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OVERVIEW 

INTRODUCTION 

In today's increasingly competitive marketplace, sys­
tem designers need to squeeze out every little edge they 
can get from their designs. This has led to a trend 
towards better performance, smaller system sizes, lower 
power requirements and greater system reliability with 
a strong emphasis on preventing easy duplication of the 
s)'stem design. This trend provided the impetus to the 
system designers to move away from standard SSI and 
MSI logic components (54174 & 4000 series Bipolar 
and CMOS families) towards a growing class of IC de­
vices variously called 'ASIC' (application specific IC), 
'USIC' (user specific IC) or, as referred to in this docu­
ment, user defined logic. 

User defined logic circuits allow system designers, for 
the first time, to tailor the actual silicon building blocks 
used in their systems to their individual system needs 
and requirements. Such customization provides the 
needed performance, reliability and compactness as 
well as design security. Cost per gate of logic imple­
mented is also greatly reduced when user defined logic 
solutions are chosen over standard components. 

User defined logic has therefore emerged as the fastest 
growing segment of the semiconductor industry and 
has presented its users, the system designers, with a 
wide range of implementation alternatives namely, pro­
grammable logic, gate arrays, standard cell and full 
custom design. The tradeoffs between these alternatives 
involves time7to-market, one-time engineering charges, 
expected unit volume, ease of use of design tools and 
familiarity with· the design methodology. 

This document discusses the reasons for the trend to 
user defined logic devices, briefly describes some of the 
user defined logic implementation alternatives and cov­
ers details on programmable logic devices, the only al­
ternative that is completely user implementable. Tools 
used to design with programmable logic· are also dis­
cussed here. 

Details on Intel's programmable logic product line, in­
cluding device terminology and nomenclature, architec­
tural features and development tool features are also 
described in this document. 

WHY USER DEFINED LOGIC? 

System designers prefer user customized ICs for the 
following reasons: 

1-1 

a. SMALLER SYSTEM SIZES: Customized compo­
nents allow for reducing chip count and saving board 
space, resulting in smaller system physical dimensions. 

b. LOWER SYSTEM COSTS: When custom LSI or 
VLSI components are used instead of standard SSI and 
MSI logic elements, there is a considerable saving in 
component cost per system, assembly and manufactur­
ing cost, printed circuit board area and board costs and 
inventory costs. 

c. HIGHER PERFORMANCE: Reduced number of 
ICs contributes to faster system spei:ds as well as lower 
power consumption. 

d. HIGHER RELIABILITY: Since probability of fail­
ure is directly related to the number of ICs in the sys­
tem, a system composed of customized LSI & VLSI 
chips is statistically much more reliable than the identi­
cal system made up of SSI/MSI devices. 

e. mi;sIGN SECURITY: Systems designed with stan­
dard components can be replicated relatively easily 
whereas systems that contain user customized ICs can­
not be copied because "reverse engineering" of the cus­
tomized components is extremely difficult. Thus, use of 
customized ICs allows for the protection of proprietary 
designs. 

f. INCREASED FLEXIBILITY: Customized compo­
nents allow for the tailoring of systems to the end user's 
specific needs relatively easily. This also allows for up­
gradability and obsolescence protection. 

USER DEFINED IC­
IMPLEMENTATION ALTERNATIVES 

Currently, the choices available to the system designer 
for customization of ICs (see Figure 1) are as follows: 

· (1) user programmable !Cs-programmable logic de-
vices 

(2) mask programmable ICs--gate arrays 

(3) standard cell based ICs 

(4) full custom ICs 

Alternatives (1) & (2) are usually called 'Semicustom' 
because in these methods only a few (less than three) of 
the mask layers involved in the manufacture of the IC, 
are customized to the users' specifications. The later 
two alternatives (3) & (4), involve customization of all 
mask layers required to manufacture the ICs to the us­
ers' specifications and are therefore called 'Custom'. 
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Figure 1. User Defined Logic 
Implementation Choices 

PROGRAMMABLE LOGIC 

Most user Programmable Logic Devices (PLD) are in­
ternally structured as variations of the PLA (program­
mable logic array) architecture, that is composed of an 
array of 'AND' gates connected to an array of 'OR' 
gates (see Figure 2). Programmable logic devices make 
use of the fact that any logic equation can be converted 
to an equivalent 'Sum-of-Products' form and can thus 
be implemented in the 'AND' and 'OR' architecture. 
This basic PLA structure has been augmented in most 
PLDs with input and output blocks containing regis­
ters, latches and feedback options, that let the user im­
plement sequential logic functions in addition to combi­
national logic. 

The number and locations of the programmable con­
nections between the 'AND' and 'OR' matrices as well 
as the input and output blocks are predetermined by 
the archit«-ture of the PLD. The user, depending on 

his logic requirements, determines which of these con­
nections he would like to remain open and which he 
would like to close, through the programming of the 
PLD. Programmability of these connections is achieved 
using various memory technologies such as fuses, 
EPROM cells, EEPROM cells or Static RAM cells (see 
Figure 3). 

User programmability allows for instant customization, 
very similar to user programmable memories such as 
PROMs or EPROMs. The user can purchase a PLD 
off-the-shelf, use a development system running on a 
personal computer and, in a matter of a few hours, have 
customized silicon in his hands. Figure 4 compares 
user-defmed logic alternatives. 

memory cell 
used as logic control element 

296032-3 

Figure 3. Programmable Connections 

FEEDBACK (programmable) 

INPUT---'"' 
PIN--~,., 

INPUT BLOCK 
(contains latches and other 

programmable Input options) 

PROGRAMMABLE 
'AND' &: 'OR' ARRAY 

OUTPUT BLOCK 
(containing output 

controls, registers, etc.) 

Figure 2. General Architecture of a PLO 
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Figure 4. User Defined Logic 
Alternatives Compared 

LIMITATIONS OF BIPOLAR FUSE 
TECHNOLOGY FOR PROGRAMMABLE 
LOGIC DEVICES 

Until 1985, all PLDs were built using Bipolar fuse tech­
nology. The bipolar fuse based devices, although offer­
ing the users the benefits of quick time to market and 
low development costs, had several inher~t limita­
tions. 

a. HIGH POWER CONSUMPTION: Bipolar pro­
cesses by nature are power hungry and as a conse­
quence also make for very hot systems, often requiring 
cooling aids such as heat sinks and fans. They also can­
not operate at lower voltages (2-3V) and have a lower 
level of noise immunity than MOS devices. 

b. LOWER INTEGRATION: A fuse takes up a large 
amount of silicon area; this fact in conjunction with the 
large power requirements makes for smaller levels of 
integration. 

c. ONE-TIME PROGRAMMABILITY: Bipolar fuses 
can only be blown once and cannot be reprogrammed. 
This does not allow for easy prototyping and could re­
sult in significant losses when preprogrammed parts are 
inventoried and design changes occur. 

d. TESTABILITY: Since fuses can only be blown once, 
bipolar PLDs. can only be destructively tested. Thus, 
testing is usually done by sampling or through addi-

1-3 

tional testing elements incorporated in the chips, which 
can be blown to examine electrical characteristics. 
However, such testing methods never allow for 100% 
testability of all parts shipped. Thus, most users of bi­
polar programmable logic devices resort to extensive 
post-programming testing, specific to their applica­
tions. 

ERASABLE PROGRAMMABLE LOGIC 
DEVICES 

Erasable programmable logic devices (EPLD) result 
from the matching of CHMOS EPROM technology 
with the architectures of programmable logic devices. 
EPLDs use EPROM cells as logic control elements and 
therefore, when housed in windowed ceramic packages, 
can be erased with UV light and reprogrammed. Figure 
5 shows the architecture of Intel EPLDs. 

Other than the obvious benefit of reprogrammability, 
EPLDs offer sevetal very significant benefits over bipo­
lar PLDs. These are: 

1. LOW POWER CONSUMPTION: Due to the 
CMOS technology, these products consume an order of 
magnitude less power than the equivalent bipolar devic­
es. This allows for the design of complete CMOS sys­
tems, that can operate at lower voltages (less than 5V). 
Also, this makes for cooler systems that do not require 
cooling systems like fans. 

2. GREATER LOGIC DENSITY: EPROM cells are 
an order of magnitude smaller than the smallest fuses. 
This means that the same function can be accommodat­
ed in significantly smaller die area, or that greater 
amounts of logic can now be incorporated on a single 
chip. Thus higher integration programmable logic de­
vices result with the use of EPROM elements. 

3. TESTABILITY: Since the EPROM cells are eras­
able, the entire EPROM array of the EPLD can be 
100% factory tested. Thus, before the part is shipped to 
the customers, it can be completely tested by the pro­
gramming and erasure of all the EPROM logic control 
bits. This testing is therefore independent of any appli­
cation, in contrast to the bipolar PLDs that need appli­
cation specific testing. 

4. ARCHITECTURAL ENHANCEMENTS: The in­
herent testability of the EPROM elements allows for 
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significant architectural improvements over bipolar 
PLDs. New features, such as buried registers, program­
mable registers, programmable clock control, etc., can 
now be incorporated because of this testability. These 
new features allow for greatly increased utilization of 
the EPLDs and use of these devices in newer applica-· 
tions. 

5. DESIGN SECURITY: EPLDs are provided with a 
'security bit,' which when programmed does not allow 
anyone to read the programmed pattern. The logic pro­
grammed in an EPLD cannot be seen even if the die is 
examined (unlike bipolar PLDs-a blown fuse is clearly 
visible) as the stored charges are captured on a buried 
layer of polysilicon. 

INPUT 
PIN 

INPUT BLOCK 
(contains latches and other 

programmable Input options) 

F"EEDBACK (programmable) 

PROGRAMMABLE 
'AND' ARRAY 

F"IXED 
'OR' 

ARRAY 

OUTPUT BLOCK 
(containing output 

controls, registers, etc.) 

OUTPUT 
PIN 
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Figure 5. Architecture of Intel EPLDs 
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The steps in a generalized design process of program­
mable logic is shown in Figure 6 and described in the 
following paragraphs. 

STEP 1: The user decides on the logic he wants imple­
mented in the PLD and enters the design into the PC or 
workstation. This Design Entry may be done by the 
following methods: (i)SCHEMATIC CAPTURE-A 
'Mouse' or some other graphics input device is used to 
input schematics of the logic, (ii)NET LIST ENTRY­
If the user has a hand drawn schematic he can enter the 
design into the computer by describing the symbols and 
interconnections in words using a standardized format 
called a net list (without using a graphics input device), 
(iii)STATE EQUATION/DIAGRAM ENTRY-En­
try of a sequential design involving states and tran­
sitions between states. In the state diagram method cir­
cles represent states and the arrows interconnecting 
them represent the transitions. Equations or a state ta­
ble can also be used to define a state machine, and 
(iv)BOOLEAN EQUATIONS-this is the most com­
mon design entry method. The logic is described in 
boolean algebraic equations. 

STEP 2: The software converts all design entry data 
into boolean equations. 

STEP 3: The boolean equations entered are converted 
to the sum of products format after logic reduction 
(minimization of the logic through heuristic algo­
rithms). 

STEP 4: The user has the ability to choose the PLD he 
would like the design implemented on. He can enter 
device choice and/or he can also enter in specific 
choices on the device as regards pinout he would like 
etc ... 

STEP 5: The software optimizes the logic equations to 
fit into the device using the minimum amount of re­
sources (resources are input pins, output pins, registers 
and product terms and macrocells). This step is where 
the user requirements as regards required pins are tak­
en into account. The user requests are viewed as con­
straints during the optimization process. 

STEP 6: The software, at the end of the resource opti­
mization/allocation, produces a report detailing the re­
sources used up in fitting the design on the PLD. This 
report allows the user to incrementally stuff in logic by 
going back to Step 1 from this stage. Also, if the design 
overflowed the PLD, i.e., did not fit in the user chosen 
device, the software lists out the resources needed to 
complete the fit. The requirements such as four more 
inputs, one register more and one more output (are 
needed to complete the design) gives the user data in 
choosing a bigger PLO or in partitioning the intlal de­
sign to fit into two devices. 

STEP 7: The next step is to generate the appropriate 
programming pattern for the PLD. This is a standard 
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"JEDEC" format interface and allows the output of the 
design software to be compatible with any piece of 
PROM programming hardware. 

STEP 8: PROM programmer is used to program the 
pattern stored in the JEDEC file onto the PLD. Also, 
at this stage fuse programmed PLDs (bipolar) are func­
tionally tested using test vectors included in the JE­
DEC file information. 

CHMOS TECHNOLOGY IN EPLDs 

EPLDs are manufactured with Intel's proprietary 
CHMOS (Complementary High Performance MOS) 
technology. The backbone of the process is the integra­
tion of both a P and an N channel MOS transistor on 
the same substrate. In addition, EPLD's programmable 
architecture makes use of Intel's proven EPROM cell 
for programmable array interconnections as well as 
macrocell configuration bits. These cells are pro­
grammed electrically and erased with ultraviolet light. 
For details on Intel's CHMOS technology and 
EPROM cells technology, refer to the Components 
Quality/Reliability Handbook, Order Number 210997. 

CHMOS DESIGN GUIDELINES 

Designing with Intel EPLDs is relatively straightfor­
ward if the following guidelines are observed: 

• Minimize the occurrence of ESD (electro-static dis­
charge) when storing or handling EPLDs. 

• Observe good design rules in printed circuit board 
layout. 

• Provide adequate decoupling capacitance at both 
the device and the board level. 

• Connect all unused inputs to V cc or GND 
(CHMOS inputs should not be left floating). 

Electrostatic Discharge 

The two most common sources of electrostatic dis­
charge are the human body and a charged environment. 

A charged human body that touches a device lead 
discharges electricity into the device. Electrostatic dis­
charge from people handling devices has long been rec­
ognized by manufacturers and users of all MOS prod­
ucts. Human body static electricity can be controlled by 
using ground straps and anti-static spray on carpeted 
floors. CHMOS devices should also be stored and car­
ried in conductive tubes or anti-static foam to minimize 
exposure to ESD from people. 

Discharge also occurs when an integrated circuit is 
charged to one potential and then contacts a conductor 
at another potential. This type of ESD can be reduced 
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by grounding all work surfaces, grounding all handling 
equipment, removing static generators such as paper 
from the work area, and erasing EPLDs in metal tubes, 
metal trays, or conductive foam. 

PCB Layout 

The best PCB performance is obtained when close at­
tention is payed to V cc. GND, and signal traces. V cc 
and GND should be gridded to minimize inductive 
reactance and to approximate a trace layer. Clocks 
should be layed out to minimize crosstalk. Ensure ade­
quate power supply and ground pins on the board con­
nector. 

Decoupling 

Decouple each EPLD with a ceramic capacitor in the 
range of 0.01 to 0.2 µ.F, depending on board frequency 
and current consumption. For most applications, a 
0.1 µ.F capacitor will suffice. The following equation 
produces the exact value: 

where 

c = alee 
aV/aT 

C = capacitor value 

alee = maximum switched current 

av = switching l~vel 

a T = switching time 

For boards that contain mixed logic (EPLDs and 
TTL), observe both EPLD and TTL decoupling prac­
tices. 

Unused Inputs 

To minimize noise receptivity and power consumption, 
all unused inputs to EPLDs should be connected to 
V cc or GND. By default, iPLS II software assigns un­
used inputs to GND. These pins, shown on the pinout 
representation of the iPLS II report file, should be con­
nected to ground on the PCB. Pins listed as RE­
SERVED on the report file must be left floating. Pins 
marked N.C. have no internal device connections and 
can also be left floating. 

BOOLEAN MINIMIZATION 
TECHNIQUES FOR PLA 
ARCHITECTURES 

Minimization plays an important role in logic design. 
Methods for minimization can be grouped into two 
classes. Class 1 includes manual methods for minimiza­
tion, such as Boolean reduction or Kamaugh mapping. 
Class 2 is computer-assisted minimization. 
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Tabular methods like Kamaugh maps are efficient up 
to a certain point. Past that point, however, computer­
assisted minimization plays a crucial part in efficient 
design. Even at the computer-assisted stage, the choice 
of minimizer software has an impact on time and the 
confidence level of the reduced equation (i.e., is it in the 
smallest possible form). 

iPLS II software includes a minimizer that uses the 
ESPRESSO algorithms. ESPRESSO was developed by 
U.C. Berkeley during the summers of 1981 and 1982 in 
an effort to study the various strategies used by the 
MINI logic minimizer developed by IBM, [HON 74] 
and PRESTO developed by D. Brown [BRO 81]. 
ESPRESSO uses many of the core principles in MINI 
and PRESTO while improving on the speed and effi­
ciency of their algorithms. 

The primary advantage of the ESPRESSO minimizer 
becomes apparent when designing large finite state ma­
chines or complex, product-term intensive logic de­
signs. In these cases, ESPRESSO arrives at the mini­
mize solution sooner, and frequently reduces the logic 
to a smaller number of product terms. In certain cases 
where other CAD packages such as ABEL™ (PRES­
TO) or CUPL ™ minimize equations to greater than 8 
product terms, iPLS II further reduces these equations 
to allow the design to fit into devices supporting up to 8 
product terms. 

For more information on ESPRESSO, refer to Logic 
Minimization Algorithms for VLSI Synthesis, Brayton, 
Hachtel, McMullen, and Sangiovanni-Vincentelli, Klu­
wer Academic Publishers. 

References 
[BRO 81] D.W. Brown, "A State-Machine Synthesiz­

er-SMS", Proc. 18th Design Automation 
Conference, pp. 301-304. Nashville, June 
1981. 

[HON 74] S. J. Hong, R. G. Cain and D. L. Ostapko, 
"MINI: A heuristic approach to logic min­
imization." IBM Journal of Research and 
Development, Vol. 18, pp. 443-458, Sep­
tember 1974. 

ABEL™ is a trademark of Data 1/0 Corporation 

CUPL™ is a trademark of Personal CAD Systems, Inc. 

LOGIC REFRESHER COURSE 

Minimization of EPLD logic equations is normally per­
formed by sophisticated algorithms that eliminate the 
need for tedious manual reductions. The sections pro­
vided here contain logic reference tables for cases where 
manual reduction techniques may be desirable. 
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Boolean Algebra 

The Sum-of-Product architecture used in EPLDs 
makes Boolean algebra ideal for design analysis. The 
following tables summarize standard Boolean func­
tions. 

Properties 

A*B 
A+8 

= B *A 
=8+A 

Commutative Property 

A • (8 • C) = (A • 8) • C Associative Property 
A + (B + C) = (A + 8) + C 

A • (8 + C) = A • 8 + A • C Distributive Property 
A + 8 • C = (A + 8) • (A + C) 

Postulates 

0. 0 = 0 O+O=O 0 = 1 
0 • 1 = 0 0 + 1 = 0 1=0 
1 • 1 = 1 1 + 1 = 1 

Theorems 

A• 0 = 0 A+O=A A=A 
A• 1 =A A+1=1 
A *A= A A+A=A 
A •A.= 0 A+A=1 

DeMorgan's Theorems 

(A+ B + C + D) 
(A• B • C • D) 

A.•s·c·o 
A.+e+c+o 

A*A 
A+A 
A 

Logic Functions 

A E9 B = A EXCLUSIVE OR B 

A ANDA 
AORA 
ANOT 

AB+ AB 
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Karnaugh Maps 

Graphical representation of data is usually easier to an­
alyze than strings of ones and zeros. The Karnaugh 
Map techniques take advantage of this capability and 
provide an important tool to the logic designer. 

Two Variables 

296032-7 

Three Variables 

00 01 11 10 

2 6 4 

296032-8 

Four Variables 

00 01 11 10 

00 0 4 12 8 

01 1 5 13 9 

11 3 7 15 11 

10 2 6 14 10 
296032-9 
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Five Variables 

BC A=O A=1 BC 

DE 00 01 11 10 00 01 11 10 

00 0 4 12 8 16 20 28 24 00 

01 1 5 13 9 17 21 29 25 01 

11 3 7 15 11 19 23 31 27 11 

10 2 6 14 10 18 22 30 26 10 

Six Variables 

CD B=O 
EF 00 01 11 10 

00 0 4 12 8 

01 1 5 13 9 
A=O 

11 3 7 15 11 

10 2 6 14 10 

00 32 36 44 40 

01 33 37 45 41 
A=1 

11 35 39 47 43 

10 34 38 46 42 

ff 
00 01 11 10 

CD 

Flip-Flop Tables 

This subsection includes truth tables and excitation ta­
bles for the flip-flops supported by EPLDs. 

D Truth Table 

D QN QN+1 

0 0 0 
0 1 0 
1 0 1 
1 1 1 

D Excitation Table 

QN QN+1 D 

0 0 0 
0 1 1 
1 0 0 
1 1 1 
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B=1 

00 01 11 10 

16 20 28 24 

17 21 29 25 

19 23 31 27 

18 22 30 26 

48 52 60 56 

49 53 61 57 

51 55 63 59 

50 54 62 58 

00 01 11 10 

T 

0 
0 
1 
1 

QN 

0 
0 
1 
1 

DE 

296032-10 

CD 

EF 

00 

01 

11 

10 

00 

01 

11 

10 

ff 

CD 
296032-11 

T Truth Table 

QN 

0 
1 
0 
1 

T Excitation Table 

QN+1 

0 
1 
0 
1 

QN+1 

0 
1 
1 
0 

T 

0 
1 
1 
0 
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JK Truth Table 

J K ON 

0 0 0 
0 0 1 
0 1 0 
0 1 1 
1 0 0 
1 0 1 
1 1 0 
1 1 1 

JK Excitation Table 

ON ON+1 J 

0 0 0 
0 1 1 
1 0 x 
1 1 x 

SR Truth Table 

s R ON 

0 0 0 
0 0 1 
0 1 0 
0 1 1 
1 0 0 
1 o' ' 1 

1 1 Illegal 

JK Excitation Table 

ON ON+1 
,. 

0 
0 
1 
1 

NOTES: 
ON = Present State 
QN + 1 = Next State 
X = Don't Care 

0 
1 
0 
1 

s 
0 
1 
0 
x 

AUTOMATIC STANDBY MODE 
(TURBO BIT) 

0N+1 

0 
1 
0 
0 
1 
1 
1 
0 

K 

x 
x 
1 
0 

0N+1 

0 
1 
0 
Q 
1 
1 

R -

x 
0 
1 
0 

INTEL EPLDs contain a programmable bit, the Turbo 
Bit, that optimizes devices for speed or power savings. 
When TURBO = ON, EPLDs are optimized for 
speed. When TURBO = OFF, they are optimized for 
power savings by automatically entering standby mode 

when input transitions are not detected over a short 
period of time. The following paragraphs describe how 
.the Turbo Bit .affects power and speed in EPLDs. 

Turbo Off (Low Power) 

Intel EPLDs contain circuitry that.monitors all inputs 
for transitions. When a transition is detected while the 
device is in standby mode, the circuit generates an ac­
tive pulse. The leading edge of this pulse wakes the 
device up and the device responds according to its pro­
gramming, changing outputs as necessary. If no new 
transitions occur during the active pulse, the device en­
ters standby mode again. Outputs are always held'valid 
in standby mode. Input transitions that occur during 
the active mode interval retrigger the active pulse. The 

· active pulse is different depending on the device 
(5C060, 5AC312, etc), but is typically 2-4 times the 
propagation delay for a particular device. 

In applications with infrequent input transitions, stand­
by mode ca.n result in significant power savings (see the 
appropriate data· sheet for standby power vs. active 
power). The slight speed loss associated with waking up 
a device is in the range of 0-JO ns, which is 'small 
enough to allow standby mode to be used with most 
applications (see the appropriate data sheet for effect of 
Turbo Bit on performance). 

· Turbo On (Faster Speed) 
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In cases where the slight speed loss associated with 
waking a device from standby mode cannot be traded 
off to save power, the Turbo bit can be enabled for 
maximum speed operation. With the Turbo Bit en­
abled, the device is always in active mode, thus avoid­
ing the wakeup delay. Note that data sheet perform­
ance is specified with the Turbo Bit enabled. 

The Turbo Bit is enabled/disabled via a TURBO = 
ON or TURBO = OFF statement in an iPLS II ADF 
OPTIONS: statement. It can also be enabled/disabled 
by editing the JEDEC file using device programmable 
software. With TURBO = ON the device will be pro­
grammed for high speed; with TURBO = OFF the 
device will be programmed for automatic standby 
(power savings). The default state is OFF. 

PACKAGING 

Intel EPLDs are available in several packages to meet 
the wide requirements of customer· applications. Cur­
rent information on available packages is available from 
your local Intel field sales engineer. Detailed informa­
tion on package dimensions, etc. for a particular pack­
age is provided in Packaging Outlines and Dimensions, 
Order Number 321369, which covers all Intel packages. 
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ORDERING INFORMATION 

Intel EPLDs are identified as follows: 

5 x x 

Device 

Technology 

C -CHMOS 

AC- Advanced CHMOS 

Package Type 

A - Hermetic, Pin Grid Array 

D - Hermetic, Type D (Cerdip) Dip 

N - Plastic, Leaded Chip Carrier 

CJ - Ceramic, J Leaded Chip Carrier 

P - Plastic Dip and Plastic. Flatpack 

R. - Hermetic, Leadless Chip Carrier 

X - Unpackaged Device 

x 

A - Indicates automotive operating temperature range (-40"C to + 125°C) 

s s ,-- ~ 
¥ 

Speed 

J - Indicates a JAN qualified device, but is for internal identification purposes only. All JAN devices must be 
ordered by M38510 part number. (Example: M38510/42001 BQB), and will be marked in accordance 
with MIL-M-38510 specifications. 

L - Indicates extended operating temperature range (-40°C to +85°C) express product with 
160 + 8 hrs. dynamic burn-in. 

"M - Indicates military operating temperature range ( - 55°C to + 125°C) 

Q - Indicates commercial temperature range (Q°C to 7Q°C) express product with 160 + 8 hrs. dynamic burn­
in. 

T - Indicates extended temperature range (-40"C to + 85°C) express product without bum-in. 

- No letter indicates commercial temperature range (Q°C to 7Q°C) without bum-in. 

Examples: 

QD5C060-45 Commercial with burn-in, ceramic Dip, 060 (600 gate) device, 45 nanosecond. 

•0n military temperature devices, B suffix indicates MIL-STD-883C level B processing. 
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DATA SHEET SPECIFICATIONS 

The specifications in these data sheets reflect some changes in comparison to earlier 
data sheets. These changes were made to provide more accurate and usable information 
concerning Intel EPLDs. A summary of the changes follows. 

D.C. Characteristics 
Isa Standby Current (formerly called lcc1 ). 
Ice Operating Current (formerly called lcc2). Test conditions have been specified 

in greater detail. 

A.C. Characteristics (Synchronous) 
fMAX Maximum Frequency (new spec.). Maximum frequency operation with no 

signals fed back to other macrocells. 

fcNT 

tco 

tcNT 

Maximum Counting Frequency (formerly called f1 ). Maximum frequency 
operation with some signals fed back to other macrocells. 

Output Register Valid from CLK (formerly called tco1 ). 

Register Output Feedback to Register Input - Internal Path (formerly called 
tp1). 

A.C. Characteristics (Asynchronous) 
fAMAX Maximum Frequency (new spec.). Maximum frequency operation with no 

signals fed back to other macrocells. 

fACNT Maximum Counting Frequency (formerly called fA1). Maximum frequency 
operation with some signals fed back to other macrocells. 

tACO Output Register Valid from CLK (formerly called tAC01 ). 

tACNT Register Output Feedback to Register Input - Internal Path (formerly called 
tAP1). 

Non-Turbo Mode 
The Non-Turbo Mode column in several of the data sheets shows the additional time 
required to power-up the device from standby mode. The column applies only when the 
device is operated in non-turbo mode (Turbo Bit Off) in an application where the device 
enters standby mode. See "Automatic Standby-Mode" in the Overview for additional 
information. 

000274-1 
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5C031 

300 GATE CHMOS H·SERIES ERASABLE 
PROGRAMMABLE LOGIC DEVICE {H-EPLD} 

• High Performance, Low Power 
Replacement for SSI & MSI Devices 
and Bipolar PLDs. 

• Eight Macrocells with Programmable 
1/0 Architecture. 

• 100% Generically Testable EPROM 
Logic Control Array. 

• High Performance Upgrade for All 
Commonly Used 20-pin PLDs. 

INPUT/CLK 

INPUT 

INPUT 

INPUT 

INPUT 

INPUT 

INPUT 

INPUT 

GND 

1 

2 

3 

4 

5 

6 

7 

9 

10 

• CHMOS EPROM Technology Based UV 
Erasable. 

• Up to 18 Inputs (10 Dedicated & 8 110) 
and 8 Outputs. 

• Programmable "Security Bit" Allows 
Total Protection of Proprietary Designs 

• Ice (standby) 35 mA (max) 
Ice (10 MHz) 40 mA (max) 

• tpo = 40 ns (max) 

• 20-pln 0.3" Windowed CERDIP Package 
(See Packaging Spec., Order # 231369) 

20 Vee 
19 1/0 
18 1/0 

5C031 17 1/0 

0 
16 1/0 
15 1/0 

1/0 
13 1/0 
12 1/0 
11 1/Vpp 

290154-1 

Pin Configuration 
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5C031 

The Intel 5C031 H-EPLD (H-series Erasable Pro­
grammable Logic Device) is capable of implement­
ing over 300 equivalent gates of user-customized 
logic functions through programming. This device 
can be used to replace bipolar programmable logic 
arrays and LS TIL and 74HC (CMOS) SSI and MSI 
logic devices. The 5C031 can also be used as a 
direct, low-power replacement for almost all com­
mon 20-pin fuse-based programmable logic devices. 
With its flexible programmable 110 architecture, this 
device has advanced functional capabilities beyond 
that of typical programmable logic. 

The 5C031 H-EPLD uses CHMOS EPROM (floating 
gate) cells as logic control elements instead of fus­
es. The CHMOS EPROM technology reduces power 
consumption of H-EPLDs to less than 20% of a 
comparable bipolar device without sacrificing speed 
performance. In addition, the use of Intel's advanced 
CHMOS 11-E EPROM process technology enables 
greater logic densities to be achieved with superior 
speed and low-power performance over other com­
parable devices. EPROM technology allows these 
devices to be 100% factory tested by programming 
and erasing all the EPROM logic control elements. 

The 5C031 is housed in a windowed 0.3* 20-pin DIP 
and has the benefits of being an ideal prototyping 
tool with its highly flexible 110 architecture. 
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ARCHITECTURE DESCRIPTION 

The architecture of the 5C031 is based on the "Sum 
of Products" PLA (Programmable Logic Array) struc­
ture with a programmable AND array feeding into a 
fixed OR array. This device can accommodate both 
combinational and sequential logic functions. A pro­
prietary programmable 1/0 architecture provides in­
dividual selection of either combinational or regis­
tered output and feedback signals, all with select· 
able polarity. 

The 5C031 contains 10 dedicated inputs as well as 8 
input/output pins. These 1/0 pins can be individually 
configured to be inputs, outputs or bi-directional 1/0 
pins. Each of these 1/0 pins is connected to a mac­
rocell. The 5C031 contains 8 identical macrocells or­
ganized as shown in Figure 1. 

Each macrocell (see Figure 2) consists of a PLA 
(programmable logic array) block and an 1/0 archi­
tecture block, which contains a "D" type register. 
The PLA block consists of eight 36-input AND gates 
(TRUE & COMPLEMENT of 10 dedicated inputs 
plus the 8 feedback inputs from the eight macro­
cells), feeding into an OR gate. The output of this 
PLA block is fed into the 1/0 architecture block. The 
different 1/0 and feedback options that are achiev­
able from the 5C031 1/0 block are shown in Figure 
3. 
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CLOCK .Q. 3 5 7 9 11 1 3 15 17 1 9 21 23 25 27 29 31 33 35 

l 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 

Figure 1. 5C031 Architecture 
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Figure 3. 5C031 1/0 Architecture Control 

20 PIN CMOS COMPATIBILITY 

290154-4 

The 5C031 is architected to be a logical superset of most 20 pin bipolar programmable array logic (PAL*) 
devices. The 1/0 and logic sections of the 5C031 device can be configured to emulate any of the devices 
listed below. Designers can make use of this feature by reducing the power of PAL based systems (EPLDs are 
much lower power), replacing multiple PAL inventory items with a single EPLD. Designers can also create new 
20 pin PLO configurations by utilizing the indiyidual logic and output controls of each macrocell. 

List of PAL devices logically compatible with the 5C031. 
10H8 16L2 
12H6 16L8 
14H4 16R8 
16H2 16R6 
16H8 16R4 
16C1 16P8A 
10LB 16RP8A 
12L6 16RP6A 
14L4 16RP4A 

*PAL is a registered trademark of Monolithic Memories, Inc. 
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Erased-State Configuration 

Prior to programming or after erasing, the 1/0 struc­
ture is configured for combinatorial active low output 
with input (pin) feedback. 

ERASURE CHARACTERISTICS 

Erasure characteristics of the 5C031 are such that 
erasure begins to occur upon exposure to light with 
wavelengths shorter than approximately 4000A. It 
should be noted that sunlight and certain types of 
flourescent lamps have wavelengths in the 3000-
4000A. Data shows that constant exposure to room 
level flourescent lighting could erase the typical 
5C031 in approximately three years, while it would 
take approximately one week to cause erasure when 
exposed to direct sunlight. If the 5C031 is to be ex­
posed to these types of lighting conditions for ex­
tended periods of time, conductive opaque labels 
should be placed over the device window to prevent 
unintentional erasure. 

The recommended- erasure procedure for the 5C031 
is exposure to shortwave ultraviolet light with a 
wavelength of 2537A. The integrated dose (i.e., UV 
intensity x exposure time) for erasure should be a 
minimum of fifteen (15) Wsec/cm2. The erasure 
time with this dosage is approximately 15 to 20 min­
utes using an ultraviolet lamp with a 12,0001J.W/cm2 
power rating. The 5C031 should be placed within 
one inch of the lamp tubes during erasure. The maxi­
mum integrated dose the 5C031 can be exposed to 
without damage is 7258 Wsec/cm2 (1 week at 
12,0001J.W/cm2). Exposure to high intensity UV light 
for longer periods may cause permanent damage to 
the device. 

PROGRAMMING CHARACTERISTICS 

Initially, and after erasure, all the EPROM control 
bits of the 5C031 are connected (in the "1" state). 
Each of the connected control bits are selectively 
disconnected by programming the EPROM cells into 
their "O" state. Programming voltage and waveform 
specifications are available by request from Intel to 
support programming of the 5C031. 

lnt8 11gent ProgrammlngTM Algorithm 

The 5C031 supports the inteligent Programming Al­
gorithm which rapidly programs Intel H-ELPDs (and 
EPROMs) using an efficient and reliable method. 
The inteligent Programming Algorithm is particularly 
suited to the production programming environ-
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ment. This method greatly decreases the overall 
programming time while programming reliability is 
ensured as the incremental program margin of each 
bit is continually monitored to determine when the bit 
has been successfully programmed. 

FUNCTIONAL TESTING 

Since the logical operation of the 5C031 is con­
trolled by EPROM elements, the device is complete­
ly testable. Each programmable EPROM bit control­
ling the internal logic is tested using application-in­
dependent test program patterns. After testing, the 
devices are erased before shipment to customers. 
No post-programming tests of the EPROM array are 
required. 

The testability and reliability of EPROM-based pro­
grammable logic devices is an important feature 
over similar devices based -on fuse technology. 
Fuse-based programmable logic devices require a 
user to perform post-programming tests to insure 
proper programming. These tests must be done at 
the device level because of the cummulative error 
effect. For example, a board containing ten devices -
each possessing a 2% device fallout translates into 
an 18% fallout at the board level (it should be noted 
that programming fallout of fuse-based programma­
ble logic devices is typically 2% or higher). 

DESIGN RECOMMENDATIONS 

To take maximum advantage of EPLD technology, it 
is recommended that the designer use the Modular 
EPLD Logic Design (MELD) method. The MELD phi­
losophy is derived from the modular programming 
method used in software development. In a modular 
software development environment, _the engineer 
designs a modular program (typically on a develop­
ment system), stores it in memory (EPROM), and 
tests the module for functionality. A hardware de­
signer using EPLDs can use this same approach 
when designing logic. The designer develops a mod­
ular logic design on the Intel Programmable Logic 
Development System II (iPLDS II), stores it in "mem­
ory" (the EPROM control elements of the EPLD), 
and again tests the module for functionality. If the 
design is in error, the logic designer reprograms the 
EPLD with his new design as easily as a software 
designer can download a new program into memory. 

The MELD philosophy is new to programmable logic 
because EPROM-based PLDs are new. A modular 
logic development process using fused-based PLDs 
would be wasteful since a fused-based device can­
not be erased an re-used. 
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For proper operation, it is recommended that all in­
put and output pins be constrained to the voltage 
range GND < MN or Vour) < Vee- Unused inputs 
should be tied to an appropriate logic level (e.g. ei­
ther Vee or GND) to minimize device power con­
sumption. Reserved pins (as indicated in the iPLDS 
REPORT file) should be left floating (no connect) so 
that the pin can attain the appropriate logic level. A 
power supply decoupling capacitor of at least 0.2 µ,F 
must be connected directly between Vee and GND 
pins of the device. 

DESIGN SECURITY 

A single EPROM bit provides a programmable de­
sign security feature that controls the access to the 
data programmed into the device. If this bit is set, a 
proprietary design within the device cannot be cop­
ied. This EPROM security bit enables a higher de­
gree of design security than fused-based devices 
since programmed data within EPROM cells is invisi­
ble even to microscopic evaluation. The EPROM se­
curity bit, along with all the other EPROM control 
bits, will be reset by erasing the device. 

LATCH-UP IMMUNITY 

All of the input, 1/0, and clock pins of the 5C031 
have been designed to resist latch-up which is inher­
ent in inferior CMOS structures. The 5C031 is de­
signed with Intel's proprietary CHMOS 11-E EPROM 
process. Thus, each of the 5C031 pins will not expe­
rience latch-up with currents up to 100 mA and volt­
ages ranging from -1V to Vee+ 1V. Furthermore, 
the programming pin is designed to resist latch-up to 
the 13.5V maximum device limit. 

INTEL PROGRAMMABLE LOGIC 
DEVELOPMENT SYSTEM II (iPLDS II) 

The iPLDS II graphically shown in Figure 5 provides 
all the tools needed to design with Intel H-Series 
EPLDs or compatible devices. In addition to provid­
ing development assistance, iPLDS II insulates the 
user from having to know all the intricate details of 
EPLD architecture (the machine will optimize a de­
sign to benefit from architectual features). It contains 
comprehensive third generation software that sup­
ports four different design entry methops, minimizes 
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logic, does automatic pin assignments and produces 
the best design fit for the selected EPLD. It is user 
friendly with guided menus, on-line Help messages 
and soft key inputs. 

In addition, the iPLDS II contains programmer hard­
ware in the form of an iUP-PC Universal Program­
mer-Personal Computer to enable the user to pro­
gram EPLDs, read and verify programmed devices 
and also to graphically. edit programming files. The 
software generates industry standard JEDEC object 
code output files which can be downloaded to other 
programmers as well. 

The iPLDS II has interfaces to popular schematic 
capture packages (including Dash series from Fu­
tureNet• and PC CAPS from PCAD)** to enable de­
signs to be entered using schematics. A more inte­
grated schematic entry method is provided by 
SCHEMA 11-PLD, a low-cost schematic capture 
package that supports EPLD primitives and user-de­
fined macro symbols. SCHEMA 11-PLD contains the 
EPLD Design Manager, which provides a single user 
interface to both SCHEMA 11-PLD and iPLS II soft­
ware. The other design formats supported are Boo­
lean equation entry and State Machine design entry. 

The iPLDS operates on the IBMt PC/XT, PC/ AT, or 
other compatible machine with the following configu­
ration: 

1. At least one floppy disk drive and hard disk drive. 
2. MS-DOStt Operating System Version 3.0 or 

greater. 
3. 640K Memory. 
4. Intel iUP-PC Universal Programmer-Personal 

Computer and GUPI Adaptor (supplied with 
iPLDS). 

5. A color monitor is suggested. 

Detailed information on the Intel Programmable Log­
ic Development System II is contained in a separate 
Intel data sheet. (Order Number: 280168) 

*FutureNet is a registered trademark of FutureNet 
Corporation. DASH is a trademark of FutureNet 
Corporation. 

•*PC-CAPS is a trademark of P-CAD Corporation. 

tlBM Personal Computer is a registered trade­
mark of International Business Machines Corpo­
ration. 

ttMS-DOS is a registered trademark of Microsoft 
Corporation. 
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ABSOLUTE MAXIMUM RATINGS* 
Symbol Parameter Min Max Units 

Vee Supply Voltage(1) -2.0 7.0 v 
Vpp Programming -2.0 13.5 v 

Supply Voltage(1) 

V1 DC Input Voltage(1)(2) -0.5 Vee+0.5 v 

lstg Storage Temperature -65 +150 ·c 
lamb Ambient Temperature(3) -10 +85 ·c 

NOTES: 
1. Voltages with respect to ground. 
2. Minimum DC input is -0.5V. During transitions, the in­
puts may undershoot to -2.0V for periods less than 20 ns 
under no load conditions. 
3. Under bias. Extended temperature versions are also 
available. 

•Notice: Stresses above those listed under "Abso­
lute Maximum Ratings" may cause permanent dam­
age to the device. This is a stress rating only and 
functional operation of the device at these or any 
other conditions above those indicated in the opera­
tional sections of this specification is not implied Ex­
posure to absolute maximum rating conditions for 
extended periods may affect device reliability. 

D.C. CHARACTERISTICS TA = 0° to + 10°c, Vee = 5V ± 5% 

Symbol Parameter/Test Conditions Min Typ Max Unit 

V1H(4) High Level Input Voltage 2.0 Vee+ 0.3 v 
V1L(4) Low Level Input Voltage -0.3 0.8 v 
VoH(5) High Level Output Voltage 2.4 v 

lo = -4.0 mA D.C., Vee = min. 

VoL Low Level Output Voltage 0.45 v 
lo = 4.0 mA D.C., Vee = min. 

11 Input Leakage Current ±10 µA 
Vee = max., GND < Your < Vee 

loz Output Leakage Current ±10 µA 
Vee = max., GND < Vol.Jr < Vee 

lsc(6) Output Short Circuit Current 10 mA 
Vee = max., Your = 0.5V 

Ice Power Supply Current 15 40 mA 
Vee = max., V1N = Vee or GND 
No Load, Input Freq. = 1 MHz 
Active mode (Turbo = Off) 
Device prog. as 8-bit Ctr. 

NOTES: 
4. Absolute values with respect to device GND; all over and undershoots due to system or tester noise are included. 
5. lo at CMOS levels (3.84V) = -2 mA. 
6. Not more than 1 output should be tested at a time. Duration of that test must not exceed 1 second. 
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A.C. TESTING LOAD CIRCUIT 

---sv 

DEVICE INPUT 
RISE AND F'ALL 

TIMES< 6 ns 

CL (INCLUDES JIG 
CAPACITANCE) 

290154-6 

5C031 

A.C. TESTING INPUT, OUTPUT WAVEFORM 

INPUT 
3.0~ 

o~ 

OUTPUT 1~ 
290154-7 

A.C. Testing: Inputs are Driven at 3.0V for a Logic "1" and OV for 
a Logic "O". Timing Measurements are made at 2.0V for a Logic 
"1" and o.ev !or a Logic "O" on inputs. Outputs are measured at 
a 1.SV point. 

A.C. CHARACTERISTICS TA = o•c to + 1o•c, Vee = 5V ± 5%, Turbo Bit Programmed<7l 

5C031·40 5C031·50 
Symbol From To Unit 

Min Typ Max Min Typ Max 

tpo 110 Comb. Output 40 50 ns 

tpzx<B> I orl/O Output Enable 40 50 ns 

tpxz<B> I orl/O Output Disable 40 50 ns 

tcLR Asynch Reset QReset 40 50 ns 

NOTES: 
7. Typical Values are at TA = 25°C, Vee = 5V, Active Mode 
8. tpzx and tpxz are measured at ± D.SV from steady state voltage as driven by spec. output load. tpxz is measured with 
CL= 5 pF. 

CAPACITANCE 
Symbol Parameter Conditions Min Typ Max Unit 

C1N Input Capacitance V1N = OV, f = 1.0 MHz 20 pF 

Cour Output Capacitance Vour = ov, f = 1.0 MHz 20 pF 

CcLK Clock Pin Capacitance Vour = OV, f = 1.0 MHz 20 pF 

Cvpp VppPin Pin 11 50 pF 
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SYNCHRONOUS CLOCK MODE A.C. CHARACTERISTICS 
TA = 0°C to + 70°C, Vee = 5.0V ± 5%, Turbo Bit On(7) 

Symbol Parameter 
5C031·40 5C031·50 

Unit 
Min Typ Max Min Typ Max 

fMAX Max. Frequency 29.5 22.5 MHz 
1 I (teL + tcH)- No Feedback 

feNT Max. Count Frequency 22 18 MHz 
1 lteNT - With Feedback 

tsu 1/0 Setup Time to CLK 30 32 ns 

tH I or 1/0 Hold after CLK High 0 0 ns 

tco CLK High to Output Valid 24 28 ns 

tcNT Register Output Feedback to 45 55 ns 
Register Input - Internal 
Path 

tcH CLK High Time 17 22 ns 

tcL CLKLowTime 17 22 ns 

ts ET Synch. Set to Q Set 40 50 ns 

2-12 
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SWITCHING WAVEFORMS 

COMBINATORIAL MODE 

INPUT OR 1/0 INPUT 

COMBINATORIAL OUTPUT 

COMBINATORIAL OR 
REGISTERED OUTPUT 

HIGH IMPEDANCE 

3- STATE 

SYNCHRONOUS CLOCK MODE 

CLK1 

INPUT MAY CHANGE 

(FROM REGISTER 
TO OUTPUT) 

