORK:

clock!
clc•ck2

switch

spin1a,
spin1b,
spinlc,
spinld,

spin2a,
spin2b,
spin2c,
spin2d,

Y. ***

INP<clc•ckl >
INP<clock2l

INP<switchl

s1a RORF<insla,
s1b RORF < i ns1b,
sic RORF(ins1c,
sld RORF < ins 1 d ,

s2a R.DRF (i ns2a,
s2b RORF < i ns2b ,
s2c RORF < i ns2c ,
s2d RDRF<ins2d 1

clock!, GND,
clock!, GND,
clock!·, GND,
clockl, GND,

clc•ck2, GND,
clock2, GND,
clc•ck2, GND,
clock2, GND,

Resource, NOJF, was minimized

2d = NORF < •• SGOO?D, clc•ck2, GND, GND>

Y. **-M· Resciurce, NOJF, was minimized

2c = NOTF< •• SG006D, clock2, GND, GNDl

Y. *** Resciurce, NOJF, was minimized

2b ·- NORF< •• SG005D, clc•ck2, GND, GND>

Y. *** Resource, NOJF, was minimized

2a = NORF < •• SG004D, clock2, GND, GNDl

Y. *** Resciurce, NOJF, was minimized

ld = NORF (•• SG003D , clock!, GND, GND>

Y. *** Resciurc:e, NOJF, was minimized

le = NORF< •• SG002D, clockl, GND, GND>

GNO, VCC)
GND, VCc>
GND, ·VCCl
GND, VCC>

GND, VCCl
GND, VCC>
GND, VCCl
GND, VCC)

to NORF *** Y.

tc• NOTF '*'** Y.

to NORF *** Y.

to NORF *** Y.

tc1 NORF *'*'* %

to NORF ·•** Y.

AP-279

X *** Resource, NOJF, was minimized to NORF *** X

lb = NORF< •• SG001D 1 clock1, GND, GND>

X *** ResoLtrce, NOJF, was minimized tc• NORF **·* X

la= NORF(•• SGOOOD, clock!, GND, GND>

EQUATIONS:

ins2d = switch' * 2d
+ 2d *switch* s2a' * s2b' * s2c * s2d';

ins2c = switch' * 2c
+ 2d *switch* s2a' * s2b' * s2c' * s2d';

ins2b = switch' * 2b
+ 2d *switch* s2d * s2c' * s2b' * s2a';

ins2a = switch' * 2a

ins1d .. switch' * 1d
+ 2d *switch* s1a' * s1b' * s1c * s1d';

ins1c = switch'* 1c
+ 2d *switch* s1a' * s1b' * s1c' * s1d';

ins1b = switch'* 1b
+ 2d *switch* s1d * s1c' * s1b' * s1a';

insia = switch' * la;

•• SGOOOD la' * lb' * le' * ld'
+ la * le' * ld' * switch'
+ la' * lb * ld' * switch
+ la * lb * Id' * switch'
+ la' * lb * le * switch;

.. SGOOlD lb* id'
+ lb * la' * le * switch'
+ la * le' * id' • switch;

•• SG002D ic *lb* id'
+ le * ia' * lb *switch'
+ la * lb * ld' * switch;

•• SG003D id* la' *lb* ic *switch'
+ ld' * la * lb * le * switch;

•• SG004D 2a' * 2b' * 2c' * 2d'
+ 2a * 2c' * 2d' * id'

•• SG005D

+ 2a * 2c' * 2d' * switch'
+ 2a * 2b * 2d' * id'
+ 2a * 2b * 2d' * switch'
+ 2a' * 2b * 2d' * ld * switch
+ 2a' * 2b * 2c * ld * switch;

2b * 2d'
+ 2b * 2a' * 2c * ld'
+ 2b * 2a' * 2c * switch'
+ 2a * 2c' * 2d' * ld * switch;

4-72

END$

AP-279

•• SG006D 2c * 2b'
+ 2c * 2a * 2d
+ 2c * 2d * ld * switch
+ 2c' * 2a * 2b * 2d' * .1d * switch;

•• 500070 = 2d * 2a' * 2b * 2c *switch'
+ 2d'* 2a' * 2b * 2c * 1d'
+ 2d' * 2a * 2b * 2c * 1d * switch;

NarE: PLease note how the IPLS software has simplified the equations for you. You need not
worry about minimization. The complicated Boolean expressions have been minimized to a
great extent.

4-73

;,,

AM'19

RPT FOR PART D: TWO DICE SPINNING

Logic Optimizing Compiler Utilization Report

*****Design implemented successfully

Lakshmi .Jayanthi
DSO Applications
February 19, 1986

5C060

PAl-<T D: TWO DICE SPINNING

8 Version 3.0, Baseline 17>:, 9/26/85

5C060

c:lockl -: 1 24:- Vee
&witch ':""I 2 231- GND

RESERVED -: 3 22:- spin2d
RESERVED -: 4 21:- spin2c
RESERVED -: 5 ·20: - spin2b
RESERVED -: 6 19:- spin2a

spinld -: 7 1a:- RESERVED
!!Ip i nlc: -: 8 17:- RESERVED
spinlb -: 9 16:- RESERVED
spinla -I 10 151- RESERVED

GND -: 11 141- GND
GND -I 12 131- c:loc:k2

INPUTS

Name Pin Resource MCel l #

c:loc:kl INP

switch e INP

c:loc:k2 13 INP

·, ·•:.

PT er ms

.4.74

,. ~ ! . l

Feeds:
MCel ls OE Clear· Cli:•c:k

CLK1

1
2
3
4
5
6
7
8
9

10
11
H:!
13
14
15
16

CU'.2

intJ AP·279

OUTPUTS

Feeds:
Name Pin Resource MCel 1 # PTerms MCells OE Clear Cleock

sp i n1d 7 RORF 13 2/ 8 13
14
15

spinlc 8 RORF 14 2/ 8 13
14
15

spinlb 9 ROF~F 15 2/ 8 13
14
15

spinla 10 RORF 16 1/ 8 13
14
15

spin2a 19 RORF 4 1/ 8 1
2
3

spin2b 20 RORF 3 2/ 8 1
2
3

spin2c 21 RORF 2 2/ 8 1
2
3

spin2d 22 RORF 2/ 8 1
2
3

BURIED REGISTERS

Feeds:
Name Pin Resciurce MCel 1 # F'Terms MCells OE Clear Clc•ck

18 NORF 5 31 8
5
6
7
8

17 NORF 6 4/ 8 2 .,.
"'
6
'7
8

16 NORF 7 4/ 8 3
5
6
7
8

4-75

irlW
15 NORF

NORF

4 NORF

5 NORF

6 NClRF

UNUSED RESOURCES

Name Pin Resource

11
14
23

PART UTILIZATION

86X
1001.
35%

Pins
MacroCells
Pterms

AP-279

8 7/ 8

9

10 3/ 8

3/ 8

12 5/ 8

MCel 1 PTerms

4
5
6
'7
8

5
6
7
8
9

1 (I
11
12
1 :3

9
10
11
1 i:'.
14

9
10
11
12
15

9
10
11
12
16

NOfE: Part D of the design example utilizes the device in a very optimum manner. You have
utilized all the macrocells and also 86 % of the pins but only 35 % of the product terms.

You have not used three of the input pins.

Consider this:

Make these three pins a mode select on this dice example - if all of these three additional
inputs are high then the dice will function as described (this condition must be added to each
product term). You now have seven other modes in which to operate this DICE. Anyone want
to "load" the odds for "boxcars" or "snake-eyes"? You have 65 % more product terms to use
so you can be very creative. What else could you add to this EPLD?

4-76

AP.279

APPENDIX E:
ADDITIONAL PUBLICATIONS

4-77

AP.279

ADDITIONAL PUBLICATIONS

The following publications available from Intel contain additional information on Intel's EPLD family of parts and also on
the iPLDS system.

• 5C0311032 data sheet, order number 290110-001

• 5 C(){]()/()1)0 data sheet, order number 290104-002

• 5C(){]() errata sheet, order number 2906030-001

• 5Cl21 data sheet, order number 290098-002

• iPWS data sheet, order number 280168-002

• Intel Programmable Logic Software User Manual, order number 166612

The PCB card and diskette with pre-entered design files may be obtained through Intel's Literature Distribution
for a nominal fee. To order, request:

iPLDS DICE DEMO BOARD

Please write to:

Intel Literature Distribution
SC6-714
3065 Bowers Avenue
Santa Clara, CA 95051,

or call toll-free (800) 548-4725 for additional information.

4-78

inter APPLICATION
NOTE

AP-311

May 1987

Using Macros in EPLD Designs

DANIEL E. SMITH
APPLICATIONS ENGINEERING

INTEL CORPORATION

4-79
Order Number: 292039-001

intJ AP-311

INTRODUCTION

The iPLS II (Intel Programmable Logic Software) Log­
ic Optimizing Compiler includes a Macro Expander
that supports the use of macros in EPLD designs. This
application note shows how to use the TTL and Gate­
Array macros available from Intel with ADFs created
by a text editor. Included are descriptions of macro file
support, guidelines for using macros, and three design
examples.

OVERVIEW

iPLS II allows designers to include macro calls in de­
sign files to implement common circuit functions. Mac­
ro calls are subsequently expanded by the LOC (Logic
Optimizing Compiler) into ADF network and/or equa­
tion entries required to perform the desired functions.
Use of macros allows designs to proceed at a high level,
which simplifies and shortens the design process. Mac­
ros can be connected together or used in conjunction
with standard iPLS II EPLD primitives. Designing
with macros is analogous in many ways to using sub­
routines in software.

Macros can be used in ADFs (Advanced Design Files)
created by a text editor, or by several schematic capture
software products. This application note covers use of
macros in ADFs created by a text editor. Macro sup­
port at this level includes the following:

• A TTL macro library (TTL.LIB) for designing with
common TTL circuit equivalents

• A gate-array macro library (INTEL.LIB) for de­
signing with common gate-array primitives.

• A Macro Expander in the LOC that expands macro
calls in ADFs with the contents of the correspond­
ing macros from libraries.

Figure 1 shows text editor/ ADF macro support for
iPLS II. Note that the ADF can be created by any
standard ASCII text editor (text editor supplied by
user). Creation of user-defined macros is covered in ap­
plication note, AP-312 "Creating Macros for EPLD
Designs'', order number 292040. Use of macros with
schematic capture software is covered in the documen­
tation for the respective software package.

This note discusses use of macros under the following
headings:

• Macro Libraries, briefly describes the two libraries
available from Intel.

• Using Macros, describes macro files, how to call
macros, the process of macro expansion, calling
multiple macro calls, and some basic guidelines to
follow and pitfalls to avoid.

• Three examples showing use of TTL macros, gate
array macros, and mixing macros and EPLD primi­
tives.

MACRO LIBRARIES

Intel offers two macro libraries: a TTL Library and a
Gate Array Library.

TTL Macro Library

A TTL macro library (TTL.LIB) is available from Intel
to support design entry using familiar 74-series logic

IPLS Il LOC

TEXT
EDITOR ADF

MACRO ESPRESSO
FITTER JEDEC EXPANDER MINIMIZER

MACRO
• • LIBRARIES
: TTL
: GATE ARRAY
!:..•,.._ __ USER

292039-1

Figure 1. Text Edltor/ADF Macro Support for IPLS II

• on

intef AP-311

devices. The library contains macros that implement
the most widely used 74-series device functions as well
as macros for some members of other logic families.
Each device in the library is supported by a .DOC file.
The .DOC file describes the macro syntax and lists any
notable differences between the macro implementation
and the TIL part.

Gate Array Macro Library

A Gate Array macro library (INTEL.LIB) is available
from Intel to support design entry using familiar gate
array design primitives. These macros implement al­
most all of the gate array macrocell functions in the
Intel Gate Array Macrocell Library. The macros are
supported by the "Intel Gate . Array Library
User Handbook" document file (filename
GA_USRBK.LST).

USING MACROS

The iPLS II Macro Expander is automatically invoked
by the LOC when an ADP is submitted to the compil­
er. When invoked, the Macro Expander identifies mac­
ro calls in ADFs, searches macro libraries for a corre­
sponding macro, and expands the call with ADP net­
work and equation entries from the macro file. The
expanded file is then compiled normally.

Macro Flies

Figure 2 shows the macro file for a 74138 TIL device,
a commonly used one-of-eight decoder. Note that the
first line contains the name and 1/0 signals for the ..
device. Signals are listed in the order in which they
appear on the actual TIL device, including VCC and
GND (i.e., A = pin 1, B = pin 2, ... , VCC = pin 16).
The sequence of signals in this line determines how the
macro is "called" from an ADP.

Some of the macros in the TTL library have an "X"
suffix appended to the filename, for example 74138X.
This suffix indicates that the macro is device-specific
(not supported on all EPLDs) or that there is some
difference from the TIL device. This information is
described in the .DOC file for each macro.

The second line of the macro file contains ddaults for
each input and place holders (blanks) for each output.
The default for an input sets the input to an intelligent
level (i.e., enables are enabled, clears, preset, loads are
disabled, etc.).

Macro files can contain a Network section, an Equation
section, or both. A Network section is not needed when
the macro functions can all be implemented in Boolean
equations. When used, the Network section contains
EPLD design primitives. An Equations section is not
needed when the macro functions can all be implement­
ed in the Network sectio11. Macro files end with the
keyword "ENDEF'.

Macro Calls

All macro calls appear in the Network section of an
ADP. Macro calls use the same part/function name
and signal sequence used on the first line of the macro
file. The signal names in the macro and the macro call
do not need to match, but the order of signals in the
call is crucial to proper implementation of the macro
function. For example, the macro call for the 74138
device could be any one of the following examples:

74138(A,B,C,G2A,G2B,Gl,Y7,GND,Y6,Y5,
Y4,Y3,Y2,Yl,YO,VCC)

74138(Dl,D2,D3,ENl,EN2,EN3,07,GND,06,
05,04,03,02,0l,OO,VCC)

74T38(A,8,C,nG2A,nG28,GT,nY7,GND,nYS.nY5,nY4,nY3,nY2,nYT,nYO,VCC)
DEFAULT:(GND,GND.GND,GND,GND,VCC,.GND,,,,,,,,VCC)

NETWORK:

EQUATIONS:

nYO • l(IA * 18 * IC* lnG2A * lnG28 *GT);
nYT - !(A* 18 * IC* !nG2A. !nG28 *GT);
nY2 • !(IA* 8 * IC* lnG2A * lnG28 *GT);
nY3 - !(A. 8. IC. lnG2A. lnG28. GT);
nY4 - !(IA. 18. c. lnG2A. lnG28. GT);
nY5 • !(A. 18. c. lnG2A * lnG28. GT);
nYS • !(IA* 8 * C * lnG2A * lnG28 *GT);
nY7 - l(A. 8 * c. lnG2A * lnG28. GT);

ENDEF
s

Figure 2. Sample TTL Macro Fiie (74138.DEV)

4-81

292039-2

intJ AP-311

74138(A,B,C,ENA,ENB,ENC,Y7,GND,Y6,Y5,
Y4,Y3,Y2,Yl,YO,VCC)

In each case, the part name corresponds to the macro
part name. The names of the signals differ, but the or­
der of signals match the macro. During processing, the
Macro expander assigns node connections between the
macro call and the macro tile based on the positions of
signals, not the names of the signals. For example, note
the following macro call to macro tile signal assign­
ments:

ADF MACRO CALL 74138 (A, B, C, ENI, EN2, EN3, YCS, ...

ttt t t ·t t
MACRO FILE SYNTAX 74138 (A, B, C, nG2A, nG2B, GI, nY7, ...

292039-3

TIL macro signals originating outside the target EPLD
require a prior INPlIT macro call in. the Network sec­
tion. All signals used as outputs require a prior OUT­
PlIT macro call in the Network section. Figure 3 shows
a sample ADF that uses the 74138 macro. Each input is
listed in the INPUTS: declaration and has an INPlIT
macro call. Outputs are listed in the OUTPUTS: decla­
ration and have OlITPlIT macro calls. (EPLD INP
and CONF primitive statements may also be used in
place of INPlIT and OlITPUT macro calls, if desired.)

YOUR NAME
YOUR COMPANY
DATE
I
A
5C060
One-of-Eight Decoder

OPTIONS: TURBO-OFF
PART: 5C060
INPUTS: A,B,C,G2A,G2B,G1
OUTPUTS: Y7,Y6,Y5,Y4,Y3,Y2,Yl,YO

NETWORK:

INPUT(A,A)
INPUT(B,B)
INPUT(C,C)
INPUT(G2A,G2A)
INPUT(G2B,G2B)
INPUT(G1 ,GI)
OUTPUT(Y7,Y7)
OUTPUT(Y6,Y6)
OUTPUT(Y5,Y5)
OUTPUT(Y4,Y4)
OUTPUT(Y3,Y3)
OUTPUT(Y2,Y2)
OUTPUT(YI, YI)

Gate arrays support a much richer selection of input
and output types than EPLDs. Gate array signals origi­
nating outside the target gate array device require the
appropriate gate array input or output macro calls.
When using gate array macros with EPLDs, the 1/0
macros are implemented in terms of EPLD primitives.
Note that when designs targeted for gate arrays are
partitioned for multiple EPLDs, many internal gate ar­
ray signals are transformed into EPLD input and out­
put signals. These signals must be supported by INPlIT
and OlITPlIT macro calls.