5C031 

~~~------
rtpzx 

VALID I 
INPUT 
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HIGH IMPEDANCE 

3-STATE 

VALID OUTPUT 

ASYNCHRONOUSLY 
CLEAR OUTPUT 

INPUT MAY CHANGE 

VALID OUTPUT 

290154-8 

290154-9 
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5C032 

• 

• 
• 
• 

300 GATE CHMOS H-SERIES ERASABLE 
PROGRAMMABLE LOGIC DEVICE {H·EPLD) 

High Performance, Low Power • CHMOS EPROM Technology Based UV 
Replacement for SSI & MSI Devices Erasable 
and Bipolar PLDs • Up to 18 Inputs (10 Dedicated & 8 1/0) 
Eight Macrocells with Programmable and 8 Outputs 
1/0 Architecture • Programmable "Security Bit" Allows 
100% Generically Testable EPROM Total Protection of Proprietary Designs 
Logic Control Array • lee (standby) 100 µA (max) 
High Performance Upgrade for All Ice (10 MHz) 25 mA (max) 
Commonly Used 20-pln PLDs • tpo = 25 ns (max) 

• 20-pin 0.3" Plastic DIP Package 
(See Packaging Spec., Order #231369) 

INPUT/CLK 1 20 Vee 
INPUT 2 19 1/0 
INPUT 3 18 1/0 
INPUT 4 5C032 17 1/0 
INPUT 5 

0 
16 1/0 

INPUT 6 15 1/0 
INPUT 7 14 1/0 
INPUT 8 13 1/0 
INPUT 9 12 1/0 

GND 10 11 l/Vpp 

290155-1 

Pin Configuration 

2-14 
November 1987 

Order Number: 290155-001 



5C032 

The Intel 5C032 H-EPLD (H-series Erasable Pro­
grammable Logic Device) is capable of implement­
ing over 300 equivalent gates of user-customized 
logic functions through programming. This device 
can be used to replace bipolar programmable logic 
arrays and LS TIL and 74HC (CMOS) SSI and MSI 
logic devices. The 5C032 can also be used as a 
direct, low-power replacement for almost all com­
mon 20-pin fuse.based programmable logic devices. 
With its flexible programmable 110 architecture, this 
device has advanced functional capabilities beyond 
that of typical programmable logic. 

The 5C032 H-EPLD uses CHMOS EPROM (floating 
gate) cells as logic control elements instead of fus­
es. The CHMOS EPROM technology reduces power 
consumption of H-EPLDs to less than 20% of a 
comparable bipolar device without sacrificing speed 
performance. In addition, the use of Intel's advanced 
CHMOS 11-E EPROM process technology enables 
greater logic densities to be achieved with superior 
speed and low-power performance over other com­
parable devices. Intel's 5C032 has the benefit of 
"zero" stand-by power not available on other pro­

, grammable logic devices. EPROM technology al-
lows these devices to be 100% factory tested by 
programming and erasing all the EPROM logic con­
trol elementS. · 

The 5C032 with its superior speed and power per­
formance and its plastic package is an ideal produc­
tion vehicle for high-volume manufacturing. Most 
commonly used 20-pin bipolar PLDs can be easily 
replaced with this device allowing for tremendous 
power consumption savings without sacrificing 
speed of operation. 

ARCHITECTURE DESCRIPTION 

The architecture of the 5C032 is based on the "Sum 
of Products" PLA (Programmable Logic Array) struc­
ture with a programmable AND array feeding into a 
fixed OR array. This device can accommodate both 
combinational and sequential logic functions. A pro­
prietary programmable 110 architecture provides in­
dividual selection of either combinational or regis­
tered output and feedback signals, all with select­
able polarity. 

The 5C032 contains 10 dedicated inputs as well as 8 
input/output pins. These 1/0 pins can be individually 
configured to be inputs, outputs or bi-directional 110 
pins. Each of these 110 pins is connected to a mac­
rocell. The 5C032 contains 8 Identical macrocells or­
ganized as shown in Figure 1. 

Each macrocell (see Figure 2) .consists of a PLA 
(programmable logic array) block and an 110 archi­
tecture block, which contains a "D" type register. 
The PLA block consists of eight 36-input AND gates 
(TRUE & COMPLEMENT of 10 dedicated inputs 
plus the 8 feedback Inputs from the eight macro­
cells), feeding into an OR gate. The output of this 
PLA block is fed into the 110 architecture block. The 
different 110 and feedback options that are available 
in the 5C032 110 block are shown in Figure 3. 
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CLOCK 

5C032 

0 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 

Figure 1. 5C032 Architecture 

2-16 

290155-2 



OE 

0 

:!! 2 
IQ 

(/) c 
Cil ::I! 

el 3 
!'> f--

r- f--
0 g4 19. 0 

~ n 0 > g: 5 ...., 
~ 
DI 
'< 

~I 6 
n .,. 
gl 7 

~ 

CLOCK --- -

~ 
+ + + i- .¥ .!f 1~ .¥- .~9 21 2~ 25 27 29 3.1- 33 .~ 

2 4 6 8 10 1~ 14 1~ 1~ ~ ~~ '?¢ ~~ ~ ~µ ¥ ¥ 

8\ 
:= D. CLOCK 

. DD1 "'""'""'"' H> ...,. D CONTROL w Vo 

~ 
·~ ·~ c I'\ ·~ c I'\ ·~ c I'\ ·~ •>1 ·~ c I'\ ·~ •>1 ·~ •>1 ·~ •>1 ·~ o) ~ ~L ~ ~ ~ ~ ~ ~ ~~ ~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ L ~ ~ ~ L ~ ~ ~L ~ ""[ 

11 2 19 3 18 4 17 5 16 6 15 7 14 8 13 9 

NOTE 0=1/0 PIH IH WHICH LOGIC ARRAY INPUT IS FROM FEEDBACK PATH 

PLA BLOCK 1/0 ARCHITECTURE 
BLOCK 

290155-3 

l 

(11 

0 
Q 
(II) 
N 



inter 

PRODUCT 
TERMS 

OE 

FEEDBACK 

INVERT 
CONTROL 

5C032 

r--------------------

CLK 

MACROCELL 
REGISTER 

Figure 3. 5C032 1/0 Architecture Control 

20 PIN CMOS COMPATIBILITY 

1/0 

290155-10 

The 5C032 is architected to be a logical superset of most 20 pin bipolar programmable array logic (PAL*) 
devices. The 1/0 and logic sections of the 5C032 device can be configured to emulate any of the devices 
listed below. Designers can make use of this feature by reducing the power of PAL based systems (EPLDs are 
much lower power), replacing multiple PAL inventory items with a single EPLD. Designers 9an also create new 
20 pin PLO configurations by utilizing the individual logic and output controls of each macrocell. 

List of PAL devices logically compatible with the 5C032. 
10H8 16L2 
12H6 16L8 
14H4 16R8 
16H2 16R6 
16H8 16R4 
16C1 16P8A 
10LB 16RP8A 
12L6 16RP6A 
14L4 16RP4A 

*PAL is a registered trademark of Monolithic Memories, Inc. 
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Erased-State Configuration 

Prior to programming or after erasing, the 1/0 struc­
ture is configured for combinatorial active low output 
with input (pin) feedback. 

ERASURE CHARACTERISTICS 

Erasure characteristics of the 5C032 are such that 
erasure begins to occur upon exposure to light with 
wavelengths shorter than approximately 4000A. It 
should be noted that sunlight and certain types of 
flourescent lamps have wavelengths in the 3000-
4000A. Data shows that constant exposure to room 
level flourescent lighting could erase the typical 
5C032 in approximately three years, while it would 
take approximately one week to cause erasure when 
exposed to direct sunlight. If the 5C032 is to be ex­
posed to these ·types of lighting conditions for ex­
tended periods of time, conductive opaque labels 
should be placed over the device window to prevent 
unintentional erasure. 

The recommended erasure procedure for the 5C032 
is exposure to shortwave ultraviolet light with a 
wavelength of 2537 A. The integrated dose (i.e., UV 
intensity x exposure time) for erasure should be a 
minimum of fifteen (15) Wsec/cm2. The erasure 
time with this dosage is approximately 15 to 20 min­
utes using an ultraviolet lamp with a 12,000 µ.W/cm2 
power rating. The 5C032 should be placed within 
one inch of the lamp tubes during erasure. The maxi­
mum integrated dose the 5C032 can be exposed to 
without damage is 7258 Wsec/cm2 (1 week at 
12,000 µ.W/cm2). Exposure to high intensity UV light 
for longer periods may cause permanent damage to 
the device. 

PROGRAMMING CHARACTERISTICS 

Initially, and after erasure, all the EPROM control 
bits of the 5C032 are connected (in the "1" state). 
Each of the connected control bits are selectively 
disconnected by programming the EPROM cells into 
their "O" state. Programming voltage and waveform 
specifications are available by request from Intel to 
support programming of the device. 

lntellgent ProgrammlngTM Algorithm 

The 5C032 supports the inteligent. Programming Al­
gorithm which rapidly programs Intel H-ELPDs (and 
EPROMs) using an efficient and reliable method. 
The inteligent Programming Algorithm is particularly 
suited to the production programming environ-

ment. This method greatly decreases the overall 
programming time while programming reliability is 
ensured as the incremental program margin of each 
bit is continually monitored to determine when the bit 
has been successfully programmed. 

FUNCTIONAL TESTING 

Since the logical operation of the 5C032 is con­
trolled by EPROM elements, the device is complete­
ly testable. Each programmable EPROM bit control­
ling the internal logic is tested using application-in­
dependent test program patterns. After testing, the 
devices are erased before shipment to customers. 
No post-programming tests of the EPROM array are 
required. 

The testability and reliability of EPROM-based pro­
grammable logic devices is an important feature 
over similar devices based on fuse technology. 
Fuse-based programmable logic devices require a 
user to perform post-programming tests to insure 
proper programming. These tests must be done at 
the device level because of the cummulative error 
effect. For example, a board containing ten devices 
each possessing a 2% device fallout translates into 
an 18% fallout at the board level (it should be noted 
that programming fallout of fuse-based programma­
ble logic devices is typically 2% or higher). 
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DESIGN RECOMMENDATIONS 

To take maximum advantage of EPLD technology, it 
is recommended that the designer use the Modular 
EPLD Logic Design (MELD) method. The MELD phi­
losophy is derived from the modular programming 
method used in software development. In a modular 
software development environment, the engineer 
designs a modular program (typically on a develop­
ment system), stores it in memory (EPROM), and 
tests the module for functionality. A hardware de­
signer using EPLDs <:an use this same approach 
when designing logic. The designer develops a mod­
ular logic design on the Intel Programmable Logic 
Development System II (iPLDS II), stores it in "mem­
ory" (the EPROM control elements of the EPLD), 
and again tests the module for functionality. If the 
design is in error, the logic designer reprograms the 
EPLD with his new design as easily as a software 
designer can download a new program into memory. 

The MELD philosophy is new to programmable logic 
because EPROM-based PLDs are new. A modular 
logic development process using fused-based PLDs 
would be wasteful since a fused-based device can­
not be erased an re-used. 
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For proper operation, it is recommended that all in­
put and output pins be constrained to the voltage 
range GND < <VIN or Vour) < Vee. Unused inputs 
should be tied to an appropriate logic level (e.g. ei­
ther Vee or GND) to minimize device power con­
sumption. Reserved pins (as indicated in the iPLDS 
REPORT file) should be left floating (no connect) so 
that the pin can attain the appropriate logic level. A 
power supply decoupling capacitor of at least 0.2 µ.F 
must be connected directly between Vee and GND 
pins of the device. 

DESIGN SECURITY 

A 'single EPROM bit provides a programmable, de­
sign security feature that controls the access to the 
data programmed into the device. If this bit is set, a 
proprietary design within the device cannot be cop­
ied. This EPROM security bit enables a higher de­
gree of design security than fused-based devices 
since programmed data within EPROM cells is invisi­
ble even to microscopic evaluation. The EPROM se­
curity bit, along with all the other EPAOM control 
bits, will be reset by erasing the device. 

LATCH-UP IMMUNITY 

All of the input, 110, and clock pins of the 5C032 
have been designed to resist latch-up which is inher­
ent in inferior CMOS structures. The 5C032 is de­
signed with Intel's proprietary CHMOS 11-E EPROM 
process. Thus, each of the 5C032 pins will not expe­
rience latch-up with currents up to 100 mA and volt­
ages ranging from -1V to Vee + 1V. Furthermore, 
the programming pin is designed to resist latch-up to 
the 13.SV maximum device limit. ,, 

INTEL PROGRAMMABLE LOGIC 
DEVELOPMENT SYSTEM II (IPLDS II) 

The iPLDS II graphically shown in Figure 5 provides 
all the tools needed to design with Intel H-Series 
EPLDs or compatible devices. In addition to provid­
ing development assistance, iPLDS II insulates the 
user from having to know all the intricate details of 
EPLD architecture (the machine will optimize a de­
sign to benefit from architectual features). It contains 
comprehensive third generation software that sup­
ports four different design entry methods, minimizes 

2-20 

logic, does automatic pin assignments and produces 
the best design fit for the selected EPLD. It is user 
friendly with guided menus, on-line Help messages 
and soft key inputs. 

In addition, the iPLDS II contains programmer hard­
ware in the form of an iUP-PC Universal Program­
mer-Personal Computer to enable the user to pro­
gram EPLDs, read and verify programmed devices 
and also to graphically edit programming files. The 
software generates industry standard JEDEC object 
code output files which can be downloaded to other 
programmers as well. 

The iPLDS II has interfaces to popular schematic 
capture packages (including Dash series from 
FutureNet• and PC CAPS from PCAD)"* to enable 
designs to be entered using schematics. A more in­
tegrated schematic entry method is provided by 
SCHEMA II-PLO, a low-cost schematic capture 
package that supports EPLD primitives and user-de­
fined macro symbols. SCHEMA 11-PLD contains the 
EPLD Design Manager, which provides a single user 
interface to both SCHEMA 11-PLD and iPLS II soft­
ware. The other design formats supported are 
Boolean equation entry and State Machine design 
entry. 

The iPLDS operates on the IBMt PC/XT, PC/AT, or 
other compatible machine with the following configu­
ration: 

1. At least one floppy disk drive and hard disk drive. 
2. MS-DOStt Operating System Version 3.0 or 

greater. 
3. 640K Memory. 
4. Intel iUP-PC Universal Programmer-Personal 

Computer and GUPI Adaptor (supplied with 
iPLDS II). 

5. A color monitor is suggested. 

Detailed information on the Intel Programmable Log­
ic Development System II is contained in a separate 
Intel data sheet. (Order Number: 280168) 

*FutureNet is a registered trademark of FutureNet 
Corporation. DASH is a trademark of FutureNet 
Corporation. 

•*PC-CAPS is a trademark of P-CAD Corporation. 

tlBM Personal Computer is a registered trade­
mark of International Business Machines Corpo­
ration. 

ttMS-DOS is a registered trademark of Microsoft 
Corporation. 
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ABSOLUTE MAXIMUM RATINGS* 
Symbol Parameter Min Max Unit 

Vee Supply Voltage(1 l -2.0 7.0 v 
Vpp Programming -2.0 13.5 v 

Supply Voltage(1 l 

v, DC Input Voltage(1)(2) -0.5 Vcc+0.5 v 
tstg Storage Temperature -65 +150 ·c 
tamb Ambient Temperature(4) -10 +85 ·c 

NOTES: 
1. Voltages with respect to ground. 
2. Minimum DC input is -0.5V. During transitions, the in­
puts may undershoot to - 2.0V for periods less than 20 ns 
under no load conditions. 
3. Under bias, Extended temperature versions are also 
available. 
4. Extended temperature versions also available. 

•Notice: Stresses above those listed under "Abso­
lute Maximum Ratings" may cause permanent dam­
age to the device. This is a stress rating only and 
functional operation of the device at these or any 
other conditions above those indicated in the opera­
tional sections of this specification is not implied. Ex­
posure to absolute maximum rating conditions for 
extended periods may affect device reliability. 

D.C. CHARACTERISTICS TA = o·c to 10°c, Vee = 5V ± 5% 

Symbol Parameter /Test Conditions Min Typ Max Unit 

V1H(5) High Level Input Voltage 2.0 Vee+ 0.3 v 
V1L(5) Low Level Input Voltage -0.3 0.8 v 
VoH(6) High Level Output Voltage 2.4 v 

lo = -4.0 mA D.C., Vee = min. 

Vol Low Level Output Voltage 0.45 v 
lo = 4.0 mA D.C., Vee = min. 

11 Input Leakage Current ±10 µA 
Vee = max., GND < VouT < Vee 

loz Output Leakage Current ±10 µA 
Vee = max., GND < Vour < Vee 

lsc(7) Output Short Circuit Current 10 mA 
Vee = max., Vour = 0.5V 

ls9(8) Standby Current 10 100 µA 
Vee = max., V1N = Vee or GND, 
Standby Mode 

lcc(9l Power Supply Current 15 25 mA 
Vee = max., V1N = Vee or GND, 
No Load, Input Freq. = 10 MHz 
Active Mode (Turbo = Off), 
Device Prog. as 8-bit Ctr. 

NOTES: 
5. Absolute values with respect to device GND; all over- and' undershoots due to system or tester noise are included. 
6. lo at CMOS levels (3.84V) = -2 mA. 
7. Not more than 1 output should be tested at a time. Duration of that test must not exceed 1 second. 
8. With Turbo Bit = Off, device automatically enters standby mode approximately 100 ns after last input transition. 
9. Maximum Active Current at operational frequency is less than 40 mA. 
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A.C. TESTING LOAD CIRCUIT 

.----5V 

DEVICE INPUT 
RISE AND f"ALL 

TIMES< 6ns 

CL (INCLUDES JIG 
CAPACITANCE) 

5C032 

A.C. TESTING INPUT, OUTPUT WAVEFORM 

3-0~ .. 2.0 
INPUT . >TEST POINTS< 0.8 

0 0.8 

OUTPUT .1~· 
290155-7 .. 

A.e. Testing: Inputs are Drive'! at 3.0V for a Logic "1" and OV for 
a Logic "O". Timing Measurements are made at 2.0V for a Logic 
"1" and O.BV for a Logic "O" on Inputs. Outputs are measured at 
a 1.5V point 

290155-6 

A.C. CHARACTERISTICS TA= o•cto +70"C, Vee= 5V ±5%, TurboBitOnC10l 

From 
5C032·25 5C032·30 5C032·35 

Symbol To Unit 
Min Typ Max Min Typ Max Min Typ Max 

tpo I or 1/0 Comb. Output 25 30 35 ns 

tpzxC11) I or 110 Output Enable 25 30 35 ns 

tpxz(11) I or 1/0 Output Disable 25 30 35 ns 

NOTES: 
10. Typ. values are at TA = 25°C, Vee = 5V, Active Mode. 
11. tpzx and tpxz are measured at ±0.5V from steady state voltage as driven by spec. output load. tpxz is measured with 
CL= 5 pF. 

CAPACITANCE 
Symbol Parameter Conditions Min Typ Max Unit 

C1N Input Capacitance V1N = OV, f = 1.0 MHz 20 pF 

CouT Output Capacitance VouT = OV, f = 1.0 MHz 20 pF 

CcLK Clock Pin Capacitance VouT = ov, f = 1.0 MHz 20 pF 

Cvpp(12) VppPin 50 pF 

NOTE: 
12. Vpp is on Pin 11. 
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A.C. CHARACTERISTICS TA = o•c to 10°c, Vee = 5V ± 5%, Turbo Bit On c1oi 

SYNCHRONOUS CLOCK MODE 

5C032·25 5C032·30 5C032·35 
Symbol Parameter Unit 

Min Typ Max Min Typ Max Min Typ Max 

fMAX Max. Frequency 47.6 43.5 40 MHz 
1 /tsu - No Feedback 

feNT Max. Count Frequency 33.3 28.5 25 MHz 
1 /teNT - witl1 Feedback 

tsu Input Setup Time to CLK 21 23 25 ns 

tH I or 1/0 Hold after CLK High 0 0 0 ns 

tea CLK High to Output Valid 16 17 20 ns 

teNT Register Output Feedback 30 35 40 ns 
to Register Input- Internal 
Path 

teH CLK High Time 10 11 12 ns 

teL CLKLowTime 10 11 12 ns 
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SWITCHING WAVEFORMS 

COMBINATORIAL MODE 

INPUT OR 1/0 INPUT 

COMBINATORIAL OUTPUT 

COMBINATORIAL OR 
REGISTERED OUTPUT 

5C032 

~~1,...-------
I ~ HIGH IMPEDANCE 

./'i~~~~-3~-~S~~~TE~~~--

~-----------------------------------

HIGH IMPEDANCE 

3-STATE 

SYNCHRONOUS CLOCK MODE 

CLK1 

INPUT MAY CHANGE 

(FROM REGISTER 
TO OUTPUT) 

~~=1----------<k VALID OUTPUT 

VALID! 
INPUT 

2-25 

lcL 

290155-8 

INPUT MAY CHANGE 

VALID OUTPUT 

290155-9 
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Current in Relation to Frequency 

SO.---.--,--.--....--.---.-..--~ 

40 t---+--+~t---+--+----+-+--l 

~ 30 ,,,,,,., 

_CURB~ 
20t1" 

10 ,l 
0 N~-~R~ 

0 s 10 1S 20 2S 30 3S 40 

290155-11 
Conditions: TA = O"C, Vee = 5.25V 

5C032 

Current in Relation to Temperature 

so.---~------~ 

40t--t-

30 1----+---+--==,,.... ..... ::+-1 

O'----'-~-'---.._ _ _.__. 
0 20 

Conditions: Vee = 5.25V 

40 

TEMP{C) 

60 80 8S 

290155-12 

Output Drive Current In Relation to Voltage 

100EE~~s~ 
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600-/900-GATE CHMOS 

H·SERIES ERASABLE PROGRAMMABLE 
LOGIC DEVICE {H-EPLD) 

• High Performance LSI Semi-Custom • Programmable Clock System with Two 
Logic Replacement for Low-End Gate Synchronous Clocks as Well as 
Arrays, TTL, and 74HC SSI and MSI Asynchronous Clocking Option on all 
Logic Registers 

• CHMOS EPROM Technology Based. UV • Programmable Output Registers. Can 
Erasable be Configured as D, T, SR, or JK Types 

• Low Power; 50 µA Typlcal Standby • Programmable Security Bit Allows Total 
Current Protection of Proprietary Designs 

• Erasable Array for 100% Generic 
Testability 

5C060 FEATURES: 5C090 FEATURES: 

• 16 Macrocells with Programmable 1/0 • 24 Macrocells with Programmable 1/0 
Architecture; up to 20 Inputs (4 Architecture; Up to 36 Inputs (12 
Dedicated, 16 1/0) or 16 Outputs Dedicated, 24 1/0) or 24 Outputs 

• High Speed tpo (max) 45 ns, 16.67 MHz • High Speed tpo (max) 50 ns, 16 MHz 
Performance Performance 

• High Performance Upgrade for • Logic and 1/0 Superset of the 5C060 
Commonly Used 24-Pln PLDs •• 40-Pln DIP Package for Expanded 1/0 

• Small Footprint 24-Pin 0.3" DIP Capability 
Package • 44-Pin J-Leaded Chip Carrier Package 

• 28 Pin J-Leaded Chip Carrier Package (See Packaging Spec., Order Number # 231369) 

(See Packaging Spec. Order # 231369) 

>= ~ "' "'-: ::> ;;: 8 ~ 
::> "'-: 

0 D.. ..J ~~ ~3 u > 

CLK1 Yee 
1/0.2 1/0.15 

INPUT1 INPUT4 

1/0.1 1/0.16 
1/0.3 1/0.14 

1/0.2 1/0.15 1/0.4 1/0.13 

vo:3 1/0.14 1/0.5 1/0.12 

1/0.4 1/0.13 1/0.11 

1/0.5 1/0.12 1/0.10 

1/0.11 NC NC 
1/0.10 

1/0.9 
cq ~ Q Q l:! ~ O? 

INPUT2 INPUT3 ts z 
~ ::> "' d ::> 0 

GND CLK2 - ~ ~-:::.. 
290104-28 

290104-1 

5C060 Pin Configurations 
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N-O 
CLK1 VCC -~~::..... ::::t:~ 

INPUT1 INPUT12 0~~~~88~~~0 
INPUT11 

~!: !: !: u > > !: !: !:~ 

INPUT3 INPUT10 

1/0.1 1/0.24 1/0.2 NC 
1/0.2 6 1/0.23 1/0.3 1/0.23 
1/0.3 7 1/0.22 1/0.4 1/0.22 

1/0.4 8 1/0.21 1/0.5 1/0.21 

1/0.5 1/0.20 1/0.6 1/0.20 

1/0.6 1/0.19 1/0.7 1/0.19 

1/0.7 1/0.18 
1/0.8 1/0.18 
1/0.9 1/0.17 

1/0.8 1/0.17 1/0.10 1/0.16 
1/0.9 1/0.16 1/0.11 1/0.15 

1/0.10 1/0.15 NC 1/0.14 
1/0.11 1/0.14 

1/0.12 1/0.13 

~sss~~g555~ INPUT4 INPUT9 

INPUT5 INPUTS ~A. A. A.<:><:> u A. A. A.~ 
-!:!:!: !:!:!:-

290104-29 INPUT& INPUT7 

GND 

290104-2 

5C090 Pin Configurations 

The Intel 5C060 and 5C090 H-EPLDs (H-series Pro­
grammable Logic Devices) are capable of imple­
menting over 600 and 900 respectively of equivalent 
gates of user-customized logic functions through 
programming. Both devices can be used to replace 
low-end gate arrays, multiple programmable logic ar­
rays and LS TTL and 74HC (CMOS)' SSI and MSI 
logic devices. The 5C060 can also be used as a 
direct, low-power replacement for most, common 
24-pin fuse-based programmable logic devices. With 
their revolutionary programmable 1/0 architecture, 
both devices have advanced functional capabilities 
beyond that of typical programmable logic. 

The 5C060 and 5C090 H-EPLDs use CHMOS 
EPROM (floating gate) cells as logic control ele­
ments instead of fuses. The CHMOS EPROM tech­
nology reduces power consumption of H-EPLDs to 
less than 20% of a comparable bipolar device with­
out sacrificing speed performance. In addition, In­
tel's advanced CHMOS 11-E EPROM process tech­
nology enables greater logic densities to be 
achieved with superior speed and low-power per­
formance over other comparable devices. Intel's 
H-ELPDs add the benefits of "zero" stand-by power 
not available on other programmable logic devices. 
EPROM technology allows these devices to be 
100% factory tested by programming and erasing all 
the EPROM logic control elements. 

2-28 

The erasability of EPLDs introduces the designer to 
a new concept in hardware design called Modular 
EPLD Logic Design (MELD). Just as modular soft­
ware design speeds development time and reduces 
errors by isolating them to a specific module, the 
MELD philosophy aids in hardware design. A design­
er can develop his modular design on the Intel Pro­
grammable Logic Development System II (iPLDS II) 
and test individual modules for functionality. If one of 
the modules has a design flaw, the designer merely 
erases the part and starts anew (since the 5C060 
and 5C090 are EPROM-based, there is no waste 
associated with modular design as there would be in 
fuse-based PLDs). 

The architecture of the 5C060 and 5C090 is based 
on the "Sum of Products" PLA (Programmable Log­
ic Array) structure with a programmable AND array 
feeding into a fixed OR array. Both devices accomo­
date combinational and sequential logic functions. A 
proprietary programmable 1/0 architecture provides 
individual selection of either combinatorial or regis­
tered output and f~dback signals all with selectable 
polarity. 

A feature unique to the 5C060 and 5C090 is the abil­
ity to individually program the output registers as a 
D-, T-, SR-, or JK-type Flip-Flop without sacrificing 
the utilization of programmable AND logic. Addition­
ally, each output register can be individually clocked 
from any of the input or feedback paths available 
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within the AND array. With these features, a wide 
variety of logic functions can be simultaneously im-
plemented-all on the same device. · 

ARCHITECTURE DESCRIPTION 

Externally, the 5C060 has 4 dedicated data input 
pins, 16 1/0 pins which may be configured for input, 
output, or bidirectional operations, and 2 synchro­
nous clock inputs. The 5C060 is contained in a 
24-pin windowed package (0.3 inch wide), and con­
tains 16 programmable registers. 

The 5C090 represents a superset of the 5C060 in 
capability. The 5C090 has 12 dedicated inputs, 24 
1/0 pins which may be configured for input, output, 
or bidirectional operations, and 2 synchronous clock 
inputs. The 5C090 is packaged in a 40-lead win­
dowed ceramic DIP and contains 24 programmable 
registers. 

AND ARRAY 

EPROM 
CONTROL 

BIT 

II 
\ 

The basic Macrocell architecture for both the 5C060 
and 5C090 is shown in Figure 1. The 5C060 has 16 
of these Macrocells while the 5C090 has 24 (one for 
each 1/0 pin). The Macrocell is organized in the fa­
miliar sum-of-products structure with a programma­
ble AND array attached to a fixed OR term. The in­
puts to the programmable AND array originate from 
the true and complement signals from each of the 
dedicated input pins and each of the 1/0 control 
blocks. The 40-input AND array of the 5C060 feeds 
160 AND gates (product terms) which are distributed 
among the 16 available Macrocells within that de­
vice. 

The AND array for the 5C090 has 72 inputs derived 
from the true and complement signals at the input 
and 1/0 pins. The AND array in the 5C090 encom­
passes 240 product terms which are distributed 
among the 24 Macrocells. The global device archi­
tectures are shown in Figure 2. 

SYNCHRONOUS 
CLOCK 

vcc OE/CLK 

CELECT 

OE 

OE/CLK 

H t-

-D 
1--

............. t-

© CLK 

8= 
8= 
8= 

OUTPUT 

~ 
REGISTER 

8= 
OUTPUT 
BUFFER 

~ 

~ ~ c~ ~ ~ ~ ~ c~ 
~REGISTER J .C~~ Ll ~.i ;i.~ i~ ~.ii~ i 

~ FEEDBACK 
INPUTS AND 1/0 

290104-3 

Figure 1. Basic Macrocell Architecture of the SC060 and SC090 
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5C060 - 16 Macrocells 

1/0 

1/0 

- 4 Dedicated Inputs 

MACROCELLS 

• • • 

5C060/5C090 

DEDICATED 
INPUTS 

GND 

AND RRAY 

DEDICATED 
INPUTS 

vcc 

Figure 2. 5C060 and 5C090 Global Architecture 
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5C090 - 24 Macrocells 
- 12 Dedicated Inputs 

MACROCELLS 

• • • 

1/0 

290104-4 
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The Macrocells on both devices contain ten product 
terms total. Eight of the ten product terms (AND 
gates) are dedicated for logic implementation. One 
product term on each Macrocell is used for RESET 
control to the output register associated with the 
Macrocell. The final product term is used for OUT­
PUT ENABLE/ Asynchronous Clock implementation. 

Within the AND array, there is an EPROM connec­
tion at every intersection of an input signal (true and 
complement) and a product term to a given Macro­
cell. Before programming an erased device, every 
EPROM connection is made at every intersection. 
But during the programming process, these connec­
tions are opened so that only the desired connec­
tions remain.· Therefore, the true or complement of 
any input signal can be connected to any product 
term. If both the true and complement connections 
of any signal are left intact, a logical false results on 
the output of the AND gate. However, if both the true 
and complement connections are open, then a logic 
"don't care" results on the AND gate. Lastly, if all 
the inputs of a product term are programmed open, 
then a logical true results on the output of the AND 
gate. 

Both the 5C060 and 5C090 have two dedicated 
clock inputs to provide synchronous clock signals to 
the internal registers. Each of the clock signals con­
trols half the total registers within the given device. 
For example, CLK1 provides synchronous clocking 
to the registers in Macrocells in the left half of the 
array while CLK2 controls the registers associated 
with Macrocells in the right half of the array. The 
advanced 1/0 architecture allows for any number of 
the registers to be synchronously clocked (from 
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none to all). Both of the dedicated clock inputs latch 
the data into a given register when triggered on a 
positive edge. 

MACROCELL ARCHITECTURE 
SELECTION 

The 5C060 and 5C090 architecture provides each 
Macrocell with over 50 different possible 1/0 register 
configurations. Each 1/0 pin can be configured for 
combinatorial or registered output (true or comple­
ment) with feedback. In addition, four different types 
of output registers can be implemented into every 
1/0 pin without any additional logic requirements. 
The feedback mechanism for each register back into 
the AND array can be programmed to provide for 
either registered feedback from the Macrocell or in­
put feedback (treating the pin as an input). Another 
advantage of the advanced 1/0 capability of the 
5C060 and the 5C090 is the ability to individually 
clock each internal register from asynchronous 
clock signals. 

Output Enable (OE)/Clock Selection 

Two modes of operation are provided by the 
OE/CLK Select Multiplexer as a part of each Macro­
cell. One mode provides for three-state buffering of 
outputs while in the other mode, the outputs are al­
ways enabled. The operation of the OE/CLK Select 
Multiplexer sets the mode within a given Macrocell. 
Therefore, the output mode can be selected individ­
ually on every output. Figure 3 illustrates the two 
modes of OE/CLK operation. 
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OE CLK 

OE CLK 

SYNCHRONOUS 
CLOCK 

vcc OE/CLK 
SELECT 

5C060/5C090 

OE 

CLK- SYNCHRONOUS 

CLK 

OE-P..TERM CONTROLLED 

SYNCHRONOUS 
CLOCK 

VCC 

OUTPUT 
REGISTER 

OE/CLK 
SELECT 

MOOED 

OE 

OUTPUT 
BUFFER 

CLK -ASYNCHRONOUS 

CLK 

OUTPUT 
REGISTER 

MODE1 

OE-ENABLED 

OUTPUT 
BUFFER 

Figure 3. Output Enable/Clock Configuration 
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MODE 0: THREE·STATE BUFFERING 

In Mode 0, the three-state output buffer is controlled 
by a single product term originating from the AND 
array. The output is enabled when the product term 
is a logical true. Conversely, the output appears as 
high impedance when the product term is a logical 
false as shown in Table 1. In Mode 0, the Macrocell 
Flip-Flop is connected to its associated synchronous 
clock (either CLK1 or CLK2 depending upon the 
Macrocell's location within the device). Thus, the 
Macrocell Flip-Flop may be clocked by its respective 
synchronous clock but its output will not become 
valid until the output is enabled. 

Table 1. Mode 0 Output Selection 

Product Term Output Buffer 

FALSE Three-State 

L TRUE Enabled 

MODE 1: OUTPUT BUFFER ENABLED 

In Mode 1, the Output Buffer is always enabled. In 
addition, the Macrocell Flip-Flop is connected to the 
AND array. The Macrocell Flip-Flop may now be trig­
gered from an asynchronous clock signalgenerated 
by the AND array logic to the OE/CLK multiplexable 
term. Mode 1 allows the Macrocell Flip-Flops to be 
individually clocked from any of the available signals 
in the AND array. Since both true and complement 
values appear in the AND array, the Flip-Flop may 
be configured to trigger on positive or negative clock 
edges. Gated clock structures can be created since 
the Flip-Flop clock is created by a product term. 

Invert Select EPROM Bit 

The Invert Select EPROM bit is used to invert the 
product term input into the register. This applies to 
all inputs including double inputs on the JK and SR 
registers. 

REGISTER SELECTION 

The advanced 110 architecture of the 5C060 and the 
5C090 allows four different register types along with 
combinatorial output as illustrated in Figure 4. The 
register tYpes include a T, D, JK, or SR Flip-Flop and 
each Macrocell 1/0 structure may be indepen-

dently configured. In addition, all registers have an 
individual asynchronous RESET control from a dedi­
cated product term derived in the AND array. When 
this dedicated product term is a logical one, the 
Macrocell register is immediately cleared to a logical 
zero independent of the register clock. The RESET 
function occurs automatically on power-up. 

Output Register Configuration 

The four different register types shown in Figure 4 
are described below. 
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D- or T-type Flip-Flops 

When either a D- or T-type Flip-Flop is configured 
as part of the 1/0 structure, all eight of the product 
terms into the Macrocell are ORed together and 
fed into the register input. 

JK or SR Registers 

When either a JK or SR register is configured, the 
eight product terms are shared among two OR 
gates (one for the J or S input and the other for 
the K or R input). The allocation for these product 
terms for each of the register inputs is optimized 
by the iPLDS II development software. 

OUTPUT /FEEDBACK 

The Output Select Multiplexer allows for either regis­
tered, combinatorial or no output. 

The Feedback Select Multiplexer EPROM bit en­
ables registered, 1/0 (using the pin for bidirectional 
input or just input), or no feedback to the AND array. 

The Feedback Select is also important for building 
product terms with more than 8 products. The 8-
product product term of a Macrocell can be fed back 
into the AND array and combined with still more sig­
nals to create a much larger product term (of more 
than 8-inputs). In addition, if the feedback product 
term is not to be output, then the iPLDS II will re­
serve the associated Macrocell pin and indicate it in 
the REPORT file. A reserved pin should be left float­
ing (no connect) when assembled onto a circuit 
board. 

Any 1/0 pin may be configured as a dedicated input 
by selecting no output and pin feedback through the 
appropriate multiplexers. 
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SYNCHRONOUS 
CLOCK 

vcc 

5C060/5C090 

1/0 SELECTION 
OUTPUT /POLARITY FEEDBACK 
Combinatorial/High Pin, None 
Combinatorial/Low Pin, None 

None Pin 

290104-7 

Figure 4a. Comblnatorlal 1/0 Configuration 

1/0 SELECTION 

OE 

OUTPUT/ 
POLARITY 

D-Register /High 
D-Register/Low 

None 
None 

FEEDBACK 

D-Register, Pin, None 
D-Register, Pin, None 

D-Registered 
Pin 

CLK FUNCTION TABLE 
D 

0 
0 
1 
1 

290104-8 

Figure 4b. D-Type Fllp-Flop Register Configuration 
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On On+ 1 

0 0 
1 0 
0 1 
1 1 



SYNCHRONOUS 
CLOCK 

vcc 

SYNCHRONOUS 
CLOCK 

vcc 

·-· 

5C060/5C090 

1/0 SELECTION 

OUTPUT/POLARITY 

T-Register/High 
T-Reglster/Low 

None 
None 

FEEDBACK 

T-Register, Pin, None 
T-Register, Pin, None 

T-Register 
Pin 

FUNCTION TABLE 

T On On+ 1 

0 0 0 
0 1 1 
1 0 1 
1 1 0 

290104-9 

Figure 4c. Toggle Fllp-Flop Register Configuration 

1/0 SELECTION 

OE 

OUTPUT/POLARITY 

JK Register/High 
JK Register/Low 

None 

FEEDBACK 

JK Register, None 
JK Register, None 

JK Register 

FUNCTION TABLE 
CLK J 

0 
0 
0 
0 
1 
1 
1 
1 

290104-10 

Figure 4d. JK Fllp·Flop Register Configuration 
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K 

0 
0 
1 
1 
0 
0 
1 
1 

On On+ 1 

0 0 
1 1 
0 0 
1 0 
0 1 
1 1 
0 1 
1 0 
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SYNCHRONOUS 
CLOCK 

vcc. 

8-N 

INVERT 
SELECT 

OE 

Clk 

R RESET 

290104-11 

1/0 SELECTION 

OUTPUT/POLARITY 

SR Register/High 
SR Register/Low 

None 

FEEDBACK 

SR Register, None 
SR Register, None 

SR Register 

FUNCTION TABLE 

s R On On+ 1 

0 0 0 0 
0 0 1 1 
0 1 0 0 
0 1 1 0 
1 0 0 1 
1 0 1 1 

1 1 Illegal 

Figure 4e. SR Flip-Flop Register Configuration 

Erased-State Configuration 

Prior to programrriirig or after erasing, the 110 struc­
ture is configured for combinatorial active low output 
with input (pin) feedback. 

ERASURE CHARACTERISTICS 

Erasure characteristics of the 5C060 and 5C090 are 
such that erasure begins to occur upon exposure to 
light with wavelengths shorter than approximately 
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4000A. It should be noted that sunlight .and certain 
types of flourescent lamps have wavelengths in the 
3000-4000A. Data shows that constant exposure to 
room level floure~cent lightihg could erase the typi­
cal device in approximately three years, while it 
would take approximately one week to cause era­
sure when exposed to direct sunlight. If the 5C060 
or the 5C090 is to be exposeq to these types of 
lighting conditions for extended periods of time, con· 
ductive opaque labels should be placed over the de· 
vice window to prevent unintentional erasure. 
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The recommended erasure procedure for the 5C060 
and 5C090 is exposure to shortwave ultraviolet light 
with a wavelength of 2537 A. The integrated dose 
(i.e., UV intensity x exposure time) for erasure 
should be a minimum of fifteen (15) Wsec/cm2. The 
erasure time with this dosage is approximately 15 to 
20 minutes using an ultraviolet lamp with a 12,000 
µW/cm2 power rating. The 5C060 or 5C090 should 
be placed within one inch of the lamp tubes during 
erasure. The maximum integrated dose the 5C060 
or 5C090 can be exposed to without damage is 7258 
Wsec/cm2 (1 week at 12,000 µW/cm2). Exposure 
to high intensity UV light for longer periods may 
cause permanent damage to the device. 

PROGRAMMING CHARACTERISTICS 

Initially, and after erasure, all the EPROM control 
bits of the 5C060 and 5C090 are connected (in the 
"1" state). Each of the connected control bits are 
selectively disconnected by programming the 
EPROM cells into their "O" state. Programming volt­
age and waveform specifications are available by re­
quest from Intel to support programming of the 
5C060 and 5C090. 

int81igent ProgrammingTM Algorithm 

Both the 5C060 and 5C090 support the inteligent 
Programming Algorithm which rapidly programs Intel 
H-ELPDs (and EPROMs) using an efficient and reli­
able method. The inteligent Programming Algorithm 
is particularly suited to the production programming 
environment. This method greatly decreases the 
overall programming time while programming reli­
ability is ensured as the incremental program margin 
of each bit is continually monitored to determine 
when the bit has been successfully programmed. 

FUNCTIONAL TESTING 

Since the logical operation of the 5C060 and 5C090 
are controlled by EPROM elements, the device is 
completely testable. Each programmable EPROM 
bit controlling the internal logic is tested using appli­
cation-independent test program patterns. After 
testing, the devices are erased before shipment to 
customers. No post-programming tests of the 
EPROM array are required. 
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The testability and reliability of EPROM-based pro­
grammable logic devices is an important feature 
over similar devices based on fuse technology. 
Fuse-based programmable logic devices require a 
user to perform post-programming tests to insure 
proper programming. These tests must be done at 
the device level because of the cummulative error 
effect. For example, a board containing ten devices 
each possessing a 2% device fallout translates into 
an 18% fallout at the board level (it should be noted 
that programming fallout of fuse-based programma­
ble logic devices is typically 2% or higher). 

To enable functional evaluation of counter and 
state-machine applications, the 5C060 and 5C090 
contain register pre-load circuitry. This can be acti­
vated by interrupting the normal clocked sequence 
and applying V PP on pin 11 for the 5C060 or pin 17 
for the 5C090 to engage the pre-load state. Under 
these conditions, the Flip-Flops in the 5C060 and 
5C090 can be set to any logical condition and then 
return to normal operation. This process simplifies 
the input sequences necessary to evaluate the 
counter and state machine operations. 

DESIGN RECOMMENDATIONS 

To take maximum advantage of EPLD technology, it 
is recommended that the designer use the Modular 
EPLD Logic Design (MELD) method. The MELD phi­
losophy is derived from the modular programming 
method used in software development. In a modular 
software development environment, the engineer 
designs a modular program (typically on a develop­
ment system), stores it in memory (EPROM), and 
tests the module for functionality. A hardware de­
signer using EPLDs can use this same approach 
when designing logic. The designer develops a mod­
ular logic design on the Intel Programmable Logic 
Development System II (iPLDS II), stores it in "mem­
ory" (the EPROM control elements of the EPLD), 
and again tests the module for functionality. If the 
design is in error, the logic designer reprograms the 
EPLD with his new design as easily as a software 
designer can download a new program into memory. 

The MELD philosophy is new to programmable logic 
because EPROM-based PLDs are new. A modular 
logic development process using fused-based PLDs 
would be wasteful since a fused-based device can­
not be erased an re-used. 
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For proper operation, it is recommended that all in­
put and output pins be constrained to the voltage 
range GND < CV1N or VouT) <Vee· Unused inputs 
should be tied to an appropriate logic level (e.g. ei­
ther Vee or GND) to minimize device power con­
sumption. Reserved pins (as indicated in the iPLDS 
II REPORT file) should be left floating (no connect) 
so that the pin can attain the appropriate logic level. 
A power supply decoupling capacitor of at least 0.2 
µ.F must be connected directly between Vee and 
GND pins of the 5C060 and the 5C090. 

DESIGN SECURITY 

A single EPROM bit provides a programmable de­
sign security feature that controls the access to the 
data programmed into the device. If this bit is set, a 
proprietary design within the device cannot be cop­
ied. This EPROM security bit enables a higher de­
gree of design security than fused-based devices 
since programmed data within EPROM cells is invisi­
ble even to microscopic evaluation. The EPROM se­
curity bit, along with all the other EPROM control 
bits, will be reset by erasing the device. 

LATCH-UP IMMUNITY 

All of the input, 1/0, and clock pins of the 5C060 and 
5C090 have been designed to resist latch-up which 
is inherent in inferior CMOS structures. The 5C060 
and 5C090 are designed with Intel's proprietary 
CHMOS 11-E EPROM process. Thus, each of the 
5C060 and 5C090 pins will not experience latch-up 
with currents up to 100 mA and voltages ranging 
from -1V to Vee + 1V. Furthermore, the program­
ming pin is designed to resist latch-up to the 13.SV 
maximum device limit. 

INTEL PROGRAMMABLE LOGIC 
DEVELOPMENT SYSTEM 11 (iPLDS 11) 

The iPLDS II graphically shown in Figure 5 provides 
all the tools needed to design with Intel H-Series 
EPLDs or compatible devices. In addition to provid­
ing development assistance, iPLDS II insulates the 
user from having to know all the intricate details of 
EPLD architecture (the machine will optimize a de­
sign to benefit from architectual features). It contains 
comprehensive third generation software that sup­
ports four different design entry methods, minimizes 
logic, does automatic pin assignments and produces 

the best design fit for the selected EPLD. It is user 
friendly with guided menus, on-line Help messages 
and soft key inputs. 

In addition, the iPLDS II contains programmer hard­
ware in the form of an iUP-PC Universal Programmer 
Personal Computer to enable the user to program 
EPLDs, read and verify programmed devices and 
also to graphically edit programming files. The soft­
ware generates industry standard JEDEC object 
code output files which can be downloaded to other 
programmers as well. 

The iPLDS II has interfaces to popular schematic 
capture packages (including Dash series from 
FutureNet• and PC CAPS from PCAD)" • to enable 
designs to be entered using schematics. A more in­
tegrated schematic entry method is provided by 
SCHEMA 11-PLD, a low-cost schematic capture 
package that supports EPLD primitives and user-de­
fined macro symbols. SCHEMA 11-PLD contains the 
EPLD Design Manager, which provides a single user 
interface to both SCHEMA 11-PLD and iPLS II soft­
ware. The other design formats supported are Boole­
an equation entry and State Machine design entry. 

The iPLDS II operates on the IBMt PC/XT, PC/AT, 
or other compatible machine with the following con­
figuration: 

1. At least one floppy disk drive and hard disk drive. 
2. MS-DOStt Operating System Version 3.0 or 

greater. 
3. 640K Memory. 
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4. Intel iUP-PC Universa.1 Programmer Personal 
Computer and GUPI Adaptor (supplied with iPLDS 
II). 

5. A color monitor is suggested. 

Detailed information on the Intel Programmable Log­
ic Development System II is contained in a separate 
Intel data sheet. (Order Number: 280168) 

•FutureNet is a registered trademark of FutureNet 
Corporation. DASH is a trademark of FutureNet 
Corporation. 

"*PC-CAPS is a trademark of P-CAD Corporation. 

tlBM Personal Computer is a registered trade­
mark of International Business Machines Corpo­
ration. 

ttMS-DOS is a registered trademark of Microsoft 
Corporation. 
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ABSOLUTE MAXIMUM RATINGS* 
Symbol Parameter Min Max 

Vee Supply Voltage!1l -2.0 7.0 

Vpp Programming -2.0 13.5 
Supply Voltage(1) 

V1 DC Input Voltage(1)(2) -0.5 Vcc+0.5 

Unlta 

v 
v 

v 

*Notice: Stresses above those listed under "Abso­
lute Maximum Ratings" may cause permanent dam­
age to the device. This is a stress rating only and 
functional operation of the device at these or any 
other conditions above those indicated in the opera­
tional sections of this specification is not implied. Ex­
posure to absolute maximum rating conditions for 
extended periods may affect device reliability. 

lstg Storage Temperature -65 +150 ·c 
lamb Ambient Temperature(3) -10 +85 ·c 

NOTES: 
1. Voltages with respect to ground. 
2. Minimum DC input is -0.5V. During transitions, the in­
puts may undershoot to - 2.0V for periods less than 20 ns 
under no load conditions. 
3. Under bias. Extended temperature versions are also 
available. 

D.C. CHARACTERISTICS TA = o•c to 70°C, Vee = 5.0V ± 5% 

Symbol Parameter Conditions 

V1H(4) HIGH Level Input Voltage 

V1L(4) LOW Level Input Voltage 

VoH(5) HIGH Level Output Voltage lo= -4.0 mA DC, Vee= Min. 

Vol LOW Level Output Voltage lo = 4.0 mA DC, Vee = Min. 

11 Input Leakage Current Vee = Max., GND < VouT < Vee 

loz Output Leakage Current Vee = Max., GND < VouT < Vee 

lsc(6) Output Short Circuit Current Vee = Max., VouT = 0.5V 

lss(7) Standby Current Vee= Max., 
5C060 (Standby) V1N ""' Vee or GND 

Ice Power Supply Current Vee= Max., No Load, 
5C060 (Active) (Turbo Bit Off) V1N = Vee or GND Input Freq. = 1 MHz 

Device Prog. as 16-Bit Ctr. 

lss(7) Standby Current Vee= Max., 
5C090 (Standby) V1N = Vee or GND 

Ice Power Supply Current Vee= Max., No Load, 
5C090 (Active) (Turbo Bit Off) V1N = Vee or GND Input Freq. = 1 MHz 

Device Prog. as Two 12-Bit Ctrs. 

NOTES: 

Min Typ Max 

2.0 Vee+ 0.3 

-0.3 0.8 

2.4 

0.45 

±10.0 

±10.0 

50 100 

10 15 

50 100 

15 25 

4. Absolute values With respect to device GND; all over and undershoots due to system or tester noise are included. 
5. lo at CMOS levels (3.84V) = -2 mA. 
6. Not more than 1 output should be tested at a time. Duration of that test must not exceed 1 second. 
7. With Turbo Bit Off, device automatically enters standby mode approximately 100 ns after last input transition. 
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Unit 

v 
v 
v 
v 

µA 

µA 

mA 

µA 

mA 

µA 

mA 



A.C. TESTING LOAD CIRCUIT 

DEVICE INPUT 
RISE AND rALL 
TIMES< 6nS 

5V 

5C060/5C090 

290104-13 

A.C. TESTING INPUT, OUTPUT WAVEFORM 

3.0 

~:: > TEST POINTS < INPUT 
0 

OUTPUT 

290104-14 

A.C. Testing: Inputs are Driven at 3.0V for a Logic "1" and OV for 
a Logic "O". Timing Measurements are made at 2.0V for a Logic 
"1" and o.av for a Logic "O" on Inputs. Outputs are measured at 
a 1.SV point. 

A.C. CHARACTERISTICS TA= 0°Cto10°c, Vee= 5V ±5%, TurboBitOn<B> 

Device Non.(10) 
Symbol From To 5C080-45 5C080·55 5C09G-50 5C09o-&O Turbo Unit 

Min Typ Max Min Typ Max Min Typ Max Min Typ Max Mode 

tpo1 Input Comb. Output 43 53 46 55 +25 ns 

tpo2 110 Comb. Output 45 55 50 60 +25 ns 

tpzx<Bl I or 110 Output Enable 45 55 50 60 +25 ns 

tpxz<B> I or 110 Output Disable 45 55 50 60 +25 ns 

tcLR Asynch. Q Reset 45 55 50 60 +25 ns 
Reset 

NOTES: 
8. Typical Values are at TA = 2s·c, Vee = sv, Active Mode. 
9. tpzx and tpxz are measured at ±0.SV from steady state voltage as driven by spec. output load'. tpxz is measured with 
CL= SpF. 
10. If device is operated with Turbo Bit Off (Non-Turbo Mode), increase time by amount shown. 

CAPACITANCE 
Symbol Parameter Conditions Min Typ Max Unit 

C1N Input Capacitance V1N = OV, f = 1.0 MHz 20 pF 

CouT Output Capacitance VouT = OV, f = 1.0 MHz 20 pF 

PcLK Clock Pin Capacitance VouT = ov, f = 1.0 MHz 20 pF 

Cvpp VppPin Pin 13 on 5C060 50 pF 

Pin 21 on 5C090 80 pF 
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SYNCHRONOUS CLOCK MODE A.C. CHARACTERISTIC 
TA = o·c to 70°C, Vee = 5.ov ± 5%, Turbo Bit On(8l 

Device Non- Device 

Symbol Parameter 5C060-45 5C060·55 Turbo 5C090-50 5C090·60 

Min Typ Max Min Typ Max Mode Min Typ Max Min Typ .Max 

IMAX Max. Frequency 26.0 23.0 (11) 26.0 21.5 
(1 ltsu-No Feedback) 

fcNT Max. Count Frequency 22.0 18.0 (11) 20 16.5 
(1 /lcNr-With 
Feedback) 

tsu1 Input Setup Time to CLK 36 41 +25 36 43 

tsu2 1/0 Setup Time to CLK 38 43 +25 38 46 

tH I or I/ 0 Hold after 0 0 0 0 
CLKHigh 

tco CLK High to Output Valid 22 25 23 25 

lcNT Register Output 45 55 +25 50 60 
Feedback to Register 
Input-Internal Path 

lcH CLK High Time 17.5 21.5 17.5 23 

tcL CLKLowTime 17.5 21.5 17.5 23 

ASYNCHRONOUS CLOCK MODE A.C. CHARACTERISTICS 
TA = o·c to 70°C, Vee= 5.ov ±5%, Turbo Bit On(8l 

Device Non· Device 

Symbol Parameter 5C060-45 5C060-55 Turbo 5C090-50 5C09o-60 

Min Typ Max Min Typ Max Mode Min Typ Max Min Typ Max 

fACNT Max. Count Frequency 22.0 18.0 (11) 20 16.5 
(1 /tAcNr-With Feedback) 

tASU1 Input Setup Time to 10 10 +25 10 10 
Asynch. Clock 

tASU2 110 Setup Time to 12 12 +25 10 10 
Asynch. Clock 

tAH Input or 110 Hold After 15 15 15 15 
Asynch. Clock 

tAcO Asynch. CLK to Output Valid 52 62 60 70 

tACNT Register Output Feedback 45 55 +25 50 60 
to Register Input-Internal 
Path 

tACH Asynch. CLK High Time 17.5 21.5 20 25 

tACL Asynch. CLK Low Time 17.5 21.5 20 25 

NOTES: 
11. Recalculate frequency according to equation at left of table. 
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Non-!10) 
Turbo Unit 
Mode 

(11) MHz 

(11) MHz 

+25 ns 

+25 ns 

ns 

ns 

+25 ns 

ns 

ns 

Non-(10) 
Turbo Unit 
Mode 

(11) MHz 

+25 ns 

+25 ns 

ns 

ns 

+25 ns 

ns 

ns 



SWITCHING WAVEFORMS 

COMBINATORIAL MODE 

INPUT OR 1/0 INPUT 

COMBINATORIAL OUTPUT 

(FROM REGISTER 
TO OUTPUT} 

HIGH IMPEDANCE 

3- STATE 

SYNCHRONOUS CLOCK MODE · 

CLK1,CLK2 

INPUT MAY CHANGE 

(FROM REGISTER 
TO OUTPUT) 

5C060/5C090 

~'"=1------

tcLR 

1-- tpxz 

r--- tpzx 

VALID I 
INPUT 
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HIGH IMPEDANCE 

3-STATE 

VALID OUTPUT 

ASYNCHRONOUSLY 
CLEAR OUTPUT 

INPUT MAY CHANGE 

VALID OUTPUT 

290104-16 

290104-17 
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SWITCHING WAVEFORMS (Continued) 

ASYNCHRONOUS CLOCK MODE 

ASYN. 
CLOCK 
INPUT 

OTHER 
INPUT 

____ ,, 
INPUT MAY CHANGE INPUT MAY CHANGE 

(fROM REGISTER \ / VALID OUTPUT 
_______ To_ou_T_Pu_T_> __________ ./, \....._ ________ _ 

5C060 5C060 

290104-18 

Current in Relation to Frequency Current In Relation to Temperature 
120 

110 

100 

90 

80 

70 

< 60 

5 50 

" 40 .J.> 

30 

20 

10 

,/-
iz: 

LJ 
~r;C ... ~' 
£ 

!Mon-Turbo 

0 
0 5 10 15 20 25 30 35 

120 F':t;:~~J~~I:I:~ 
11of- fc•r=25MHz l""""1 

1::=::~:=1:=:=::=:: 
~ t-t-1- fcNr-10MHz 

60 ~-+---1---1-l_Ij__:t::::_,__-1-t-1= 
50 pl--llf:cNtT:=f1:MHfz'.::, ETu;rbto~ 

] 401--
30 f-->--1-----'--l+-_,___.____.____.___. 

.!cNT= 1MHz, Non-Turbo 
20 Fi'""'f1-1Hr=t;;;~:tl 
10f--1--t-+-l+-+--1--t-+4 
o~~~~~~~~ ....... 

0 20 40 60 8085 

fcNT (MHz) TEMP (C) 

290104-27 290104-25 

Conditions:/T A = o•c, Vee = s.2sv Conditions: Vee = 5.25V, TTL inputs 

5C060/090 
Output Drive Current In Relation to Voltage 

c 

~ 
0 

'S 
Cl. 

'S 
0 

~ 

100 r---r--.--...,..--,...--, 

1~----'--~-~-~~ 

0 2 3 4 5 

v0 Output Voltage (V) 

290104-26 

Conditions: TA = 25'C 
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5C121 
1200 GATE CHMOS 

H-SERIES ERASABLE PROGRAMMABLE LOGIC DEVICE 
• High Performance LSI Semi-Custom 

Logic Replacement for Gate Arrays and 
Conventional Fixed Logic 

• EPROM Technology Based. UV 
Erasable ' 

• Programmable Macrocell and 1/0 
Architecture; up to 36 Inputs or 24 
Outputs, 28 Macrocells Including 4 
Buried Registers 

• All Inputs are Latchable with a 
Programmable Latch Feature 

• High Speed tpo (Max) 50 ns Operating 
Frequency (Max) 20 MHz 

• Low Power; 15 mW Typical Standby 
Dissipation 

• Typical Usable Gate Count of 1200 
2-lnput NANO Gates 

• Advanced Architecture Features 
Including Programmable Output 
Polarity (Active High/Low), Register 
By-Pass and Reset Controls 

• Programmable Clock System for Input 
Latches and Output Registers 

• Product-Term Sharing and Local Bus 
Architecture for Optimized Array 
Performance 

• Compatible with LS TTL and 74HC 
CMOS Logic 

• Register Pre-Load and Erasable Array 
for 100% Generic Testability 

• Programmable "Security Bit" allows 
total protection of proprietary designs 

• Available in a 40-Lead Window Cerdlp 
Package (See Packaging spec, Order #231369) 

The Intel 5C121 H-EPLD (H-series Erasable Programmable Logic Device) is an LSI logic circuit that is user 
customizable through programming. This device can be used to replace gate arrays, multiple programmable 
logic arrays and LS TTL and 74HC CMOS SSI and MSI logic devices. The logic capacity of the 5C121 is 
typically equal to 1200 two-input NANO gates. 

The 5C121 H-EPLD uses CHMOS* EPROM (floating gate) cells as logic control elements instead of fuses. 
Use of Intel's advanced CHMOS 11-E EPROM process technology enables greater logic densities to be 
achieved with superior speed and power performance. The EPROM technology also enables these devices to 
be 100% factory tested by the programming and the erasure of all the EPROM logic control elements in the 
device. 

The architecture of the 5C121 is based on the 'Sum of Products' PLA (Programmable Logic Array) structure 
with a programmable AND array feeding into a fixed OR array. Flexibility in accommodating logical functions 
without the overhead of unnecessary product terms or speed penalties of programmable OR structures is 
achieved through the provision of a range of OR gate widths as well as through product term sharing. The use 
of a segmented PLA structure with local and global connectivity allows for further improvements in perform­
ance. The 5C121 also contains innovative architectural features that provide extensive Input/Output flexibility. 
*CHMOS is a patented process of Intel Corporation. 

RECOMMENDED OPERATING CONDITIONS 
Symbol Parameter Min Max Units 

Vee Supply Voltage 4.75 5.25 v 
V1 INPUT Voltage 0 Vee v 
Vo OUTPUT Voltage 0 Vee v 
TA Operating Temperature 0 70 ·c 
tR INPUT rise Time 500 ns 

tF INPUT fall Time 500 ns 

ILLUSTRATIONS COURTESY OF ALTERA CORPORATION. 
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Pin Configuration 

•12 7 34 12 

1/01 8 33 1, 

1/02 1/024 

1/03 1/023 

1/04 1/022 

1/05 1/021 

vo, 13 1/020 

1/07 14 1/019 

I/Os 15 26 1/0111 

l/Og 16 25 1/017 

1/010 17 1/016 

vo,, 18 1/015 

1/012 19 22 1/014 

21 1/013 
290098-1 

November 1987 
Order Number: 290098--004 
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ARCHITECTURE DESCRIPTION 

The 5C121 H-EPLD has 12 dedicated inputs as well 
as 24 Input/Output pins. All inputs to the circuit 
(both dedicated and 1/0 inputs) may be latched us­
ing transparent 7475 type latches. In addition to 
these 36 input latches, 28 D type registers are also 
provided. 

The internal architecture of the 5C121 H-EPLD is 
based on 28 macrocells. Each macrocell (see Figure 
1) contains a PLA structure (programmable AND ar­
ray product terms connected to an OR gate) and an 
1/0 architecture control block (with a D Flip-Flop) 
that can be programmed to create many different 
output logic structures. This powerful 1/0 architec­
ture can be configured to support both active-high, 
active-low, 3-state, open drain and bi-directional 
data ports all on a 4-bit wide basis. They can also 
act as inputs on a nibble wide basis with optional 
input latching. 

Macrocells in each half of the circuit are grouped 
together for 110 architecture programming. Each 
bank of four macrocells can be further programmed 
on an individual macrocell basis to generate active 
high or active low outputs of the logic function from 
the PLA. 

The primary logic array of the 5C121 is segmented 
into two symmetrical halves that communicate via 
global bus signals. The main array contains some 
15104 programmable elements representing 236 
product terms (AND gates) each containing 64 input 
signals. 

The macrocells share a common programmable 
clock system (described in a later section) that con­
trols clocking of all registers and input latches. The 
device contains 8 modes of clock operation that al­
low logic transition to take place on either rising or 
falling edges of the clock signals. 

The device also contains four macrocells whose out­
puts are not tied to any 1/0 pin but feed back into 
the array to create buried state-functions. The feed­
back path may be either the registered or combina­
tional result of the PLA output. The use of the buried 
state macrocells provides maximum equivalent logic 
density without demanding higher pin-count pack­
ages that consume valuable board space. 
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MACROCELL 1/0 ARCHITECTURE 

The Input/Output architecture of the 5C121 macro­
cell (see Figure 1) can be programmed using both 
static and dynamic controls. The static controls re­
main fixed after the device is programmed whereas 
the dynamic controls may change state as a result 
of the signals applied to the device. 

The static controls set the inversion logic (i), register 
by-pass (ii) and input feedback multiplexers (iii). In 
the latter two cases these controls operate on four 
macrocells as a bank. 

The buried-state registers have simpler controls that 
determine if the feedback is to be registered or com­
binational. 

The inversion control logic, marked (i) in Figure 1, is 
achieved by programming the EPROM control bit 
connected to the same XOR gate as the output from 
the PLA structure. Programming or erasure of this 
EPROM element toggles the OR gate output of the 
PLA between active-high and active-low. The inver­
sion control operates on an individual macrocell ba­
sis. 

The register by-pass control, marked (ii) in Figure 1 
allows the PLA output to either flow through the D 
Flip-Flop as a registered output or by-pass the Flip­
Flop and be a combinational output. 

The dynamic controls consist of a programmable in­
put latch-enable as well as reset and output enable 
product terms. The latch-enable function is common 
throughout the 5C121 and once chosen, will latch all 
the inputs. This function is programmed by the clock 
control block but may also be driven by input signals 
applied to pin 1 (see clock modes-Table 1). 

The reset and output-enable controls are logically 
controlled by single product terms (the logic AND of 
programmed variables in the array). These terms 
have control over banks of four macrocells. 

The output-enable control may be used to generate 
architecture types that include bi-directional, 3-state, 
open drain, or input only structures. 
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Figure 1. 5C121Macrocell1/0 Architecture 

INTERNAL BUS STRUCTURE 

The two identical halves of the 5C121 communicate 
via a series of bucses. The local bus structure used 
for communication within each half of the chip con­
tains 16 conductors that carry the TRUE and COM­
PLEMENT of 8 local macrocells. In the block dia­
gram (Figure 2) of the 5C121 the local macrocells 
are B-1 and B-2 on one hall and A-1 and A-2 en the 
other half. 

2-47 

The global busses (input bus & Global feedback 
from A-3 & B-3 macroceils & buried registers) are 
made up of 48 conductors that span the entire chip. 
These 48 conductors carry the TRUE and COMPLE­
MENT of the twelve primary inputs (pins 2 through 7 
and 33 through 38), signals from 4 Buried Registers 
as well as the global outputs of 8 macrocells in 
groups A-3 and B-3. · 
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A-1 MACROCELLS 

B-1 MACROCELLS 
290098-3 

L. ______ _ 
Figure 2. 5C121 Block Diagram 
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A-2 MACROCELLS A-3 MACROCELLS 

8-2 MACROCELLS R-3 MACROCELLS 

290098-4 

___________________ .J 

Figure 2. 5C121 Block Diagram (Continued) 
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In this illustration a small group of 4 product-terms is 
shared by groups containing 8 product-terms each. 
This feature is most useful in counter applications 
where common terms exist in the functions. 

DETAILED CIRCUIT 
REPRESENTATION 

-0- = 64 INPUT AND GATE 
(ONE PRODUCT TERM) 

5C121 

Figure 3. Shared Product-Term Circuits 
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LOCAL GLOBAL INPUT 
BUS BUS BUS 

290098-5 
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SHARED PRODUCT TERMS 

Macrocells 9 & 10, 11 & 12, 17 & 18 and 19 & 20 (in 
groups A-3 and B-3-the macrocells with global 
feedback) have the facility to share a total of 16 ad­
ditional product terms. This sharing takes place be­
tween pairs of adjacent macrocells. This capability 
enables, for example, macrocells 9 and 10 to ex­
pand to 16 and 8 effective product terms respective­
ly, and for macrocells 11 and 12 both to expand to 
12 effective product terms. Figure 3 shows this shar­
ing technique in detail. This facility is primarily of use 
in state machine and counter applications where 
common product terms are frequently required 
among output functions. 

MACROCELL·BUS INTERFACE 

As discussed earlier, the macrocells within the 
5C121 are interconnected to other macrocells and 
inputs to the device via three internal data busses. 

The product terms span the entire bus structure (lo­
cal feedback, global feedback and input buses) that 

At each intersecting point in the logic array there exists an 
£PROM-type programmable connection. Initially. all connections 
are complete. This means that both the true and complement of all 
inputs are connected to each product-term. Connections are 
opened during the programming process. Therefore any product 
term can be connected to the true or complement of any input 
When both the true and complement connections of any input are 
left intact, a logical false resufts on the output of the AND gate. If 
both the true and complement connections of any input are pro­
grammed open, then a logical "don't care" results for that input. If 
all inputs for a product term are programmed open, then a logical 
true results on the output of the AND gate. 

is adjacent to their macrocell (see Figure 4) so that 
they may produce a logical AND of any of the vari­
ables (or their complements) that are present on the 
busses. 

All macrocells have the ability to return data to the 
local or the global bus. Feedback data may originate 
from the output of the macrocell or from the 1/0 pin. 
Feedback to the global bus communicates through­
out the part. Macrocells that feedback to the local 
bus communicate only to their half of the 5C121. 
Connections to and from the signal busses are 
made with EPROM switches that provide the repro­
grammable logic capability of the circuit. 

Macrocells in groups A-3 and B-3 and the buried 
registers all have global bus connections while mac­
rocells in groups A-1, A-2 and B-1, B-2 have only 
local bus connections (see Block Diagram, Figure 2). 
Advanced features of the Intel Programmable Logic 
Development System II will, if desired, automatically 
select an appropriate macrocell to meet both the 
logic requirements and the connection to an appro­
priate signal bus to achieve the interconnection to 
other macrocells. 

64 INPUT AND GATE 

'--... 

EPROM@ 
CELL 

CONNECTION 11 

EPROM CELL LOCAL GLOBAL INPUT 
ARCHITECTURE FEEDBACK BUS BUS BUS 
SWITCH SIGNALS 

290098-6 

Figure 4. Macrocell-Bus Interface 
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CLOCK MODE CONTROL 

The 5C121 contains two internal clock data paths 
that drive the input latches (transparent 7475 type) 
and the output registers. These clocks may be pro­
grammed into one of 8 operating modes (see clock 
mode Table 1). Figure 1 shows a typical macrocell 
which is driven by the master clock signal CLK and 
the input latch-enable signal ILE. 

The master clock signal is input via pin 1. If pro­
grammed modes 4, 5, 6 & 7 are chosen, a second 
clock signal is required which is input via pin 38 (see 
Figure 5). Table 1 shows the operation of each clock 
programming mode. 

If modes 0, 1, 4, 5, 6 or 7 are chosen (i.e. latching of 
the inputs is required), all inputs, both dedicated and 
1/0, are latched with the same ILE signal. Data ap­
plied to the inputs when CLK1 is low (high) is latched 
when CLK1 goes high (low) and will stay latched as 
long as CLK1 stays high (low). Levels shown in pa­
renthesis are for modes 1, 5 & 7 and levels shown 
outside parenthesis are for modes O, 4 & 6. 

Care is required when using any of the clock modes 
4, 5, 6 or 7, that require two input clock signals to 
ensure that timing hazards are not created. 

ERASURE CHARACTERISTICS 

Erasure characteristics of the 5C121 are such that 
erasure begins to occur upon exposure to light with 
wavelengths shorter than approximately 4000A. It 
should be noted that sunlight and certain types of 
fluorescent lamps have wavelengths in the 3000-
4000A. Data shows that constant exposure to -room 
level fluorescent lighting could erase the typical 
5C121 in approximately three years, while it would 
take approximately one week to cause erasure when 
exposed to direct sunlight. If the 5C121 is to be ex­
posed to these types of lighting conditions for ex­
tended periods of time, conductive opaque labels 
should be placed over the window to prevent unin­
tentional erasure. 

The recommended erasure procedure for the 5C121 
is exposure to shortwave ultraviolet light which has 
the wavelength of 2537A. The integrated dose (i.e., 
UV intensity x exposure time) for erasure should be 
a minimum of fifteen (15) Wsec/cm2. The erasure 
time with this dosage is approximately 15 to 20 min­
utes using an ultraviolet lamp with a 12,000 µW/cm2 

2-52 

power rating. The 5C121 should be placed within 
one inch of the lamp tubes during erasure. The maxi­
mum integrated dose the 5C121 can be exposed to 
without damage is 7258 Wsec/cm2 (1 week @ 

12,000 µW/cm2). Exposure to high intensity UV light 
for longer periods may cause permanent damage. 

PROGRAMMING CHARACTERISTICS 

Initially, and after erasure, all the EPROM control 
bits of the 5C121 are connected (in the "1" state). 
Each of the connected control bits are selectively 
disconnected by programming the EPROM cell into 
their "O" state. Programming voltage and waveform 
specifications are available by request from Intel to 
support programming of the 5C121. 

int81igent ProgrammingTM Algorithm 

The 5C121 supports the inteligent Programming Al­
gorithm which rapidly programs Intel H-ELPDs (and 
EPROMs) using an efficient and reliable method. 
The inteligent Programming Algorithm is particularly 
suited to the production programming environment. 
This method greatly decreases the overall program­
ming time while programming reliability is ensured as 
the incremental program margin of each bit is con­
tinually monitored to determine when the bit has 
been successfully programmed. 

FUNCTIONAL TESTING 

Since the logical operation of the 5C121 is con­
trolled by EPROM elements, the device is complete­
ly factory tested. Each programmable EPROM bit 
controlling the internal logic including the buried 
state registers are tested using application-indepen­
dent test program patterns. After testing, the devic­
es are erased before shipment to customers. No 
post-programming tests of the EPROM array are 
necessary. 

To enable functional evaluation of counter and 
state-machine applications, the 5C121 contains reg­
ister pre-load circuitry. This can be activated by in­
terrupting the normal clocked sequence and apply­
ing Vpp on pin 2 to engage the pre-load state. Under 
these conditions the Flip Flops in the 5C121 can be 
set to any logical condition and then return to normal 
operation. This process simplifies the input se­
quences necessary to evaluate the counter and 
state machine operations. 
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Table 1. Clock Programming (Key: L = Latched; T = Transparent) 

Programmed Input Signals 
Mode Are Latched When: 

0 CLK1 
_/\_ 

L 
(Pin 1) T 

1 CLK1 

~ 
T 

(Pin 1) L 

2 Inputs Not Latched 

3 Inputs Not Latched 

4 CLK1 
_/\_ 

L 
(Pin 1) T 

5. CLK1 

~ 
T 

(Pin 1) L 

6 CLK1 
_/\_ 

L 
(Pin 1) T 

7 CLK1 

~ 
T 

(Pin 1) L 

DESIGN RECOMMENDATIONS 

For proper operation it is recommended that input 
and output pins be constrained to the range GND < 
CV1N or Vour) < Vee- Unused inputs should be tied 
to an appropriate logic level (e.g. either Vee or GND) 
to minimize device power consumption. 

When utilizing a macrocell with an 1/0 pin connec­
tion as a buried macrocell (i.e. just using the macro­
cell for feedback purposes to other macrocells), its 
1/0 pin is a 'reserved pin'. (The Intel Programmable 
Logic Development System II will label the pin 'RE­
SERVED' in the utilization report that it generates.) 
Such an 1/0 pin will actually be an output pin and 
should not be grounded. It should be left unconnect­
ed such that it can go high or low depending on the 
state of the macrocell's output. 

In normal operation Vee/Vpp (pin 40) should be 
connected directly to Vee (pin 39). 
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Output Registers Clock 
Change State When: Configuration 

CLK1 1 Clock 
(Pin 1) '--
CLK1 _r 1 Clock 
(Pin 1) 

CLK1 

'--
1 Clock 

(Pin 1) 

CLK1 _r 1 Clock 
(Pin 1) 

CLK2 

'--
2Clocks 

(Pin38) 

CLK2 

'--
2Clock 

(Pin 38) 

CLK2 _r 2Clocks 
(Pin 38) 

CLK2 2Clocks 
(Pin38) _r 

DESIGN SECURITY 

A single EPROM bit provides a programmable de­
sign secruity feature that controls the access to the 
data programmed into the device. If this bit is set, a 
proprietary design within the device cannot be cop­
ied. This EPROM security bit enables a higher de­
gree of design security than fused-based devices 
since programmed data within EPROM cells is invisi­
ble even to microscopic evaluation. The EPROM se­
curity bit, along with all the other EPROM control 
bits, will be reset by erasing the device. 

LATCH-UP IMMUNITY 

All of the input, 1/0, and clock pins of the 5C121 
have been designed to resist latch-up which is inher­
ent in inferior CMOS structures. The 5C121 is de­
signed with Intel's proprietary CHMOS 11-E EPROM 
process. Thus, each of the 5C121 pins will not expe­
rience latch-up with currents up to 100 mA and volt­
ages ranging from -1V to Vee+ 1V. Furthermore, 
the programming pin is designed to resist latch-up to 
the 13.5V maximum device limit. 
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ILE 

CLK 
(PIN 1) 

CLOCK SIGNALS TO 
'A' HALF' Of' CIRCUIT 

5C121. 

CLK-------. 

"CLOCK CONTROL 
LOGIC" 

TRANSPARENT 
INPUT LATCHES 

(7•75 TYPE} 

CLK =REGISTER CLOCK 
ILE= INPUT LATCH ENABLE 

13 1, 15 ~ CLK2 
OPTIONAL SECOND I '(~IN 38) 

CLOCK INPUT 
290098-7 

Figure 5. Programmable Clock Control System 
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ABSOLUTE MAXIMUM RATINGS"' •Notice: Stresses above those listed under "Abso­
lute Maximum Ratings" may cause permanent dam­
age to the device. This is a stress rating only and 
functional operation of the device at these or any 
other conditions above those indicated in the opera­
tional sections of this specification is not implied. Ex­
posure to absolute maximum rating conditions for 
extended periods may affect device reliability. 

Symbol Parameter Min Max Unit 

Vee Supply Voltage(1) -2.0 7.0 v 
Vpp Programming -2.0 13.5 v 

$upply Voltage(1 l 

V1 DC Input Voltage(1)(2) -0.5 Vee+0.5 v 
Ice DC Vee Current(4) 100 mA 

Ts.!ll._ Storage Temperature -65 +150 ·c 
Tamb Ambient Temperature(3) -10 +85 ·c 
NOTES: 
1. Voltages with respect to ground. 
2. Minimum DC input is -0.5V. During transitions, the in­
puts may undershoot to - 2.0V for periods less than 20 ns 
under no load conditions. 
3. Under bias. 
4. With outputs tristated. 

D.C. CHARACTERISTICS TA = 0° to 10°c, Vee = 5.ov ± 5% 
Symbol Parameter Conditions Min Typ Max Unit 

V1H HIGH Level 2.0 Vee+0.3 v 
Input Voltage 

V1L LOW Level -0.3 0.8 v 
Input Voltage 

VoH HIGH Level lo= -4.0 mA DC 2.4 v 
Output Voltage 

Vol LOW Level lo= 4.0mADC 0.45 v 
Output Voltage 

11 Input Leakage Current V1 = Vee or GND ±10.0 JJ.A 

loz 3-State Output Vo = Vee or GND ±10.0 µA 
Off-State Current 

lss Vee Supply Current (Standby) v, = VccorGND CMOS Inputs 3 mA 
(Note6) 10 = o TILlnputs 30 

Ice Vee Supply Current (Active) No Load CMOS Inputs 50 mA 
f = 10MHz TILlnputs 100 

los Output Short Circuit Current (Note5) 130 mA 

NOTES: 
5. Output shorted for no more than 1 sec. and no more than one output shorted at a time. los is sampled but not 100% 
tested. 
6. Chip automatically goes into standby mode if logic transitions do not occur. (Approximately 100 ns after last transition.) 

A.C. TESTING LOAD CIRCUIT 

341.n 

OEVICE INPUT 
RISE AND FALL 
TIMES< 6nS 

eL=50pF 
290098-8 
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A.C. TESTING INPUT, OUTPUT WAVEFORM 

3.0 

~;>TEST POINTS< INPUT 

0 

OUTPUT 

290098-9 
A.e. Testing: Inputs are Driven at 3.0V for a Logic "1" and OV for 
a Logic "O". Timing Measurements are made at 2.0V for a Logic 
"1 " and 0.8V for a Logic "O" on inputs. Outputs are measured at 
a 1.5V point. 
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A C CHARACTERISTICS T . . A= O" t 70"C V 0 'fCC = 50V ±5% 

Symbol Parameter Device 5C121·50 5C121-65 5C121-90 Unit 
Conditions Min Max Min Max Min Max 

tpo Non-Registered Input or 1/0 50 65 90 ns 
Input to Non-Registered Output 

tpzx<7l Non-Registered Input or 1/0 CL= 30pF 50 65 90 ns 
Input to Output Enable 

tpxz<7l Non-Registered Input or 110 50 65 90 ns 
Input to Output Disable 

tsu Non-Registered Input or 1/0 37 47 62 ns 
Input to Output Register Setup 

tH Non-Registered Input or 1/0 0 0 0 ns 
Input to Output Register Hold 

tcH Clock High Time 20 25 30 ns 

tcL Clock Low Time CL=30pF 20 25 30 ns 

tco Clock to Output Delay 28 33 38 ns 

tcNT Minimum Clock Period (Register Output Feed- 50 55 75 ns 
back to Register Input-Internal Path) 

fcNT Maximum.Frequency (1 /tcNT) 20.0 18.0 13.0 MHz 

fMAX Maximum Frequency (1 ltsu) 25.0 20 16.0 MHz 

tRST Asynchronous Reset Time 50 65 90 ns 

t1LS Set Up Time for Latching Inputs 0 0 0 ns 

t1LH Hold Time for Latching Inputs 15 20 25 ns 

tc1c2 Minimum Clock 1 to Clock 2 Delay 40 50 65 ns 

t1LDFS Input Latch to D-FF Setup Time 
Mode0, 1 

40 50 65 ns 

toFILS D-FF to Input Latch Setup Time 25 30 35 ns 

tP3 Minimum Period for a 65 85 100 ns 
2-Clock System (T c1c2 + tco1l 

!3 Maximum Frequency (1 /tP3) 15.0 12.0 10.0 MHz 

NOTE: 
7. tpzx and tpxz are measured at ±0.5V from steady state voltage as driven by spec. output load. tpxz is measured with 
CL= 5 pF. 

SWITCHING WAVEFORMS 

INPUT OR 1/0 INPUT 

COMBINATIONAL OUTPUT 
INPUT MAY CHANGE 

t--lpxz~ 
HIGH IMPEDANCE 

3-STATE 

HIGH IMPEDANCE 
VALID OUTPUT !-STATE 

290098-11 
290098-10 

NOTE: 
Above waveforms shown for clock modes 2 or 3 (tsu & tH are as in modes 2 & 3; no ILE signal is used). 
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CLOCK MODES 
SWITCHING WAVEFORMS 

1-CLOCK SYSTEM: MODES 0 ANO 1 

CLK1 (PIN 1) 

ti LS 

INPUTS OR -'\ll-T"-""""1.ir----T--"'\ ,+--- ----
1/0 INPUTS -""-1---''---.....,io-- "+--""' ,, ___ _ 

REGISTERED 
OUTPUT----+------------''''"+--------

----tpo---

COMBINATIONAL 
__ .., _________ __,, 

COMBINATIONAL----------­
OR REGISTEREO 

OUTPUT-----------

tpzx==t 

INVERT CLK1 FOR MODE 0 

1-CLOCK SYSTEM: MODES 2 ANO 3 

CLK1 (PIN 1} 

ii't\'.~,1: =:f ""]€ .. 0-f _______ _ 
REGISTERED OUTPUT . ._ _______ _ 

INPUTS OR ~ t 1/0 INPUTS ------

COMBINATIONAL tpo f 
OUTPUT -------+-t-p-xz"""t- ~PZX 1:: 

COMBINATIONAL J 
OR REGISTERED ~>------1 

OUTPUT--------"""· 

INVERT CLK1 FOR MOOE 2 
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CLOCK MODES 
SWITCHING WAVEFORMS (Continued) 

REGISTERED 

2-CLOCK SYSTEMS: MODES 4 THROUGH 7 
CLK1 PIN 1 CONTROLS THE INPUT LATCH CLOCK 

CLK2 PIN 38 CONTROLS THE 0-FF CLOCK. 

OUTPUT ---+------''"---...-ji-------
COMBINATIONAL ---+------1-----+------

0UTPUT ---+------ -----+------
- -----tp_xz_:j COMBINATIONAL -

OR REGISTERED 
OUTPUT--------

INVERT CLK1 FOR MODES 5 & 7 
INVERT CLK2 FOR MODES 4 & 5 

100~~~~~~~~~~ 

50 l===t=:;;;t;:::;;;if;e$~ -
20 L ~ 
10H---ll----ll----l---"i.------I 

loL loH1' 
s r+---11----11-----1----rU-,......_. 

"":\ 
~ 211---11----11-----1----1---ot 

1L---''----''----'---'~--" 

0 2 3 5 

v0 Output Voltage (V) 
290098-20 

Output Drive Current In Relation to Voltage 
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Intel Programmable Logic 
Development System II (IPLDS II) 

The iPLDS II provides all the tools needed to design 
with Intel H-Series EPLDs or compatible devices 
(see Figure 6). It contains comprehensive third gen­
eration software that supports four different design 
entry methods, minimizes logic, does automatic pin 
assignments and produces the best design fit for the 
selected EPLD. It is user friendly with guided menus, 
on-line Help messages and soft key inputs. 

In addition, the iPLDS II contains programmer hard· 
ware in the form of an expansion card for the PC 
with programming software to enable the user to 
program EPLDs, read and verify programmed de­
vices and also to graphically edit programming files. 
The software generates industry standard JEDEC 
object code output files which can be downloaded to 
other programmers as well. 

The iPLDS II has interfaces to popular schematic 
capture packages (Dash series from Futurenet• and 
PC CAPS*• from PCAD) to enable designs to be 
entered using schematics. A more integrated sche· 
matic entry method is provided by SCHEMA 11-PLD, 
a low-cost schematic capture package that supports 
EPLD primitives and user-defined macro symbols. 
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SCHEMA 11-PLD contains the EPLD Design Manag­
er, which provides a single user interface to both 
SCHEMA 11-PLD and iPLS II software. The other de­
sign entry formats supported are Boolean equation 
entry and State Machine design entry. 

The iPLDS II runs on the IBMt PC, PC/XT or PC/AT 
and other compatible machines with the following 
configuration: 

(1) At least one floppy disk drive and hard disk drive 

(2) MS-DOStt Operating System Version 2.0 or lat-
er release 

(3) 640K Memory 

(4) Intel iUP-PC Universal Programmer-Personal 
Computer and GUPI Adaptor (supplied with 
iPLDS II). 

Detailed information on the Intel Programmable Log­
ic Development System II is contained in a separate 
Intel data sheet (Order Number: 280168). 

•FutureNet is a registered trademark of FutureNet Corpora­
tion. DASH is a trademark of FutureNet Corporation. 

.. PC-CAPS is a trademark of P-CAD Corporation. 

tlBM Personal Computer is a registered trademark of Inter­
national Business Machine Corporation. 

ttMS-DOS is a registered trademark of Microsoft Corpora• 
tion. 



Figure 6. Intel Programmable Logic Development System II 
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5C180 
1800-GATE CHMOS 

ERASABLE PROGRAMMABLE LOGIC DEVICE 
• High Performance LSI Semicustom 

Logic Replacement for TTL and 7 4HC 
SSI and MSI Logic 

• CHMOS EPROM Technology-Based UV 
Erasable 

• 48 Macrocells with Programmable 1/0 
Architecture; up to 64 Inputs (16 
Dedicated, 48 1/0) or 48 Outputs 

• High Speed tpo (max) 75 ns Operating 
Frequency (Max) 12 MHz 

• Low Power; 100 µW Typical Standby 
Dissipation 

• Programmable "Security Bit" Allows 
Total Protection of Proprietary Designs 

• Dual Feedback Signals Allowing 1/0 
Pins to Be Used for Buried Logic and 
Dedicated Input 

• Programmable Clock System with Four 
Synchronous Clocks as well as 
Asynchronous Clocking Option on All 
Registers 

• Programmable Registers. Can Be 
Configured as D, T, SR or JK Types 
with Individual Reset Controls 

• Register Pre-Load and Erasable Array 
for 100% Generic Testability 

• 68-Pin J-Lead Chip Carrier and Pin Grid 
Array Packages 
(See packaging spec., Order #231369) 

The Intel 5C180 EPLD (Erasable Programmable Logic Device) is a CH MOS LSI Logic Device capable of 
integrating 1800 to over 2000 equivalent gates of SSl/MSI logic. This user customizable Logic Device is 
available in a 68-pin J-Leaded chip carrier or Pin Grid Array package and has the benefits of low power and 
increased flexibility. 

The 5C180 EPLD uses CH MOS EPROM (floating gate) cells as logic control elements instead of fuses. Use of 
Intel's advanced CHMOS 11-E EPROM process technology enables greater logic densities to be achieved with 
superior speed and power performance. The EPROM technology also enables these devices to be 100% 
factory tested by the programming and the erasure of all the EPROM logic control elements in the device. 

The architecture of the 5C180 is based on the "Sum of Products" PLA (Programmable Logic Array) structure 
with a programmable AND array feeding into a fixed OR array. The 48 macrocells of the 5C180 can be 
partitioned into 4 identical quandrants ea.ch containing 12 macrocells. This device makes use of a segmented 
PLA structure with local and global bus structures to provide for increased performance and greater device 
utilization. The 5C180 has unique architectural features that allow programming of all 48 registers to D, T, SR 
or JK configurations without sacrificing product terms. These registers can be either clocked asynchronously 
or in banks with four synchronous clocks. In addition, the 16 global macrocells have two independent feed­
back paths to the array that allow for buried logic implementation together with use of the 1/0 pin for input 
functions. 

1/0 
1/0 

~~~~~~:'5-~~~~~~~~:s.~ 290111-1 

Figure 1. Pin Configuration 
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L 000000000 
1/0 1/0 ' 00000000000 1/0 1/0 
1/0 1/0 J 00 00 1/0 1/0 
1/0 1/0 H QQ QQ 1/0 1/0 
1/0 1/0 G 00 5C180 00 1/0 1/0 

1/0 GNO r 00 (BOTTOM VIEW) 00 GNO 1/0 

1/0 1/0 [ 00 00 1/0 1/0 
1/0 1/0 0 QQ QQ 1/0 l/O 

1/0 1/0 c 00 00 1/0 1/0 

1/0 1/0 ' 00000000000 1/0 1/0 
• 000000000 

290111-35 

Figure 2. PGA Pin Configuration 

November 1987 
Order Number: 29011 Hl04 
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ARCHITECTURE DESCRIPTION 

Externally, the 5C180 provides 12 dedicated data in­
puts, 4 synchronous clock inputs, and 48 1/0 pins 
which may be individually programmed for input, out­
put, or bi-directional operation. 

The Block Diagram is shown in Figure 2. The internal 
architecture is organized in familiar sum-of-products 
(AND-OR) structure. The 5C180 houses a total of 
480 product terms distributed among 48 Macrocells. 
The basic Macrocell structure is shown in Figure 3. 
Input and feedback signals are selectively connect­
ed to product terms via EPROM cells. The output of 
the AND array feeds a fixed OR gate to produce 
sum-of-products logic. The final output may be com­
binatorial or registered, programmed active high or 
low. Combinatorial, registered, or pin feedback is 
also user-defined. 

The 5C180 is portioned into 4 identical quadrants. 
Each quadrant contains 12 Macrocells. Input signals 
to the Macrocells come from the 5C180 Local and 
Global bus structures. These two buses comprise an 
88-input AND array for each quadrant. The output of 
each Macrocell feeds an 1/0 Architecture Control 
Block which contains output and feedback selection. 

Four dedicated clock inputs provide synchronous 
clock signals to the 5C180 internal registers. There 
is one synchronous clock per quadrant. Therefore 
each clock signal controls a bank of 12 registers. 
CLK1 may be connected to registers in Macrocells 
1-12, CLK2 with Macrocells 13-24, CLK3 with Mac­
rocells 25-36, and CLK4 with Macrocells 37-48. 
With synchronous clocks, the flip-flops are positive 
edge triggered. Both true and complement signals 
for each dedicated clock input may also be used 
within the AND array. All 48 internal registers may be 
individually programmed for synchronous or asyn­
chronous clocking. Asynchronous clocking is possi­
ble via a Macrocell product term. Clock inputs not 
used for synchronous clock signals may be used as 
global bus inputs. 

Invert Select EPROM Bit 

The Invert Select EPROM bit is used to invert the 
product term input into the register. This applies to 
all inputs including double inputs on JK and SR reg­
isters. The invert option allows the highest possible 
logic utilization by use of deMorgan logic inversion. 

At each intersecting point in the logic array there 
exists an EPROM-type programmable connection. 
Initially, all connections are complete. This means 
that both the true and complement of all inputs are 
connected to each product.term. Connections are 
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opened during the programming process. Therefore 
any product term can be connected to the true or 
complement of any input. When both the true and 
complement connections of any input are left intact, 
a logical false results on the output of the AND gate. 
If both the true and complement connections of any 
input are programmed open, then a logical "don't 
care" results for that input. If all inputs for a product 
term are programmed open, then a logical true re­
sults on the output of the AND gate. 

BUS STRUCTURE 

Input and feedback signals are connected to each 
5C180 Macrocell via a Local and Global Bus. Figure 
4 shows the Macrocell-Bus interface for Quadrant D. 
The Global Bus contains 64 input signals while the 
Local Bus has 24. 

Within the 5C180 Macrocell, the product.terms 
share the entire bus structure. Therefore, a logical 
AND of any of the variables (or their complements) 
that is present on the buses may be produced by 
each product term. 

All quadrants share the same Global Bus. Inputs to 
the bus come from the true and complement signals 
of the 12 dedicated data inputs, 4 clock inputs, and 
the 16 Global Macrocell pin feedback signals. 

Each quadrant has its own Local Bus. Inputs to this 
bus come from the 12 quadrant Macrocells. For the 
eight Local Macrocells, the signals can be either 
from the Macrocell internal logic or from the pin. For 
the four Global Macrocells, the signals come from 
the Macrocell internal logic only. 

Table 1 summarizes the Macrocell interconnect. 

Table 1. Macrocell Interconnect 

Pin Macro- Feedback Feedback 
# cell# Structure Interconnect 

Quad 2-9 1-8 Local Quad A 
A 10-13 9-12 Local Quad A 

Global All 

Quad 23-26 13-16 Local QuadB 
B Global All 

27-34 17-24 Local QuadB 

Quad 36-43 25-32 Local Quade 
c 44-47 33-36 Local Quade 

Global All 

Quad 57-60 37-40 Local QuadD 
D Global All 

61-68 41-48 Local QuadD 
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5C180 MACROCELLS 

Within each 5C180 quadrant there are two different 
types of Macrocells; Local Macrocells, Figure 5, and 
Global Macrocells, Figure 6. Both types share an 88-
input AND array and contain a: total of ten product 
terms. Eight product terms are dedicated for logic 
implementation. One product term is reserved for 
Asynchronous Clear to the Marcocell register. The 
remaining product term is used for Output Enable/ 
Asynchronous Clock implementation. Each 5C180 
product term represents an 88-input AND gate. The 
1/0 Architecture Control Block provides each Mac­
rocell with both combinatorial and registered 1/0 
configurations. 

Local Macrocells provide one feedback path into the 
AND array. Combinatorial, registered or pin feed­
back may be selected from the Feedback Select 
Multiplexer. The selected feedback signal is then 

routed to the quadrant local bus. Therefore, the Lo­
cal Macrocell feedback communicates only to Mac­
rocells within the same quadrant. There are a total of 
32 Local Macrocells within the 5C180, with eight per 
quadrant. 

Global. Macrocells contain two independent feed­
back paths to the AND array. Combinatorial or regis­
tered feedback is supplied to the local bus and pin 
feedback is supplied to the global bus. The "dual 
feedback" capability allows the Macrocell to be 
used for internal logic functions as well as a dedicat­
ed input pin. To obtain this configuration, the output 
buffer must be disabled. If the Global Macrocell 1/0 
pin is not being used as a dedicated input, the Mac­
rocell logic may be fed back along the global bus 
allowing routing to any of the 5C180's 48 Macro­
cells. There are 16 Global Macrocells contained in 
the 5C180, four per quadrant. 

QUADRANT 
SYNCHRONOUS 

CLOCK 

-GLOBAL BUS-LOCAL BUS-
OE 

OE/ CLOCK 1-+:i;..-R;:._++~-~:;...--1~-.a::i::..+-I 

~=---1~-, 

LOCAL BUS 

~ '-~~~-..J 

GLOBAL QUADRANT QUADRANT 
DEDICATED A,B,C,D LOCAL 

INPUTS GLOBAL FEEDBACK 
(16 INPUTS) FEEDBACK {12 MACROCELLS) 

{ 1 6 MACROCELLS) 

CLK 

1/0 
ARCHITECTURE 

CONTROL 

FEEDBACK 
SELECT 

Figure 5. Local Macrocell Logic Array 
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Figure 6. Global Macrocell Logic Array 

MACROCELL LOGIC 
CONFIGURATIONS 

Comblnatorlal Selectlon 

In the Combinatorial configuration, eight product 
terms are ORed together to generate the output sig­
nal. The Invert Select EPROM bit controls output 
polarity and the Output Enable buffer is product-term 
controlled. The Feedback Select allows the user to 
choose oombinatorial, 1/0 (pin) or no feedback to 
the respective local and global buses. 

REGISTER SELECTION 

The advanced 1/0 architecture of the 5C180 allows 
four different register types along with combinatorial 
output as illustrated in Figures 7a-7e. The register 
types include a T, D, JK, or SR Flip-Flop and each 
Macrocell 1/0 structure may be independently con­
figured. In addition, all registers have an individual 
asynchronous RESET control from a dedicated 

2-67 

product term derived in the AND array. When this 
dedicated product term is a logical one, the Macro· 
cell register is immediately cleared to a logical zero 
independent of the register clock. The RESET func· 
tion occurs automatically on power-up. 

The four different register types shown in Figures 
7b-7e are described below: 

D- or T-type Flip-Flops 

When either a D- or T-type Flip-Flop is configured 
as part of the 1/0 structure, all eight of the prod­
uct terms into the Macrocell are ORed together 
and fed into the register input. 

JK or SR Registers 

When either a JK or SR register is configured, 
the eight product terms are shared among two 
OR gates (one for the J or S input and the other 
for the K or R input). The allocation for these 
product terms for each of the register inputs is 
optimized by the iPLDS II development software. 
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Buried Logic Selection 

For Global Macrocells, if no output is selected, the 
logic may be "buried" and the 1/0 pin can be used 
as an additional dedicated input. The use of "dual 
feedback" is accomplished by tri-stating the Output 
Enable Buffer. Thus, up to 16 additional dedicated 
inputs may be added without sacrificing the Macro­
cell internal logic. 

In the erased state, the 1/0 architecture is config­
ured for combinatorial active low output with 1/0 
(pin) feedback. 

T 

Q 

RESET 

RESET 

D-

290111-7 

Figure 7a. Combinatorial 1/0 Configuration 

RESET 

D 

Q 

RESET 

290111-8 

Figure 7b. D-Type Flip-Flop Register 
Configuration 
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Figure 7c. Toggle Flip-Flop Register 
Configuration 
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Figure 7d. JK Flip-Flop Register Configuration 
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Figure 7e. SR Fllp-Flop Register Configuration 

MACROCELL OE/CLK SELECT 

Each 5C180 register may be clocked synchronously 
or asynchronously. Figure Ba and 8b shows the 
modes of operation provided by the OE/CLK Select 
Multiplexers for both Local and Global Macrocells. 

The operation of each multiplexer is controlled by 
EPROM bits and may be individually configured for 
each 5C180 Macrocell. 

In Mode 0, the three-state output buffer is controlled 
by a single product term. If the output of the AND 
gate is a logical true then the output buffer is en­
abled. If a logical false resides on the output of the 
AND' gate then the output buffer is seen as high im­
pedance. In this mode the Macrocell flip-flop may be 
clocked by its quadrant synchronous clock input. In 
the erased state, the 5C180 is configured as Mode 
0. 

· 1n Mode 1, the Output Buffer is always enabled. The 
Macrocell flip-flop now may be triggered from an 
asynchronous clock signal generated by the Macro­
cell product term. This mode allows individual clock­
ing of flip-flops from any available signal in the quad­
rant AND array. Because both true and complement 
signals reside in the AND array, the flip-flops may be 
configured for positive or negative edge triggered 
operation. With the clock now controlled by a prod­
uct term, gate clock structures are also possible. 
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In Modes 2 and 3, the Output Buffer is alway~ dis­
abled. The Macrocell flip-flop may still be triggered 
from clock signals generated from the Macrocell 
product term or asynchronous clocks. This mode is 
only possible for Global Macrocells. 
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290111-12 
The register is clocked by the quadrant synchronous clock signal which is common to 11 other Macrocells. The output is enabled by the 
logic from the product term. 
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290111-13 
The output is permanenUy enabled and the register is clocked via the product term. This allows for gated clocks that may be generated 
from elsewhere in the 5C180. 

Figure 8a. Local Macrocell OE/CLK Selection 
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290111-14 
The output la permal*ltly disabled and the register clocked by the quadrant synchronous clock signal. The pin can be used as an Input 
whlle the register or combinational output can be fed back. 
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290111-15 
The output is permanently disabled and the register is clocked via the product term. This allows gated clocks that may be generated 
elaewhere in the 5C180. The pin can be used as in input while the register or combinational output can be fed back. 