Macro Expansion
When the Macro Expander is invoked (by the LOC), it
expands macro calls with the ADF network. and/or
equations entries from macro libraries (the ITL library
in the case of the 74138). The Macro Expander
searches libraries in' the following order:

• user libraries (filename.LIB)

• TIL macro library (TIL.LIB)

• gate-array library (INTEL.LIB)

First, the Macro Expander searches in the current di­
rectory for MACRO.LIB, then along the "IPLS" envi­
ronment variable for the user libraries specified there.
Next, it searches for TIL.LIB in the IPLSII directory.
Finally, it searches for INTEL.LIB in the IPLSII direc­
tory. The first occurrence of a macro is used.

OUTPUT(YO,YO) VCC)
74138(A,B,C,G2A,G2B,G1,Y7,GND,Y6,Y5,Y4,Y3,Y2,Yl,YO,

ENDS 292039-4

Figure 3. ADF Fiie Calllng the 74138 Macro

4-82

AP-311

The Macro Expander uses the. ADP Network and
Equation entries from the macro libraries and assigns
the appropriate primitives for INPUT and OUTPUT
calls. INP primitives are assigned to replace the IN­
PUT macro calls. The OUTPUT calls are assigned
primitives with output pins and output enables are sup­
plied where needed.

Combination of primitives is automatically performed
when needed. For example, when a feedback primitive
such as a NORF feeds an output primitive such as a
RONF, the Macro Expander combines the two primi­
tives into a RORF. Combination of primitives con­
serves resources and results in the shortest possible de­
lay. path through the device.

During macro expansion, unused nodes are eliminated.
For example, the VCC and GND nodes that corre­
spond to TTL power and ground pins are eliminated. If
an input node is not connected to a node in the ADP,

NETWORK:

% INPUT(A,A) %
%"% A•INP(A)
% INPUT(B,B) %
%"% B•INP(B)
% INPUT(C,C) %
%•% C•INP(C)
% INPUT(G2A,G2A) %
%•% G2A•INP(G2A)
% INPUT(G2B,G2B) %
%"% G2B•INP(G2B)
% INPUT(G1,G1) %
%•% G1•1NP(G1)
% OUTPUT(Y7,Y7) %
%•% Y7•CONF(Y7,VCC)

the default value for that node is assigned from the
DEFAULT: section of the macro file. Note, however,
that the default value for each input in the macro file
may be the value that disables the input or, for data
inputs, is usually a logic 0. To be certain of the level
used, specify a "VCC" or "GND" in the macro call for
unused inputs.

The INPUT and OUTPUT calls and the original mac­
ro call are "commented out" by surrounding them with
percent (%) signs. The %'% string is placed at the
start of lines where primitives are created by the Macro
Expander. The fully expanded file is written to the disk
using the original filename and a .SDF extension. Fig­
ure 4 shows the Network and Equation sections for the
74138 SDF.

One final note with regard to compiling ADFs that use
macros. Warning messages are typically encountered

% OUTPUT(Y8,Y8) %
%•% Y8•CONF(Y8,VCC)
% OUTPUT(Y5,Y5) %
%"% Y5•CONF(Y5,VCC)
% OUTPUT(Y4,Y4) %
%•% Y4•CONF(Y4,VCC)
% OUTPUT(Y3,Y3) %
%•% Y3•CONF(Y3,VCC)
% OUTPUT(Y2,Y2) %
%•% Y2•CONF(Y2,VCC)
% OUTPUT(Y1,Y1) %
%•% Y1•CONF(Y1 ,VCC)·
% OUTPUT(YO,YO) %
%"% YO•CONF(YO,VCC)
% 74138(A,B,C,G2A,G2B,G1,Y7,GND,Y6,Y5,Y4,Y3,Y2,v1,vo.vcc) %

EQUATIONS:

%•% YO•!(!A*IB*IC*IG2A*IG2B*G1);
%•% Y1•1(A*IB*IC*IG2A*IG2B*G1);
%"% Y2•1(1A*B*IC*IG2A*IG2B*G1);
%•% Y3•1(A*B*IC*IG2A*!G2B*G1);
%•% Y4•1(1A*!B*C*IG2A*IG2B*G1);
%"% Y5= I (A* IB*C.* IG2A* !G2B*G1);
%•% Y6•1(1A*B*C*IG2A*IG2B*G1);
%"% Y7•1(A*B*C*IG2A*IG2B*G1);

Figure 4. Network and Equations for 74138.SDF
4-83

292039-5

intef AP-311

while compiling files that use macros. The most com­
mon message is "***WARN-XLT-Node Missing Des­
tination". This message is displayed as unused nodes
from a macro are deleted. For example, if a macro us­
ing a NOCF primitive is combined with a CONF and
the original feedback is not needed, the warning is dis­
played as the feedback is deleted.

Multiple Macro Calls

The Macro Expander allows use of more than one mac­
ro in ADFs. Each macro must have its own call, even
when the same macro is used more than once.

For example, to implement two 74138s, each case or
"instance" must have its own call:

74138(A,B,C,G2A,G2B,Gl,Y7,GND,Y6,Y5,
Y4,Y3,Y2,Yl,YO,VCC)

74138(A,B,C,G3A,G3B,Gl,YF,GND,YE,YD,
YC,YB,YA,Y9,Y8,VCC)

In this example, many of the inputs are routed to both
devices. The Macro Expander automatically generates
internal nodes for each instance of the macro. Each
node is assigned a unique number based on the position
of the macro in the Network section (i.e., .. 0140,
.. 0141, etc. for nodes connecting to the 14th primitive
in the Network section).

For traceability, you can define your own instance
names for nodes of different macros by including the
instance name in a comment immediately following the
macro call. For example, to call two 74161 macros, one
as Shift Register A and the other as Shift Register B,
enter the calls as follows:

7416l(CLR,CK,A,B,C,D,ENP,,LD,ENT,QD,
QC,QB,QA,RDl,) % SFA %

7416l(CLR,CK,E,F,G,H,ENP,,LD,ENT,QH,
QG,QF,QE,RC2,) % SFB %

The Macro Expander uses the first three ASCII charac­
ters after the first percent sign (%), except for white
space, to create instance numbers. For example, inter­
nal nodes for the first three signals of each macro call
will be:

, .SFANl, •• SFAN2, •• SFAN3,

•• SFBNl, •• SFBN2, •• SFBN3

where SFA/SFB are the user-defined instance names
and NI, N2, N3 are the node numbers associated with
each instance. For cases where no internal nodes num-

bers are generated, the Macro Expander simply ignores
the instance name.

Outputs from one macro call can be used as inputs for
other calls, as follows:

74138(A,B,C,G2A,G2B,Gl,Y7,GND,Y6,Y5,
Y4,Y3,Y2,Yl,YO,VCC)

74138(A,B,C,Y7,G3B,Gl,YF,GND,YE,YD,YC,
YB,YA,Y9,Y8,VCC)

Here the Y7 output from the first decoder feeds an
enable input of the second decoder.

Different macros are connected in the same manner.
For example, the following macro calls connect the out­
puts from a 74138 decoder to the inputs of74175 latch­
es:

74138(A;B,C,G2A,G2B,Gl,Y7,GND,Y6,Y5,
Y4,Y3,Y2,Yl,YO,VCC)

74175(CLR,OQ,nOQ,YO,Yl,nlQ,1Q,GND,CLK,
2Q, n2Q,Y2,Y3,n3Q,3Q,VCC)

74175(CLR,4Q,n4Q,Y4,Y5,n5Q,5Q,GND,CLK,
SQ, n6Q,Y6,Y7,n7Q,7Q,VCC)

Each decoder output is routed to a 74175 input. The
74175 macro produces both true and complement
latched outputs.

Guidelines/Pitfalls

The following paragraphs discuss some general guide­
lines for using macros:

4-84

• Because the Macro Expander supports only one lev­
el of hierarchy, there is a tendency for p-terms to
multiply quickly when several macros are connected
together. In many cases, the total number ofp-terms
exceeds the capacity of the target EPLD. One meth­
od of avoiding problems with excessive p-terms is to
route the outputs from a macro function through
EPLD macrocells and use the feedbacks from the
macrocells as inputs to the subsequent macro func­
tions. This partitioning of functions trades off device
resources for a lower p-term count.

• Implementation of some TTL macros requires prim­
itives that are not supported on all devices. The
.DOC file for a device notes any device dependency.
In many cases, a modification to the basic TTL
functions results in device independence. For exam­
ple, a NOCF, which is not supported on all EPLDs,
can be changed to a COIF, which is supported on
all devices.

intJ AP-311

• Some macros use primitives that specify an output
pin (COIF, CONF, RORF, etc.). These primitives
must be supported with a signal name in the OUT­
PUTS: declaration and by an OUTPUT call in the
Network Section of the ADP. Failure to provide
this support causes the following error message dur­
ing compilation:

***ERR-XLT-undeclared output name

If you encounter this error, check the macro file for
output primitives that require ADP support.

Macro Usage Summary

ADP macro calls must observe the following guide­
lines:

• Macros are called from the Network Section of an
ADP.

• The name in the call must match the name in the
macro file (e.g., 74138 = 74138).

• All input and output pins on the target device must
have both: (1) a corresponding signal name in the
INPUTS: or OUTPUTS: declaration, and (2) a cor­
responding INPUT or OUTPUT macro call in the
Network section. It is recommended that the same
node name be used on both sides of each INPUT
and OUTPUT macro call. This is required when
macros containing CONFs are used. (EPLD INP
and CONF primitives may also be used).

• All INPUT and OUTPUT calls in the Network sec­
tion must precede any other macro call.

• Node connections within an ADP are made based
on the names of the nodes.

• Connections between the macro call and macro file8
are based on the position of signal names in the call.
Therefore, the sequence of inputs and outputs in a
macro call must match the sequence of inputs and
outputs in the corresponding macro file.

EXAMPLE 1: TTL MACROS

This section provides an example design using TTL
macros.

Circuit

The design is a two-stage decoder using a 74138 macro
and two 74139 macros. Figure 5 shows the schematic

for the circuit. Each 74139 macro represents one half of
a TTL 74139 device. Note that two of the outputs from
the 74138 are routed back to enable the two 74139 de­
coders.

4-85

A
B
c

EN1
EN2
EN3

D

74138

YCS

YCE

74139

L...c:

t--
74139

L-..q

~

YO
Y1
Y2
Y3
Y4
YS

CEO
CE1
CE2
CE3

cso
CS1
CS2
CS3

292039-6

Figure 5. Schematic Diagram
for Two-Stage Decoder

Figure 6 shows the ADP file containing the macro calls
that implement the circuit. The two internal feedback
signals (YCS and YCE) do not show up in the IN­
PUTS: or OUTPUTS: declarations and are not repre­
sented by INPUT or OUTPUT calls in the Network
section. The sequence of signals in the INPUTS: and
OUTPUTS: declarations of the ADP is not important.

In the NETWORK: section, however, order is impor­
tant. INPUT and OUTPUT calls must be listed before
any other macro calls. This is a requirement of the
Macro Expander. The sequence of signals within the
ADP macro call is critical, as the Macro Expander au­
tomatically assigns macro call signals to macro file sig­
nals based on position.

Internal connections between macros are established by
assigning the same name to the respective signals. For
example, YCS in the 74138 macro call in Figure 7 rep­
resents the nY6 output from the 74138, while YCS in
the 74139 macro call represents the lG input to one
74139 decoder. Use of the same name establishes the
connection. In the same manner, use of the signal name
YCE connects the nY7 output from the 74138 to the
lG input of the second 74139.

DANIEL E. SMITH
INTEL CORPORATION·
2/27/87
1
A
5CD90
TWO-STAGE DECODER

OPTIONS: TURBO•OFF
PART: 5C090
INPUTS: A,B,C,D,E,EN1,EN2,EN3

AP-311

OUTPUTS: YO,Y1,Y2,Y3,Y4,Y5,CSO,CS1,CS2,CS3,CEO,CE1,CE2,CE3

NETWORK:

INPUT (A,A)
INPUT (B,B)
INPUT (C,C)
INPUT (D,D)
INPUT (E,E)
INPUT (EN1 ,EN1)
INPUT (EN2,EN2)
INPUT (EN3,EN3)
OUTPUT (YO,YO)
OUTPUT (Y1, Y1)
OUTPUT (Y2,Y2)
OUTPUT (Y3,Y3)
OUTPUT (Y4,Y4)
OUTPUT (Y5,Y5)
OUTPUT (CSO,CSO)
OUTPUT (CS1 ,CS1)
OUTPUT (CS2,CS2)
OUTPUT (CS3,CS3)
OUTPUT (CEO,CEO)
OUTPUT (CE1 ,CE1)
OUTPUT (CE2,CE2)
OUTPUT (CE3,CE3)
74138(A,B,C,EN1,EN2,EN3,YCS,GND,YCE,Y5,Y4,Y3,Y2,Y1,YO,VCC)
74139(YCS,D,E,CSO,CS1,CS2,CS3,GND,VCC)
7.4139(YCE ,D,E ,CEO,CE1 ,CE2 ,CE3 ,GND, VCC)

ENDS

Figure 6. ADF Fiie for Two-Stage Decoder Using TTL Macros

292039-7

Sample Session 3. Invoke the LOC from the Main Menu by pressing
<F4>.

This session assumes familiarity with the iPLS II Logic
Optimizing Compiler (LOC). For detailed information
on the LOC, refer to Chapter 4 of the iPLS II User's
Guide, order number: 450196. Proceed as follows to
implement the ITL macro design shown here:

1. Use a standard ASCII text editor to create the ADF
shown in Figure 7 under the name DECODE.APP.

2. Invoke the iPLS II Menu by entering:

IPLS <Enter>

4-86

4. Answer the LOC promts as follows:

Input Format?
File Name?
Minimization?
Inversion Control?
LEF Analysis?
Error Message File

<Enter>
DECODE <Enter>
y

N
y

<Enter>

intJ AP-311

The LOC then asks:

Do you wish to run under the above
conditions [Y/N]?
Enter: Y
The LOC expands the macros and compiles
the expanded file to produce a JEDEC pro­
gramming file (DECODE.JED), a utilization re­
port file (DECODE. RPT), a minimized equa­
tion file (DECODE. LEF), and an error mes­
sage file (DECODE.ERR). For tracability, a
file called DECODE.SOP is created to show
the expanded form of the ADF output by the
Macro Expander.

5. The LOC terminates execution with the following
message:

LOC cycle successfully completed

You can examine the LEF file to see the minimized
form of the design. The LEF shows the EPLD primi­
tives used to implement the design. Macro calls are not
shown. If you wish, you can also use LPS (Logic Pro­
grammer Software) to program a part.

EXAMPLE 2: GATE-ARRAY MACRO

This section shows an example design using gate-array
macros.

Circuit

The design is a two-bit adder. Figure 7 shows the sche­
matic for the target circuit. Figure 8 lists the gate array
macro file for a single-bit full adder. Figure 9 shows the
ADF for the target design that includes two instances
of the single-bit adder macro call. Each instance in­
cludes a user-defined instance name in the comment
after the call (BTO and BTl). These instance names will
be used to identify internal nodes, if the ADRF macro
contains internal nodes. Note that inputs call the PTIN
(TTL Receiver) macro while outputs call the PCOWP2
(2 mA CMOS Push Pull Driver) macro. During macro
expansion, an EPLD INP primitive is substituted for
the gate array PTIN macro and an EPLD CONF prim­
itive is substituted for the PCOWP2 macro. This illus­
trates one of the differences between TTL and gate ar­
ray macros.

Once again, the connections between the two macros is
dependent on the position of signals in the call.
CARRY! from the first instance of the ADRF macro
connects to CARRY! in the second instance of the
macro. This corresponds to the CYOUT (Carry Out)
from the adder for the first bit feeding the CO (or Carry
In) input of the adder for the second bit. Note that the

4-87

CO input of the adder for the first bit is not connected
to any node in the macro call; in this case, the default
value from the macro file (GND) is used to disable the
input (No Carry).

CO ADRF

A1-----tAO SUMt----SUM1

81----80 CYOUT

CARRY1

co ADRF

A2-----tAO SUMt---- SUM2

02----00 CYOUTt---- CARRY

292039-8

Figure 7. Schematic for Two-Bit Adder

Sample Session

To implement this ADF in an actual session, follow the
steps described for Example I, substituting the name
ADDER2 for DECODE. iPLS II produces a JEDEC
programming file (ADDER2.JED), a utilization report
file (ADDER2.RPT), a minimized equation file
(ADDER2.LEF), and an error message file
(ADDER2.ERR). For traceability, a file called
ADDER2.SDF is created to show the expanded form
of the ADF output by the Macro Expander.