Figure Sb. Global Macrocell Addltlonal OE/CLK Selection 
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MACROCELL LOGIC + 1/0 
CONFIGURATIONS. 

The 5C180 Input/Output Architecture provides each 
Macrocell with over 50 possible 110 configurations. 

VI 

i 

! 

COMBINATORIAL 
, 1/0 Selectlon 

Output/Polarity Feedback Bus 

Co(Tlbinatorial/High Comb, Pin, None Local 
Combinatorial/L~w Comb, Pin, None Local 

None Comb Local 
None Pin Local 

Figures 9and10 show the 5C180basic1/0 configu­
rations for both ·the Local and Global Macrocells. 
Along with combinatorial, four register types are 
available. Each Macrocell may be independently 
programmed. 

FEEDBACK 
SELECT 

290111-16 

Figure 9. L.ocal Macrocell 1/0 Configurations 
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D-TYPE FLIP-FLOP 
110 Selection 

Output/Polarity Feedback Bus 

D-Register/High D-Register, Pin, None Local 
D-Register/Low 0-Register, Pin, None Local 

None D-Register Local 
None Pin Local 

Function Table 

D On On+i 
0 0 0 
0 1 0 
1 0 1 
1 1 1 

Figure 9. Local Macrocell 1/0 Configurations (Continued) 

2-73 



intef 5C180 

SYNCHRONOUS 
CLOCK OE/CLOCK 

TOGGLE FLIP·FLOP 
110 Selectlon 

Output/Polarity Feedback 

T-Register/High T-Register, Pin, None 
T-Register/Low T-Register, Pin, None 

None T-Register 
None Pin 

Function Table 

T an an+1 
0 0 0 
0 1 1 
1 0 1 
1 1 0 

Bus 

Local 
Local 
Local 
Local 

SELECT 

FEEDBACK 
SELECT 

OE 

T Q 

c 

Figure 9. Local Macrocell 1/0 Configurations (Continued) 
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JK FLIP-FLOP 
1/0 Selection 

Output/Polarity Feedback Bus 
JK Register/High JK Register, None Local 
JK Register/Low JK Register, None Local 

None JKR~ster Local 

Function Table 

J K ~ On+1 
0 0 0 0 
0 0 1 1 
0 1 0 0 
0 1 1 0 
1 0 0 1 
1 0 1 1 
1 1 0 1 
1 1 1 0 

Figure 9. Local Macrocell 1/0 Configurations (Continued) 
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Figure 9. Local Macrocell 1/0 Configurations (Continued) 
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COMBINATORIAL 
110 Selectlon 

Output/Polarlty Feedback Bua 
Combinatorial/High Comb, Pin, None Local, Global 
Combinatorial/Low Comb, Pin, None Local, Global 

None Comb Local, Global 
None Pin Global 
None Comb/Pin Local/Global 

Figure 10. Global Macrocell 110 Configurations 
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Figure 10. Global Macrocell 1/0 Configurations (Continued) 
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Figure 10. Global Macrocell 1/0 Configurations (Continued) 
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Figure 10. Global Macrocell 1/0 Configurations (Continued) 
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1/0 Selection 

Output/Polarity Feedback 
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None SR Register 
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Figure 10. Global Macrocell 1/0 Configurations (Continued) 
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Erased-State Configuration 

Prior to programming or after erasing, the 1/0 struc­
ture is configured for combinatorial active low output 
with input (pin) feedback. 

ERASURE CHARACTERISTICS 

Erasure characteristics of the 5C180 are such that 
erasure begins to occur upon exposure to light with 
wavelengths shorter than approximately 4000A. It 
should be noted that sunlight and certain types of 
fluorescent lamps have wavelengths in the 3000A-
4000A range. Data .shows that constant exposure to 
room level fluorescent lighting could erase the typi­
cal 5C180 in approximately three years, while it 
would take approximately one week to cause era­
sure when exposed to direct sunlight. If the 5C180 is 
to be exposed to these types of lighting conditions 
for extended periods of time, conductive opaque la­
bels should be placed over the device window to 
prevent unintentional erasure. 

The recommended erasure procedure for the 5C180 
is exposure to shortwave ultraviolet light with a 
wavelength of 2537A. The integrated dose (i.e., UV 
intensity x exposure time) for erasure should be a 
minimum of fifteen (15) Wsec/ cm2. The erasure 
time with this dosage is approximately 15 to 20 min­
utes using an ultraviolet lamp with a 12,000 µ.W/cm2 
power rating. The 5C180 should be placed within 
one inch of the lamp tubes during erasure. The maxi­
mum integrated dose the 5C180 can be exposed to 
without damage is 7258 Wsec/cm2 (1 week at 
12,000 µ.W /cm2). Exposure to high intensity UV light 
for longer periods may cause permanenf'damage to 
the device. 

PROGRAMMING CHARACTERISTICS 

Initially, and after erasure, all the EPROM control 
bits of the 5C180 are connected. Each of the con­
nected control bits are selectively disconnected by 
programming the EPROM cells into their "on" state. 
Programming voltage and waveform specifications 
are available by request from Intel to support pro­
gramming of the 5C180. 

inteligent ProgrammingTM Algorithm 

The 5C180 supports the inteligent Programming Al­
gorithm which rapidly programs Intel H-ELPDs (and 
EPROMs) using an efficient and reliable method. 
The inteligent Programming Algorithm is particularly 
suited to the production programming environment. 
This method greatly decreases the overall program­
ming time while programming reliability is ensured as 

the incremental program margin of each bit is con­
tinually monitored to determine when the bit has 
been successfully programmed. 

FUNCTIONAL TESTING 

Since the logical operation of the 5C180 is con­
trolled by EPROM elements, the device is complete­
ly testable. Each programmable EPROM bit control­
ling the internal logic is tested using application-in­
dependent test program patterns. After testing, the 
devices are erased before shipment to customers. 
No post-programming tests of the EPROM array are 
required. 

The testability and reliability of EPROM-based pro­
grammable logic devices is an important feature 
over similar devices based on fuse technology. 
Fuse-based programmable logic devices require a 
use to perform post-programming tests to insure 
proper programming. These tests must be done at 
the device level because of the cummulative error 
effect. For example, a board containing ten devices 
each possessing a 2% device fallout translates into 
an 18% fallout at the board level (it should be noted 
that programming fallout of fuse-based programma­
ble logic devices is typically 2% or higher). 
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DESIGN RECOMMENDATIONS 

To take maximum advantage of EPLD technology, it 
is recommended that the designer use the Modular 
EPLD Logic Design (MELD) method. The MELD phi­
losophy is derived from the modular programming 
method used in software development. In a modular 
software development environment, the engineer 
designs a modular program (typically on a develop­
ment system), stores it in memory (EPROM), and 
tests the module for functionality. A hardware de­
signer using EPLDs can use this same approach 
when designing logic. The designer develops a mod­
ular logic design on the Intel Programmable Logic 
Development System (iPLDS), stores it in "memory" 
(the EPROM control elements of the EPLD), and 
again tests the module for functionality. If the design 
is in error, the logic designer reprograms the EPLD 
with his new design as easily as a software designer 
can download a new program into memory. 

The MELD philosophy is new to programmable logic 
because EPROM-based PLDs are new. A modular 
logic development process using fused-based PLDs 
would be wasteful since a fuse-based device cannot 
be erased and re-used. 
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For proper operation, it is recommended that all in­
put and output pins be constrained to the voltage 
range GND < MN or Vour) < Vee. Unused inputs 
should be tied to an appropriate logic level (e.g., ei­
ther Vee or GND) to minimize device power con­
sumption. Reserved pins (as indicated in the iPLS II 
REPORT file) should be left floating (no connect) so 
that the pin can attain the appropriate logic level. A 
power supply decoupling capacitor of at least 0.2 µ.f 
must be connected directly between Vee and GND. 

DESIGN SECURITY 

A single EPROM bit provides a programmable de­
sign security feature that controls the access to the 
data programmed into the device. If this bit is set, a 
proprietary design within the device cannot be cop­
ied. This EPROM security bit enables a higher de­
gree of design security than fused-based devices 
since programmed data within EPROM cells is invisi­
ble even to microscopic evaluation. The EPROM se­
curity bit, along with all the other EPROM control 
bits, will be reset by erasing the device. 

LATCH-UP IMMUNITY 

All of the input, 110, and clock pins of the 5C180 
have been designed to resist latch-up which is inher­
ent in inferior CMOS structures. The 5C180 is de­
signed with Intel's proprietary CHMOS 11-E EPROM 
process. Thus, each of the 5C180 pins will not expe­
rience latch-up with currents up to 100 mA and volt­
ages ranging fronm -1V to Vee + 1V. Furthermore, 
the programming pin is designed to resist latch-up to 
the 13.5V maximum device limit. 

INTEL PROGRAMMABLE LOGIC 
DEVELOPMENT SYSTEM II (IPLDS II) 

The iPLDS II graphically shown in Figure 11 provides 
all the tools needed to design with Intel H-Series 
EPLDs or compatible devices. In addition to provid­
ing development assistance, iPLDS II insulates the 
user from having to know all the intricate details of 
EPLD architecture (the machine will optimize a de­
sign to benefit from architectural features). It con­
tains comprehensive third generation software that 
supports four different design entry methods, mini-
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mizes logic, does automatic pin assignments and 
produces the best design fit for the selected EPLD. 
It is user friendly with guided menus, on-line Help 
messages and soft key inputs. 

In addition, the iPLDS II contains programmer hard­
ware in the form of an iUP-PC Universal Program­
mer-Personal Computer to enable the user to pro­
gram EPLDs, read and verify programmed devices 
and also to graphically edit programming files. The 
software generates industry standard JEDEC object 
code output files which can be downloaded to other 
programmers as well. 

iPLDS II has interfaces to popular schematic capture 
packages (including Dash series from Future-NET" 
and PC-CAPS** from P-CAD) to enable designs to 
be entered using schematics. A more integrated 
schematic entry method is provided by SCHEMA 11-
PLD, a low-cost schematic capture package that 
supports EPLD primitives and user-defined macro 
symbols. SCHEMA 11-PLD contains the EPLD Design 
Manager, which provides a single user interface to 
both SCHEMA 11-PLD and iPLS II software. The oth­
er design formats supported are Boolean equation 
entry and State Machine design entry. 

The iPLDS II operates on the IBMt PC/XT, PC/AT, 
or .other compatible machine with the following con­
figuration: 

1. At least one floppy disk drive and hard disk drive. 

2. MS-DOS:!: Operating System Version 3.0 or great­
er. 

3. 640K Memory. 

4. Intel iUP-PC Universal Programmer-Personal 
Computer (supplied with iPLDS II). 

5. GUPI LOGIC Adaptor 

6. A color monitor is suggested. 

Detailed information on the Intel Programmable Log­
ic Development System II is contained in a separate 
Intel data sheet. (Order Number: 280168) 

•• 

t 

FutureNET is a registered trademark of Future­
NET Corporation. DASH is a trademark of Fu­
tureNET Corporation. 

PC-CAPS is a trademark of P-CAD Corpora­
tion. 

IBM Personal Computer is a registered trade­
mark of International Business Machines Cor­
poration. 

MS-DOS is a registered trademark of Micro­
soft Corporation. 
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Figure 11. IPLDS II Intel Programmable Logic Development System 
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ABSOLUTE MAXIMUM RATINGS* 
Symbol Parameter Min Max 

Vc,c Supply Voltage(1l. -2.0 7.0 

Vpp Programming -2:0 13.5 
Supply Voltage(1) 

v, .OC Input Voltage(1)(2) -0.5 V-cc+0.5 

tstg Storage Temperature -65 +150 

iamb Ambient Temperatur~(3l -10 +85 

NOTES: 

Units 

v 
v 

v 
·c 
·c 

•Notice: Stresses above those Hsted under '~bso­
lute Maximum Ratings" may cause permanent dam­
age to the device. This is a stress rating only and 
functional operation of the device at these or any 
other conditions above those indicated in the opera-. 
tional sections of this specification is not implied. Ex-. 
posure to absolute maximum rating. conditions for 
extended periods may affect device reliability. 

NOTICE: Specifications contained within the 
following tables are subject to change. 

1. Voltages with respect to ground. . 
2. Minimum DC input is -0.5V. During transitions, the inputs may undershoot to -2.0V for periods less than 20 ns under no 
load conditions. 
3. Under bias. Extended temperature versions are also available. 

D.C. CHARACTERISTICS TA = o• to + 1o•c, Vee = 5V ± 5% 

Symbol Parameter/Teat Conditions Min Typ Max Unit 

V1H(4) High Level Input Voltage 2.0 Vee+ o.3 v 
V1L(4) Low Level Input Voltage -0.3 0.8 v 
VoH15l High Level Output Voltage 2.4 v 

lo = -4.0 mA D.C., Vee = min. 

Vol Low Level Output Voltage 0.45 v 
lo = 4.0 mA D.C., Vee = min. 

11 Input Leakage Curren~ ±10 /.LA 
Vee = max., GND < Vour < Vee 

loz Output Leakage Current ±10 /.LA 
Vee = max .• GND < Vour < Vee 

lsc(6) Output Short Circuit Current mA 
Vee = max., Vour = o.5V 

lsel7> Standby Current 20 150 /.LA 
Vee = max., V1N = Vee or GND, 
Standby mode 

Ice Power Supply Current 30 45 mA 
Vee = max., V1N = Vee or GND, 
No load, Input Freq. = 1 .MHz 
Active mode (Turbo = Off), 

. Device prog. as 4 12-bit Ctr. 

NOTES: 
4. Absolute ·values with respect to device GND; all over and undershoots due to system or tester noise are included. 
5. lo at CMOS levels (3.84 V) = -2 mA 
6. Not more than 1 output should be tested at a time. Duration of that test must not exceed 1 second. 
7. With Turbo Bit Off, device automatically enters standby mode approximately 100 ns after last input transition. 
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A.C. TESTING LOAD CIRCUIT A.C. TESTING INPUT, OUTPUT WAVEFORM 

5V 

DEVICE C~+--+-C:> TO TEST 
OUTPUT SYSTEM 

. CL (INCLUDES JIG 
CAPACITANCE) 

INPUT 

OUTPUT 

3.0 
2.0> ---0.8 TEST POINTS -...... 

0 

DEVICE INPUT 
RISE AND FALL 
TIMES< 6nS 

CL= SapF 
290111-28 

29a111-27 
A.C. Testing: Inputs are Driven at 3.av for a Logic "1" and av for 
a Logic "a". Timing Measurements are made at 2.av for a Logic 
"1" and a.av for a Logic "a" on inputs. Outputs are measured at 
a 1.5V point. 

A.C. CHARACTERISTICS TA = o•c to + 1o·c, Vee = 5V ± 5%, Turbo Bit On(BJ 

Symbol From To 5C180·75· 5C180·90 Non(10) Turbo 
Unit 

Min Typ Max Min Typ Max Adjust 

tpo1 Input Comb. Output 70 85 +30 ns 

tpo2 Local 1/0 Comb. Output 75 90 +30 ns 

tpoG Global 110 Comb. Output 70 85' +30 ns 

tpzx<9l I or 110 Output Enable 75 90 +30 ns 

tpxz<9J I orl/O Output Disable 75 90 +30 ns 

tcLR Asynch. Reset Q Reset 75 90 +30 ns 

NOTES: 
8. Typ. Values are at TA = 25'C, Vee = 5V, Active Mode. 
9. tpzx and tpxz are measured at ± 0.5V from steady state voltage as driven by spec. output load. tpxz is measured with 
CL= 5 pF. 
10. If device is operated with Turbo Bit Off (Non-Turbo Mode), increase time by amount shown. 

CAPACITANCE 
Symbol Parameter Conditions Min Typ Max Unit 

C1N Input Capacitance V1N = OV, f = 1.0 MHz 15 pF 

Cour Output Capacitance Vour = ov, f = 1.0 MHz 15 pF 

CcLK Clock Pin Capacitance Vour = ov, f = 1.0 MHz 25 pF 

Cvpp Vpp Pin Capacitance Pin 19, Vour = ov, f = 1.0 MHz 160 pF 
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SYNCHRONOUS CLOCK MODE A.C. CHARACTERISTICS 
TA= o•c to +1o•c, Vee= 5V ±5%, Turbo Bit on<11i 

Symbol Parameter 5C180-75 5C180·90 Non(12) Turbo 
Unit 

Min Tyf> Max Min Typ Max Adjust 
-"-

fMAX Max Frequency 19.6 16.1 MHz 
1 ltsu-:-No Feedback 

feNT Max. Count Frequency 15.1 12.2 MHz 
1/tcNT-With Feedback 

tsu1 Input Setup Time to Clk 51 62 +30. ns 

tsu2 Local 1/0 Setup Time to Clk 56 67 +30 ns 

tsuG Global 110 Setup Time to Clk 51 62 +30 ns 

tH I or 1/0 Hole;! after Qlk High 0 0 ns 

tco Clk High to Output Valid 30 35 ns 

teNT Register Output Feedback 66 82 +30 ns 
to Register ln~t-
Internal Path 

tcH Clk High Time 25 30 ns 

tcL ClklowTime 25 30 ns 

NOTES: 
11. Typ. Values are at TA = 2s•e, Vee = sv, Active Mode. 
12. If device is operated with Turbo Bit Off (Non-Turbo Mode), Increase time by amount shown. 

ASYNCHRONOUS CLOCK MODE A.C. CHARACTERISTICS 
TA= o•c to +1o·c. Vee= 5V ±5%, Turbo Bit On(13) 

Symbol Parameter 5C180-75 5C180-90 Non(14) Turbo 
Unit 

Min Typ Max Min Typ Max Adjust 
-

fAMAX Max. Frequency 66.7 40.0 MHz 
1 /tAsu-No Feedback 

fAeNT Max. Frequency 15.1 12.2 MHz 
1/tAeNT-With Feedback 

tAsu1 Input Setup Time to Asynch. Clock 17 23 +30 ns 

tASU2 1/0 Setup Time to Asynch. Clock 22 28 +30 ns 

tAH Input or 110 Hold to Asynch. Clock 30 30 ns 

tACO Asynch. Clk to Output Valid 75 90 ns 

tAeNT Register Output Feedback 66 82 +30 ns 
to Register Input-
Internal Path 

tAeH Asynch. Clk High Time 25 30 ns 

tAeL Asynch. Clk Low Time 25 30 ns 

NOTES: 
13. Typ. Values are at TA = 2s•e, Vee = sv. Active Mode. 
14. If device is operated with Turbo Bit Off (Non-Turbo Mode), increase time by amount shown. 
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SWITCHING WAVEFORMS 