ADRF(AO,BO,CO,SOUT,CYOUT)
DEFAULT:(GND,GND,GND, ,)

%FULL ADDER%

NETWORK:

EQUATIONS:

SOUT - AO' • BO" • co
+ AO" • BO • co·
+ AO * BO' * CO'
+ AO * BO • CO;

CYOUT • AO * BO
+ BO * CO
+ AO • CO;

ENDEF
292039-9

Figure 8. Macro File for Full-Bit Adder

intef AP-311

ROGER AUBLE
INTEL CORPORATION
2/27/87
1
A
5C060
2-BIT FULL ADDER

OPTIONS: TURBO•OFF
PART: 5C060
INPUTS: A1,B1,A2,B2

OUTPUTS: SLJ.11,SUM2,CARRY

NETWORK:

PTIN (A1 ,Al)
PTIN (B1 ,Bl)
PTIN (A2,A2)
PTIN (B2,B2)

PCOWP2 (SUM1,SUM1)
PCOWP2 (SUM2,SUM2)

PCOWP2 (CARRY,CARRY)

ADRF(A1 ,B1, ,SUMI ,CARRY1)
ADRF(A2,B2,CARRY1,SUM2,CARRY)

EQUATIONS:

ENDS

% BTO %
% BTl %

292039-10

Figure 9. ADF For Two-Bit Adder Using Gate-Array Macros

EXAMPLE 3: MIXING MACROS AND
EPLD PRIMITIVES

This final example uses TTL macros together with
standard EPLD primitives.

Circuit

The example circuit here is the 74138 macro used in
example 1 with two of the outputs routed through addi­
tional combinatorial logic and RONF (Registered Out­
put - No Feedback) primitives. Figure 10 shows the
circuit. CS2 and CS3 are qualified by two additional
inputs (RD* and WR*) to set or clear two latches. This
is a configuration commonly used in microcomputer
systems, where control signals are set and reset based
on the address and command signals but not on a data
value. A read to the port decoded by CS2 sets output
LCS2 (Latched CS2) high. A write to that same port
clears LCS2 low.

Figure 11 shows the ADF that implements the example
circuit. This is the same ADF used in Figure 6, with
the addition of several primitives and equations. The

4-88

data inputs to both latches are tied to VCC. When RD•
and the chip enable are both low, the respective clock
signal goes low. As RD* or chip enable go high, the
rising edge of the clock signal triggers the register, driv­
ing the output high.

Note that many Intel EPLDs do not support multiple
product terms for register clocks. Therefore, the clock
buffer primitive is driven by a macrocell configured as a
COIF (Combinatorial Output-Input Feedback). Con­
trol signals (Clear and Preset) for many EPLDs also
support only one product term. In this case, however,
the NOR gate driving the clear input to the RONFs
can be minimized to a single p-term. Thus a low on
WR• and chip enable clears the respective latch to logic
0. (The intermediate macrocell for the Read function
can be omitted for EPLDs that support two p-terms on
register clocks.)

The connections between the TTL macros and the
EPLD primitive are made by assigning the appropriate
names to the input and output nodes. The CS2 and CS3
signals from the first example are no longer outputs,
but are simply inputs to equations that feed the LCS2
and LCS3 RONF primitives.

intef AP-311

A YO
B Y1
c Y2

74138 Y3
Y4

EN1 YS
EN2
EN3

YCS
YCE

D CEO

E 74139 CE1
CE2
CE3

cso
74139 CS1

Vee
RO-

SET2e

Vee

SET3e

COIF

Vee

LCS2

292039-11

Figure 10. Schematic of Decoder Circuit with Latched Outputs

4-89

DANIEL!. SMITH
INTEL CORPORATION
2/27/87
1
A
5C090
DECODER WITH TWO LATCHED OUTPUTS

OPTIONS: TURBO-OFF
PART: 5C090
INPUTS: A,B,C,D,E,EN1,EN2,EN3,RD*,WR*

AP·311

OUTPUTS: SET2c,SET3c,YO,Y1,Y2,Y3,Y4,Y5,CSO,CS1,LCS2,LCS3,CEO,CE1,CE2,CE3

NETWORK:

INPUT (A,A)
INPUT (B,B)
INPUT (C,C)
INPUT (0,D)
INPUT (E,E)
INPUT (EN1 ,EN1)
INPUT (EN2,EN2)
INPUT (EN3,EN3)
OUTPUT (YO,YO)
OUTPUT (Y1,Y1)
OUTPUT (Y2,Y2)
OUTPUT (Y3,Y3)
OUTPUT (Y4,Y4)
OUTPUT CY5,Y5)
OUTPUT (CSO,CSO)
OUTPUT (CS1,CS1)
OUTPUT CCEO,CEO)
OUTPUT (CE1,CE1)
OUTPUT (CE2,CE2)
OUTPUT (CE3,CE3)
74138(A,B,C,EN1,EN2,EN3,YCS,GND,YCE,Y5,Y4,Y3,Y2,Y1,YO,VCC)
74139(YCS,D,E,CSO,CS1,CS2,CS3,GND,VCC)
74139(YCE,D,E,CEO,CE1,CE2,CE3,GND,VCC)
RD • INP(RO*)
WR • INP(WR*)
LCS2 • RONF (VCC, SET2, CLR2., GND, VCC)
LCS3 • RONF(VCC,SET3,CLR3,GND,VCC)
SET2 • CLKB(SET2c)
SET3 • CLKB(SET3c)
SET2c,SET2c - COIF(ST2,VCC)
SET3c,SET3c - COIF(ST3,VCC)

EQUATIONS:

ST2 • RO + CS2;
CLR2 • /(WR+ CS2);
ST3 • RO + CS3;
CLR3 •/(WR+ CS3);

ENOS

Figure 11. ADF Fiie tor Decoder with Latched Outputs

292039-12

Sample Session
To implement this ADF in an actual session, follow the
steps described for Example l, substituting the name
LDECODE for DECODE. iPLS II produces a JEDEC
programming file (LDECODE.JED), a utilization re-

port file (LDECODE.RPT), a minimized equation file
(LDECODE.LEF), and an error message file
(LDECODE.ERR). For traceability, a file called
LDECODE.SDF is created to show the expanded form
of the ADF output by the Macro Expander.

4-90

intJ APPLICATION
NOTE

Creating Macros
for EPLD Designs

DANIEL E. SMITH
APPLICATIONS ENGINEERING

4-91

AP-312

June 1987

Order Number: 292040-001

AP-312

INTRODUCTION

The iPLS II (Intel Programmable Logic Software II)
Logic Optimizing Compiler includes a Macro Expan­
der that supports the use of macros in EPLD designs.
These macros can include TTL and Gate Airay macros
available from Intel, or proprietary macros developed
by a user. This application note shows how to create
user-defined macros and how to build macro libraries
with Intel's Macro Librarian, an optional software
package for use with iPLS II. A design example also
shows creation of a user-defined macro and its use in an
ADP (Advanced Design File). Detailed information on
using the TTL and Gate Airay Macros in iPLS II
ADFs are described in a companion application note,
AP-311 "Using Macros in ·EPLD Designs", Order
Number: 292039. This application note concentrates on
creating macros; it assumes that you have read and un­
derstood the discussion on using macros in AP-311.

OVERVIEW

iPLS II allows designers to include macro calls in de­
sign tiles to implement common circuit functions. Mac­
ros calls are subsequently expanded by the LOC (Logic
Optimizing Compiler) into the ADP network and/or
equation entries required to perform the desired func­
tions. Macros can be connected together or used in con­
junction with standard iPLS II EPLD primitives.

SCHEMATIC h CAPTURE

1
SYMBOL
LIBRARY

-
TEXT ADf H EDITOR

~

MACRO
LIBRARIAN ... ,..

TEXT MACRO
EDITOR I-+ FILES t-+ MLIB I-+

~

By following the macro tile format described in this
note, users can also create their own proprietary mac­
ros with an ASCII text editor. These macro tiles can
then be stored in user-defined libraries by using Intel's
Macro Librarian software. User-defined macros can be
called from ADFs created by a text editor or by sche­
matic capture software that supports user-defined sym­
bols and that outputs in ADP format. User-defined
macros can optimize development of EPLD designs by
modularizing the design process and by allowing the
design process to proceed at a higher level than with
EPLD primitives alone. iPLS II suppon for user-de­
fined macros (see in Figure 1) includes the following:

• MLIB, the optional iPLS II Macro Librarian for
creating macro libraries from individual user-de­
tined macro tiles.

• a Macro Expander in the LOC that expands macro
calls in ADFs with the contents of the correspond­
ing macros from libraries.

This application note describes how to create macro
tiles, store them in libraries with MLIB, and shows how
to call them from ADFs created by a text editor. For
information on creating user-defined macro symbols
with schematic capture packages, refer to the appropri­
ate manual for the schematic capture package you are
using. SCHEMA II-PLD available from Intel supports
user-defined symbols and outputs in ADP format.

.,

'·

IPLS lI LOC

-
MACRO ESPRESSO

FITTER I-+ JEDEC
EXPANDER MINIMIZER FILE

-
J

. MACRO
LIBRARIES

!.-TTL.LIB
-i... INTEL.LIB

USER - DEFINED(• .LIB)

292040-1

Figure 1. Macro Support for IPLS II

4-92

intef AP-312

(SCHEMA II-PLD is based on SCHEMA II from
Omation, Inc. The Intel EPLD Design Manager, also
available from Intel, allows existing SCHEMA II users
to design with EPLDs and macros.)

MACRO FILES
This section describes iPLS II macro files. User-defined
macro files must follow the guidelines presented here to
be successfully processed by the Macro Librarian
(MLIB) and expanded by the iPLS II LOC Macro Ex­
pander.

Macro filenames follow DOS conventions. It is recom­
mended that macro filenames end with the extension
.DEV, which is the default for MLIB. Only one macro
can be contained in a macro file. Macro files are com­
prised of three sections:

• Header

• Network Section

• Equation Section

All macro .files must end with the literal "ENDEF".
Figure 2 shows a sample macro file for a proprietary
part (16207), a "black box" containing random logic.

18207(A,B,C,D,E,F ,U, V ,W,X, Y ,Z)
DEFAULT:(GND,GND,GND,VCC,VCC,VCC,,,,,,)

EQUATIONS:

ENOEF

U • /(A • Bl;
V • /(/E •A• B);
W • /(D • C •A• /E);
X • /(ID • El;
Y • /(F • D *A);
Z • F • /E;

292040-2

Figure 2. Sample Macro File for
"Black Box" (16207.DEV)

Header
Headers for macro files contain two lines. The first line
includes the name of the macro function and a list of
inputs and outputs for the macro. The second line con­
tains defaults for the device.

The name of the macro can be a device number (16207,
83546, etc.), function name (ADDRCNT, CMDLO,
etc.), or any name up to eight characters long. No
spaces or comments precede the name.

Inputs and Outputs follow immediately after the macro
name and are enclosed in parentheses. I/O ·signal
names may be up to eight characters long, but may not
contain pin numbers. For user-defined macros, signals
may be listed in any order desired. For example, any of
the following entries are legal:

16207 (A,B,C,D,E,F,U,V,W,X,Y,Z)

16207 (B,D,A,R,Z,U,W,C,F,X,E, Y)

16207 (Z,Y,X,W,V,U,F,E,D,C,B,A)

Note that this first line of the header forms the tem­
plate used to call the Macro from the ADF. The Macro
Expander connects ADF nodes in the macro call to
1/0 signals in the macro file on the basis of position,
not on the basis of node name.

The second line in the header specifies defaults for in­
puts (VCC or GND) in cases where those signals are
left unconnected. The DEFAULT: line must be includ­
ed in the macro definition file, even when no defaults
are used in the ADF. The keyword DEFAULT: is the
first entry in this line. The default values for all signals
follow immediately and are enclosed in parentheses. In­
put defaults may be VCC or GND. The position of the
default value corresponds to the signal listed in the pre­
vious line.

Defaults for outputs are blank, but a comma (,) must be
present (place holder) for each output signal except the
last. For example, the 16207 black box contains six in­
puts (A through F) and six outputs (U through Z). The
first two lines for this macro might be:

16207 (A,B,C,D,E,F,U,V,W,X,Y,Z)
DEFAULT: (GND,GND,GND,VCC,VCC,VCC,,,,,,)

4-93

Defaults for inputs A through Care GND; defaults for
inputs D through F are VCC. Defaults for the outputs
are not specified, but the comma denotes the positions
for those signals.

Defaults should be chosen with care. Clears, Presets,
Loads, etc. should be disabled in most cases. Enables
should be enabled. Input defaults can also be left blank
as long as those inputs are connected to nodes in the
ADF that calls the macro, but it is recommended that
they be specified in the macro file.

Network Section

The NETWORK: section lists the EPLD primitives
used to implement the desired functions. The Network
Section follows ADF syntax rules. As far as possible,
the macros should be implemented in equations to elim­
inate concern about feedbacks and output enables. In
the case of a circuit that requires macrocell registers,
the feeback-only form of the primitive should be used
so that the Macro Expander can make the correct pin
connections. The following example shows this:

OUTl = NORF (INd,CLK,GND,GND)

intef AP·312

During processing, the Macro Expander connects the
feedback to an output (if necessary) and supplies the
required output enable node name. The Macro Expan­
der also eliminates unneeded Network and Equations
entries if they are not used by an ADP.

If no network entries are required (i.e., a macro imple­
mented entirely in equations), the entire Network sec­
tion may be omitted, including the keyword NET­
WORK:. In many cases, equations alone can imple­
ment the desired functions.

Equations Section

The EQUATIONS: section lists the Boolean equations
for the desired functions and follows ADP syntax rules,
with one exception; intermediate equations are not per­
mitted in macro files. If no equation entries are re­
quired (i.e.; a macro implemented entirely in the Net­
work Section), the entire Equation section may be omit­
ted, including the keyword EQUATIONS:.

Comments and White Space
Comments can be placed anywhere in a macro file ex­
cept before the name and signals on the first line. Com­
ments must be enclosed in percent signs, as follows:

% THIS IS A SAMPLE COMMENT %

White space can appear on any line except the first .two
lines.

TEXT
EDITOR

-
TEXT I-+ MACRO

EDITOR FILES

t-+

I-+

MACRO LIBRARIAN

The Macro Librarian (MLIB) is an optional software
package that combines individual macro files into mac­
ro libraries. These libraries are in turn used by the LOC
Macro Expander. MLIB can be invoked from the com­
mand line, from command files, or' from a combination
of both. Figure 3 shows a block diagram of the Macro
Librarian. ·

Syntax for MLIB command lines is as follows:

MLIB [-options I [@cmdfile I [filel file2 ••• I
<Enter>

-v

-I lib

directory. Displays directory information for
the library being created.

verbose. Print status during processing. When
not specified, status messages are suppressed.

list. Lists the contents of existing macro li­
brary to console. This option may not ~e used
while building a library.

-o lib name of the target macro library.
MACRO.LIB is the default when no name is
specified. TTL.LIB and INTEL.LIB are re­
served for Intel libraries and may not be used.

-s string include version stamp in ma9rO library. The
version string can be up to 7 characters long.
"Vl.00" is the default stamp.

-
COMMAND

FILE

I
MLIB I-+ MACRO

LIBRARY

1 ._,.,
LIBRARY
LISTING

292040-3

Figure 3. Macro Librarian Block Diagram

4-94

AP-312

-c string include copyright string in macro library.
The copyright string can be up to 61 charac­
ters long and, if blanks are used, must be
contained in quotation marks, for example,
"texta textb".

@cmdfile name of command file. The command file
can include options and macro filenames.
The @ symbol must precede the filename.

file 1 . . . name of device files to be included in the
macro library. Separate files by spaces.

For example, the following command line:

MLIB -v -s 2.00-o USER.LIB @USERLIST <Enter>

creates a library called USER.LIB that includes all the
individual macro files contained in the command file
USERLIST. MLIB displays status messages as it pro­
cesses the macro files in USERLIST (-v). The library is
created as version 2.00 (-s).

Macro library filenames follows DOS conventions and
should end with the extension .LIB to be recognized by
the Macro Expander. INTEL.LIB and TTL.LIB are
reserved and may not be used.

USERLIST is the name of the command file and must
be preceded by the @ symbol. The command file is
simply an ASCII text file that can be modified to con­
tain any number of macros desired. MLIB processes
the entire list of macros on each invocation. To add a
new macro to an existing library, add the name of the
macro to USERLIST, and create the new library by
entering the command line shown above. Command file
names follow DOS conventions. MLIB supplies a .DEV
extension if no extension is specified. MLIB searches
first in the current directory, then along the DEV envi­
ronment variable, and finally along the PA TH environ­
ment variable for the files.

In order to connect inut and output primitives, the files
INPUT.DEV and OUTPUT.DEV must be included in
at least one of the libraries. These files are contained in
the TTL and Intel Gate Array macro libraries
(TTL.LIB and INTEL.LIB, respectively).

Figure 4 shows a sample MLIB command file that in­
cludes options, the library name, and the names of sev­
en macro files to be included in the library in addition
to the INPUT and OUTPUT macros. The format of
the command file is free form. Note that comments can
be included in the command file and must be contained
within percent(%) signs.

Note that the -1 option cannot be included in an MLIB
command file; it can only appear on the command line.
The -1 option lists the contents of existing libraries; it
does not list library contents while building a library.

4-95

-o PROJA.LIB % macro library name%
-v
-s V1.50 % version number%
-c "Copyr lght (C) Date, Your Company. Your Name"

% copyright Information%
-d % display directory%

% Include the following macros%

INPUT.DEV
7487.DEV
74151.DEV

OUTPUT.DEV 7408.DEV
74138.DEV 74139.DEV

74157.DEV 74251.DEV
292040-4

Figure 4. Sample Command File for MLIB

The command line to process the file shown in Figure 4
is as follows:

MLIB @SAMPLE <Enter>

where SAMPLE is the name of the command file.

To list the contents of PROJA.LIB after creation, in­
voke MLIB as follows:

MLIB -1 PROJA.LIB

This command line lists the macros in PROJA.LIB to
the screen. The DOS file redirection capability can also
be used to create a disk file listing the contents of macro
libraries. For example:

MLIB -I PROJA.LIB > PROJA.DOC

SAMPLE SESSION: COMMAND
DECODER USING MACROS

Decoding logic is one common function implemented
by programmable logic devices. The target circuit for
this example is a device that decodes microprocessor
command signals in selected address ranges. The target
application and decoder requirements are as follows:

• The target application is a 16-bit microcomputer
system with I-Megabyte of memory and about two
dozen I/0 ports.

• The memory is divided into shared memory (lower
512K bytes) and local memory (upper 512K bytes).
Shared memory resides off the processor board and
requires active low memory command signals. Local
memory resides on-board and requires active high
memory command signals.

• I/0 ports are also split between on-board devices
requiring active high signals and off-board devices
requiring active low signals. 1/0 devices between
the address range FOOO-FFFFH are on-board; de­
vices below that range (0000-EFFFH) are off-board.

intef AP-312

• All interrupt requests are resolved by an on-board
interrupt controller. Therefore, only an active high
on-board interrupt acknowledge signal is needed.

• On-board control signals are always high or low,
never three-stated. Off-board control signals are
three-stated when not being used to execute a bus
cycle. An external bus arbiter accepts a request sig­
nal from the command decoder and, after gaining

ADDRESS
DECODE

control of the bus, sends address enable and com­
mand enable signals back to the command decoder.

Figure 5 shows a block diagram of the application, in­
cluding the target EPLD design. The three functional
blocks to be included in the EPLD are highlighted (not
shaded).

REQUEST

•

Off-BOARD
SYSTEM BUS

ON-BOARD
BUS

292040-5

Figure 5. Block Diagram of Target Circuit and Application

4-96

intJ AP·312

Creating the Macro

Figure 6 shows a schematic diagram for the active low
command decoder implemented with OR gates (low in­
puts enable the outputs; high inputs disable the out­
puts). Figure 7 shows the macro file that implements
the circuit (CMDLO.DEV). This file was created with
an ASCII text editor. Used as is, it provides the active
low outputs for the design. With inputs RD, WR, and
INT AIN inverted, it also provides the active high out­
puts for the design. This design uses CONF primitives
to implement the three-state outputs in the macro. As
an alternative, equations alone could have been used
with the CONFs included in the ADF.

MIO-----+-t
CMDEN -----'IL._,

INTAIN--------1-1

AEN ---------'

MRD

MWT

IOR

IOW

INTA

292040-6

Figure 6. Schematic Diagram of
Command Decoder

Building the Library

Use your text editor to create an MLIB command file
that includes CMDLO.DEV, INPUT.DEV, and OUT­
PUT.DEV. The following example shows a sample
command file named MACLIST. ·

-v % show status %
-c "1987, AP-312 Sample Macro Library"
-o AP312.LIB
-d % show the list %

% include the following macros %

CMDLO.DEV INPUT.DEV OUTPUT.DEV

Invoke the Macro Librarian with the following com­
mand line:

MLIB @MACLIST

The Macro Librarian processes the three macro files
and stores them in a user library named AP312.LIB.
The library contains the copyright statement "1987,
AP-312 Sample Macro Library". When processing is
complete, MLIB returns control to DOS.

Creating the ADF

Figure 8 shows a schematic diagram for the target
circuit. Figure 9 shows the ADF for the circuit (COM­
CODE.ADF), which invokes both instances of the
CMDLO macro. and contains equations used to enable
the decoders under the proper conditions. The ADF'
signal named ONBEN (On-Board Enable) enables the
active high decoder). The AEN (Address Enable) input
to the on-board decoder is left unconnected. The de­
fault (always enabled) will be used.

CMCLO(MIO,RC,WR,INTAIN,CMCEN,AEN,MRC,MWT,IOR,IOW,INTA)
CEFAULT,(GNO,VCC,VCC,VCC,GNO,GNO,,,,,)

NETWORK,

MRC • CONF(MRCc,AEN)
MWT • CONF(MWTc,AEN)
IOR • CONF(IORc,AEN)
IOW • CONF(IOWC,AEN)
INTA • CONF(INTAIN,AEN)

EQUATIONS'

MRDc • /MIO + RC + CMCEN;
MWTc • /MIO + WR + CMDEN;
IORc • MIO + RD + CMDENo
IOWc • MIO + WR + CMOEN;

ENCEF
292040-7

Figure 7. Macro Fiie for Command Decoder (CMDLO.DEV)

4-97

DANIEL E. SMITH
INTEL CORPORATION
417 /87
1
A
16209-001
COMMAND DECODER

OPTIONS: TURBO•ON
PART: 5C090

AP·312

INPUTS1 MIO, RD, WR, INTAIN, CMDEN, AEN1, A13, AF, AE, AD, AC
OUTPUTS: MRD, MWT, IOR, IOW, INTA, MRDC, MWTC, IORC, IOWC, OFFBDEN

NETWORK:

INPUT(MIO,MIO)
INPUT(RD,RD)
I NPUT(WR, WR)
INPUT(INTAIN, INTAIN)
I NPUT(CMDEN,CMDEN)
INPUT(AEN1 ,AEN1)
INPUT(A13,A13)
INPUT(AF,AF)
INPUT(AE,AE)
INPUT(AD, AD)
INPUT(AC,AC)

OUTPUT(MRD,MRD)
OUTPUT(MWT ,MWT)
OUTPUT(IOR, IOR)
OUTPUT(IOW, IOW)
OUTPUT(INTA,INTA)
OUTPUT(MRDC,MRDC)
OUTPUT(MWTC,MWTC)
OUTPUT(IORC, IORC)
OUTPUT(IOWC,IOWC)

CMOLO(MIO,RD,WR,,CMDEN,AEN1,MRDC,MWTC,IORC,IOWC,) % OFB %

CMDLO(MIO,NRD,NWR,NINT,ONBEN,VCC,MRD,MWT, IOR, IOW, INTA) % ONB %

OFFBDEN
OF BEN
ONBEN
NRD
NWR
NINT
NMIO
NUPPER
NA13

• CONF(OFBEN,VCC)
• NOR(OF1,0F2,0F3,0F4)
• NOR(ON1,0N2,0N3,0N4)
• NOTCRD)
• NOT(WR)
• NOT(INTAIN)
• NOTCMIO)
• NOT(UPPER)
• NOT(A13)

EQUATIONS:

UPPER• (AF• AE •AD• AC);
ON1 •(MIO• A13 • NRD);
ON2 •(MIO• A13 • NWR)i
ON3 • (NMIO •UPPER• NRO);
ON4 • (NMIO •UPPER• NWR);
OF1 • (MIO• NA13 * NRO);
OF2 • (MIO• NA13 • NWR);
OF3 • (NMIO • NUPPER • NRD);
OF4 • CNMIO • NUPPER • NWR);

ENDS

Figure 9. ADF for COMCODE.ADF

292040-9

OFFBEN (Off-Board Enable) requests permission to
access the off-board bus from the external bus arbiter.
The bus arbiter enables the off-board decoder via
AENl (Address Enable 1) and CMDEN (Command
Enable). CMDEN allows the appropriate signal to go
high or low, and AENl causes the outputs to indepen­
dently enter or exit a high impedance state (three-state).

Note the same name is used for both nodes of each
INPUT and OUTPUT macro call. Use of the same
name ensures proper connection when the Macro Ex­
pander eliminates redundant primitives (for example, a
CONF feeding another CONF).

4.99

intJ AP-312

Compiling the Design

Proceed as follows to compile the ADP.

l. Include AP312.LIB in the IPLS environment vari­
able. From the DOS command prompt, type:

SET IPLS=C:\IPLSII\AP312.LIB; ... <Enter>

For user-defined macro libraries that are regularly
accessed, the IPLS variable can be set in an
AUTOEXEC.BAT file.

2. Invoke the iPLS II Menu by entering:

IPLS <Enter>

3. Invoke the LOC from the Main Menu by pressing
<F4>.

4. Answer the LOC prompts as follows:

Input Format?

File Name?

Minimization?

Inversion Control?

LEF Analysis?

Error Message File

<Enter>

COMCODE <Enter>
y

N
y

COMCODE.ERR <Enter>

The LOC then asks:

Do you wish to run under the above conditions

[YIN]?

Enter: Y

The LOC expands the macros and compiles the
expanded file to produce a JEDEC programming file
(COMCODE.JED), a utilization report file
(COMCODE.RPT), a minimized logic equation file
(COMCODE.LEF) and an error message file (COM­
CODE.ERR). For traceability, a file called COM­
CODE.SDF is created to show the expanded form of
the ADP output by the Macro Expander.

5. The LOC terminates execution with the following
message:

LOC cycle successfully completed

You can examine the LEF file to see the minimized
form of the design. The LEF shows the EPLD primi­
tives used to implement the design. Macro calls are not
shown in the LEF. If you wish, you can also use LPS
(Logic Programmer Software) to program a part.

4-100

Tools for Optimizing PLD Designs

Alan J. Coppola
Tool Architect

Intel Corporation

MIS EY2-11

5200 NE Elilm Young Pkwy.
HiDsboro, OR 97123

(503)681-2177

lnqoduction:

The purpose of this paper is to describe a design methodology for
Programmable Logic Devices(PLD's) and to survey current PLD
optimization techniques.

1. Perspective: Where do PLD's fit In?

The use of Programmable Logic Devices(PLD's) represents a
middle ground in logic design. The two common approaches to
logic implementation in today's market are Board Design
methods(building a solution from a selection of pre-fabricated
standard parts - 'I'I'L/SSl/MSI) and Custom/Semi-Custom design
methods(fabricating a custom logic chip to solve the problem at
hand, arid .!IWl building a much simpler board).

With the Board Design approach, PC B's carry the
fruit of a designer's labor to the customer. Many little black boxes
and other electrical circuit components make up the brunt of a
PC B's load. Many times there are large islands of functionality to
be connected together via encoding/decoding and timing circuits.
The islands of functionality (i.e. microprocessor, micro controller,
RAM, EPROM, transciever, etc.) all have different protocols, and
all speak d!fterent languages at different speeds.

Integrating the major devices al a board together involves much
"glue" logic. The typical designer spends time and elf art looking
through a 'I'I'L parts catalog to lind the best fit for a design based
on functionality, performance and price. After a preliminary
function-based board is laid ou~ modification passes are made
based on the parts needed and their availability. Large designs
increase the length and risk of this process. Even though most
major CAD vendors are addressing the problem of board design,
simulation, test and interface With the Custom/Semi-Custom
arena, board design and manufacturing tools are rapidly becoming
the primary practical obstacle to ellective production of end-user
systems. PL D's reduce the complexity of the end-user board,
hence reducing the length and risk ol the implementation and
manufacturing process.

With the Custom/Semi-Custom design approach, the designer is
free to address functionality directly. The designer has much
flexibility in the functionality, speed and integration facets of logic
design. Certainly, the number of parts on an end-user PCB can
be greatly reduced by integrating most of a board's function into a
fe1.v custom devices. The problems associated with all the
flexibility lie in the physical design, modeling, and tools areas.
Specifically, in the physical design area, problems include
process specific bottlenecks, NRE charges and long lead times.

In the modeling area, extensive simulations must occur before
and after the device is buil~ as each device is custom crafted.
Finally, in the CAD tools area, a highly functional, but hard to use
set ol tools guide and control the whole process. The tools are
the best m terms al functionality, but the worst in terms of cost
and ease o! use.

The job ol ASIC vendors in the next ten years is to make the
Custom/Semi-Custom problems disappear or become acceptable
to the logic designer of the next generation. The tacts are clear.
Without advanced tools which automate much of the logic
designer's work, the Custom/Semi-Custom approach only works
for large scale, large volume or special purpose devices. Silicon
compilers and other Custom/Semi-Custom design methodologies
are working hard to overcome the inherent problems ol this type
of design.

The use of PL D's in a design is a compromise between the
flexibility of a Custom/Semi-Custom design, and the standard
Board design methodolgy.

The definition of PLD which I am using for the purposes of this
paper is very aeneral. A Proarammable Lol!ic Device is any
device, which can be programmed by the user, to realize a chunk
of combinatorial or sequential logic. A subset ol the most
popular, or newest types ol PLD's are: PAL's, PLE's(Monolithic
Memories), EPLD's(lnte~ Altera), EEPLD's(Lattice), FPLA's,
FPLS's(Signetics), LCA's(Xilinx), and ERASIC's(Exel). All
except the last two are based on some lorm of two·
level(AND/OR) registered array logic. I will mainly be concerned
with two·level array logic devices.

The good points of designing With PL D's are:

1. The integration ol many small chunks ol 'I'I'L and SSl/MSI
logic into a lew PLDs. Essential lor efficient use of resources.

2. An easier overall development cycle than the Custom/Semi­
Custom route. Also easier than standard board 'I'I'L development
cycle once the learning curve is passed.

3. Much cheaper than the Custom/Semi-Custom design
method for all but large volume designs. Usually cheaper than
standard board 'I'I'L design method.

4. The breadboard character and modifiability ol PLDs makes
them an excellent R&D and learning vettlcle in the design
environment

4-101

5. PLD CAD development tools are available to conven
standard TTL logic representations into the complicated fixed
architectures of an individual device. The CAD tools automate
this_ process, _to a large degree, so that the user can use their own
design techniques.

The bad points of designing with PLDs' are:

1. _For large designs, using PL D's is not as functional or robust
as using Custom/Semi-Custom logic.

2. The CAD tools available for PLD design are not as useful in
automating the whole design process as those in the
Custom/Semi-Custom arena. In fact, most of the tools are
denved from those used in Custom/Semi-Custom design.

3. The speed and function constraints of the fixed device
architectures can be inhibiting. For example, not all types of
designs fit well into two-level array logic.

2. Tbe PLD Development Environment

There are three pieces in a PLD development environment First
is the input part The design specification needs to be entered in
some fonn, .such as a schematic, a finite state machine, or a high
level lariguage description. Second is the processing part This
must include some kind of compilation of the input into object
code(JEDEC code), and usually also includes optimization of the
design. Third is the output part This includes the object
code(JEDEC), test results/Vectors, and statistics.

A PLD development environment has an underlying language for
representing design specifications, which is usually more general
than the intended devices. Often, the system provides mearis for
accepting input in other forms .. which then translates into the
underlying language. We shall use the standard term "Hardware
Description Lariguage"(HDL) when refering to this l.mguage, as
ttris is where these lariguages are headirig in terms of complexity
and future directions.Eliamples of PLD HDLs' are ABEL by
Data/10-Futurenet, CUPL by Assisted Technology, ADP by
lntel(Altera), PALASM by Monolithic Memories, LOG/IC by
Kontron, arid AMAZE by Signetics.

There are four questions one can ask about a PLO development
environment and it's HDL. The answers to these questions
determine, for the user, which systems to use. The tour
questions are:

Que5tion 1: ls it easy to learn and easy to use(User-Friendly) ?

Que5tion 2: Is it generic enough to support the current
applications and new de~ices yet to come? (HDL expressiveness
and functionality)

Que5tion 3: Does the compiler use optimization techniques to
produce JED EC code? (i.e. logic rrrininlization)

Que5tion 4: Are there alternate logic entry tools, like schematic
capture and Finte State Machine entry; are ttiere hooks for
simulation and other design methodologies, like gate arrays?

As an example, we answer the four questions tor the HDL of the
Intel Programmable Logic Development System(iPLDS) (Altera).
The HDL of iPLDS is called Advariced Design File(ADF).

Que5tion 1: ls it easy to learn and easy to use ?(User-Friendly)
A1uwer: The ADP language is made easier to learn for the
novice user by two items:

a. GraphiC41 lntedace Tools
Logic Builder(LB): A graphical netlist entry and syntax

checking aid to the user entering designs which have already
been written down on paper in a schematic fashion.