COMBINATORIAL MODE 

INPUT OR 1/0 INPUT 

COMBINATORIAL OUTPUT 

COMBINATORIAL OR 
REGISTERED OUTPUT 

5C180 

~~=1------
1--tPXZ-

~~~~~-H-~~H~IM~P~m~A~NC_E~~~-
/ 3-STATE 

r--tpzx={..._ ____ _ 
HIGH IMPEDANCE _ VALID OUTPUT 

3-STATE 

-~s 
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ASYNCHRONOUSLY 
CLEAR OUTPUT 

290111-29 
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SWITCHING WAVEFORMS (Continued) 

SYNCHRONOUS CLOCK MODE 

CLK1,CLK2, 

CLK3,CLK4 

INPUT MAY CHANGE 

(FROM REGISTER 
TO OUTPUT) 

ASYNCHRONOUS CLOCK MODE 

ASYN. 
CLOCK 
INPUT 

OTHER 
INPUT 

tACH 

INPUT MAY CHANGE 

(FROM REGISTER 
TO OUTPUT) 

VALIDI 
INPUT 
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INPUT MAY CHANGE 

VALID OUTPUT 
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tACL 

INPUT MAY CHANGE 

VALID OUTPUT 
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TA= o·c. Vee= 5.25V 

Vee= s.2sv 

'< 
5 
~ 

5C180 

240 
220 
200 
180 
160 

L 
L 

J 
140 
120 

o~ 
1-7LJ 
V JZ Non-Turbo 

100 
80 
60 
40 

i 
l 20 

0 
0 5 10 

fcNT (MHz) 

2 

20 

Current In Relation to Frequency 

240 
220 
200 
180 
160 
140 

'< 120 
5 100 
O' 

80 g, 
60 
40 
20 fcNT = 1 MHz,Non-Turbo 

0 
0 20 40 60 8085 

TEMP (C) 

Current in Relation to Temperature 

-c 
~ 
:> 

0 

20 z 

10 L 
loL 

21t---+~--+-~-J-~-+--j~ 

1'--~'--~'--~'-----''----" 

0 2 3 4 5 

v 0 Output Voltage (V) 

290111-32 

290111-33 

290111-34 

Output Drive Current In Relation to Voltage 
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5AC312 
ERASABLE PROGRAMMABLE 

LOGIC DEVICE 
• High Performance LSI Semi-Custom 

Logic Alternative for Low-End Gate 
Arrays, TTL, and 74HC· or 74HCT SSI 
and MSI l,.oglc 

• High Speed tpd (max) 25 ns, 40 MHz 
Operating Performance 

• Erasable Array for 100% Generic 
Testability 

5AC312 KEY FEATURES 
• 12 Macrocells with Programmable 1/0 

Architecture; Up To 22 Inputs (10 
Dedicated, 12 1/0) or 12 Outputs 

• 8 Programmable Inputs; Each Can Be 
Programmed Individually to Implement 
Latch, Register or Flow-Through 
Structure; Synchronous or 
Asynchronous Operation 

• Software-Supported Product Term 
Allocation between Adjacent 
Macrocells 

CLK/INP1 

1/0.11 

LINP1 3 

LINP2 

LINP3 

LINP8 

1/0.1 

GND 

Vee 
1/0.12 

1/0.9 

1/0.10 

1/0.7 

1/0.8 

1/0.6 

1/0.5 

1/0.4 

1/0.3 

1/0.2 

ILE/ICLK/INP2 

290156-1 

• CHMOS 111-E EPROM Technology 
based; UV-Erasable 

• Low Power; 150 µA Standby Current 

• Programmable Security Bit Allows 
100% Protection of Proprietary Designs 

• Dual Feedback on All Macrocells for 
Burled Register Implementation and 
Input Usage 

• 2 Product Terms on All Macrocell 
Control Signals 

• Programmable Power Option for 
"Stand-By" Operation 

• Available In 24-Pln 0.3" DIP and 28-Pin 
PLCC Packages 
(See Packaging Spec., Order Number # 231369) 

a: z ... a: ::: ~ 8 8 ci ~ ~~d > >::;,,.::;,,. 

LINP2 1/0.10 

1/0.7 

1/0.8 

1/0.6 

1/0.5 

LINP7 1/0.4 

N.C. N.C. 

GO ~ C !£ ~ C'i ~ 
~ ~ t5 ~~~~ 

"" .... 
!.! 
';:)-
= 

290156-2 

Figure 1. Pin Configurations 
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INTRODUCTION 

The Intel 5AC312 CHMOS EPLD (Erasable Pro­
grammable Logic Device)' represents an innovative 
approach to overcoming the ·primary limitations of 
standard PLDs. Due to a proprietary 1/0 architecture 
and macrocell structure, the 5AC312 is capable of 
implementing high performance logic functions more 
effectively than previously possible. It can. be used 
as an alternative to low~end gate arrays, multiple 
programmable logic devices or LS-, HC- or HGT SSI 
and MSI logic devices. 

The 5AC312 uses advanced CHMOS EPROM cells 
as logic control elements instead of poly-silicon fus­
es. This technology allows the 5AC312 to operate at 
levels necessary in high performance systems while 
significantly reducing the power consumption of this 
device. Its programmable stand-by function reduces 
power consumption to almost "zero" in applications 
where speed is traded for power consumption. 

ARCHITECTURE DESCRIPTION 

The architecture of the 5AC312 is based on the fa­
miliar "Sum-Of-Products" programmable AND, fixed 
OR structure, though the 5AC312 macrocell eon­
tains a number of significant functional enhance­
ments. This device can implement both combina­
tional and sequential logic functions through 

a highly flexible macrocell and 1/0 structure. In addi­
tion, the 5AC312 has been designed to effectively 
Implement both combinational-register and register­
combinational-register forms of logic to easily ac­
commodate state machine designs. 

Figure 2 shows a global view of the 5AC312 archi­
tecture. The 5AC312 contains a total of 12 1/0 mac­
rocells, 8 user-programmable input structures, and 2 
inputs that ·can be programmed to serve as either 
combinatorial inputs or clock inputs for the input and 
output register functions. Each macrocell is further 
sub-divided into 16 Product Terms with 8 Product 
Terms dedicated to the control signals OE, PRE­
SET, ASYNCH. CLK and CLEAR, and 8 Product 
Terms available for the general data array. 

The basic macrocell architecture of the 5AC312, 
shown in Figure 3, includes a user-programmable 
AND array and a user-configurable OR array. The 
inputs to the programmable AND array originate 
from the true and complement signals from the pro­
grammable input structure, the dedicated inputs, and 
the 24 feedback paths from the 12 1/0 macrocells. 
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Programmable Input Structure 

Figure 4 shows a block diagram of the 5AC312 input 
architecture. This device contains 8 user-program-
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RING 1 1/0 1/0.1 ·------ MACROCELL I 

LOGIC ARRAY I 
I 
I 
I 

CLK/INP1 
I 

1/0.2 ,------
I 
I 
I 
I 

INP I 
LINP1 REG/LATCH L------ 1/0.3 

I 
I 
I ., 
I 

INP 1 
1/0.4 LINP2 REG/LATCH r------

I 
I 
I 
I 

INP 
I 

LINP3 L--·--- 1/0.5 REG/LATCH I 
I 
I 
I 
I 

INP I 
LINP4 REG/LATCH ·------ 1/0.6 

LINPS INP ·------ 1/0.7 REG/LATCH I 
I 
I 
I 
I 

LINP6 INP I 
1/0.8 REG/LATCH ,------

I 
I 
I 
I 

INP I 
LINP7 L------ 1/0.9 REG/LATCH I 

1 
1 ., 
1 

LINPB INP 1 
1/0.10 REG/LATCH r-·--·-

1 
1 
1 
1 
1 

ILE/ICLK/INP2 L------ 1/0.11 I 
I 
I 
I 
I 
I ·------ 1/0.12 
RING 2 

290156-3 

Figure 2. 5AC312 Architecture 
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5AC312 

INP o-----+llN 
PIN 

OUT t----------.. LOGIC 
ARRAY 

P-TERM 

A 

ILE/ICLK c:-----------------­
PIN 

290156-5 

NOTE: 
Flow-through input selected by connecting ILE P-Term to Vee. 

Figure 4. 5AC312 Input Structure 

mable input structures that can be individually con­
figured to work in one of five modes: 

- tnput register (0-register), synchronous opera­
tion 

- Input register (0-register), asynchronous opera-
tion 

- Input latch (0-latch), synchronous operation 
- Input latch (0-latch), asynchronous operation 
- Flow-through input 

The configuration is accomplished through the pro­
gramming of EPROM architecture control bits by 
iPLS II V1 .5 under user-control. If synchronous oper- .. 
ation is chosen, pin 13 of the device becomes an 
ILE/ICLK (Input Latch Enable) input global to all in­
put latch/register structures. For asynchronous op­
eration, pin 13 can be used as a normal input (flow­
through input) to the device while a separate Prod­
uct Term in the control array is used to derive an 
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ILE/ICLK signal for the input structure. Because the 
clock signal for each input structure can be individu­
ally selected, a mix between synchronously and 
asynchronously clocked input structures is also pos­
sible. 

Table 1 shows the input latch/register function table 
with respect to the synchronous ILE/ICLK input. 

Table 1. 5AC312 Input Latch/Register Functions 

Input Type ILE/ICLK D Q 

Latch H H H 
Latch H L L 
Latch L x Qn 
0-FF J. H H 
0-FF J. L L 
Flow-Through x H H 
Flow-Through x L L 

H = HIGH Level L = LOW Level X = Don't Care 
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Macrocell Array 

Each of 12 macrocells in the 5AC312 contains 8 
Product Terms to support logic functions. These 8 
Product Terms are subdivided into 2 groups each 
containing 4 Product Terms. This grouping of Prod­
uct Terms supports the proprietary Product Term al­
location scheme. 

In addition to these 8 Product Terms, each macro­
cell features .2 Product Terms for each of the four 
control signals. Control signals in the 5AC312 are: 
Output Enable (OE), asynchronous 1/0 register pre­
set (PRESET), asynchronous clock for 1/0 registers 
(ASYNCH. CLK), and asynchronous 1/0 register re­
set (CLEAR). 

Product Term Allocation 

Product Term allocation is defined as taking logic 
resources (p-terms) away from macrocells where 
they are not used to support demand for more than 
8 Product Terms in other areas of the chip. In the 
5AC312, this allocation can occur in increments of 4 
p-terms between adjacent macrocells. 

Example: 

The logic function in macrocell 4 requires 16 
p-terms. In this case, the iPLS II software allocates 4 
p-terms from the previous macrocell in Ring 1 (mac­
rocell 3) and 4 p-terms from the next macrocell in 
Ring 2 (macrocell 5) to accumulate a total of 16 
p-terms (8 + 4 + 4). This implementation leaves 
macrocells 3 and 5 with a remainder of 4 p-terms 
each. These remaining p-terms in macrocells 3 and 
5 can also be allocated away to or can be supple-
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mented with p-terms from their respective previous/ 
next macrocells in Ring 1. 

Applying this scheme to the 5AC312 it becomes 
clear that any macrocell inside the device can sup­
port logic functions requiring between O and 16 
Product Terms. Product Terms allocated away from 
a macrocell do not affect that macrocell's output 
structure. If all Product Terms are allocated ''away" 
from a macrocell, the input to that macrocell's 1/0 
control block is tied to GND. This polarity can be 
changed by programming the invert select EPROM 
bit. The 1/0 register as well as all secondary controls 
to this 1/0 control block are still available and can be 
used if needed. 

The 12 macrocells available in the 5AC312 are 
grouped into two "rings" with 6 macrocells per ring. 
Product Terms can be allocated in a "shift register" 
mode inside a ring; allocation of Product Terms be­
tween the rings is not supported. The two rings are 
shown in Figure 2 and listed in Table 2. 

The Product Term allocation scheme described 
above is automatically supported by iPLDS II V1 .5 
and is transparent to the user. Users can still use 
explicit pin assignments, but should assign pins in a 
way that does not conflict with p-term allocation. 

Table 2. Product Term Allocation Rings 
Ring 1 Rlng2 

Current Next Previous Current Next Previous 
Macro- Macro- Macro- Macro- Macro- Macro-

cell cell cell cell cell cell 

1 2 6 7 8 12 
2 3 1 8 9 7 
3 4 2 9 10 8 
4 5 3 10 11 9 
5 6 4 11 12 10 
6 1 5 12 7 11 
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LOGIC ARRAY 

5AC312 

LOWER HALF 
P-TERilS 1-4 

UPPER HALF 
P-TERMS 5-8 

P-TERMS ALLOCATED TO 
MACROCELL #4 
(NEXT MACROCELL IN RING) 

UPPER HALF P-TERMS ALLOCATED TO 
P-TERMS 5-8 MACROCELL 14 

MACROCELL 
#3 

MACROCELL 
#4 

(PREVIOUS MACROCELL IN RING) 

Figure 5. Product Term Allocatlon (8 + 4 + 4) 
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Invert Select EPROM Bit 

The invert select EPROM bit is used to invert the 
result of a logic combination achieved in a macrocell 
prior to its input into the 1/0 control block of this 
particular macrocell. By employing this invert bit, 
certain equations can experience . a reduction in 
Product Terms through the use of De Morgan's in­
version. This feature is also supported by iPLDS II 
V1 .5, though it can be disabled by the user. 

Macrocell 1/0 Control Block 

Each macrocell in the 5AC312 has the ability to im­
plement D, T, SR, and JK registered outputs as well 
as combinatorial outputs. The asynchronous set and 
reset inputs to each macrocell register allows imple­
mentation of true SR Flip-Flops. Registered outputs 
may be. clocked from the synchronous CLK/INP1 
pin or asynchronously clocked by the 2 Product 
Terms available for ASYNCH. CLK. The 5AC312 
also features separate input and feedback paths 
(dual feedback) on all macrocell 1/0 control blocks. 
This enables the designer to utilize input pins when 
the associated macrocells have been assigned a no 
output with buried feedback attribute .. Multiplexed 
1/0 is accomplished by controlling the output buffer 
associated with each macrocell using the 2 Product 
Terms set aside for implementing an OE function. 

Power-On Characteristics 
The 110 registers of the 5AC312 will experience a 
reset to their inactive state upon Vee power-up. Us­
ing the PRESET function available to each macro­
cell, any particular register preset can be achieved 
after power-up. 5AC312 inputs and outputs begin re­
sponding approximately 20 µ.s after Vee power-up 
or after a power-loss/power-up sequence. 

Stand-by Function 
By programming a certain bit location in the 5AC312, 
a trade off between speed and power consumption 
can be selected for this device. If this bit location, 
referred to as the "Turbo Bit", is left unprogrammed 
and no transition occurs at the device inputs for a 
period of approximately 100 ns, the device will pow­
er-down the internal array while leaving the outputs 
driving at their previous levels. Once an input tran­
sition occurs, the 5AC312 will pow~r-up the array 
and react to the change in input conditions. The ar­
ray power-up sequence requires an average of 1 O ns 
additional propagation delay for this function. Power 
supply current during power-down is typically no 
more than 150 µ.A. 

If this bit location is programmed, the power-down 
circuitry ·is disabled and the device will not power 
down even if there are "no activity" periods longer 
than 100 ns. This avoids the additional 1 O ns delay 
in applications where performance is more important 
than power savings. 

lnt8 11gent ProgrammlngTM Algorlthm 

The 5AC312 supports the inteligent Programming al­
gorithm which rapidly programs Intel H-EPLDs, 
EPROMs and Microcontrollers while maintaining a 
high degree of reliability. It is particularly suited for 
production programming environments. This method 
greatly· decreases the overall programming time 

. while programming reliability is ensured as the incre­
mental program margin of each bit has been verified 
in the programming process. (Programming informa­
tion for the 5AC312 is available from Intel by re­
quest.) 
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FUNCTIONAL TESTING 

Since the logical operation of the 5AC312 is con­
trolled by EPROM elements, the device is complete­
ly testable during the manufacturing process. Each 
programmable EPROM bit controlling the internal 
logic is tested using application-independent test 
patterns. EPROM cells in the 5AC312 are 100% 
tested for programming and erase. After testing, the 
devices are erased before shipments to the custom­
ers. No post-programming tests of the EPROM array 
are required. 

The testability and reliability of EPROM-based pro­
grammable logic devices is an important feature 
over similar devices based on fuse technology. 
Fuse-based programmable logic devices require a 
user to perform post-programming tests to insure 
device functionality. During the manufacturing pro­
cess, tests on these parts can only be performed in 
very restricted manners in order to avoid a pre-pro­
gramming of the array. 

INTEL PROGRAMMABLE LOGIC 
DEVELOPMENT SYSTEM II (IPLDS II) 

Release 1.5 of iPLDS II graphically shown in Figure 
6 provides all the tools needed to design with the 
5AC312 EPLD. In addition to providing development 
assistance, iPLDS II insulates the user from having 
to know all the intricate details of EPLD architecture 
(the machine will optimize a design to benefit from 
architectural features). It contains comprehensive 
third generation software that supports four different 
design entry methods, minimizes logic, does auto­
matic pin assignments and produces the best design. 
fit for the selected EPLD. It is user friendly with guid­
ed menus, on-line Help messages and soft key in­
puts. 

In addition, the iPLDS II contains programmer hard­
ware in the form of an iUP-PC Universal Program­
mer-Personal Computer to enable the user to pro­
gram EPLDs, read and verify programmed devices 

and also to graphically edit programming files. The 
software generates industry standard JEDEC object 
code output files which can be downloaded to other 
programmers as well. 

The iPLDS II has interfaces to popular schematic 
capture packages (including Dash series from Fu­
tureNet• and PC-CAPS** from PCAD) to enable de­
signs to be entered using schematics. A more inte­
grated schematic entry method is provided by 
SCHEMA 11-PLD, a low-cost schematic capture 
package that supports EPLD primitives and user-de­
fined macro symbols. SCHEMA 11-PLD contains the 
EPLD Design Manager, which provides a single user 
interface to both SCHEMA 11-PLD and iPLS II soft­
ware. The other design formats supported are Boo­
lean equation entry and State Machine design entry. 

The iPLDS operates on the IBMt PC/XT, PC/AT, or 
other compatible machine with the following configu­
ration: 

1. At least one floppy disk drive and hard disk drive. 

2. MS-DOStt Operating System Version 3.0 or 
greater. 

3. 640K Memory. 

4. Intel iUP-PC Universal Programmer-Personal 
Computer and GUPI Adaptor (supplied with 
iPLDS II) 

2-99 

5. A color monitor is suggested. 

Detailed information on the Intel Programmable Log­
ic Development System II is contained in a separate 
Intel data sheet. (Order Number: 280168) 

• FutureNet is a registered trademark of Future­
Net Corporation. DASH is a trademark of Fu­
tureNet Corporation. 

** PC-CAPS is a trademark of P-CAD Corporation. 

t IBM Personal Computer is a registered trade­
mark of lnternatiol')al Business Machines Cor­
poration. 

tt MS-DOS is a registered trademark of Microsoft 
Corporation. 
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5AC312 

ABSOLUTE MAXIMUM RATINGS* 

Supply Voltage (Vee) (1) •••••••••• -2.0V to + 7.0V 

Programming Supply 
Voltage (Vpp) (1) ••••••••••••• -2.0V to+ 13.5V 

D.C. Input Voltage (Vi)C1, 2) ••• -0.5V to V cc + 0.5V 

Storage Temperature (T stg) ..... -65°C to + 15o•c 

Ambient Temperature (T amb) (3) •. -1 o·c to + 85°C 

NOTES: 
1. Voltages with respect to GNP. 

•Notice: Stresses above ihose lis'ted under '~bso­
lute Maximum Ratings" may cause permanent dam­
age to the device. This is a stress rating only and 
functional operation of the device at these or any 
other conditions above those indicated in the opera­
tional sections of this specification is not implied. Ex­
posure to absolute maximum rating conditions for 
extended periods may affect device reliability. 

NOTICE· Specifications contained within the 
following tables are subject to change. 

2. Minimum D.C. input is -0.SV. During transitions, the inputs may undershoot to -2.0V for periods of less than 20 ns under 
no load conditions. 
3. Under bias. Extended temperature range versions are available. 

D.C. CHARACTERISTICS TA= o•cto +1o•c, Vee= 5.ov ±5% 

Symbol Parameter Min Typ Max Unit Test Conditions 
V1H(4) High Level Input Voltage 2.0 Vee+ 0.3 v 

V1L(4) Low Level Input Voltage -0.3 0.8 v 
VoH(S) High Level Output Voltage 2.4 v lo = -4.0 mA D.C., 

Vee= min. 

Vol Low Level Output Voltage 0.45 v lo = 4.0 mA D.C., 
Vee= min. 

11 Input Leakage Current ±10 µ.A Vee= max., 
GND < VouT < Vee 

loz Output Leakage Current ±10 µA Vee= max., 
GND < VouT < Vee 

, lgc(6) Output. Short Circuit Current -30 -90 mA Vee= max., 
VouT = 0.5V 

lse<7l Standby Current 150 µA Vee= max., 
V1N = Vee or GND, 
Standby Mode 

Ice Power Supply Current 50 mA Vee= max., 
V1N = Vee or GND, 
No Load, Input Freq. = 1 MHz 
Active Mode (Turbo = Off), . 
Device Prog. as 12-Bit Ctr. 

NOTES: 
4. Absolute values with respect to device GNP; all over and undershoots due to system or tester noise are included. 
5. lo at CMOS levels (3.84V) = -2 mA. 
6. Not more than 1 output should be tested at a time. Duration of that test must not exceed 1 second. 
7. With Turbo Bit Off, device automatically enters standby mode approximately 100 ns after last input transition. 

CAPACITANCE 
Symbol Parameter Min Typ Max Unit Conditions 

C1N Input Capacitance 20 pF V1N = OV, f = 1.0 MHz 

CouT Output Capacitance 20 pF Vour = ov, f = 1.0 MHz 

CcLK Clock Pin Capacitance 20 pF VouT = ov. f = 1.0 MHz 

Cypp VppPin 50 pF Pin 1 
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A.C. TESTING LOAD CIRCUIT 

..---sv 

o~~~~o-+---c:> ~~s1ir~T 

DEVICE INPUT 
RISE AND FALL 

TIMES<6ns 

{INCLUDES JIG 
CAPACITANCE) 

5AC312 

A.C. TESTING INPUT, OUTPUT WAVEFORM 

3.0 
INPUT 

0 

2•0 > TEST POINTS < 
0.8 

2.0 

0.8 

OUTPUT 1.SV -TEST POINTS- 1.SV 

290156-8 
A.C. Testing: Inputs are driven at 3.0V for a Logic "1'" and OV for 
a Logic "O'". Timing Measurements are made at 2.0V for a Logic 
"1" and o.ev for a Logic "O'" on inputs. Outpu1s are measured 
at a 1.5V point. 

290156-7 

A.C. CHARACTERISTICS TA = o•c to + 70°C, Vee = 5.0V ± 5%, Turbo Bit "On"18l 

5AC312·25 5AC312·35 Non-(10) 
Symbol From To Turbo Unit 

Min Typ Max Min Typ Max Mode 

tpo1 Input Comb. Output 20 25 30 35 +10 ns 

tpo2 110 Comb. Output 20 25 30 35 +10 ns 

tpzxl9l I orl/O Output Enable 20 25 30 35 +10 ns 

tpxzl9l I orl/O Output Disable 20 25 30 35 +10 ns 

tcLR Asynch. Reset Q Reset 20 25 30 35 +10 ns 

ts ET Asynch. Set QSet 20 25 30 35 +10 ns 

NOTES: 
8. Typical values are at TA = 25'C, Vee = 5V, Active Mode. 
9. tpzx and tpxz are measured at ± 0.5V from steady-state voltage as driven by spec. output load. tpxz is measured with 
CL= 5 pF. 
10. If device is operated with Turbo Bit Off (Non-Turbo Mode), increase time by amount shown. 

SYNCHRONOUS CLOCK MODE (MACROCELLS) A.C. CHARACTERISTICS 
TA = o·c to +70°c, Vee= 5.ov ±5%, Turbo Bit On(Sl 

5AC312·25 5AC312·35 Non-(10) 
Symbol Parameter Turbo 

Min Typ Max Min Typ Max Mode 

fMAX Max. Frequency 50 66 40 50 NIA 
1 /tsu-No Feedback 

fcNT Max. Count Frequency 33 40 25 28.5 N/A 
1 /tcNr-with Feedback 

tsu1 Input Setup Time to CLK 20 15 25 20 +10 

tsu2 1/0 Setup Time to CLK 20 15 25 20 +10 

tH I or 1/0 Hold after CLK High 0 0 

tea CLK High to Output Valid 10 15 10 15 +10 

tcNT Register Output Feedback 25 30 35 40 +10 
to Register Input-Internal Path 

tcH CLK High Time 10 12.5 +10 

tcL CLKLowTime 10 12.5 +10 
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SAC312 

SYNCHRONOUS CLOCK MODE (INPUT STRUCTURE) A.C. CHARACTERISTICS 
TA= o•c to +10°c, Vee= 5.ov ±5%, Turbo Bit on<Bl 

5AC312·25 5AC312·35 Non-(10) 
Symbol Parameter Turbo Unit 

Min Typ Max Min Typ Max Mode 

fMAXI Max. Frequency 40 50 28.5 33 NIA MHz 

tsu1R Input Register Setup Time 5 5 ns 
before ILE/ICLK J. 

tpu<11l Minimum Input Clock Period 20 25 30 35 +10 ns 

teOJ ICLK J. to Comb. Output 25 30 35 40 +10 ns 

tHI I Hold after ICLK/ILE J. 5 5 ns 

tEOI ILE f to Comb. Output 30 35 35 40 +10 ns 

tcHI ILE/ICLK High Time 10 12.5 +10 ns 

tell ILE/ICLK Low Time 10 12.5 +10 ns 

NOTE: 
11. tpu = Input signal through registers/latch to macrocell register input. 

ASYNCHRONOUS CLOCK MODE A.C. CHARACTERISTICS 
TA= O"C to +70°C, Vee= 5.0V ±5%, Turbo Bit On(B) 

5AC312·25 5AC312·35 Non-!10) 
Symbol Parameter Turbo Unit 

Min Typ ·Max Min Typ Max Mode 

INPUT STRUCTURE 

fAMAXI Max. Frequency Input Register 20 16.6 NIA MHz 
1/(tAeLI + tAeHJ) 

tASUI Input Register/Latch Setup 0 ·- 0 ns 
Time to Asynch. Clock 

tAHI Input Register/Latch Hold 23 16 30 25 +10 ns 
after Asynch. Clock 

tACOI Asynch. ICLK to Output Valid 40 48 50 60 +10 ns 

tAEOI Asynch. ILE f to Comb. Output 45 53 55 65 +10 ns 

tAeHI Asynch. ICLK High Time 25 30 +10 ns 

tAell Asynch. ICLK Low Time 25 30 +10 ns 

MACROCELLS 

fAMAX Max. Frequency 20 16.6 N/A MHz 
1/(tAeL + tAeH>-No Feedback 

fAeNT Max. Frequency 18.2 14.3 NIA MHz 
1 /tAeN-r-with Feedback 

fASU1 Input Setup Time to 7 10 +10 ns 
Asynch. Clock 
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5AC312 

ASYNCHRONOUS CLOCK MODE A.C. CHARACTERISTICS (Continued) 
TA= o•c to +1o•c, Vee= 5.ov ±5%, Turbo Bit On<&> 

5AC312·25 5AC312·35 Non..(10) 
Symbol Parameter Turbo Unit 

Min Typ Max Min Typ Max Mode 

MACROCELLS (Continued) 

tASU2 1/0 Setup Time to 7 10 +10 ns 
Asynch. Clock 

tAH Input or 110 Hold after 23 18 30 25 +10 ns 
Asynch. Clock 

tAco Asynch. CLK to Output Valid 30 35 45 50 +10 ns 

tACNT Register Output Feedback 50 55 65 70 +10 ns 
to Register Input-
Internal Path 

tACH Asynch. CLK High Time 25 30 +10 ns 

tACL Asynch. CLK Low Time 25 30 +10 ns 

INPUT ·CLOCK-TO·MACROCELL-CLOCK A.C. CHARACTERISTICS 
TA = 0°C to + 70-C, Vee = 5.0V ± 5%, Turbo Bit On(8) 

5AC312·25 5AC312·35 Non-(10) 
Symbol Parameter Turbo Unit 

Min Typ Max Min Typ Max Mode 

tc1c2 Synchronous ILE/ICLK 25 35 +10 ns 
Synchronous Macrocell CLK 

Synchronou~ ILE/ICLK 5 10 +10 ns 
Asynchronous Macrocell CLK 

Asynchronous I LE/ICLK 48 65 +10 ns 
Synchronous Macrocell CLK 

1 Asynchronous ILE/ICLK 20 50 +10 ns 
Asynchronous Macrocell CLK 
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5AC312 

SWITCHING WAVEFORMS 

COMBINATORIAL MODE 

INPUT OR 1/0 
'\/ 
_)'\_ 

1---tPD 

COMBINATORIAL OUTPUT \I 
_/\. 

tpxz 

COMBINATORIAL OR 
REGISTERED OUTPUT 

tpzx 

HIGH IMPEDANCE 

3-STATE 
t---tACLR-

1---t...sET-

VALID OUTPUT 

SYNCHRONOUS CLOCK MODE (MACROCELLS) 

CLK 

(FROM REGISTER 
TO OUTPUT) 

tco 

2-105 

HIGH IMPEDANCE 

3-STATE 

VALID OUTPUT 

ASYNCHRONOUSLY 
SET OR RESET OUTPUT 

INPUT MAY CHANGE 

VALID OUTPUT 

290156-9 

290156-10 



5AC312 

SWITCHING WAVEFORMS (Continued) 

SYNCHRONOUS CLOCK MODE (INPUT STRUCTURE) 

ILE,ICLK 

""1_su_1R __ tH1 

INPUT MAY ·CHANGE VALID 
INPUT INPUT MAY CHANGE 

INPUT MAY 
CHANGE 

- 1co1 

DATA VALID 
BEFORE ILE 
SEE NOTE 

i..----- 1EOI ---•I 

INPUT LATCH/REGISTER TO 
COMBINATORIAL OUTPUT 

NOTE: WHEN ILE GOES HIGH BEFORE DATA IS VALID, USE tpD 

INSTEAD OF 1EOI. 

ASYNCHRONOUS CLOCK MODE (INPUT STRUCTURE) 

ASYNCH. 
ILE/CLK 
INPUT 

INPUT MAY CHANGE 

VALID OUTPUT 

INPUT MAY CHANGE . INPUT MAY CHANGE 

INPUT MAY 
CHANGE 

14----1AEOI ---+! 

INPUT LATCH/REGISTER TO 
COMBINATIONAL OUTPUT 

NOTE: WHEN ILE GOES HIGH BEFORE DATA IS VALID, USE 1PD 
INSTEAD OF 1AEOI. 

2·106 

INPUT MAY CHANGE 

VALID OUTPUT 

290156-11 
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5AC312 

SWITCHING WAVEFORMS (Continued) 

ASYNCHRONOUS CLOCK MODE (MACROCELLS) 

ASYNCH. 
CLOCK 
INPUT 

FLOW 
THROUGH 

INPUT 
INPUT MAY CHANGE 

FLOW THROUGH INPUT 
TO REGISTERED OUTPUT 

INPUT CLOCK· TO-MACROCELL CLOCK TIMING 

ILE,ICLK 

CLK 

INPUT MAY CHANGE 

VALID OUTPUT 

290156-18 

Output Drive Current In Relatlon to Voltage 

20I ~ 
10 ~ 
5 

21---+~--+~-+-~+----11 

1----'~-'-~-'-~....___. 

0 2 3 4 5 

Conditions: TA = + 25'C 
v0 Output Voltage (V) 

290156-16 
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PROBLEM 

Designs that utilize numerous levels of cascaded logic 
often result in excessive product terms when expressed 
in the sum-of-products form. Although this poses no 
problem when designing with discrete logic, EPL9s are 
generally optimized for the sum-of-product form. This 
stems from the architecture of the basic Macrocell. 

Macrocells typically consist of a programmable AND 
array feeding a fixed width OR gate. In the 5Cl21, OR 
gate widths range from four to sixteen inputs. For 
many applications, sixteen available product terms are 
sufficient. However, one example where product terms 
become an issue is cascaded exclusive-OR circuits. 
Here the number of product terms increase as 2nn 
where n equals the number of exclusive-OR gates. If 
the number of product terms exceeds sixteen, the equa­
tion will not fit directly in the 5C121. 

SOLUTION 

There is a simple solution· to reduce the product term 
requirements when using cascading XOR (or other) 
logic. Figure 1 shows a circuit cascading five exclusive 
ORs. As designed, this circuit expands to 32 product 
terms when expressed in the minimized sum-of-prod­
ucts form. (This is assuming that signals A thru F are 

single product terms themselves.) Figure 2 shows the 
minimized logic equation file produced by Intel's Logic 
Optimizing Compiler (iLOC). 

An easy solution to fitting this logic into the 5C121 is 
to cascade three exclusive ORs together and then send 
the result through a No Output Combinational Feed­
back primitive (NOCF). This signal can now be cascad­
ed through two more XOR's to get the five total. This 
circuit is shown in Figure 3. Figure 4 shows the logic 
equation file for this implementation. Note the reduc­
tion in product terms from Figure 2. If the buried regis­
ters are available, Intel's iPLDs software will automati­
cally assign the combinational feedback to a buried i;:eg­
ister thereby saving a pin. This technique can be used 
for any circuit that generates excessive product terms. 

The only penalty in this method is the added delay 
needed for the feedback path. The worst case lpc! (input 
to output delay) for the circuit in Figure 3 would be 
twice the specified Tpd in the 5C121-XX data sheet. 
Basically the signal mus.t go through the device twice. 
For the 5Cl21-90 the Tpd would be 180 ns worst case 
as implemented in Figure 3. 

Figure 5 shows the report file generated by the compil­
er. In this case the NOCF path was automatically as­
signed to the buried registers. 

:::J~D-::J~D-::)~· . ~- ----~ 
. L-/ E--J 1 1 OUT 

F" I I 

·-------· 292003-1 

Figure 1. Cascaded Excluslve-ORs 

-· 
E ~,- ----~ 

1 1 OUT 
I I 

·-------· 292003-2 

Figure 3. Cascaded Excluslve-ORs using Comblnatlonal Feedback 
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5Cl21 
cascading exclusive or's 
LB Version 3.0. Baseline 17x, 9/26/85 

PART: 
5Cl21 

INPUTS: 
Ap, Bp, Cp, Dp, Ep, Fp 

OUTPUTS: 
0 

NETWORK: 
A 
B 
c 
D 
E 
F 
0 

EQUATIONS: 
NO 

+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

INP(Ap) 
INP(Bp) 
INP(Cp) 
INP(Dp) 
INP(Ep) 
INP(Fp) 
CONF (NO, Veel 

F * E' • D' • C' • A' • B' 
F' * E • D' • C' • A' • B' 
F' • E' • D • C' • A' • B' 
F' • E' • D' • c • A' • B' 
F' • E' • D' • C' • A' • B 
F' • E' • D' • C' • A * B' 
F • E • D • c• • A' • B' 
F • E • D' • c • A' • B' 
F • E • D' • C' • A' • B 
F • E • D' • C' • A * B' 
F • E' • D • C • A' • B' 
F • E' • D • c• • A' • B 
F • E' • D • c• * A • B' 
F • E' • D' * C • A' • B 
F • E' • D' * C • A • B' 
F • E' • D' • C' • A • B 
F' • E * D • C • A' • B' 
F' • E • D • C' • A' • B 
F' • E • D * C' • A • B' 
F' • E • D' • C • A' • B 
F' • E • D' • C • A • B' 
F' • E • D' • C' • A • B 
F' • E' • D • C • A' • B 
F' • E' • D • C • A • B' 
F'* E' • D * C' * A • B 
F' • E' • D' * C * A * B 
F * E * D • C • A' • B 
F • E • D • C • A * B' 
F * E • D • C' * A * B 
F * E * D' • c • A • B 
F • E' * D * C • A * B 
F' * E • D • C • A • B; 

Figure 2. Minimized Logic Equations for Figure 1 

AB-8 
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5Cl21 
CASCADING 5XORS WITH COMBINATIONAL 
FEEDBACK 

LB Version 3.0, Baseline 17x, 9/26/85 

PART: 
5Cl21 

INPUTS: 
Ap, Bp, Cp, Dp, Ep, Fp 

OUTPUTS: 
0 

NETWORK: 
A INP(Ap) 
B INP(Bp) 
C INP(Cp) 
D INP(Dp) 
E INP(Ep) 
F INP(Fp) 
0 CONF (NO, Vee) 
N2 = NOCF (N3) 

EQUATIONS: 
N3 

NO 

D • C' • A' * B' 
+ D' * C * A' • B' 
+ D' • C' • A' * B 
+ D' • C' • A • B' 
+ D • C • A' • B 
+ D • C • A • B' 
+ D • C' • A • B 
+ D' • C • A • B; 

F • N2' * E' 
+ F' • N2' • E 
+ F' • N2 • E' 
+F*N2*E; 

Figure 4. Minimized Logic Equations for Figure 3 
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Logic Optimizing Compiler- Utilization Report 

***** Design implemented successfully 

JRD 
INTEL 
October 8, 1 985 

1 
5Cl21 
CASCADING 5XORS WITH COMBINATIONAL FEEDBACK 
LB Version 3.0, Baseline 17x, 9/26/85 

5Cl21 

GND -I 1 401- Vee 
GND -I 2 391- Vee 
GND -I 3· 381- Ap 
GND -I 4 371- BP 
GND -I 5 361- Cp 
GND -I 6 351- Dp 
GND -I 7 341- Ep 
GND -I 8 331- Fp 
GND ·-: 9 321- 0 
GND -110 311- RESERVED 
GND -111 301- RESERVED 
GND -112 291- RESERVED 
GND -113 281- l\lND 
GND -114 271- GND 
GND -115 261- GND 
GND -116 251- GND 
GND -117 241- GND 
GND -118 231- GND 
GND -119 221- GND 
GND -120 211- GND 

**INPUTS** 

Name Pin Resource MCell 11· PTerms 

Fp 33 INP 

Ep 34 INP 

Dp 35 INP 

Cp 36 INP 

Bp 37 INP 

Ap 38 INP 

**OUTPUTS** 

Name Pin Resource MCell II PTerms 

0 32 CONF l 4/ 4 

2-111 

Feeds: 
MCells OE Clear Chick 

l 

l 

13 

13 

13 

13 

Feeds: 
MCells OE Clear 

292003-3 
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**BURIED REGISTERS** 

F4'1eds: 
Name Pin Resource MCell II PTe1·ms MCells OE Clear 

NOCF 13 8/ 8 

**UNUSED RESOURCES** 

Name Pin Resource MCell PTerms 

1 
2 
3 
4 
5 
6 
7 
8 28 4 
9 27 10 

10 26 8 
11 25 6 
12 24 6 
13 23 8 
14 22 10 
15 21 4 
16 20 12 
17 19 4 
18 18 8 
19 17 8 
21 12 8 
22 11 8 
23 10 4 
24 9 12 
25 8 4 
26 .~ 7 10 
27 6 8 
28 5 6 
29 4 6 
30 3 8 
31 2 10 
NA 14 8 
NA 15 8 
NA 16 8 

**PART UTILIZATION** 

18% Pins 
7% MacroCell.s 
5% Pterms 

292003-4 

Figure 5. The Utilization Report 
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INTRODUCTION 

Described is a method of constructing a multi-digit, 
seven segment decoder driver with latching capability 
in a single EPLD. The design is a simple, easily under­
stood method of using the 5Cl21 as a seven-segment 
display driver. 

This design has many advantages: (1) the ability to up­
date a single digit without disturbing the others, (2) 
Outputs are latched and retain their data without up­
date from the controlling device(s), (3) Input interfac­
ing is simple and straightforward, using four data in­
puts, two digit select lines, and a data strobe line. 

The display driver interface is therefore not limited to 
microprocessor applications only (although it can be 
used with them). Possible applications include a Mul­
timeter display, a clock or timer display, or a simple 
controller system display. 

PROBLEM 

The display driver needs to latch the incoming data at 
the correct time, route it to the correct digit, and then 
decode the four bit data into seven-segment output for­
mat. 

SOLUTION IN EPLD 

A simple solution to the display driver imagined above 
can be realized in the 5C121 EPLD. 

The 5Cl21 EPLD is organized in groups ofMacrocells. 
Each Macrocell contains a number of multiple input 
AND gates which are feeding an OR gate. The OR gate 
feeds a selectable registered output. This output may 
also be routed back into the array for feedback purpos­
es. 

Figure 1 shows a basic block diagram of the three and 
one half digit display driver. The data is input to a 
distribution block, which sends the data to one of four 
seven-segment decoders depending upon the digit se­
lected by the Digit Select inputs. The outputs are up­
dated by strobing the WR input. The data input is in a 
HEX format and may be in the range of 0 to F HEX (0 
to 15 Decimal). Digit select is placed upon the two 
select lines in a binary format; 0, 1, 2, 3. When data is 
present on the input lines and a digit is selected, the 
strobe line may be pulsed high and that output digit is 
then updated to the numeral suggested by the input 
data. 

Figure 2 illustrates the Boolean equivalents of the de­
sign in Figure I. In the NETWORK section of Figure 
2, the inputs and outputs of the design are described. 

For instance, the NETWORK equation 

SSA 1, SA 1 F = ROAF (ISA 1, WAN, GND, GND, VCC) 

represents that the output pin for segment "A" of the 
1st Seven Segment display (SSA!) results from a Regis­
tered Output Registered Feedback (RORF) structure in 
the EPLD. The feedback signal (SAlF) is the same as 
the signal output (SSA!). The RORF's D input is driv­
en by the signal ISA!, the clock input is driven by 
WRN, and reset, preset and output enable signals are 
tied to their default voltage levels (either GND or 
VCC). 

The EQUATION section of Figure 2 shows how the 
data distribution and decoding logic works. Equations 
starting with A-G are generic seven segment display 
equations. Segment decoding results from the combina­
tion of the true or false of the four data inputs (e.g., DO 
or !DO). 

Equations such as 

SE1 = (E • WE1) + (SE1F • !WE1) 

show how the data is distributed. Segment E of display 
1 (SEl) is valid (ON) if the "E" decode exists and dis­
play 1 is chosen by the address inputs (WEI = !AO • 
!A 1 ). It is also valid if it was previously turned on 
(SEIF) AND seven segment display 1 is not selected 
(!WEI). 

These equations may be entered using LB in the form 
of a Netlist, or may be entered directly into the ADF by 
means of a text editor. The ADF is then compiled and 
programmed into a 5Cl21 using iPLS. 

SUMMARY 

This method of using the SC 121 as a three and one half 
digit display driver is advantageous in respect to its 
simple interface, and its ability to hold all other digits 
stable while one is being updated. Displays with more 
than three and one half digits may be produced in the 
5C121 by using the input latches as data storage and by 
multiplexing the outputs in a scanning fashion. 
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D00----1 

Dt e>--­

D2e>--­

D3e>---

A00----1 

At 0----1 

DATA 
DISTRIBUTION 

SELECTION 

AB·9 

DECODE 

Figure 1. Block Diagram 
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Thom Bowns 
Intel 
October 29, 1985 
U4 
1 
sc121· 
3.5 digit output dr.iver 

AB-9 

LB Version 3.0, Baseline 17x, 9/26/85 
PA~T: 5C121 . . 
INPUTS: AOp,Alp,DOp,Dlp,D2p,D3p,WRp 
OUTPUTS: SSAl.,SSBl ,SSC! ,SSDl ,SSEl ,SSFl ,SSGl ,SSA2, 
SSB2,SSC2,SSD2,SSE2,SSF2,SSG2,SSA3,SSB3,SSC3,SSD3,SSE3,SSF3,SSG3,SSA4 
NETWORK: 
SSAl,SAlF = RORF· (ISAl,WRN,,GND,GND,VCC) 
SSBl ,SBlF ::: RORF ( ISBl ,WRN,:GND,GND, VCC) 
SSCl,SClF = RORF (ISCl,WRN,'GND,GND,VCC!) 
SSDl,SDlF = RORF (ISDl,WRN,GND,GND,VCC) 
SSEl,SElF = RORF (SEl,WRN,GND,GND,VCC) 
SSFl,SFlF = RORF (SFl,WRN,GND,GND,VCC) 
SSGl,SGlF = RORF (SGl,WR~GND,GND,VCC) 
SSA2,SA2F = RORF (SA2,WRN°,GND,GND,VCC) 
SSB2,SB2F = RORF (SB2,WRN,GNb,GND,VCC) 
SSC2,SC2F = RORF (SC2,WRN,GND,GND,VCC) 
SSD2,SD2F = RORF (SD2,WRN,GND,GND,VCC) 
SSE2,SE2F = RORF (SE2,WRN,GND,GND,VCC) 
SSF2,SF2F = RORF (SF2,WRN,GND,GND,VCC) 
SSG2,SG2F = RORF (SG2,WRN,GND,GND,VCC) 
SSA3,SA3F = RORF (SA3,WRN,GND,GND,VCC) 
SSB3,SB3F = RORF (SB3,WRN,GND,GND,VCC) 
SSC3,SC3F = RORF (SC3,WRN,GND,GND,VCC) 
SSD3,SD3F = RORF (SD3,WRN,GND,GND,VCC) 
SSE3,SE3F = RORF (SE3,WRN,GND,GND,VCC) 
SSF3,SF3F = RORF (SF3,WRN,GND,GND,VCC) 
SSG3,SG3F = RORF (SG3,WRN,GND,GND,VCC) 
SSA4,SA4F = RORF (SA4,WRN,GND,GND,VCC) 
ISA! = NOCF (SAl) 
ISBl = NOCF (SBl) 
ISCl = NOCF (SC!) 
ISDl = NOCF (SDl) 
WRN = NOT (WR) 
WR = INP (WRp) 
DO = INP (DOp) 
Dl = INP (Olp) 
02 = INP (D2p) 
03 = INP (D3p) 
AO = INP (AOp) 
Al = INP (Alp) 
EQUATIONS: 
A = !D3*!D2*!Dl*DO + !D3*D2*!Dl*!DO + D3*!D2*Dl*DO + D3*D2*!Dl*DO; 
B - !D3*D2*!Dl*DO + D2*Dl*!DO + D3*D2*!Dl*!DO + D3*Dl*DO; 
C = ID3*!D2*Dl*!DO + D3*D2*!Dl*!DO + D3*D2*Dl; 
D = !D3*!D2*!Dl*DO + ID3*D2*1Dl*IDO + D2*Dl*DO + D3*!D2*Dl*!DO; 
E = !D3*!D2*DO + !D3>t:D2*1Dl + !D3*02*Dl*DO + D3*!D2*!Dl*DO; 
F = !D3*!D2*!Dl*DO + !D3*!D2*Dl + ID3*D2*Dl*DO + D3*D2*!Dl*DO; 
G -· !D3*!D2*!Dl + !D3*D2*Dl*DO + D3*D2*!Dl*!DO; 

Figure 2. ADF Listing 
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SE! 

SF! 

SGl 

SA2 

SB2 

SC2 

SD2 

SE2 

SF2 

SG2 

SA3 

SB3 

SC3 

SD3 

SE3 

SF3 

SG3 

SAl 

SBl 

SCl 

SD! 
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(E * WE!) 
+ (SElF * !WE!); 

= (F * WE!) 
+ (SFlF * !WE!); 

= (G * WE!) 
+ (SGlF * !WE!); 

= (A * WE2) 
+ (SA2F * !WE2); 

= (B * WE2) 
+ (SB2F * !WE2); 

= (C * WE2) 
+ (SC2F * !WE2); 

= (D * WE2) 
+ (SD2F * !WE2); 

(E * WE2) 
+ (SE2F * !WE2); 

= (F * WE2) 
+ (SF2F * !WE2); 

= (G * WE2) 
+ (SG2F * !WE2); 

(A * WE3) 
+ (SA3F * !WE3); 

(B * WE3) 
+ (SB3F * !WE3); 

(C * WE3) 
+ (SC3F * !WE3); 

= (D * WEj) 
+ (SD3F * !WE3); 

= (E * WE3 ) 
+ (SE3F * !WE3); 

= (F * WE3) 
+ (SF3F * ! WE3); 

(G * WE3) 
+ (SG3F * ! WE3); 

: (A *WEl) 
+ (SAlF * ,!WEl) f · 

= (B * WE!) 
+ (SBlF * !WE!); 

= (C * WE!) 
+ (SClF * !WEf); 

= (D * WE!) 
+ (SDlF * !WE!); 

SA4 = ((!D3*!D2*!Dl*!DO) * WE4) + (SA4F * !WE4); 
WE! = !AO * !Al; 
WE2 AO * !Al; 
WE3 = !AO * Al; 
WE4 = AO* Al; 
END$ 

Figure 2. ADF Listing (Continued) 
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INTRODUCTION 

This application brief explores the various techniques 
for getting the most out of Intel's line of Erasable Pro­
grammable Logic Devices (EPLDs). In many cases, 
techniques discussed here will not be needed due to the 
intelligent fitting algorithms built into Intel's Program­
mable Logic Software (iPLS). As a matter of fact, most 
designs can be implemented in EPLDs without any 
knowledge oft.he device architectures. For complex de­
signs, the designer will still need an in-depth under­
standing of the target EPLD in order to maximize the 
EPLD's utility. 

This application brief explores fitting techniques for the 
5C121, a 1200 gate equivalent CHMOS EPLD. The 
techniques described here will also apply to any EPLD 
that supports a similar architecture. 

FITTING 

When fitting logic designs into the 5C121 there are two 
typical scenarios: 1) The 5C121 design has been com­
pleted without pin assignments and the compiler warns 
the user that fitting may be time consuming, and 2) pin 
assignments have been made and the "***ERR-FIT 
. . . " message comes up. 

Let's look at the first situation. 

In general, ifthe designer does not care what signals get 
assigned to what pins, the choice can be left to the 
compiler and the compiler will make pin assignments. 
For simple designs pin assignments are very easy. How­
ever, designs that include a variety of different register 
types, feedback paths, and product term widths may 
take a long time for the compiler to fit. When the de­
signer is faced with the message, "Fitting may be time 
consuming", the compilation should be aborted, and 
intelligent pin assignments made. NOTE: Control C 
(AC) may be used to abort a design. The software will 
not stop immediately because the software does not poll 
the keyboard until it updates the display. Rebooting the 
system will also work. 

To make intelligent pin assignments, the designer needs 
a basic understanding of the architecture of the part. 
For the 5C121 this understanding should include the 
number of product terms supported in each Macrocell, 
what Macrocells support local feedback, and what 
Macrocells support global feedback. This information is 
easily found in the data sheet. One other point, the 
Macrocells in the 5Cl21 are grouped into groups of 
four. All Macrocells in a group must have the same 
output type. Therefore, if one output is registered, the 
other three must also be registered. This means that a 
combinatorial output could not be put into the same 
group as a registered output. Output enable (OE) terms 
are also based on Macrocell grouping. All four Macro­
cells are driven from the same OE term. 

Once the basic 5Cl21 architecture is understood, intel­
ligent pin assignments can be made. After assigning the 
pins recompile the design using iPLS. 

Compiling the design with pin assignments is a new ball 
game: This time it is fit or not fit. If the design does not 
fit, an error like: "***ERR-FIT-It is not possible to 
fit the specific pin requests you made" will occur. In 
most cases, the compiler will also ask if it can remove 
pin assignments and try its own. If the design has al­
ready been attempted without pin assignments, or if 
specific pin assignments are needed, answer no and iso­
late the problem. 

ISOLATE THE PROBLEM 

The first step towards isolating the problem is to print 
out a copy of the utilization report (<File­
name> .RPT), logic equation file (<Filename> .LEF), 
and the Advanced Design File (<Filename> .ADP). 
Next, fill out the 5Cl21 architecture worksheet includ­
ed in this application brief. Include the signal name for 
each pin, the type of output, and the number of product 
terms needed for each output. All this information is 
available in the files that were printed earlier. The next 
step is to identify the conflict . 

CONFLICTS 

There are three potential conflicts with pin assignments 
in the 5C121; incompatible output structures, excessive 
product terms, and local/global feedback conflicts. In­
compatible output structures and excessive product 
term errors are the easiest to spot. 

INCOMPATIBLE OUTPUT 
STRUCTURES 

As shown in the 5C121 Design Worksheet, the 5Cl21 
is divided into six Macrocell groupings. The data sheet 
refers to these as the A-1, B-1, A-2, B-2, A-3, and B-3 
Macrocells. One requirement of the 5Cl21 architecture 
is that Macrocells within the same grouping have the 
same output structure. This was discussed earlier, but it 
is worth revisiting. The file titled example 1 in the ap­
pendix shows an ADP for a design that contains such 
an I/O conflict. Following the ADP is a completed 
5C121 architecture worksheet with a number of prob­
lems. Concentrating on the incompatible output prob­
lemon the 5Cl21 worksheet, notice that pins 31 and 32 
belong to the same Macrocell group, and that they are 
assigned conflicting I/O structures. 

The solution to an incompatible output structure con­
flict may be as simple as reassigning pins. Another op­
tion may be to use a different output type for that sig-
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nal. This is very dependent on the design. Another op­
tion is possible when a Macrocell grouping has been 
assigned combinatorial output structure, and a regis­
tered output needs to be assigned to that same group. A 
possible solution is to use one of the buried registers 
configured as a NORF (No Output Registered Feed­
back) cell to hold the signal, and then send the signal 
out through a CONF (Combinatorial Output No Feed­
back) primitive. This output primitive is compatible 
with the other output primitives in that grouping, and 
the register output requirement has also been satisfied. 
The penalty is loss of speed due to the additional feed­
back path. 

EXCESSIVE PRODUCT TERMS 

Excessive product term conflicts are also easy to spot. 
(A product term consists of a set of signals ANDed 
together which are separated from other ANDed 
groups by an OR gate.) Written next to the 1/0 slot on 
the 5Cl21 architecture worksheet is the number of 
product terms that each Macrocell supports. Match 
that number with the number of product terms for each 
output indicated in the logic equation file (LEF). If 
more product terms are required of a output than are 
provided, there is a product term conflict. The utiliza­
tion report also shows the number of product terms 
used for each signal. 

The solution, again, may be as simple as reassigning 
pins since the 5Cl21 supports varying product term 
widths. In fact, the 5Cl21 supports up to 16 product 
terms on pins 16 and 24. Note that four of those prod­
uct terms are shared with the adjacent Macrocell. Shar­
ing means that those signals are common. It is not 
product term allocation. If the number of product 
terms exceeds the capability of the device, the design 
may still fit by splitting up long equations and inserting 
NOCF (No Output Combinatorial Feedback) primi­
tives. Again the price for using this solution is reduced 
speed. This technique is covered more thoroughly in 
AB-8 titled: Implementing Cascaded Logic in the 
5Cl21. 

LOCAL/GLOBAL FEEDBACK 

It is possible to encounter one other type of fitting con­
flict in the 5Cl21. This occurs when a feedback signal 
from the A-1 or A-2 Macrocells feeds the B-1 or B-2 
Macrocells. The issue is that these Macrocells feed bus­
ses that are local to one half of the chip. Therefore, the 
signal is not physically available to the other side of the 
device. 

The best way to understand the local and global buss­
ing in the 5Cl21 is to divide the chip in halflengthwise. 
One side contains the A Macrocells, and the other side 

contains the B Macrocells. The two sides are mirror 
images. Speaking generically now, the -1 and -2 Macro­
cells feed only local busses; local to their respective side 
of the device. The -3 Macrocells and the buried regis­
ters feed global busses which route signals to both sides 
of the device. Therefore a feedback signal coming from 
the A-I or A-2 group can only feed the A Macrocells, 
however, a feedback signal from the A-3 group could 
feed the B-1, B-2, B-3, or the B buried Macrocells. This 
local/global bussing applies to both feedback and input 
signals on the 1/0 pins. All of the dedicated inputs feed 
the global bus. 

Example I also shows a simple two bit counter with 
seven segment driver outputs. The worksheet shows 
that the counter registers were assigned to pins 27 and 
28, while the seven segment outputs were assigned to 
pins 8 thru 14. The seven segment outputs decode the 
feedback signals from the counter registers to generate 
the appropriate digit output, and therefore must have 
access to those signals. This presents a local/global 
feedback conflict. If the designer is locked into those 
specific pin assignments a design workaround is need­
ed. 

One solution might be to take the outputs of the coun­
ter and externally tie them to dedicated input pins 
thereby making those signals global. This would work 
but that solution ends up wasting input pins. A better 
solution would be to internally route the counter feed­
back signals through one of the buried registers config­
ured as a NOCF primitive. After passing through the 
buried register the signals become global. Both the in­
compatible output solution and this solution are shown 
in the worksheet, ADF, and utilization report shown as 
example 2. If we did not need the counter signals exter­
nally, it would of been wise to simply use the buried 
registers to perform the counting function. 

One final comment regarding the utilization report. 
The utilization report shown in example I indicates 
that signals CLK and CNT feed Macrocell lOCll and 
1002. These are fictitious Macrocell numbers that the 
software assigns to requests that cannot be met. In ex­
ample I, three requests were unfulfilled: REGOUT, 
LEDi and LEDO. REGOUT was unfulfilled because of 
incompatible output structures. LEDO and LEDi were 
unfulfilled because their feedback signals needed to 
drive the seven segment display outputs. This was im­
possible because the LED outputs were assigned to a 
local bus on the opposite side of the device. 

The files shown in example 2 fix the LED fitting prob­
lems by sending the feedback signals through the buried 
registers, thereby making them global. In the case of 
REGOUT, the buried register primitive NORF (No 
Output Registered Feedback) is used, allowing the out­
put primitive to be combinatorial. 
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EXAMPLE 1 
ADF 

JR Donnell 
Intel 
April 3, 1986 

0 
60121 
Fittinf exaaple 
LB Veraion 3.0, Baaeline 17x, 9/26/86 
PART: 60121 
INPUTS: ONTe2,0LKel . 

AB-10 

OUTPUTS: LBDOe28,LBD1•27,RBGOUTe32,00NJOUTe31,SBGA•8, 
SBGBe9,SBGOelO,SIGD•ll,SBGl•l2,SIOrel3,SIOGel4 

NBTWORI: 
LIDO,A = Roar (NLBDOD,OLl,OND,GND,VOO) 
LBDl,B = RORJ (NLIDlD,OLl,GND,OND,VOO) 
RBGOUT = RONJ (NRIOOUTD,OLl,GND,GND,VOO) 
OONJOUT = CONJ (NOONJOUTIN,YOO) 
SIOA CONJ (NSBGAIN,VOO) 
SBGB CONJ (NSBGBIN,VOO) 
8100 OONF (NSBGOIN,VOO) 
SBOD CONJ (NSBGDIN,VOO) 
SBOB OONF (NSBOBIN,VOO) 
SBOF CONJ (NSBGFIN,VOO) 
SBOG OONF (NSBOGIN,VOO) 
OLI = INP (OLK) 
ONT = INP (ONT) 
IQUATIONS: 
NSBOGIN = 2 

+ 3; 
2 = 8*/A; 
3 = A*B; 
NLBDlD = /A$/B$0NT 

+· /A*U/ONT 
+ U/UONT 
+ A*U/ONT; 

NLBDOD = /A*B*ONT 
+ A*/8*/0NT 
+ A*/UONT 
+ A*U/ONT; 

NSBOFIN = 0; 
0 = /8*/A; 
NSBOBIN 0 

+ 2; 
NSBGDIN 0 

+ 2 
+ 3; 

NSBGOIN 0 
+ 1 
+ 3; 

1 = /B*A; 
NSIGBIN = 0 

+ 1 
+ 2 
+ 3; 

NSBGAIN 0 
+ 2 
+ 3; 

NOONJOUTIN A*B; 
NRBGOUTD = /A*/B; 
BND$ 

2-121 
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SUMMARY 

As programmable logic devices become more dense, signal routing and resource partitioning becomes necessary. In 
general, these choices are made by the semiconductor manufacture to most efficiently utilize the available logic. In 
some cases though, these choices make certain designs more difficult to implement in a given device. Intelligent 
software, a basic knowledge of the device architecture, and a little experience in fitting techniques will always make 
the job easier. 

EXAMPLE 1 (Continued) 
5C121 Design Worksheet 
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EXAMPLE 1 (Continued) 

Loaie Opti•i•ina Co•piler Utilization Report 

***** Unable to i•ple•ent deeian 

JR Donnell 
Intel 
April 3, 1986 

0 
6Cl21 
Fittina exe•ple 
LB Vereion 3.0, Baeeline 17x, 9/26/86 

6Cl21 

CLK -: 1 40:- Yee 
CHT -: 2 39:- Yee 
GHD -: 3 38:- GHD 
GHD -: 4 37:- GHD 
GHD -: 6 36:- GHD 
GHD -: 6 36:- GHD 
GHD -: 7 34:- GHD 

SBGA -: 8 33:- GHD 
SIGB -: 9 32:- RISBRVID 
SBGC -:10 31:- CO If FOUT 
SBGD -: 11 30:- RISBRVID 
SBGI -: 12 29:- RISIRVID 
SBGF -:13 28:- GHD 
SIGG -: 14 27:- GHD 

RISBRVID -: 16 26:- GHD 
GHD -:16 26:- GHD 
GHD -:17 24:- GHD 
GHD -: 18 23:- GHD 
GHD -: 19 22:- GHD 
GHD -:20 21:- GHD 

**IHPUTS** 

lfa•e Pin Reaource MCell t 

CLI IMP 

CHT 2 IHP 

UOUTPUTSU 

Ha•e Pin Reaource MCell I 

SBGA 8 COHF 28 

SBGB 9 COHF 27 

SBGC 10 COHF 26 

SBGD 11 COHF 25 

PTer•e 

PT er•• 

2/ 4 

2/10 

2/ 8 

2/ 6 

2-123 

Feede: 
MCelle 01 Clear Clock 

Rea 

1001 
1002 

Feede: 
MCelle 01 Clear 
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EXAMPLE 1 (Continued) t." 

SIGI 12 CORP 24 1/ 8 -
nar 13 CONJ 23 1/ 8 

SIGG 14 CONJ 22 1/10 

CONfOUT 31 CONJ 2 1/10 

**UNfULFILLBD RBQUBSTS** 

UOUTPUTSU 

l••d•: 
Neae Pin Re•ource MCell t PTerae MCelle OB Clear 

RIGOUT RONr 1000 1 

LBDl aoar 1001 2 2 
22 
23 
25 
26 
28 

1000 
1001. 
1002 

LIDO aoar 1002 3 2 
23 
24 
25 
28 
27 
28 

1000 
1002 

**UNUSID RISOURCBS** 

Naae Pin Reeo11rce llCell PT era• 

3 
4 
15 
8 
7 

15 21 4 
16 20 12 
17 19 4 
18 18 8 
19 17 8 
21 12 8 
22 11 8 
23 10 4 
24 9 12 
25 8 4 
26 7 10 
27 6 8 
28 5 6 
29 4 6 
30 3 8 
32 1 4 292014-4 
33 
34 
35 
36 
37 
38 
NA 13 8 
NA 14 8 
NA 15 8 
NA 16 8 292014-5 
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EXAMPLE 2 
ADF 

JR Donnell 
Intel 
April 3, 1986 

0 
6Cl21 
Fittin( exe•ple 
LB Veraion 3.0, Ba•eline 17x, 9/26/86 
PART: 6Cl21 
INPUTS: CNTl2,CLl11 

AB-10 

OUTPUTS: I.BD0128,LID1127,RIGOUTl32,CONFOUT13l,SIGAl8, 
SIG819, SIGCllO, S.IGDlll, SIGll12, SIGFl13, SIGGl14 

NITWORI: 
LIDO,NATO)l()cr = RORF (NLIDOD,CLl,GND,GND,VCC) 
LIDl,NBTONOCr = RORr (NLIDlD,OLl,GND,GND,YCC) 
RIGOUT = CONF (NRIG.OUTIN, VCC) 
CONFOUT = CONF (NCONFOUTIN,YCC) 
SIGA CONF (NSIGAIN,VCC) 
SIGB CONF (NSIGBIN,YCC) 
SIGC C.ONJ' (NSIGCIN, VCC) 
SIGD CONF (NSIGDIN,VCC) 
SIGI CONF.(NSIGIIR,VCC) 
SIGF CONJ' (NSBGFIN,YCC) 
SIGG CONJ' (NSIGGIN,VCC) 
A = NOCF (NATONOCF) 
CLI = INP (CLI) 
B = NOCF (NBTONOCF) 
NRIGOUTIN = NORI' (NRIGOUTD,CLl,GND,GND) 
CNT = INP (CNT) . 
IQUATIONS: 
NLIDOD = /A$8$CNT 

+ U/8*/CNT 
+ U/UCNT 
+Uh/ONT; 

NLIDlD = /A$/l$CNT 
+ /UU/CNT 
+ U/UCNT 
+ UU/CNT; 

NCONFOUTIN = A•B; 
NSIGAIN ,. 0 

+ 2 
+ 3; 

NSBGBIN 0 
+ 1 
+ 2 
+ 3; 

NSIGCIN 0 
+ l 
+ 3; 

NSIGDIN = 0 
+ 2 
+ 3; 

NSIGIIN 0 
+ 2; 

NSIGFIN O; 
NSIGGIN 2 

+ 3; 
NRIGOUTD = /U/B; 
2 s 8*/A; 
3 = A$8; 
0 = /8$/A; 
1 = /8$A; 
IND$ 

2·125. 
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EXAMPLE 2 (Continued) 
5C121 Design Worksheet 
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EXAMPLE 2 (Continued) 

Lofie Opti•isinf Co•piler Utilization Report 

***** De•ifn i•ple•ented aueee••fully 

JR Donnell 
Intel 
April 3, 1986 

0 
5Cl21 
Fittinf exa•ple 
LB Ver•ion 3.0, Baeeline 17x, 9/26/85 

5Cl21 

CLI -: l 40:- Vee 
CNT -: 2 39:- Vee 
ORD -: 3 38:- GND 
GND -: 4 37:- ORD 
GND -: 5 36:- GNI> 
GND -: 6 35:- GND 
ORD -: 7 34:- GND 

SBGA -: 8 33:- GND 
SBGB -: 9 32:- RB GOUT 
SBGC -:10 31:- CONFOUT 
SIGD -: 11 30:- RBSBRVID 
SIGB -: 12 29:- RISIRVID 
SBGF -113 28:- LIDO 
SIGG -114 27:- LBDl 

RBSIRVBD - : 115 26:- RBSIRVBD 
GND -: 16 25:- RBSBRVBD 
GND -: 17 24:- GND 
GND -118 23:- GND 
GND -: 19 22:- GND 
GND -:20 21:- GND 

UINPUTSU 

x .. e Pin Reaourc• MC ell ' 
CLI l INP 

CNT 2 INP 

UOUTPUTSU 

•••• Pin Reaource MCell I 

SBGA 8 CONF 28 

SIGB 9 CONF 27 

SIGC 10 CONF 26 

SIGD 11 CONF 25 

PTer•• 

PT er•• 

2/ 4 

2/10 

2/ 8 

2/ 6 

2-127 

Feed•: 
MCelh OB Cle•r Clock 

Ref 

5 
6 

Feed•: 
MCelh OB Clear 

292014-8 
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EXAMPLE 2 (Continued) 

30 
33 
34 
35 
36 
37 
38 
NA 

$$PART UTILIZATION$$ 

Pin• 
MacroCell• 
Pt er•• 

3 

16 

AB-10 

8 

8 

292014-10 
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INTRODUCTION 

System designers often use programmable logic devices 
to implement counters. Use of PLA devices lets the 
user build customized counters to suit individual appli­
cations. In most cases such counters are not available, 
'off-the-shelf' SSI/MSI devices. In other applications, 
the PLA implementation allows the designer to squeeze 
the counter function along with other 'glue' tasks into a 
single PLA, with the attendant higher integration bene­
fits. 

Use of traditional 20-pin and 24-pin PLAs, however, 
does not allow for the construction of large counters 
having greater than 10 significant bits. This is because 
these traditional PLAs have register and product term 
restrictions (even the larger bipolar PLAs have only 8 
to 10 registers and less than 8 product terms per regis­
ter). In contrast, the 5C060 24-pin erasable program­
mable logic device (EPLD) contains 16 registers that 
are programmable as 'D', 'T', 'RS' or 'JK' types. These 
16 programmable registers enable the construction of 
Up/Down counters with up to 16 significant bits. 

This application brief details the implementation of a 
16-bit binary counter in the 5C060 EPLD. The design 
also demonstrates efficient counter construction utiliz­
ing toggle flip-flops (T-FF) that allows for minimum 
product term utilization. 

DESIGN OBJECTIVE 

The objective of the design is to implement a counter 
with the following features: (i) 16-bit binary count, (ii) 
toggle flip-flops, (iii) asynchronous clear, (iv) RUN/ 
STOP function and (v) UP/DOWN function. The 
function table is shown in Figure I. 

RESET UP/DOWN RUN/STOP Function 

x x 0 Inhibit Counting 
0 0 1 Count Down 
0 1 1 Count Up 
1 x x Reset All Outputs 

to'LOW' 

Figure 1 

TOGGLE FLIP-FLOPS 

Counters can be most effectively implemented in PLA 
architectures using toggle flip-flops. This is because 
counters constructed with 'D' type flip-flops require an 
additional product term for every successive significant 
bit, whereas toggle flip-flop implementation requires 
only one product term per significant bit. Thus, the 
toggle flip-flop counter design is more miserly in prod­
uct term consumption than the 'D' register design. 
Since product term minimization is the key element to 
maximizing PLA utilization, the T-FF counter design 
is more efficient. The truth table for the toggle flip-flop 
is shown in Fig. 2. 

T Q(N) Q (N + 1) 

0 0 0 
0 1 1 
1 0 1 
1 1 0 

Figure 2 

SOLUTION 

The 16-bit binary counter function was implemented in 
the 5C060 EPLD using the Intel Programmable Logic 
Development System (iPLDS). The equations for the 
16-bit binary counter with the RESET, UP/DOWN 
and RUN/STOP functions are shown in the 'EQUA­
TIONS' section of the LEF (Fig. 4). The pinout of the 
5C060 with the implemented counter is shown in the 
RPT file (Utilization Report) Fig. 5. This RPT file also 
shows, under the 'OUTPUTS' section, that in each 
macrocell only one out of 8 product terms is used. In 
contrast the same 16-bit counter designed using 'D' 
type flip-flops would have required more than 16 prod­
uct terms for the last significant bit. 
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JNTBL CORPORATION 
JAN. 15, 1887 
1 
1.0 
5C080 

AB-11 

BINARY 18-BIT UP/DOllN COUllTlll llJTB RUN/STOP AND .ASYNCB. RISJ:'l' USING T-rr 

LB Version 4. 01, Baseline 27 .1 4/8/88 
OPTIONS: TURBO=ON 
PART' 50080 
INPUTS: RS, CLOCK, RISJ:T, UD 
OUTPUTS: QO ,Ql ,Q2 ,Q3,Q4 ,Q5 ,Q8,Q7 ,Q8 ,QB ,QA,QB,QC,QD,QS, QI' 
lllT1IORIC: 
QO,QOr = TOTr (QOT,CLK,CLR,GND,VCC) 
Ql,Qlf = TOTr (QlT,CLlt,CLR,GND,VCC) 
Q2,Q2f = TOTr (Q2T 0CL1t,CLR,GND, VCC) 
Q3,Q3r = TOTr (Q3T,CLK,CLR,GND,VCC) 
Q4,Q4f = TOTr (Q4T,CLK,CLR,GND, VCC) 
Q5 , Q5f = TOTr ( Q5T, CLK, CLR, GND, VCC J 
Q8,Q8f = TOTr (Q8T,CLlt,CLR,GND, VCC) 
Q7 , Q7f = TOTr ( Q7T, CLK, CLR, GND, VCC l 
Q8,Q8f = TOTr (QBT ,CLlt,CLR,GND, VCC) 
Q9,Q8f = T0Tr (Q8T ,CLlt,CLl,GND, VCC) 
QA,QAF = TOTr (QAT,CLlt,CLR,GND, VCC) 
QB, QBJ' = TOTF ( QBT, CLK, CLI, GND, VCC) 
QC,QCF = TOTr (QCT, CLlt, CLR, GND, VCC) 
QD,QDf = TOTr (QDT,CLK,CLR,GND,VCC) 
Ql,QD' = TOTr (QIT,CLlt,CLl,GND,VCC) 
QI' = TOllJ' ( QrT, CLlt, CLR, GND, VCC) 
QOT = OR (QOU,QOD) 
CLI = IMP (CLOCK) 
CLR • IMP ( RISJ:T l 
QlT = OR (QlU,QlDl 
Q2T.: OR (Q2U,Q2Dl 
QST = OR (Q3U,Q3DJ 
Q4T = OR (Q4U,Q4D) 
QH : OR (Q5U,Q5D) 
Q8T = OR (Q8U,Q8D) 
QTT = OR (Q7U,Q7D) 
Q8T = OR (Q8U,Q8DJ 
QIT = OR (QIU,Q8DJ 
QAT = OR (QAU,QAD) 
QBT = OR- (QBU,QBD) 
QCT = OR (QCU,QCD) 
QDT = OR (QDU,QDDl. 
1111' = OR (QIU,QSD) 
QrT = OR (QfU,QfD) 
RS = IMP (RS) 
UD = Jiii' CUD) 
llUD = NOT (UD) 
QOO = AND (UD,RS) 

Figure 3. Example .ADF 
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QlU = MID (OD,QOF,QOU) 
QIU = AllD (0D,Qlr,Q1U) 
QIU= MID (OD,QD,QZU) 
IMO = AllD (OD,Q3F,Q3U) 
QIU = AllD (OD,CMF,CMUJ 
QIU = MID (OD,Q&F,Q&U) 
QTU : AllD (OD, Q8J', QIU) 
QIU = AllD (OD, QTr, QTU) 
QIU • MID (OD, QIF, QBU) 
QAll • MID (OD. eer. QIU) 
Q8U = AllD (OD,QAr,QAU) 
QCU " MID (OD,QU,QllU) 
llDU = AllD I OD, QCr, QCU) 
QIU = AllD I OD, QDI', QDU) 
QrU = AllD (OD,Qlr ,QIU) 
llQOF = llOT IQOF) 
llQ1F = ROT ( Qlr) 
"'21' • llOT (QZF) 
llQH' = llOT IQ3FJ 
llCMI' • llOT <CMF) 
llQU =ROT (Q&F) 
llQ8r = llOT IQBF) 
llQTr • ROT (QTF) 
llQ8r • llOT (QIF) 
llQIF = llOT (~F) 
llQAJ' • llOT ( QAr) 
.., = ROT (Qlll') 
~ • llOT (QCr) 
llQlll' • ROT (QDI') 
llQD = llOT (Qlr) 
QOD s .&Ill> (111111. RS) 
Q1D = .&Ill> (IUD,llQOF,QOD) 
Q2D • AllD (IUD,11Qlr,Q1D) 
Q3D • .&Ill> (IUD,llQZr,QZD) 
CMD = .&Ill> (IUD,llQ3r,Q3D) 
QID • .&Ill> (IUD, RCMr, CMDJ 
Q8D = AllD (IUD,llQU',QID) 
QTD = AllD (IUD, llQBr, QID) 
QBD = AllD (IUD,llQTF,QTD) 
QID " AllD (IUD, llQBF, QBD) 
QAD = .&Ill> (IUD, llQllF, ClllD) 
QBD a A1111 (IUD, llQAJ' • QAD > 
QCD = ·MID (IUD, llQlll', QBD) 
CIDD =.&Ill> CIUD.~,QCD) 
QID • AID (IUD, llQDF ,QDD) 
QrD = AID (IUD, llQll', CllD) 
lllDI 

AB-11 

292015-2 

. Figure 3. Example .ADF (Continued) 
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INTEL CORPORATION 
JAii. 15. 1987 
1 
1.0 
5C080 
BINARY 18-BIT UP/DOllll COUNTER WITH RUll/8TOP AND ASYllCB. RESET USING T-J'F 

LB Version 4.01, Baseline 27.1 4/9/86 
LEP Version 4. 01 Baseline 22. 2 2/4/86 
OPTIONS: TURBO=ON 
PART: 

5C060 
INPUTS: 

RS, CLOCK, RESET, UD 
OUTPUTS: 

NETWORK: 
QO.~.~.~.~.Q5.Q8.~.Q8.~.~.QB.~.~.QE.~ 

CLK = INP(CLOCK) 
RS = IllP(RS) 
CLR = INP(RESETJ 
UD = INP(UD) 
QO, QOP = TOTP(QOT, CLK, CLR, GND, VCC) 
Ql, QlP = TOTP(QlT, CLK, CLR, GND, VCC) 
Q2, Q2P = TOTP(Q2T, CLK, CLR, GND, VCC) 
Q3, Q3P = TOTP(Q3T, CLK, CLR, GND, VCC) 
Q4, Q4P = TOTP(Q4T, CLK, CLR, GND, VCC) 
Q5, Q5F = TOTP(Q5T, CLK, CLR, GND, VCC) 
Q8, Q6P = TOTP(Q6T, CLK, CLR, GND, VCC) 
Q7, Q7P = TOTP(Q7T, CLK, CLR, GND, VCC) 
Q8, Q8P = T0TP(Q8T, CLK, CLR, GND, VCC) 
Q9, Q9P = TOTP(Q9T, CLK, CLR, GND, VCC) 
~. QAP = TOTP(~T. CLK, CLR, GND, VCC) 
QB, QBP = TOTP(QBT, CLK, CLR, GND, VCC) 
~. ~p = TOTP(~T, CLK, CLR, GND, VCC) 
~. ~p = TOTP(QDT, CLK, CLR, GND, VCC) 
QI, QEP = TOTP(QET, CLK, CLR, GND, VCC) 
~ = TONP(QPT, CLK, CLR, GND, VCC) 

EQUATIONS: 
~T = UD' * QEP' * ~F' * ~p· * QBP' * QAP' * Q9P' * Q8P' * Q7P' * Q8P' * 

Q5P' * Q4P' * Q3P' * Q2F' * QlP' * QOF' * RS 
+UD*QEP*~*QCP*QBP*W*~*~*m*~*~* 

Q4P * Q3P * Q2P * QlF * QOP * RS; 

QET = UD' * ~p· * QCP' * QBP' * QAP' * QSF' * Q8P' * Q7F' * Q6F' * Q5F' * 
~p· * Q3P' * Q2F' * QlP' * QOP' * RS 
+UD*~*QCP•QBP•QAP*~*~*m*~*~*~* 

Q3F * Q2F * QlP * QOF * RS; 

QDT = UD' * QCP' * QBF' * QAP' * QSF' * Q8P' * Q7P' * Q8F' * Q5P' * ~p• * 
Q3F' * Q2P' * QlF' * QOP' * RS 
+UD•QCP•QBP•QAP*~*~*m*~*~*~*~* 

Q2P * QlP * QOF * RS; 

Figure 4. Example .LEF 
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QCT = OD' * QBI" * QAI" * Q9F' * Q8F' * Q11' * QSF' * Q5F' * Q4F' * Q3J" * 
Q2'' * QlF' * QOF' * RS . 
+OD*~*~*~*~*~*~*~*~*~•QZJ• 

QlF * QOr * RS; 

QBT = OD' * ~· * Q9r' * Qar• * Q?r' * Q8r' * Q&r• * Q4r' * Q3r' * ear• * 
Qlr' * QOr' * RS 
+OD*~*~*~*~*~*~*~*~*Q2'*~* 

QOr * RS; 

QAT = OD' • eer• * Q8r' • Q1r· * ear• • Q&r• • Q4r' • Q3r' • ezr• • eir· • 
QOr' * RS 
+OD*~*~*~*~*~*~*~*Q2'*~*~* 

RS; 

QST = OD' • Qer' * Q7r' • Q8r' * Q&r· • Q4r' • Q3r' • Qzr· • Qlr' • QOr• • 
RS 

+ uo * ear • Q7r • Q8r • Q&r • QU • Q3' * ear • Qlr * QOr • RS; 

Q&T = OD' • e1r• • Q8r' • e&r• • Q4r' * Q3r' • Qzr• • Qlr' • QOr• • RS 
+ UD * Q7r • Q8r • Q5r • Q4r * Q3r * QZr * Qlr * QOr * RS; 

QTT = OD' * Q8r' * Q5r' * Q4r• * Q3'' * Q2r' * Qlr' * QOr' * RS 
+ OD • Q8r * Q5' * Q4r • Q3' * QZr * Qlr * QOr * RS; 

QST = OD' * Q5'' * QU' * Q3r' * QZr' * Qlr' * QOr' * RS 
+ uo * Q&r • Q4r • Q3r • ear * Qlr • QOr * RS; 

Q&T = OD' * Q4r' * Q3r' * QZJ' * Qlr' * QOr• * RS 
+ OD * QU * Q3' * Q2J * Qlr * QOr * RS; 

Q4T = OD' • Q3'' • ezr· • Qlr' • QOr· * RS 
+ UD * Q3' * QZr * Qlr * QOr * RS; 

Q3T = OD' * QZr' * Qlr' * QOr• * RS 
+ OD • ear * Qlr * eor * RS; 

Q2T = OD' * Qlr' * QOr•. * RS 
+ OD * Qlr * QOr * RS; 

QlT : UD' * QOr', * RS 
+ OD * QOr * 118; 

QOT = RS; 

Figure 4. Example .LEF (Continued) 
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Loaic Optimiaina C0111P1ler Utilization Report 
FIT Version 4.01 Baseline 27.1 4/9/86 

***** Desian impleaented successfully 

AB-11 

**** NOTI: Connect sillnal CLOCK to pin 1 AND pin ·13·. 

INTIL CORPORATION 
JAN. 16, 1987 
1 
1.0 
5C080 
BINARY 18-BIT UP/DOWN COUNTIR WITH RUN/STOP AND ASYNCH. RISBT USING T-JT 

LB Version 4.01, Baseline 27.1 4/9/88 
OPTIONS: TURBO=ON 

CLOCK -l 1 
GND -I 2 

QT -I 3 
Q8 -1 4 
Q6 -1 6 
Q4 -t 8 
Q3 ' 7 
Q2 -1 8 
Ql -1 9 
QO -110 
UD -111 

OND -112 

**INPUTS** 

N-e Pin 

CLOCK 

OD 11 

GND 12 

CLOCK 13 

RKSET 14 

6C080 

241-· Vee 
231- RS 
221- Qr 
211- QI 
2or- QD 
191- QC 
181- QB 
11:- QA 
181- Q9 
151- Q8 
141- RISBT 
131- CLOCK 

Resource MCell 

INP 

INP 

GND 

INP 

INP 

Feeds: • PTerme MCells OE 

l 
2 
3 
4 
5 
8 
7 
8 
9 

10 
11 
12 
13 
14 
15 

Figure 5. Example .RPT Fiie 
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Clear 

1 
2 
3 
4 
5 
8 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 

Clock 

CLKl 
CLK2 

CLKl 
CLK2 
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RS 23 IMP 1 
2 
3 
4 
5 
8 
1 
8 
9 

10 
11 
12 
13 
14 
15 
18 

Vee 24 Vee 1 
2 
3 
4 
5 
6 
1 
8 
9 

10 
11 
12 
13 
14 
15 
18 

**OUTPllTS** 

r .. da: 
11 ... Pin Reeource !!Cell ti neras !!Cells 01 Clear Clock 

Q? TOTI' 9 2/ 8 1 
2 
3 
4 
5 
6 
1 
8 

Q6 4 TOTr 10 2/ 8 1 
2 
3 
4 
5 
8 
1 
8 
9 

QS TOTr 11 2/ 8 1 
2 
3 
4 
5 
6 
1 
8 
9 

10 

Q4 8 TOTr 12 2/ 8 1 
2 
3 
4 
5 
6 
1 
8 
9 

10 
11 

292015-6 

Figure 5. Example .APT Fiie (Continued) 
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Q3 7 TOTI' 13 2/ 8 1 
2 
3 
4 
5 
8 
7 
8 
9 

10 
11 
12 

Q2 8 TOTI' 14 2/ 8 1 
2 
3 
4 
5 
8 
7 
8 
9 

10 
11 
12 
13 

Ql 9 TOTI' 15 2/ 8 1 
2 
3 
4 
5 
8 
7 
8 
9 

10 
11 
12 
13 
14 

QO 10 TOTF 18 1/ 8 1 
2 
3 
4 
5 
8 
7 
8 
9 

10 
11 
12 
13 
14 
15 

QB 15 TOTr 8 2/ 8 1 
2 
3 
4 
5 
8 
7 

Q9 18 TOTI' 7 2/ 8 1 
2 
3 
4 
5 
8 

QA 17 TOTr 8 2/ 8 1 
2 
3 
4 
5 

292015-7 

Figure s. Example .RPT Fiie (Continued) 
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ir,1tel" 
1 {--

"'" 

QB 18 TOTJ 

QC 19 TOTJ 

QD 20 TOTr 

QI 21 TOTr 

QI' 22 TONI' 

Hue Pin Resource 

2 

**PART OTILIZATION** 

95111 Pina 
100111 KecroCella 
2'111 l't.el'll• 

AB-11 

5 2/ 8 1 
2 
3 
4 

4 2/ 8 1 
2 
3 

3 2/ 8 l 
2 

2 2/ 8 

2/ 8 

KCell PTeraa 

292015-8 

Figure 5. Example .RPT Fiie (Continued) 

2-139 



APPLICATION 
BRIEF 

AB-12 

October 1987 

Designing a Mailbox Memory for 
Two 80C31 Microcontrollers Using 

EPLDs 

K. WEIGL & J. STAHL 
INTEL CORPORATION 
MUNICH, GERMANY 

2-140 
Order Number: 292016-002 



INTRODUCTION 

Very often, complex systems involve two or more mi­
crocontrollers to ·fulfill the requirements defined by a 
given objective. Since the nature of microcontrollers 
does not allow for easy dual-port memory design (no 
"READY" input; no "HOLD/HLDA" interface; port­
oriented 1/0 etc.), design engineers are faced with the 
problem of interchanging information (data and status) 
betwc:en those microcontrollers. This application brief 
describes the design of a mailbox (or exchanging infor­
mation between two 80C3ls, using a 5C060 H-EPLD 
as a "back-to-back" register, and a 5C031 H-EPLD as 
an arbitration vehicle to eontrol ihe actions of the 
CPUs. 

THE 5C060 MAILBOX 

In this application, the 16 macrocells of the 5C060 are 
grouped into two sets of 8 so called "ROIF' (register 
output with input. feedback) primitives to implement 
the two 8 bit bus interfaces needed. The grouping is 
done according to the following picture. 

The 5C060 allows for independent clocking of 8 macro­
cells on each side of the chip, the two clock inputs are 
used to clock data from the microcontroller bus into 
the chip. To read the data written into the mailbox by 
one of the controllers, the RDA- (controller A is read­
ing) or RDB- (controller B is reading) line must be 
pulled low by activating the read command (/RD). In 
order to avoid spurious read-cycles, the /RD com­
mands from . both microcontrollers are logically 
"ORed" together with an active high CS-signal (Chip 
Select) inside the 5C060. The CS-signal for both ports is 
derived from address line Al5. Therefore, whenever 
A15 becomes a logic "1" (true), the mailbox is activat­
ed and ready to take or submit data. 

Address range for the mailbox: FOOO · · Hex to FFFF 
Hex 
(Upper 12 kbyte) . 

scoeo· 

WRB vcc 
CSA 2 ROB 

l/OAO 3 1/080 

l/OA1 4 21 1/081 

l/OA2 5 1/082 

GROUP A l/OA3 6 l/OJ13 GROUP 8 
.{MICROCON-

l/OA4 7 1/084 
(MICROCON-

TROLLER A) TROLLER 8} 
I/OAS 8 17 1/085 

I/OAS 9 16 1/086 

l/OA7 10 15 1/087 

RDA 11 CSB 

GND 12 13 WRA 

292016-15 
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THE 5C031 "MAILBOX CONTROLLER" 

To keep the two microcontrollers informed about the 
Status of their mailbox, the 5C03 l is programmed to 
supply the following signals to both controllers: 

/OBFA: "OUTPUT BUFFER FULL• FOR MC A 

/OBFB: "OUTPUT BUFFER FULL" FOR MC B 

/IBEA: "INPUT BUFFER EMPTY" FOR MC A 

/IBEB: "INPUT BUFFER EMPTY• FOR MC B 

/INTA: INTERRUPT TO MC A 

/INTB: INTERRUPT TO MC B 

The next section will discuss the meanings of these sig­
nals in more detail. 

Output Buffer Full: This flag is set whenever the con­
troller writes into its own output 
buffer. The flag remains valid, until 
the second controller has read the 
data. The flag is automatically re­
set to its inactive state when this 
read cycle is accomplished. 

NOTE: 
Both controllers can access (read or write) the mail­
box simultaneously. 

Input Buffer Empty: This flag indicates that there is no 
message in the mailbox. The flag 
will become inactive as soon as 
one microcontroller places a mes­
sage for the other one (or vice ver­
sa). 

Example: /IBEA remains 
"LOW" until micr0controller B 
places a message for controller A 
into the mailbox for A. /IBEA 
will go "HIGH" as soon as con­
troller B has accomplished its 
write cycle, and will not go 
"LOW" again until microcontrol­
ler A has read the message. 

Interrupt: The 5C03 l is programmed to supply inter­
rupts to both microcontrollers involved, on 
one of the following events. 

1. The /OBF flag of the opposite microcon­
troller becomes active; e.g. if controller A is 
placing a message for controller B, controller 
B receives an interrupt the same time as 
/OBFA becomes valid or vice versa. 

2. The /IBE flag of the opposite microcon­
troller goes active, indicating that this con­
troller has received the message; e.g. if con­
troller B reads the message stored by con­
troller A, its /IBEB flag goes active and con­
troller receives an interrupt indicating that 
the buffer is empty. 

The signals described above are necessary to accom­
plish a secure handshake without overwriting messages 
accidentally. In addition to that, the 5C03 l is issuing 
the actual write commands for the two register sets in­
side the 5C060. The /WRA and /WRB signals are re­
sults oflogical "AND" functions between the appropri­
ate CS- and /WR signals from the microcontrollers. 
Therefore, spurious write cycles are unlikely to happen. 

NOTE: 
This design can also be efficiently implemented in a 
single 5CBIC EPLD. 
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A B 
ADO-AD7 l-t_ _N k _N ADO-AD7 

PO 

1'4"" Q 74HCT373 i-J 
D0-07 D0-07 

rr ~ r1 
PO 

AO-A7 AO-A7 
~ 74HCT373 

~-~~[ nr ---~ OE CE 

~ ~ -" 
D27C64 D27C64 

~ ~ ALE ALE 
A8-A15 AS-12 AS-12 A8-A15 

P2 -v OE cs rr P2 cs OE 

PSEN ~ 1--- ~ µ~ ~~ 1--- ~ H PSEN 

k 
D0-07 D0-07 

P80C31BH ~ AO-A7 AO-A7 ~ P80C31BH 

RAM RAM 

-" IA_ 
A15 AS-12 AS-12 A15 

-v lmWIHs ~~RDl'I 

RD P3.7 ~ ::r 
J 11-i H RD P3.7 

WRP3.6 ~ H WRP3.6 

5C060 

_N IOA 109 IA_ 
.., 0-1 0-7 l'f 

M--- RiiA ROB 1---4 
CSA CSB 

~WA we 1-

5C031 

._,WA wet-........ WRA WRB 1--....___, RDA ROB 1----

CSA CSB 
P3.4 OBFA OBFB P3.4 
P3.5 iBEA iBEB P3.5 

RST P3.2 INTO INTA INTB INTOP3.2 

RESET 0 R5T OE~ RESET - ! T -
292016-1 

Block Diagram 
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WB 

IOAO 

IOA1 

IOA2 

IOA3 

IOA-4 

IOAS 

IOA6 

IOA7 

RDA 
CSA 

AB-12 

5C060 "BACK TO BACK REGISTER" 

l...._ r"'"""'T"" i- L....,......, _.... 
L H 

~ 
~ i...a.....I 

l.A. .. r--T-
I- l r"'T"""'I ..... 

~ i...-H 
~ 

.......... ............ 

l...._ ,........ 
i- L ....,......, _.... 

L H I-
~ 

i.....i... i...a.....I 

'l .A. r--T-
I- l ....,......, 

~~ ~ I-
D" I'" 

i.....i... ............ 

J ...._ r"'"""'T"" 
i- L ....,......, _.... 

'L H I-
~ 

.......... ....i...-1 

l.A. r--r-1 .... w ....,......, ......... 
~~ 

.... 
D" I'" 

~ i...a.....I 

l r--r-1 
1- l ....,......, 

~ 
H ......... 

~ ~ .......... ............ 

J ...._ r"'"""'T"" 
i- L ....,......, _.... 

L H I-
~ 

.......... ............ 

D- La 
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1080 

1081 

1082 

1083 

1084 

IOBS 

1086 

1087 

WA 

ROB 
CSB 
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5C031 "MAIL BOX CONTROLLER" 

ROB OBF'A 

INTA 

RST 

INTB. 

RDA 
OBF'B 

IBEA 

CSB 
WB WRB 

Of 
-~2016-_3 
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SC060 REGISTER ADF 

JUBRG STAHL 
INTBL ZUBRICH 
March 27, 1986 
80C31 MAILBOX MBMORY USING 5C060 / 5C031 
l 
5C060 

LB Varaion 3.0, Baseline 17x, 9/26/85 
PART: 5C060 

******************** ** BXAMPLB . ADF ** 
******************** 

INPUTS: WBel, CSAe2, CSB•l4, nRDAell, nRDBe23, WA813 
OUTPUTS: IOB7el5, IOA7110, IOB6116, IOA619, 

NBTWORK: 

IOB5817, IOA518, IOB4el8, IOA4e7, 
IOB3el9, IOA316, IOB2e20, IOA2e5, 
IOBle21, IOAle4, IOBOe22, IOAOe3 

IOB7,DB7 ROIF (DA7,WAC,GND,GND,RDBC) 
IOA7,DA7 ROIF (DB7,WBC,GND,GND,RDAC) 
IOB6,DB6 ROIF (DA6,WAC,GND,GND,RDBC) 
IOA6,DA6 ROU (DB6,WBC,GND,GND,RDAC) 
IOB5,DB5 ROU (DA5,WAC,GND,GND,RDBC) 
IOA5,DA5 ROIF (DB5,WBC,GND,GND,RDAC) 
IOB4,DB4 ROIF (DA4,WAC,GND,GND,RDBC) 
IOA4,DA4 ROIF (DB4,WBC,GND,GND,RDAC) 
IOB3,DB3 ROIF (DA3,WAC,GND,GND,RDBC) 
IOA3,DA3 ROIF (DB3,WBC,GND,GND,RDAC) 
IOB2,DB2 ROIF (DA2,WAC,GND,GND,RDBC) 
IOA2,DA2 ROIF (DB2,W8C,GND,GND,RDAC) 
IOBl,DBl ROU (DAl,WAC,GND,GND,RDBC) 
IOAl,DAl ROIF (DB1,W8C,GND,GND,RDAC) 
IOBO,DBO ROIF (DAO,WAC,GND,GND,RDBC) 
IOAO,DAO ROir (DBO,WBC,GND,GND,RDAC) 
WAC = INP (WA) 
RDBC = AND(CSBI,RDBI) 
WBC = INP (WB) 
RDAC = AND(CSAI,RDAI) 
CSBI = INP (CSB) 
nRDBI = INP(nRDB) 
nRDAI = INP(nRDA) 
CSAI INP(CSA) 
RDAI NOT(nRDAI) 
RDBI = NOT(nRDBI) 

END$ 
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SC060 REGISTER LEF 

JUBRO STAHL 
INTIL ZUBRICB 
March 27, 1986 ******************** ** BXAMPLB .LBF ** 
80CS1 MAILBOX MBMORY USING 5C060 I 5COS1 
l 

******************** 
5C060 

LB Ver•ion S.O, Baaeline 17x, 9/26/85 
LBF Veraioa 1.0 Baaeliae 1.51 02 Feb 1987 
PART: 

5C060 
INPUTS: 

WBel, CSAe2, CSBel4, nRDAell, nRDBe2S, WAelS 
OUTPUTS: 

NB TWO RI: 

IOB7•15, IOA7•10, IOBS•lS, IOAS•9, IOB5el7, IOA5•8, IOB4•18, IOA4e7, 
IOBSl19, IOASe6, IOB2e20, IOA2e5, IOBle21, IOAle4, IOBOe22, IOAOeS 

wee = INP(WB) 
WAC = INP(WA) 
CSAI = INP(CSA) 
CSBI = INP(CSB) 
nRDAI = INP(aRDA) 
nRDBI = INP(nRDB) 
IOB7, 087 ROIF(DA7, WAC, ONO, ONO, RDBC) 
IOA7, DA7 ROIF(DB7, wee, ONO, ONO, RDAC) 
1086, DBS ROIF(DA6, WAC, ONO, ONO, RDBC) 
IOA6, DAS ROIF(DB6, WBC, ONO, GND, RDAC) 
IOB5, 085 ROIF(DA5, WAC, ONO, ONO, RDBC) 
IOA5, DA5 ROIF(DB5, WBC, ONO, ONO, RDAC) 
1084, DB4 ROIF(DA4, WAC, GND, ONO, RDBC) 
IOA4, DA4 ROIF(DB4, WBC, ONO, ONO, BDAC) 
1083, DBS ROIF(DAS, WAC, GND, ONO, RDBC) 
JOAS, DAS ROIF(DBS, WBC, GND, GND, RDAC) 
1082, DB2 ROIF(DA2, WAC, GND, GND, RDBC) 
10!2, DA2 ROIF(DB2, WBC, ONO, ONO, RDAC) 
IOBl, DBl ROIF(DAl, WAC, GND, ONO, RDBC) 
IOAl, DAl ROIF(DBl, WBC, ONO, GND, RDAC) 
IOBO, DBO ROIF(DAO, WAC, ONO, ONO, RDBC) 
IOAO, DAO ROIF(DBO, WBC, ONO, ONO, RDAC) 

BQUATIONS: 
RDAC CSAI * nRDAI'; 

RDBC CSBI * nRDBI'; 

IND$ 

2-147 

292016-5 



AB-U 

5C060 REGISTER· UTILIZATION REPORT 

Lo1ic Opti•izin1 Co•piler Utilization Report 
FIT Veraion 1.0 Ba•ellne l.Ol 2/6/87 

•••** De•iln i•ple•ented •aceea•fally 

JUIRG STAHL 
JNTIL ZUIRICH 
March 27, 1986 
80C31 MAILBOX MBMORY USING 5C060 / 5C031 
1 
5C060 

LB Ver•ion 3.0, Ba•eline 17x, 9/26/85 

5C080 

WB -: I 24:- Vee 
CSA -: 2 23:- nRDB 

JOAO -: 3 22:- IOBO 
IOAI -: 4 21:- IOBI 
IOA2 -: 5 20:- 1082 
IOA3 -: 6 19:- IOB3 
IOA4 -: 7 18:- 1084 
IOA5 -: 8 17:- IOB5 
JOA& -: 9 16:- 1086 
JOA? -: 10 15:- IOB7 
nRDA -: 11 14:- CSB 

GND -: 12 13:- WA 

UJNPUTSU 

Na•e Pin Re•oarce MCell t PTer•• 

WB l INP 

CSA 2 INP 

nRDA 11 JNP 

GND 12 GND 

••••••••••••••••••••••••• U BXAMPLI .• RPT Fltl U · 
••••••••••••••••••••••••• 

reeda: 
Meell• OB Clear• Clock 

9· 
lD 
11 
12 
13 ·, 
14 
lll 
16 

9 
10 
11 
12 
13 
14 
15 
16 

l 
2 
3 
4 
5 
6 
7 
8 
9 
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5C060 REGISTERUTILIZATION REPORT (Continued) 

10 
II 
12 
13 
14 
15 
16 

WA 13 !NP CLK2 

CSB 14 !NP l 
2 
3 
4 
5 
6 
7 
8 

nRDB 23 INP l 
2 
3 
4 
5 
6 
7 
8 

Yee 24 Yee 

UOIJTPIJTSU 

Feede: 
Na•e Pin Reeource MC ell • PTer•a MCelh OB Clear Clock 

IOAO ROif 9 l/ 8 

IOU 4 ROIF 10 l/ 8 2 

IOA2 5 ROIF 11 l/ 8 

IOA3 6 ROIF 12 l/ 8 4 

IOA4 7 ROif 13 l/ 8 5 

IOA5 8 ROIF 14 l/. 8 6 

IOA6 9 ROif 15 l/ 8 7 

IOA7 10 ROIF 16 l/ 8 8 

1087 15 ROIF 8 l/ 8 16 

1086 16 ROIF 7 l/ 8 15 

1085 17 ROif 6 l/ 8 14 

1084 18 ROIF 5 I/ 8 13 

1083 19 ROif 4 I/ 8 12 

1082 20 ROIF I/ 8 11 

1081 21 ROif 2 l/ 8 10 292016-7 

1010 22 ROIF l/ 8 9 

All Reaource• u•ed 

UP ART IJTILIZATIONU 

lOO• Pin• 
lOD• MacroC•lh 
12• Pt era• 

292016-8 
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5C031 ARBITER ADF 

JUIRG STAHL 
INTBL ZUIRICR 
March ZS, 1986 
80C31 MAILBOX MIMORY USING 50060 I 50031 
z 
5C031 

LB Yeraion 3.0, Baaeline 17x, 9/26/85 
PART: 5C031 

******************** ** llAMPLI .ADF ** 
******************** 

INPUTS: RST,nWRA,nRDB,CSA,nRDA,nWRB,OSB,nOI 
OUTPUTS: WA,nOBrA,nIBIB,nIMTA,nINTl,nOBrl,nillA,WB 
MBTWORI: 
nWRA = INP(nWRA) 
nRDB = INP(nRDI) 
RST = INP(RST) 
CSA = INP(OSA) 
nRDA = INP(nRDA) 
nWRI i: INP(nWRB) 
CBI INP(CSI) 
nOI INP(nOI) 
WRA = NOT(nWRA) 
WRB NOT(nWRI) 
RDA NOT(nRDA) 
RDI = NOT(nRDI) 
01 = NOT(nOI) 
nRST = NOT(RST) 
WA = CONr(WAd,YCO) 
WAd = AND(CSA,WRA) 
WI = CONr(Wld,YCO) 
Wld = AND(CSl,WRI) 
nRB = NAND(RDB,CSI) 
nRA = NAND(RDA,CSA) 
nWAd = NOT(WAd) 
nWld = llOT(Wld) 
nOIFA,nOBFA OOCF(nOlrAd,01) 
no1r1,no1r1 = cocr(no1r1d,OI) 
nillA,nIBIA = oocr(nillAd,01) 
nillB,nilll = COCF(nIBIBd,01) 
nINTA = CONF(nINTAd,01) 
nINTI = OONF(nINTBd,01) 
nINTAd = AND(nOIFA,nillA) 
nillTld AND(nOIFl,nilll) 
nOlrld NAND(nRA,nillA,nRST) 
nOIFAd NAND(nRl,nilll,nRST) 
nIBIBd NAND(aWAd,nOIFA) 
nillAd NAND(nWld,nOlrl) 

IND$ 
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5C031 ARBITER LEF 

JUBRG STAHL 
INTBL ZUBRICR 
March 28, 1986 
80C31 MAILBOX MBMORY USING 5C060 / 5C031 
2 
15C031 

LB Verdon 3.0, BHeline 17x, 9/26/815 
LIF Veraion 1.0 Ba•eline 1.151 02 Feb 1987 
PART: 

151:031 
INPUTS: 

******************** 
** BXAMPLI .LIF ** 
******************** 

HST, nWRA, nRDB, CSA, DRDA, nWRB, CSB, nOB 
OUTPUTS: 

NITWORI: 
WA, nOBFA, nIBBB, nINTA, nINTB, nOBFB, nIBIA, WB 

RST = INP(RST) 
nWRA = INP(nWRA) 
nRDB = INP(nRDB) 
CSA = INP(CSA) 
nRDA = INP(nRDA) 
nWRB = INP(nWRB) 
CSB = INP(CSB) 
nOI = INP(nOB) 
WA = CONF(WAd, VCC) 
nOBFA, nOBFA = COCF(nOBFAd, 01) 
nIBBB, nIBBB = cocr(nIBBBd, OB) 
nINTA = CONF(nINTAd, OB) 
nINTB = CONF(nINTBd, OB) 
noara, noarB • cocr(nOBFBd, Oil 
nIBIA, nIBBA = cocr(nIBIAd, OB) 
WB = CONF(WBd, VCC) 

BQUATIONS: . 

IND$ 

WBd = CSB * nWRB'; 

nIBBAd CSB * nWRB' 
+ nOBFB'; 

nOBFBd (nIBBA * HST' * CSA' 
+ nIBBA *HST' * nRDA)'; 

nINTBd nOBFB * nIBBB; 

nINTAd nOBFA * nIBBA; 

nIBBBd CSA * nWRA' 
+ nOBFA'; 

OB = nOB'; 

nOBFAd = (nIBBB * HST' * CSB' 
+ nIBBB *HST' * nRDB)'; 

WAd =CSA* nWRA'; 
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SC031 ARBITER LEF (Continued) 

Lofie Opti•izin& Co•piler Utilization Report 
FIT Yeraion 1.0 Baseline l.Oi 2/6/87 

***** Design i•ple•ented aueeesafully 

JUIRG STAHL 
INTKL ZUBRICH 
March 28, 1986 
80C31 MAILBOX MBMORY USING 5C060 I 5C031 
2 
5C031 

LB Version 3.0, Baseline 17x, 9/26/85 

5C031 

ONO l 20:- Yee 
GND - 2 19:- WB 
nOB - 3 18:- WA 
CSB - 4 17:- nOBFB 

nWRB -: 5 16:- nINTB 
nRDA - 6 15:- nINTA 

CSA - 7 14:- nIBIB 
nRDB -: 8 13:- nOBFA 
nWRA - 9 12: - nIBIA 

ONO - : 10 11 :- RST 

UINPUTSU 

Na•e Pin Resource MCell I PT er•• 

nOB 3 INP 

CSB 4 INP 

nWRB 5 INP 

nRDA 6 INP 

CSA 7 INP 

nRDB 8 INP 

nWRA 9 INP 

GND 10 GND 

RST 11 INP 

Yee 20 Yee 

••••••••••••••••••••••••• ** IXAMPLB .RPT FILE ** 
••••••••••••••••••••••••• 

MCel la 

1 
7 
8 

l 
8 

3 

2 
3 
6 

7 

2 
6 

Feeds: 
OE 

3 
4 
5 
6 
7 
8 

l 
2 

Clear 
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UOUTPUTU$ 

Naae Pin Reeource 

nIBIA 12 cocr 

nOBFA 13 cocr 

nIBIB 14 cocr 

nINTA 16 CONF 

nINTB 16 CONF 

nOBFB 17 cocr 

WA lB CONF 

WB 19 CONF 

$$UNUSID RISOURCIS$$ 

Naae Pin Reeource 

l 
2 

UP ART UTILIZATION** 

BB• Pine 
lOO• MacroC'ell•' 
18' Pterae 

AEH2 

5C031 ARBITER UTILIZATION REPORT 

MC ell • PTerae 

B 2/ B 

7 2/ B 

6 2/ B 

6 l/ B 

4 l/ B 

3 2/ B 

2 l/ B 

l/ B 

MC ell PTerae 

2·153 

reed•: 
MCelle OB Cleer Preaet 

3 
5 

5 
6 

4 
7 

4 
B 
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ATYPICAL LATCH/REGISTER 
CONSTRUCTION IN EPLDs 
Though Intel's EPLDs include many of the. typical 
latch and register types, some logic designs require reg­
ister. of latch configurations not directly supported in 
the current EPLDs. In many Cases these register and 
latch configurations can .be generated using the logic 
array and combinational feedback. A ''latch" is defined 
as a level-triggered, flow-through type such as the 
74373, and a "register'' is defined as an edge-triggered 
flip-flop such as the 7474. 

This application brief will detail the construction of a 
D-type latch, an RS latch and a D flip-flop using com­
binational logic and feedback. Also discussed is the 
construction of an RS flip-flop, a JK flip-flop and a T 
flip-flop using registered logic and feedback. 

The RS latch is the simplest latch configuration. The 
equations for it are as follows: QB = l(Q + S), Q = 
!(QB + R) where Q is the output of one NOR gate, and 
QB is the output of the other (Note: as a convention 

in this Ap brief, the "!" operator is used to signify in­
version). The schematic of the RS latch is shown in 
Figure la. 

Since cross coupled logic is not supported in EPLDs, 
we must convert the equation to a single term with 
feedback. 

ao, QF = COCF (Q, VCC) 

Q = S +IR• QF; 

where QF is the feedback from Q output. 

This circuit can be implemented in an EPLD macro­
cell. Where combinational feedback is not supported, 
VO feedback will suffice. The schematic of this imple­
mentation is shown in Figure lb. 

With the RS latch, the inputs are normally low. A logi­
cal one on S sets Q to l, and a one on R resets Q to a 0. 
Logical ones on both inputs simultaneously cause the 
output to remain at a high level since S takes prece­
dence over R in this implementation. 

R~NOR2 Q 

B 
s . 

NOR2 
292031-1 

(a) 

292031-2 

(b) 

Figure 1. RS Latch Implementation In a) Discrete Gates and b) EPLD Logic 
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Another latch is the 74373 type, or D latch. This latch 
works by either enabling input data to appear at the 
output, or by holding the output to the last input data 
state. Its equation is this: QB = !(!(!D*E)"Q), Q = 
!(!(O*E)*QB). Again, Q is the output of one NANO 
gate, and QB is the output of the other:· Figure 2a 
shows this version of the design. 

Again, we must convert to an EPLD-type equation and 
schematic: 

(a) 

(b) 

. 00, QF = .COCF (Q,VCC) 

Q = D • E + IE • OF; 

QF is the feedback from the COCF. In this circuit, 
when E is high, data flows through transparently. 
When E is brought low, data is latched. Wl:ien using 
input feedback, care must be taken when tri-stating the 
output as data will no longer be latched. The EPLD 
implementation is given in Figure 2b. 

292031-3 

292031-4 

Figure 2. Implementation of a D Type Latch Using a) Discrete Gates and b) EPLD Logic 
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This latch can be cascaded with a second latch to pro­
duce an edge triggered, master/slave D flip-flop, using 
combinational logic. The flip-flop is a solution to using 
asynchronous clocking, preset and clear functions when 
they aren't supported. Also, if an 1/0 conflict exists 
within a macrocell group when using registered logic, 
this design will fit since it uses combinational logic. 
Figure 3 shows the schematic for this design. 

This design does consume two macrocells, but in many 
cases, that isn!t a problem. 

The boolean equation of the D flip-flop is this: 

QO,QF = COCF (Q,VCC) 

YF = NOCFM 

Y = D • !CLOCK + YF • CLOCK; 

Q = YF • CLOCK + QF • !CLOCK; 

Q is the flip-flop output and Y is the first latch output. 
Data is latched in to the second latch on the low-going 
edge of clock, and is clocked out to Q on the high-going 
edge of clock. 

292031-5 

Figure 3. Comblnatlonal Logic Implementation of a D Fllp·Flop 

2-157 



intJ AB·1.I 

Preset and clear can be added into the equations as 
well: 

QO,QF = COCF (Q,VCC) 

YF = NOCF (Y) 

Y = D • ·!CLOCK + YF • CLOCK; 

Q = YF • CLOCK • I (CLEAR TERM) + 
(PRESET TERM) + 
QF • !CLOCK • I (CLEAR TERM); 

When the PRESET TERM is logically true, Q is asyn­
chronously set to l. 

When the CLEAR TERM is logically true, Q is asyn­
chronously cleared to 0. 
The PRESET TERM takes priority over the CLEAR 
TERM. 
This schematic is shown in Figure 4. 

Due to the nature of the design, input delays plus array 
delays plus feedback delays must be added and used to 
determine a maximum operating frequency. In this ex­
ample, tIN + tT AD + tCF + tAD = 113 ns for a 
-65 5Cl21, leaving a maximum frequency of 8.8 
MHz. 

CLEAR TERM -C>--1 ~O+--+-IAN 

PRESET TERM -C>----------' '----------' 
292031-6 

Figure 4. D Flip-Flop with Added Preset and Clear Terms 
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Other useful workarounds involve D registers and logic 
in constructing RS, JK and T flip-flops, for use in 
EPLDs not supporting these configurations. The RS 
flip-flop is simply the RS latch discussed earlier cou­
pled to registered feedback. 

00,QF = ROAF (Q,CLOCK,GND,GND;VCC) 

Q = S +OF• !R; 

Normally, S and R will remain high. When S is brought 
low, Q0 will become 1 on the next clock trigger edge. 
When R is brought low, Q0 wiJI become 0 on the next 
clock trigger edge. The schematic is given in Figure 5. 

INP 

The JK flip-flop is another useful and easily implement­
ed register: 

00,QF = ROAF (Q,CLOCK,GND,GND,VCC) 

Q = J • !QF + !K • OF 

When J = K = 1, Q0 toggles to opposite state on next 
clock trigger. When J = K = 0, Q0 remains the same. 
When J does not equal K, Q0 wiJI follow J on next 
clock trigger. The schematic is shown in Figure 6. 

292031-7 

Figure 5. EPLD lmplementatlon of an RS Flip-Flop 

INP 

292031-8 

Figure 6. EPLD Implementation of a JK Flip-Flop 
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The T flip-flop is also easily constructed: 

00,0F = RORF (0,CLOCK,GND,GND,VCC) 

0 = T * I OF + I T • OF; 

When T is high, Q0 will toggle to opposite state on next 
trigger. When Tis low, QO will remain the same. Fig­
ure 7 shows the T flip-flop design schematic. 

Each of these designs uses a minimum number of p­
terms; adding p-terms is possible to the limit of the 
macrocell being used. It is possible to substitute an en­
tire logical expression for each input listed (except 

register clock), as long as the minimized logic equations 
resulting do not exceed the macrocells p-term count. 

For example, consider using the J-K register. Setting 
J = A • B • C + D and setting K = E • IF * IG + 
H + I then the minimized p-term count will expand 
from two p-terms to five p-terms, which would still be 
okay within a macrocell with more than five p-terms. 

Using logic gates and combinational or registered feed­
back, one can easily implement many types of latches 
and registers. Regardless of the EPLD type, there exists 
the resources to implement any of the discussed circuit­
ry. 

292031-9 

Figure 7. lmplementatlon of a T Fllp-Flop 
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TTL Macros 

The following is a partial list of TTL macros that are 
available through the Intel EPLD customer hot line. 

These macros are used with the SCHEMA 11-PLD 
schematic capture package. They can also be used in 
ADFs (Advanced Design Files) created using a text 
editor. 

THIS LIST REPRESENTS VERSION 3.4 OF THE 
TTL MACRO LIBRARY. FUTURE VERSIONS 
ARE SUBJECT TO CHANGE. 

SSIGATES 

7400 2 Input NANO 

7402 2 Input NOR 

7404 1 Input INVERTER 

7408 2 Input AND 

7410 3 Input NANO 

7411 3 Input AND 

7420 4 Input NANO 

7421 4 Input AND 

7427 3 Input NOR 

7430 8 Input NANO 

7432 2 Input OR 

7486 2 Input XOR 

MSI FUNCTIONS 

Decoders/Demultiplexers 

7442 

7444 

7447X 

7449 

74138 

(10) BCD to Decimal 

(10) Excess-3-Gray to Decimal 

(7) BCD to 7-Segment-Active Low Out­
put 

(7) BCD to 7-Segment-Active High 
Output 

(8) 1-of-8 Decoder 

74139 (4) Single 1-of-4 Decoder 

74145 

74154 

74155 

(10) BCD to Decimal 

(16) 1-of-16 Decoder 

(8) Dual 1-of-4 

74156 (8) Dual 1-of-4 

Multiplexers 

74151 (2) 8-to-1 

74153 (2) Dual 4-to-1-Active High Output 

74157 (4) Quad 2-to-1-Active High Output 

74158 (4) Quad 2-to-1-Active Low Output 

74253 (2) Dual 4-to-1-Three-State Output 

74257X (4) Quad 2-to-1-Active High, Three-
State Output 

74258X (4) Quad 2-to-1-Active Low, Three-
State Output 

74298XA (4) Quad 2-to-1-Active High with Stor­
age 

74298XB (4) Quad 2-to-1-Active High with Stor­
age 

74352 (2) Dual 4-to-1-Active Low Output 
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Counters 

Type 
7490XD (4) BCD Decade 
7490XQ (4) · Bi-Quinai'y · 
741'60 (5) BCD Decade 
74161 (5) 4-Bit Binal'Y 
74162 (5) BCD Decade 
74163 (5) .. 4-Bit Binary 
74168 (5) BCD DecadEI. 
74169 (5) 4·Bit Binary 
74176XD (4) BCD Decade 
74176XQ (4) Bi-Quinary 
74177X (4) 4-Bit'Binary 
74190XA (6) BCD Decade 
74190XB (6) BCD Decade 
74191XA (7) 4-Bit Binary 
74290XD (4) BCD Decade 
74290XQ (4) Bi-Qui nary 
74390X (4) Bi-Quinary /BCD 
74393XA (4) 4-Bit Binary 
74393XB (4) 4-Bit Binary 

AB-18 

Clear Load 
s 9 
s 9 
A s 
A s 
s s 
s s 

s 
s 

A s 
A s 
A s 

s 
s 
s 

s 9 
s 9 
A 
A 
A 

Clk 
A 
A 
A 
A 
A 
A 
A 
A 
A 
A 
A 
A 
A 
A 
A 
A 
F 
F 
F 

RCO 
RCO 
RCO 
RCO 

Extras· 

U/D, RCO 
U/D,RCO 

U/D,RCO,MM 
U/D,RCO,MM 
U/D,RCO,MM 

S = Synchronous R = Rising-Edge Triggered 
A = Asynchronous F == Falling-Edge Triggered 
9 = Synchronous Set-to-9 

U/D = Up/Down 
RCO = Ripple carry Output 
MM = Max/Min Output 

Single Fllp-Flops 

7472XA (2) AND-.Gated JK Master/Slave 

7472XB (2) AND-Gated JK Master/Slave 

7473X (2) JK with Clear 

7474X (2) D with Pr~et and Clear 

74112XA (3) JK with Preset and Clear 
74112XB (2) JK with Clear 

Multlple Fllp-Flops (Registers) 

74174X 

74175X 

74273X 

74377 

74378 

(6) Hex D 

(8) Quad D with Q and IQ 

(8) Octal D 

(8) Octal D with Common Enable 

(6) Hex D 

Latches 

7475X (8) 4-Bit Bistable 

7477X (4) Quad D-Type 

74259XA (8) Octal Addressable D-Type 

74259XB (8) Octal Addressable D-Type 

74373X (8) Octal D-Type 
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Shift Registers 

7491 (8) 8-Bit-Serial-ln, Serial-Out 

7495XA (4) 4-Bit-Serial-In/Parallel-ln, 
Parallel-Out 

7495XB (4) 4-Bit-Serial-In/Parallel-ln, 
Parallel-Out 

7495XC (4) 4-Bit-Serial-In/Parallel-In, 
Parallel -Out 

7496X (5) 5-Bit-Serial-In/Parallel-ln, 
Parallel-Out 

74164 (8) 8-Bit-Serial-In, 
Parallel-Out 

74165X (9) 8-Bit-Serial-In/Parallel-ln, 
Serial-Out 

74194 (4) 4-Bit Bi-Directional-
Serial-In/Parallel-In, Parallel-Out 

74395XA (5) 4-Bit Cascadable­
Serial-In/Parallel-In, Parallel-Out 

74395XA (5) 4-Bit Cascadable­
Serial-In/Parallel-In, Parallel-Out 

Miscellaneous 

7482X 

7483X 

7485X 

7487 

74143X 

74180X 

74180XA 

74182 

74183 

74280X 

(4) 2-Bit Adder 

(8) 4-Bit Adder 

(7) 4-Bit Magnitude Comparator 

(4) 4-Bit True/Complement Element 

(17) 4-Bit Counter; 4-Bit Latch; 7 Segment 
Decoder 

(4) 8-Bit Parity Generator/Checker 

(4) 8-Bit Parity Generator/Checker · 

(5) Look-Ahead Carry Generator 

(2) Single-Bit Full Adder 
with Carry/Save 

(5) 9-Bit Odd/Even Parity Generator/ 
Checker 

DEMORGAN EQUIVALENTS 
(BUBBLE GATES} 

Bubble Bubble Bubble Bubble 
AND NANO NOR OR 

(NOR) (OR) (AND) (NANO) 
2 Input BAND2 BNAND2 BNOR2 BOR2 
3 Input BAND3 BNAND3 BNOR3 BOR3 
4 Input BAND4 BNAND4 BNOR4 BOR4 
S Input BANDS BNANDS BNORS BORS 
S Input BANDS BNANDS BNORS BORS 

12 Input BAND12 BNAND12 BNOR12 BOR12 

INPUT /OUTPUT MACROS 

INPUT N/A Generates Input Pin and Node in 
ADF 

OUTPUT (!) Generates Enabled Output Buffer in 
ADF 

OUTP (I) Output Pin (Used in SCHEMA 11-
PLD) 

74125 (I) Single Three-State Output, Active 
Low Enable 

74126 (1) Single Three-State Output, Active 
High Enable 

NOTES: 
1. All TTL macros duplicate TTL function only. They 
DO NOT DUPLICATE performance characteristics 
such as open-collector, totem-pole, or high-drive out­
put. 
2. Any TTL macros which deviate in some way from 
standard TTL function are denoted with an appended 
"X" (see device .DOC file for details). Appended 
"D"s and "Q"s indicate counters configured to Deci­
mal or bi-Quinary mode; appended "A''s and "B"s in­
dicate a macro configured for a family of EPLD de­
vices (e.g. 5C060, 5C090, 5Cl80). 
3. The(#) indicates the maximum number of EPLD 
macrocells consumed if all outputs are used. If an out­
put is not used, the macro compression phase of the 
Macro Expander will remove the signal unless it is 
used as feedback inside the macro definition. 
4. /Q's should be avoided as pin outputs if possible. 
The EPLD is structured such that the Q is readily 
available as a pin output and both the Q and /Q are 
readily available as feedbacks. Using /Q as a pin out­
put, however, requires an extra macrocell and adds to 
the propagation delay. 
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INTRODUCTION 

Intel's 5Cl21 Erasable Programmable Logic Device 
represents a new breed in the world of programmable 
logic. With gate densities approaching those of gate ar­
rays and a reconfigurable architecture, the logic design­
er is freed from choosing between scores of generic pro­
grammable logic to perhaps find an acceptable match 
for his or her design needs. Adding to the list of benefits 
is the fact that the 5Cl2 l is erasable. Now sections of 
the design can actually be programmed and tested in 
the device - without sacrificing a part to the circular 
file. In addition, there is no longer a need to generate 
test vectors to qualify the programming of the parts. 
EPLDs are erasable and therefore 100% testable at the 
factory. 

OBJECTIVE 

The purpose of this application note is to demonstrate 
the architectural options of the 5Cl21 by designing a 
digital crosspoint switch. Conceptually, a digital cross­
point switch switches data from any input to any out­
put. Figure 1 shows a block diagram of a bytewide 
crosspoint switch. 

10-17 

DIGITAL 
CROSSPOINT 

SWITCH 

03 04 05 
OUTPUT SELECT 

Q0-07 

292008-1 

Figure 1. Functional Diagram of a Digital 
Crosspoint Switch 

This design will employ features such as: registered out­
put with registered feedback, combinational feedback, 
input latches, buried registers, and dual clock options. 
The digital crosspoint switch in this design can route 
data from one of eight inputs to one of eight outputs in 
a single clock cycle. Options for holding the deselected 
outputs at previous levels, latching inputs, and fitting 
considerations are explored. 

THE BASIC ARCHITECTURE 

The 5Cl21 contains 28 Macrocells, 12 dedicated in­
puts, 24 programmable I/O lines, and two clocks input 
pins. Inputs may be flow through, or latched on the 
rising or falling edge of either clock. Output options 

include registered or combinational output. In addition, 
each output may be fed back into the array in both the 
true and complement version. For a more complete de­
scription of the 5Cl21 architecture the reader is re­
ferred to the 5Cl2 l data sheet. 

COMBINATIONAL FEEDBACK 

Feedback in logic designs is used for a variety of rea­
sons. Combinational feedback in the 5Cl21 is often 
used to reduce the number of product terms feeding one 
Macrocell. Though the 5Cl21 has Macrocells that can 
accept up to 16 product terms, all Macrocells are not 
that wide. 

Let's look at an example. Equation 1 represents one of 
the eight Boolean expressions necessary to implement a 
digital crosspoint switch. Logically, this expression se­
lects one of eight input signals (IO-I7), and routes that 
signal to QO. Data bits DO, Dl, and D2 select one of the 
eight input lines. In this case, data bits !D3, !D4, and 
!D5 select output QO. (The exclamation point is used to 
indicate a logical complement of the signal.) Equations 
for Q 1 through Q7 are very similar and will be dis­
cussed later. 

ao = c 10 x 1D2 x 1D1 x tDo 
+ 11 X ID2 X ID1 x DO 
+ 12 x !D2 x D1 X !DO 
+ 13 X ID2 X D1 x DO 
+ 14 x D2 x !D1 x !DO 
+ 15 x D2 x !D1 x DO 
+ 16 X D2 x D1 X !DO 
+ 17 x D2 x D1 x DO) x ID5 x !D4 x ID3; (1) 

SELECTEQ = 10 X ID2 X ID1 x !DO 
+ 11 x ID2 x !D1 x DO 
+ 12 x !D2 x D1 x !DO 
+ 13 x !D2 x D1 x DO 
+ 14 x D2 x !D1 x !DO 
+ 15 x D2 x ID1 x DO 
+ 16 X D2 X D1 x !DO 
+ 17 x D2 x D1 x DO; (2) 

Equation 2 contains the terms that will be common to 
all eight output equations. Both equations in this case 
contain eight product terms. By treating equation 2 as 
one common signal and routing that signal through 
combinational feedback, we can reduce the number of 
product terms in equations Q0 thru Q7 to one p-term 
each. The advantage is that the outputs can now be 
placed in any of the 24 I/0 Macrocells available in the 
5Cl21. In addition, the 5Cl21 contains four buried reg­
isters. (Buried registers have no output and are used 
solely for feedback.) If a buried register is available, 
iPLDs (Intel's Programmable Logic Development Sys­
tem) will automatically assign the No Output - Com­
binational Feedback function to a buried register. This 
increases the flexibility for pin assignments and makes 
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COMBINATIONAL FEEDBACK 
(Continued) 

p-terms available in case a design change is needed. 
Equations 3 thru 10 reflect this improvement. 

00 = SELECTEO x !05 x !04 x !03; (3) 

01 = SELECTEO X 105 x 104 X 03; (4) 

02 = SELECTEO x 105 x 04 x !03; (5) 

03 = SELECTEO X 105 x 04 x 03; (6) 

04 = SELECTEO x 05 x 104 x 103; (7) 

05 = SELECTEO x 05 x 104 x 03; (8) 

Q6 = SELECTEO x 05 x 04 x 103; (9) 

07 = SELECTEO X 05 x 04 x 03; (10) 

REGISTERED FEEDBACK 

Registered feedback is also employed in a variety of 
applications such as counters and state machines. In 
this particular example, the registered feedback signal 
can be used to hold the deselected outputs of the switch 
at their previous level until that output is selected 
again. This is accomplished by simply "ANDing" the 
feedback signal with the inversion of the output select 
signal. The result is then "ORed" with the equation for 
the given output. Holding the previous output might be 
useful in control applications or when interfacing to 
slow peripherals. Equations 11 thru 18 are the result. 

00 = SELECTEO x 105 x 104 x 103 + 1(05 x 104 
x 103) x 00-fdbk; (11) 

01 = SELECTEO x !05 x !04 x 03 + !(!05 x 104 
x 03) x 01-fdbk; (12) 

02 = SELECTEO x !05 x 04 x !03 + !(105 x 04 
x !03) x 02-fdbk; (13) 

03 = SELECTEO x !05 x 04 x 03 + !(!05 x 04 
x 03) x 03-fdbk; (14) 

04 = SELECTEO X 05 X 104 X 03 + 1(05 X 104 
x 103) x 04-fdbk; (15) 

05 = SELECTEO x 05 x 104 x 03 + !(05 x 104 
x 03) x 05-fdbk; (16) 

06 = SELECTEO X 05 X 04 X 103 + 1(05 X 04 
x 103) x 06-fdbk; (17) 

07 = SELECTEO x 05 x DR x 03 + !(05 x 04 
X DE) X 07-fdbk; (18) 

Equations 11 thru 18 are all that are necessary to im­
plement a digital crosspoint switch with the output 
hold feature. Each equation contains only four product 
terms when written in the expanded form and could 
therefore fit into any Macrocell in the 5Cl21. The ap­
pendix contains the report and ADF files generated by 
the iPLDs software. 

TIMING ANALYSIS 

Figure 2 shows the internal delay paths associated with 
this design in the 5Cl21. The frequency at which the 
5Cl21 may be clocked can be determined by examining 
the internal delay elements of the 5Cl21. These include 
the input delay (Tin), two array delays (Tad), and the 
combinational feedback delay (Tct). Table l gives the 
simulation data for each of these paths in a 5Cl21-50. 

REG OUTPUT ......,.._. _ _. 

292008-2 

Figure 2. Crosspoint Delay Path 

2-167 



intef AP-271 

TIMING ANALYSIS (Continued) 

Table 1. 5C121·50 Simulation Data 

Model Delay(ns) Parameter 

Tad 38 

Trd 7 

Tod 8 

Tin 10 

Tic 8 

Trf 5 

Tcf 5 

The sum of the delays before the register input equal 
the set-up time Tsu with reference to the internal clock. 
By substracting the input clock delay Tic we shift the 
reference to the external clock pin. The set-up time 
with reference to external signals is shown in equation 
19. Inverting this signal yields the maximum clock fre­
quency, fmax. The maximum clock frequency is shown 
in equation 20. 

Tsu = Tin + 2Tad + Tel - Tic; 

fmax = 1 Tsu 

(19) 

(20) 

Therefore, this configuration of the 5C121-50 could be 
clocked at 10 MHz, allowing a data transfer rate of 10 
Mbits/second. By paralleling six 5C12 ls together, eight 

CLK 

bits could be switched per cycle. Figure 3 shows the 
timing diagram for this configuration of the 5C121 digi­
tal crosspoint switch. Included in the appendix is the 
Advanced Design File (ADF), Logic Equation File 
(LEF), and Utilization report generated by Intel's Pro­
grammable Logic Software (iPLS) for this design. 

INPUT LATCHES 

One point must be raised about Figure 3. Notice that 
the time allowed for external data set-up is only 17 ns. 
Therefore, 17 ns after the rising edge of the clock, data 
must be stable and remain stable at the input pins until 
the next clock pulse. In most systems this would be a 
very stringent requirement. Fortunately the 5C121 has 
the ability to latch the data at the input pins with 7475 
type transparent latches. Employing this feature eases 
the data set-up requirement as shown in Figure 4. 

SUMMARY 

The flexible architecture of the 5Cl21 gives the design­
er a variety of options for input and output configura­
tions. Inputs may be latched to ease system timing re­
quirements. Outputs may be clocked for synchronous 
systems or fed directly out as asynchronous signals. 
Feedback can be used to reduce product term require­
ments, to save present state information for state ma­
chines and counters, or simply to hold deselected out­
puts as shown in this example. Imagine the possibilities. 

J. R. Donnell 
PLDO Applications 

100ns ---------i 

!+----- Tsu (83NS) ____ __.., 

DATA OUT VALID 

292008-3 

Figure 3. Crosspoint Timing Diagram 
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100ns --------+! 

CLK 

----- Tsu(83NS) -----+I 

LATCHED INPUTS INPUT STABLE 

LATCH ENABLE 

DATA TO PINS x EXTERNAL DATA SET-UP DATA STABLE X------------
DATA OUT----------------.~ T~l~,....--D-A-TA-OU_T_V_A_L-ID __ __ 

(Teo! =Tic+ Trd +Tod) 
292008-4 

Figure 4. Crosspoint Timing Diagram with Input Latches 
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0 
5Cl21 
Digital Crosspoin~ Switch 

AP-271 

APPENDIX 

LB Version 3.0, Baseline 17x, 9/26/85 
PART: 5Cl21 
INPUTS: I00837,I01836,I02835,I03834,I0488,I0589,I06810,I07811,Il0833,Ill832 

,Il2831,Il3830,Il4829,Il5828,Il6827,Il7826,CLK838,D082,Dl83,D284,D385 
,D486,D587,ILE81 

OUTPUTS: Q00812,Q01813,Q02814,Q03815,Q048161Q05817,Q06818,Q07819,Ql0824,Qll823 
,Ql2@22,Ql3821 

NETWORK: 
QOO,QOOFBK RORF 
QOl,QOlFBK RORF 
Q02,Q02FBK ~ RORF 
Q03,Q03FBK RORF 
Q04,Q04FBK RORF 
Q05,Q05FBK RORF 
Q06,Q06FBK RORF 
Q07,Q07FBK RORF 
QlO,QlOFBK RORF 
Qll,QllFBK RORF 
Ql2,Ql2FBK RORF 
Ql3,Ql3FBK RORF 
CLK = INP (CLK) 

(QOOD,CLK,GND,GND,VCC) 
(QOlD,CLK,GND,GND,VCC) 
(Q02D,CLK,GND,GND,VCC) 
(Q03D,CLK,GND;GND,VCC) 
(Q04D,CLK,GND,GND,VCC) 
(Q05D,CLK,GND,GND,VCC) 
(Q06D,CLK,GND,GND,VCC) 
(Q07D,CLK,GND,GND,VCC) 
(QlOD,CLK,GND,GND,VCC) 
(QllD,CLK,GND,GND,VCC) 
(Ql2D,CLK,GND,GND,VCC) 
(Ql3D,CLK,GND,GND,VCC) 

' BIT 0 OUTPUTS ' 

' 4 OF THE 8, BIT 0 OUTPUTS' 

D5 = LINP (D5,ILE) 'OUTPUT SELECT CONTROL BITS' 
ILE = INP (ILE) 
D4 LINP (D4,ILE) 
D3 LINP (D3,ILE) 
D2 = LINP (D2,ILE) ' INPUT SELECT CONTROL BITS ' 
Dl = LINP (Dl,ILE) 
DO= LINP (DO,ILE) 
100 LINP (100,ILE) 
IOl LINP (IOl,ILE) 
I02 LINP (I02,ILE) 
I03 LINP (I03,ILE) 
104 LINP (I04,ILE) 
105 LINP (105,ILE) 
106 LINP (106,ILE) 
107 LINP (107,ILE) 
110 LINP (IlO,ILE) ' INPUTS FOR BIT 1 SWITCH' 
Ill LINP (Ill,ILE) 
Il2 LINP (Il2,ILE) 
Il3 LINP (Il3,ILE) 
Il4 LINP (114,ILE) 
Il5 LINP (115,ILE) 
116 LINP (116,ILE) 
117 LINP (117,ILE) 
SELECTEQOF = NOCF (SELECTEQO) 
SELECTEQlF = NOCF (SELECTEQl) 
EQUATIONS: 
QOOD SELECTEQOF*!D5*!D4*!D3 

QOlD 

Q02D 

Q03D 

Q04D 

Q05D 

+ !(!D5*!D4*!D3)*000FBK; 
SELECTEQOF*!D5*!D4* D3 

+ !(!D5*!D4* D3)*001FBK; 
SELECTEQOF*!D5* D4*!D3 

+ !(!D5* D4*!D3)*002FBK; 
SELECTEQOF*!D5* D4* D3 

+ !(!D5* D4* D3)*003FBK; 
SELECTEQOF* D5*!D4*!D3 

+ !( D5*!D4*!D3)*004FBK; 
SELECTEQOF* D5*!D4* D3 
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+ !( 05*!04* 03)*005JBK; 
Q060 SBLBCTBQOF* 05* 04*!03 

+ !( 05* 04*!03)*006JBK; 
Q070 SBLBCTBQOF* 05* 04* 03 

+ !( 05* 04* 03)*007JBK; 
QlOO SBLBCTBQ1F*!05*!04*!03 

+ !(!05*!04*!03)*010JBK; 
QllO SBLBCTBQ1F*!D5*!04* 03 

+ !(!05*!04* 03)*011JBK; 
Ql2D SBLBCTBQ1F*!05* D4*!03 

+ !(t05* 04*!03)*012JBK; 
Ql3D ·~ SILBCTBQ1F*!05* 04* D3 

+ !(!D5* 04* 03)*013FBK; 

AP·271 

SILBCTIQO = IOO*!D2*!Dl*!DO ' COMMON IQUATION FOR BIT 0 ' 
+ I0l*!D2*~Dl$DO 
+ I02*!D2*Dl*!DO 
+ I03*!02*DUOO 
+ I04*D2*!Dl*!DO 
+ I05*02*!0UOO 
+ I06*D2*D U ! DO 
+ I07*D2*DUDO; 

SBLBCTBQl = Il0$!D2*!Dl*!DO ' COMMON EQUATION FOR BIT 1 ' 
+ Ill*!02*!Dl*OO 
+ Il2*!D2*Dl*!DO 
+ Il3*!D2*DUOO 
+ Il4*D2*!0l*!DO 
+ 115*02* ! OUDO 
+ Il6*D2*DU!DO 
+ Il7*D2*Dl*DO; 

BND$ 
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0 
5Cl21 
Digital Crosspoint Switch 

AP~271 

LB Version 3.0, Baseline 17x, 9/26/85 
PART: 

5Cl21 
INPUTS: 

I00@37, I01@36, I02@35, I03@34, I04@8, I05@9, I06@10, I07@11, Il0@33, 
Ill@32, Il2@31, Il3@30, Il4829, Il5@28, Il6@27, Il7@26, CLK@38, D0@2, 
Dl@3, D2@4, D3@5, D4@6, D5@7, ILE@l 

OUTPUTS: 
QOO@l2, Q01813, Q02814, Q03815, Q04816, Q05817, Q06@18, ·Q07@19, Ql0@24, 

NETWORK: 
Qll@23, Ql2@22, Ql3@21 

CLK INP(CLK) 
ILE INP(ILB) 
IOO LINP(IOO, ILE) 
IOl LINP(IOl, ILE) 
I02 LINP(I02, ILE) 
I03 LINP(I03, ILE) 
I04 LINP(I04, ILE) 
I05 LINP(I05, ILE) 
I06 LINP(I06, ILE) 
107 LINP(I07, ILE) 
110 LINP(IlO, ILE) 
Ill LINP(Ill, ILE) 
112 LINP(Il2, ILE) 
113 LINP(Il3, ILE) 
Il4 LINP(Il4, ILE) 
115 LINP(Il5, ILE) 
Il6 LINP(Il6, ILE) 
117 LINP(Il7, ILE) 
DO LINP(DO, ILE) 
Dl LINP(Dl, ILE) 
D2 LINP(D2, ILE) 
D3 LINP(D3, ILE) 
D4 LINP(D4, ILE) 
D5 LINP(D5, ILE) 
QOO, QOOFBK RORF(QOOD, CLK, GND, GND, VCC) 
QOl, QOlFBK RORF(QOlD, CLK, GND, GND, VCC) 
Q02, Q02FBK RORF(Q02D, CLK, GND, GND, VCC) 
Q03, Q03FBK RORF(Q03D, CLK, GND, GND, VCC) 
Q04, Q04FBK RORF(Q04D, CLK, GND, GND, VCC) 
Q05, Q05FBK RORF(Q05D, CLK, GND, GND, VCC) 
Q06, Q06FBK RORF(Q06D, CLK, GND, GND, VCC) 
Q07, Q07FBK RORF(Q07D, CLK, GND, GND, VCC) 
QlO, QlOFBK RORF(QlOD, CLK, GND, GND, VCC) 
Qll, QllFBK RORF(QllD, CLK, GND, GND, VCC) 
Ql2, Ql2FBK RORF(Ql2D, CLK, GND, GND, VCC) 
Ql3, Ql3FBK RORF(Ql3D, CLK, GND, GND, VCC) 
SELECTEQOF = NOCF(SELECTEQO) 
SELECTEQlF = NOCF(SELECTEQl) 

EQUATIONS: 
SELECTEQl IlO * D2' * Dl' *DO' 

+ D2 * Dl' * DO' * Il4 
+ D2' * Dl * DO' * Il2 
+ D2' * Dl' *DO * Ill 
+ D2 * Dl * DO' * Il6 
+ D2 * Dl' * DO * Il5 
+ D2' * Dl * DO * 113 
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LEF File (Continued) 

IND$ 

+ D2 * Dl * DO * 117; 

SBLBCTBQO 100 * D2' * Dl' * DO' 
+ D2 * Dl' *DO' * 104 
+ D2' * D l * DO' * 102 
+ D2' * D l' * DO * I 0 l 
+ D2 * Dl * DO' * 106 
+ D2 * Dl' *DO * 105 
+ D2' * Dl * DO * 103 
+ D2 * Dl * DO * 107; 

Ql3D D3' * Ql3FBK 
+ D4' * Ql3FBK 
+ D5 * Ql3FBK 
+ SBLBCTBQlF * D5' * D4 * D3; 

Ql2D D4' * Ql2FBK 
+ D3 * Ql2FBK 
+ D5 * Ql2FBK 
+ SBLBCTBQlF * D5' * D4 * D3'; 

QllD D3' * QllFBK 
+ D4 * QllFBK 
+ D5 * QllFBK 
+ SBLBCTBQlF * D5' * D4' * D3; 

QlOD D3 * QlOFBK 
+ D4 * QlOFBK 
+ D5 * QlOFBK 
+ SBLBCTBQlF * D5' * D4' * D3'; 

Q07D D3' * Q07FBK 
+ D4' * Q07FBK 
+ D5' * Q07FBK 
+ SBLBCTBQOF * D5 * D4 * D3; 

QOSD D4' * Q06FBK 
+ D5' * Q06FBK 
+ D3 * Q06FBK 
+ SBLBCTl!QOF * D5 * D4 * D3.; 

Q05D D3' * Q05FBK 
+ D5' * Q05FBK 
+ D4 * Q05FBK 
+ Sl!Ll!CTBQOF * D5 * D4' * il3; 

Q04D D5' * Q04FBK 
+ D3 * Q04FBK 
+ D4 * Q04FBK 
+ Sl!Ll!CTBQOF * D5 * D4' * D3'; 

Q03D D3' * Q03FBK 
+ D4' * Q03FBK 
+ D5 * Q03FBK 
+ Sl!Ll!CTl!QOF * D5' * D4 * D3; 

Q02D D4' * Q02FBK 
+ D3 * Q02FBK 
+ D5 * Q02FBK 
+ SBLBCTl!QOF * D5' * D4 * D3.; 

QOlD D3' * QOlFl!K 
+ D4 * QOlFBK 
+ D5 * QOlFBK 
+ SBLl!CTl!QOF * D5' * D4' * D3; 

QOOD D3 * QOOFBK 
+ D4 * QOOFBK 
+ D5 * QOOFBK 
+ SBLl!CTl!QOF * D5' * D4' * D3'; 
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RPT File 

Logic Opti•izing Co•piler Utilization Report 

***** Design i•ple•ented aucceaafully 

JR Donnell 
Intel 
January 24, 1986 

0 
5Cl21 
Digital Croaapoint Switch 
LB Veraion 3.0, Baaeline 17x, 9/26/85 

5Cl21 

ILi -: 1 40:- Vee 
DO -: 2 39:- Vee 
Dl -: 3 38:- CLK 
D2 - 4 37:- 100 
D3 -: 5 36:- 101 
D4 -: 6 35:- 102 
D5 -: 7 34:- 103 

104 -: 8 33:- 110 
105 - 9 32:- Ill 
106 -: 10 31:- 112 
107 -: ll 30:- 113 
QOO -: 12 29:- 114 
QOl -:13 28:- 115 
Q02 -:14 27:- 116 
Q03 -:15 26:- 117 
Q04 -: 16 25:- GND 
Q05 -: 17 24:- QlO 
Q06 -: 18 23:- Qll 
Q07 -: 19 22:- Ql2 
GND -:20 21 :- 013 

**INPUTS** 

Na•e Pin Resource MCell • 
ILi l INP 

DO 2 LINP 

Dl 3 LINP 

D2 4 LINP 

D3 5 LINP 

PTer•• 

2·174 

Feed•: 
MCella OB Clear Clock 

Latch 

13 
15 

13 
15 

13 
15 

9 
10 
11 
12 
17 
18 
19 
20 
Zl 

292008-9 
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RPT File (Continued) 

22 
23 
24 

D4 6 LIMP 9 
10 
11 
12 
17 
18 
19 
20 
21 
22 
23 
24 

D5 7 LINP 9 
10 
u 
12 

' 17 
18 
19 
20 
21 
22 
23 
24 

I04 8 LINP 28 0/ 4 Hi 

I05 9 LINP 27 0/10 15 

I06 10 LINP 26 0/ 8 15 _':"i ·-
107 11 LINP 25' 0/ 6 16 

117 26 LINP 7 0/10 13 

116 27 LINP 6 0/ 8 13 

115 28 LINP 5 0/ 6 13 

114 29 LINP 4 0/ 6 13 

113 30 LINP 3 0/ 8 13 

112 31 liINP 2 0/10 13 

Ill 32 LINP 1 0/ 4 13 

110 33 LINP 13 -
I03 34 LINP 15 

I02 35 LINP 15 .,.. 

IOl 36 LINP 15 

IOO 37 LIMP 15 

CLK 38 INP Reg 

29_2008-10 
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RPT Fiie (Continued) 

UOUTPUTSU 

Feeds: 
Naae Pin Resource MCell # PTeras MC ells OB Clear 

QOO 12 RORF 24 4/ 6 24 

QOl 13 RORF 23 4/ 8 23 

Q02 14 RORF 22 4/10 22 

Q03 15 RORF 21 4/ 4 21 

Q04 16 RORF 20 4/12 20 

Q05 17 RORF 19 4/ 4 19 

Q06 18 RORF 18 4/ 8 18 

Q07 19 RORF 17 4/ 8 17 

Ql3 21 RORF 12 4/ 8 12 

Ql2 22 RORF 11 4/ 8 11 

Qll 23 RORF 10 4/ 4 10 

QlO 24 RORF 9 4/12 9 

**BURIED RBGISTBRS** 

Feeds: 
Naae Pin Resource MCell # PTeras MCells OB Clear 

NOCF 13 8/ 8 9 
10 
li 
12 

NOCF 15 8/ 8 17 
18 
19 
20 
21 
22 
23 
24 

**UNUSED RBSOURCBS** 

Naae Pin Resource MC ell PTeraa 

25 8 4 
NA 14 8 
NA 16 8 

**PART UTILIZATION** 

97- Pina 
89- MacroCella 
30- Pt eras 

292008-11 
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INTRODUCTION 

From an outside glance, the world of computers and 
microprocessors seems filled with dedicated ICs that 
fulfill a variety of system needs. Upon closer inspection 
we find that designers must still reach into their bag of 
random logic to link together all of the parts of the 
system. It seems a shame to stuff a board full of high 
powered peripherals and still have portions of that 
board wasted on decoders, latches, and other miscella­
neous random logic. 

True, programmable logic has been around a long time. 
But that logic is somewhat rigid in form, one time pro­
grammable, and can also double as space heaters. These 
devices are totally unacceptable for a CMOS system. 
What is needed is a flexible PLA architecture, erasabili­
ty for prototyping, and CMOS for low power. In addi­
tion, for this particular application the device must per­
form from static operation to 10 MHz. 

OBJECTIVE 

This application note covers the design of three sepa­
rate circuits for Intel's CHMOS Design Kit. The func­
tions performed by the 5C060 are: Memory decoding, 
wait state generation, and the power down circuitry for 
the 80C88 system clock. 

MEMORY DECODING 

The system in question supports one 32K bank of 
EPROM memory, and four banks of 4K static RAM. 
Figure l shows the memory map of this system. Ad­
dress lines Al9, Al3, and Al2 will be used to decode 
the address space. PWR_DWN and S2-MIO serve as 
enables. In addition, to avoid data bus contention sig­
nals memory read (MRDC) and advanced memory 
write (AMWC) are decoded along with the address 
lines for RAM chip selects. This is necessary for devic­
es without output enables (OE) on multiplexed ad­
dress/data busses. 

FFFFF 

EPROM 

80000 

• • 
• • 
• • 

03FFF 

RAM18K 

03000 

RAM8K 

02000 01FFF 

RAM4K 

01000 

RAMO 

00000 
292009-1 

Figure 1. 80C88 Memory Map 
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Figure 2 shows a discrete implementation of the chip select decoding logic. 

A12 ----1 

A13 ----1 

A 

B 

A19 ----1 C 

S2M10 ----1 G1 

G2A 

74138 

MRDC 
vo 

Y1 AMWC 

Y2 

V3 RAM4KCS 

Y4 

vs 

Yi 

Y7 

292009-2 

Figure 2. Discrete Decoding Logic Solution 

Several options for entering this design are available 
through Intel's Programmable Logic Development Sys­
tem (iPLDS). (For a more complete description of 
iPLDS the reader is referred to the iPLDS data sheet.) 
The design entry vehicle chosen for this application 
note is the Logic Builder. (Logic Builder is an interac­
tive netlist method of design entry especially suited to 
Boolean equation entry and entry from existing sche­
matics.) Several reasons are behind this decision. First, 
the Logic Builder software is included in iPLDS. In 
addition, Logic Builder entry is very fast, the designer 
may choose either netlist entry or Boolean equations, 
and finally, the Logic Builder software makes additions 
and corrections of design very easy. 

Using Logic Builder, the first step for this design is to 
determine the equations for the 3 to 8 decoder shown in 
Figure 2. These equations are simply the decoding of 
the address lines ANDed with the enable signal. Equa­
tions 0 thru 8 implement the decoding function of Fig­
ure 2. 

/YO= /Al9°/A13°/Al2°ENABLE; 
/Yl = /AI9•/Al3•Al2°ENABLE; 
/Y2 = I Al9• Al3• I A12•ENABLE; 
/Y3. = /Al9.Al3.Al2*ENABLE; 
/Y4 = Al9°/Al3•/Al2•ENABLE; 
!Y5 = A19• I A13* A12•ENABLE; 
!Y6 = Al9.Al3*/Al2*ENABLE; 
!Y7 = Al9.Al3*AI2•ENABLE; 
ENABLE = /PWRDWN*S2MIO; 

(0) 
(1) 
(2) 
(3) 
(4) 
(5) 
(6) 
(7) 
(8) 

Armed with this knowledge it becomes trivial to enter 
the circuit of Figure 2 into Logic Builder. Included in 
the Appendix is the Advanced Design File (ADF) cre­
ated by Logic Builder for this circuit (ADF-1). Typical­
ly the ADF would now be submitted to the Logic Opti­
mizing Compiler (LOC) for Boolean minimization and 
design fitting. In this case we have used only a small 
portion if the logic available in the 5C060 so let us 
continue with the wait state generator and power down 
circuitry. 

Power Down 
Since this design is based on the 80C88 we can actually 
stop the system clock for extended periods of time and 
power back up as if nothing had occurred. The circuit 
to achieve this power down is shown in Figure 3. 

As long as the PWRDWN signal is low the 82C84 
clock output is OR'ed with a logical zero from the 
PWRDWN flip-flop. As a result the 82C84 drives the 
80C88. system clock. If PWRDWN goes HIGH, the 
rising edge of the next 82C84 clock will set the output 
of the PWRDWN flip-flop HIGH inhibiting the fall of 
the next clock cycle. The 80C88 system clock will re­
main HIGH until PWRDWN goes LOW and the 
PWRDWN flip-flop is clocked from the 82C84 clock. 
Using this configuration we avoid partial clock cycles 
for the 80C88 system clock. 
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12C84CLK 
PIN OUT IN OUT 

INP CLKB 

GND Yee 

,-- 2°-R"oiiF"1 
I 

-i - -
1 
I .___.....__.D OHH>--o...;1- STOPCLK 

'--- - - - FBK 

Yee 

80C88CLK 

292009-3 

Figure 3. 80C88 Power Down Circuit 

Again, entering this circuit into Logic Builder is trivial. 
In fact it can be added directly to the decoder circuit 
shown above. The ADF file for this addition is shown 
in the appendix under ADF-2. 

Walt States 

The majority of memory and peripheral devices which 
fail to operate at the maximum CPU frequency typical­
ly do not require more than one wait state. The circuit 
shown in Figure 4 is an example of a simple wait state 
generator. The circuit operation is as follows. Given 
that a memory location requiring a wait state has been 
selected, ALE in conjunction witli /W AITCS will clear 
the flip-flop-driving the 82C84RDY line high low. 
The 82C84 samples the RDY line during T2 of the 
80C88 bus cycle, and in this case detects a wait state. 
The rising edge of T2 then clocks the 82C84RDY line 
high thereby inserting only one wait state. 

Once again, adding this circuit to the existing decoder 
and power down design is simple. The final ADF file is 
given in the appendix under ADF-3. Once the final 
design has been completed the ADF is submitted to the 
Logic Optimizing Compiler. LOC compiles the design, 
performs Boolean minimization, and fits the design into 
the target EPLD. In addition, LOC produces two files. 
The JED EC programming file, the Logic Equation File 

(LEF), and the Utilization Report. These are also in­
cluded in the appendix for each step in this design pro­
cess. 

LOC FILES 

The JEDEC Fiie 

The JEDEC file is analogous to the object code file that 
is used to program EPROMs. This file is used by the 
Logic Programming Software (LPS) to program Intel's 
EPLDs. 

The LEF File 

The LEF file is an optional file produced by the compil­
er. The LEF file contains the minimized Boolean equa­
tions which resulted from the original ADF. Some in­
teresting points can be raised concerning the LEF file. 
Looking at LEF-3, first recall that the EPROM chip 
select was a function of Al9, Al3, Al2, and the enable 
signals. It turns out that after minimization the 
EPROM chip select depends only on Al9 and the en­
able signals (/PWRDWN and S2MIO). This is shown 
in the LEF file. One other point, the initial wait state 
circuitry employed a JK flip-flop. The compiler auto­
matically minimized this circuit into a D-type flip-flop 
with feedback achieving the same functionality. 
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ONO Vee 

INP 

292009-4 

Figure 4. Single Walt State Generator for the 80C88 

The Utlllzatlon Report 

Finally, the Utilization Report contains the pin-out for 
the design, information about the architectural layout 
of the design, and a percent utilization for pins, macro­
cells, and product terms. Examining the utilization re­
port for this design we find that two of the sixteen mac­
rocells are still available. We could therefore add more 
functionality in the same 24 pin package. Possible addi­
tions would be more memory decoding, invalid memo­
ry detection, additional wait state generators, etc. One 
point should be raised: The circuitry designed in this 
applications note is relatively simple compared to the 
complex logic functions that could be implemented in 
the 5C060. 

SUMMARY 

The designs shown in this applications note are typical 
requirements of any microprocessor system. The 5C060 
provided a single chip solution to bind together the pri­
mary elements of that system. Few other types of pro­
grammable logic could implement the same logic in a 
single package. None could do it in CMOS erasable 
logic. The 5C060 has room for more. 
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APPENDIX 

.111 Dnnn.,\1 
Tntttl 
.T1tnuary :n, l !11111 
llCOllO 
0 
llCOllO 

ADF-1 

Dftr.tuh"' fQr RCICll8 •Y•t.ftll - l6l RAM and upp•r 11121 IPROM 
U Ynr11tnn :i.O, Rn•r.llnn 17x, !l/26/1111 
PART: 5C080 
INPUTS: Al9,Al:i,Al2.PWRDWN,R2MIO,AMWC,MRDC 
Olf'l'PllTS: RAMOCR. RAM4KCll. RAMllKCS. RAMl llllCll, RPROMCll 
NITWORll: 
RAMOCS • CONF (RAMOCS,VCCl 
RAM4KCll = CONF.IRAM4KCS.YCCl 
RAM81CS = cowr (RAM81CS,VCC) 
RAMlllKCS = CoNF IRAMl611CR,YCCl 
RPROMCS = CONF llPROMCS,VCCl 
AIR = TNP IAl!ll 
AU = INP 1Al3l 
A12 = TNP (A12l 
PWRDWN = lNP (PWRDWNl 
R2MTO = TNP 1112MTOl . 
MRDC = INP (MRDCl 
AMWC = TNP IAMWC) 
RQllATlONll: 
RAMRKCll = /l/MRDC•Y2 

+ I AMWC*Y2): 
RAMlRKCll = /l/MRDCtY:i 

+ I AMWC•Y3 l: 
RPROMCR /(/Y7 

+ /YR 
+ /Y~ 

+ /Y4): 
Y7 /IAl!ltAl~*A12•RNARtRl: 
YR /IA19tA13•1Al2•BNABLBl: 
Y~ /IA19t/Al:itAl2tRNARtR): 
Y4 /(Al9t/Al3t/Al2*BNABLBl: 
RNART.I! = /PWRDWN•R2MTO: 
Y3 = /(/Al!ltA13*Al2*BNABLll: 
Y2 = /l/A1R•Al:i•IA12•RNARtRl: 
llAM41CS = /l/MRDCtYl 

+ I AMWC•Yll: 
Yl = /(/Al9•/Al3•Al2*1NABLB): 
RAMOCR = l(/MRDC*YO 

+ /AMWC*YO); 
YO• /l/Al!lt/Al~t/~12*RNARtRl: 
RNDt 

2-182 
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.JR Dnnnr.11 
Intel 
,Jftnunr:v 31. HIR& 
111:0110 
0 
111:080 

ADF-2 

Decoder for 80C88 •Y•tft• - 181 RMI and upper 11121 IP110M 
Plu• pnwnr dnwn r.irr.uit 
T.8 Veraion 3.0, Beaeline 17x, 9/28/811 
PA RT: 111:0110 • 
TMPUTS: Al9,Al3,Al2,PWRDWM,S2MIO,AMWC,MRDC,82C84CLI 
011TPllT8: RANOC8, RAN4KCS. RANRKllS, RANI BltllS. RPRONllll, llTOPllT.lt, RO<:RRlll.11 
NITWOH: 
RAMOCS = COMr (RAMOCS,VCC) 
RAN41tllR = CONr (RAN4KCS,VCCl 
RAMBICS = COMr (RAMBICS,VCC) 
RANI llltCS = CONJ (RANlflltCll, VCC l 
RPROMCS = COMr (BPROMCS,VCC) 
RTOPCl.K,llTOPCl.Kr z RORr (PWR11WN.R2CR4CUR,Cl1111,ClND,VCCl 
ROCR81ltl = COMr (80C88CLl,VCC) 
PWRDWN z TNP IPWRDWN) 
R21lR4Ctl8 = CLIB (82C84CL1l 
ROCRRCT.K =OR (8TOPC1.llr,R2CR4CT.Kl 
R2C84CLI = INP IR21lR4Ctll 
AHi = TNP (Al!ll 
Al3 = IMP (Al3l 
Al2 = TNP (Al2l 
82MIO = IMP IR2MIOl 
NRDC = TNP INRDCl 
AMWC = IMP IAMWC) 
ROllATTONS: 
RAMOCS = /(/NRDC•YO 

+ /ANWll*YOl: 
RAM41CS /(/NRDC*Yl 

+ /ANWC•Vll: 
RAMBICS = /(/NRDC*Y2 

+ /ANWC*Y2l: 
RAM161CS = /l/MRDC*Y3 

+ /ANWC•Y:tl: 
RPROMCS /(/Y7 

+ /Yll 
+ /Y5 
+ /Y4l: 

YO /(/Al9*/Al3•/Al2*1MABLB 
YI /l/AIA•IAl3•Al2•RNARLRl 
Y2 /(/Al9•Al3•1Al2•BNABL1l 
Y3 /l/AIA*Al3tAl2$RNARLRl: 
Y7 /(AlA•Al3tA12tBNABLB): 
Yll /(AIA$Al3*/Al2tRNARtRl 
Y5 /(Al9t/Al3•Al2tlNABLll 
Y4 /(AIAt/Al3$/Al2UNARl.R 
RMABLI = /PWRDWMtSZMIO: 
RND• . 
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ADF-3 

D•r.nder tnr ROCRR •v•tea - 161 RAM and upper 5121 IPROM 
Plu• pnwAr dnwn nirr.uit 
Plue wait etate circuit 
T.11 Vnninn :LO, Ruftlinf! 17x, ll/2fl/R5 
P.\RT: 50060 
INPUTS: Al9,Al3,Al2,PWRDWN,S2MIO,AMWC,MIDC,82C84CLl,ALl,WAITCI 
OIJ'l'PIJfll: RANOCS, RAN4KCS, RANRllCS. RANI flllCS, RPRONCS, S'l'OPCJ.11, ROCRRCl.11, R2CR4RDY 
NITWORI: 
RAMOCS = CONF IRAMOCS,VCCl 
RAN411CS • CONr (RAN411CS,VCC) 
RAMllCS = CONF (RAMllCS,VCC) 
RANlllllCS = CONr IRANlflllCS,VCCl 
llPIOMCS = CONF (BPROMCS,VCC) 
R'l'OPCl.11,S'l'OPCT.KF = RORr IPWRDWN,R2CR4Cl;llR,GND,Glm,vcc1 
ROCR8Ctl,80C88CLIF • COIF 180C88CLl,VCCl 
R2CR4RDY = RONF I R2CR4RDYD, ROCRRCT,1111, R2CR4RDYC, GND, VCC l 
PWRDWN = lNP (PWRDWN) 
R2CR4Cl.llA = Cl.llR I R2CR4Cl.ll) 
ROCRBCtK = OR (STOPCLKF,82C84CLKl 
R2CR4Cl.ll = TNP I R2CR4CJ.11 l 
Al9 = INP 1Al9l 
A I 3 = TNP (AU) 
A 12 = INP ( Al2 l 
S2MTO = TNP IS2NTO) 
NRDC = INP CMRDC) 
ANWC = TNP IANWCl 
ROCRRCtKB = CLKB (80C88CLlf l 
WAT'l'CS = TNP (WAT'l'CS) 
ALI = INP (ALI) 
ROIJA'l'TONS: 
RAMOCS = /(/NROC$YO 

+ I ANWC•YO l : 
RAM4KCS /(/NRDC•Yl 

+ I ANWC*YI l; 
RAMBKCS = /l/MRDC•Y2 

+ I ANWC$Y2 l; 
R.\Ml6KCS = /(/MRDC*Y3 

+ I ANWC$V3) ; 
llPROMCS = /(/Y7 

+ /Vil 
+ /¥5 
+ /Y4): 

YO • /(/.\l9$/Al3•/Al2•1NABLBl; 
YI /l/Alll•IAl3•Al2•11NARtlll: 
Y2 /(/Al9*Al3*/Al2*1NAILBl: 
Y3 /l/Alll•A13•A12•RNARtR): 
Y7 /(Al9•Al3•Al2•BNABLI); 
Vil /(Alll•A13•/A12•RNARtR): 
VIS /(Al9•/Al3•Al2•BNABLI); 
Y4 • /(Alll•IA13•/A12•RNARtR): 
RNABLI = /PWIDWN•l2MIO: 
R2CR4RDTD /R2CR4RDYC; 
R2C84RDYC • /WAtTCS•ALI; 
llNDS 
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,JR """'""'11 
tntel 
Jnnunrv 31. 19R6 
fiCOllO 

LEF-3 
0 
liC060 
Decoder for BOC88 •Y•te• - 161 RAM and upper 5121 BPROM 
PluR powP.r down r.irr.uit 
Plu• wait •tate circuit 
tR Yftroinn 3.0, Rftoftlin~ 17x. 9/26/Rli 
PART: 

150060 
TNPUTS: 

Al9, Al3, Al2, PWRDWN, S2MIO, AMWC, MRDC, 82C84CLI, ALB, WAITCS 
OUTPUTS: 

NRTWORK: 

RAMOCS, RAM41CS, RAMBICS, RAM16lCS, BPROMCS, STOPCLI, BOCBBCLl, 
R2CR4RDY 

419 INPI Al9) 
Alli = TNPf Al3) 
Al2 = INPIA12) 
PWRDWN = TNPIPWRDWN) 
S2MIO = INPIS2MIO) 
AMWC = TNP(AMWC) 
MRDC = tNPIMRDC) 
R2CR4CtK = TNPIR2CR4CtK) 
ALB = INP(ALB) 

'WATTCS = TNPIWATTCS) 
RAMOCS = CORF(RAMOCS, YCCl 
RAM4KCS = CONFIRAM4KCS, YCCl 
RAMBICS = CONFIRAMBICS, YCCl 
RAM16KCS = CONFIRAM16KCS, VCCl 
RPROMCS = CONFIBPROMCS, YCCl 
.. SGOOOD = CtKRfR2CR4CtKR) 
STOPCLI, STOPCLKF = RORF(PWRDWN, .. SGOOOO, GND, GND, VCCl 
ROCRRCJ.K, ROCRRCJ.KF • C:OTFIROC:RRCl.K. VCCl 
.• SGOOlD = CLlBl80C:R8CtKBl 
R2CR4RDY = RONFfR2CR4RDYD, .. SG0010, R2CR4RDYC, GND, YCC) 

RQ1JATIONS: 
82C84RDYC = WAITCS' * ALB: 

.. SGOOlO = ROCRRC:tKF: 

R2C:84RDYD = IWAITCS' * ALBl': 

ROCRRCl.1! ( S'l'OPCl.l!F' * R2CR4CJ.K' l ': 

.. SGOOOO 82C84CLK: 

RPROMCS = IA19 * PWRDWN'··* S2MTOl': 

RAM16lCS = MRDC * AMWC 
+ Al9' * Al3 * Al2 PWRDWN' * S2MIO: 

RAMRKCS = MRDC * AMWC 
+ Al9' * Al3 * Al2' PWRDWN' * S2MIO: 

RAM411CS MRDC * AMWC 
+ AlA' * Al3' * Al2 * PWRDWN' * S2MIO; 

RAMOCS MRDC * AMWC 
+ Al9' • Al3' * Al2' * PWRDWN' * S2MIO; 
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RPT-3 
•n~•~ Ontt•i•in( Cnapiler Utilisation Report 

.J& Donnell 
Jn tel 
.January 31, 1986 
llC060 
0 
llCORO 
Dar.odar for 80C88 eyate• - 161 RAM and upper 5121 IPROM 
PluR ~nwftr-down r.trr.uit 
Plua wait etate circuit 
l.R varalon· ~.O. Rna1tlh1n 17x. 11/28/115 

llC080 

ClND -: 1 24:- Vcc 
PWRDWll -: 2 2~:- A 111 

ClND -: 3 22:- STOPCLI 
ClllD -: 4 21:- R2CR4RDY 

WAtTCS - 5 20:- 80CBBCLI 
AT.I! -: R 1!1:- RPRONCS 

R2C84CLI -: 7 18:- R4Ml61CS 
NRDC -: R 17:- RANRllCS 
.\MWC - 9 16:- RAM4KCS 

S2NJO -: 10 111:- RANOCS 
A12 -: 11 14:- U3 
ClND - : 12 1~:- ClND 

- -. 
UTNPllTSU 

NR•~ Pin R111t11nurr.fl NCr.l l II PTftr•11 NCr.l IA 

PWRDWll 2 INP 1 
4 
!I 
R 
7 
R 

WATTCS II TllP 11 0/ R 2 

.\LB 6 INP 12 0/ 8 2 

R2CR4Cl.ll 7 TNP 1~ 0/ R ~ 

NRDC 8 INP 14 01 8 5 
6 
7 
R 

ANWC II lllP 111 0/ R II 
R .,. 
II 

112NTO 10 TllP 18 0/ R 4 
·II 
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6 
7 
R 

A12 11 TNP II 
II 
7 
R 

A13 14 TNP II 
fl 
7 
R 

Al!I 23 TNP 4 
II 
fl 
7 
R 

UOllTPIJTS U 

r1u1da: 
Nfl•f'I Pin Rcuu')urr.n NCnll II PTr.r•111 NCr.11~ OR Clr.nr Ctnr.k 

RA.MOOS 15 CONF B 2/ B 

RAN4ttCS 111 coilr 7 21 R 

RlMBKCS 17 CONf II 2/ B 

RANlllttCS lR CONJ' II 21 R 

RPROMCS 19 CONr 4 1/ B 

ROCRRCT.tt 20 COTY 3 l / R 2 

R2C84RDY 21 RONFl 2 1/ B 

R'tOPCl.tt 22 Rl>RFA · 1f'ii 

UIJNIJlllO RiSOURciBi** 

Naae Pin Reaour:ce ·MC1tll · PTe.r-ae 

1 . '-
3 !I II 
4 10 R 

13 

UPART IJTTT.T7.ATTONU 

11i. Pine 
R711: M1tnrnCelle 
!1111 Pt er•• 

292009-10 
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INTRODUCTION 

This application note shows how to implement a 
CMOS Bus Arbiter/Controller in an Intel 5C060 
EPLD (Erasable Programmable Logic Device). The 
note includes a brief overview of a similar circuit imple­
mented with typical PLA devices, a more detailed dis­
cussion of the 5C060 implementation, and a summary. 

The bus priority resolution and arbitration scheme se­
lected for the circuit is that used by the industry-stan­
dard MULTIBUS I interface. Operation and timing for 
the MULTIBUS I interface is well understood by most 
engineers and is described in readily available Intel 
publications. Thus, a description of the MULTIBUS I 
interface is not included here. The bus arbiter/control­
ler functions shown here support both serial and paral­
lel priority resolution between bus masters. Timing is 
equivalent to MULTIBUS I specifications. Electrical 
specifications for both the PLA and EPLD approaches 
vary from MULTIBUS I standards. Neither of the two 
circuits discussed here provide the full current sink ca­
pability for all MULTIBUS I signals. Because the 
EPLD implementation is designed for CMOS systems, 
however, this requirement is not relevant for the 5C060 
implementation. 

PLA APPROACH 

The functional equivalent of a MULTIBUS I arbiter/ 
controller can be implemented in two 20-pin PLA-type 
devices as shown in Figures 1 and 2. (Figure 1 shows 
the logic for the arbiter device. Figure 2 shows the logic 
for the controller and the connections to the arbiter.) 
Figure 3 shows the arbiter list file as an example of 
PLA-type files. Two different 20-pin PLA devices are 
required to implement the arbiter and controller func­
tions, a 16R4-type device and a 16L8-type device. 

Implementation of logic devices in PLA-type devices, 
such as those shown here, has proven to be quite benefi­
cial. Development time and cost is much less than for 
custom silicon device designs. The two PLA-type devic­
es take up less board space than a discrete TTL imple­
mentation of the same functions. In addition, the two 
raw devices can also be used for different functions in 
other products, thereby reducing inventory costs. As a 
result of these factors (and others), use of PLA-type 
devices has grown substantially in recent years. 

With the increased density and flexibility of EPLD de­
vices over typical PLA-type devices, even greater space, 
inventory, and cost savings can be obtained by using 
EPLDs. The following section shows an implementa­
tion of the same arbiter/controller functions in a single 
24-pin 5C060 EPLD device. 

5C060 IMPLEMENTATION 

The equivalent functions for both the MULTIBUS I 
arbiter and controller fit inside a single 5C060 EPLD 
device. The 5C060 device is available in a 24-pin 0.3n 
DIP package. Figures 4 and 5 show logic diagrams for 
the arbiter and controller functions. When compared 
with the PLA implementation, some differences in the 
design are immediately apparent. These differences re­
sult from the characteristics of the EPLD macrocell or 
from corrections to the circuit used in Figures 1 and 2. 

The major change resulting from the EPLD macrocell 
structure concerns the EPLD output buffers. Since out­
put buffers from macrocells are non-inverting (PLA­
type devices typically contain inverting buffers), signals 
enter the buffers in the same logic orientation from 
which they are to appear at the output. The logic for 
the EPLD (shown in Figures 4 and 5) incorporates this 
change. 

Some errors in the PLA-type implementation have also 
been corrected in the EPLD design. These changes are 
as follows: 

• The M/10 input to the MRDC/ and MWTC/ gates 
is inverted. M/10 distinguishes between memory 
and 1/0 cycles. The PLA-type implementation does 
not use this signal properly; the PLA-type controller 
generates read or write commands to both memory 
and 1/0 at the same time, which can result in con­
tention between memory and 1/0 during bus trans­
fers. 

• BPRO/ is gated by BPRN/ in the EPLD design. 
When using serial priority resolution, this allows the 
highest priority arbiter to prevent all other masters 
from controlling the bus. (In the PLA design, 
BPRO/ is enabled/disabled only by a local request. 
Higher priority arbiters cannot disable all other ar­
biters. This can result in contention between bus 
masters. By gating BPRO/ with BPRN/ in the 
EPLD design, this source of bus contention is pre­
vented.) 

Figure 6 shows the list file for the arbiter/controller 
device. Figure 7 shows the report file produced by the 
iPLDS software. This file contains a pinout diagram of 
the final programmed device and provides a resource 
usage map for the device. 

Most of the input and output signals are self-explanato­
ry to those familiar with Intel processors and the 
MULTIBUS I interface. The XREQ input is the bus 
transfer request signal from the address decode logic. 
The BUSY I and CBRQ/ outputs are bi-directional, 
simulated open-collector outputs. These outputs use the 
iPLDS 5C060 (Combinational-Output 1/0-Feedback) 
primitive in the list file. The BUSY I signal serves to 
illustrate this use of EPLD outputs. 
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A pull-up resistor is used externally (i.e., on the back­
plane) to hold BUSY I high when no arbiter is in con­
trol of the bus. When the arbiter is granted control of 
the bus, AEN is clocked high, which enables the output 
of the BUSY I driver. Since the input to· the BUSY I 
driver is low during normal operation (RESET/ invert­
ed), the enabled driver pulls BUSY I low to signal other 
arbiters that the bus is in use. When the arbiter is fin­
ished using the bus, AEN goes low to disable the 
BUSY I driver (three-state output). The pull-up resistor 
pulls BUSY I high to signal other arbiters that the bus 
is free for use if needed. 

Note that BUSY I is also routed into the bus grant logic 
as input BSI. BSI prevents the arbiter from taking con­
trol of the bus (and driving BUSY I low) when some 
other arbiter already has control of the bus. Thus only 
one arbiter may pull BUSY I low at any one. time. 

The one difference between standard MULTIBUS I 
logic levels and the EPLD implementation described 
here relates to the BCLK/ signal. MULTIBUS I bus 
arbitration uses the negative-going edge of BCLK/ to 
synchronize events. All 5C060 flip-flops, however, 
clock on the positive-going edge of BCLK/. If all bus 
masters in the system use the same arbiter impleq:ienta­
tion, this poses no problem. Otherwise, an external in-
verter is required for the BCLK/ input. · 

COMPARISON/SUMMARY 

Both the PLA and EPLD implementations of the bus 
arbiter/controller result in a lower device count than a 
discrete logic circuit. Lower device count means less 
p.c. board space, fewer assembly steps, and fewer device 
interconnects. Both PLA and· EPLD implementations 
are quicker and Jess expensive to develop than a custom 
gate array or dedicated silicon device. 

In contrast to the PLA approach, however, the EPLD 
implementation requires only a single device, while the 
PLA approach requires two different devices. Thus the 
EPLD approach results in twice the cost savings (in­
ventory and assembly) and halfthe programming activ­
ity to produce the device. Fewer device interconnects 
also means greater reliability. In addition, programmed 
EPLD devices can be erased and reprogrammed for a 
different application if needed, a feature not available 
with PLAs. 

Overall, the greater flexibility, and the incremental de­
sign, manufacturing, and cost adVantages of EPLD de­
vices make them ideal for many applications where 
PLA devices would otherwise be used. 
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BPRO (REQ) 

BCLK----------+--------' 
292012-1 

RESET----t 

AEN ---t--f""""'\ 

BPRO """1-t-r-t-­
WR --t-+-+--t 

BPRN --+-+--L-" 
BUSY --t-+-+--t 

CBREQ----t 

BCLK------------' 

B) Grant/ Access Logic 

A) Request Synchronizer 

AEN (GRANT} 

292012-2 

SREQ D Q OEN 
RESET =P-tJ-

AEN 

BCLK --------' 

"' ir=O--i ""' BPRO~ 
AEN~ 

Lo-t>o-- BUSY 

292012-3 

C) Bus Transfer Control 

Figure 1. PLA Approach to a Bus Arbiter 
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Ril--+-+--1 

WR""""'"-<1---i 
SREQ-4---1 

BPRN----1 

RESET----1 

PLA 
16R4 
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---t-AEN 

J----BREQ 

J----CBREQ 

J----BUSY 

J----BPRO ..._ __ .. 
'-------- BCLK 

BUS ARBITER 

BUS CONTROL 
LOGIC 

Figure 2. Bus Controller with Arbiter Connected 

PLA16R4 PLA DBSIGN FILI 
ARBOOl D. B. BNGR. 1/1/86 
MULTIBUS I ARBITBR 
SOMB SYSTBM COMPANY 
BCLK /WR /RD /SRBQ /RBSBT /BPRN NC NC NC GND 
/B /CBRBQ /BUSY /SYNC /BPRO /ABN /OBN /BRBQ NC YCC 

SYNC : = /RBSBT*8RBQ*llR + 
/RBSBT*SRBQ*RD 

BPRO : = /RBSBT*8YNC 

ABN : = /RBSBT* ABN*BPRO*WR + 
/RBSBT* ABN*BPRO*RD + 
/RBSBT*BPRO*BPRN*/BUSY + 
/RBSBT* ABN*BPRN*/CBRBQ 

OEN := /RBSBT*SRBQ*ABN 

IF(BPRO*/ABN) CBRBQ = BPRO*/ABN 

IF(ABN) BUSY = ABN 

BRBQ BPRO + 
ABN 

Figure 3. List Fiie for PLA Arbiter 
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BCLKD~--------..... --------' 

BPRND----t >C:>-----------------' 

A) Request 

RESET ----+--1 

SREQ ---+--+--r~ 

BPRN --+--t--t--t...--' 
es1------t 

ce1------1 
BCLK---------------' 

B) Grant 

292012-6 

AEN 

292012-7 

RE:: ___ ~_. >-
9

-S-.J---<:J BUSY 
RESET ~ 

x:~:---~ Ct.4DEN 

BCLK -
292012-8 

C) Command Enable D)Busy 

SREQ ____......._..------.... 

AEN ---.___-

292012-10 

E)CBRQ 
Figure 4. Logic Diagram of Bus Arbiter Functions 

2-193 

292012-9 



intef AP-276 

292012-11 

Figure 5. Logic Diagram of Bus Controller Functions 
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INPUTS: BCLK, XRBQ, RBSBT, BPRN, MIO, RD, WR, INTAIN 
OUTPUTS: BPRO, ABN, BRBQ, CBRQ, BUSY, INTA, MRDC, MWTC, IORC, IOWC 

NBTWORK: 

BCLB 
INTAIN 
XRBQ 
RBSBT 
BPRN 
MIO 
RD 
WR 
BPRO 
ABN,ABN 
BBBQ 
CBRQ,CBI 
BUSY,BSI 
INTA 
MRDC 
MWTC 
IORC 
IOWC 
SRBQ 
SYNC 
CMDBN 

INP (BCLB) 
INP (INTAIN) 
INP (XREQ) 
INP (RBSBT) 

= INP (BPRN) 
INP (MIO) 
INP (RD) 
INP (WR) 
CONF (BPROc,YCC) 
RORF (AENd,BCLK,GND,GND,YCC) 
CONF (BREQc,YCC) 
COIF (CBRQcl,CBRQc2) 
COIF (BUSYc,ABN) 
CONF (INTAIN,AEN) 
CONF (MRDCc,ABN) 
CONF (MWTCc,ABN) 
CONF (IORCc,ABN) 
CONF (IOWCc,ABN) 
NORF (SREQd,BCLK,GND,GND) 
NORF (SYNCd,BCLK,GND,GND) 
NORF (CMDENd,BCLK,GND,GND) 

•BUS CLOCK INPUT• 
•INT. ACK. INPUT• 
.SYSTEM REQUEST INPUT• , 
•RBSBT INPUU 
•aus PRIORITY INPUT• 
•MIMORY/IO INPUT• 
•READ INPUU 
•WRITE INPUU 
•aus PRIORITY OUTPUT• 
•ADDRESS BNABLE (GRANT)• 
nus RBQUBSU 
•CBRQ/ -- SIMULATED o.c.• 
•BUSY/ -- SIMULATED o.c.• 
•INT. ACK. OUTPUT• 
•MEMORY READ COMMAND• 
•MBMORY WRITE COMMAND• 
•I/O READ COMMAND• 
•I/0 WRITE COMMAND• 
•VALID BUS REQUEST• 
•SYNCHRONIZED RBQUBST• 
•COMMAND KNABLE• 

BQUATIONS: 

BPROc 
AINd 

BRIQc 
BUS Ye 
CBRQcl 
CBRQc2 
MRDCc 
MWTCc 
IORCc 
IOWCc 
SRBQd 
SYNCd 
CMDBNd 

BNDt 

= (SREQ * /BPRN); 
• RISBT * SRBQ * /BPRN * BSI + 

RESIT * SREQ * AEN + 
RBSBT * /BPRN * ABN * CBI; 
/(SREQ + ABN); 

= /RBSBT; 
= /(SRBQ * /ABN); 
= SRIQ * /AIN; = /MIO + RD + CMDEN; 
= /MIO + WR + CMDBN; 

MIO + RD + CMDEN; 
MIO + WR + CMDIN; 

• RBSBT * SYNC; 
= RISBT * IRIQ; 

/(RESET * XRBQ * AEN); 

Figure 6. IPLDS Network List Fiie 
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Lofic Opti•iainf Co•piler Utilisation Report 

••••• Deaifn i•ple•ented aucceeafully 

DANIBL I. SMITH 
INTIL CORPORATION 
MARCH 27, 1986 
YIRSION 1.1 
RIV. A 
5C060 
CMOS BUS ARBITIR/CONTROLLIR 

5C060 

ICLI -: 1 24:- Vee 
MIO -: 2 23:- IRIQ 

RISIRVID -: 3 22:- INTA 
RBSBRVID -: 4 21 :- IOWC 
RISIRVID -: 5 20:- IORC 

AIR -: 6 19:- OTC 
IPRO -: 7 18:- MRDC 

INTAIR -: 8 17:- BUSY 
WR -: 9 16:- CIRQ 
RD -:10 151- IRIQ 

IPRN -: 11 14:- RISH 
GND -: 12 13:- ORD· 

'*INPUTS'* 

N ... Pin Reeource 

BCLI 1 INP 

MIO 2 INP 

IRTAIN 8 IMP 

WR 9 IMP 

RD 10 INP 

BPRN 11 IMP 

RISIT 14 IMP 

IRIQ 23 INP 

MCeU • PTerila 

14 0/ 8 

15 0/ 8 

16 0/ 8 

, ..... , 
MCelle '• OI Clear Clock 

2 
3 
4 
5 

2 
4 

3 
5 

12 
13 

6 
9 

10 
11 
12 

9 
10 

CLltl 

Figure 7. IPLDS Report Fiie 
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OOUTPUTSO 

reede: .... PiD leaource llCell I PTer•• llCelb OB Cle•r Clock 

ABI' 6 aoar 12 3/ 8 7 -7 
8 1 
9 2 

12 3 
4 
II 
6 

IPRO 7 COl'r 13 1/ 8 

IRIQ 16 COl'r 8 1/ 8 

CIRQ 16 COIF 7 1/ 8 12 

IUIY 17 COIF 6 1/ 8 12 

llRDC 18 COl'r 6 1/ 8 

llWTC 19 co•r 4 1/ 8 

IORC 20 CONJ 3 1/ 8 

IOWC 21 CONJ 2 1/ 8 

IHA 22 COl'r 1 1/ 8 

**IURIID RIGIITBR8$$ 

reede: .... PiD le•ource llCell • PT er•• llCelle OB Clear Clock 

3 .-oar 9 1/ 8 2 
3 
4 
6 

4 •oar 10 1/ 8 11 

II •oar 11 1/ 8 7 7 
8 

12 
13 

••Ul'UIBD RISOURCll$$ .... PiD Reaou.rce llCell PTer•a 

13 

OPART UTILIZATIOl'O 

911111 Pin• 
100111 llacroCell• 
11111 Pter•a 

292012-15 

Figure 7. IPLDS Report Fiie (Continued) 
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INTRODUCTION 

Though there are many important activities that are 
considered iii a design, timing analysis usually heads 
the list when it comes to evaluating functionality and 
performance. Timing issues are prevalent during de­
si~, and at reviews when worst case analysis is per­
formed. By being familiar with timing specifics of 
EPLD architecture, the designer can assess timing is­
sues throughout the design phase. 

OBJECTIVE 

This application note details the internal timing of Intel 
EPLDs. It breaks down the internal architecture into 
functional timing elements to extract timing data, and 
then presents a method of timing simulation. The rela­
tionship of these elements to data sheet parameters is 
also shown by several examples. By applying these con-

2 + 4. 
7 • ,, 13 15 17 19 21 ' 23 

0 8 I 10 12 14 11 11 "2 22 
OE 

24 

cepts, engineers will be able to simulate their designs 
and have a better understanding of EPLD timing. 

EPLD STRUCTURE 

Intel EPLDs consist of a programmable logic array and 
a configurable 1/0 block as shown in Figure 1. The 
array is composed of two-level logic, incorpprating a 
programmable AND array and a fixed OR array. The 
AND matrix is a crosshatch of the true and comple­
ments of all the pin inputs and the AND array inputs. 
At each intersection there exists an EPROM cell that 
determines if that input feeds tbe AND gate. By selec­
tively programming these EPROM cells, complex logic 
functions are implemented in the familiar sum of prod­
ucts form. The output of the OR gate feeds an 1/0 
architecture block that has a variety of programmable 
options. Combined, the logic array and 1/0 block is 
called a macrocell. Each macrocell output exits via an 
1/0 pin. 

CLOCK 

25 27 21 31 33 .. 
¥ ¥ 30 32 34 Lr-'\. 

p 
~ ClOCK 

@> AACHITECIURE t 
CONTROL & 

~ 
"· "· ?-. " r-. ?-. ?-. " "· ?\ "" r r. "· ?-. " " ~ Q ~ 2 3 ~~ • l . 

11 19 11 17 11 15 14 13 

NOTE C =1/0 PtN IN WHICH LOGIC ARRAY INPUT IS F'ROM FEEDBACK PATH 

PLA BLOCK 

Figure 1. EPLD Macrocell 
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EPLDs have two specifications that influence delays 
within the component, maximum propagation delay 
(tPD), and minimum clock period (tPl). Propagation 
delay is the time that it takes a signal to appear at the 
output relative to the input. tPD is defined for combi­
natorial outputs. Minimum clock period is the smallest 
allowable clock cycle that determines maximum operat­
ing frequency. Maximum operating frequency (fMAX) 
is defined for registered functions: 

Unlike gate arrays that deal with individual gate delays, 
EPLDs have internal delays that are grouped different­
ly, With a gate array, a logic function may have differ­
ent speed paths for each product term, depending on 
the number of tWo input NANO gates. in each path. In 
an EPLD, each product term is the equivalent of a mul­
ti-input AND gate. Figure 2 shows a comparison of 
gate delays and array delays. 

The top figure shows that SIGNAL A. has two cumula­
tive speed paths in the gate array circuit. In the EPLD 
inplementation, each product term has the same delay 
and there is only one array delay. Intel EPLDs have 
inputs that range from 18 (SC031) to 64 (SC180). Be­
cause the parts are characterized at worst case, the ar­
ray delay is the same regardless of inputs used. In the 
case of product terms, .the EPLD family supports from 
74 to 480. Here again, the number of product· terms 
does not affect the array delay. 

The I/O block varies in complexity within the EPLD 
family, but a typical arrangement is shown in Figure 3. 
I/O programmability is accomplished ·by configuring 
for register types and choosing one of several outputs or 
feedback paths. Timing paths and delays depend on the · 
way the output and feedback muxes are configured. 

. Gate Array Delays 

292027-2 

l!PLD Array Delays 

SIGNAL ABCDEf 

292027-3 

Figure 2. Logic Delays 
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MORE ON ARRAY DELA VS 

The number of inputs and product terms used in an'EPLD array doesn't change the array delay because the 
EPROM cells are always connected, whether they are programmed or not. AB a result, when a device is tested 
the array delay is at worst case load already. When the same design is implemented in a different EPLD, the 
array delay will be different, due to the different IC geometries. For example, a simple three to eight decoder 
implemented in a SC032 will have an array delay of 17 ns. The same decoder when implemented in a SC060 will 
have an array delay of 30 ns. 

u 
292027-4 

IAo = 17 ns 

Designing an EPLD circuit involves working with the 
Intel iPLS[3] (Intel Programmable Logic Software) log­
ic primitives. Logic primitives are functional building 
blocks that the EPLD software requires to implement a 
circuit. The primitives consist of input, logic, and out­
put functions such as INP, AND, OR, CONF, RORF 
etc. Because of the modular nature of the design primi­
tives, the resulting logic implementation is very modu" 
larized and lends itself well to an analysis of timing 
paths. The following sections detail the delays invoJved 
with each primitive. 

TIMING ELEMENTS 

Each EPLD macrocell can be functionally modeled 
with the seven blocks shown in Figure 4. 

The macrocell timing model consists of input buffer 
delay for the inputs and the clock, array delay, register 
delay and output delay. The model shows the feed for- -
ward path as well as the combinatorial and registered 
feedback paths. the feedback paths may apply depend­
ing on the application, and whe.ther the design is com­
binatorial or registered. The model also applies 
to devices that have global and local buses. 

Combinatorial designs with no feedback contain three 
functional blocks for input, array, and output delays. 
Four blocks are required for a design with feedback. 
Register designs may be more complex but contain at 
least five blocks. These are: input, array, output, regis­
ter, and clock delays. The delay for each block is de­
fined as: 

1. Input Buffer Delay (tJN)-The delay associated with 
the input pin and buffers. One delay value applies to 
both true and complementary buffers that drive the 
AND array. 

2. Array Delay (tAD)-The time that it takes a signal· 
to propagate through the AND array and appear at 
the output of the OR gate. This delay is character­
ized at worst case and is independent of number of 
inputs or product terms. 

292027-5 
IAo = 30 ns 

3. Output Buffer Delay (ton)-The delay associated 
with the output pin and buffer of each macrocell. 
Combinatorial outputs have a delay measured from 
the output of the OR gate to the pin. Registered out­
puts have the delay measured from the register out­
put to the pin. The delay value is the same for either 
output configuration. 

4. Combinatorial Feedback Delay (tcp)-The delay 
from the output of the OR gate to the input of the 
AND array. The delay is measured when both the 
true and complement of the signal appear at the in­
put of the array. 

S. Register Delay (tRD)-The delay through any flip­
flop. The delay is measured from the triggering clock 
edge to the time when data is valid at the output of 
the register. 

6. Register Feedback Delay (tRF)-The delay from the 
data valid at the flip-flop output to the time it ap­
pears in true and complement form at the array in­
put. 

7. Input Clock Delay (t1c)-The time that the clock is 
delayed in reaching the input of the internal register. 

Use of these delay paths depends on the EPLD output 
configuration. Figure S introduces the concept of tim­
ing elements that is used throughout this application 
note. Use of these elements depends on the application. 
If a design is combinatorial, then the only paths to con­
sider are the input buffer, the array, the output buffer, 
and the combinatorial feedback path. Conversely, if a 
design is registered, the paths to consider are all of the 
previously listed delays, with the addition of the regis­
ter delay, the clock delay, and the registered feedback 
path. 

The_manner in which the delay values are used is called 
simulation. Simulating a EPLD circuit means calculat­
ing the output timing of a device from internal timing 
with the aid of timing data and simulation model (like 
Figure 5). Before we get into simulation let's examine 
how these internal timing elements relate to the data 
sheet specifications of each device. 
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OUTPUT 
SELECT 

FEEDBACK 
SELECT 

·--------------------------· 

Controls shaded in gray are available on the 5C031 only. 

l> 
CLOCK 
DELAY 
(tic) 

=l [$: 
INPUT 
DELAY 
(t1N) 

Figure 3. 1/0 Architecture Control 

COMBINATORIAL 
FEEDBACK 

DELAY(tcr) 

REGISTERED 
FEEDBACK 

DELAY(tRr) 

INTERNAL CLOCK 

REGISTER 
DELAY 
(tRo) 

Figure 4. EPLD Delay Blocks 
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Comblnatori81 
292027-8 

292027-9 . 
Registered 

Figure 5. EPLD Delay Paths 

DATA SHEET SPECIFICATIONS 

Timing specifications for EPLDs are found in the data 
sheets under "A.C. Characteristics". Data sheet values 
are derived by testing a device under worst case condi­
tions. Test conditions are both static and dynamic 
based on several variables like input levels, output load­
ing, frequency, and temperature. Characterizing a de­
vice involves detailed testing of specific device functions 
and correlating test data to performance analysis done 
during design. The results are placed in the data sheets, 

1. Propagation Delay (tpn) 

which provide the designer with the worst case data 
that they may need for their application. 

The timing data found in EPLD data sheets is derived 
from the timing elements previously described. Since an 
EPLD design can be broken down into either a combi­
natorial or registered macrocell, the data sheets contain 
specific information for each mode. Figures 6 through 
10 correlate the timing elements to data sheet values. 
Each figure shows the delay path as it applies to the 
Intel design primitives and the simulation model. 

Defined as the time required for an external input to travel through any combinatorial logic and appear at the 
external EPLD pin. This specification applies tO combinatorial logic with non-registered output. Figure 6 shows 
that this specification is the sum of t1N• tAD• and ton· 

INP 
COMBINATORIAL 

LOGIC 

I DESIGN PRIMITIVES I 
• • tAo • • 

ARRAY 

DATA SHEET MODEL 

!po t1N + IAo + too 

~D-i 

INPUT=::::>.< INPUT OR 1/0 DATA VALID 

. j:: tpo :j 
OUTPUT x"_co_M-Bl_NA_TO_R_IA_L_O_UTP_U_T_V_A_LID-

292027-11 

SIMULATION MODEL I 
i---------tp0--------io 

292027-10 

Figure 6. Propagation Delay (tpo) 
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2. Setup Time (tsu) 

The set-up time is the time required for the input to settle at the input of a register before the triggering clock edge. 
Set-up time is the sum of tIN, tAD• minus the m,ternal clock delay. This relation is shown in Figure 7. 

DATA SHEET MODEL 

lsu l1N + IAD ~ ~c. 
-\· . 

INPUT 

tic t-
~~_r I ~ .. --___ r 

- . l-- liN+IAD =:1 
~~~ X"--DELA--YED-DA-JA--