. Logic Programming(LP): A graphicalJEDEC file editor,
which allows the user to modify the JEDE:C me. More
importantly, the tool allows the user to investigate and learn the
device architecture via a user-oriented graphical interface, and
then to program the pan directly from this iriterface.

b. Primit1t··e s:
A large(N80) set of logic and 1/0 Macrocell primitives which
capture all of the current standard ways to represent small chunks
of memory and combinational logic .. This is useful for the novice
and occasional user, who doesn't have the time, or want to learn
the abstractions involved in more generic HDLs'.

Que5tion 2: Is it generic enough to suppon the current
applications and new devices yet to come ' (HDL expressiveness
and functionality)
A115wer· Yes, it is generic enough to support those current
and future architectures based on.two-level registered logic,
which are produced by Intel and Altera. The large number of
primitives make the language unwieldly for support of new
devices not falling into this realm. Finally, it suppons only Intel
.md Altera deV1ce s.

Que5tion J_- Does the compiler use optimization techniques to
produce JEDEC code 7 (Le. logic minimization)
Aruwer: Yes, logic minmlization, DeMorgan's inversion of
outputs, and automatic fitting oi resources and pins to the given
device are supported in an integrated fashion.

Que5tion 4: Are there alternate logic entry tools. like schematic
capture and Finte State Machme entry; are ttiere hooks tor
simulation and other design methodologies, like gate arrays?
An5wer: Alternate enny methods include schematic Capture,
F'SM entry, and Graphical Netlist entry(LB). There are currently
no tools tor functional simulatiOn, nor is ther anv wav of
iriteriacing to other design tools. Both topics are being
considered for the iuture.

The third party HDLs', like ABEL, CUPL, and LOG/IC are, in
general, harder to learn and use. They afford greater
expressivness and generality in addressing design problems.
Because of the need to work with most devices on the market,
these HDL's resemble more closely therr high-power cousins in
•.he Custom/Semi-Custom design arena. They have no automatic
resource fitting arid pin-assignment, but do have a robust set of
integrated tools involving l•mctional simulation, schematic capture
and FSM enr.ry available.

3. PLO Optimization Tools

Here we introduce and describe the current mix of optimization
tools ir1 the PLO development workshop. Tbe goal of CAD
optimization tools for PLO design is to speed up the design cycle
by reducing designer time, arid to cram larger designs into a fixed
device. The optimization tools of a ~;pica! PLO development

system usually reside in the HDL compiler. The tools can be
viewed as compiler optimization tools.

The four optimization tools ol concern to us are:

1. Logic Minimization - A tool to reduce the complexity of
the logic equations implementing a design.

2. Finite State Machine(FSM) Compiler - A tool which
takes an FSM description and tJanslates or compiles ic into an
HDL.

3. DeMorgan's Inversion· A tool which can reduce the
amount ogf logic needed by inverting the sense of some of the
output signals of the device.

4. Fitting and Pin Assignment - A tool which automatically
fits the resources and pins which the user chooses not to.

We discuss each topic seperately, and illustrate, by the use of the
Dice Example, (Figuresl-3) most of these features.

Logic Minimization:

Logic minimization is currently the best optimization tool available
for PLDs'. Logic minimization for current PLD development
systems is strictly a two·level logic tooL and totally replaces, for
combinational logic purposes, the Karnaugh Map and Quine·
McCluskey Algorithm methodology for finding the minimum size
set of equations. Por two-level logic(AND/OR), most compilers
use a single or multiple output heuristic minimizer. University
research and industrial experience show that the NP-complete
problem of two-level logic minimization has been effectjvely
solved for the size of problems currently being considered in
practice. Currently, the most effective minirruzers are Espresso,
McBoole, arid Presto·ll. Espresso has been shown, in
aggregate, to be within one-percent of the minimum ar1swer on
104 test cases. On current PLD size problems, the test cases
indicate that Espresso will find the minimum solut!On almost
always [1, 2, 3, 4].

The user of minimization tools usu.lily has a concern about the
process. The minimization tools have the side·eftect of
producing a reduced equation set that doesn't ah•1a~1s reflect the .
designer's thought process relative to ttie un-m1rnm1zed equation
set This results in confusion in trying to understand ttie design
from the reduced equation set For the same reason, editing a
JEDEC file to change a few bits of a design is error-prone and to
be avoided. To independently verify t.he mearnng of the design
and the resulting minimized boolear1 equations, functional test
vectors should be created and run t.hrough a functional simulator.
This will catch design errors arid give a truth-tat•le verification of
the design. Por some HDLs', there are tools available that will
automatically generate test vectors. Actually, due to the fixed
architectures of PLDs', automatic test generation 1s much more
feasible in the PLD arena thar1 m the Cuscom/Semi·Custom area.
Of course, a designer can choose to not have tt1e equations
minimized if t11ey already flt into ttie target deVIce before
rninirruzation, but in complicated designs, this is rarely the c.;se, as
tt1e Dice Exarnple at the end of this paper sho\•!s.

Future PLD tools will depend more arid more on logic
rninimizatiorL Just as,, high-le11el language prograrnmer looks

less and less at the object code produced b}' a compiler, the logic
designer will. not be concerned witti the minfrnized code output
of the PLD logic compiler.

FSM Compiler:

An FSM compiler is included in the lisc of PLD optimization toois
because it allo1.1,•s for a compact representation of a sequential
cimut. This leads to ways to introduce systematic optimization
techrnques li.ke logic minimization and automatic state assignment
at a transparent level for the user. Designing at the level of states
arid transitions results in a more compact HDL description for the
same logic function, \Lith fewer mistakes being made. PSM
description also allows the user to change memory element types
.;nd state assignments man error-free manner. FSM's are also
well understood, theoretically, arid are a ripe area for future tool
development Most logic texts present many hand tabular
methods for optimizing FSM designs. These hand methods car1
be automated and extended to produce new tools for PSM·based
design.

DeMorgan's Inversion:

DeMorgan's inversion, in AND/OR type PLD architectures, with
mversion control in the l/O macrocells .. refers to logically mvertmg
an output signal phase in such a way tt1at tt1e number of p-terms
realizing tt1e complement function is less than t.he origmal ..
function. This cari save the user from an un-solvable p·term f!ttmg
problem due to too many p-terms when usmg one sense of an
equation. For devices v,;ith single output macrocells .. like PALs ..
and EPLDs, thecomplement of the smgle output equatIOn 1s
computed and then minimized. The sense of the equation witt1
t.he least nurnber of p-temis is tt1en the one that is implemented
in the device under programming.

Fitting and Pin Assignment:

The fitting and pin assignment problem refers to compiling a
design file, and havmg the compiler automat1cally choose those
device resources and pins that the user did not assign m the
design file. In the past, de<nce architectures have been simple
er1ough and small enough so that fitting and pm assignment ··.vere
not a problem for the user. Novi, with mcreasmg size. complex1w.
and non-horn0Hne1tv of the device .;rchitecture, a heunstlc CAD
tool, u.1h1ch is like an ·automatic place ancl route tool, 1s a necessiW.
If a device arclutecture 1s homogeneous "lith respect to structure
and resources. fitting is not a problem. as there ts no contentrnn
for resources or placement of those reso•zces. Fitting is a
problem 1.vhen there are multiple clocks an•j tvp.e; of clocks ..
multiple device sect10ns(li1'e qua(!raJitSi. var:;mg numbers ot p·
terms per quadrant, pro1juct term shanng and steenng. mput pms,
I/0 macrocells of varying t:,Jpes 1 or burie1j register~ .. Tht- greater
t.he number and SIZe of the fe.;tures, the greater the fmmg
problem. Without a tool to help, the designer must 1jo tht fmmg
b:; hand, leading to erri:irs a.nd r1ot fini:1mg .jfl 3.l101.11.1ble !1t

Some of the large scale devices that exh1t11t th"=se problem:. are
lntel's1Aitera'515 1:::'121!EP1210) ,;nd 5C'.180iEP1800i The immg
a.n1j a1itoff1at1c pin ,j5:1gnment tools oi iPLDS relieve the user
from having to 1jea! 1J..-1th this problem

4-103

3. Future PLD Optimization Tools

This section describes new directions for PLD development
systems optimization tools. Optimization tools must be near
transparent to the user to get universal acceptance. Of the four
optimization tools mentioned above, all but the FSM compiler tool
satisfy that criterion.

There are basically two types of optimization tools which will
appear in the PLD arena. The first type are tools which are
ported from, or interfaced to the Custom/Semi-Custom
environment The current logic description and synthesis tools of
silicon compilers and Custom/Semi-Custom CAD tools tit into
this classification. The second type are new tools \llhich will
address the architecture-specific optimization issues. The tools in
this group will use methods based on logic optimization and
expert-system techniques. These two methodologies will be
applied to taking abstact specifications and realizing them
automatically into multiple devices, or in taking multiple abstract
specifications and realizing them in one device.

Ponation of Custom/Semi-Custom Tools:

Available ideas ready for porting to the PLO environment down
the HDL path include implementing a subset of VHDL(VHS!C
Hardware Description Language)[S], and having the compiler
produce an EDIF(Electronic Design Interchange Format) [6]
intermediate format In this way, interfacing with other toolboxes
of any type will be easier. New device support will also be easier,
given the generic nature of VHDL. Using VHDL would also
standardize an HDL, and allow designers to learn one HDL
which will last tor a long time. Also, PLD tools which interface
with the Custom/Semi-Custom toolset involving board design,
testing and manufacturing is needed now, and is being addressed
by the major CAD vendors. Standardization, like VHDL and
EDIF will, eventually, lower the cost of these interfaces.

The new logic minimization algorithms, like Espresso, and new.
state assignment tools, like KlSS[7] arid STASH [B]can be used m
the PLD environment .The algorithms and methods of tools
involving placement and routing can be applied to the fitting/pin
assignment problem. On the logic synthesis side, new tool~ . _
which combine expert-systems with multi-level logic optlimzanon
can be applied to PLD devices which allow multi-level logic to be
easily implemented.

The key poin~ irregardless of the actual tools from the
Custom/Semi-Custom arena which are productized is that the
user have an essentially transparent view of any new optimization
tools.

Once a PLO is manufactured, the functionality cannot be
changed. This fact leads to the belief that tools can be created
which map logic, which is too big or too slow, into multiple
de\~Ces by doing automatic logic partitioning. The converse
problem of fitting multiple churiks of communicating logic into one
device mav also be addressed. Tools to fit multiple state
machines into one de\~ce, or to partition a schematic or FSM into
two or more devices is a first step. For example, the Dice
Exarnple(F'lgures 1-3) has three small state machines, which are
mtegrated into one device and design file. Expert-systems can
capture the rules for partitioning, and the database of all allowable
devices, while opumization techniques can make the expert·
systems work .'15 •Mell as, or bener than a logic designer.

Conclusion:

We have surveyed the reasons for, and components of PLO
development system5, with emphasis on the Hardware
Description Languages, and optimization methods in such
systems. The conclusions of the survey are that the HOL 's are
the essential cornerstone of any PLD system, and will control the
future directions of any new PLO development tools. The second
conclusion is that two-level logic minirmzation, FSM compiler,
and automatic fitting tools are the most important in the PLD
optimization area. Also, recent breakthroughs and public
availability of heuristic minimizers point to increased use of such
tools. Finally, future directions, and an expanding market indicate
a wide range of new tools will appear. The key emphasis will be
on making them transparent to the user, who, when all is said and
done, knows how to design logic best!

References

[1] R. Rudell and A. Sangiovanni-Vincentelli, "ESPRESSO-MY:
Algorithms tor Multiple Valued Logic Minimization", in Proc.
Gust Int Gire. Conf., IEEE, Portland, OR, May, 1985.

[2] M,R. Dagenais, V.K. Agarwal and N.C. Rumin, "McBoole: A
New Procedure for Exact Logic Minimizanon", IEEE Trans. on
CAD, Jan. 1986, 229-236.

[3] M. Bartholomeus and H.D. Man, "Presto-II: Yet Another
Logic Minimizer tor Programmed Logic Arrays", Proc. Int Symp.
Gire. Syst, June 1985, 58.

[4] R. Rudell, "Multiple-Valued Logic Minimization tor PL_A
Synthesis", M.S. Thesis, University of California, Berkeley, 1966.

[5] V. D. Agrawal, ed., "VHDL: The VHSIC Hardware
Description Language", IEEE Design and Test of Computers,
Apri~ 1986.

[6] J.P. Eurich, "A Tutorial Introduction to the Electronic Design
Interchange Format', In Proc. of 23rd Design Automation
Conference, July, 1986, 327-333.

[7] G. DeMicheli, RK. Brayton, and A. Sangiovanni-Vincentelli,
"Optimal State Assignment for Finite-State Machines", IEEE
Trans. on CAD, July, 1965, 269-285.

[8] A. J. Coppola, "An Implementation of a State Assignment
Heuristic", In Proc. of 23rd Design Automation Conference, July,
1986, 643-649.

Dice Example Description

Problem: Design a circuit lhat will roll lwo dice. Push a swilch.
stan 1ht dice rolling. W'htn lhe sw~h is released, a (pseudo).
random set al numbers will be displaped.

The example is wntt.n using lht FSM compile~ mad~le of iPlDS.
This example is a modification of an existing Application Natt[AP-
279] design, which is wntt.n in ADF language.

The Dice Example pseuda-randamlp roHs lwo dice. The Diet
Example is composed of lhree FSMs'. The first lwo are essential!,
up-counters. which count from one 10 six, using lht notation groups
of one or lwo LED's, for each of four DUIPUls. ta represent lhe six
faces of a die. A piCIUre which indicates 1ht LED groupings b,
listing lht output signal name nm ta lhe LED controlled 11, ii'. is
giv.n in Diagram 1. The groupings for both die art idHticaf and
.hence, listed next ta each olher. ' ·

The lhird machine generlffs a short pseudo-random bit sequnct bp
implementing a Linear Feedback Shift Rtgister(LFSR) • wkh lhret
registers. The pseudo-random bit sequences from lhe LFSR art
used ta add probabilistic transitions to lht up-counter model of
each die. The implementation of lht LFSR is b' straight
memorization of lhe sequence, b' means of lhe state variables of an
up-counter.

1b,2b

1d,2d

le, 2c

·Dice LED Encoding

• • ••• • 1a,2a •

Die 1 Signals: la, lb, le, ld
Die 2 Signals: 2a, 2b, 2c, 2d

le, 2c

1d,2d

1b,2b

The Dice Exatnple shows the usefulness of logic minimization.
Figure 2 shows lhe FSM language{Stat. Machine File)
representation of lht Diet Example under the iPLDS srstem.
Figure 3 shows lht ADF code which resuMd, as an inttrmediatt
step, in lht compilation process.

The target dtuice. lhe 5C06D. has 111/D macrooels. but each'
macrocell has anl' .nough room for 8 1Htrms. There are 11
equations !hat result frolll lhe Diet Example design. Faur for each
die. ta control the LED's. and lhree from lht state variables of lhe
Linear Feedback Shill Register.

W't present a before and after minimization table. showing tht tfltcl
of lhe minimization and lht automatic DeMorgan's Inversion step.

Equation Inputs

Sv3.d 3
Su2.d 3
Su1.d 3
2d.d 6
2o.d 8
2b.d 6
2a.d 6
1d.d 6
1c.d 6
1b.d 6
1a.d 6

1Htrms 1Htrms
before after
min min

3 2
3 2
3 2
3 3
I 4 • 4
18 6
3 3
9 4
5 4
18 7

A necessarr condition ta fit into lht 5Cl60 i5 Iha! Ill of lht numbers
in lhe last column be no mare than 8. as there are no ..Ore than 8
p-terms connec~d ta anp macrocell. This particular problem took 2
min~s of CPU time on an BMhz PC/AT. Reducing these equations
bp hand, tutn for lhis simple example. would bt difficult. Tht nttd
for the automatic minimizer is clear in lhis example. W'khaut it. a
designer would ekher have ta reduce lht eqations resulting from 1ht
FSM language b' hand. or not use an FSM language at ill(and do
the whole design using hand-crafted methods.

Figure 1.

4-105

Dice Example
FSM Language(SMF) Description

Al111 C111111ala
lnlll
Jul, 21. 1988
Piii No.: l.uVegu
VII'. 3.0
ICOSG
Ran a pair of die
lB Version 4.01, Base tin• 27 .1 4/9/86
PARr:5C088

X Na pins assigned:
Autamllic Pin Assignment and Fiiiing X

INPUTS: clk1. clk2, Go
OUTPUTS: ta. 1b. 1c, 1d, 2a. 2b. 2c. 2d

NETWORK:

"

clk1 = INP(cll1 J
c1k2 = IHP1clk2J
Ga = INP(GaJ

Three i.rnt LFSR. implemeni.d b, storing sequence
in mi. variables. which act as ftipping coins.

"
MACHINE: LFSR
CLOCK: clk2

STATES: [Coin! Coin2 Coin3]
so [801)
St (10 Q
S2 (111]
S3 [811)
S4 (101)
S5 (811]
SS (001]

" s- equations ve:

"

Coin2 := Coin1
Coin3 := Coin2
Coin! := /(Coin2 xor Coin3J

SI:
S1

S1:
S2

S2:
S3

S3:
S4

S4:.
S5

S5:
SI

SS:
so

MACHINE: OieJ\DH_1
CLOCK: clk1

" S- variables ve used as olllpUls to die.
Each St<ft encodes ""' set of LED's to light
to rtafiH !hat die Hlut.