292027-13 
ARRAY Setup Time (lsul 

SIMULATION MODEL 
292027-12 

·Figure 7. Setup Time (tsu) 

3. Clock to Output Delay (tco1) 

Defined as the time required for a signal to pass through a register and appear at the EPLD external ·pin relative to 
the exteinal triggering edge of the clock. This delay is the sum of tic tJm, and· ton as shown in Figure 8. 

INP INPUT 

DESIGN PRIMmVES 
114-----tic 

INPUT 

SIMULATION MODEL 

DATA SHEET t<IODEL 

tco1 tic + IRD + too 

CLOCK J. 
-I tic r-

~~ _J .. --:1 __ ... 
. . . 1.- tim•too j 

OUTPUT x" ___ DELA_YED_DA-TA __ _ 

__ r 

292027-15. 

292027-14 

Figure 8. Clock to Output Delay (tcc>1) 
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4. Minimum Internal Clock Period (tp1) 

Defined as the maximum frequency at which an EPLD can operate when register inputs are dependent on internal 
logic only, and not affected by external inputs. Another way to think of this time is, as the fastest rate that a signal 
can be routed from register to register through the array via an internal feedback path. This minimum period is 
the sum of tRD, tRF• and tAo as shown in Figure 9. 

DESIGN PRIMITIVES 

>------tRr----1 

SIMULATION MODEL 

DATA SHEET MODEL 

IP1 IRo + IRF + IAo 

292027-16 

-----tp1-----i 

CLOCK_j 
(INTERNAL) 

I ::x DATA SOUP AND VALID REG 1 INPUT X,. ___ _ 
~'RD:j 

______ }C,. ___ R_EG_1_0U_W_U_T----x:: 

~'ilr:j 
}C'"-DA-TA_A_T_A-RR_A_Y -IN-PUT--

------~ tAD:j __ _ 

------------x REG2 INPUT 
292027-17 

Figure 9. Minimum Internal Clock Period (tp1) 

5. Registered Feedback to Combinatorial Output (tco2) 

This is the time required for an input to propagate through a register, feedback to combinatorial logic and appear 
at the external pin, relative to the external clock. This time is the sum oft1c. tRD• tRF• tAD• and too as shown in 
Figure 10. 

SIMULATION MODEL 

DATA SHEET MODEL 

tco2 lie + IRo + IRF + IAo + too 

CLOCK~~ 
I 

292027-18 

::x DATA SETUP AND VALID REG 1 INPUT 

~tic+ tRo + tRr + tAo +too :j 

------------}('"D-AT_A_O_U_T_V-AL-ID-

292027-19 

Figure 10. Registered Feedback to Comblnatorlal Output (tco2) 
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When simulating EPLD designs with data from the 
simulation tables, it is possible that there. may be a 
small discrepancy between simulation and data sheet 
values. Because our simulations deal with ideal wave­
forms, rise and fall times are not taken into considera­
tion. Also, characterization and final test of these devic­
es by QA is usually guardbanded[2] by several nano­
seconds. The combination of these two items might re­
sult in a simulated parameter that is slightly off from 
the data sheet. For this reason, the simulated results 
should be considered "typical worst case" and not "ab­
solute". 

SIMULATION CONCEPTS AND 
EXAMPLES 

Simulation of EPLD logic designs provides a quick way 
to evaluate a particular path within the device. While 
this might not seem important when the flexibility and 
the speed of EPLD development is considered, it is ad­
vantageous for making design judgements that best uti­
lize device resources. Simulation also proves useful 
when working with a design that consists of several 
EPLDs, or other types of logic. In a case like this, it 
may be desirable to simulate a complex path that prop­
agates through several devices. To simulate a design the 
engineer needs to either implement it with the iPLS 
design primitives or understand how the circuit will be 

i70 ... ----IWR2 iVR---_,, 

A15-"""'-­
A14 
A13 
A12--1--

IWR1 

292027-20 
IWR1 = i70 'WR 'A15'A14'A13'A12 
IWR2 = i70 ' W1'i 

Figure 11. Decode Circuit 

implemented by the software. This provides the modu­
larized layout that is needed to choose a model. 

The decoder circuit shown in Figure 11 serves as a 
good starting point for simulation. Decoding two con­
trol lines (l/O*, WR*) and four addresses, the circuit 
might be used to select a peripheral controller residing 
in that memory area (FOOOH) with output IWRl. It's 
also common to use intermediate decodes in other parts 
of the system for other functions, IWR2 accomplishes 
this. The gate drawing of Figure 11 shows us that the 
design is combinatorial and can be modeled with the 
elements introduced in Figure 5. The design, converted 
to iPLS primitives is shown in Figure 12. The imple­
mentation consists of six input primitives (INP), three 
logic primitives (NOR2, AND4, AND2), and two out­
put primitives (CONF). In this case, tpo is simulated 
for a 5C031-50 by plugging in the numbers for the 
model which requires t1N• tAD, and too. The result of 
51 ns is very close to the data sheet value of 50. 

A15 
A14 r....~__.-..... 

A13 C:>---1 
A12 C:>--t 

~-------~292027-21 
tpo = t1N + IAo + too 
Simulated for a 5C031-50: 
tpo = 10 + 31 + 10 
lpo = 51 ns 

Figure 12. IPLS Implementation 
of Decode Circuit 
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The second example is the wait state circuit shown in 
Figure 13. The circuit shows one way that a synchro­
nous wait state can be generated in an EPLD. This 
~rcuit would be used with a microprocessor that sam­
ples a WAIT signal on the falling edge of the Tl clock. 
If WAIT is valid, the micro inserts an extra cycle into 
the memory operation. After the wait state, the cycle 
ends normally. The circuit is first converted to the Intel 
design primitives for further observation. The iPLS de-
11ign is shown in Figure 14. One difference from the 
previous circuit is the addition of a register primitive, in 
this case a NORF (No Output Registered Feedback). 
In this application the critical path tco2 is evaluated to 
insure that the wait signal is sampled at the appropriate 
time. The modularized layout of the primitives shows 
that this circuit can be simulated with the registered 

Walt.Stata Generator 

292027-22 

model of Figure 5. The result is simulated for a 
5C032-35 by adding tic. tRD, tRF• tAD, and too· 

Our last example is the asynchronous R-S latch, shown 
in Figure 15. Applications that use EPLDs without 
configurable output registers may use this. crrcuit as a 
work around solution. The output primitive of Figure 
16 is a COCF (Combinatorial Output Combinatorial 
Feedback) being driven by two NOR2 gates. Because 
combinatorial feedback to the same macrocell is being 
used, care must be taken that the input pulses are long 
enough to avoid output glitches. In this example, the 
input pulses should be longer than tAD + tcF for prop­
er latching. For this example, tpo is the critical param­
eter. Simulation results in tpo equal the sum of tJN, 
tAO• and too· 

Timing Slgnate 

CU< 

MEM•RD 

WAIT r-1 ·s 
292027-23 

Figure 13. Walt State Circuit 

14~-----~.tic-----­
~t1N------tAD----

~KD------+----, 

MEM o-------r-, _____ ... 
RDC)---------1:.::.::;~ 

I I 

i------tAD -----•I"·,__· -~D-_::r 
lco2 = tic + IRo + IRF + IAO + too 
Simulated for a 5C032·35: 
lco2 = 5 + 7 + 3 + 17 + 8 
lco2 = 40 ns 

Figure 14. IPLS Implementation of Walt Circuit 
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:®' 
R s Q 

0 0 Latch 
0 1 I 
1 0 0 

1 • • 
292027-25 "Indeterminate State 

Figure 15. R-S Flip-Flop 

SIMULATION CHARTS 

The charts of Figures 17 through 22 make up the simu­
lation database for EPLDs. Each chart contains the 
combinatorial and registered models as well as the de­
lay values for each timing element. Feedback paths are 
shown open because their use depends on the specific 
application. To simulate a EPLD design the following 
steps are required: 

Combinatorial 

292027-27 

Element Delay{ns) 
Formulas: 

t1N 10 
tAD 31 
tRo 8 
too 10 
tic 8 

292027-26 
tpo = t1N + tAo + loo 

Figure 16. IPLS Implementation of R-S Flip-Flop 

1. Convert the design to iPLS primitives. 

2. Pick the appropriate model from the device simula­
tion chart. 

3. Connect any necessary feedback paths. 

4. Calculate the simulated timing with the element val­
ues. 

Registered 

292027-28 

AC Model Sheet 
Parameter (ns) {ns) 

tpo 51 50 
tsu 33 30 
tco1 26 28 
tco2 61 65 

tcF 
tRF 

4 
4 

tco2 = tic + tRo + tRF 
+ tAo +too 

tp1 43 42 
Typical Model Delays for 5C031-50 

Figure 17. 5C031 Timing Elements 
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Combinatorial 

Element Delay (ns) 

t1N 8 
tAo 17 
tRo 7 
too 8 
tic 5 
tcF 3 
tRF 3 

Combinatorial 

Element Delay (ns) 

t1N 10 
tAo 30 
tRo 7 
too 10 
tic 8 
tcF 5 
tRF 5 

AP·304 

Registered 

292027-29 

292027-30 

Formula•· 
AC Model Sheet 

Parameter (ns) (ns) 

tpo 33 35 
tsu 20 25 
tco1 20 20 
tco2 40 42 
tp1 27 30 tco2 = tic + tRo + tRF 

+ tAo +too 
Typical Model Delays for 5C032-35 

Figure 18. SC032 Timing Elements 

Registered 

tic 'I 
~ 
lt1NltAo~ tRo ~001 

ARRAY 

292027-31 

292027-32 

Formulas: 
AC Model Sheet 

Parameter (ns) (ns) 

tpo 50 55 
tsu 32 35 
tco1 25 25 
tco2 62 60 
tp1 42 55 tco2 = tic + tRo + tRF 

+ tAo +too 
Typical Model Delays for 5C060-55 

Figure 19. SC060 Timing Elements 
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Element 

t1N 
tAO 
tRO 
too 
tic 
tcF 
tRF 

Element 

t1N 
tAo 
tRo 
too 
tic 
tcF 
tRF 

Comblnatorlal 

Delay(ns) 

10 
37 
7 
10 
7 
5 
5 

comblnatorlal 

AP-304 

Formulas: 

tp0 = t1N + tAo + too 

tsu = t1N + tAo - tic 

tco1 = tic + lflo + too 

tco2 = tic + tRo + tRF 
+ tAo +too 

Figure 2o. 5C090 Timing Elements 

'---;,JJ 
Delay(ns) 

12 
44 
7 
12 
16 
5 
5 

292027-35 

Formulas: 

tpo = t1N + tAo + too 

tsu = t1N + tAo - tic 

tco1 = t1c + tRo + too 

tco2 = tic + tRo + tRF 
+ tAo +too 

Figure 21. 5C121 Timing Elements 
2-210 

Registered 

AC Model Sheet 
Parameter (ns) (ns) 

tpo 57 50 
tsu 40 45 
tco1 24 20 
tco2 61 55 
tp1 49 50 

Typical Model Delays for 5C090-45 

Registered 

292027-36 

AC Model Sheet 
Parameter (ns) (ns) 

tpo 68 65 
tsu 40 47 
tco1 35 33 
tco2 80 75, 
tp1 56 1 55 J 

Typical Model Delays for 5C12Hl5 



Combllllltorlal 

Element Delay(ns) 

t1N 12 
t10 20 
tAo 44 
too 19 
tic 30 
tics 3 
tcF 5 
tRF 10 
tsu 14 
tH 13 

AP-304 

292027-37 

Formulas: 

tpo = t1N + tAo + too 

tsu = t1N + tAo - tics 

tco1 = tics + tH + too 

, tco2 = tics + tH + tAo + too 

tp1 = tH + tRF, + tAO 

Figure 22. 5C180 Timing Elements 

Registered 

292027-38 

AC Model Sheet 
Parameter (ns) (ns) 

tpo 75 75 
tsu 53 56 
tco1 35 30 
tco2 79 82 
tp1 67 65 

Typical Model Delays for 5C180-75 

SUMMARY REFERENCES 
1. Intel User Defined Logic Handbook. EPLD Volume. Timing simulation provides a way to verify a delay path 

without resorting to external measurements or bread­
boarding a design. Simulation of EPLDs can be done 
by implementing the design with the iPLS design primi­
tives, modeling the device, and using the simulation 
charts. By applying these concepts, the engineer can 
simulate EPLD designs incorporated in one or more 
EPLDs. 

2. Intel Components Quality/Reliability Handbook. 

3. Intel Programmable Logic Software User Guide. 
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INTRODUCTION 

When· comparing logi~ alternatives, too often the out­
come is dominated by the· piece price of the compo­
nents. A side by side comparison based on component 
costs bnly, may give the appearance that EPLDs are 
cost prohibitive. However, when the overall cost of 
manufacturing a system is Con,sidered, the higher inte­
gration of EPLDs proves to be a cost-effective solution. 

OBJECTIVE 

This application note examines the total costs associat­
ed with designing, prototyping, and manufacturing a 
system .. Once these costs have been examined, a com­
parison is made between EPLDs and other logic alter­
natives. By being aware of these additional costs, the 
engineer can make a more.llCCurate cost comparison as 
a design is begun. 

COSTS DEFINED 

Costs can be difficult to pinpoint, let alone measure. 
However, with a bit of examination, we can break down 
costs into the following categories; 

• Design costs - the cost of conceiving a prOduct 

• Prototype costs - first implementation of the prod­
uct idea 

• Production costs - volume manufacturing of the 
product 

Usually, the brunt of the cost for the first two catego­
ries is dismissed as NRE (non recurring expense). The 
.effect of these costs on the overall project is examined 
later, let's look at the third category. Production costs, 
can be further broken down into; 

• Component costs·~ the cost of the parts per board 

• Inspection costs - labor costs· for receiving the 
parts 

• Inventory costs - the cost for storing, handling 
and dispensing the parts 

• PCB fabrication - the cost for labor and equipment 
used in building a board 

• Integration costs - the cost of harnesses, enclosures, 
nuts and bolts etc. 

It's important to understand how the cost of a product 
is affected not only by the 'cost of the ICs used, but also 
by· the other costs listed above. Figure 1 is a graph 
which shows this relationship. 

COST OF' 
CIRCUITS 

MSl-------------VLSI 
CIRCUIT COMPLEXITY 

292030-1 

Figure 1. Optimizing Circuit Complexity 
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SREO 

BPRN 

iiSi 

AEN 

Cei 
BCLK 

RESET D---+-1""\ 
XREO D----L:J 

U3 

LS21 

U3 

LS21 

BCLKD--------.... ------...J 
iiPRMC>---c:~------------...J 
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AEN 

LS74 
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iiiEO 

iiPRO 

292030-3 
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AEN LS10 · 

BCLK LS74 
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292030-6 

292030-7 

Figure 2. MULTIBUS Arbiter/Controller-TTL Implementation 
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The graph shows that as the density of the components 
used in a system progresses from SSI to VLSI, the cost 
for these devices increases. This isn't surprising, denser 
chips cost more to make. At the same time, by using 
denser deVices, system· hardware cost decreases. This is 
shown by the center line, which encompasses all the 
costs listed above. The bathtub curve above these shows 
the effect that denser ICs has on a system. That is, by 
using higher integration ICs, more functions are re­
moved from the board. This in turn reduces the cost of 
the system in labor and parts costs. 

A cost-effective product is one that uses the most effi­
cient logic for the application. It's important to note 
that use of the least expensive component may not 
translate into system cost savings. 

PAL• is a registered trademark of Monolithic Memories Inc. 

ARBITER CIRCUIT 

Let's explore costs in more detail with an example. The 
example used here is the circuit of Figure 2, a 
MULTIBUS® I arbiter/controller. The circuit is used 
by bus masters arbitrating for control of the bus. Our 
implementation comparison contrasts TTL, PAL•, and 
EPLD solutions. 

lmplementatlon Requirements 

The TTL implementation is typical of many board level 
designs in the sense that it relies on inexpensive 
LSTTL. Figure 2 shows that the implementation is 
composed of standard logic gates and D-latches. The 
component list in Table l shows the circuit breakdown 
in more detail. (20) 

BUS CONTROL 
LOGIC 

iiD--11-1--t 

WR--11-<1--t 

SREQ ~.,_--t 

BPRN----1 

RESET----

PLA 
16R4 

1----t-CMDEN 

1----AEN 

1----BREQ 

1----CBREQ 
BUS ARBITER 

----BUSY 

----BPRO ___ .. 
--------BCLK 

Figure 3. MULTIBUS Arbiter/Controller-PAL Implementation 
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Table 1. Arbiter/Controller TTL Component List 

IC Type DIP lcc(mA) Area (in2) Cost$ 

U1 LS08 14 PIN 8.8 0.21 0.18 
U2 LS74 14 PIN 8 0.21 0.24 
U3 LS21 14 PIN 4.4 0.21 0.22 
U4 LS10 14 PIN 3.3 0.21 0.16 
us LS11 14 PIN 6.6 0.21 0.22 
U6 LS02 14 PIN 5.4 0.21 0.17 
U7 LS27 14 PIN 6.8 0.21 0.23 
u0 LS27 14 PIN 6.8 0.21 0.23 
U9 LS366 16 PIN 21 0.24 0.39 
U10 LS126 14 PIN 22 0.21 0.39 
un LS04 14 PIN 6.6 0.21 0.16 

The PAL version of the circuit is shown in Figure 3. 
Two P ALs are used due to the requirement of regis­
tered outputs on several of the signals.120] 

The complete circuit can also be designed in one 5C060 
EPLD (Fignre 4).U8] Looking at the three figures 
quickly points out the amount of circuit board space 
required by each version. The three implementations 
are compared side by side in Table 2. 

5C060 

BCLK 1 24 Vee 
MIO 2 23 XREQ 

RESERVED 3 22 INTA 
RESERVED 4 21 IOWC 
RESERVED 5 20 IORC 

AEN 6 19 MWTC 
BPRO 7 18 MRDC 

INTAIN 8 17 BUSY 
WR 9 16 CBRQ 
RD 10 15 BREQ 

BPRN 11 14 RESET 
GND 12 13 GND 

292030-9 

Figure 4. MULTIBUS Arbiter/Controller-EPLD 
Implementation 

Table 2. Implementation i:tesults 
for Arbiter/Controller 

Item TTL PLA EPLD 

IC Count 11 2 1 
Pin Count 156 40 24 
lnterconn 36 7 0 
Area 2.34 0.6 0.36 
Ice (mA) 100 240 15 
Pwr(mW) 500 1,200 75 

•IC Count 

•Pin Count 

- The total chip count 

- The total number of IC pins 

• Interconnections - The traces required to con-
nect logic gates together 

• Area (inches-square)- The sum of the area of all ICs 

• Ice (mA) - The current consumed while 
active 

- Total power consumption at 
5VDC. 

Production Costs 

Earlier, we noted that production costs consist of many 
variables. Usually, these variables are lumped together 
under the term "hidden cost". Although hidden costs 
are kept in mind by engineers, lack of tangible figures 
usually precludes their use in detailed cost breakdowns. 
For this reason, several manufacturers and consulting 
firms have come up with typical costs per IC and per 
pin. 

For example, SOURCE III (San Jose, CA) reports in 
one of their studies that the manufacturing cost of a 
system translates to about 0.35 cents per IC pin. ICE 
Corporation (Scottsdale, AZ) and EON magazine con­
cur that the inserted cost of an IC is about $2 dollars. 
DAT AQUEST also published a cost of about $2 to $4 
per IC. While the data seems to be consistent, most 
engineers want to see for themselves how figures like 
these might be arrived at. The next sections provide 
insight into this process. 

COMPONENTS 

The cost of the component is the easiest value to obtain. 
A quick call to a distributer or (at worst) a scan 
through the back of BYTE magazine (for TTL) gives us 
this cost. Table 3 shows the breakdown of component 
costs for each version of our MULTIBUS I circuit. 

Table 3. Average Component Costs 

Package TTL PLA EPLD 

DIP14 $0.25 
DIP16 $0.35 
DIP20 $0.55 $1.50 
DIP24 $2.90 $6.00 

The price of TTL has changed very little for the last 
few yearsl24] while EPLDs are dropping in price tre­
mendously. PALs have also leveled off in pricing. 
Why? Figure 5 shows the life cycle curve of IC prod­
ucts used by the semiconductor industry. From the 
curve we see that TTL is in the stable range and prices 
are not likely to drop much more. P ALs are also ma­
turing and approaching a stable pricing range. EPLDs 
however, are in a growth area and historically this is 
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-20% 

INTRODUCTION GROWTH MATURITY SATURATION DECLINE (OBSOLETE) 

{ EPLD 
1987 PAL 

LSTIL STIL TIL 

1988{ 
EPLD 

PAL 
LSTIL STIL TIL 

1989[ 
EPLD 

I lsnL TIL 
PAL 

LSTIL 
292030-10 

Figure 5. Typical Price Changes Through Semiconductor Product Life Cycle 

where the heaviest pricing pressure is. This means that 
while EPLDs might be expensive (per part) right now, 
it's not out of the question to expect a 30% per year 
price reduction as the process is honed and perfected. 
In other words, it's also important to consider the price 
of a component at the projected production date, not 
just at design time. 

Life cycle position is also impdrtant in understanding 
the gate cost that is associated with programmable logic 
devices like P ALs and EPLDs. This relationship is 
shown in Figure 6. The curves translate our observation 
that newer devices have steeper price cuts during their 
introduction phase. The PAL curve shows that the cost 
per gate is leveling off due to the maturity of the device. 
In contrast, the EPLD is in the growth region, and 
based on the traditional price reductions, shows a cost 
per gate that intersects and bypasses the PAL curve. 

INCOMING INSPECTION 

For most companies, incoming inspection is more than 
taking the parts and putting them on the shelf. Most 
have visual checking as well as some form ofIC testing. 
The variables here are, what amount of human inter­
vention is needed, are automatic handlers needed, are 
"go/no go" tests or "binning" done automatically? The 
typical scenario means that components are graded and 
tested individually, and then placed into one of several 
bins or kitted. Because the operators handle a large va­
riety of pinned devices (resistors, capacitors, ICs), the 
cost can be distributed on a per pin basis. Many compa­
nies use a penny per pin for this cost.l16] 

Inspection cost = $0.01 per pin 

2-217 



intef AP·307 

$COST/GATE 

0.03 

0.0025 

Q4'85 Q4'86 Q4'87 Q4'88 Q4'89 Q4'90 
292030-11 

Figure 6. Projected Cost Per Gate 

INVENTORY 

While most engineers agree that reducing parts count 
on their board makes the cost of inventory less, they 
usually attribute this to the reduction in component 
costs alone. In reality, the overhead of C!lfl)'ing inven­
tory is made up ofthe following factors;l2ll 

• Cost of the component 

• Cost of storage 

• Maintenance costs 

• Data processing 

• Usage 

• Taxes insurance and interest 

• Turnover rate 

The American Production and Inventory Control Soci­
ety (APICS) reports that since 1973 the median cost of 
carrying inventory has been about 25% of total produc­
tion costs. They also note that the largest contributing 
factors are the cost of materials handling storage, and 
data processing. For simplicity, let's limit our inventory 
cost to these items. 

Inventory cost = storage + maintenance + processing 

Depending on the locale of a company, the cost of stor­
age can vary greatly. However, this cost is charged on a 
square foot per year basis. Lets assume a conservative 
figure of $20 dollars and distribute this amoung the ICs 
in our example circuit. 

storage = [Total IC area (sq. ft.) x $20]/IC count 

Maintenance refers to the cost of handling, counting, 
marking, and auditing each IC. Each production man­
ager has their own way of keeping tabs on this. One 
way is to charge on a per part basis. A review from 
several production oriented journals cites $0.3 cents as 
the typical handling charge for 16 pin devices.l23] 

Maintenance = $0.03 per 16 pin part. 

Processingl2 l] usually entails a parts log that tracks 
each part by manufacturer, cost, second source etc. 
Also, monthly shortage reports are quite common as 
are quarterly orders and audits. Limiting this cost to 
paper only, at one sheet of paper per week, per. year, at 
a cost of a penny per part type; 

Processing = $0.52 per part type per year 

PCB FABRICATION 

The cost of manufacturing (cutting, etching, drilling) a 
circuit board seems to vary around two pricing meth­
ods. Some fab houses charge on a square inch basis. 
Others base their price on a gut feeling based on previ­
ous jobs. The square inch method is the most common. 

Items of interest in evaluating PCB costs are, number 
of ICs, number of traces and vias, and in general, the 
complexity of the board. Traces that are smaller than 
10 mils require extra care in etching. Depending on 
complexity, and additional charge might be added to 
the area cost. This charge covers material loss in case of 
low etch yields. Yield is directly dependent on the num­
ber of ICs on a board. In other words, more ICs mean 
more holes, tighter traces, and a greater chance of los­
ing some boards in their processing. The average going 
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rate is $0.20 cents per inch for double-sided boards. 
The price increases by about 40% for every two layers. 
This extra charge, however is too subjective to consider 
in our comparison. 

PCB Fab = [$0.20 x total IC area (sq. inch)]/IC count 

Traces 

There is a real cost involved with traces, which doesn't 
surface until later in the production cycle or on a later 
board revision. A technical paper presented at the 1984 
international Test ConferenceUI estimates that the cost 
of a trace on a board is ten to thirty times that of one 
made in silicon. The cost of traces is taken up by: 

• Increased drilling (more traces = more vias = 
more holes) 

• Lower PCB yield (smaller mill lines drop the board 
yield) 

• Increased risk of trace to trace shorts (lower reliabil­
ity) 

• More expensive artwork mods (it costs more to 
move traces around on a board) 

• More expensive PCB mods (cost of cuts, jumpers, 
and rework) 

In our circuit example, an extra trace is that which is 
unnecessary in contrasting implementations. For exam­
ple, referring to Figure 2, of all the traces required to 
connect/RESET in the TTL implementation, only one 
will be required for the EPLD and PAL circuit (the 
input); the others won't be needed. 

For our comparison, let's take the median value of 
twenty as our multiplying factor. Since a silicon trace 
costs an order of magnitude less than an EPLD gate 
($0.01), the resulting cost of a PCB trace is; 

($0.01/10) x 20 = $0.02 cents per trace 

Trace cost = [total trace count x $0.02)/IC count 

ATE 

AISEM•LY 

The cost of assembling a board is largely dependent on 
labor charges and capital. Assembly consists of lead 
forming, component insertion, and soldering. The labor 
charge is hourly and varies between domestic and off­
shore assembly houses. While machines can certainly 
do lead cutting, crimping, and insertion, human inter­
vention is still an expensive presence. Assembly costs 
can be charged on a per board or per chip basis. The 
latter is more appropriate for our comparison. The av­
erage charge (domestically) is about $0.10 per IC. 

Assembly= $0.10per16 pin part 

One important result of using high integration parts 
like EPLDs is that the assembly procedures (manual or 
automatic) go smoother. This is due to fewer parts be­
ing handled, and less overheating of the equipment. 
Overall, the industry reports less insertion faults (parts 
stuffed wrong) as denser ICs are used and as insertion 
equipment matures with them. 

TEIT 

Test strategies can vary, but the typical test flow for a 
board[3) is shown in Figure 7. The process is basically 
taking a board through increasing complexity levels of 
testing. For example, ATE might be a bed of nails fix­
ture that catches 60 percent of the faults. Test bed is 
usually a backplane with all boards known good except 
for the one under test. System test is the final integra­
tion of all the boards that were tested individually. 

ST 
IED 

SYSTEM 
TEST 

292030-12 

Figure 7. Ty111lcal Test Flow 
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Figure 8. Typical Test and Repair Loop 

Errors can occur at any step of the test flow; each time 
this happens, a test loop is initiated. This loop is depict­
ed in Figure 8. The cost for testing a device depends on 
the cost of the equipment, depreciation, the labor rate, 
and other factors that are company dependent. There 
are several ways to reduce test costs, but the best way is 
to reduce the probability of errors occuring. There is no 
question that as the number of ICs increases, so does 
the probability of error. 

With all things considered, the industry reforts a nomi­
nal test cost of about $0.15 .per IC.127](28 

Test cost= $0.15 per 16 pin IC 

REWORK 

The cost of rework is best understood by considering 
the cause of errors in more detail. Errors are typically 
caused by poor board quality, inadequate solder pro­
cess, tolerance of insertion, and of course, bad chips. 
Table 4 shows the average board fault spectrum. The 
figures are a conclusion reached by EVALUATION 
ENGINEERING magazineUO) as to what the industry 
is currently seeing. The table shows that the majority of 
board errors is due to solder shorts. These errors are 
the result of traces or IC holes being too close, which is 
what happens on densely populated boards. 

Table 4. Average Board Fault Spectrum 

Tolerance 
Shorts 
Insertion 
Bad Parts 

20% 
40% 
30% 
10% 

Of all the material costs associated with rework, the 
main cost is the time spent on a repair. Considering 
that it takes approximately two minutes to desolder, 

insert, resolder, and clean a component pinl9l, one can 
see that more ICs on a board directly affect cost. Repair 
times also increase dramatically on multi-layer boards 
that might have been doubled sided if denser logic was 
used. 

For our comparison, let's assume that our test equip­
ment is 95% efficient in finding solder faults on the 
first pass (no loop). This leaves 5% of the faults that go 
undetected and eventually must be found and repaired. 
The estimated cost per pin based on a $6.00 hourly 
wage and the two minute repair time is approximately 
$0.02 cents. 

Rework = ($0.02 x total pin count)/IC count 

It is important to note that the _probability of errors is 
based on a Poisson distributionl8) that increases expo­
nentially with the number of pins and components. 
This distribution is used in wave solder processing to 
correct for solder errors. Mathematically this is ex­
pressed as: 

e-nP(np}x 
p = XI 

where; P = The probability that a defect will occur 
n = The number of components 
p = The fraction defective 
x = The actual number of defects 

This means that the TTL and PAL version of the arbi­
ter have a higher probability of error than the EPLD 
version. However, to make our comparison easier, let's 
simplify this to more of a linear relation. For each im­
plementation, the rework cost per IC is calculated by; 

Rework cost = [(total pin count) x (5%) x ($0.02 cents))/IC count 
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Figure 9. Example of a Production Line 

QUALITY CONTROL 

In most production operations, boards go through sev­
eral steps of quality inspection.· The bare board might 
be inspected after preliminary tests and after system 
tests. Although 100% inspection should theoretically 
eliminate all errors, in real life this rarely happens. The 
main reason for this is the complexity of the production 
and rework loops as shown in Figure 9. 

Quality control's purpose is to remove defective prod­
ucts and either junk them or rework them, neither of 
which is cost effective. The best approach is to design 
the quality in, not fix it in. One way to design in quality 
is by reducing the possibility of errors and increasing 
the reliability of a product. This is one of the primary 
advantages of dense logic (like EPLDs and PALs) over 
TTL. 

A survey conducted by CIRCUITS MANUFACTUR­
ING magazinel8] yielded the cost of $10 to $50 dollars 
to. inspect, find, and repair a defect on a board. They 
summarized that the actual cost of inspection is about 
$0.004 for each hole on a board. With this in mind, let 
us assume a 100% inspection of our arbiter circuit for 
each implementation. This means that each pin (and 
every trace via) will have to be looked at. The calcula­
tion for this is; 

QC cost = (total pin count x $0.004)/IC count 

POWER SUPPLY 

Price for 5V, single output, switching power supplies as 
advertised by several vendors is $1.00 per watt. The 
calculation for determining power supply costs in our 
comparison is: 

Power cost ~ [(SVDC x Ice (mA)) x $1.00 per watt)/IC count 

Additional Costs 

In addition to the more obvious costs, there are several 
other items that contribute to the "hidden cost" of a 
system. 

PROGRAMMING LOSS 

Because P ALs are a one time programmable type of 
device, full testing can't be done on them without de­
stroying the user's fuses. For this reason PALs have a 
published programming loss of 2%1201. The cost for 
this is: 

Programming loss = (PAL IC count x 0.02) x PAL cost 
per IC 
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EPLDs, because they are based on EPROM cells, can 
be programmed for different patterns, fully tested be­
fore customer delivery, and then erased. The result is a 
near 100% percent programming yield[22]. 

PROGRAMMING FEE 

Programming fee is the cost of programming a device. 
While many companies have in-house programmers, it 
is quite common for programming to be done by the 
distributor. In some cases, and at low volumes, the pro­
gramming may be done free of charge. However, at 
larger volumes a programming charge is not uncom­
mon. The charge varies with volume, programmer 
availability and in general, your state of affairs with the 
distributor. The cost for programming EPLDs and 
P ALs is the same per device and averages about $0.25 
cents. 

Programming fee = $0.25 cents 

SAFETY STOCK 

Although this particular item was not mentioned in the 
inventory section, it plays a very important role in the 
production world. Safety stock[21] is extra ICs ordered 
to cover for unexpected events. Unexpected here might 
be a large unforeseen customer order or simply a bad 
batch of parts. 

While industry seems to strive for the optimum JIT 
(just in time) production[14][16], which stresses mini­
mal inventory until needed, it's not unusual for produc­
tion managers to carry a five to ten percent inventory 
buffer depending on the cost of the part. In most cases, 
the larger expensive parts like microprocessors, periph­
eral controllers, and other LSI devices are safety 
stocked in smaller quantities. 

Let's assume that the safety stock is to be a maximum 
of 10%. Five percent might be used to cover for the 
unexpected occurrences, and five for WIP (work in pro­
cess) modifications. Since all parts have the same prob­
ability of unexpected events we can assign that percent­
age equally. Justifying the second 5% depends on the 
IC technology itself. For instance, WIP modifications 
usually require cuts and jumpers on TTL, therefore it's 
unnecessary to order the additional 5%. In process 
modifications to an EPLD are done simply by repro­
gramming it, here again there is no need for the addi­
tional 5%. PALs however cannot be cut and jumpered 
(internally) nor can they be reprogrammed. Also, there 
is the possbility that "on the shelf' P ALs will be pro­
grammed in advance, therefore a WIP mod that im­
pacts their function means that those parts must be 
obsoleted (junked). In this case, an additional 5% is 
justifiable. 

Let us assume that the production manager reduces 
safety stock by a moderate amount, let's say 3%. In a 
case like this, usually the larger more expensive parts 
are curtailed first. Since EPLDs provide good coverage 
for work in progress and because they are more expen­
sive by comparison, we can reduce the total safety stock 
to 2 % and not compromise our safety margin. Because 
TTL is inexpensive it tends to suffer more of the "gun­
shot" approach in testing[7J. This means that the use­
age rate is greater because production technicians tend 
to replace TTL parts with more liberty. For this reason 
let's leave the TTL safety stock as it stands. P ALs 
could be reduced, but faced with the fact that the pro­
gramming yield is 2% and that internal modifications 
can't be made, the production manager might decide 
not to change the safety stock for P ALs. These results 
are shown in Table 5. 

Table 5. Safety Stock 

TTL PAL EPLD 

Unexpected 
5% 5% 2% 

Events 

WIP 
0 5% 0 

MODS 

Total 5% 10% 2% 

The safety stock calculation for each implementation is: 

Safety stock = (% of stock x IC type x IC type cost)/IC count 

DE·COUPLING CAPACITORS 

While adding caps solves many problems due to system 
noise, it also increases the cost of PCB layout, PCB fab, 
and adds an additional burden on all of our other costs. 
For a TTL system, a good de-coupling rule of thumb is 
to use one 0.01 µf per each synchronous driven gate 
and at least 0.1 µf per 20 gates regardless of synchro­
nicity. Engineers recognize the need for decoupling and 
usually take it a step further by using one capacitor per 
IC. Most boards reflect this practice, which, in itself is 
very good. However, the addition of all these caps is 
definitely measurable, in both component and systems 
cost. 

The average cost of a ceramic. capacitor in moderate 
quantities is about half a cent. For our comparison we 
will follow the accepted practice and de-couple each 
TTL, PAL, and EPLD device. Our capacitor cost is 
then: 

De-coupling cost = $0.005 x IC count 
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Figure 10. Escape Costs 

Other Costs To Consider 

Eventually, some place toward the end of a production 
line, a board becomes part of a system. At this point it 
is housed in an enclosure and all the necessary cabling 
is done. Even here, however, the impact of using a par­
ticular IC technology can still be felt. 

DEFECT ESCAPES 

One very significant item that the test community ac­
knowledges is the cost of "escapes"l4l. "Escape" is de­
fined as a fault that goes through the early stages of 
board test undetected. Figure 10 shows the escape rela­
tionship. An industry rule of thumb states that the cost 
to detect a fault increases by an order of magnitude at 
each stage. This means that if it costs $5 to find a fault 
at the board test level, that same fault might cost $50 at 
the system level and $500 at the field level. An impor­
tant relationship to remember, is that the number of 
faults per board increases logarithmically, as the num­
ber of components on the board increasesl6l. The cost 
of an "escape" is difficult to quantify, but generally, a 
board with a higher component count has a greater 
costl2][8], 

CABLES/WIRING HARNESS 

When the number of components or the power require­
ments of a system are reduced, a reduction in cables 
and wiring is usually expected. The cost savings here is 
either in the elimination of cables (because more func­
tions are condensed into an IC) or the reduction of 
cable gauge or length (because less power is required, in 
the case of EPLDs). Also, fewer cables means fewer 
cable ties, connector pins, and mounting hardware. 
While this is a subjective figure, lets assume that the 
distributed cost of system cables is $0.25 per IC. 

Cable cost = $0.25 x IC count 

ENCLOSURE 

Certain applications require reduced packaging or en­
closure size. In industrial control for example, each line 
might require a complete system to monitor it's opera­
tion. In a case like this, a large bulky box full of boards 
might not be appropriate. A good example of the bene­
fits that high integration logic provide enclosures, is the 
third market versions of the popular PC. Many of these 
companies have fully compatible versions that fit on a 
single board. EPLDs and P ALs are capable of provid­
ing a cost savings in this respect. However, while PALs 
approach the density requirements, their large power 
needs render them counterproductive to the low power 
specs of small systems. TTL is just not as effective as 
either P ALs or EPLDs. 

For our comparison let us assume the cost of enclosure 
per chip is $0. 75. The calculation is: 

Enclosure cost = $0.75 x IC count 

Table 6 shows the cable and enclosure costs for the 
MULTIBUS I circuit. Although the results are based 
on assumed values, we can see that a larger IC count 
influences the burdened cost of the system. Our final 
comparison will not use these figures, but they should 
be considered. 

Table 6. Other Production Costs for 
Multibus I Circuit 

TTL PLA EPLD 

Wiring/harness $2.750 $0.500 $0.250 
Enclosure $8.250 $1.500 $0.750 
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Arbiter Circuit Conclusion were done on a Lotus 1-2-3 worksheet that the individ­
ual engineer can modify with their specific values. The 
worksheet is available, and can be downloaded from the 
Intel EPLD bulletin board. Table 8 shows our calcula­
tion results for three years of production. 

A compilation of the cost variables for our comparison 
is shown in Table 7a and 7b. Because the cost may 
differ for each company, the comparison calculations 

Inventory: 

Incoming insp. ($/pin) 
Storage ($/sq.ft./yr) 
Maintenance ($/part) 

Costs 

$0.010 
$20.000 

$0.030 
Processing ($/part type/yr) $0.520 
Safety stock(%) 2% 

Manufacturing: Costs 

PCB tab. ($/sq.in.) $0.200 
Assembly ($/part) $0.100 
Test ($/part) $0.150 
Rework ($/pin) $0.020 
QC ($/pin) $0.004 
Power ($/watt) $1.000 
lnterconn $0.020 
Program ($/part) $0.250 
Caps. (each) $0.005 

(a) 

Integrated Circuits 

Component Count: 

Packl(lge TTL PLA EPLD 

DIP14 10 
DIP16 1 
DIP20 0 2 
DIP24 1 

Circuit Requirements: Ice (max) 

TTL circuit (total mA). 100 
PLA circuit (total mA). 240 
EPLD circuit (total mA). 15 

(b) 

I Cs Types 

TTL 10 
PLA 2 

EPLD 1 

Interconnects 

36 
7 
0 

Tables 7a and b. Multibus Arbiter/Controller Cost Variables 
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Table 8. MULTIBUS I Arbiter/Controller Production Costs 

AVERAGE COMPONENT COST 

Year 1 Year2 Year3 

Package TTL PLA EPLD TTL PLA EPLD TTL PLA EPLD 

DIP14 $0.25 $0.20 $0.19 
DIP16 $0.35 $0.30 $0.27 
DIP20 $0.55 $2.00 $0.38 $1.70 $0.35 $1.56 
DIP24 $6.00 $4.20 $2.90 

PRODUCTION COSTS 

Year 1 Year 2 Year3 

Item 
TTL PLA EPLD TTL PLA EPLD TTL PLA EPLD 

{costs per part) 

Components $0.259 $2.000 $6.000 $0.209 $1.700 $4.200 $0.197 $1.560 $2.900 

Incoming lnsp. $0.142 $0.200 $0.240 $0.142 $0.200 $0.240 $0.142 $0.200 $0.240 

Inventory 
Maintenance $0.027 $0.038 $0.045 $0.027 $0.038 $0.045 $0.027 $0.038 $0.045 
Storage $0.030 $0.042 $0.050 $0.030 $0.042 $0.050 $0.030 $0.042 $0.050 
Processing $0.473 $0.520 $0.520 $0.473 $0.520 $0.520 $0.473 $0.520 $0.520 

Printed Circuit Board 
Fabrication $0.043 $0.060 $0.072 $0.043 $0.060 $0.072 $0.043 $0.060 $0.072 
Trace costs $0.065 $0.070 $0.000 $0.065 $0.070 $0.000 $0.065 $0.070 $0.000 
Assembly $0.089 $0.125 $0.150 $0.089 $0.125 $0.150 $0.089 $0.125 $0.150 
Board test $0.150 $0.150 $0.150 $0.150 $0.150 $0.150 $0.150 $0.150 $0.150 
Rework $0.014 $0.020 $0.024 $0.014 $0.020 $0.024 $0.014 $0.020 $0.024 
QC $0.057 $0.080 $0.096 $0.057 $0.080 $0.096 $0.057 $0.080 $0.096 

Power Supply $0.045 $0.600 $0.075 $0.045 $0.600 $0.075 $0.045 $0.600 $0.075 

Total Cost/Part $1.393 $3.904 $7.422 $1.343 $3.604 $5.622 $1.331 $3.464 $4.322 

Total Cost/System $15.321 $7.808 $7.422 $14.771 $7.208 $5.622 $14.641 $6.928 $4.322 

Additional Costs/System 
Programming loss $0.000 $0.080 $0.000 $0.000 $0.068 $0.000 $0.000 $0.062 $0.000 
Safety stock $0.143 $0.400 $0.120 $0.115 $0.340 $0.084 $0.109 $0.312 $0.058 
Programming fee $0.000 $0.500 $0.250 $0.000 $0.500 $0.250 $0.000 $0.500 $0.250 
De-coupling caps $0.055 $0.010 $0.005 $0.055 $0.010 $0.005 $0.055 $0.010 $0.005 

True mfg. cost/system $15.518 $8.798 $7.797 $14.941 $8.126 $5.961 $14.804 $7.813 $4.635 
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The comparison in component costs shows that the 
EPLD costs more than either a TIL or PAL IC. As 
costs are added, the figures for TIL and P ALs begin to 
approach the cost of an EPLD. These are shown on the 
line labeled "Total cost/part". 

The "Total cost/system" line shows the actual cost 
when all the ICs are considered. For the first year, the 
TIL version is the more expensive implementation, and 
the EPLD numbers look very favorable. 

The "True mfg. cost/system" line results after. addi­
tional costs are figured in. Here we see that the first 
year, the EPLD version already provides a $1 savings 
over the PAL version, and that the cost of the TIL 
implementation is very high. Also, the inserted cost per 
IC at this point is, $1.15 for TIL, $2.40 for PAL and 
$1.80 for the EPLD. This is in line with the inserted 
costs that we mentioned earlier.· 

The production costs for two additional years shows 
that the decreasing price of EPLDs (based on the curve 
of Figure 5) will continue to provide costs savings as 
production ramps up in quantities. 

In terms of functional benefits, the EPLD implementa­
tion is the most beneficial because; 

• The. chip count has gone down, one EPLD has re­
placed 11 TIL ICs in one implementation, and 2 
PALS in the other, reducing the cost and time of: 
-board layout 
-board fab 
-assembly 
-rework 

• The reliability of the board has increased. Fewer 
components translates into less probability of error. 

• Modifications are easier to make. Instead gf cuts 
and jumpers (for TIL), or throwing away a PAL, a 
change is re-programmed. 

• The need for de-coupling caps is reduced. All those 
individual ICs are eliminated and in some cases the 
distributed capacitance of the board may be enough 
de-coupling. 

• Power supply requirements are small. The active 
current requirements are much smaller with 
EPLDs. This in turn reduces the need for large pow­
er supplies and fans. 

• Cable requirements and enclosure benefits have been 
improved. Since EPLDs provide better integration 
over TIL and P ALs, the size of the system will be 
smaller. This translates into fewer boards and ca­
bles. 

• Inventory is reduced. One EPLD replaces many 
TIL devices. Also, "on the shelf' programmed 
EPLDs can be reused in a pinch, P ALs can't. 

Less expense and probability of "escapes". The time 
and cost of finding and fixing escape problems is re-

duced to one reprogrammable IC. In the field, this 
translates into less "down time" for the customer and a 
higher level of customer "goodwill" for the OEM. 

Allows capability for customized hardware. Specific 
customer requirements can be implemented. Also, DIP 
switches and configuration jumpers may not be neces­
sary in many cases, since configurations can be pro­
grammed into the EPLD. 

Development Costs 

As mentioned earlier, the costs of development are usu­
ally dismissed as NRE. One reason for this is the diffi­
culty in pegging down these costs. However, while 
money might be expendable at this stage, time is usual­
ly critical. Time saved at the fronf end can make a 
difference in beating the competition to market. The 
following topics are presented for consideration. No 
costs are assigned to them. 

RESEARCH 

The amount of time spent researching components, 
component sources, and technical data can be very 
large. Designs done with a large IC count require more 
research and analysis time. Higher integration devices 
require learning curve time, but, in the long run this 
tends to reduce research time, especially in future de­
signs. 

PROTOTYPING 

For most companies, prototypes are three to five level 
wire wrap boards built by inhouse technicians or out­
side contractors. During prototype fab, a certain 
amount of work has to be done to each IC. Part of this 
work is, adding bypass caps, labeling chips, and lead 
forming. In smaller companies, the board might be 
hand wrapped. Larger companies might use an auto­
matic wrapper. Once the board is wrapped, a continuity 
check is done on each wire net to insure connections 
and minimize shorts. 

The turn around time for a protoboard is one to two 
weeks and can be shortened by paying a premium price. 
An alternate way of shortening this time is to simplify 
the board by using denser ICs. 

DEBUGGING 

Fixing bugs on a protoboard involves unwrapping and 
wrapping connections, as well as replacing ICs. Making 
mods on a TIL board is very time consuming and error 
prone due to the large numbers of wires. Making mods 
with P ALs is expensive since the part usually has to be 
junked. EPLDs in contrast, are re-programmable and 
lend themselves to all the revisions that are common in 
the early design stages. 
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Figure 11. Time Window Generator, TTL Circuit 
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PCB LAYOUT 

Artwork quotes are based on several factors. These are, 
board size, number of 16-pin chip equivalents, pad 
count, and the chip to board packing ratio. The chip 
equivalents are calculated by taking the total lead count 
(ICs and discretes) and dividing by 16. Pad count is the 
number of holes in the board. The packing ratio deter­
mines how much room an IC has around it. This is 
critical because space is ne.eded to place sockets, vias, 
and trace bends. Currently, most service bureaus con­
sider 0.75 square inches per IC to be the minimum 
packing density. This figure applies. to DIPs only, other 
packages like SMT (Surface Mount Technology) will 
improve on this. However, for standard DIPs anything 
less than this might push the board into a multi-layer. 

During schematic evaluation, the bureau doesn't usual­
ly charge for traces directly. Because they can't foresee 
the exact count, and they don't have time to count 
them on the sheets, they make a judgment based on 
previous jobs. If the board appears to be tight, their 
autorouter (CAD based) won't be as efficient, and more 
hand layout will have to be done. However, as more 
CAD based service bureaus integrate schematic capture 
front ends, the cost of traces and vias will be more 
visible. 

Because the evaluation is subjective, the final cost var­
ies, and is a combination of charges. However, because 
pad count can be determined easily, the overall price is 
usually gauged against a pad price. 

WINDOW CIRCUIT 

Background Information 

In applications that involve time-division multiplexing, 
it is useful to have a circuit that windows a specific area 
of the bit stream [27). The circuit of Figure 11 is a TTL 
implementation of such a circuit. The idea is to count 
time slots from a known reference and at a certain de­
code, set and clear a latch. The output of the latch is 
the time window, which might be us.ed for further gat­
ing in other parts of the circuit. The TTL parts list is 
detailed in Table 9. 

The PAL alternative of Figure 12 is comprised of two 
16L8s and one ;16R4. While the component count has 
been reduced from nine to three,, there are still fourteen 
extra interconnections. 

One 5C060 is needed to integrate the complete circuit. 
Fourteen out of the sixteen EPLD macrocells are used; 
and exernal traces are only the three 1/0 pins as shown 
in Figure 13. 

Production Costs 

The production variables for the window circuit are 
shown in Table lOa and lOb, and the production costs 
in Table 11. The comparison shows three years of sys­
tem costs for each implementation. 
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Table 9. TTL Component List for Window Generator 

IC Type DIP lcc(mA) Area(ln2) $ 

U1 LS162 16 32 .24 .49 
U2 LS162 16 32 .24 .49 
U3 LS162 16 32 .24 .49 
U4 LS42 16 13 .24 .39 
us LS42 16 13 .24 .39 
U6 LS42 14 13 ,24 .39 
U7 LS32 14 9.8 .21 .18 
U8 LS32 14 9.8 .21 .18 
U9 . LS112 14 6 .21 .29 

_vco 
~ I 1--

1--
0 ~C11 

U2 0 

16R8 0 
C10 

0 
C9 

~I 0 
C8 

0 
C7 

RCO 

oW c&i...... ....___, I I 
I~ 

0 I 
I!---' 

0 
C5 

I 
I C4 

U3 U1 0 I 

16R8 
C3 

16R4 
I 

0 I 

0 
C2 

I 
11--

0 W1--:> 
C1 

0 I 
0 

W2 :;::::: co ~ 
0 I 

292030-18 

Figure 12. Time Window Generator, PAL Circuit 

c::~~-f CLK1 Vee 

l I 

1/0 

GND CLK2 
292030-19 

Figure 13. Time Window Generator, EPLD Circuit 
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Inventory: Costs 

Incoming insp. ($/pin) $0.010 
Storage ($/sq. ft./ yr) $20.000 
Maintenance ($/part) $0.030 
Processing ($/part type/yr) $0.520 
Safety stock(%) 2% 

Manufacturing: Costs 

PCB fab. ($/sq.in.) $0.200 
Assembly ($/part) $0.100 
Test ($/part) $0.150 
Rework ($/pin) $0.020 
QC ($/pin) $0.004 
Power ($/watt) $1.000 
lnterconn $0.020 
Program ($/part) $0.250 
Caps. (each) $0.005 

(a) 

lfttetratM Circuits 

Component Count: 

Package TTL ll'LA EPLD I Cs Types 

DIP14 3 TIL 4 
DIP16 6 PLA 2 
DIP20 3 EPLD 1 
DIP24 . 1 

Circuit Requirements: 
' 

lcc(max) Interconnects 

TIL circuit (total mA). 160 52 
PLA circuit (total mA). 360 14 
EPLD circuit (total mA). 15 0 

(b) 

Tables 10a anti It. WlnHw Circuit Cost Variables 
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Table 11. Window Circuit Production Costs 

AVERAGE COMPONENT COST 

Year 1 Year2 Year3 

Package TTL PLA EPLD TTL PLA EPLD TTL PLA EPLD 

DIP14 $0.22 $0.19 $0.17 
DIP16 $0.44 $0.37 $0.26 
DIP20 $2.00 $1.70 $1.56 
DIP24 $6.00 $4.20 $2.90 

PRODUCTION COSTS 

Year 1 Year2 Year3 

Item 
TTL PLA EPLD TTL PLA EPLD TTL PLA EPLD 

(costs per part) 

Components $0.367 $2.000 $6.000 $0.310 $1.700 $4.200 $0.230 $1.560 $2.900 

Incoming lnsp. $0.153 $0.200 $0.240 $0.153 $0.200 $0.240 $0.153 $0.200 $0.240 

Inventory 
Maintenance $0.029 $0.038 $0.045 $0.029 $0.038 $0.045 $0.029 $0.038 $0.045 
Storage $0.032 $0.042 $0.050 $0.032 $0.042 $0.050 $0.032 $0.042 $0.050 
Processing $0.231 $0.347 $0.520 $0.231 $0.347 $0.520 $0.231 $0.347 $0.520 

Printed Circuit Board 
Fabrication $0.046 $0.060 $0.072 $0.046 $0.060 $0.072 $0.046 $0.060 $0.072 
Trace costs $0.116 $0.093 $0.000 $0.116 $0.093 $0.000 $0.116 $0.093 $0.000 
Assembly $0.096 $0.125 $0.150 $0.096 $0.125 $0.150 $0.096 $0.125 $0.150 
Board test $0.150 $0.150 $0.150 $0.150 $0.150 $0.150 $0.150 $0.150 $0.150 
Rework $0.015 $0.020 $0.024 $0.015 $0.020 $0.024 $0.015 $0.020 $0.024 
QC $0.061 $0.080 $0.096 $0.061 $0.080 $0.096 $0.061 $0.080 $0.096 

Power Supply $0.089 $0.600 $0.075 $0.089 $0.600 $0.075 $0.089 $0.600 $0.075 

Total Cost/Part $1.385 $3.754 $7.422 $1.328 $3.454 $5.622 $1.248 $3.314 $4.322 

Total Cost/System $12.463 $11.263 $7.422 $11.953 $10.363 $5.622 $11.233 $9.943 $4.322 

Additional Costs/System 
Programming loss $0.000 $0.120 $0.000 $0.000 $0.102 $0.000 $0.000 $0.094 $0.000 
Safety stock $0.165 $0.SOO $0.120 $0.140 $0.510 $0.084 $0.104 $0.468 $0.058 
Programming fee $0.000 $0.750 $0.250 $0.000 $0.750 $0.250 $0.000 $0.750 $0.250 
De-coupling caps $0.045 $0.015 $0.005 $0.045 $0.015 $0.005 $0.045 $0.015 $0.005 

True mfg. cost/system $12.673 $12.748 $7.797 $12.137 $11.740 $5.961 $11.381 $11.269 $4.635 
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The production costs again show that the system cost 
for the first year is better with EPLDs. The two consec­
utive years show that the declining price of EPLDs 
make them an excellent candidate for systems that will 
ramp up production at that time. · 

Window Circuit.Conclusion 

The TTL version of the circuit was implemented with 
MSI counters and.decoders. As a result, the PAL im­
plementation was bound by the number of count bi~ 
and had to be programmed into two P ALs. In circwts 
like this, it is useful to rewire the decode for different 
counts depending on the application. The PAL imple­
mentation allows this by incorporating the decode and 
output latches into one IC. 

The EPLD implementation tackles the MSI integration 
quite easily and also proVides the capability to repro­
gram the decoder. Since the counter aµd output latches 
consist of fowteen registered outputs, the sixteen mac­
rocells of the 5C060 easily _accommi>date the needed 
functions. 

SUMMARY 
We have examined the hidden costs of production and 
how they differ for several logic alternatives. By exam­
ining these costs, we have shown that while an EPLD is 
presently a more expensive part, it's level of integration 
reduces system costs and improves reliability. The fol­
lowing items should be considered when evaluating log-
ic alternatives: · 

• system cost is determined by more than component 
cost 

-
• system cost and reliability is influenced by the type 

and amount of components used 

• semiconductors have ·a life cycle that determines 
their present price at design, and at production time 

In summary, when all system costs are considered, 
EPLDs can proVide cost saVings to the design and pro­
duction of most board designs. 
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Techniques for Modular EPLD Designs 

Lawrence Pa 11 ey 
PLDO Product Marketing Manager 

Intel Corporation 
lSl Blue Ravine Road 

Folsom, CA 95630 

INTRODUCTION 

Advances in both programmable logic 
devices and the tools used. to configure them 
now enable new design techniques for custom 
logic applications. New high capacity flexible 
arch i tectured EPLDs ( erasab"l e and e 1 ectr i ca 11 y 
programmable logic devices) allow for complete 
single chip integration of one or more logic 
configurations. Additionally, devtlopment 
tools make use of these capabilities by 
providing alternatives for design input, high 
speed logic compilation and minimization, 
heuristic logic fitting into EPLD devices, and 
superior reporting documentation. Designers 
can take advantage of these advances with a new 
Modular EPLD logic design (MELD)technique, to 
accelerate their product development. 

ADVANCES IN EPLDs 

Traditional PLDs relied on boolean 
equation entry and compilation methods for 
combinatorial function implementation. The 
primary applications were as SSI/MSI replace­
ments for implementing decode "glue" in 
microprocessor based systems. PLDs came in 
bipolar versions with total logic content under 
400 gates of equivalent logic. Tools to 
develop the programmable logic implementation 
of a function didn't require a high degree of 
sophistication - the devices for which they 
were optimizing designs had relatively little 
logic and little logic flexibility. 

Newer EPLDs incorporate several features 
which broaden their application base. Besides 
their low power CMOS technology, they incor­
porate individually configurable register and 
I/0 logic for each macrocell. Devices such as 
the SC060 incorporate 16 macrocells with 
registers programmable into D, or JK con· 
figurations. Each register is also 
programmably configured to be clocked by 
synchronous or asynchronous clocks. 
Additionally, outputs and feedback paths for 
each pin can be combinatorial or registered. 
The combination of this level of flexibility 
and gate counts of some devices exceeding 1200, 
EPLDs have moved programmable logic well past 
simple combinatorial functions. 

To make optimum use of the new EPLD device 
technology, design tools needed to improve to 
allow more freedom or design input, better 

"This manuscript originally prepared 
for and presented at Electro/86." 

logic optimization for maximum device utili· 
zation, and improved reporting documentation. 
Intel's programmable logic development system 
provides these improvements. Input methods 
include the choice of (and combination of) 
schematic, netlist, state machine, or boolean 
entry. Besides boolean equation minimi· 
zation,the optimizer program optimally matches 
I/0 and register resources required by the 
design with what's available in EPLD devices. 
It then reports on how the logic entry was 
reduced, which resources were re· quired, and 
how the design was placed in a given device. 
Resources still available in the devices or not 
able to fit in to the device are also 
documented. 

!filQ 

Making use of both the advances in EPLD 
devices and their development tools, engineers 
can now design hardware (logic) in much the 
same way as software is developed. This new 
design technique called MELD (Modular EPLD 
Logic Design) is shown in Figure l. Design 
Entry, in any of the typical engineering 
formats, is entered on a development station 
(in this case a personal computer). Using EPLD 
development system software, the design is then 
compiled for EPLD implementation. Object code 
or (in the case of an EPLD) a JEDEC l's and O's 
file are the result. The unique capability of 
EPLDs is to test a part of a partitioned design 
in silicon, erase the EPLD, test the next 
design, and finally to merge the designs 
together. This powerful 1 ogi c design methodo-
1 ogy allows for the partitioning of a complex 
logic function into smaller sub-functions that 
can be individually designed and debugged using 
the design tools and the erasability feature of 
EPLDs. After the individual modules are proved 
to be functional as desired, they can be com­
bined on the same EPLD, allowing for higher 
integration and its attendant benefits. 
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Figure l. EPLO design process comoared with software 
design process 

NOTE: Tne MELO techn i cue wou 1 d i nvo 1 ve this oes i gn process 
shown above to oe 1mplementeo for aifferent suo-moaules 
ana combining of the suo-•unctions into the compieteo 
high-integration EPLO design. 

A MELD Example: 

This Modular EPLD logic design (MELO) 
methodology is now illustrated with an example. 
The example shown here is a design which 
implements a BCD-counter which is encoded into 
a seven-segment display. 

Figure 2 shows the design of a BCD-counter 
designed using state machine entry. This 
design was compiled (Figure 3) and individually 
tested in-circuit. 

Figure 4 shows a design for implementing 
the seven-segment display shown in Figure 5. 
It uses boolean design methods, although not 
yet optimized. This design has been tested out 
in several previous designs. An additional 
section called "LINK EQUATIONS" is now used to 
connect the BCD-counter with the seven-segment 
display. 
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The two design files, BCD-Counter and 
SEGEQS, are now compiled together in the LOC 
(Logic Optimizing Compiler) of the Intel 
Programmable Logic Development System (Figure 
6) to yield the combined file, BCD-Counter, of 
Figure 7. 

When implemented in the SC121 EPLD, the 
utilization report of Figure 8 results. It 
shows a pinout designated by the compiler, the 
routing of inputs, the source of outputs, 
unused device resources, and some figure of 
merit about how the design used SC121 
resources. This data can be used to test the 
device to as feedback for new design inputs. 
An example of such an input would be to assign 
signals to SC121 pins so that PCB layout is 
simple. 
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FIGURE 2 

LB Version 3.0, Baseline 17x, 9/2S/B5 
PART: 5Cl21 

.. INPUTS: CLK,ENABLE,RESET 
OUTPUTS: BCDO,BCD1,BCD2,BCD3 
MACHINE:BCD_COUNTER . 

CLOCK: CLK 

STATES: [BCD3 BCD2 BCD l BCDOl 
so 0 0 0 0 
Sl 0 0 0 l 
S2 0 0 l 0 
S3 0 0 l l 
S4 0 l 0 0 
S5 0 l 0 l 
SS 0 l l 0 
S7 0 l l J 
SB l 0 0 0 
S9 l 0 0 l 

%TRANS IT IONS\ 

SO: 
lF RESET THEN so 
IF ENABLE THEN Sl 

Sl: 
IF RESET THEN so 
IF ENABLE. THEN S2 

S?· 
IF RESET THEN so 
IF ENABLE THEN S3 

S3: 
IF RESET THEN SO 
IF ENABLE THEN S4 

S4: 
IF RESET THEN so 
IF ENABLE THEN_ S5 

S5: 
IF llESET THEN so 
IF ENABLE THEN SS 

S6: 
IF RESET THEN so 
IF ENABLE THEN Si 

S7: 
IF RESET THEN so 
IF ENABLE THEN SB 

s 8': 
IF RESET THEN so 
IF ENABLE THEN S9 

59: 
IF RESET THEN so 
IF ENABLE THEN so 

ENDS 
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FIGURE 3 

LB Version 3.0, Baseline 17x, 9/26/85SMV Version 1.-0 Baseline 1.3 ~5112/13 00:12:~ 

PART: 5Cl21 

INPUTS: 
CLK, ENABLE, RESET 

OUTPUTS: 
BCDO, BCDl, BCD2, BCD3 

NETWORK: 
CLK = INP(CLK) 
ENABLE = INPIENABLE) 
RESET = INP(RESETJ 

' I/O's for State Machine "BCD_COUNTER" 

' BCD3, 
BCD2, 
BCDl, 
BCDO, 

BCD3 
BCD2 
BCD l 
BCDO 

EQUATIONS: 

' 

RORF(BCD3.d, 
RORF(BCD2.d, 
RORF( BCDl. d, 
RORF(BCDO.d, 

C LK, 
CLK, 
CLK, 
CLK, 

GND, GND, VCCl 
GND, GND, VCC, 
GND, GND, VCC l 
GND, GND, VCC) 

Boolean Equations for State Machine "BCD_COUNTER" 

' ' Current State Equations for "BCD_COUNTER" 

' SO BCD3'*BCD2'$~Dl'$BCDO'; 
Sl BCD3'$BCD2'•BCD1'$8CDO: 
S2 BCD3'$BCD2'•BCDl•BCDO': 
S3 BCD3'$BCD2'*BCDl*BCDO: 
S4 BCD3'•BC02$8CDl'*BCDO': 
S5 8CD3'•BCD2•BCDl'*BCDO: 
S6 8CD3'•BCD2$8CDl*BCDO': 
S7 BCD3'*BCD2$8CDl•BCDO: 
SB 8CD3•BCD2'*8CDl'*BCDO': 
S9 BCD3$BCD2'*BCDl'*BCDO: 

' SV Defining ~q~at1ons for State ~achine "BCD_COUNTER" 
% 
BCD3.d 

BCD2.d 

BCD l. d 

BCDO.d 

S8.n 
+ S9.n; 

S4.n 
+ S5.n 
+ S6.n 
+ S7.n; 

S2.n 
+ S3.n 
+ S6.n 
+ S7.n; 

S l. n 
+ S3.n 
+ S5.n 
+ S7.n 
+ S9.n; 



FIGURE 3 (CONTINUED) 

!llext State Equations for State "lach1ne "BCD COUNTER" .. 
S l. n Sl * (ENABLE J' * RESET l' 

+ so * ENABLE * CRESET'': 
S2.n S2 * t ENABLE l' * RESET 1 ' 

+ ,S l * ENABLE * I RESET '. 
S3.n SJ • c ENABLE)' * <RESET 1' 

+ S2 * ENABLE * CRESET!': 
S4.n S4 * I ENABLE l' * (RESET' ' 

+ S3 * ENABLE * IRESETi': 
S5.n S5 * i ENABLE l' * 1RESETl' 

+ S4 * ENABLE * <RESET .. 
S6.n SJ * <ENABLE I' * RESETl' 

+ S5 * ENABLE * I RESET .. 
57.n = S7 * r ENABLE)' * ; RESET)' 

... S6 * ENABLE * 1RESET .. 
58.n SB * 'ENABLEl' * ·HESET, . 

... S7 * ENABLE * iRESET t:. 

S9.n S9 * IENABLEl' * :RESET1' 
+ SS * ENABLE * CRESET, .. 

END$ 
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FIGURE 4 

SBVBN SEGMENT DECODERS FOR BCD COUNTER 
LB Version 3.0, Baseline 17x, 9/26/85 
PART: 5Cl21 
INPUTS: 
OUTPUTS: SEGA,SEGB,SEGC,SEGD,SBGE,SEGF,SEGG 
NITWORK: 
SIGA CONF <SEGA,VCCl 
SBGB CONF {SEGB,VCC) 
SBGC CON~ {SBGC,VCC) 
SEGO CONF ISEGD,VCC) 
SEGE CONF (SEGE,VCCJ 
SIGF CONF (SEGF,VCCJ 
SEGG CONF (SEGG,VCCl 
EQUATIONS: 
SBGA 0 + 2 + 3 .,. 5 + 7 + 8 + 9; 

SEGB 0 + + 2 + 3 

SEGC 0 + .. 3 + 4 

SEGO 0 + 2 + 3 .,. 5 
SEGE 0 + 2 + 6 + 8; 
SEGF 0 ... 4 + 5 + 6 
SEGG 2 + 3 + 4 + 5 

0 !03$/02$/Dl•IDO: 
l /03$tD2•1Dl$DO; 
2 /D3•/D2• Dl•/DO; 
3 /03$/D2• Dl$00; 
4 /D3• 02$/Dl•/DO: 
5 /03$ 02$/Dl•DO: 
6 /D3$ 02• Dl•IDO: 
7 /D3• D2• Dl•DO: 
8 D3•/D2•/Dl*/DO; 
9 D3$/D2$/Dl•DO; 
'LINK EQUATIONS ' 

DO BCDO; 
Dl BCDl; 
D2 BCD2; 
D3 BCD3; 

ENDS 

+ 4 + 6 + 7 

+ 5 + 6 + 7 

+ 6 + 8; 

+ 8 - 9; 
+ 6 + 8 ... 9: 

+ 8 + 9·: 

.. 8 .. 9; 

FIGURE 6 
Intel Progra••able Logic Software 

LOC Menu 
Fl Help 
F2 iPLS Menu 
F3 Input For•at ADF 
F4 File Na•e A:BCD A:SEGEQS 
F5 Mini•ization Yes 
F6 Inversion Control No 
F7 LBF Analysis Yes 
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FIGURE 7 

LB Version 3.0, Baseline 17i<, 9/261B5SMV Version 1.0 BaseUne 1.3 85/12/1300:12:5 

PART: 
5Cl21 

INPUTS: 
CLK, ENABLE, RESET 

OUTPUTS: 
BCDO, BCDl, BCD2, BCD3, SEGA, SEGB, SEGC, SEGD, SEGE,.SEGF,~SEGG 

NETWORK: 
CLK ~ INP!CLK l 
ENABLE = INPIENABLEj 
RESET = INP<RESETl 
BCDO, BCDO RORF(BCDO.d, CLK, GND, 
BCDl, BCDl = RORFCBCDl.d, CLK, GND, 
BCD2, BCD2 = RORFIBCD2.d, CLK, GND, 
BCD3, BCD3 = RORF<BCD3.d, CLK, GND, 
SEGA CONFISEGA, VCCl 
SEGB CONF<SEGB, vcc· 
SEGC CONFI SEGC, VCC l 
SEGO CONF(SEGD, VCC, 
SEGE CONF(SEGE, VCC l 
SEGF CONF(SEGF, VCC, 
SEGG CONF<SEGG, VCCl 

GND, VCC l 
GND,. VCC l 
GND, VCC l 
GND, VCC i 

EQUATIONS: 
SEGG BCDl * BCD3' * BCD2' 

• BCDl' * BCD3' * BCD2 
BCDl' * BCD3 * BCD2' 

+ BCDl * BCD3' * BCDO': 

SEGF BCD3' * BCDl' * BCDO' 
+ BCD3' * BCD2 * BCDl' 
• BCD3 * BCD2' * BCDl' 
+ BCD3' * BCD2 * BCDO': 

SEGE BCD2' * BCD 1' * BCDO' 
+ BCD3' * BCDl * BCDO'; 

SEGO BCD2' * BCD 1' * BCDO' 
+ BCD3' * BCD2' * BCD! 
- BCD3' * BCDI * BCDO' 
+ BCD3' * BCD2 * BCD 1' 

SEGC BCD2' * BCD 1' 
+ BCD3' * BCD2 
+ BCD3' * BCDO: 

SEGB BCD2' * BCD l' 
+ BCD3' * BCDO' 
+ BCD3' * llCD 1: 

SEGA BCD3' * BCD2' * BCDO' 
+ BCD3 * BCD2' * BCD I' 
+ BCD3' * BCD2' * BCDl 
+ BCD3' * BCD2 * BCDO: 

* BCDO; 

BCD3. d BCD3 * BCD2' * BCD I' * BCDO' * RESET' 
+ BCD3 * BCD2' * BCDI' *ENABLE' * RESET' 
+ BCD3' * BCD2 * BCDl * BCDO *ENABLE* RESET': 
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ENDS 

FIGURE 7 (CONTINUED) 

BCD2.d BCD3' * BCD2 * BCDO' * RESET' 
+ BCD3' * BCD2 * BCDl' * RESET' 
+ BCD3' * BCD2 * ENABLE' * RESET' 
+ BCD3' * BCD2' * BCDl * BCDO *ENABLE* RESET': 

BCDl.d BCD3' * BCDl * BCDO' * RESET' 
+ BCD3' * BCDl * ENABLE' * RESET' 
+ BCD3' * BCDl' * BCDO *ENABLE* RESET'; 

BCDO.d BCD3' * BCDO' * ENABLE * RESET' 
+ BCD3' * BCDO * ENABLE' * RESET' 
• BCD2' * BCDl' * BCDO * ENABLI!' *RESET' 
+ BCD2' * BCD l' * BCDO' * ENABLE * RESET'; 

FIGURE 8 

Logic Optimizing Compiler Utilization Report 

***** Design implemented successfully 

LSP 
INTEL 
February 7, l 986 
0 
0 
5Cl21 
BCD COUNTER 
LB Version 3.0, Baseline 17x, 9/26/85SMV Version 1.0 Baseline 1.3 85/12/13 00:12:5 

5Cl2l 

CLK - 40 - Vee 
GND 2 39:- Vee 
GND 3 38'- ENABLE 
<.iND - 4 :l7: - RESET 
GND - : 5 36.- GND 
GND - ti 35' - GND 
GND - 7 34:- GND 

SEGD - : 8 33:- GND 
RESERVED - 9 32; - SEGG 
RESERVED - : 10 31:- RESERVED 
RESERVED - : 11 30:- RESERVED 

SEGA - 12 29:- SEGC 
RESERVED - : 13 28:- SEGB 
RESERVED - '14 27:- RESERVED 

SEGE - : 15 26:- RESERVED 
RESl!RVED - '16 25' - SEGF 

BCD2 - ' l 7 24:- RESERVED 
RESERVED - '18 23:- BCD3 
RESERVED - : 19 22: ~ BCD l 

GND -:20 21' - BCDO 

2-241 



UINPUTSU FIGURE 8 (CONTINUED) 

Feeds: 
Name Pin Resource MC ell • PTerms MCe l ls OE Clear Clock 

CLK I 'IP Reg 

RESET 37 INP 10 
11 
12 
19 

ENABLE 38 INP 10 
11 
12 
19 

UOUTPUTSU 

Feeds: 
Name Pin Resource MCe l l • PTerms MCells OE Clear 

SEGO 8 CONF :.!8 :i 

SEGA 12 CO'IF 24 4 6 

SEGE 15 CONF 21 ., 4 

BCD:? 17 RORF 19 4 :i 1 
4 
5 
8 

10 
12 
19 
:.?l 
24 
28 

BCDO 21 RORF 12 41 8 1 
4 
'5 
8 

10 
11 
12 
19 
~l 

2-t 
28 

BCD! ::!2 RORF 11 3' 8 l 
4 
5 
8 

10 
11 
12 
19 
21 
24 
28 
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FIGURE 8 (CONTINUED) 
BCD3 23 

SEGF 25 

SEGB 2B 

SEGC 29 

SEGG 32 

**UNUSED RESOURCES** 

RORF 

CONF 

CONF 

CONF 

CONF 

Na•e Pin Resource 

3 
4 
5 
6 
7 
9 

10 
11 
13 
14 
16 
18 
19 
:!4 
26 

30 
31 
33 
.14 
35 
36 
NA 
NA 
NA 
NA 

**PART UTILIZATION** 

37\ Pins 
39' ~acroCells 
18' Pterms 

CONCLUSIONS 

10 

8 

5 

4 

'!r· .. 11 

27 
26 
25 
23 
22 
20 
18 
17 

9 
7 
6 
:1 
2 

13 
14 
15 
16 

The complete design took less than an hour 
to enter, compile, and link with EPLDs. The 
ability to partition designs, then individually 
implement those designs in the logic design 

3 4 l 
4 
5 
8 

10 
11 
12 
19 
21 
24 
28 

41 ,4 -
3/ 6 

31 6 

-!• 4 

PT..,rms 

10 
H 
6 
8 

10 
12 

8 
B 

12 
10 

8 
8 

10 

8 
8 
8 
8 

entry of choice, and finally to link designs 
together is a new design method only available 
with advances in programmable logic and their 
design tools. By taking advantage of these 
capabilities, designers can bring logic 
implementations to market faster and with a 
high degree of integration. 
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Crosspoint Switch: 
A PLO Approach 
by Jim Donnell, Intel Corp. 

Erasable programmable logic devices (EPLDsJ combine 
the gate densities of low-end gate arrays with the short 
development time and low cost of EPROMs. This 

merging of technologies produces a device with features suited 
to a wide range of digital applications. Jn contrast to the long 
development times (and higher costs) for gate arrays. EPLDs 
require minimal frontend design time. Jn just a few hou". 
EPLD designs can be developed, modified and verified. Also. 
core elements from one EPLD design can be incorporated in­
to new designs as quickly as standard software subroutines from 
one program can be modified and used in other programs. 

The design of a digital crosspoint 
switch using an Intel 5Cl21 EPLD il­
lustrates these features. Digital Design 
implemented a crosspoint switch in a gate 
array last year (see Digital Design. 
January through March. 1985). Applica­
tions that require a data transfer from one 
of several inputs to one of several outputs 
frequently use a digital crosspoint switch. 
Using the 5Cl21 EPLD, Intel Corp. (San­
ta Clara, CA) designed three different 
configurations of a crosspoint switch. 

Offered in a 40-pin package that pro­
vides up to 36 inputs or 24 outputs. the 
5Cl21 supports up to 28 macrocells (in­
cluding four buried registers) and 236 
productterms (p-terms). Logic density in 
the 5Cl21 is the equivalent of 1,200 
usable NANO gates. Maximum power 
requirements are 100 mA active and 30 
mA standby with TTL input levels. With 
CMOS input levels, a 5Cl21 requires 50 
mA active and 3 mA standby. 

device dictates tht.' numhcr of ~v. itche~ tha1 can he dcl\igned into 
a ~inglc device. 

Configuration 1 
The fir~t circuit (figure 1) cons1Jcred i~ a digital cro:..spoint 
switch with eight input~ and a 3-hit word width. Thi:.. switch 
tram.fers a 3-bit word coming frrnn one of eight source~ to a par­
ticular output. The number ot device~ .. OR-tied" tu each out­
put pin detennine:-i the number nf output~. Selecting one of eight 
data inputs from each oft he three channeb I All to A7. BO to 87 
and Cllto C7). the switch mut°' that data toa single output (QA, 
QB and QC). Each output can he OR-tied to more than one 

Two major parameters determine the 
complexity and configuration of a digital 
crosspoint switch: the number of possi­
ble switching locations for each bit (in­
puts and outputs), and the numberofbits 
transferred in one clock pulse (word 
width). The availability of 110 pins, 
macrocells and p-terms for a given EPLD 

Figure 1: Configuration 1 uses a three-channel eight-to-one multiplexer circuit with latching in­
puts. Each output can drive rnult:ple. 1ndiv1dual!y selected inputs to complete the digital cross­
point switch. By connecting inputs to the EPLD cutouts 1n an "OR-tied" conf1gurat1on, with only 
one input enabled at any time, the multiplexer c1rcu1t becomes a crosspoint switch 

© Intel Corporation, 1986 
Reprinted with permission from Digital Design 
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three-state input to complete the switch (only one input can be 
enabled at a time). Three additional control bits (DO to D2) 
select one of the eight different inputs. All three channels 
operate in parallel. Separate input and output clocks allow a 
high data rate and relax input set-up and hold times. Input data 
for all three channels, along with the three select bits, are 
latched by ILE. Data at the inputs can change state after being 
latched and data is clocked out of the switch by CLK. 

Equation I shows the Boolean expression for a single chan­
nel in the sum-of-products form. (See Table I for all equations.) 
The Boolean expression for the remaining two channels is 
similar: the designer need only change the A in the equations 
to a B or C. 

Timing Analysis 
The internal delay paths determine the circuit's maximum 
operating frequency (fmax). In this configuration there is an in­
put delay (Tin), an array delay (Tad), a register delay (Trd) and 
an output delay (Tod). The fmax is a function of the signals that 
must settle at the input of the output register before the rising 
edge of the clock. In this case, signals propagate only through 
the input latches and the array. Therefore, the data must be valid 
at the inputs Tin + Tad just nanoseconds before the rising edge 
of the internal clock signal (CLK). However, because of the in­
herent delay of the CLK signal, this reference must be shifted 
to the rising edge of the external clock signal by subtracting the 
internal clock delay (Tic). The external data set-up time (Tsu) 
is shown in Equation 2. Inverting this time requirement yields 
the maximum operating frequency. 

As the output flip-flops are clocked, data propagates through 
the register to the output pin. With reference to the external 
clock pin, data becomes valid at the outputs Tic + Trd + Tod 
nanoseconds afterthe rising edge of the clock. Figure 2 shows 
the timing requirements for this circuit, including the input latch 
signal. 

Using a 5Cl21-50 (50-nsec propagation delay), data can be 
sent through this switch configuration at 25 Mbits/sec. This 
transfer rate remains independent of the word width. Since one 
5Cl21 EPLD in this configuration can simultaneously transfer 
three bits of information, three 5Cl2l's are required to transfer 
a byte of data during each clock cycle. This configuration of a 
digital crosspoint switch uses 86% of the 40 pins, 71 % of the 
macrocells and II% of the available p-terms in the 5Cl21 EPLD. 