" STATES: [1a lb le Id]
Resel (8 O O OJ
One (1088]
Two (0 1 0 OJ
Thrte (1100J
Four [0110]
Five [1110]
Six [0111]

" Coin2 is a pseuckttandom coin. which controls the
UJH:ounter 1ransidons. so that lie dice roll is
pseudo-random.

" Reset:
II Go Then One

One:
II Go11Coin2 Then Two

Two:
II Go•Coin2 Then Thr.e

Three:
II Go•Coin2 Then Four

Four:
If Go•Coin2 Then Fivt

Five:
If Go•Coin2 Then Six

Six:
If Go•Coin2 Then One

MACHINE: Die_J\aH_2

" Duplicate of DieJ\Dft_1 machine, except for
a dilerent die, using a diflerenl pseudo-random coin.

" CLOCK: clk2
STATES:
Reset0ie2
On•Die2
Two0ie2
Thrte0ie2
Four0ie2
Five0ie2
Six0ie2

Ruet0ie2:

[2a 2b 2c 2d]
[0 0 0 OJ
[1 0 0 OJ
[0 1 0 OJ
[I 1 0 OJ
[0 1 1 OJ
[1 1 1 OJ
[0 1 1 1]

If Go•Coin3 Then One0ie2
OneDie2:

If Go•Coin3 Then Two0ie2
Two0ie2:

If Ga•Cain3 Then ThreeDie2
ThreeDie2:

If Go•Coin3 Then Four0ie2
Four0ie2:

If Go•Coin3 Then Five0ie2
FiveDie2:

If 6a•Cain3 Then Six0ie2
Six0ie2:

If Go•Cain3 Then OneDie2

ENDS

Figure 2.

Dice Example
Hardware Description Language(ADF)

Alan Coppala
Int.I
.... ,, 21. 1986
Part No.: wVtgu
Vtr. 3.0
5CD60
Roll a p•r of dit
LB Vtrsion 4.01, Butlint 27 .1 4/9/86
SMV Vtrsion 1.01 BETA2 Buolint 26.1 4/3/86
PART: 5C060

INPUTS:
clk1. clk2, Go

OUTPUTS:
h, 1b, 1c, 1d, 2a, 2b, 2c, 2d

NETWORK:

"

clk1 = INP(clk1 l
clk2 = INP(clk2)
Go = INP(Go)

ThrH ttrm LFSR, impl•mtnltd b1 storing stqutnce
in stal4! uariablts, which act u ftipping coins.

"
" 1/0' s for Slat• Machine "LFSR"

" Coin1 = NORF1Coin1 .d, clk2. GNO. GNDJ
Coin2 = NORF(Coin2.d. clk2, GNO, GND)
Coin3 = NORF(Coin3.d. clk2, GNO. GNO)

" I/O's for Statt Machin• "Oit_RolU"

" 1a, h = RORF(h.d. clk1, GNO, GNO, VCC)
1b, 1b = RORF(1b.d, clk1, GNO, GNO, VCC)
1c, 1c = RORF11c.d, clk1, GND. GNO, VCC)
1d, 1d = RORF(1d.d, clk1, GND, GND. VCC)

" I/O's for Stal4! Machine "Die_RolU"

" 2a, 2a = RDRF12a.d, clk2, GND. GND, VCC)
2b, 2b = RDRF(2b.d. clk2, GNO, GND. VCCJ
2c, 2c = RORF(2c.d, clk2, GND, GND, VCC)
2d, 2d = RDRF(2d.d, clk2, GND, GND. VCCJ

EQUATIONS:

" BoolHn Equations for State Machine "LFSR"

" " Currtnt S~te Equations for "LFSR"

" SO = Coin1'•Coin2'•Coin3';
S1 = Coin1•Coin2'•Coin3';
S2 = Coin1•Coin2•Coin3';
S3 = Coin1'•Coin2•Coin3;
S4 = Coin1•Coin2'•Coin3;
S5 = Coin1 "•Coin2•Coin3'·
S6 = Coin1'•Coin2'•Coin3;

" SV Dtfining Equations for Stat• Machine "LFSR"

" Coin1 .d = S1.n + S2.n + S4.n;
Coin2.d = S2.n + S3.n + S5.n;
Coin3.d = S3.n + S4.n + S6.n;

" Nell! State Equations for Stal4! Machine "LFSR"

" S1.n =SO;
S2.n = S1;
S3.n = S2;
S4.n = S3;

S5.n = S4;
S6.n = S5;

" BoolHn Equations for State Machine "Dit...RolU •

" " Currtnt Stat• Equations for "Dit_RolU •

" Reset= 1a'•1b'•1c'•1d';
Ont= 1a•1b'•1c'•1d';
Two= 1a'•1b•1c'•1d';
Three= 1a•1b•1c'•1d';
Four = 1 a'•1 b•1c•1 d'·
Fiut = 1a•1b•1c•1d';'
Six = 1 a'•1 b•1 c•1 d;

" SV Defining Equations for State Machine "Die_RolU •

" la.d = One.n + Three .n + Fiue.n;
1b.d' = One.n + Reset.n;
1c.d = Four.n + Fiuo.n + Sil<.n;
1d.d = Six.n;

" Next Stat• Equations for State Machin• "Die_RolU"

" Ont .n = Six • Go • Coin2 + Ont • (Go • Coin2)'
+Reset• Go;

Restt.n = Reset• (Gol';
Three.n = Throe • (Go • Coin21' + Two • Go • Coin2;
Four.n =Four• (Go• Coin2)' + Thrtt •Go• Coin2;
Fiue.n = Fiuo • (Go • Coin21' + Four • Go • Coin2;
Six.n = Six • (Go • Coin21' + Five • Go • Coin2;

" Booloan Equations for State Machin• "Oie_Roll_2"

" " Current State Equations for "Dit_Roll_2"

" Reset0ie2 = 2a'•2b'•2c'•2d'·
Ono0ie2 = 2a•2b'•2c'•2d'; '
Two0ie2 = 2a'•2b•2c'•2d';
ThreeDie2 = 2a•2b•2c'•2d';
Four0ie2 = 2a'•2b•2c•2d';
Fiue0ie2 = 2a•2b•2c•2d';
Six0ie2 = 2a'•2b•2c•2d;

" SV Defining Equations for State Machine "Die_Roll_2"

" 2a.d = One0ie2.n + ThreeDie2.n + FiueDie2.n;
2b.d' = OntDie2.n + Reset0io2.n;
2c.d = Four0ie2.n + Fiue0ie2.n + Six0ie2.n;
2d.d = Six0it2 .n;

" ~•XI State Equations for State Machin• "Die_Roll_2"

OneDie2.n = SixDie2 • Go • Coin3
+ OnoDio2 • (Go • Coin3)'
+ Rosot0io2 • Go • Coin3;

ResttDie2.n = Reset0ie2 • (Go • Coin31';
ThrteDie2.n = ThreeDie2 •(Go• Coin31'

+ TwoDie2 • Go • Coin3;
Four0it2.n = Four0ie2 •(Go• Coin31'

+ ThroeDio2 I Go • Coin3;
Fiue0io2.n = FiueDie2 • (Go • Coin31'

+ FourDie2 • Go • CoinJ·
Six0ie2.n = Six0ie2 •(Go• Coin:ir

+ FiueDie2 • Go • Coin3;

ENDS

Figure 3.

4-107

Appendix 5

APPENDIX

SECOND SOURCE CROSS REFERENCE

What Intel Part to Quote Altera Part # What Intel Part to Quote Altera Part #

D5C031-50 EP310DC CJ5C090-50 EP900JC-3·
D5C031-35 EP310DC-2 P5C090-60 EP900PC
TD5C031-50 EP310D1 P5C090-50 EP900PC-3

N5C090-60 EP900LC
D5C032-35 EP320DC N5C090-50 EP900LC-3
D5C032-35 EP320DC-2 TD5C090-60 EP900DI
D5C032-25 EP320DC-1 TCJ5C090-60 EP900JI
P5C032-35 EP320PC
P5C032-35 EP320PC-2 D5C121-90 EP1210DC

D5C121-65 EP1210DC-2
D5C060-55 EP600DC CJ5C121-90 EP1210JC
D5C060-35 EP600DC-2 CJ5C121-65 EP1210JC-2
D5C060-45 EP600DC-3 P5C121-90 EP1210PC
CJ5C060-55 EP600JC P5C121-65 EP1210PC~2

CJ5C060-45 EP600JC-3 N5C121-90 EP1210LC
P5C060-55 EP600PC N5C121-65 EP1210LC-2
P5C060-45 EP600PC-3 TD5C121-90 EP1210DI
N5C060-55 . EP600LC TCJ5C121-90 EP1210JI
N5C060-45 EP600LC-3
TD5C060-55 EP600DI CJ5C180-90 EP1800JC
TCJ5C060-55 EP600JI CJ5C180-15 EP1800JC-3
MD5C060-55 Spec EP600DM N5C180-90 .EP1800LC
MD5C060-55 EP600DMB N5C180-75 EP1800LC-3

TCJ5C180-90 EP1800JI
D5C090-60 EP900DC In Development EP1800GC
D5C090-45 EP900DC-2 In Development EP1800GCM
D5C090-50 EP900DC-3 In Development EP1800JM
CJ5C090-60 EP900JC In Development EP1800JMB

5-1

inter SECTION 5

PLA TO EPLD REPLACEMENT 5C031/5C032 As a 20·Pln PAL Replacement

Already in wide use throughout the electronics in­
dustry are numerous different Programmable Logic
Devices. Many of these are PALs from MMI. Cur­
rently, two of our EPLD products, the 5C060 and
5C031 can functionally replace most 24-pin and 20-
pin PALs, respectively. A third product, the 5AC312,
with its architecturally advanced features, can re­
place most designs using more complex PALs such
as the 20RA10, 22Y10, and 32V10.

The 5C031

The 5C031 is a direct, drop-in replacement for most
20-pin PALs, although some PALs have an incom­
patible architecture.

The 5C060

The 5C060 is NOT a drop-in replacement for any 24-
pin PAL, though it can functionally replace most. The
reason for this is that pin 1 is used as the main clock
on registered PALs and as an input on non-regis­
tered. Also, pin 13 is used as an OE line on some
PALs, and as an input on others. The 5C060, howev­
er, uses pin 1 as the left-half synchronous clock in­
put and pin 13 as the right-half synchronous clock
input.

While that may not be a problem in some PAL de­
signs, those designs that require clocking or inputs
on pins 1 or 13 will necessitate hardware modifica­
tions. In the case of the registered PALs, the con­
nection to pin 1 must be rerouted to pin 13 and the
OE connected to one of the available inputs (if
used). In this manner, the 5C060 can functionally
replace the PAL.

The 5AC312

The 5AC312 is a direct, drop-in replacement for the
20RA 10 as well as many of the other simple 24-pin
logic devices. The 5AC312 can also serve as a drop­
in replacement for most designs using the 22V10 or
32V10 devices.

5-2

100% Functionally
Compatible Compatible

10H8, -2
12H6, -2
14H4, -2
16H2, -2
10L8, -2
12L6, -2 16R6A
16L8, A-2, A-4 16R4A
16R4, A-2, A-4 16LBA
14L4, -2 16RP6A
16L2, -2 16RP4A
16R8, A-2, A-4 16PBA
16R6, A-2, A-4 16RBA
16P8, -2 16RPBA
16RP8, -2
16RP6, -2
16RP4, -2

These are These are
25 ns-45 ns PALs. 15 ns PALs.

5C060 As a 24-Pln PAL Replacement

Modified Functionally
Replacement Compatible

12L10 20LBA
14L8 20RBA
16L6 20R6A
18L4 20R4A
20L2
20L10
20L8
20RB
20R6
20R4
20RA10

With hardware These are
modifications 15 ns PALs.

5AC312 As a 24-Pln PAL Replacement

100%
100%

Compatible
Compatible
(Quallfled)

20L8 22V10
20RB 32V10
20R6 Dependent on the
20R4 number of product
20RA10 terms used.

ORDERING INFORMATION

Intel EPLDs are identified as follows:

5 c
'-.,.J

x x

I Device

Technology

C -CHMOS

AC - Advanced CHMOS

Package Type

A - Hermetic, Pin Grid Array

D - Hermetic, Type D (Cerdip) Dip

N - Plastic, Leaded Chip Carrier

CJ - Ceramic, J Leaded Chip Carrier

P - Plastic Dip and Plastic Flatpack

R - Hermetic, Leadless Chip Carrier

X - Unpackaged Device

x s s
\...._ __ . __ _,)

Speed

A - Indicates automotive operating temperature range (-40°C to + 125°C)

J - Indicates a JAN qualified device, but is for internal identification purposes only. All JAN devices must
be ordered by M38510 part number. (Example: M38510/42001 BOB), and will be marked in accord­
ance with MIL-M-38510 specifications.

L - Indicates extended operating temperature range (-40°C to + 85°C) express product with 160
± 8 hrs. dynamic burn-in.

M - Indicates military operating temperature range (- 55°C to + 125°C)

Q - Indicates commercial temperature range (0°C to 70°C) express product with 160 ±8 hrs. dynamic
burn-in.

T - Indicates extended temperature range (-40°C to + 85°C) express product without burn-in.

- No letter indicates commercial temperature range (0°C to 70°C) without burn-in.

·Examples:

QD5C060-45 Commercial with burn-in, ceramic Dip, 060 (600 gate) device, 45 nanosecond.

•on military temperature devices, B suffix indicates MIL-STD-883C level B processing.

5-3

Device Feature Comparison

5C031 5C032 5C060 5C090 5C121 5C180 5CBIC 5AC312

INPUTS
Dedicated 10 10 4 12 12 12 8 10
Maximum 18 18 20 36 36 60 16 22
Input Latches y y y

1/0
Number 8 8 16 24 24 48 32 12
Tri-State y y y y y y y y

Programmable y y y y y y y y
Polarity

MACROCELLS 8 8 16 24 28 48 8 12

REGISTERS
Number 8 8 16 24 28 48 8 12
Types D D D/T/ D/T/ D D/T/ D/T/ D/T/

RS/JK RS/JK RS/JK RS/JK RS/JK
Buried Reg. S 4
Preload y y y y y y y y
By-Pass y y y y y y y y

Reset y y y y 'Y y y y
Preset ·y y y

PRODUCT TERMS
Number 74 72 160 240 236 480 112 200
Sharing y
Variable Prod. y

Term Distribution

LOCAUGLOBAL BUSSES y y

CLOCKS 2 2 2 4 2
Asynchronous y y y y y

Clocking
Programmable y

Clock Edges

SECURITY BIT y y y y y y y y

5-4

ELPD CUSTOMER SUPPORT

Hotline

The Intel EPLD Technical Hotline is manned by ap­
plication personnel from 8:00 a.m. to 5:00 p.m.
(PST) every business day. Contact your local field
sales office for the hotline number.

BBS

Intel has a Bulletin Board System for registered iPLS
and iPLS II customers to electronically transfer infor­
mation. Any registered person with a modem can log
onto the system. The current number is (916) 985-
2308. If your communication software supports file
transfers, you can receive utilities, software updates,
and the latest information on EPLDs via the Bulletin
Board.

5-5

EPLD Customer Design
Support Center

Intel has a Customer Design Support Center to help
customers who are implementing EPLD designs.
Service includes answering questions, device selec­
tion assistance, and design partitioning as well as
limited prototyping, and product/design evaluation
and implementation. For more information on the
Design Support Center, contact your local Intel field
sales office.

EPLD Evaluation Unit

A modular unit for evaluation of EPLD devices is
available from Intel. The unit has a variety of
switches and LEDs, and a numeric display for con­
trol and status. Several Intel applications can be ver­
ified on the unit as well as small customer designs.
For more information, contact your local Intel field
sales office.

COMPATIBLE COMPUTERS FOR iPLDS II

A partial list of computers that have been verified to be software compatible with the Intel Programmable L9gic
Development System (iPLDS II) is given be.low:

AT&T 6300 and 6300+
Compaq family of PCs (88, 86, 286, 386) ·
IBMAT
IBMXT
IBM XT-286
HP Vectra
Sperry IT
Tandy 3000 HD

5-6

intef
.........
E._~.,#2
Tll: (205) 83G-4010 ..,..,.....