Configuration 2 
The second circmt (Figure 3) also selects one of eight inputs 
(IO to 17), but this time data is routed to one of eight different 

Figure 3: Configuration 2 uses a single-bit eight-input/eight-output 
digital crosspoint switch. Designers can Implement this for either opti­
mal package count (see Figure 4) or for optima! speed (see Figure 5) 

outputs IQO to\])). Six control bits are required for each 
transfer: three to select the input path (DO to D2); three to select 
the output path (D3 to D5). By selecting a single output path and 
clocking ali output registers simultaneously, deselected outputs 
are automatically cleared. This is useful for designs where only 
the most current data is needed. Equation 4 is the common 
equation to select one of eight input paths. Equations 5 to U 
complete the Boolean equations for this example. 

The previous equations would contain eight product terms if 
they were wntten in expanded form. However, by treating 
SELECTEQ as one signal. each equation contains only one 
product term. Both options are available in the SC121. But, there 

In contrast to the long 
development times for 

gate arrays, EPLDs 
require minimal frontend 

design time. 
are advantages and disadvantages to the two methods. If 
SELECTEQ is implemented as one signal through a combina­
tional feedback option. one and one-half crosspoint switches 
can be implemented in one 5CJ21(Figure4). The trade-off is 
faster speed for low chip count. By design, only 18 macrocells 
in the SCl21 can support eight product terms. On the other 
hand, selecting the combinational option reduces the p-terms 
but introduces an additional input mux delay. 

Figure 4 shows that an input signal must pass through four 
delays before.reaching the input to the !lip-flop. Again, subtrac­
ting the input clock delay to shift the reference point yields 
Equation 13 for the set-up time. Inverting Tsu gives the max­
imum operating frequency. In this configuration, data can be 
clocked through at 12 Mbits/sec. This layout utilizes "7 % of the 

available pins, 89 % of the available 
macrocells and l3 % of the product terms. 
Six SC121s would be required to imple­
ment a byte-wide switch with this layout. 

Figure 2: A40-nsec internal set-up time (prior to clocking data through the output flip-flop) marks 
Configuration 1. Data clocked into all eight input latches at the rising edge of one ILE/CLK cycle 
is selected and clocked out of the output flip-flop on the next rising edge of ILE/CLK. 

If the combinational feedback option is 
not used, there are eight output equa­
tions, each containing eight product 
terms. Assigning these equations to the 
macrocell s that support eight p-terms 
shows that only a single, one-of-eight 
s~lei..:t line digital crosspoint switch fits 
into one 5CJ21. Thus, the design requires 
eight 5Ci2Js to complete a byte-wide 

DIGITAL DESIGN • .JULY 1986 
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parallel transfer. Since the signal paths are identical to Con­
figuration l, the same timing analysis applies here. 

This layout (Figure 5) utilizes 65 % of the pins, 39 % of the 
macrocells and 30% of the p-terms. Though the utilization 
numbers are lower for this example, the actual available pins 
and macrocells in the 5Cl21 are higher than initially visible. 
Since macrocells in the 5Cl21 are organized into groups of four, 
when one output structure in a macrocell group is defined the 
other three must be of the same structure. Many times, this 
results in unused pins being labeled "RESERVED" in the util­
ization report. 

Configuration 3 
The final circuit (Figure 6) again uses eight inputs (IO to 17) and 
eight outputs (QO to Q7), though this time the deselected out­
puts "remember" their previously selected state. With the 
5Cl21's register feedback option, deselected outputs can hold 
the last data bit sent to that output. New data appears when the 
output. is selected again. 

Equations 14 to 22 express the Boolean terms necessary to 
implement this hold feature in the digital crosspoint switch. 
Note that each output is now a function of both the present inputs 
and the previous output (Qnfbk), which implements the regis­
tered feedback. Data bits D3, D4 and D5 determine which data 
bit will pass to the output. Again, the number of p-terms dic­
tates the use of combinational feedback, as in Configuration 2. 

Figure 4: Configuration 2 features a low package count layout. Note that 
one and one-half switches fit into each 5C121 EPLD. This configuration 
uses combinatorial feedbacks to simplify the logic equations, thus 
eliminating the requirement for eight product terms per output. 

Timing Analysis 
This configuration's timing analysis is similar to Configuration 
2's combinational feedback analysis, with the exception of a 
register feedback delay (Tri). Trf is the time that the data is pre­
sent at the output of the flip-flop to the time that data is available 
to the array. 

The total delay associated with the registered feedback con­
sists of the Trd, the Trfand the Tad. Data from the flip-flop out­
put reaches the input in about 50 nsec. The delay associated with 
data coming from the input pins is the same as that of Configura­
tion 2 with combinational feedback- approximately 83 nsec. 
Using this as the clock period, there is ample time to implement 
the register feedback without affecting the cycle time. In this 
configuration, data could be clocked through at 12 Mbits/sec. 

Combinational feedback reduces the p-term requirement to 
two p-terms per equation. This allows one and one-half cross­
point switches to fit into one 5Cl21. The design utilizes 64 % of 
the available pins, 42 % of the macrocells and II% of the prod­
uct terms. Six devices would be required to implement a byte­
wide switch. 

All of the configurations function differently, and no one con­
figuration is optimum for all applications. A designer can 
customize a device to meet the needs of an application, whether 
those needs include higher speed or lower chip count. A second 
device can be quickly developed for a different application. 
Designers are no longer restricted to a single device type that 
must be adapted to an application with additional logic devices. 

,JULY 1986 •DIGITAL DESIGIN 
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An original design can be developed in an afternoon. Additional 
devices derived from an original design can be developed in a 
few hours. Also, the ability to erase an EPLD and reprogram 
it allows design errors to be corrected immediately. Instead of 
several weeks delay with gate arrays, a designer using EPLDs 
can have working silicon devices in one day. 

Both the flexibility and shon design times associated with 
EPLDs make them a good choice for applications that benefit 

Figure 5: This circuit (Configuration 2 optimized for speed) combines 
the multiplexer and demultiplexer functions tor each channel in a single 
array. Since each output equatt0n uses eight product terms, only one 
switching channel can fit into each 5C121 package. 

Figure 6: Configurat10n 3 shows the use of registered feedback to allow 
deselected outputs to retain their previously selected data. The logic 
for a representative channel is shown. As with Configuration 2. this con­
figuration can be optimized for package count or speed. 

from custom silicon devices. Today, EPLDs offer designers the 
densities aud configuration flexibility of gate arrays, along with 
the shon development time and cost associated with EPROMs. 

CID 
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Designer's Corner 

A Programmable Logic Mailbox for 
80C31 Microcontrollers 
Karlheinz Weigl and Jim Donnell, Intel Corp .. Frankturt. West Germany, and Folsoz;n, CA 

This article describes the imple· 
mentation of a semi-intelligent in· 
terface between two 80C3 l mi· 

crocontrollers, using a mailbox 
protocol. Applications for an interfa~e 
such as the the one described here are 
often found in industrial control areas 
where multiple microcontrollers are 
used to accomplish a given task. Due to 
the architecture of the microcontroller 
(i.e .. no READY input; no HOLD/HLDA 
interface; port-oriented 1/0; etc.), ex­
changing data and status between these 
devices becomes a cumbersome task. 
Given this directive, it becomes the de­
signer's task to develop a multi-port 
memory interface that allows for zero 
wait-state operation (i.e., no READY sig­
nal required), that electrically isolates 
the microcontroller buses, and that per· 
mits asynchronous access. Synchroniza­
tion would result in the generation of 
wait states. 

We realize the logic necessary to im­
plement the desired functions in two 
erasable programmable logic devices 
(EPLDs). One device, the 5C031, con· 
tains roughly the equivalent of 300 2-
input NAND gates, while the other EPLD, 
the 5C060, can implement designs with 
up to approximately 600 gates. 

The Mailbox Principle 
And its Implementation 

In a mailbox memory system, the mi­
crocontrollers exchange information as 
bytes of data written to or read from a 
mailbox register. Control logic permits 
simultaneous access to the mailbox, thus 
eliminating the need for arbitration be­
tween the microcontrollers. Implement­
ing the data exchange in this form 
achieves most of the design criteria giv­
en above. 

FIGURE 1. Schematic of mailbox memory system. 

A voiding bus arbitration together 
with the short propagation delays of the 

EPLDs provides zero wait-state operation 
of the data exchange. Electrical isolation 
of the address and data buses is achieved 
by using the high-impedance output ca­
pability of the 5C060. Simultaneous, 
asynchronous access is achieved by sep­
arating the RD and WR strobes issued by 
each microcontroller. 

With a mailbox memory system, there 

Copyright© 1987 by CMP Publications, Inc., 600 Community Drive, Manhasset, NY 11030. 
Reprinted with permission from VLSI Systems Design. 
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is an obvious need for some type of 
communication protocol to confirm the 
reception of a message, or the presence 
of data in the mailbox. In addition, the 
read and write logic must be defined 
such that simultaneous access to the 
mailbox is permitted. In order to seg­
ment the task, the design will be ap­
proached in terms of two separate mod-



ules: the mailbox (memory section), and 
the the control logic (protocol). 

To begin the design of the memory 
section, it is first helpful to identify the 
resources required for the design. The 
mailbox requires a total of 16 memory 
storage registers (two bytes of data), tri­
state output control, and two separate 
clock lines used to write the memory 
registers. 

The 5C060 EPLD was chosen to imple­
ment the memory section. This device 
contains 16 programmable register 
groups that may be configured to operate 
as JK-, RS-, D-, and T-type flip-flops. 
Each register group feeds a bi-direction­
al input/output pin, which may be tri­
stated via an output-enable product 
term. These 110 pins may also serve as 
data inputs when the register output is 
tri-stated. This feature forms the basis of 
the read-signal logic required in the de­
sign. Write logic can be accomplished 
through the two synchronous clock in­
puts provided in the 5C060. Each syn­
chronous clock drives a set of eight 
registers in the device. The operation of 
the memory section of the mailbox 
memory may now be solidified. 

As shown in Figure 1, the two micro­
controllers are separated into controller 
A and controller B. Register group A 
(signals IOAO to IOA7) serves as an input 
buffer to rnicrocontroller A. This buffer 
receives information from microcon­
troller B's data bus. The write control for 
register group A comes from microcon­
troller B. 

Again, referring to Figure I, it can be 
seen that register group B serves as an 
output buffer to microcontroller B. This 
buffer gets information from microcon­
troller A and is therefore write-con­
trolled by microcontroller A. 

Data Transfer 

In order to read data from the mail­
box, the microcontroller must initiate a 
read cycle addressing the mailbox. The 
read signal (RDA for microcontroller A, 
RDB for microcontroller B) enables the 
tri-state outputs of the 5C060, revealing 
the appropriate data. Spurious read cy­
cles are avoided by logically combining 
the read signal with a chip select signal 
(CSA orCSB) within the chip. The exam­
ple shown utilizes address bit A 15 as the 

FIGURE 2. Schematic of register interface. 

Group A 
(micro<:ontroller A) 

WR8-
CSA-

{ .... 
:g~~: 
IOA2· 
IOA3• 
IOA4· 
IOA5-
IOA6-
IOA7· 
RDA· 
GND-

FIGURE 3. Pin"OUt for register interface. 

-VCC 
-ROB 

-.1.0. a. o·.J 
-1081 
·1082 
·1083 
-1004 
-1065 
-1066 
-1087 
·CSB 
;WRA 

Group B 
(microcontro1fer 8) 
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CSA 
WliA 
RST 

chip-select signal, thereby reserving the 
upper 32K bytes of memory spacefor the 
mailbox. 

Protocol Control Logic 

Having defined the memory section of 
the mailbox, we next must orchestrate 
the control logic. To guarantee reliable 
data transfers, both microcontrollers 
need feedback about the status of their 
respective input and output buffers. 

In order to achieve a maximum data 
transfer rate, an interrupt-driven proto­
col may be used. The signals necessary 
to achieve the transfer protocol are: 

OBFA (A's output buffer full) 
OBFB (B's output buffer full) 
!BEA (A's input buffer empty) 
IBEB (B's input buffer empty) 
INTA (A's data ready interrupt) 
INTB (B's data ready interrupt) 

Further definitions of the control signals 
can be made as follows. 

Output Buffer Full. This flag is set 
whenever a controller writes to the mail­
box. The flag remains valid until the 
second controller has read the data. The 

WA 

Olm 

im 

W1'5 
W8 

iNTA 

Qm1A 

. ilfi 

flag is reset when the recipient controller 
reads the data from the mailbox. 

Input Buffer Empty. This flag indi­
cates that there is no message in the 
mailbox and that the mailbox can be 
written without corrupting the data. This 
flag is set whenever a controller reads 
data from the mailbox. The flag remains 
set until <i;ita is placed in the mailbox. 

Interrupt. The 5C03I is programmed 
to supply interrupts to both microcon­
trollers involved, when either one of two 
events occurs. First, the recipient micro­
controller receives an interrupt when its 
OBF flag goes active. This signals the 
recipient that data is available in the 
mailbox. Secondly, the originator mi­
crocontroller receives an interrupt when 
data placed by that microcontroller in 
the mailbox has been received by the 
recipient microcontroller. This interrupt 
indicates that data has been received and 
that it is safe to write data to the 
mailbox. 

The signals described above form the 
basis for clean and efficient data transfer 
between tl)e two microcontrollers. The 
transfer time is limited only to the over-
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head of the interrupt service routines. 
The 5C060 can accept data at clock rates 
in excess of 20 MHz. 

Programming the EPLDs 

Figures 2 and 3 show the schematics 
and pin-out for the memory section, and 
Figure 4 is a schematic of the protocol 
sections in the mailbox memory. Using 
Intel's Programmable Logic Develop­
ment System, these schematics can be 
transformed with ease into the logic 
equations that represent the desired 
function. The development system ac­
cepts a variety of entry methods, includ­
ing schematic, netlist, state machine, 
and text file entry. 

Once the design has been entered, the 
file is submitted to the Logic Optimizing 
Compiler (LOC), which performs an op­
tional Boolean minimization, including 
De Morgan's inversion, and logically 
fits the design into the target EPLD. 

The development system generates 
three output files. The Logic Equation 
File (LEF) contains the result of the mini­
mization process, the Utilization Report 
File (RPT) contains the final device pin­
out, information about the internal logic 
routing, and a percent utilization for 
pins, macrocells, and product terms. Fi­
nally, the JEDEC fjle (JED) contains the 
device programming information re­
quired to program the EPLDs. These files 
are available from the authors. 

Programming of the EPLDs is accom­
plished through Intel's Logic Program-

. ming Software (LPS) and the iUP-PC pro­
gramming hardware. Designs also may 
be logically simulated through the us.e of 
Intel's FSIM software. 

Summary 
Applications such as industrial auto­

mation often require communication be­
tween multiple microcontrollers. Unfor­
tunate I y this communication is 
hampered by the port orientation and 
lack of bus control signals within the 
microcontroller environment: One solu­
tion-as presented here--is the mailbox 
memory. The mailbox memory serves as 
an effective method fQr transferring data 
between microcontrollers, while the 
flexibility of the EPLDs serves as an 
effective way to implement the mailbox 
itself. D 
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Regain lost 1/0 ports 
with erasable PLDs 
Daniel E. Smith a1d Thomas 8. Bowns 
Wei Cap., 1900 Praiie City Rd., Folsom, CA 95630; (916) 351·2747. 

As a means for reconstructing or regaining micro­
controller 1/0 ports lost to memory expansion, 
erasable programmable logic devices, or EPLDs, 
contain all the necessary functions. In fact, EPLDs 
perform more functions than most programmable 
logic arrays, and offer the additional benefits of 
EPROM-like erasability, the low power consump­
tion of CMOS technology, and gate densities near 
those of low-end gate arrays. 

Lost I /0 ports can be externally reconstructed 

Erasable PLDs cut the 
space and power 
usually needed to 
reconstruct 110 ports. 
They can even build 
new ports, adding to 
a chip's capab/111/es. 

with standard SSI 
packages. EPLDs, how­
ever, supply an alterna­
tive that reduces the ex­
ternal approach's 
impact on power and 
space consumption. 

The computing 
power of one-chip mi­
crocontrollers plays a 
role in many applica-
tions. But the growing 

complexity of these devices, as designers shift from 
8- to 16-bit controllers, has strained their I /0 ca­
pacity. 

A typical 8-bit microcontroller in a 40-pin pack­
age contains a 4- to 8-kbyte program memory and 
32 1/0 pins, usually grouped into 8-bit ports. The 
16-bit devices contain 8-kbyte memories and up to 
40 1/0 pins in packages that range from 48 to 68 
pins. The possible number of ports falls short for 
some complex tasks in switching circuits, robotics, 
and automotive systems. 

The 1/0 shortage is aggravated when the chip's 
internal program memory is too small for a given 
task. While tacking on external memory is easy 
enough, the addition consumes 1/0 pins. 

Although some details vary, the basic techniques 
for reconstructing these lost I /0 ports with EPLDs 
are the same for most microcontrollers. An example 
describes a SC121 EPLD and an 8096 16-bit mi­
crocontroller, noting details specific to the micro-

controller. 
These techniques not only reconstruct ports on 

any available microcontroller, but they also are 
suited to adding new ports. For the 8096, the de­
signer can add two new ports, 5 and 6, by changing 
to 1 FFC-1 FFF the hexadecimal address range in 
which the external memory is deselected. The new 
ports create a system with 56 1/0 signals. The 
tradeoffs of this addition are the board space 
needed for two more EPLDs and two more bytes of 
reserved memory space at IFFC and 1 FFD. 

The first consideration in reconstructing a port is 
the microcontroller's fixed-memory and 1/0 ad­
dress map. In the 8096, memory-address ranges 0 
to FF and 2000-3FFF contain on-chip registers, in­
terrupt vectors, factory test code, and program 
memory. Expansion memory can go into the 100 to 
1 FFD range, a capacity of 8k bytes minus the first 
256 and the last 2 bytes, and into the 4000 to FFFF 
range, another 8 kbytes. 

The mierocontroller has five 8-bit ports, three of 
which (Oto 2) are dedicated to 1/0 functions. Ports 
3 and 4, however, are memory-mapped to lFFE 
and 1 FFF, respectively. These two ports reside 
right above the lower section of expansion memory 
space. (Other microcontrollers have the same func­
tions, but their address ranges may vary.) 

External memory, therefore, connects to the pins 
reserved for ports 3 and 4, eliminating them as gen­
eral 1/0 ports. Reclamation of these ports calls for 
external latches and decode logic that disables the 
external memory and enables the latches at I FFE 
and 1 FFF. This logic decodes signals Ao and Byte 
High Enable, BHE, to select ports 3 and 4. The 
ports are selected either separately for 8-bit data 
transfers or together for 16-bit transfers. 

The microcontroller multiplexes address and 
data on signal lines AD0 to AD15 • As a result, Ad­
dress Latch Enable, ALE, must latch the address as 
each bus cycle starts and keep it there for the cycle 
duration. Then the lines can transfer data through­
out the cycle. Because BHE has the same timing as 

"Reprinted with permission from Electronic Design (Vol. 35, No. 7) March 19, 1987. Copyright 1987 Hayden Publishing Co., Inc., 
a subsidiary of VNU." 2-251 
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the address, ALE must also latch BHE. 
Reconstruction of both ports without EPLDs requires 

14 SSI packages if the high-current sink capability of 
open-collector drivers is needed. If not, nine packages 
will do. 

Besides the address-decoding logic, the input ports 
need octal latches. The outputs contain octal latches, but 
inverting buffers are also needed. If the output does in­
clude open-collector drivers, the designer must add an­
other set of inverting buffers to compensate for the 
drivers' inversion of the signal. In addition, a discrete flip­
flop latches BHE, and discrete gates decode the port se­
lection and RD and WR signals. 

On the other hand, reconstructing ports with EPLDs 
requires no logic outside of the EPLDs themselves (Fig. 
1 ). Each device decodes its respective memory-mapped 
address, and one device disables the external memory at 
both lFFE and lFFF. 

The EPLDs can sink 4 mA, which puts them in the 
same range as an SSI version without open-collector 
drivers. The designer can add open-collector drivers if a 
higher-current sink is needed. 

The design process leading to port reconstruction be-

gins with defining the functions required of the EPLD 
and then creating a design file that can be translated into 
a Jedec file. Next, the designer programs the EPLD and 
tests the final circuit. Software can automate much of this 
procedure. 

The first step is to list the functions the EPLD must 
perform. Then the designer identifies which EPLD fea­
ture best satisfies that need, becauSe as with SSI logic, the 
device can accomplish its task in different ways. 

In general, a device reconstructing a port must latch 
and decode address information from a multiplexed bus. 
The chip then produces an internal port-selection signal 
and an external memory-selection signal; the latter in ad­
dress range lFFE-lFFF. Moreover, the device acts as a 
bidirectional data path and decodes the RD and WR 
signals, routing the data with the port-selection signal 
(Fig. 2). 

Drawing a schematic diagram of the EPLD helps iso­
late the circuit into functional blocks. In the example, 
combinatorial logic and three latches do the decoding at 
port 3. 

Address lines AD 1 through AD 11 pass through an 
AND gate and are latched as LADA. Address lines A12 

1. Two erasable programmable logic devices contain all the logic required to reconstruct ports 3 and 4 of 
an 8096 mlcrocontroller. The two latches and two EPROMs comprise the external memory. 

Electronic Design• March 19, 1987 
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and inverted signals AD, 3 

through AD 15 pass through an 
AND gate and are latched as 
LAD8 . These two latched sig­
n a ls pass through another 
AND gate to create the Mem­
ory Disable Signal, MDS, 
which deactivates the 
EPROMs. Combined with 
LAD 0 (address signal AD 0 

inverted and latched), LADA 
and LAD8 generate the port­
selection signal. 

PARALLEL FORMAT SAVES TIME 

The EPLD decodes and 
latches signals AD 1 through 
AD11 and AD12 through AD15 
in parallel to minimize the time 
between address setup and 
ALE going low. An inverted 
ALE clocks the latches, which 
also store decoded addres.ses 
while the microcontroller trans­
fers data over the bus. 

Two combinatorial-output, 
internal. feedback (COIF) 
primitives create a double­
feedback loop with all output 
enables to the microcontroller 
bus controlled by OE,, which is 
active during read operations. 
Output enables on the 1/0 side 
of the EPLD are controlled by 
OE2 , which is active during 
write operations. Thus data is 
valid at the inputs or outputs 
only while the ~ropriate com­
mand, RD or WR, is active. 

If the application calls for 
latched outputs, the designer 
can create them from logic on 
the EPLD. One configuration is 
a D-type latch activated by the 
trailingedgeofWR (Fig. 3). In 
this circuit, the outputs are al­
ways enabled, except during 
reads, when they are placed in a 
high-impedance state. The Re­
set signal clears the outputs to a 
logic 0 during initialization. 

The fourth port's schematic 
varies little from that of the 
third. Because port 4 handles 
data transfers on the micro-

2. The schematic tor the port 3 EPlD contains a bldlrectlonal path that in­
cludes parallel address decoding that speeds clrcuH operation. In the port 3 
device, Ao Is Inverted and latched, then used to qualify reads and writes; the 
port 4 EPlD relies on BHE tor quallttcatlon. 

Electronic Design• Morch 19, 1987 
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controller's high byte, the data path connects to AD8 

through AD, 5• The BHE signal replaces AD0 and be­
comes LAD, which combines with LADA and LAD8 to 
select the correct port. 

A microcontroller with a different address map or bus 
interface may require some variations in address decode 
logic. The basic techniques for regaining .I/O ports with 
EPLDs, however, remain the same. 

DESIGN FILE CREATED 

The next step in the port-reconstruction process is to 
create from the schematic diagram a design file that can 
be automatically converted to a Jedec file by Intel's Pro­
grammable Logic Software II (iPLSII) program. Four 
types of inputs are acceptable: a net list file, Boolean 
equations, state variables, and files from any of several 
schematic-entry packages that run on personal comput-

3. If a designer needs latChed outputs, they can be 
bullf without addltlonal logic. This D-type ftlp-tlop II 
made of logic elements contained In the EPLD. 

ers. The designer can write a net list file With a word­
processing program in a nondocument mode, but an eas­
ier way is to work with iPLS Il's Logic Builder. 

The Logic Builder prompts tlte user for the information 
it needs. After establishing the file with sqme background 
information, the program asks for lists of all the input and 
output pin names (the user can assign a name to a specific 
pin number). Next come the internal assignments and 
connections, and finally, the logic equations needed. 

The designer must list all the COIFs that form the bidi­
rectional data path. For example, the entries that create 
the data line between AD0 and P3o (see Fig. 2 again) are 
as follows: 

ADo, ADo = COIF (P30, OE,) 
P3o, P30 = COIF (ADo. OEz) 

The iPLS II program contains a logic-optimizing com­
piler that translates the schematic's net list, or other suit­
able input, into a Jedec programming file. The compiler, 
which is selected from the program's main menu, opti­
mize.s the logic equations and assigns I/O pins and other 
EPLD resources. 

ERROR MESSAGES POINT OUT PROBLEM 

The program's outputs are the programming file and a 
device report file that shows the pinout of the pro­
grammed device and describes the use of the device's re­
sources. If the compiler cannot translate the file, error 
messages indicate the design-file entry that caused the 
problem. 

Programming the EPLD is very similar to program­
ming EPROMs. The designer com;1ects an EPLD pro­
gramming module to the workstation, inserts an uri­
programmed device into the socket, and calls up the 

4. A block dlG9rcJm of an ELPD's Internal delays shawl how users can determine the maximum delay for 
each signal path and, as a result, the porrs maximum oP•ratlng frequency. . 
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programming menu. The menu asks for the device's type 
and the Jedec file name, and the system then programs 
and verifies the chip. 

Considering how straightforward the port-recon­
struction functions are, the best test of the programmed 
EPLD is to plug it into a circuit and see if it works. An 
EPROM-based microcontroller with some simple read 
and write routines to exercize the device works well. The 
designer can also use an in-circuit emulator for the micro­
controller, if one is available. 

Any bugs can be fixed quickly. To correct a bug the 
user erases the EPLD file and changes the design file, 
which then can be recompiled and the device repro­
grammed. 

A timing analysis confirms the EPLD's compatibility 
with different microcontroller clock speeds. The analysis 
amounts to adding the internal delays for paths through 
the EPLD and comparing these path delays to the micro­
controller's timing requirements. 

The three paths of interest are Address Setup to ALE, 
which must take no longer than l 16nsforan 8096operat­
ing at 6 MHz; and no longer than 50 nsat 10 MHz. Other 
maximum values are: Data Valid From RD, 358 ns and 
230 ns; and Data Valid Before Write, 272 ns and 130 ns. 

A block diagram of the specific device with each inter­
nal delay is needed for the timing analysis. For the exam­
ple circuit, the Address Setup to ALE delay for the port 3 
EPLD is 49 ns (Fig. 4 ). This value, achieved by decoding 
and latching AD1 to AD11 in parallel with AD12 to AD1s. 
just meets the maximum delay at 10 MHz. 

The delay for Data Valid From RD is the sum of delays 
in the enable path and the data path, or 136 ns. The delay 
path for the write operations is shorter: It is that for the 
enable path added to 41 ns for the data path (after elimi­
nating a 30-ns overlap in enable and data timing), or 
106 ns. Both are well within limits. D 

Daniel E. Smith, a senior technical writer at Intel, has 
also worked in microcomputer-systems testing and 
written manuals for microprocessors, development 
software, and bubble memories. He has a BA in history 
from San Jose University and an MA in biblical studies 
from the Graduate Theological Union/Jesuit School of 
Theology in Berkeley, Calif 

Thomas B. Bowns is an application engineer for In­
tel's EPLD operation. He also has worked as a techni­
cian on the company's EPROM line. Bowns studied 
digital and microwave electronics at American River 
College in Carmichael, Calif 

Electronlc Design• March 19, 1987 

2-255 





Advanced Architecture 
EPLDs 

3 





intJ 
SCBIC 

PROGRAMMABLE BUS 
INTERFACE CONTROLLER 

• Higher Integration Alternative to 
Transceivers, Latches, Multiplexers and 
PAL• Functions 

• Appllcatlons Include Dual Port Control, 
Multiplexed Bus Interface, DRAM 
Control and Slmllar Functions 

• Port-Oriented Bus Management Unit 
Supports: 
- 3-Way Asynchronous Data Transfer 

on Byte-Wide Buses 
- Programmable Option of Latched or 

Real Time Data 
- True or Complement Data Path 

• Macrocell-Based Programmable Logic 
Unit Provides: 
- Variable Input and Output 

Architecture 
- On-Chip Controls for the Bus 

Management Unit 

- Up to Eight Burled Registers 
- Programmable Registers can be 

Configured as Positive Edge­
Triggered D-, J-K, R-S or T • Types 

-Asynchronous Preset and Clear on 
All Registers 

- Option of Latched Inputs 

• Low Power: 75 µA Typical Standby 

• CHMOS EPROM Technology Based: 
- Max Bus Port Drive Capability: 16 mA 
- Typical Data Transfer Delay Between 

Ports= 25 ns 
- Logic Array Operating Frequency = 

20 MHz 

• Available In 44-Lead PLCC Package 
(See Packaging Spec., Order # 231369) 

The Intel SCBIC is useful in implementing bus interfacing logic functions that have traditionally been done 
using SSl/MSI TIL components. Core bus functions are provided that can be customized using EPROM bits 
for specific applications. Control logic can also be implemented through a sum of products architecture that is 
included in this 44-lead PLCC package. Such levels of integration are realized utilizing the benefits of Intel's 
advanced CHMOSll-E process. 

This general purpose architecture is supported by iPLDS II, Intel's Programmable Logic Development System, 
to develop the design and program the devices. Several methods of entry facilitate the design resulting in 
shorter completion times. 
*PAL is a trademark of Monolithic Memories, Inc. 
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FUNCTIONAL DESCRIPTION 

As the name suggests, this programmable bus inter­
face controller offers a high integration solution to 
design problems involving data transfer on bus lines 
and the logic needed to control these transfers. This 
integration directly· translates into savings in board 
space and lower system cost for equivalent func­
tions implemented using conventional SSl/MSI 
components. 

Present in the port-oriented 5CBIC are two function­
al blocks that enable complex bus functions to be 
realized: the Bus Management Unit (BMU) and the 
Programmable Logic Unit (Pl,.U). These two units 
communicate with each other through the input and 
the feedback buses. A control section shown in Fig­
ure 3 steers signals from the PLU to the two units 
through the control bus. 

ARCHITECTURE DESCRIPTION 

The innovative architecture of the 5CBIC incorporat­
ing a port-oriented approach for bus interface con-

2 

PORT A 

3 

INPUT 
PORT 

PORT 
CONTROL 

trol is illustrated in Figure 5. The Bus Management 
Unit (BMU) and the Programmable Logic Unit (PLU) 
interface to the feedback and the control busses. 
The macrocells in the PLU feed the input bus. 

Bus Management Unit (BMU) 

The Bus Management Unit (BMU) comprises three 
ports: PA, PB and PC (Figure 4a). Each of these 
ports is bidirectional and 8 bits wide. Data can be 
routed from any port to any other port. 

Data into any port can be user-selected to be 
latched by a port Latch Enable signal, (LE). Routing 
of latched or unlatched data between · ports is 
achieved using a combination of EPROM architec­
ture and dynamic control signals defined by the user. 
Data out of any port can be programmed to have an 
inverted sense through EPROM architecture control 
(INV). 

Each bidirectional port can be dynamically config­
ured as an input or an output depending on the con­
trol signals OEA, OEB and OEC. Latched data from 

OUTPUT 
PORT 

FEEDBACK 
BUS MANAGEMENT 

UNIT 

INO 

• 7 

0 

INPUT 
MACROCELL 

PROGRAMMABLE LOGIC UNIT 

ARRAY 
INPUT/OUTPUT 

LOGIC 
MACROCELL 

···--·~ 1/07 

M--1-•l/01 
M-+---.1/00 

290126-3 

In the tridirectional BMU, any port can be steered to any other port. In this diagram, Port A can be directed to Port B or Port C or both. The PLU 
provides a 600-gate equivalent PAL function. 

Figure 3. Functional Blocks In the SCBIC 
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PORT A---+--.-0 
(INPUT PORT) 

FROM TO 
CONTROl FEEDBACK 

BUS BUS 

5CBIC 

rROM PORT C 

8 '+....,,.. ____ PORT C 

Each bidirectional port can be dynamically configured as an input or an output depend­
ing on the control signals OEA, OEB and OEC. The feedback to the array is controlled 
by TFB 1, TFB2 and port routing occurs through SELA, SELB and SELC. In the dia· 
gram, Port A is the input port with possible outputs at Port B and Port C. 

Figure 4a. Bus Management Unit Block Diagram 

PORT A 

TO FEEDBACK BUS 290126-23 

LEGEND: 

290126-5 

OEA, OEB, OEC, SELA, SELB, SELC, LEA, LEB, LEC, TFB1 and TFB2 are the control outputs for the BMU derived from 
the control bus. 
MPCA, MPCB and MPCC are dynamic multiplexers controlled by SELA, SELB and SELC for port selection. 
MUXA, MUXB, INVA, INVB and INVC are static multiplexers controlled by architecture bits (EPROM bits). 
All latches are the "transparent" type. 

Figure 4b. BMU Logic Diagram 

any incoming port can be fed internally to the array 
through TFB1 and TFB2. The three ports can be 
time-multiplexed, if needed. Port routing is controlled 
by signals SELA, SELB and SELC (Figure 4b). 
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Programmable Logic Unit (PLU) 

An on-chip 600-gate-equivalent EPLD supplies the 
control signals to the bus unit and related applica-
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Figure &; The Array Structure 

tion functions in the system. A dedicated input port 
and a bidirectional 110 port, each 8 bits wide, allows 
control logic implementation in the 5CBIC. The mac­
rocell based architecture enables the designer to 
use up to 24 inputs and 8 outputs. 

The inputs, array and 1/0 marcrocells generate a 
sum-of-products (AND-OR) representation of any 
given logic. Within the AND array, there is an 
EPROM connection at every intersection of an in­
coming signal (true and complement) and a product 
term to a given macrocell (Figure 6). Before pro­
gramming an erased device an EPROM connection 
exists at every intersection. It is during the program­
ming process that these connections are opened to 
generate the required connections. 

The bidirectional 1/0 port, when configured as an 
input, is identical to the input port in that inputs may 
be latched by a signal from the control bus as shown 
in Figure 7. An additional flow-through option for the 
data inputs is available in the input macrocell. 

The variable output architecture in the PLU allows 
the designer to select the combinatorial or regis­
tered output types on a macrocell basis. This may 

3-6 

be implemented by selecting the architecture bit 
MARB1 and the edge-triggered flip-flop (Figure 7). 
The Macrocells support D, T, S-R or J-K type regis­
ters for optimal design. Truth tables for these are 
listed in Figure 8 for easy reference. Whereas all 
eight of the product terms are OR-ed together at the 
register input for the D- and the T- registers, the J-K 
and the S-R configurations employ sharing of the 
product terms among two OR-gates. 

The registers receive inputs at its data, clock, set 
and reset lines. Eight product terms are available for 
the data input and one each for the set and the clear 
inputs. 

The clock, output enable and the latching signals 
can be selected by architecture bits MARB2, 6 and 3 
respectively to be outputs from the control bus or 
one product term from the array. Designers thus 
have more options available for asynchronous 
clocking and output controls. 

The macrocell output can be fed back to the array 
through the feedback bus or to the control bus. Fig­
ure 9 summarizes the bus structure and its relation­
ship to the relevant units in the 5CBIC. 
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Figure 7. The Programmable Logic Unit 
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Input and Input/Output Logic Macrocell 
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Function Table 
On On OnH 
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0 1 0 
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Figure Sb. D-Type Fllp-Flop 
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Function Table 
T On 0.11 
0 0 0 
0 1 1 
1 0 1 
1 1 0 

Figure Sc. Toggle Fllp-Flop 
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Function Table 
J K On On+ 1 

0 0 0 0 
0 0 1 1 
0 1 0 0 
0 1 1 0 
1 0 0 1 
1 0 1 1 
1 1 0 1 
1 1 1 0 

INPUT PIN 

Function Table 
s R On On+ 1 

0 0 0 0 
0 0 1 1 
0 1 0 0 
0 1 1 0 
1 0 0 1 
1 0 1 1 

1 1 Illegal 

5CBIC 

Input and Input/Output Logic Macrocell 

Figure 8d. J·K Fllp-Flop 

Input and Input/Output Logic Macrocell 

Figure Be. S·R Fllp·Flop 
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Figure 9. The 5CBIC Bus Organization 

Configuring the 5CBIC 

The Device Configuration Manager (DCM) in 
iPLS II provides a high-level graphic design entry al­
ternative that allows bus configurations to be imple­
mented in minutes. A more detailed explanation is 
given in the iPLS II manual. An ADF (Advanced De­
sign File) is then automatically generated that de­
fines the logic network using primitives. 

The primitive necessary for configuring inter-port 
communication is the "BMU", while the one required 
for internal feedback from the BMU to the PLU is the 
feedback primitive "BFMUX". Tables 1 through 4 
define these primitives and their fields/bits. 

Table 1. BMU Architecture Bits 

Architecture Selects Bit 

MUXA,MUXB Latched or Flow-Through 
Port Data 

INVA, INVB, INVC True or Inverted Oata Output 

OeA 
SelA 
LeA 
OeB 
SelB 
LeB 
OeC 
Sele 
Lee 

Name: 

ADFSyntax: 

Table 2. BMU Primitive 

8 bit PA 
110 PB 
Ports PC 

BMU 

BMU (Bus Management (Unit) 

PortA, Porte, Porte = BMU (Type, 
OeA, SelA, LeA, OeB, SelB, LeB, 
OeC, SelC, LeC) 

Description: Port A = connection to 8 parallel 110 
pins labeled AO-A7 
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Port B = connection to 8 parallel 110 
pins labeled B0-87 

Port C' = connection to 8 parallel 110 
pins labeled CO-C7 

OeA "."' output enable for Port A 

SelA= select B or C internal con­
nection to Port A (0 = C, 
1 = B) 

LeA = input latch enable for Port A 

OeB = output enable for Port B 

SelB= select A or C internal con-
nection to Port B (O = C, 
1 =A) 

LeB = input latch enable for Port B 

OeC = output enable for Port C 

SelC= select A or B internal con-
nection to Port C (O = A, 
1 = B) 

LeC = input latch enable for Port C 



5CBIC 

Inversion Control Input Latch 

Port: A B c A B· c 
Bit: s· 4 3 2 1 0 

0 Invert Output · Invert Output Invert Output Latched A Latched B Latched C 

1 No Invert No Invert No Invert 
'If LeC is contlnually high, the C latch is transparent. 

Table 3. Bu• Feedback.Multlpler Primitive 

BFMX 

[0:7] 

Name: BFMX (Bus Feedback Multiplexer 

ADF Syntax: Fbk[0:7] = BFMX (TFB1, TFB2) 

Description: Outputs. 

Fbk = 8 parallel lines of feedback to 
logic array. 

Inputs: 

TFB 1, TFB2 = By appling 0 or 1 as 
shown on the chart above, select 
feedback from Port A, B, or C. TFB1 
·and TFB2 can be set to VCC or GND, 
or they can be connected to any inter­
nal feedback or input node. The ports 
are defined in the BMU primitive sec­
tion. 
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Direct A Direct B Latched c• 

Table 4. PLU Architecture Bits 

Architecture 
Selects 

Bit 

MAR BO Output Polarity 
MARB1 Combinatorial or Registered Outputs 
MARB2 Clock Source 
MARB3 Latching Signal Source 
MARB4 Combinatorial or Registered 

Feedback to the Logic Array 
MARB5 Input Source to the Control Bus 
MARB6 tri-state Control Signal 
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ABSOLUTE MAXIMUM RATINGS* 
Symbol Parameter Min Max Units 

!Vee Supply Voltage(1) -2.0 7.0 v 
jvpp Programming -2.0 13.5 v 

Supply Voltage(1) 

lv1 DC Input Voltage(1)(2) -0.5 Vee+0.5 v 
stg Storage Temperature -65 +150 ·c 

amb Ambient Temperature(3) -10 +85 ·c 

NOTES: 
1. Voltages with respect to ground. 
2. Minimum DC input is -0.5V. During transitipns, the in­
puts may undershoot to - 2.0V for periods less than 20 ns 
under no load conditions. 
3. Under bias. Extended temperature versions are also 
available. · 

•Notice: Stresses above those listed under '~bso­
lute Maximum Ratings" may cause permanent dam­
age to the device. This is a stress rating only and 
functional operation of the device at these or any 
other conditions above those indicated in the opera­
tional sections of this specification is not implied. Ex­
posure to absolute maximum rating conditions for 
extended periods may affect device reliability. 

NOTICE· Specifications contained within the 
following tables are subject to change. 

D.C. CHARACTERISTICS TA= o•cto +70°c, Vee= 5.0V ±5% 

Parameter Description Min Max Unit Test Conditions 

Port A Port B, C 1,1/0 
VoH Output High Voltage 2.4 v TIL:loH -1 mA -5mA -1 mA 

Vee= Min 

Port A Port B, C I, 1/0 
Vol Output Low Voltage 0.45 v loL 5mA 16mA 5mA 

Vee= Min 

V1H Input High Level 2.0 Vee +o.3 v 
V1L Input Low Level -0.3 0.8 v 
1, Input Leakage Current 10 p.A Vss ~ V1N < Vee. Vee = Max 

loz Output Leakage Current 10 p.A Vss ~ Vour ~ Vee. Vee = Max 

los<4l Output Short Circuit Current BMU 80 mA Vee = Max, Vour = 0.5 
PLU 16 mA 

lg9(S) Operating Current 75 p.A V1N = Vee or Gnd, 
(standby, low power mode) 10 = o 

lcc2 Operating Current 20 mA V1N = Vee or Gnd, 
(active, low power mode) f = 1 MHz, No Load 

Ices Operating Current 108 mA V1N = Vee or Gnd, 
(active, turbo mode) f = 1 MHz, No Load 

CtN Input Pin Capacitance 30 pF 

Cour Output Pin Capacitance 40 pF 

NOTES: 
4. Output shorted for no more than 1 sec. and only one output shorted at a time. 
5. Chip automatically goes into standby mode if logic transitions do not occur at input pins. (Approximately 100 ns after last 
transition). 
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290126-14 
NOTES: 
1. CL includes jig capacitance 
2. Device input rise and fall times < 6 ns 

Figure 10A. A.C. Testing Load Circuit 

3.0~ 
INPUT O~ 

OUTPUT 

2!19126-16 

A.C. Testing: Inputs are driven et 3.0V for a Logic "1" and OV for a Logic "O". Timing 
measuremenlS are made at 2.0V for a Logic "1" and o.ev for a Logic "O" on Inputs. 
Outputs are measured at a 1.SV p'C;nt 

Figure 108. A.C. Testing Input, Output Waveform 

Switching Characteristics 

Timing Referenc9d to 
Notation: SUfflJi Control From: 

1 direct Input pin 
2 product term 
3 control bus 

PORT VALID INPUTS 

Tusu1 T1,1Ho1 
Tusu3 TLIH03 

LATCH 
ENABLE 

TLEH 

OUTPUT. 
ENABLE 

TauSPD 

PORT 
OUTPUTS 

A) Latched Port Inputs 

Tpzx1 
Tpzx3 

PORT -------"\.l.1--VA-L-ID-----------­

INPUTS --------'I"------''----------

OUTPUT 
ENABLE 

PORT 

TausPD 

OUTPUTS ----------'l'--""I 

B) Direct Port Inputs 

Figure 10C. ·aus Management Unit 
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Switching Characteristics (Continued) 

INPUTS OR ------'\. 1-------,1,,....------------
1/0 INPUTS ------- ___ vA_L_iD ____ --------------

LATCH 
ENABLE 

CLOCK 

OUTPUT 
ENABLE 

COMBINATORIAL 

T LISU2 T LIH02 
T LISU3 T LIH03 

Tc1su2 --...i.--TcLEH 
Tc1su3 

Tepo 

OUTPUT --------------~-- -----" 

REGISTERED 

OUTPUT -------------------'!'----""! 
A) Latched Inputs 

Tpzx2 
Tpzx3 

290126-18 

INPUTS OR ------- -------- --------------
VALID 1/0 INPUTS OR 

REGISTERED FEEDBACK ------- '-------- --------------

CLOCK 

OUTPUT 
ENABLE 

COMBINATORIAL 
OUTPUT 

REGISTERED 
OUTPUT 

SET, RESET 
INPUT 

ASYNCHRONOUSL Y 
SET, RESET 

/ 

i.-----TcwH---~~ 

T 
i--Tcpo--+j PXZ2-.. PZX2 .... 

Tpxz3 Tpzx3 

~ 
TRPDh 
TRPD3 

)( ./I 
·~ 

Tspw 

~ 
Tspo 

- ---------T-RP_o-3-----------------

OUTPUT -----------
290126-19 

B) Direct Inputs 

Figure 100. Programmable Logic Unit 
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AC CHARACTERISTICS 

BUS MANAGEMENT UNIT 

Symbol Parameter 
-25 -35 -45 

Unlta 
Min Typ Ma~ Min Typ Max Min Typ Max 

TLISU1 Port Input Setup Time to 0 0 0 ns 
Latch Enable (Fast Option) 

Tusua Port Input Setup Time to 0 0 0 ns 
Latch Enable (Control Bus) 

TuH01 Port Input Hold Time to 25 35 45 ns 
Latch Enable (Fast Option) 

TuH03 Port Input Hold Time to 75 85 95 ns 
Latch Enable (Control Bus) 

TLEH Latch Enable High Time 25 35 45 ns 

TeuSPD Port to Port Propagation Delay 15 25 25 35 35 45 ns 

Tpxz1 Valid Output to High Impedance 15 25 25 35 35 45 ns 
(OE From Fast Option) 

Tpxza Valid Output to High Impedance 75 85 95 ns 
(OE From Control Bus) 

Tpzx1 High Impedance to Valid Output 15 25 25 35 35 45 ns 
(OE From Fast Option) 

Tpzxa High Impedance to Valid Output 75 85 95 ns 
(OE From Control Bus) 

fLEPD1 Latch Enable (From Fast Option) 15 25 25 35 35 40 ns 
To Port Output Delay 

TLEPD3 Latch Enable (From Control Bus) 75 85 95 ns 
To Port Output Delay 

PROGRAMMABLE LOGIC UNITS 

Symbol Parameter 
-25 -35 -45 

Unlta 
Min Typ Max Min Typ Max Min Typ Max 

Tusu2 Input Setup Time to Latch Enabl.e 0 0 0 ns 
(P-Term) 

Tusua Input Setup lime to Latch Enable 0 0 0 ns 
(Control Bus) 

TuH02 Input Hold Time to Latch Enable 50 30 70 50 80 60 ns 
(P-Term) 

TuH03 Input Hold Time to Latch Enable 70 50 80 60 90 70 ns 
(Control Bus) 

Tc1su2 Input Setup Time to Clock (P-Term) 0 0 0 ns 

Tc1sua Input Setup Time to Clock (Control Bus) 0 0 0 ns 

TcLEH. Clock to Latch Enable Hold Time 5 5 5 ns 

Tcpo Combinatorial Output Delay 40 65 50 75 60 85 ns 
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PROGRAMMABLE LOGIC UNITS (Continued) 

Symbol Parameter 

TRPD2 Registered Output from Clock (P-Term) 

TRPD3 Registered Output from Clock (Control Bus) 

T1H02 Input Hold Time to Clock (P-Term) 

T1H03 Input Hold Time to Clock 
(Control Bus) 

TcwH Minimum Clock Width High 

TcwL Minimum Clock Width Low 

Tspo Set Output Delay 

TRPD Reset Output Delay 

Tspw SET iRESET Pulse Width 

Tpxz2 Valid Output to High"lmpedance 
(OE from P-Term) 

Tpxza Valid Output to High Impedance 
(OE from Control Bus) 

Tpzx2 High Impedance to Valid Output 
(OE from P~Term) 

Tpzxa High Impedance to Valid Output 
(OE from Control Bus) 

Tcp1 Minimum Clock Period (Register Output 
to Register Input Through Feedback Path) 

F1 Maximum Internal Frequency 

Tcp2 Minimum Clock Period Between 
Logic Transitions (Inputs to Outputs) 

F2 Maximum External Frequency 

lnt81igent Programming AlgorlthmTM 

The 5CBIC supports the inteligent Programming Al· 
gorithm whicti rapidly programs Intel H-ELPDs (and 
EPROMs) using an efficient and reliable method. 
The inteligent Programming Algorithm is particularly 
suited to the production programming environment. 
This method greatly decreases the overall program­
ming time while programming reliability is ensured as 
the incremental program margin of each bit is con­
tinually monitored to determine when the bit has 
been successfully programmed. 

FUNCTIONAL TESTING 

Since the logical operation of the 5CBIC is 
controlled by EPROM elements, the device is com­
pletely testable. Each programmable EPROM bit 
controlling the internal logic is tested using applica­
tion-independent test program patterns. After test-

-25 -35 -45 
Units 

Min Typ Max Min Typ Max Min Typ Max 

20 30 30 40 40 45 ns 

30 35 30 40 40 45 ns 

50 30 70 50 80 60 ns 

70 50 80 60 90 70 ns 

33 38 43 ns 

33 38 43 ns 

65 75 85 ns 

65 75 85 ns 

33 38 43 ns 

65 75 85 ns 

75 85 95 ns 

65 75 ·es ns 

75 85 95 ns 

50 70 80 ns 

20.0 14.3 12.5 MHz 

50 80 80 110 100 120 ns 

12.5 20.0 9.09 12.5 8.0 10.0 MHz 
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ing, the devices are erased before shipmentto cus­
tomers. No post-programming tests of the EPROM 
array are required. 

The testability and reliability of EPROM-based pro­
grammable logic devices is an important feature 
over similar devices based on fuse technology. 
Fuse-based programmable logic devices require a 
user to perform post-programming tests to insure 
proper programming. 

DESIGN SECURITY 

A single EPROM bit provides a programmable de­
sign security feature that controls the access to the 
data programmed into the device. If this bit is set, a 
proprietary design within the device cannot be cop­
ied. This EPROM security bit enables a higher de­
gree of design security than fused-based devices 
since programmed data within EPROM cells is invisi-
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ble even to microscopic evaluation. The EPROM se­
curity bit, along with all the other EPROM control 
bits, will be reset by erasing the device. 

TURBO-BIT 

The device will consume quiescent current (75 µ.A, 
typically) if no transitions are detected in the array 
for 50 ns or more. This mode, the power-down 
mode, can be enabled by selecting the Turbo Bit 
OFF. If this bit is enabled, however, the device con­
sumes active current. The power-down mode will re­
vert to its active state if a transition is detected in the 
array, at an extra delay of 3 ns in speed paths. 

LATCH-UP IMMUNITY 
All pins of the 5CBIC have been designed to resist 
latch-up which is inherent in inferior CMOS struc­
tures. The 5CBIC designed with Intel's proprietary 
CHMOS 11-E EPROM process. Thus, pins will not ex­
perience latch-up with currents up to 100 mA and 
voltages ranging from -1V to Vee + 1V. Further­
more, the programming pin is designed to resist 
latch-up to the 13.5V maximum device limit. 

INTEL PROGRAMMABLE LOGIC 
DEVELOPMENT SYSTEM (IPLDS II) 
The iPLDS II graphically shown in Figure 11 provides 
all the tools needed to design with Intel H-Series 
EPLDs or compatible devices. In addition to provid­
ing development assistance, iPLDS II insulates the 
user from having to know all the intricate details of 
EPLD architecture (the machine will optimize a de-·· 
sign to benefit from architectual features). It contains 
comprehensive third generation software that sup­
ports four different design entry methods, minimizes 
logic, does automatic pin assignments and produces 
the best design fit for the selected EPLD. It is user 
friendly with guided menus, on-line Help messages 
and soft key inputs. 

In addition, the iPLDS II contains programmer hard­
ware in the form of an iUP-PC Universal Program-

mer-Personal Computer to enable the user to pro­
gram EPLDs, read and verify programmed devices 
and also to graphically edit programming files. The 
software generates industry standard JEDEC object 
code output files which can be downloaded to other 
programmers as well. 

The iPLDS II has interfaces to popular schematic 
capture packages (including Dash series from Fu­
turenet• and PC CAPS from PCAD .. ) to enable de­
signs to be entered using schematics. A more inte­
grated schematic entry method is provided by 
SCHEMA 11-PLD, a low-cost schematic capture 
package that supports EPLD primitives and user-de­
fined macro symbols. SCHEMA 11-PLD contains the 
EPLD Design Manager, which provides a single user 
interface to both SCHEMA 11-PLD and iPLS II soft­
ware. The other design formats supported are Boo­
lean equation entry and State Machine design entry. 

The iPLDS II operates on the IBMt PC.XT, PC/AT, 
or other compatible machine with the following con­
figuration: 

1. At least one floppy disk drive and hard disk drive. 

2. MS-DOStt Operation System Version 3.0 or 
greater. 

3. 512K Memory. 

4. Intel iUP-PC Universal Programmer-Personal 
Computer 

5. A GUPI LOGIC Adaptor 

6. A color monitor is suggested. 

Detailed information on the Intel Programmable Log­
ic Developement System is contained in a separate 
Intel data sheet. 

•FutureNet is a registered trademark of FutureNet 
Corporation. DASH is a trademark of FutureNet 
Corporation. 

.. PC-CAPS is a trademark of P-CAD Corporation. 

tlBM Personal Computer is a registered trade­
mark of International Business Machines Corpo­
ration. 

ttMS-DOS is a registered trademark of Microsoft 
Corporation. 
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Figure 11. IPLDS II Intel Programmable Logic Development System 
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INTRODUCTION 

One of the popular multi-port configurations common­
ly used in multiple microprocessor systems is the dual 
port. Because each processor is now capable of han­
dling separate tasks in parallel, such designs offer 
improved performance and throughput. Sharing re­
sources, such as large amounts of meinory, is an opti­
mizing trade-off to keep the system efficient and, at the 
same time, cost-effective. 

The scheme discussed here consists of two processors 
sharing memory through some intermediate logic. Typ­
ically, such logic consists of data transceivers, address 
latches, SSl/MSI arbitration logic (AND gates, 
OR gates, FLIP-FLOPS etc.). With the 5CBIC imple­
mentation, it is possible to reduce the overall chip count 
by over three times. 

A block diagram of the dual-port scheme is shown in 
Figure 1 for two sixteen-bit processors accessing shared 
memory. Two 5CBIC's are required for the implemen­
tation as all ports in the chip are byte-wide. The first 
device provides the isolation of the memory and proces­
sors' high-byte data bus; it also includes the necessary 
arbitration logic. The second 5CBIC interfaces the low­
byte data bus and implements a 7-bit counter with a 

PROCESSOR 1 

PORT A 
5CBIC 

SYNCHRONIZER 
ARBITER 
CONTROL 

PORT C 

parallel-load capability. The lead configurations of the 
devices are given in Figures 2 and 3. 

A bus-arbitration flow-diagram and the state machine 
diagram for the arbiter are shown in Figures 4 and 5, 
respectively. These diagrams are translated into equa­
tions, which are shown in Figures 6 and 7. 

DESCRIPTION 

The block diagram (Figure 1) shows two processors, 
Processor 1 and Processor 2, in a minimal memory sys­
tem. The interface logic can be condensed to two 
5CBIC's. These devices provide the necessary isolation 
of the shared memory data bus (MDATA (0 .. 15]) 
from each of the processors' data bus (PlDATA 
(0 .. 15) and P2DATA (0 .. 15)). 

Similar isolation is required for the address bus. This is 
implemented by a set of latches. It is interesting to note 
that these latches can also be easily configured in an 
extra 5CBIC. An implementation of latches can be 
found in another application note that serves as a multi­
plexed address/ data interface. 

DATA 0 .. 15 

PORT B 

PORT A 
5CBIC 

7 - BIT COUNTER COUNTER 
OUTPUTS 

CONTROLS 
PROCESSOR 2 

292032-1 

Figure 1. The Dual-Port Block Diagram 

3-20 



AP·305 

The control bus provides all the necessary signals that 
are used to initiate requests (PlMRD, PlMWR, 
P2MWR), or simply to provide handshaking signals in­
dicating cycle termination etc. 

The arbitration scheme is shown in Figure 4 with the 
help of a flow-chart. In this example, Processor 1 has 
been assigned higher priority than Processor 2 to pre­
vent contention. If Processor 2 requests an access while 
Processor 1 has control of the system bus, the Processor 
2 bus cycle is extended by inserting wait states. The 
cycle remains extended until the arbiter grants access to 
Processor 2 and enables the appropriate port (PORT B) 
of the Bus Management Unit (BMU) in the SCBIC. 

PIOT 

P2MWR 

OE_PC 

OE_PB 

P214RD 

Yee 
CLK1 

OE_PA 

MEM_WR 

PIMWR 

PIMRD 

High Byte Data Transfer 
and Arbitration Logic 

HBYTE_B(7) 

HBYTE_A(7) 

HBYTE_A.(6) 

HBYTE_A(S) 

HBYTE_A(4) 

Vee 
HBYTE_A(3) 

HBYTE_A(2) 

HBYTE_A(1) 

HBYTE_A(O) 

HBYTE_B(6) 

292032-2 

Figure 2. Lead Configuration 
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After the data transfer has occurred, an acknowledge 
signal signifies cycle completion. 

The state machine diagram of the arbitration algorithm 
is shown in Figure 5. Upon receiving a request from 
Processor l, the arbiter will move from it's IDLE state 
to GRANT! state and.cycle back only after completing 
the memory access. If Processor 2 requests for a memo­
ry access while the arbiter is in the IDLE state, tran­
sition to GRANT2 state will occur only if Processor 1 
is not requesting access. Different arbitration algo­
rithms are possible; these would translate into different 
state-machines. 

ENABLE 

LOAD 

QS.T 

Q4.T 

OE_PC 

Vee 
CLK1 

Q3,T 

02.T 

OLPB 

OE_PA 

Low Byte Data Transfer 
and Seven-Bit Counter 

LBYTLB(7) 

LBYTLA(7) 

LBYTLA(8) 

LBYTLA(S) 

LBYTLA(4) 

Vee 
LBYTLA(3) 

LBYTE_A(2) 

LBYTE_A(1) 

LBYTE_A(O) 

LBYTE_S(6) 

292032-3 

Figure 3. Lead Configuration 
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HIGHER PRIORlY 
(PROCESSOR 1) 

PROCESSOR 1 REQUIRES 
MEMORY ACCESS ------+ 

(DRIVE P1 REQ ACTIVE) 

ENABLE PROCESSOR 1 MEMORY ACCESS LOGIC 
(DISABLE PROCESSOR 2 MEMORY ACCESS LOGIC) 

! 
DATA TRANSF'ER IN PROGRESS 

DATA TRANSF'ER COMPLETE 

END OF' CYCLE 

PROCESSOR 1 DOES NOT REQUIRE 
MEMORY ACCESS 

AP·305 

IDLE STATE 

I 
ARBITRATE 

IDLE STATE 

i 
ARBITRATE 

I 

LOWER PRIORlY 
(PROCESSOR 2) 

PROCESSOR 2 REQUIRES +------ MEMORY ACCESS 
(DRIVE P2REQ ACTIVE) 

PROCESSOR 2 REQUEST PENDING 

ENABLE PROCESSOR 2 MEMORY ACCESS LOGIC 
• (DISABLE PROCESSOR 1 MEMORY ACCESS LOGIC) 

! 
DATA TRANSF'ER IN PROGRESS 

DATA TRANSF'ER COMPLETE 

.r--------- END OF' CYCLE 

IDLE STATE 

! 
(CONTINUE) 

i 
292032-9 

Figure 4. Bus Arbitration Flow Diagram 
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PIREQ ENDC1 

RESET 

P2REQ • PIREQ ENDC2 

292032-4 

Figure 5. State Diagram 

AP-305 
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States State Variables 

P1GNT P2GNT 
IDLE 0 0 
GRANT1 1 0 
GRANT2 0 1 
ILLEGAL 1 1 

It should be pointed out that since Processor 2 could be 
running on a different clock than Processor 1, it may be 
necessary to synchronize the requests using the system 
clock (say Processsor 1 ). This is conveniently done us­
ing buried master/slave flip-flops to prevent erroneous 
requests or noise from triggering the arbiter states. 

The. outputs from the arbiter (MEM_ WR, PlADEN, 
P2ADEN) control the cycle type (READ/WRITE) 
and the control signals that provide address and data 
isolation. For the data path, these are generated in the 
Programmable Logic Unit (PLU) and internally routed 
to the Bus Management Unit (BMU). This saves board 
space that is normally occupied by interconnecting 
traces. 

The Bus Management Unit (BMU) is easily configured 
using the iPLS II Device Configuration Module 
(DCM) in a high-level graphic fashion. The logic for 
the arbiter or the 7-bit counter can be entered using the 
Logic Builder. It should be noted that the 7-bit counter 
with parallel load is implemented using buried registers 
with an output BOC (end of count), indicating the com­
pletion of the desired count. The load operation is per­
formed using PORT A fed internally to the program­
mable EPROM atray. 
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A 
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Dual-Port.ADF 

OPTIONS: TURBO= OFF 
PART: SCBIC 
INPUTS: RESET PlMRD. PlMWR P211RD P211WR PlDT P2DT CLKl :r Control Inputs :r 
OUTPUTS: P lADEN P2ADEN MEM_WR OE_PA OE_PB OE_PC 

HBYTE_A HBYTE_B HBYTE_C :r Port I/O and 
Control outputs Z 

N£TWORK: 

SINPUTS:i . 
CLK ·= INP(CLKl) 
RESET · INP (RESET) 
PlMRD INP(PlMRD) 
PlMWR = INP(PlMWR) 
P2MRD = INP(P211RD) 
P.211WR = INP(P211WR) 
·p10f = INP(PlDT} 
P2DT =. INP(P2DT) 

:lOUTP\ITS:l 

:r SvstH clock I 
:r Resest inPtlt :r 
I'. Proc. l. 1te1tOry read. I'. 

· :r Proc. 1 ...aorv write :r 
I Proc. 2 ....cry read I 
:r Proc. 2 -rv write :r 
:r· Proc·. l data (tranS11a/receive' l :r 
:r Proc. 2 data (transmit/receive') :r 

PlADEN,PlADEN RQRF .. «P1GNT,CLK,GND,GND,YCC) :r Proc. l address/data enable :r 
. · P2ADEN,P2ADEN " ROAF (P2GNl ,CLK,GND,GND,YCC) :r Proc. 2 address/data enable :r 

MEM_NR = CONF (l~E!t_WR,YCC) :r Dual-Port -llOry write :r 
OE_PA;OEPA COCF' (OE_PA,YCC) :r Control for Port A OE control :r 
OE_J!B,OEPB = COCF (OE_PB,YCC) :r Control for Port B OE control :r 
OE_PC,OEPC = COCF (OE_PC,YCC) :r control for Port C OE control :r 

P2REQ = NORF (SYN_P2RO,CLK,GND,GND) :r Synchronized processor 2 raquest:r 

:r· PORTS 'IN BMU. :r 

HB_Y.TE_A,HBYTE_B,HBYTE_C 

EQUATIONS,. 

:r llRB'ITRATION :r 

BMU (ObllOOOO,OEPA,GND,.YCC, 
OE:PB ,GND, vce;OEPC,PlADEN, YCC) 

PlGNT /RESET * (PlREQ * ./PlADEN .* /P2ADEN + 
. /P2ADEN * PlADEN * /ENDCl ; I Proe. l granted access z 

P2GNT /RESET * (SYN_P2RQ * /PlREQ * /P2ADEN * /PlADEN + 
P2ADEN * /PlADEN • /ENDC2 ) ; :r Proc. 2 granted access :r 

:r CONTROL :r 

PlREQ = PlMRD + PlMWR ; 
SYN_P2RQ = P2MRD + P2MWR 
ENDCl = /PlREQ 
ENDC2 = /SYN_P2RQ ; 
MEM_WR = PlMWR * PlADEN + 

% Proc. l request I 
I Proc. 2 request :Z 

:r Proc. 1 end of cycle :r 
Z Proc. 2 end of cycle I 

P2MWR * P2ADEN; :r Memory write :r 
OE_PA 
OE_PB 
OE_PC 

ENDS 

PlADEN * /PlDT ; :r Control signal for Port A :r 
P2ADEN * /P2DT ; :r Control signal for Port B :r 
PlADEN * PlDT + P2ADEN * P2DT ; :r Control signal for Port c :r 

Figure 6. ADF Ustlng tor Arbiter and High Byte Data Transfer Logic 

3-24 

292032-5 

292032-6 



N. SIWUIA 
INTEL CORP. 
AUGUST 31, 1987 
2 
A 
5CBIC 

AP-305 

Dual-Port ( LOw byte ) .ADF AND AN ADDRESSABLE SEVEN-BIT DOWN COUNTER 

OPTIONS : TUUO-OFF 
PART: 5CBIC 
INPUTS: CLKl RISET OB_PA OB_PB OE_PC LOAD ENABLE P1ADEN 

' Control Inputs t 
OUTPUTS: :::;B-~l,;8"~~":; ~:;E-~4.T Q5.T Q&.T BOC 

t BMU and counter outputs 

NETWORK: 

UNPUTH 
CLK • J:NP (CLltl) t System clock t gH: : ~: 1g:-::: 
OB-PC • INP (OB-PC) 
LOi'D • INP (LOAD) 
CLBAR • INP (Rl8'T) 
P1ADEN • INP (P1ADEN) 
P2ADBll •· INP (P2ADBll) 
ENABLE • INP (ENABLE) 

\OUTPUT5' 
QO.T,QO • TOTI' ( QO.T,CLK,CL&AR,GND,VCC ) 
Ql.'1',Ql • TOTI' ( Ql.'1',CLK,CL&AR,GND,VCC ) 
Q2.T,Q2 • TO!!' ( Q2.T,CLK,CLSAR,GND,VCC ) 
Q3,'1',Q3 • 'l'Oft' ( Q3.T,CLK,CL&AR1 GlrlD,VCC ) 
Qt.'1',Qt • TOft' ( Q4.T,CLIC,CI.BAR,GNI>,VCC ) 
Q5.T,Q5 •TOTI' ( QS.T,CLlt,CLBAR,GHD,VCC ) 
Q6.T,Q6 • TOTI' ( Q6.T,CLlt,CL&AR,GND,VCC J 

\ COUNT&R STATES \ 

BOC • COllF IEOCT, VCC) \ OUTPUT FOR SYSTIM \ 

\ PORTS IN _, \ 

LBYTB_A, LBYTB_B, LBY'l'B_C • BMU (Ob110000,0B_PA,GND,VCC, 
O&_PB,GHD, VCC, OB_PC, Pl.ADEN, VCC) 

DATA(0:7] • BFMX (GND,GND) \ BYTB FOR INITIALIZING COUNTBR \ 
BQUATIOllS: 

QO.T • ILOAD * IDATA(O] * /QOI + l/DATA(OJ * QO) + \ LOAD OPl!IRATIOll \ 
(/LOAD * BllABLB) ' COUNT \ 

Ql.T • (LOAD * IDATA(l] * /Ql) + (/DATAfli • Ql) I + 
/LOAD * PABLI: * /QO I I 

Q2.T • (LOAD * (DATA(Z] * /QZ) + l/DATA(ZJ • Q21 ) + 
(/LOAD * UABLB * /Ql * /QO) I 

Q3.T • (LOAD * (DATA(3J * /Q3) + (/DATA(3J * Q3) I + 
(/LOAD * BllABLB * /Q2 * /Ql * /QOI I 

Qt.T • (LOAD * (DATA(t] * /Qt) + l/DATA(t) * Qt) ) + 
(/LOAD * BllABLB * /Q3 * /Q2 * /Ql * /QO I 

Q5.T • ILOAD * (DATA(5] * /Q5) + (/DATA(5] * Q51 I + 
(/LOAD * ENABLB * /Qt * /Q3 * /Q2 * /Ql * /QO ) I 

Q6.T • (LOAD * (DATA(6] * /Q6) + (/DATA(6] • Q6) ) + 
(/LOAD * IBllABLB * /Q5 * /Qt * /Q3 * /Q2 • /Ql * /QO ) 

EOCT • /Q6 * /Q5 * /Qt * /Q3 * /Q2 * /Ql * /QO ' 

292032-7 

292032-8 

Figure 7. ADF Listing for Low Byte Data Transfer Logic and Seven-Bit Addressable Counter 

3-25 



intef APPLICATION 
NOTE 

AP-308 

October 1987 

The Multiplexed Bus Interface 
with the 5CBIC 

NAGEEN SHARMA 
PROGRAMMABLE LOGIC APPLICATIONS 

INTEL CORPORATION 

3-26 
Order Number: 292035-002 



intJ AP-308 

INTRODUCTION 

When designing with microprocessors or other LSI 
chips that employ time-multiplexed buses, the de­
multiplexing logic typically consists of latches and 
transceivers. Further, decoding is accomplished using 
extra chips to generate chip selects. It is also common 
to need a wait-state generator to accommodate devices 
with different access times. Other specialized functions, 
like a barrel-shifter, are also frequently needed to shift 
data in data-processing applications and floating point 
arithmetic. 

The Intel 5CBIC EPLD has the logic density and ar­
chitectural flexibility to combine all these functions in a 
single device. This integration results in a three-fold 
savings in device count over an SSI/MSI approach for 
a typical multiplexed bus interface used in 16-bit micro­
processor systems. 

A block diagram of the system is shown in Figure 1 
with the lead configurations of the two 5CBIC's in Fig­
ures 2 and 3. The address map for the decoder and the 
state-table for the wait-state generator are shown in 
Figures 4 and 5, respectively. The truth table for the 
barrel-shifter is given in Figure 6 and 'the block diagram 
in Figure 7. The equations implementing the high-byte 
demultiplexing of the address/ data bus, address decod-

... 08 .. 15 

'-.----~/I PORT" 

ing and generating the appropriate number of wait­
states, are listed in the .adf (advanced design file) for­
mat in Figure 8. The equations for the corresponding 
low-byte demultiplexing logic and an eight bit barrel­
shifter are listed in Figure 9. 

DESCRIPTION 

Since the 5CBIC is a byte-oriented device, two devices 
are required when interfacing to a 16-bit microproces­
sor or microcontroller. The address/data bus from the 
processor is connected to Port A of the 5CBIC, with 
the demultiplexed data bus and address bus on the high 
drive Ports B and C, respectively. The logic between 
Port A and Port B consists of a transceiver; the logic 
between Ports A and C is configured as a transparent 
latch. 

The high-order address bits are internally fed from the 
Bus Management Unit (BMU) to the Programmable 
Logic Unit (PLU) for decoding. This example uses a 
microprocessor with a 20-bit address bus, and therefore 
the high-address lines Al7 ... Al9 can be latched in 
the PLU input macrocells. This scheme can be config­
ured using the Device Configuration Manager (DCM) 
in a high-level graphic fashion, available in the iPLDS-
11 (Intel Programmable Logic Development System). 

08 .. 15 

MWTC 5CBIC 

PROCESSOR 
WITH 

MULTIPLEXED 

READY 

"DDRE~~/om l/L-~L,.L.~ PORT" 

{CLK) 

("LE) 

{OT /R•) 

DEMULTIPLXER 
{TRANSCEIVER, Ll.TCH) 

B"RREL SHIFTER 

5CBIC 

l/L='---1'> SYSTEM DATA BUS 
l'-r--~/ {LOW BYTE) 

DOUT0 .. 7 

292035-1 

Figure 1. Block Diagram of a Minimal System Using Multiplexed Address/Data Bus 
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Decoding is accomplished using the latched addresses 
and the appropriate control signals. Along with the 
chip-selects, buried logic implements a wait-state gener­
ator to introduce up to six extra states in the processor 
cycle. (Buried logic means that the macrocells in the 
PLU can be used independently of their input pins). 
Figure 5 shows the table for a down counter with load 
capability and the corresponding number of wait-states 
for the devices in the system. 

PA [O .. 7) = Port A (Address/Data) 
PB [O .. 71 = Port B (Data) 
PC [O .. 7) = Port C (Address) 

IODEV1 

A17 

Vee 
A18 

EPROMSEL 

RAMSEL 

A19 

ALE 

The lower address/data bus lines are demultiplexed us­
ing the second 5CBIC, the equations for this device are 
listed in Figure 9. The PLU here is used to implement 
an eight-bit barrel-shifter, that shifts the data (loaded 
through the BMU, Port B) a fixed number of bits based 
on status lines SO .. S2. The outputs are made avail­
.able on the 1/0 port in the PLU. 

P87 

P'47 

PA6 

P'45 

P'44 

Vee 
P.U 

PA2 

P'41 

P'40 

P86 

292035-2 

Figure 2. SCBIC Lead Configuration (High Byte Demultlplexlng, Decoder and Walt-State Generator) 

PA [O .. 7) = Port A (Address/Data) 
PB [O .. 7) = Port B (Data) 
PC [O .. 7) = Port C (Address) 

DOUT5 

DOUT4 

so 
Vee 

OE_C 

DOUT3 

DOUT2 

DT/R• 

'4LE 

~ i:: ~ "' ::> ::> 
ffi u 8 g 0.. 

iii ~~f~f~ 0.. 