=~°'·· #0214 Toi: (802) 889-4980

~~1 ~Dorado Place
Suill301
TUCIOn 85715
Tel: (802) 291M1815

CALFORMA

l~a~Strett
Sult91te

i:tT.a\'~
=~Highway
Suilo218

~o1~=0
'""'~ ~=;~11e101
Tel:(918)92CMI098

=~""'" Sui1e105

=::r~~
:.?.?~Avenue
-450 _.,,.92705
~~~~~~ 

t,"}=~ 
=~~~ 
~~ 
COLORADO 

==-""'" Suill 100 

=~80907 
;,"'Corp." 
Don!r=St.,Sui1e915 

~1-= 
®-CT1CUT 

'8'":in~ Road 

~\'!\\l.~..ll130 
1Wi:71~1199 
FLORIDA 

DOMESTIC SALES OFFICES 
GEORGIA 

==Parkway SUl1e200 
NorcronaOG92 
Toi: (404) 449--0541 

WNOl8 

lnlllCoto.' 
300 N. tJ1= Road, Sulbl 400 

tr=o..Ja~ 
INDIANA 

&!,;';' .e:J'U. Road 
Sui1e125 

~= 
IOWA 

!l\"'~-
1930 St. Andrews Drive N.E. 
Cedar R- 52402 
Tel: (318) 393-5510 -· =~OctiStreet 
Sui1e170 
Overland Partc 88210 
Te°' (913) 3454727 

IWIYLANll 

lnlllCorp.' 

=~-""'8Soulh 
Hanover 21078 

Mll::i?1~ 
:"~· 
7133Wllkar Drive 
GINnbelt20770 
Toi: (301) 441-1020 

llAllACtalll!TTS 

~:'~.·Center 
3 CltHeM Road 
Westford 01888 

~m~ 
MICHIGAN 

~=Bret Lake Road 
Sui1e100 
Weat Bloomfield 48033 
Tel: (313) 851-8096 

-IOTA 

lnlelCorp. 

~~~ulte380 

~:1~1:,
lll880UR1

lnlllCorp. = 'i;11 City Expressway

~:'Car:r ~990

lnlelCorp.
2IO Corpor'ate Center
75 Livingston Avenue
First Floor
Roseland 07088
Tel: (201) 740-0111

NEW llElllCO

lnlelCorp.
8500 Mtnual Boulevard N.E.

~8295 87112
~j'l;i-8086
NEW YORK

lnlllCorp.
127 Main Street

~~
lnlllCorp.'
~JZ&sOfflcePark

~m-~~:.

=.1?Ho11owbrook Park
16 Myers Comers Road
~!ffl!;T.'l Falls 12690

~~~1~ 
NORTH CAROLINA 

Intel Corp. 
5700 Executive Center Drive 
Sulte213 
Ctiartotte28212 
Toi: (704) 5811-89118 

'~'='~Road -11r" 
~~aft~~ 
OllO 

Intel Corp: 
3401 Plrk Center Dtive 
SUl1e220 
=46414 

~:8~~ 

Ol<LAHOllA 

lr:11f.'Gro.ctway 
Sutte115 
Oklahoma City 73116 
Tel: (405) 848'8085 

ORl!QON 

t= C::: Greenbrier Parkway, Bldg. B 
Bel.verton 97006 

:r:,/,~~11 
PENNSYLVANIA 

~n:3 CS:a, Qjff Drive 

¥:~1~~~-~ 
lnlllCorp." 

::i:n.:rn11:·1=ue 
~·~~~,-!~ 
Intel Corp.• 
400 Penn Center Blvd., &Ille 610 

~~rf=ro 
PUERTO RICO 

Intel Mlcroproceesor Corp. 
South Industrial Park 
P.O. Box 910 
Las Pktciras 00671 
Tel: (809) 733-8816 

TEXAS 

&~"a~.~Lane 
Sutte314 
Austin 78752 
Tel: (512) 464-3828 

tlnlllCarp.' 
12300 Ford Road 
Sulte380 
Dellll 75234 

~~1b:71 

UTAH 

lnlllCorp. 
5201 Green Street 
Sui1e290 

~:~C1:,4L, 
VIRGtMA 

tlntel Corp. 
1504 Santa Rosa Road 
Sulte108 
Richmond 23288 
Toi: (804) 282-5888 

WAIHINGTON 

Intel Corp. 
1~108 Avenue N.E. 
Sui1e388 
Bel"""998004 

=~= 
=~U.lanRold 
Sui1e102 
Spokane99208 
Tel: (509) 92&-8088 

WISCONSIN 

~~~°' Sulte102 
Brookfleld63005
Tel: (414) 784-8087
FAX: (414) 79&-2115

CANADA

ONTARIO

=l==:Cenldl,Ltd.
Sui1e250
Ottawa K2B 8H6

~~~~~714 

r~=~olcanada, Ltd. 
Sui1e600 
Rexdale M9W 8HB 

~~n,=~:1os 
FAX: (416) 675-2438 

QUEBEC 

11.,~,8f'.=.-:~ C&nada, Ltd. 

Pointe Claire H9R 3K3 

:r:,i,sm~s\~ 

CG-10/I0/17 



intef 
DOMESTIC DISTRIBUTORS 

ALABAMA CALIFORNIA (Cont'd.) FLORtDA INDIANA (Cont'd.) MICHIGAN (Cont'd.) 
Arraw Electronics, Inc. Kierulff Electronies, Inc. tArrow Electronics, Inc. ~:Sm:=v~;lectronlcs 1015 Henderson Road 10824 Hope Street 350 Fai Drive 
Huntsville 35816 

¥W~~~~6300 41 Carmel 46032 Tel: (205) 837-6955 
FAX: 712-821-8420 ~~Ix~~~~~ 

!Hamilton/Avnet Electronics 
940 Research Drive tKierulff Electronics, Inc. Arrow Electronics, Inc. 

A:~s::::~11e tPloneer Electronics Huntsville 35805 ~:J=~~:rnue 1001 N.W. 62nd St., Ste. 108 

~J;2g~b~i6?2~~~ 
13485 Stamford 

~~x~~-:u:= 
Ft. Lauderdale 33309 lndiana~lls 46250 Livonia 48150 

~~~~'97s~21ls Tel: (31 849-7300 ~:J~~~~5:2~ Pioneer{Technologies Group Inc. TWX: 81 260-1794 

~~~ts~~l~~~~~6Square tKierulff Electronics, Inc. tArrow Electronics, Inc. KANSAS MINNESOTA 14242 Chamber Ad. 1530 Bottlebrush N.E. Tel: (205) 837-9300 Tustin 92680 
~=~~>~:iso tHamilton/Avnet Electronics ~Arrow Electronics, Inc. TWX: 810-726-2197 

~~x~~~-~~~=!~J~ 9219 Oulvera Road 230W. 73rd Street 
Overland Park 66215 Edina 55435 ARIZONA 

~:~~~~:y_m== ~~~~~~-==~:gg 
~amilton/Avnet Electronics 

tKierulff Electronics, Inc. 
9800 Variel St. 

S. Madison Drive Chattsworth 91311 Pioneer Electronics ~:.rc:g=n::_~::cs Tempe 85281 
~~x~~~~~~r= 10551 Lackman Rd. 

Tel: (602)968-1461 Lenexa 66215 Minnetonka 55343 TWX: 910-950-oon Hamllton/Avnet Electronics ~:~~~~~~~~ ~:ix~~~~-=:= Kierulff Electronics, Inc. ~~~7D~~ribu::! c;{~P 3245 Tech Drive North 

Calabasas~1302 St. Petersburg 33702 
4134 E. Wood Street 

~:~~J~b~~33?4 KENTUCKY f Pioneer Electronics Phoenix 85040 ~~x~~11~-=~m 10203 Bren Road East 

~~l:~~-~~:~~~ Hamilton/Avnet Electronics Minnetonka 55343 
Hamilton/Avnet Electronics 805-A Newtown Circle 

~~~~~~-=:~ 
~1~5°~.t~~:n~;~~g Highway

n~~2 g:ria~~~~n~~oup 6947 Univers~ Boulevard Lexi:40511

~~~t~r~i.3~ Tel:(= 259-1475 
lrvine92714 FAX: -252-3238 MISSOURI 

Phoenix 85023 ~~Xf~~~-=::~ FAX: 30~-628-3888 ext. 40 

~A'X~~~-=:~~ MARYLAND 

CALIFORNIA 
Wyle Distribution Group ;;~~~~~~~'.cSte. 1000 Arrow Electronics, tnc. 
11151 Sun Center Drive ~=~ (~5)~~~ 32701 

8300 Guilford Road, Ste. H 
Rancho Cordova 95670 RiversCentef 

Arrow Electronics, Inc. ~:~~~~~::i::~ TWX: 810-853-0284 COiumbia 21046 
19748 Oearbom Street ~(:~~~9:~~ tHamilton/Avnet Electronics 
Chatsworth 91311 Pioneer Electronics 137 43 Shoreline Court East 

~~~~~i~~~~~~ tWyle Distribution Group 674 S. Mmtary Trail FAX: 301-381-3854 Earth Ci 63045 9525 Chesapeake Drive Deerfield Beach 33442 Tel: (314 344-1200 
San0i~92123 Tel: (305) 428-8877 tHamilton/Avnet Electronics FAX: 31 -291-8889

Arrow Electronics, Inc. Tel: (61 565-9171 TWX: 510-955-9653 6822 Oak Hall Lane
9511 f'.'idgehaven Court TWX: 91 71-9592 Columbla 21045 Kierulff Electronics, Inc.
San 01~ 92123 FAX: 619-565-9171 ext. 274 GEORGIA Tel: (301) 995-3500 11804 Borman Dr.

~~f~\~m~:gg FAX: 301-995-3593 St. Louis 8$146

~e0~~:~u!i~;ne~oup ;Arrow Electronics, Inc. ~:~~~11t:j: 155 Northwoods Parkway i~bi~~~~~~~i. tArrow Electronics, Inc. Santa Clara 95051 Suite A
521 Weddell Drive ~~Xf~~~-j~~:~= Norcross 30071 Columbia 21046 NEW HAMPSHIRE
sunmaie 94089 ~:~!~~-::=~~~~ Tel: (301) 720-5020
Tel: (~745-6600 TWX: 710-828-9702 tArrow Electronics, Inc.
FAX: 743-4770 ~/g~ J"1~~':;r Avenue

3 Perimeter Road

~~i~~'P':!l=sEast tPloneer Electronies Manchester 03103
Arrow Electronics, Inc. lrvine92715 9100 Gaither Road

~:ix~~== 2961 Dow Avenue ~~4lJ~b-8i111-:s:, Norcross 30092 ~r~:6~~~= Tustin 92680 Tel: (404) 447-7500

~~~1111~~~ FAX: 714-851-8366 TWX: 810-766-0432 TWX: 710-828-0545 Hamllton/A11:net Electronics 
444 E. Industrial Drive 

Wyle Systems Pioneer Electronies MASSACHUSETTS Manchester 03103 
;Avnet Electronies 7382 Lampson Avenue 3100 F. Northwoods Place 

~A'X=t= 50 McCormiek Avenue Garden Grove 92641 Norcross 30071 tArrow Electronics, Inc. 
Costa Mesa 92626 ~:~~77~~-=~~:J~~~ ~~~m~~n 1 Arrow Drive 

~~~\~-~~::O~~ WQburn 01801 NEW JERSEY 

COLORADO ILl,.INOIS ~~~~b~3~1l1°o =w Electronics, Inc.
Hemilton/Avnet El~tronics Lincoln Drive East
1175 Bordeaux Onve Arrow Electronics, Inc. ~Arrow Electronics, Inc. tHamilton/Avnet Electronics Marlton 08053

~~r1r~1e1~~ 1390 S. Potomac Street ScO:uEm=~~ 7~treet 1 OD Centennial Drive

~~~=-g=--= Suite136 Pea~01960 
FAX: 40~-745-6679 Aurora80012 Tel' (31~ 397-3440 Tel: (61 b 532"'3701 

Tel: (303) 696-1111 FAX: 31 -397-3550 TWX: 71 -393-0382 tArrow Electronics, Inc. 
tHamllton/Avnet Electronics 6 Century Crive 

~~~5Ji~r~~;.venue iHamilton/Avnet Electronics tHamilton/Avnet Electronics Kierulff Electronics, Inc. ~~'.'l~~l'i"!:~ 765 E. Orchard Road 1130 Thorndale Avenue 13 Fortune Dr. 
Tel: (6~ 571-7500 Suite708 Bensenville 60106 Billerica 01821 FAX: 201-538-4962
FAX: 61 -277-6136 Englewood 80111 ~:J~~~~~i= ~:X(:6~~~~~~~ tHamilton/Avnet Electronics
tHamilton/Avnet Electronics ~~~b!:S!o°1'a71 FAX: 617-663-1754 1 Keystone Ave., Bldg. 36
9850 Desoto Ave. Kierulff Electronics, Inc. Che~lll08003
Chatsworth 91311 tWyte Distribution Group 1140 W. Thorndale PiOneer Northeast Electronics ~:71~~~1~ ~~~~;,_~~~~~· 6500

451 E. 124th Avenue Itasca 60143 44 Hartwell Avenue
Thornton 80241 ~~Ix~~;~-~=~ Lexi~n 02173 FAX: 609-751-8624

~~~~~b~9o915lo Tel: ( 1~ 861-9200 

l~~3~1t:~::k~1;~~~Jcs FAX: 61 -863-1547 tHamilton(Avnet Electronics 

~~ si~':ftsh~~~~1e 10 lndustnal 
Sacramento 95834 CONNECTICUT MICHIGAN Fairfield 07006 

~:~~~~,_=~~~~ Itasca 60143 ~A'X~~~1/-~j~:= tArrow Electronics, tnc. Tel: (312) 773-2300 Arrow Electronics, Inc. 
12 Beaumont Road 755 Phoenix Drive 

~Hton/Avnet Electronics Wallin~ord 06492 f Pioneer Electronics Ann Arbor 48108 
G Street ~J~ 11b~4615s!li~1 1551 Carmen Drive ~~~~\~=~~:~~ Ontario91311 Elk Grove Villa~60007 

~~~j\t=~~ Ham~ton/Avnet Electronics ~x(~~~~~3li-1~ ;Hamilton/Avnet Electronics 
Commerce Industrial Park 2487 Schoolcraft Road

t~S16i~~~;~~i~~:~~l~~-s Commerce Drive INDIANA Livonia 48150 lMTI Systems Sales
Oanbu~ 06810 ~J~J~~~~~~~5 ?Kulick Rd.

Culver Ci~230 1~9s°Di=~A~~.1iscu,te H
Fairfield 07006

Tel: (21~ -2458 ~A'X~:13;j::=: FAX: 313-522-2624 Tel: (201) 227-5552
FAX: 21 558-2248 ~":~~~~~~:~1

FAX: 201-575-6336
tPioneer Northeast Electronics ~~i~A;:;e~nT.onics

tHamilton Electro Sales 112 Main Street TWX: 810-341-3119
3170 Pullman Street Norwalk 06851 Space AS
Costa Mesa 92626 Tel: (203) 853-1515 Grand Rapids 49508

~~f111~-::t:rng TWX: 710-468-3373 ~~J~b~2~~=~
FAX: 616-243-0028

tMicrocomputer System Technical Distributor Centers CG-10/20117

intef
... lllXICO --Inc. 11030CocNUS.E.
--87123

~:'lcf=:
Harnllton/Avnet Elaclronlce
2624Ba"°'DrlwlS.E.