P87 

38 PA7 

37 P'46 

36 PA5 

35 PA4 

34 Vee 
33 PA3 

32 PA2 

31 P'41 

30 P'40 

29 P86 

292035-3 

Figure 3. SCBIC Lead Configuration (Low Byte Demultlplexlng and Barrel-Shifter) 
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G 00000 H 

9FFFF H 

EJ CAOOO H 

FDFFF H 

EJ 1000 H 

1FFFH 

EJ 2000H 

2FFFH 

Figure 4. Address Map 

AP-308 

This implementation illustrates not only a path of high­
er integration in this very common design, but also the 
benefits that can be realized if the system is viewed as a 
collection of smaller functions. These can then be 
paired together to best exploit the full capability of the 
5CBIC. 

The amount of shift in data output is determined by the 
select lines SO, SI and S2. This can be used for format­
ting data needed in other sections in a system. 

State Variables #Walt States Device 

02 01 00 

1 1 1 7 
1 1 0 6 IODEV2 
1 0 1 5 
1 0 0 4 
0 1 1 3 
0 1 0 2 IODEV1 
0 0 1 1 EPROM 
0 0 0 0 ENABLE READY 

The READY signal is used to increase cycle time; for 
devices that cannot transfer data at maximum proces­
sor bus bandwidth. 

Figure Sa. State Table for 
the Walt-State Generator 

SYSTEM I' 
CLOCK 

MEMORY, 
1/0 CYCLE 

READY 

T1 

ONE COMPLETE PROCESSOR CYCLE 
(WITH ONE WAIT- STATE} 

T2 T3 TWAIT T4 

READY 

WAIT 

Figure Sb. Waveforms Showing Walt State Insertion In Processor Cycle 

3-29 

·1 

292035-4 



S2 S1 so DOUT_7 

0 0 0 DIN_7 
0 0 1 DIN_6 
0 1 0 DIN_5 
0 1 1 DIN_4 
1 0 0 DIN_3 
1 0 1 DIN--2 
1 1 0 DIN_1 
1 1 1 DIN_O 

S2 O 

S1 O 

so 0 

AP-308 

DOUT_6 DOUT_5 DOUT_4 DOUT_3 DOUT-2 DOUT_1 

DIN_6 DIN_5 DIN_4 DIN_3 DIN--2 DIN_1 
DIN_5 DIN_4 DIN_3 DIN--2 DIN_1 DIN_O 
DIN_4 DIN_3 OIN--2 DIN_1 DIN_O DIN_7 
DIN_3 DIN--2 DIN_1 DIN_O DIN_7 DIN_6 
DIN--2 DIN_1 DIN_O DIN_7 OIN_6 DIN_5 
DIN_1 DIN_O DIN_7 DIN_6 DIN_5 OIN;._4 
DIN_O DIN_7 DIN_6 DIN_5 DIN_4 DIN_3 
DIN_7 DIN_6 DIN_5 DIN_4 DIN_3 DIN--2 

Figure 6. Truth-Table for the Barrel-Shifter 

DATA IN FROM BMU PORTA 
7 6 5 4 3 2 1 0 

SHIFT 0 

7 6 5 4 3 2 1 0 

S2 O 

SI 

so 

DATA IN FROM BMU PORT A 
7 6 5 4 3 2 1 0 

SHIFT 3 

4 3 2 1 0 7 6 5 

DOUT_O 

DIN_O 
DIN_7 
DIN_6 
DIN_5 
DIN_4 
DIN_3 
DIN--2 
DIN_1 

292035-5 

Figure 7. Block Diagram of Barrel Shifter 
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MUL.ADF -- DEMULTIPLEXER, DECODER, WAIT-STATE GENERATOR 

OPTIONS: TURBO•OFF 
PART: SCBIC 
INPUTS: CLK ALE Al9 Al8 Al7 IORC IOWC MRDC MWTC DT/R• 
OUTPUTS: PA_ADDT PB_DT PC_AD RAMSEL EPROMSEL IODEVl IODEV2 OE_C READY 

NETWORK: 
CLK • INP (CLK) 
Al9 • LINP (Al9) 
Al8 • LINP (Al8) 
Al7 • LINP (Al7) 
ALE = INP (ALE) 
IORC • INP (IORC) 
IOWC • INP (IOWC) 
MRDC • INP (MRDC) 
MWTC • INP (MWTC) 
DTR • INP (DT/R•) 

PA ADDT,PB DT,PC AD • BMU (0blll0ll,OE A,VCC,ALE,OE B,GND,VCC,OE C,GND,VCC) 
LA[0:7) • BFMX (VCC,GND) % LATCHED ADDRESSES 8~.15 FED BACK-INTO % 

% THE PLU FOR I/O DECODING % 
OE_C,OE_C • COCF(OEC,VCC) % OUTPUT CONTROL FOR PORT C 

RAMSEL • CONF (RAMSL,VCC) 
EPROMSEL,EPROMSEL • COCF (&PROMSL,VCC) 
IODEVl,IODEVl • COCF (IODVl,VCC) 
IODEV2,IODEV2 • COCF (IODV2,VCC) 

READY • CONF (RDY,RDYOE) 

% RAM SELECT % 
% EPROM SELECT % 

% I/O DEVICE l SELECT 
% I/O DEVICE 2 SELECT 

READY FOR CYCLE COMPLETION 

QO • NORF (QOD,CLK,GND,GND) 
Ql = NORF (QlD,CLK,GND,GND) 
Q2 = NORF (Q2D,CLK,GND,GND) 

STATES Q0 .. Q2 FOR WAIT-STATE 
GENERATION ( USING BURIED 

REGISTERS ) 

EQUATIONS: 

% DECODE EQUATIONS 

RAMSL • /Al8 * /Al7 * MREQ ; % OOOOOH - 9FFFFH % 
EPROMSL • Al9 * Al8 * LA[7) * MREQ ; % CAOOOH - FDFFFH % 
IODVl • /LA[7) * /LA[6) * /LA[S) * LA[4) * IOREQ ; % lOOOH - lFFFH 
IODV2 • /LA[7] * /LA[6) * LA[SJ * /LA[4] * IOREQ ; % 2000H - 2FFFH 

MREQ • (MRDC + MWTC) ; % INTERMEDIATE EQUATIONS FOR MEMORY 
IOREQ • (IORC + IOWC); % AND I/0 REQUESTS % 
OE A • DTR 
OE-B • /DTR ; 
OEC • MRDC + MWTC + IORC + IOWC ; 

THE FOLLOWING IS A WAIT-STATE GENERATOR FOR MEMORY AND I/0 REQUESTS % 

QOD • /QO * /ALE 
+ EPROMSEL * ALE 

QlD • Ql * /QO * /ALE 
+ /Ql * /QO * /ALE 
+ IODEVl * ALE 
+ IODEV2 * ALE ; 

Q2D • Q2 * /Ql * /QO * /ALE 
+ /Q2 * /Ql * /QO * /ALE 
+ IODEV2 * ALE 

ROY • GND ; 
RDYOE • /QO * /Ql * /Q2 

END$ 

292035-6 

292035-7 

Figure 8. ADF Listing for Demultiplexing Higher Address/Data Byte, Decoder, Walt-State Generator 
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INPUTS: CLK ALE DT/R* OE_C SO Sl S2 ENABLE 
OUTPUTS: PA ADDTL PB DTL PC AOL DOUTO DOUTl DOUT2 DOUT3 DOUT4 DOUTS 

DOUT 6 DOUT7 
\ PA ADDTL • ADDRESS/DATA BUS ON PORT A (LOW BYTE) 
\ PB-DTL • SYSTEM DATA BUS ON PORT B (LOW BYTE ) 
\ PC-AOL • SYSTEM ADDRESS BUS ON PORT C (LOW BYTE) 
\ DOUTO •• 7 • SHIFTED DATA OUTPUT ON I/O PORT 

NETWORK: 
CLK • INP (CLK) 
ALE • INP (ALE) 
DTR • INP (DT/R*) 
OE C • INP (OE C) 
SO-· INP (SO) -
Sl • INP (Sl) 
S2 • INP (S2) 
ENABLE • INP (ENABLE) 

PA_ADDTL, PB_DTL, PC_ADL • BMU (0bl11011, OE_A, VCC, ALE,OE_B, GND, VCC, OE_C,GND, VCC) 

D_IN[O: 7] • BFMUX (VCC,GND) \ DATA LOADED INTO 
\ THE PLU FOR SHIFTING 
\ FROM PORT A 

DOUTO 
DOUTl 
DOUT2 
DOUT3 
DOUT4 
DOUTS 
DOUT6 
DOUT7 

• RONF (DOO,CLK,GND,GND,ENABLE) \ DATA OUTPUT 
• RONF (001,CLK,GND,GND,ENABLE) 
• RONF (D02,CLK,GND,GND,ENABLE) 
• RONF (D03,CLK,GND,GND,ENABLE) 
• RONF (D04,CLK,GND,GND,ENABLE) 
• RONF (DOS, CLK, GND, GND, ENABLE) 
• RONF (D06, CLK, GND, GND, ENABLE) 
• RONF (D07, CLK, GND, GND, ENABLE) 

EQUATIONS: 

\ CONTROL INPUTS TO THE BMU l 

OEA•DTR; 
OE-B • /DTR ; 
\ OE_C IS AN INPUT FROM THE HIGHER BYTE DEMULTIPLEXING SCBIC 

\ THE FOLLOWING IMPLEMENTS A BARREL SHIFTER \ 
SHIFTO • /S2 * /Sl * /SO ; \ INTERMl:DIAT&: SHIFT EQUATIONS \ 
SHIFTl • /S2 * /Sl * SO ; 
SHIFT2 • /S2 * Sl * /SO ; 
SHIFT3 • /S2 * Sl * SO ; 
SHIFT4 • S2 * /Sl * ISO ; 
SHIFTS • S2 * /Sl * SO ; 
SHIFT6 • S2 * Sl * /SO ; 
SHIFT7 • S2 * Sl * SO ; 

DOO • SHIFTO * D IN[O] 
+ SHIFTl * ii IN[7] 
+ SHIFT2 * D-IN[6] 
+ SHIFT3 * D-IN[SJ 
+ SHIFT4 * D-IN[4] 
+ SHIFTS * D-IN[3] 
+ SHIFT6 * D-IN[2] 
+ SHIFT7 * D=IN[l] 

001 • SHIFTO * D IN[l] 
+ SHIFTl * ii IN[OJ 
+ SHIFT2 * D-IN[7] 
+ SHIFT3 * D-IN[6] 
+ SHIFT4 * D-IN[SJ 
+ SHIFTS * D-IN[4] 
+ SHIFT6 * D-IN[3] 
+ SHIFT7 * D=IN[2] 

002 • SHIFTO * D IN [2 J 
+ SHIFTl * ii IN[l] 
+ SHIFT2 * D-IN[OJ 
+ SHIFT3 * D-IN[7] 
+ SHIFT4 * D-IN[6] 
+ SHIFTS * D-IN[SJ 
+ SHIFT6 * D-IN[4] 
+ SHIFT7 * D=IN[3] 

292035-8 

292035-9 

Figure 9. ADF Listing for Oemultlplexlng Lower Address/Data Byte and Barrel-Shifter 
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003 • SHIFTO * D_IN[3) 
+ SHIFTl * D IN[2) 
+ SHIFT2 * D-IN[l) 
+ SHIFT3 * o:IN[O) 
+ SHIFT4 * D IN[7) 
+ SHIFTS * D-IN[6) 
+ SHIFT6 * o:IN[SJ 
+ SHIFT7 * D_IN[4) 

004 • SHIFTO * D_IN[4) 
+ SHIFTl * D IN[3) 
+ SHIFT2 * D-IN[2) 
+ SHIFT3 * o:IN[l) 
+ SHIFT4 * D_IN[O) 
+ SHIFTS * D IN[7) 
+ SHIFT6 * o:IN[6) 
+ SHIFT7 * D_IN[S) 

DOS • SHIFTO * D IN[S) 
+ SHIFTl * D IN[4) 
+ SHIFT2 * D-IN[3) 
+ SHIFT3 * o:IN(2) 
+ SHIFT4 * D_IN[l) 
+ SHIFTS * D IN[O) 
+ SHIFT6 * o:IN[7) 
+ SHIFT7 * D_IN(6) 

006 • SHIFTO * D_IN[6) 
+ SHIFTl * D_IN[SJ 
+ SHIFT2 * D IN[4) 
+ SHIFT3 * o:IN[3) 
+ SHIFT4 * D_IN(2) 
+ SHIFTS * D IN[l) 
+ SHIFT6 * o:IN[O) 
+ SHIFT7 * D_IN[7) 

007 • SHIFTO * D IN[7) 
+ SHIFTl * D IN[6) 
+ SHIFT2 * D-IN(S) 
+ SHIFT3 * D-IN(4) 
+ SHIFT4 * D-1N[3] . 
+ SHIFTS * D-IN[2] 
+ SHIFT6 * D-IN(l) 
+ SHIFT7 * o:IN[O) 

END$ 
292035-10 

Figure 9. ADF Listing for Demultlplexlng Lower Address/Data Byte and Barrel-Shifter (Continued) 
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INTRODUCTION 

In most DRAM applications, the row and the column 
addresses for data transfers must be multiplexed on a 
common bus. Refresh circuitry, however, provides the 
refresh address at fixed intervals. This note describes an 
implementation of both the multiplexing circuitry and 
the refresh address logic in a one-chip replacement of 
the two multiplexers and one counter needed in a con-
ventional SSI/MSI design. · 

The block diagram of the DRAM address interface is 
shown in Figure 1. The lead configuration of the 
SCBIC is shown in Figure 2. The equations for the 
design are provided in Figure 3 in the advanced design 
file (ADF). 

ROW L 
ADDRESS .1' 

DESCRIPTION 

The block diagram shown in Figure 1 is the address 
interface needed in dynamic RAM circuits. The port­
oriented SCBIC provides a high integration alternative 
to discrete SSI/MSI devices such as multiplexers and 
counters. The row address bus is connected to Port A 
while the column address is connected to Port B of the 
Bus Management Unit (BMU). The multiplexed ad­
dress bus is Port C, a high drive port, that is connected 
to the DRAM address inputs. The controlling signal 
for the multiplexing is provided by a memory controller 
(easily configurable in another EPLD). 

MULTIPLEXED 
ADDRESS.I\ DRAM 

AO ••• A7 
COLUMN I' 

MULTIPLEXERS ,,(. ~ -y 
ADDRESS J\ 

µ.P 

SELECT-y 

MULOE:: 

"""' 
AD ••. A7 

CLK REFRESH 
ADDRESS 

CNTR_OE..a. 
COUNTER 

292036-1 

a. Discrete SSl/MSI Approach (Minimum of Three Devices) 

ROW MULTIPLEXED 
ADDRESS J\ 

SCBIC ADDRESS --" DRAM 
PORT A PORT C AO ••• A7 

COLUMN I' 
MULTIPLEXER bll 

I' 

ADDRESS J\ 
µ.P ] PORT B 

SELECT-y AO ••• A7 

MUX_OE:: 

CLK REFRESH 

CNTR OE ADDRESS 
-,. COUNTER 

292036-2 

b. High Integration SCBIC Implementation (Single Device) 

Figure 1. Block Diagram of DRAM Address Interface 
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GND PB7 
GND PA7 
A5.T PAS 
A4.T PA5 
GND 35 PA4 
VCC 34 VCC 

CNTR_O£ 33 PA3 
A3.T 32 PA2 
A2.T 31 PAI 

SELECT 30 PAO 
wux_oE 29 PB6 

18 19 20 21 22 23 24 25 26 27 28 

PA[0 .. 7) = Port A (Row Address) 
PB[0 .. 7] = Port B (Column Address) 
PC[0 .. 7) = Port C (Multiplexed Address) 

292036-3 

Figure 2, Lead Configuration of the 5CBIC 

The BMU is configured by using the iPLDS II (Pro­
grammable Logic Development System). The Device 
Configuration Manager (DCM) in that· software facili­
tates design entry using high-level graphics to configure 
the BMU. 

The refresh address counter provides the row refresh 
address to the dynamic RAM. An octal up-counter is 
adequate for most DRAM's (as a number of them re­
quire fewer than eight address lines for refresh). Since 
the outputs of the Programmable Logic Unit can be 
controlled by a tri-state buffer, the 1/0 port en-

3-36 

ables the buffer only while directly providing the re­
fresh address. The equations of this counter are given in 
Figure 3. 

The counter holds the state of the last row address re­
freshed and increments it after receiving the appropri­
ate control signal from the memory controller. The out­
put-enable signals of the multiplexer and the counter 
are the only other control signals required for this cir­
cuit. 



11. lllAlllA 
IllTIL CORP, .,..,..,.r Z, l• 
l 

' llCIIC 
DIUll •lUpl...- lllld 119tr.b AddrM9 Gmerator 

OPTIOlll: TUllO-orr 
P.AllT: llCIIC 

AP-309 

Ill'UTI: CJ.It llJl_OI IUIC'I Cll'lll_IJI • Caatrol IDP1&t• • 
OU'l'PUTll: PA_IDll Pl_(lOL PCJlll.111 

.IO.T Al.r d.T A3.T M.T AIS.T .Al.T '7.T 
• Ml ud -ter output• • 
• PA_IDll • IDll AlllllUB IllPUT Al POllT A • 
• Pl_OOL • OOLllll ADDllll Illl'Ur Ar POllT I • 
• PC_DIMI • llJLTIPJ.IDD ADDml OUTPUT 1'1111 • 
• l'Oft c. 'IO DllMI. • 
• AO. r .. A7. r • BrDlll ADDllll COUll'rll OU'll'UTI • 

R'lllOll: 

•IllPDl'n 
Cl.I = I•(CLI) • CLOCI IJllUft 
llll_OI • IllP(llJl_OI) • llJLTIPLIDB OUTPUT lllWILI • 
Cll'llLOI = IllP(CllTll_OI) • OOUllTlll OU'l'PUT lllWILI • 
SILICT • IllP (SIJ.ICT) • lllLTIPLIDI OUTPUT SILICT • 

.auTPUTS• 
AO, T, AO • '1'0Tr ( VCC,CJ.11,GllD,GllD,Cll'l'll_OI ) 
Al.T,Al • '1'0Tr ( Al.T,CLl,GllD,GllD,CllTl_OI ) 
.A2.T,d • TOTI' ( .A2.T,cut,GllD,GllD,CllTl_OI ) 
A3.T,A3 • TOTr ( A3.T,Cl.l,GllD,GllD,CNTB_OI ) 
M.T,M • '1'0Tr ( M.T,CJ.11,GllD,GllD,CllTl_OI ) 
A5.T,A5 = '1'0Tr ( A5.T,CLl,ClllD,Ollll,CllTl_OI ) 
MJ, T,Mll = TOTI' ( .All. t,CJ.11,GllD,Gllll,Cll'l'll_OI ) 
A7.T • TOD ( A7.T,Cl.l,GllD,Gllll,CllTl_OI ) 

• POll'l'8 IN Ml • 

• OOUll'l'll STATBI • 

PA.,IDll, Pl_OOL, PC_DIUll • Ml (ObOOOlll ,Gllll ,Ollll, VCC, 
GllD,ClllD, VCC,Ol_PC,UL_l'C,Ollll) 

292036-4 

Figure 3. ADF Uatlng of the Addreaa Multiplexer and the Refresh Addreaa Counter 
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IQUATIOHS: 
lllUlC OB = /MllX OB ; 
Ol_Pii • IMIX_oi ; 
BBL_PC = BBLBCT ; 

Al.T • AO ; 

A2.T • Al * AO 

A3. T = A2 * Al * AO ; 

A4.T = A3 * A2 * Al *AO 

A15, T = A4 * A3 * A2 * Al * AO 

A6. T = A5 * A4 * A3 * A2 * Al * AO 

A7. T = A6 * Al5 * A4 * A3 * A2 * Al * AO 

IND$ 

AP-309 

292036-5 
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ELECTRONC DESIGN EXCLUSIVE 

Programmable logic shrinks 
bus-interface designs 
Nageen Sharma 
Intel Corp., 1900 Pr<*ie City Rd., Folsom, CA 95630; (916) 351·2758. 

Most microprocessor- or microcontroller-based cir­
cuits need external logic to bridge address and data 
buses to the rest of the system, including memory 
and serial or parallel inputs and outputs. Designers 
usually rely on various TTL devices to perform this 
task. Such assortments of components significantly 
raise board space and power dissipation. As a result 
they often require cooling, reduce reliability, and 
add cost. 

Most interfaces, for example, contain bus drivers 
and transceivers; encod­
ers, decoders and multi­

A CMOS LSI circuit 
offers high-drive ports 
for data transfer and 
programmable con­
trols for bus Inter­
laces. It also cuts 
power dissipation. 

plexers; and assorted 
latches, flip-flops, and 
counters. Depending on 
the complexity of the 
system, these devices 
make up 70% to 90% of 
the total chip count and 
fill almost that percent­
age of the board -space. 
The advent of dedicated 

LSI interface chips has eased the congestion some­
what, but many designs still call for a number of 
SSI and MSI devices. 

The 5CBIC bus interface controller brings a 
fresh approach to the issue by integrating high­
drive bus ports and control logic in one package. 
The chip contains a 600-gate equivalent program­
mable logic array and tridirectional (three-way) 
bus transfer logic, housed in a 44-pin plastic leaded 
chip carrier. The packaging and, behind the scene, 
a proprietary CMOS 11-E EPROM process cut 
board space by three or four times compared with 
discrete circuits. 

The CMOS process also enhances the basic attri­
butes called for in bus interface logic: speed and 
high drive current. The maximum data delay be­
tween ports is 25 to 35 ns; and the array can operate 
in TTL or CMOS systems at clock speeds to 12.5 
MHz. The high-drive ports can sink 16 mA from a 
300-pF load. The EPROM technology also permits 

I 00% device testing. 
Another benefit of the chips that TTL devices do 

not offer is an optional "zero-standby~ power mode. 
If the chip's inputs are static for more than 50 to 
100 ns, the device powers down from its normal 
operating current of about 108 mA at I MHz to its 
quiescent current of several microamps. 

The controller's two major functional blocks are 
the bus management unit and the programmable 
logic unit. The two circuits communicate by way of 
internal signal paths that replace the external logic 
and traces of conventional interfaces. 

The device has five 8-bit ports (Fig. 1). Three 
ports on the bus-management unit make possible 
three-way asynchronous data flow, and thus are 
equivalent to three bidirectional chips. The two 
other ports are a dedicated input and an I/O poet 
for the programmable logic unit. 

DATA ROUTED THROUGH THREE PORTS 

The bus-management unit's main task is to route 
real-time or transparent-latched data, which can be 
inverted. The unit does this through the three ports, 
which can be programmed as inputs or outputs. A 
direction-control unit dynamically selects the de­
sired port and routes the data accordingly. 

In addition, the bus unit can send latched data 
from any input port to _the programmable logic unit, 
whose architecture is similar to that of EPROM­
based EPLDs. The primary difference is the addi­
tion of up to eight buried registers, asynchronous 
controls, and an extra set of inputs from the three 
bus-management-unit ports. In all, inputs to the 
programmable logic unit include a dedicated port to 
the input logic macrocells, a bus unit feedback path, 
an I/O port, and feedback from I/O logic macro­
cells. 

A conventional sum-of-products array and a 
logic macrocell stivcture perform the logic unit's 
control functions. The user programs the input and 
1/0 logic macrocells to supply either latched or 
real-time data. Polarity is also determined by the 

"Reprinted with permission from Electronic Design (Vol. 35, No. 3) February 5, 1987. Copyright 1987 Hayden Publishing Co., Inc., 
a subsidiary of VNU." 3-39 
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user, permitting the device to handle either active-high or 
active-low outputs. 

Besides its flexible input structure, the logic array in ev­
ery 1/0 macrocell offers 13 product terms, each equal to a 
64-input AND gate. Sequential and combinatorial logic 
are possible, since the macrocells contain registers (Fig. 
2). Data can also feed back to the array. The user config­
ures the macrocell for a specific task by choosing among 
positive-edge-triggered D, T, SR, and JK flip-flops. 

For maximum control, an asynchronous clock can be 
derived from one to eight product terms. Each flip-flop 
also has an asynchronous set and reset. A programmable 
Output Enable signal selectively enables outputs to emu­
late open-collector operation. 

Three buses carry the chip's internal communication 
and control signals. The input bus serves the input macro­
cells, as well as the I/Omacrocells configured as inputs. 
The feedback bus provides bus unit and 1/0-macrocell 
feedback. Finally, the control bus steers the data through 
the various ports connecting the bus management and 
programmable logic units. It also supplies complex con­
trol signals for the bus functions, like Direction Control, 
Latching,, and Output Enable, as well as Clock, Set, Re­
set, Latching and Output Enable source signals for the 
logic unit. 

Although the bus-interface controller has several ad­
van'tages over conventional TTL interfaces, designers 
might question the time needed to develop and program 
complex LSI devices. That time, however, is cut to 
minutes through use of the Programmable Logic Devel­
opment System software, known in its second revision as 
iPLDS-11. The system includes several modules that min­
imize design and development time. The modules offer 
high-level primitives that define the design and serve as 
logic building blocks. . 

To best apply the bus controller in a system, a designer 
exploits its high level of integration. A system with a dual­
port memory shared by two processors offers a good ex­
ample. Such designs are helpful when resources, such as 
large amounts of data in a memory, must be shared. 

Data flowing between the memory and the two micro­
processors needs buffering and arbitration to prevent con­
tention. The usual solution is for data transceivers to iso­
late the data from the shared memory and for a controller 
to arbitrate the demands of the processors. 

However, the bus-interface controller performs these 
functions with the minimum chip count. The program­
mable logic unit arbitrates data requests according to a 
predefined protocol that establishes priorities, and the bus 
management unit's three ports isolate the data. Moreover, 

1. With the 5CBIC bus Interface controller, a bus management unit communicates with a programmable loglc 
unit through a segmented bus structure. The feedback and control buses llnk the two units and the Input bus 
leeds the array from the Input and 1/0 macrocells. 
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the control section supplies feedback paths, eliminating 
chips that would be needed in a conventional design. 

In the example, two cascaded controllers handle 16-
bit-wide data. Since the system needs only one logic array, 
the second is available for whatever the designer may 
need, including an up/down octal counter; memory, I/O, 
or interrupt controller; or an addressable 8-bit register. 

Ports A and B of the bus-management unit connect to 
the two processors, and Port C connects to the system 
memory (Fig. 3). If the processors run on different clocks, 
the controller must synchronize the access requests of one 
unit with those of the second. The programmable logic 
unit performs all sampling, synchronization, and arbi­
tration, and the registers within it supply the control sig­
nals needed by the bus unit. The I/O pins serve as inputs 
without sacrificing the sum-of-products logic that is im­
portant to effective gate use. 

The system's arbitration scheme is straightforward. 
Only one processor at a time may have access to the sys­
tem bus, with processor I having the higher priority in the 
event of a simultaneous request. If the second processor 
requests an access while the first has control of the bus, 

wait states extend the second unit's bus cycle. When the 
first data transfer is completed, the programmable logic 
unit grants access to the second processor and enables the 
address latches and data transceivers. 

In a second example, the device functions as a demul­
tiplexer for microprocessors, microcontrollers, and pe­
ripheral controllers with combined address and data 
buses. The time-multiplexed buses use package pins more 
efficiently, but the address and data signals must be sepa­
rated before interfacing with memories or I/O devices. 

Once again, two bus controllers accommodate 16-bit 
data, this time from an 8096 microcontroller (Fig. 4 ). In a 
system containing only a RAM, an EPROM, and I/Ode­
vices, the two A ports of the bus management units con­
nect to the 8096's Ports 3 and 4. Ports Band C connect di­
rectly to the system data and address buses. In this 
application, Ports A and B are bidirectional, and Port C is 
an output only. As a result, Port A is the only input to 
Ports B and C, and Port B is the only input to Port A ( dur­
ing a memory-read cycle). 

The user programs the chip to latch the addresses with 

2. The Input and 110 logic macrocells Include architecture bits MARBo through MARB6 and a choice of control 
signals that permit numerous configurations, such as latching, Inversion, asynchronous clocking, set, reset, and 
output enable. 
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3. Two controller chips handle 16-blt-wlde data in a 
system with a dual-port memory. The chips Isolate 
data as well as supply signals for arbitration, syn­
chronization, and extemal control. 

4. The bus controller serves as a demultiplexer and 
separates data and address signals for a micro­
controller with a combined data and address bus. In 
this application, the device replaces two trans­
ceivers, two latches, two decoders, and several 
logic circuits. 

the microcontroller's Address Latch Enable signal and 
route them to Port C. The data shows up at Port B later in 
the write cycle. The Latched Address 0 and Latched Bus 
High Enable signals select the upper- and lower-byte 
memory chips. Finally, the bus-management unit feeds 
the upper latched addresses directly to the programmable 
logic unit, which generates the system chip selects. 

In this application, the bus controller replaces two 
transceivers, two latches, two decoders, and several logic 
circuits. In doing so, it offers the designer a second 
600-gate array for additional logic. D 

Nageen Sharma is a technical marketing engineer in 
Intel's programmable logic group. He has a BSEE 
from the University of Delhi, India and an MSEE from 
the University of Maryland. 
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THE INTEL PROGRAMMABLE LOGIC 
DEVELOPMENT SYSTEM VERSION II 

Hardware and Software Necessary to • Supports a Variety of Input Methods: 
Turn Design Concepts into Functional Schematic Entry 
Erasable Programmable Logic Devices - TTL Library 
(EPLDs) - EPLD Primitives Library 
Menu-driven Software with On-line Help Text Editor Entry 
Messages for All Stages of the Design - State Machine 
Process - Boolean Equations 
iUP-PC Hardware Programs Intel • Macro Expander Accepts TTL, and 
EPLD's, EPROM's, E2PROM's, User-Defined Macros and Expands 
Peripherals, and Microcontrollers with Them into Equivalent EPLD Primitives 
one PC-based System • Espresso*• Minimizer Reduces Logic 
All Equipment Interfaces with the IBM Equations to Least Number of Product 
PC/XT*, PC/ AT*, and True Compatibles Terms 
JEDEC Standard Design File, Part • Supports All Intel EPLD's Including the 
Utilization Report, Minimized Equation 5CBIC and 5AC312 
File, and Compiler Error File All 
Available as Outputs 

Release 1.5 of Intel's Programmable Logic Development System II (iPLDS II) is a powerful set of tools for 
transforming a logic design into customized silicon. The system provides design entry, logic compilation, and 
device programming capability on a desktop using an IBM PC/XT, PC/ AT, or compatible. 

290134-1 
iPLDS II Components Picture 

'IBM PC/XT, PC/AT are registered trademarks of :nternational Business Machines Corporation. 

•'ESPRESSO is a copyrighted by the University of California at Berkeley and is used with permission. 
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INTRODUCTION TO PROGRAMMABLE 
LOGIC DESIGN . 

When performing a programmable logic design on a 
CAD system, the design must first be entered using 
one of a variety of entry methods. These methods 
typically include schematic capture or Boolean 
equation entry using a standard' text editor. Less typ­
ical entry methods include netlist entry, whereby a 
hand drawn schematic can be entered in a node-by• 
node fashion, or state machine entry in a text or 
graphical mode. 

Once the design has been entered into the CAD 
package, several processing steps may occur. The 
design is usually translated into a format usable by 
the software, logic reduction may be performed, 
and, finally, some form of programming file can be 
produced. Most CAD packages also produce docu­
mentation of the minimization and device fitting re­
sults, including the final pin assignments. 

Once the programming file has been generated, the 
design can be transferred into silicon in a program­
ming manner similar to that used for EPROMs. 
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FUNCTIONAL DESCRIPTION OF 
IPLDS II 

All of the design entry methods with the exception of 
graphic state machine entry are supported by the 
iPLDS II software. iPLDSJI supports netlistand Boo­
lean equation entry using any standard text editor. 
State machine software and schematic capture li­
braries are also available from Intel as optional entry 
methods. Depending on the entry format used, the 
design may require translation into Advanced De­
sign File (ADF) forniat. Once the design is in ADF 
form, the Logic Optimizing Compiler expands any 
TTL macros, minimizes all equations, and fits the 
design into a device-specific JEDEC Design File. 
The JEDEC Design File is programmed into the 
EPLD by the Logic Programrn~r Software using the 
iUP-PC hardware. Thus, the circuit design is trans­
formed into an operating EPLD on one workstation. 

The Intel Programmable Logic.Software II (iPLS II) is 
composed of four functional mOdules: design entry, 
netllst conversion, file compilation· and device pro­
gramming. 

Design Entry 

Design entry is typically accomplished by creating an 
ADF using an ASCII text editor, or by using a sche­
matic capture package. 
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Netllst Conversion 

If schematic capture of state machine entry is used, 
the design must be converted into an ADF format. 
The optional SCHEMA II-PLO schematic capture 
package is a low-cost way to enter schematic de­
signs. SCHEMA II-PLO supports EPLD primitives 
and user-defined macro symbols. It also outputs di­
rectly in ADF format. SCHEMA II-PLO contains the 
EPLD Manager, which provides a single user inter­
face to both SCHEMA II-PLO and iPLS II software. 
The P-CADtt and Futurenett systems may be used 
to capture EPLD symbols provided the EPLD librar­
ies and ADF convertors are used. State machine en­
try may be performed via the iST ATE software and a 
standard text editor. 

tFuturenet is a registered trademark of FutureNet Corpora­
tion. 

ttP-CAD is a registered trademark of P-CAD Corporation. 

File Compilation 

File compilation is performed by the LOGIC OPTI­
MIZING COMPILER. The LOC accepts an ADF and 
converts it into an industry standard JEDEC file 
which is used to program the device. As a part of 
this process, the LOC expands TTL macros into 
equivalent EPLD logic, minimizes the logic equations 
using the Espresso algorithm, and maps the network 
and logic equations into a cell map for the selected 
device. The final output of the LOC is a JEDEC De­
sign File. The JEDEC Design File describes the input 
design for the designated EPLD in JEDEC standard 
format. 

For designs using the 5AC312, iPLS II R1.5 utilizes 
proprietary algorithms to efficiently use the device 
resources. The improved Fitter in R1.5 optimizes fit­
ting for all devices. 

lnt:P.1 F·r·ncwdmm"-~bl..-::> Loq1c Software II 

LUC Mi;mu 
F 1 
F~~ 

F:5 
F4 
F5 
F6 
F7 
F8 
F9 

ADF M1rnmJ .. '.dt.Jon l~F-~lnalysis. 
XCUNTROL 

***INFU-·LOL-Hey1n ~~:ecut.1on 
***INFCJ-LUC-4 mac:r·ofunct1ons r·esolved in XCONTROL 
***INFO-LOC-AIJF c:urivtirt.ed to LEF: XCONTROL 
***INFO-LOC-Sum Of Prod1..1cts <S.0.P) LEF pr·oduced 
***INFll-·LOC>-LEF r·~duced 

***INFO-UJC···LEF an.al y.zed 
***I NF IJ-·Ll1C--Resetur·ce dem.:1nd determ1 nE.>d 
***INFO-LDC-Design fitt1nq complete *** INFO-·LOC-JEDEC 11 le uL1tput 

LOC cycle suc.c:essfully completed 

Would yt)Ll like to 1111plem~mt .;;r1othi;.-,- des1gn lY/fll)".' 

Logic Optimizing Compiler Main Menu 
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Device Programming 
The programming hardware is controlled by the LOGIC PROGRAMMER SOFTWARE. LPS takes the JEDEC 
file produced by the LOC and programs it into the device. LPS can also read a programmed device or verify 
that a device has been programmed correctly. 

Uev1ce: 

r·ogr· ammer war·e 
Copyriqht (c) 1987, INTEL Cor-por-ation 
3065 Bower·s Ave, Santa Clara, CA 950~!1 

( 408) 987 - 8080 
AL TERA Corpor-ati on 

B!CTEST. JED SEM!N?\RI. JED SEM!NAR2. JED 
XCONTROL. JED 

290134-10 

Logic Programmer Software Main Menu 

The Intel Universal Programmer for the Personal 
Computer (iUP-PC) is a versatile programming solu­
tion in a PC-based system. Installed in an IBM 
PC/XT, PC/ AT or compatible host, the iUP-PC emu­
lates the performance of the standalone INTEL 
iUP-200A Universal Programmers. As such, it sup­
ports the iUP Generic Universal Programmer Inter­
face (iUP-GUPI). With the appropriate socket adapt­
ers for the iUP-GUPI, the iUP-PC supports all Intel 
EPLDs. Future EPLDs will be supported by new 
GUPI adapters or adapter upgrades. Other Intel de­
vices-EPROMs, EEPROMs, and microcontrol­
lers-are also supported by the GUPI. The iUP-PC is 
controlled by the LPS or the iPPS (Intel PROM Pro­
grammer Software). iPLDS II includes the iUP-PC, 
which contains the iPPS, PCPP programming card, 
interconnect cable, and the GUPI base. GUPI adapt­
ers are available separately. 

IPLS II SOFTWARE 

The Intel Programmable Logic Software II (iPLS II) 
has many options and enhancements for implement­
ing a logic design. iPLS II accommodates a wide 
variety of design input methods. Schematics, state 
machines or Boolean equations may all be used 
provided the proper formats and convertors are im­
plemented as needed. No matter what method is 
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chosen, the Logic Optimizing Compiler will minimize 
and fit the design during compilation. Finally, iPLS II 
contains the Logic Programmer Software which con­
trols the iUP-PC programming hardware for all Intel 
EPLDs. 

I. Design Input 

The entire spectrum of design input methods is 
available to the logic designer in iPLS II. Everything 
from TIL schematics to Boolean equations are ac­
cepted and processed by the LOC. 

A. TTL SCHEMATIC ENTRY 

SCHEMA 11-PLD is an optional software package 
that allows EPLD design to be implemented with 
standard TIL functions. SCHEMA 11-PLD contains a 
symbol library that includes common 551/MSI TIL 
symbols. SCHEMA 11-PLD also outputs directly in 
ADF format. The TIL symbols appear in the ADF in 
the form of macro calls. During compilation, iPLS II 
automatically expands these calls from its TIL mac­
ro library. Thus, with SCHEMA 11-PLD, conversion to 
EPLD logic primitives is performed automatically in a 
manner completely transparent to the user. · 
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Only parts supported by the SCHEMA 11-PLD TTL 
symbol library and the iPLS II TTL macro definition 
library may be used for TTL schematic entry. In most 
cases, this won't be a limitation as the most com­
mon parts are included in both libraries. Parts not in 
the macro libraries may be created by the user and 
stored in proprietary user libraries. SCHEMA 11-PLD 
also supports creating of user-defined macro sym­
bols. The optional iPLS II Macro Librarian supports 
creation of iPLS II macro libraries. 

B. SCHEMATIC ENTRY WITH 
INTEL SYMBOL LIBRARY 

If the user prefers designing with EPLD logic primi­
tives but still wants to use schematic entry, 
SCHEMA 11-PLD, in addition to supporting TTL sche­
matic capture, also supports design using EPLD 
primitive symbols. Users can enter their design and 
have both a schematic drawing and an ADF version 
of the design. The logic symbols are loaded from the 
Intel library and connected in the usual manner. Op­
tional symbol libraries are also available for PC­
CAPS *by P-CAD Corporation and DASH-2, -3, -4** 
by FutureNet (iSLIBPCAD, iSLIBFNET). The iSIMLIB 
optional library is available for simulating logic de­
signs with P-CAD's PC-LOGS logic simulator. 

C. TEXT EDITOR ENTRY 

Designers who are familiar with the logic primitives 
and the Advanced Design File format can directly 
enter ADFs with a standard text editor. The bulk of 
the design entry can be accomplished using Boole­
an Equations obtained from a Karnaugh map or truth 
table. Hence, the need for conversion to gates is 
eliminated. This method of entry is useful for sub-cir­
cuits that will be incorporated into larger designs. 

*PC-CAPS and PC-LOGS are registered trademarks of 
P-CAD Corporation. 

••oASH-2, -3, -4 are registered trademarks of FutureNet 
Corporation. 
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D. STATE MACHINE ENTRY 

In the past, state diagrams or flowcharts (ASM 
charts) were merely abstractions used to obtain the 
logic equations necessary to implement TTL de­
signs. With the advent of the iPLS II state machine 
convertor (iST ATE), this is no longer the case. Using 
an IF THEN I ELSE format, the designer may enter 
the state machine description without having to ex­
tract the logic and convert the equations into TTL 
components. The state machine to Boolean logic 
conversion is handled by the state machine conver­
tor, provided the input file adheres to the specified 
State Machine File (SMF) format. 

Summary of Optional Entry Requirements: 

TTL Schematic Capture 

1. TTL Macro Libraries 

2. SCHEMA 11-PLD 

PC-CAPS 

1. Intel Library used to design logic circuit 

2. Component List Output 

3. PCAD convertor used in LOC 

(Library and convertor contained in iSLIBPCAD) 

DASH-2, -3, -4 

1. Intel Library used to design logic circuit 

2. Pin List Output 

3. FutureNet convertor used in LOC 

(Library and convertor contained in iSLIBFNET) 

State Machines 

1. State Machine File (SMF) format used 

2. Optional state machine convertor used in LOC 

(Convertor contained in iST ATE) 

II. Logic File Compilation 

Before programming the part, the designer must 
compile the input design file into a JEDEC standard 
file. This function is performed by the Logic Optimiz­
ing Compiler. 
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LOGIC OPTIMIZING COMPILER (LOC) 

Once the input file is in Advanced Design File (ADF) 
format, the LOC will compile it into a device-specific 
JEDEC Design File. The first phase of this compila­
tion is performed by the MACRO EXPANDER. The 
Macro Expander expands Intel or TTL macros into 
equivalent EPLD equations. The second phase is 
performed by the ESPRESSO MINIMIZER. The min­
imizer reduces all the logic equations to their sim­
plest form using the ESPRESSO 11-MV algorithm. 
The final phase of compilation is performed by the 
FITTER. The Fitter creates a cell map of the mini­
mized equations according to the resources avail­
able within the specified device. 

MACRO EXPANDER 

The input design file is initially passed through the 
MACRO EXPANDER. The Macro Expander 
searches the file for any non-EPLD network ele­
ments. If found, the Expander then searches the 
User Libraries and TTL Library for the unidentified 
element. Once the element is located, the design file 
element is replaced by the equivalent EPLD primitive 
implementation found in the library. Having the Ex­
pander search the User Libraries allows the user to 
create his own macros. User macro files are created 
with a standard ASCII text editor and are stored in 
libraries by the optional iPLS II Macro Librarian. 

ESPRESSO MINIMIZER 

The minimization in the LOC is performed by the 
ESPRESSO 11-MV MINIMIZER. Developed by the 
University of California at Berkeley, the ESPRESSO 
11-MV algorithm is regarded by many as being the 
best minimization method available. ESPRESSO 11-
MV uses DeMorgan's and other logic theorems to 
reduce the equations to the least number of product 
terms possible. Since product terms are the key vari­
able in the EPLD architecture, the ESPRESSO 11-MV 
Minimizer provides the simplest equations possible. 
As a result, the success rate for fitting large designs 
is dramatically increased. 

FITTER 

The FITTER examines the architecture of the speci­
fied device, then tries to map the minimized equa­
tions into the resources available. The Fitter auto­
matically assigns pins unless pin assignments are 
already specified in the design input file. The fitting 
sequence continues until a successful fit is accom­
plished or all possible implementations are exhaust­
ed. Release 1.5 of iPLS II includes a new, faster 
Fitter that supports PGA packages and the 5AC312. 
Also included in this new Fitter is the capability to 
allocate p-terms to adjacent macrocells for devices 
such as the 5AC312 that support p-term allocation. 
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OUTPUT FILES 

- JEDEC Design File 
A properly designed circuit results in the desired 
file from the LOC-the JEDEC Design File. The 
JEDEC Design File is a device-tailored EPROM 
cell programming map expressed in JEDEC stan­
dard format. 

- Resource Utilization Report 
The Resource Utilization Report gives an in­
depth view of what was used inside the EPLD. 
Items such as device pinout, macrocell usage, 
and feedback arrangements are all listed. Un­
used resources are also listed to aid the user in 
adding logic or merging EPLD designs. 

- Logic Equation File 
The LEF file lists the logic equations after they 
have passed through the minimizer. It is these 
equations that are actually implemented in the 
final design. 

- Compiler Error File 
If a logic circuit is incorrectly designed, mes­
sages are produced by the LOC denoting the er­
rors. To assist the redesign, these errors are 
placed into the Compiler Error File for later refer­
ence. 

FILE MERGING 

Once a design is successfully implemented, the LOC 
can merge it with other designs by simultaneously 
running the two ADF's. In this manner, LSI circuits 
can be broken into manageable chunks that can be 
implemented and tested individually. After each por­
tion is completed, the subcircuits can be merged into 
one ADF to implement the total design. 

Ill. Device Programming 

After the design has been successfully entered, min­
imized and fitted, the designer programs his part us­
ing the JEDEC file produced by the LOC. Program­
ming is accomplished by running the Logic Program­
mer Software. 

LOGIC PROGRAMMER SOFTWARE 

To program a device with the LPS, the user enters 
the file name and device to be programmed. The 
LPS checks if the device is blank, programs the de­
vice, then verifies that the device was programmed 
correctly. As a part of the Intel EPLD Programming 
Algorithm, each programmed cell is checked. Add­
ing the complete device check after programming 
gives double verification that the part has been suc­
cessfully programmed. 
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The Intel Universal Programmer for the Personal Computer (IUP-PC) 

It is also possible to read a pre-programmed device 
and program other devices with the program read. 
The JEDEC Editor in LPS provides a hierarchical 
view of the device from the pin level, to the macro­
cell level, to the product term level. At the product 
term level, individual EPROM cells may be set or 
reset to connect or disconnect the logic equation 
inputs. 

If the user does not want an EPLD to be read, the 
Security bit may be set when running the LPS. The 
Security Bit prevents a device from being examined 
after it has been programmed. This function is useful 
for protecting confidential designs. 

IUP-PC HARDWARE 

The Intel Universal Programmer for the Personal 
Computer consists of the PCPP programming card, 
50-lead interconnect cable, GUPI base and GUPI 
adapter. Together they form a system for program­
ming most PROM-type Intel devices directly from 
the PC host. 

PCPP 

The Personal Computer Personal Programmer 
(PCPP) is the programmer interface card that fits 
into the IBM AT/XT or true compatible. It is capable 
of driving both the iUP-GUPI base and the iUP­
FAST27K personality module. The PCPP emulates 
the performance of the Intel iUP-200A. The LPS or 
iPPS (Intel PROM Programmer Software) controls 
the PCPP, causing the programming card to gener­
ate the control signals for the GUPI base. 
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GUPIBASE 

The Generic Universal Programmer Interface (GUPI) 
is used for all programmable logic support. As all 
signal generation to devices is done by the GUPI, 
the programming waveforms are extremely reliable. 
Using the GUPI also allows upgrading for future de­
vices with the simple addition of a plug-in adaptor. 
Future Intel EPLDs will be supported by the GUPI 
system. 

GUPIADAPTERS 

Table 1 details the GUPI adapters required for the 
logic devices. The adapters available for program­
ming EPROM's, E2PROM's and microcontrollers 
can be found in the data sheet for the iUP-PC (Intel 
order number 290130). The adapters contain the de­
vice description data for a family of similar devices. 
New devices will be supported by new adapters or 
by a firmware upgrades in existing adapters. 

SPECIFICATIONS 

Host System 

The iPLDS II software requires an IBM PC/XT, 
PC/ AT or other true compatible computer capable 
of running MS-DOS* version 2.0 or later. The com­
puter must have a 360KB double-sided, double-den­
sity diskdrive, a hard disk, and 512KB of RAM. Addi­
tional memory is required for the optional schematic 
capture programs. A color monitor is recommended, 
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Table 1. Intel Programmable Logic Development System II Programming Support 

Device Equlvalent Number of iUP-GUPI Package Type 
Gate Count Macrocells Adapter Supported 

5C031 EP310 300 8 GUPI LOGIC-12 20 Pin DIP 

5C032 EP320 300 8 GUPI LOGIC-12 20 Pin DIP 

5C060 EP600 600 16 GUPI LOGIC-9 24 Pin DIP 
or GUPI LOGIC-llD 

5C090 EP900 900 24 GUPI LOGIC-9 40 Pin DIP 
or GUPI LOGIC-llD 

5C121 EP1200 1200 28 GUPI LOGIC-12 40 Pin DIP 

5C180.EP1800 1800 48 GUPI LQGIC-18 68 Pin PLCC and JLCC 

5C180PGA 1800 48 GUPI LOGIC-18PGA 68 Pin PGA 

5CBIC 1200 (inPLU):8 GUPI LOGIC-SIC 44 Pin PLCC 
( # of Ports):5 

5AC312 1200 12 GUPI LOGIC-llD 24 Pin DIP 

(EPXXX Devices from Altera Corp.) 

as the color graphics available provide a better rep­
resentation of the data than a monochrome display. 
The PCPP programming card requires one full-size 
card slot in the host computer. 

•MS-DOS is a trademark of Microsoft Corporation 

Operating Environment 

Electrical Characteristics 

PCPP: Worst Case Power Consumption at IBM 
PC 1/0 Channel 

Supply Voltage Personallty 
Voltage Variance Module 

+5V +5%, -4% FAST27K 
-12V +10%, -9% FAST27K 
+12V +5%,-4% GUPI 

Physical Characteristics 

PCPP: 

Length: 13.3 inches (33.9 cm) 

Height: 3.9 inches (10.0 cm) 

INTERCONNECT CABLE: 

50 lead ribbon cable 

Length: 3.0 feet (91.4 cm) 

Width: 2.43 inches (5.5 cm) 

Max. Current 
Drain 

1.898A 
102.9 mA 

530mA 

GUPI: 

Length: 7.0 inches (17.8 cm) 

Width: 5.5 inches (1.4 cm) 

Height: 1.6 inches (4.1 cm) 

Environmental Characteristics 

Operating Temperature: 1o·c to 4o·c 
Operating Relative Humidity: 85% Maximum 

Equipment Supplied 

HARDWARE 

- PCPP programming card 

- Interconnect cable 

- GUPI base 

- (GUPl-LOGIC adaptors purchased separately) 

SOFTWARE 

- iPLS II (5 diskettes) 

- iPPS (2 diskettes) 

DOCUMENTATION 

- iPLS II User's Guide (order number 450196) 

- iPLS II Release 1.5 Supplement (order number 
#453703) 

- PCPP User's Guide (order number 168161) 
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ORDERING INFORMATION 

Order Code 

iPLDSll 

iPLSll 

iUP-PC 

MLIB 

iSTATE 

iSLIBFNET 

iSLIBPCAD 

iSIMLIB 

Product Description 

Intel Programmable Logic De­
velopment System II: iPLS 
software, iUP-PC, iPLS II Us­
er's Guide 
Intel Programmable Logic 
Software II: Logic Builder de­
sign entry, Logic Optimizing 
Compiler, Logic Programmer 
Software, iPLS II User's Guide 
Intel Universal Programmer 
for the Personal Computer: 
PCPP programming card, in­
terconnect cable, iUP-GUPI 
base, Intel PROM Program­
ming Software PCPP User's 
Guide 

iPLS II Macro Librarian: Macro 
Librarian Software and User's 
Guide Supplement for creat­
ing.user-defined macro librar­
ies: · 

Intel State Machine Software: 
Entry format documentation, 
state machine convertor for 
LOG 
Intel Symbol Library-Future­
Net: EPLD symbol library for 
FutureNet DASH-2 schematic 
capture package, Futurenet 
Pinlist convertor for LOG 

Intel Symbol Library-PCAD: 
EPLD symbol library for PCAD 
PC-CAPS schematic capture 
package, PCAD Component 
List convertor for LOG 

Intel Simulation Library (PC­
LOGS): EPLD simulation li­
brary for PC-LOGS simulator 
by PCAD 
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iUP-GUPI Intel Universal Programmer­
Generic Universal Programmer 
Interface: Generic programmer 
base which holds GUPI adaptors 

GUPI LOGIC-llD GUPI Adaptor for the 5AC312, 
5C060, 5C090, and future 24-pin 
and 40-pin EPLDs. 

GUPI LOGIC-09 GUPI Adaptor for the 5C060 and 
5C090 DIP EPLDs 

GUPI LOGIC-12 GUPI Adaptor for the 5C031, 
5C032, 5C121 and future 20 pin 
DIP EPLDs 

GUPl-LOGIC-18 GUPI Adaptor for the 5C180 and 
future 68 pin PLCC and JLCC 
EPLDs 

GUPI LOGIC- GUPI Adaptor for the 5C180 de-
18PGA vice in a 68 pin PGA package. 

GUPl-LOGIC-BIC GUPI Adaptor for the 5CBIC and 
follow-on products 

ADAPT24T028 Adapts 24 pin DIP socket to 28 
pin PLCC socket; for use with 
GUPI LOGIC-09 and GUPI 
LOGIC-llD. 

ADAPT40T048 Adapts 40 pin DIP socket to 44 
pin PLCC socket; for use with 
GUPI LOGIC-09 and GUPI 
LOGIC-llD. 

IPLDS II UTILITIES 

TTL Macro Library TTL Macro Library Macros ac­
cessed by Macro Expander for 
most standard TTL symbols 

SIM EPLD Functional Simulator Func­
tional simulator for most EPLD 
logic designs. 



iUP-PC 
INTEL UNIVERSAL PROGRAMMER 
FOR THE PERSONAL COMPUTER 

• Personal Computer Version of the iUP-
200A/201 A Universal Programmers 

• Runs on an IBM PC/AT*, PC/XT* or 
True Compatible 

• GUPI and FAST27K Personality 
Modules Provide Support for Numerous 
Device Families 

• Utilizes the inteligentTM and Quick-
Pulse ProgrammingTM Algorithms 

• Easily Upgradable for new Devices 
Through Low-Cost Plug-In Adapters 

• Extremely Versatile-Programs Intel or 
Intel-Compatible EPROM, E2PROMs, 
EPLDs, Peripherals and Micro­
Controllers, Including the New 5AC312 
EPLD 

The Intel Universal Programmer for the Personal Computer, iUP-PC, provides a high performance program­
ming solution from a PC host Through plug-in adapters for the Generic Universal Programmer Interface (iUP­
GUPI), the iUP-PC supports virtually all programmable Intel devices. Upgrades for new devices are made by 
the simple addition of a GUPI adapter or the upgrade of an existing adapter. 

NOTE: 
GUPI Adapter NOT included. 
'IBM PC/ AT and PC/XT am registered trademarks of International Business Machines Corporation. 
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FUNCTIONAL DESCRIPTION 

The iUP-PC provides a fast, versatile and reliable 
programming solution from a Personal Computer 
host. Downloading to a stand-alone programmer or 
moving from one workstation to another is no longer 
required. With the iUP-PC, the designer may do his 
development and programming on one workstation. 
Through the Generic Universal Programmer Inter­
face (iUP-GUPI), the iUP-PC is made extremely ver­
satile. With the iUP-GUPI the designer may program 
across EPROM, E2PROM, Microcontroller, Peripher­
al and EPLD device categories with the mere 
change of a plug in adapter. No other hardware or 
software addition is needed. As all of the program­
ming signals are generated at the GUPI base, ex­
tremely reliable waveforms reach the device. 

COMPONENTS 

The iUP-PC programming system consists of five 
components: 

PCPP-The Personal Computer Personal Program­
mer (PCPP) is an IBM PC/XT form factor expansion 
card which fits into an IBM PC/XT, PC/AT or true 
compatible. 

Interconnect Cable-A 50 lead ribbon cable con­
nects the PCPP to the iUP-GUPI. 

iUP-GUPl-The Intel Universal Programmer-Ge­
neric Universal Programmer Interface (iUP-GUPI) is 

, ______ , 
.... .... .... .... .... ... 
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the programming base which holds the device 
adapters. 

GUPI Adapters 0 -The GUPI Adapters plug-in to the 
iUP-GUPI base. They carry the sockets and hard­
ware for a particular device family. 

iPPS-The Intel PROM Programmer Software (iPPS) 
runs on a personal computer under DOS and con­
trols the PCPP/host communication. 

*NOTE: 
Though the iUP-GUPI base is included in the iUP­
PC package, the GUPI Adapters are NOT included. 
The desired adapters must be ordered separately. 

PCPP CARD 

The PCPP is an 8085 based co-processor board. 
Communication between the host and the PCPP 
may be controlled by the iPPS or LPS (Logic Pro­
grammer Software). Version 2.3 or greater of iPPS is 
required for running the iUP-PC on a personal com­
puter. LPS is the programming software included in 
Intel's Programmable Logic Software II (iPLS II). 

The PCPP is capable of driving the iUP-GUPI and 
FAST27 /K modules. Future Intel devices will be 
supported by an iUP-GUPI adapter or adapter up­
grade. 

INTERCONNECT CABLE 

iUP - GUPI ADAPTER 

!UP - GUPI BASE MODULE 
290130-2 

Figure 1. The Intel Universal Programmer for the Personal Computer (iUP-PC) 
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iUP-GUPI MODULE 

The iUP-GUPI is a generic base module that enables 
the iUP-PC system to accept low-cost plug-in adapt­
ers. These adapters configure the system to support 
a wide variety of programmable devices-EPROMs, 
microcontrollers, and EPLDs-as well as device 
package types (refer to Table 1). 

The iUP-GUPI module connects to the PCPP card 
via a ribbon cable. An opening in the top of the iUP­
GUPI provides easy plug-in installation of the GUPI 
adapters (refer to Figure 2). 

The iUP-GUPI offers the programming performance 
of earlier Intel personality modules, with the fastest 
Intel programming algorithms for each device type. 
For example, the iUP-GUPI uses the new Quick­
Pulse Programming algorithm to program the 1-Meg 
EPROM in seconds. 

iUP-GUPI 
GENERIC BASE MOOlR.E 

290130-3 

Figure 2. GUPI Adapter Installation 

GUPIADAPTERS 

The iUP-GUPI adapters provide the final link of the 
iUP-PC programming system. The adapters provide 
the proper sockets and characteristic information for 
families of Intel devices. 

The iUP-GUPI LOGIC adapters complete the pro­
gramming solution of the Intel Programmable Logic 
Development System II (iPLDS II). The GUPI LOGIC 
adapters provide support for the entire range of 
Erasable Programmable Logic Devices (EPLDs). 
The adapters support families EPLDs with similar ar­
chitecture, such as the 5C060 and 5C090. All future 
EPLDs will be supported by the GUPI LOGIC adapt­
er system. 

Intel's one megabit EPROMs are also supported 
with GUPI adapters. Adapters are available for the 
27010, 27011, and 2721 O. The page mode of the 
27011 is supported by the GUPI 27011 adapter. Oth­
er Intel EPROM support is provided with the 
FAST27 /K personality module. 

The MCS-51 and MCS-96 microcontroller families 
are supported by the GUPI MSC-51 and GUPI 8796 
adapters. Supplemental adapters provide support 
for the variety of microcontroller package types. The 
8741 and 8742 peripheral components are support­
ed by the GUPI 8742 adapter. 

Table 1 displays a cross-reference of the EPLD 
GUPI adapters and the devices they support. Table 
2 displays a cross-reference of the EPROM/Micro­
controller adapters and the devices they support. 
Note that these tables are current at the time of 
printing. Contact your Intel sales representative for 
information on current support. 

Table 1. EPLD GUPI Module Adapters 

Device GUPI GUPI GUPI GUPI GUPI GUPI 
Type Logic-HD Loglc-09 Loglc-12 Loglc-18 Loglc-18PGA Loglc-BIC 

EPLD 5C031 
5C032 

5C060 5C060 
5C090 5C090 

5C121 
5C180 

5C180G 
5CBIC 

5AC312 

Package Types DIP* DIP* DIP PLCC PGA PLCC 
CJ 

•ADAPT units available to adapt DIP socket for PLCC package. 
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Table 2. EPROM/Mlcrocontroller GUPI Module Adapters 

Device GUPI GUPI GUPI 
Type 27010 27011 27210 

EPROM 27010 
27011 27210 

Peripheral 

Microcontroller 

Package Types DIP DIP DIP 

The iUP-Fast 27 /K Personality Module 

With the iUP-Fast 27 /K personality module the user 
can program, read, and verify the contents of Intel's 
high density EPROMs, from the page-programmable 
(512K) 27513, to the CMOS 27C64, 27C256, and 
87C64 EPROMs. This personality module supports 
the inteligent Programming algorithms and the 
infeligent Identifier™. The infeligent Identifier lets 
the personality module interrogate the PROM device 
in the program/master socket. It determines wheth­
er the type selected matches the type of PROM de­
vice installed and then selects the proper inteligent 
Programming algorithm. The inteligent Programming 
algorithms reduce programming time up to a factor 
of 10. 

Low cost, plug-in upgrade kits allow addition of sup­
port for Intel's latest EPROMs. The first upgrade kit 
added support for the 27512 and innovative page­
programmable 27513 plus the 27128A and 2817A. It 
has now been replaced by a second upgrade kit, 
iUP-Fast 27 /K-U2 adding support for Intel's new 
CMOS EPROMs. (refer to Table 3). 

As shown in Figure 3 the iUP-Fast 27 /K personality 
module contains two 28-pin sockets, a hexadecimal 
display (0 through F), and a red LED that indicates 
when power is being applied to a socket. The pro­
gram socket holds the device being programmed. 
The master socket will be used in future upgrades. 
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GUPI GUPI GUPI GUPI 
8742 MCS-51 8796 8796LCC 

8741AH 
8742AH 

87C51 
8752BH 
87C252 

8794BH 
8795BH 
8796BH 8796BH 
8797BH 8797BH 

DIP PLCC PGA LCC 
DIP DIP 

The hexadecimal display shows the PROM device 
type selected. 

Table 3. FAST27 /K Module Device Support 

Prom 
Fast Fast Fast 

Type 
27/K 27/K U2 27/K-CON* 

Module Kit Kit 

EPROM 
2764 2764 2764 

2764A 2764A 2764A 
27C64 27C64 
87C64 87C64 

27128 27128 27128 
27128A 27128A 

27256 27256 27256 
27C256 27C256 
27512 27512 
27513 27513 

E2PROM 2817A 2817A 

•uses Quick-Pulse Programming Algorithm. 

THE iPPS SOFTWARE 

The iPPS software, included with the iUP-PC brings 
increased flexibility to PROM programming. The 
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0-27&.4 

{
2764A 

1_ 27C64 
87C64 

2-27128 D 3-{27128A 
4 27256 

27C256 
5-27512 
6-27513 
7-2817A 
8-27916 

PROM 
DEVICE 
TYPE 
HEXADECIMAL 
DISPLAY 

290130-4 

Figure 3. IUP-Fast 27 /K Personality Module with U2 Upgrade 

iPPS software provides user control through an 
easy-to-use interactive interface and performs the 
following functions to make programming quick and 
easy: 

• Reads PROMs, ROMs and EPLDs. 

• Programs PROMs directly or from a file. 

• Verifies PROM data with buffer data. 

• Prints PROM buffer, or device file contents on the 
system printer. 

• Performs interactive formatting operations such 
as interleaving, nibble swapping, bit reversal, and 
block moves. 

• Programs multiple PROMs from the source file, 
prompting the user to insert new PROMs. 

• Uses a buffer to change PROM contents. 

With the iPPS software the user can load programs 
from system memory or directly from a disk file. Ac­
cess to the disk lets the user create and manipulate 
data in a virtual buffer. This block of data can be 
formatted into different PROM word sizes for pro­
gram storage into several different PROM types. In 
addition, a program stored in the target PROM, the 
system memory, or a system disk file can be inter­
leaved with ~ second program and entered into a 
specific target PROM or PROMs. 

The iPPS software supports data manipulation in the 
following Intel formats: 8080 hexadecimal ASCII, 
8080 absolute object, 8086 hexadecimal ASCII, 
8086 absolute object, 80286 absolute object, and 
80386 bootloadable object. Addresses and data can 
be displayed in binary, octal, decimal, or hexadeci­
mal. The user can easily change default data for­
mats as well as number bases. 
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IUP·PC SPECIFICATIONS 

HOST SYSTEM 

The iPPS will run on an IBM PC/XT, PC/ AT or other 
true compatible with a DOS operating system. The 
PCPP requires one full-sized card slot inside the PC. 

OPERATING ENVIRONMENT 

Electrical Characteristics 

PCPP: 
Worst Case Power Consumption at 

IBM PC 1/0 Channel 

Supply Voltage Personality 
Voltage Variance Module 

+5V +5%, -4% FAST27K 

-12V +10%, -9% FAST27K 

+12V +5%,-4% GUPI 

Physlcal Characteristics 

PCPP: 

Length: 13.3 inches (33.9 cm) 
Height: 3.9 inches (10.0 cm) 

Interconnect Cable: 

50 lead ribbon cable 
Length: 3.0 feet (91.4 cm) 
Width: 2.43 inches (5.5 cm) 

IUP-GUPI: 

Length: 7.0 inches (17.8 cm) 
Width: 5.5 inches (1.4 cm) 
Height: 1.6 inches (4.1 cm) 

Max. Current 
Drain 

1.898 A 

102.9 mA 

530mA 

Environmental Characteristics 

Environmental Class: B 

Temperature: 
Operating 10 to 40 degrees C 
Non-Operating - 40 to 70 degrees C 

Relative Humidity: 

Operating 
Non-Operating 

85% Maximum 
95% Maximum 

DOCUMENTATION 

168161-PCPP .User's Guide 

166428-iUP-GUPI Module User's Guide 

User's Guides for Adaptors, FAST 27/K Modules, 
and upgrades included with respective units. 

ORDERING INFORMATION 

Order Code 
iUPPC 

Product Description 
Universal Programmer for the 
Personal Computer: PCPP Pro­
gramming Card, 50-Lead Inter­
connect Cable, iUP-GUPI, 
iPPS, PCPP User's Guide 

ADAPT24T028 28-Pin PLCC Socket Adapter 
for GUPI LOGIC-09 and GUPI 
LOGIC-llD 

ADAPT 40T044 44-Pin PLCC Socket Adapter 
for GUPI LOGIC-09 and GUPI 
LOGIC-llD 
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piUPGUPI 

GUPI LOGICllD 

GUPI LOGIC09 

GUPI LOGIC12 

Generic Universal Programmer 
Interface (Base) 

iUP-GUPI Logic Adapter 

iUP-GUPI Logic Adapter 

iUP-GUPI Logic Adapter 

GUPI LOGIC18 iUP-GUPI Logic Adapter 

GUPI LOGIC18PGA iUP-GUPI Logic Adapter for 
5C180 PGA 

GUPI LOGICBIC 

GUP127010 

GUPl27011 

GUPl27210 

GUPl8742 

GUPIMCS51 

GUPl8796 

GUPl8796LCC 

piUPFAST 27K 

iUPFAST 27KU2 

iUP-GUPI Logic Adapter 

iUP-GUPI EPROM Adapter 

iUP-GUPI EPROM Adapter 

iUP-GUPI EPROM Adapter 

iUP-GUPI Peripheral Adapter 

iUP-GUPI Microcontroller 
Adapter 

iUP-GUPI Microcontroller 
Adapter 

iUP-GUPI Microcontroller 
Adapter 

EPROM Personality Module 

FAST 27 /K Upgrade Kit 

iUPFAST 27KCON Adds Quick-Pulse algorithm 
and device support 

iUPFAST 27KIT Combines piUPFAST 27K and 
iUPFAST 27KU2 



SCHEMA 11-PLD 

SCHEMATIC CAPTURE SOFTWARE 

SCHEMA II-PLO is a powerful, low-cost schematic capture software package for designing 
with Intel EPLDs and with standard MSI, SSI, and discrete components. For EPLD designs, 
SCHEMA II-PLO outputs Advanced Design Files (ADFs) that can subsequently be com­
piled by iPLS II software. SCHEMA II-PLO supports EPLD symbols as well as MSI and 
SSI macro symbols, allowing designs to combine TTL and EPLD symbols as needed. The 
ability to create user-defined macro symbols that can be translated into ADF macro calls 
adds to SCHEMA 11-PLD's power and versatility. 

The EPLD Manager included in SCHEMA II-PLO provides a single user interface to both 
SCHEMA II-PLO and iPLS II software. EPLD Manager software i.s also available separately 
for users who already own SCHEMA II. 

000275-1 
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iPLS II MACRO LIBRARIAN 

The iPLS II (Intel Programmable Logic Software II) Macro Librarian is an optional software 
package that allows designers to create user-defined macro libraries for EPLD designs. 
User-defined macro functions are first developed as individual macro files using an ASCII 
text editor. These files are then combined into macro libraries by the Macro Librarian. 
Macro calls to use the functions can then be placed in iPLS II ADFs (Advanced Design 
Files) where they will be expanded during compilation by the iPLS II Macro Expander. Use 
of macros in iPLS II Advanced Design Files (ADFs) allows EPLD design to proceed at a 
higher level than with EPLD primitives alone. 

Note that a preconfigured library of TTL macro functions is available from Intel to all 
registered iPLS II users. The Macro Librarian is not needed to use this TTL library. It is 
designed for users who need to create libraries that contain user-defined macros. 

000275-2 
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UTILlflES 
''tt"•, 

FU~CTIONAL SIMULATOR UTILITY 
Description: , 

· .· Sin,iul~tion of E.PLDs is S1Jpported .with Intel's SIM .(Functional Simulator): Combinatorial as,well 
a8 registered designs can be simulated and circuit operation verified before a device is programmed. 
The design is simulated with a user generated vectorfile. · 

Avallablllty: ·· 
SIM is a standaione:utility that·runs. on any IBM PC, XT, ·p;r or coropatible. The simulator is 

available at no cost-to Intel EPLD customers;· Contact yoor.local 1ntel. sales 9ffice., 
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PAL2ADF UTILITY 
Description 

This document is a brief note on the use of the PAL2ADF program in translating PALASM 1 files 
into Intel's Advanced Design File (ADF) format. Descriptions for actual use can be found on the 
accompanying Manual page in the file PAL2ADF.MAN. 

The PALASM file serves as a template for mapping the PALASM equations into ADF. The 
translation is performed as follows: 

1) Read PAL description, and set the PAL pins to their appropriate EPLD primitive 
counterparts 

2) Parse file and produce network description 
3) Translate equations to ADF 

PAL Configuration Database 
When it is translating a PALASM file, PAL2ADF reads a database (default:PAL2ADF.DAT) that 
tells it: 

• How many pins the PAL has 
• Which default EPLD to translate to 
• What pins are special inputs (Clock and Output Enable defaults) 
• What EPLD 1/0 primitives to use for each PAL pin 

The EPLD 1/0 primitives specify the network architecture that the EPLD must take on in order 
to mimic the functionality of the PAL. See the PAL2ADF.DAT file for more information. 

Reconfiguring Outputs 
In step (2) above, several checks are done in order to make sure that the network is configured 
appropriately. These primarily involve output pins, although input pins can be specified as well. 

The first reconfiguration is for active low outputs in their equations. i.e., 

PALASM: /SIGNAL = A * /B + C 
becomes 

ADF: SIGNAL= /(A* /B + C); 

The other reconfigurations are slightly more complex. Consider a PAL pin X which is an output 
with a D-latch. The output value is fed back into the P-term array after the Output Enable. This 
is described as a Registered Output Registered Feedback (ROAF) in the Intel EPLDs. The default 
network description for this pin then is: 

NETWORK: 

X,X = ROAF (Xp,CLK,GND,GND,OE) 

where CLK and OE are the default Clock and Output Enable signals. 

Normally, there would be an equation that would describe Xp. (The 'p' is used to name the 
P-term value.) If, however, the X feedback is never used in an equation, then the 1/0 macrocell 
is reconfigured to a Registered Output No Feedback (RONF). 
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NETWORK: 

X = RONF (Xp,CLK,GND,GND,OE) 

For those 1/0 pins on the PAL which are used strictly as inputs, these use the Combinatorial 
Output 1/0 Feedback (COIF) primitive, with the Output Enable shut off (GND). The P-term is tied 
to the feedback, in order to satisfy the semantics of ADF. 

NETWORK: 

YY,YY = COIF (YYp,GND) 

EQUATIONS: 

YYp = YY; 

If the PAL pin is being used strictly as an output and is never used in an equation, then the 
primitive is reconfigured to a Combinatorial Output No Feedback (CONF). 

NETWORK: 

YY,YY =COIF (YYp,GND) 

This is the same as above where a RORF is reconfigured to a RONF. 

Multiple PAL Designs into 1 EPLD 
It is possible to incorporate multiple PALASM descriptions into one EPLD. If each PALASM 
description is disjoint, (i.e., they have different pin names for each pin) then you can simply 
translate each file (with the pinlist information OFF) and compile them together with the iPLS 
Logic Optimizing Compiler (LOC). 

The compiler allows you to specify multiple ADF files, allowing different subnetworks within one 
EPLD. You will probably want to use a larger EPLD to fit all the designs in. 

If the PAL designs are not disjoint, then there are some steps that can be done by hand to 
integrate the designs. A simple example would be where one PAL feeds another a signal, and 
the second uses that to generate another signal. 

~B c------
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In this case, C is an output of PAL 1, and an input to PAL2. In PAL2, C,Z, and W generate the 
signal X. Suppose we have the equations: 

PAL1 
/C=A*/B 

PAL2 
X = /C*Z*W 

+ C*/Z*W 

In the resulting ADFs, the following NETWORKS are produced: 

ADF for PAL 1 : 
NETWORK: 
A = INP(A) 
B = INP(B) 
C = CONF(Cp,VCC) 
EQUATIONS: 

C = /(A* /B); 

ADF for PAL2: 
NETWORK: 
Z = INP(