~87108
1500
1386

Nl!WYORK

DOMESTIC DISTRIBUTORS

NORTH CAROLINA (Cont'd.) --9801 A-southem Pine Btvd.
Charlotte 28217

=~-=
OHIO

AtrO# Electronics, Inc.
7820 McEwen Road
~45459

~:>J~\~=

~== Clevelllnd44105

~~:~~~
FAX: 218-687-3906

OKLAHOMA

Am:Nt EllctronD, Inc.
~=~411c:.ElltAve., Ste. 210

~~~\~~gg 
OREGOOI 

PENNIYLYANIA 

AmN1 ElectroNcs, Inc. 
860 Seco Road 
Monroevllle151"8 

~~~~\~~m 
Hamillon(Avnal Electronics

r>a~~.,llldg.E
Tai: (41 281-4150
FAX:41 ·281""882

PENNSYLYUIA (Cont'd.)

le"\";;--=.a
-19044

~~~~ 
FAX: 215-674-3107 ...... 

WAll9fQTON 

tAOnocBecVonaCarp. 
=~Way 

~~~2:1::= 
AmMElectronlca,tnc.
14320N.E.211t81reet
BalloYue98007

1:X~~

~~~=i~ 
-98005 
~~~~ 

wtSCONllN

~~~al::.1~.100 
Brookfleld53005 

~:Xf~\t~:ITT= 

CANADA 
ALBERTA 

, Zontronlcs 
=~~7N.E.,Ste.100 

~:'icfL~ 
BRITISH COLUllllHA 

-·--80-1313 Border Street 
Wlnn~R3H OX4 
Tel: 694-1957 
FAX: 55 

ONTARIO --Inc. ic:2-"'' 
MlulsmLST1M4 

~:'icJ~\U2: 

§:~m 
~..1 .. ~1: 
l~Road 
Unlt17 
N:;nK2E7K1 

~Ai'\\~ 
IAIKATCHIWAN -173-1222 Alberta Avenue 
Snkatoon 87~ 1R4 

~~~~;2207 
OUHl!C

tAnow Electronica Inc.
4050 Jean T.ton Qunt
Montreal H4P 1 W1

~~~\~~~ 
AmMElectronicllnc. 
909 Chantlt Blvd. 
a...ce1N288 

~:x~~\~== 
Hlmllton/Avnet Electronlel 

~~"='fPI 
~~~\~~ 
Zontronlcs

~7:~~tiN4
~:ic~~\t~~=

CG-:10/I0/17

intJ

FINLAND

'""" Ruoallentie2
00390 Hels6nki 39

~~~44 
FRANC!! 

'""" 1, rue Edllton·BP 303 
78054 St QuentlMft-Vvelnes Cedex 

~'~f:1000 

'""" llllll18UbleBBC 
4,0ualdesEtroils 

~8':1:'4088 
· TUC: 305153 

EUROPEAN SALES OFFICES 
WEIT Gl!RllANY , .... 
SeldlWasae 27 
8000 Muenchen 2 

~~1~3890 

'""" HohenzOllem Struse 5 
3000 Hannover 1 
~~~4081 

, ...
Abraham Uncoln Strasse 18-18
ll200-
m~~lle~~8050
, ...
-81
7012 Fellbach

¥~)15800112
TLJC1'254828

llRAl!L ,...,.
Attidlm Industrial Park
P.O. Box 43202
Te1Avlv81430

~,'~1i~r80
ITALY

NETHERLANDS

-·· -Hvamvelen 4.p .O. Box 92
2013=
~!~8018420

IPAIN

, ...
i:foz::=n no. 2&-1 laq

~!~4004

IW!:Dl!N

,
\'r.'sr"~
m~~~o100

IWITZlllLAND

UNITl!D KIHGIDOll ,...,.
~.,.:.•1.-,. SN3 1 RJ

i~:(O~~eooo

EUROPEAN DISTRIBUTORS/REPRESENTATIVES
AUSTRIA Wl!IT GERMANY rTALY (Cont'd.) UNITED KINGDOM

Bachar E1ec1ronic1 GmbH E1eclronlc2000Vertrlebs-AG to:.:+::f~· Accent Etactronic Com~ Ltd.
~lguse28 =ru0errlng12 JublleeHou11,Jubllee

uencllen82 20092 Cinl1811o Balsamo Letchworth Hertl S08 1
~(~8356480 it'M~~oo10 MHono ~~=·86 +~=0012
ll!LGllll ITT Mulllkomponent GmbH ~~c.n ... Bahnhofttrlsse 44
lnolco-8.A. 7141tmi"T, -Rood
Av. dee Croix.de Guerre 94 Toi'(~ 79

21RW 1120 Bruxelles nx,
i~~':J..~~8 01 60 T 482211

08 T 15

DI-

=Eatote -·· ITT-Mulll-A/S Otford ROid
Naverland 29 Nordisk Elektronltl: AJS -280DG= -ieGmbH P.O. Box 122 Kent TN14 seu
Tel'~ 45 ~•11149 ==4 m~"50144 nx, uandlen71

Tll,(089)780420 i~'7:S8210 - TUC: 5213189 --RapklHOUH
OY RntronlC AB Proelectron Vertrllbs GmbH PORTUGAL Denmark St.
Melkonkatu 24A Max Planck Sb'asse 1-3 ~~R 00210 Helllnkl21 8072Dnlielch Dilnlm
Ta"!O) 892 80 22 m~~Vs~ 30 43 43

Av. M. Bombarda, 133--1 D m,1~~tM4 22 86 TUC: 124224 1000 Usboa
Tel: {1) 54 5313

l'llANCI! IAELAND TUC: 14182 ==-~-
..... -Sl

ATDElectronlcaS.A. ~~R g:<'O:,'Y Piazl Ck.ldacl de Viena no. IS ~=t50244 ~~(~1~112811 28040Madrld

~!~~4000 YUCIOlll.AVIA
..... L

m-sesa H.R.M-Cctp.
=oM:'ridAngal no. 21-3 2005 de la Cruz Blvd., Ste. 223

Santa Clara, CA 95050

~~~~~0957 U.S.A. 

~!~=-' 
~ IRDl!N 

~':!'::.-c.~ ITALY Nordisk Elektronlk A.B. 

~~:<~,~~8240 ~;:s.A. 
~1 
17127 Solna 

20090 AINQO m~=9770 Miano 

-BP2 
Tll:(02)824701 
TLX: 311351 SWITZERLAND 

lndustrade A.G. 
HertiltrUH31 
8304Walllsellen 

~~~~7~30 50 40 

CG-10/I0/17

intJ
INTERNATIONAL SALES OFFICES

AUSTRALIA

lntet Australia Pty: L,td:,

r.~~Level6
Crows Nest, NSW. 2065

t~!~~-2744
FAlt (2) 923-2632

BRAZIL

Intel SemlcondutoM do Brasil LTDA
Av. Paullsta, 1159-CJS 404/405
01311 ·Sao Paulo· S.P.
Tel: 55-11-287-5899
TU: 1153146
FAX: 55-11-212-7631

CHINA

Intel PRC Corporation
15/F, OflJce 1, cmc Bldg.
Jlan Guo Men Wal Street
Beljl~, PRC
Tet (500-4850
TLX: 2947 INTEL CN
... , (1) 500-2953

HONGKONG

Intel Semteonductor Ltd."
1701·3 Conni~ Cent{e

}~·=~
TWX:= ISLHK HX
FAX,(5)29<·569

JAPAN

Intel Japan K.K.
H Tottodal T~sato-machl
t~~~t;2~~11 rakl·ken 300-26

TLX: 3656-160
FAX: 029747-8450

~~·~~,:!g~~.
1-8889 Fuchu-cho

~~04~~o;'J:, 183
FAX: 0423-80-0315

Intel Japan K.K. •
Mltsui-Selmel Musashi·kosugi Bldg.
915 Shlnmaruko, Nllklhara-li:u
Kawuaki-shl, Kanagawa 211
Tel: o.M-733-7011
FAX: 044·.733-7010

JAPAN (Cont'd)

~~r~-~tsugi Bldg.
1-2-1 Asahi-machi

~!:~:~~~-~7~awa 243
FAX: 0482-29-3781

Intel Japan K.K .•
Ryokuchi-Ekl Bffig.
2-4-1 Terauchl
T:T:onaka-shl, Ouka 560

~AX~:rn:l

100

~~=·K.K.
1-16-30 Melekl Minami
Nakemura-ku, Nagoya-lhi
Aichi 450
Tel: 052-561-5181
FAX: 052-561-5317

KOREA

Intel Technology Asia Ltd.

~~Y~~~ou~ungpo4n1
Seoul 150

~~~~~~reLKO 
FAX: (2) 784-8096 

SINGAPORE 

~~l~~~=~~Ltd. 
Goldhlll Square 

~~~=~8~~30 
TLX: 39921 INTEL
FAX: 250-9256

TAIWAN

Intel Technology (Fer Eut) Ltd.
Taiwan Brenetl
t~~.NFf.o~· Tun Hu• N. Road
Tel: 886-2-718-"80
TLX: 13159 INTELTWN
FAX: 888-2-717-2455

INTERNATIONAL
DISTRIBUTORS/REPRESENTATIVES

ARGENTINA

OAFSYS S.FtL
Checabuco, 90-4 PISO
1089-Buenos Aires
Tel: 54-1-334-1-871

54·1·34-n26
TLX: 25472

Rey<:ol!I Electronlcl S.A.L
Arcol 3631
1429-Buenos Ail'ff
Tel' 54 (1) 701 62/96
~t:; ~1(~ 11-1722

AUSTRALIA

Total Etectronicl
P.M.8. 250
9 Harker Street
Burwood, Vlctorl•3125
Tel: 61-3-288-4044
TLX: M31261

Total Electronics
P.O. Box 139

~:m2~~~
TLX: 28297

BJllAZIL

Elebra Mlcroelectronlel
A. Geraldo Flauslno Gomes; 78 9•-04575 - Sao Pauto - S.P.
Tel: 55-11-534-9522
TL)(; 1154591 or 1154593BA
FAX: 55·11-534-9837

CltlLI!

DIN Instruments
Sueci• 2323
cuma 6055, Correo 22

~~-225-6139
TLX: 440422 AUDY CZ'

CHINA

Novel Precision Machinery Co., Ltd.

~~ r>~1~;.rr~r:~·
N.T., Kowloon
~~ ... , .. ,:-.... _ -­
TWX'
FAX:

~leld Application Locetlon

CHINA (Cont'd)

INDIA

Mlcronlc Devices
Arun Complex
No. 65 O.V.G. Road

Mlcronlc DIYlcn
No. 516'$111 F1oo<
SweltQI; CNmbers

1
BGIN

t:b;~ir11Aoed
Tel: 91-52·39·63
TLX: 9531 171447 MDEV IN

JAPAN

Atlhl Electrollles Co. Ltd.
KMM Bldg. 2·14-1 Auno
Kokurlkltl.-ku

~:'~~;·:,.~2
FAX: 093-651-7881

C. ltoh Techno-Sclence Co., Ltd.
C. ltoh ~· 2-5-1 Klt1-Aoyema
~~~~~7~107 
FAX: 03-497-4969 

JAPAN (Cont'd) 

~=~::n,~:~}ay• 
t.':'M~~~~yo, 
FAX: 03-487-8088 

~~~r=~~ 
~:~2::.~:1•hl 460
FAX: 052-204-2901

Ayoyo Electro Corp.
Konwa B!dg.
1-12-22 Ttuklji

¥:,-:.~~sJf1104
FAX: 03·546-5044

KOREA

J-Tek Corporation
8th Floor, Government Penelon Bldg.
24-3YOldo-~
~ngpo-.u

Tel: 82-2-782-8039
TLX: 25299 KOOIGIT
FAX: 82-2-784·1391

Samsung Semiconductor &
Tetecommunlcatlona Co .. Ltd.
:::J·,~· Tafpyung·ro, Chung-ku

Tel: 82-2-751-3987
TLX: 27970 KOASST
FAX: 82·2-7sa.o987

MEXICO

Olcopel •••.
Tochtll 368 Fracc. Ind. San Antorao

~r;r~~xlco, O.F.
Tel: 52-5-561·3211
TLX: 1773790 DICOME

NEW ZEALAND

Northrup lnstrumente & Systems Ltd.

i~8."to~ ~::~ r:'=arket
Auckland 1
Tel: 64-9-501·219, 501-801
TLX: 21570 THERMAL

~b~h~~ ~:Je"mente & Systemt Ltd.

f:t;.p_tr.J::e
TLX: NZ3380
FAX: 84-4-857278

SINQAPOftl

Francotone Eltctronlcl pte Ltd.
17 Harvey Road #04-01
Slng~133e
~~~~:sie1e 
FAX: 2895327 

IOUTHAFRtCA 

Eleclronlc Building Elemtntl, Pty. Ltd. 
P.O. Box 4809 
Pine Square, 18th Street 
HazelwOoCI, Pretoria 0001 
Tel: 27-12-469921 
TLX: 3-227788 SA 

TAIWAN 

Vl!NEZUILA 

P. Benavides S.A. 
Avilenet a Rio 
Resldencla Ktmarata 
Localet4 AL 7 
La Clnctelarla, Caracas 
Tel: 58-2-571-0396 
TLX: 28450 
FAX: 58-2-572-3321 

C0-10120/87 



intJ 
ALABAMA 

Intel Corp. 
5015 Bradford Drive, #2 
Huntsville 35805 
Te/0(205)-10 

ARIZONA 

tntelCo<p. 
11225 N. 28th Dr., #0214 
-~85029 
Telo (802) 889-4980 

Intel Corp. 
500 E. Fry Blvd., Suite M·15 
Sierra Vista 85635 
Tel: (602) 459-5010 

ARKANSAS 

Intel Corp. 
P.O. Box 206 
Ulm 72170 
Tel: (501) 241-3264 

CALIFORNIA 

Intel Corp. 
21515 Vanowen St. 
Suite 116 

¥:.7iar~C":~~ 
Intel Corp. = ~1 rper1a1 Highway 

~e1~:.is 
Intel Corp. 

~:"~=~s:~· 
Tel: (916) 351-6143 

=~fthstreet 
Suite 110 
Santa Ana 92705 

~t~1b.':5~l4~ 
Intel Corp. 
2700 San Tomas Expressway 
Santa Clara 95051 
Tel: (408) 970-1740 

Intel Corp. 
4350 Executive Drive 
Sulte105 

~~(~4:~~ 
COLORADO 

Inter Corp. 
~"m"Cherry 
Oenver80222 

~~~":s';: 

CALIFORNIA

2700 San Tomas Expresaway
Santa Clara 95051
Tel: (408) 970..1700

CALIFORNIA

2700 San Tomas Expressway
Santa Clara 95051
Tel: (408) 986-8086

DOMESTIC SERVICE OFFICES
CONNECTICUT MICHIGAN

Intel Corp.
26 Mill Plain Road

Intel Corp.
7071 Orchard Lake Road

Danbu.\! 08811 Suite 100

~~11b:.~\~ West Bloomfield 48033
Tel: (313) 851..s905

FLORtDA MISSOURI

~r:o ~\e: 62, Suite 104
Intel Corp.
4203 Earth City Expressway

Ft. Lauderdale 33309 Suite 143

~~b?l,,1._-= ~:1'(a~~7~J1s

k'!l;1~stmonte Drive
NEW JERSEY

Sulte105 lntetCorp.

~:m'S\"~~'l'a3211• 385 Sylvan Avenue
E~lewood Cliffs 07832

GEORGIA MJ~~~b.S:,~~
Intel Corp. W!':l~il:aza111 3280 POinte Parkway
Suite 200 Raritan Center
Norcross 30092 Edison 08817
Tel: (404) 441-1171 Tel: (201) 225-3000

ILLINOIS NORTH CAROLINA

Intel Corp. Intel Corp.
300 N. Martingale Rd. 2306 w. Meadowview Road
Suite 300 Suite206

~r1~~2'f 3fo~g;i: Greensboro 27 407
Tel: (919) 294-1541

INOIANA Intel Corp.
2700 Wycliff Rd., Suite 102

Intel Corp. ~=1~8~9~~7-8022 8777 Purdue Rd., #125

~r::~(3~ri'~~:~~ OHIO

KANSAS ~~~gi-ainard Bldg.
Intel Corp. Sulte305
8400 W. 110th Street =a~8t1n~outevard Suite 170
Overt.and Pal1t 86210 ~~J~b~~9:a Tel: (913) 3'5-2727

KENTUCKY Intel Corp.
6500 Poe

Intel Corp. ~r~:~J~5350 3525 Tatescreek Road, #51

~=~i= 24:~~45 OREO ON

MARYLAND Intel Corp.
15254 N.W. Greenbrier Parkway, Bldg. B

Intel Corp. Beaverton 01886
5tfl Floor ~J~~ii~411 7833 Walker Drive
Greenbelt 20770
Tel: (301)441-1020 =~·Elam Young Parkway
MASSACHUSETTS Hiiisboro 97123

~=;oc;'°/Corp. Center
3 Carlisle Road

Tel: (503) 681-8080

Westford 01886
Tel: (617)892-1060

CUSTOMER TRAINING CENTERS
ILUNOIS

~ha~m~n'6~3#300
Telo (312) 3f0-s100

MASSACHUSEns

3 Carllsle Road
Westford 01886
Tel: (617) 692-1000

SYSTEMS ENGINEERING OFFICES
tLLINOIS

~!~imMt!~nsg~~3#300
Tel: (312) 3~0-8031

MASSACHUSEns

3 Carlisle Road
Westford 01886
Tel: (617) 692-3222

PENNSYLVANIA

lntelCo<p. ..
201 Penn Center Boulevard
Suite301W ,

~:S:;t'ih~~
TEXAS

lntelCo<p.
313 E. Anderson Lane
Sulte314
Austin 78752

~~J~US:4~~
lntelCorp.
12300 Ford Road
Suite380
Dallas 75234

~~J~~2~
Intel Corp.
8815 ~r St., Suite 225
El Paso 79904
Tel: (915) 751-0186

VIRGINIA

Intel Corp.
1603 Santa Rosa Rd., #109
Richmond 23288
Tel: (804) 282-6688

WASHtNGTON

\"1~ 1~~-Avenue N.E.
Sulte510
Bellevoe 98004
Tel: 1-800-<4EIS-3548
TWX: 910-443-3002

WISCONSIN

lntelCo<p.
3SO S. Executive Or.
Sulte102
Broolcfleld 53005
Tel: (414) 784-8087

CANADA
Intel Corp.
190 Attwell Drive, Suite 500
Rexdale, Ontario
Canada M9W 6H8
Tel: (416) 675-2105

~~~~nBlvd. 
Pointe Claire, Quebec 
Canada H9R 3K3 
Tel: (514) 894-9130 

Intel Corp. 
2650 Queensview Drive, #250 
Ottawa, Ontario, 
Canada K2B 8H6 
Tel: (613) 829-9714 

MARYLAND 

7833 Walkw Dr., 4th Floor 
Greenbelt 20770 
Tel: (301) 220-3380 

NEW YORK 

300 Motor Parkway 

~:~~18~3~~ 

CG-10/20117 






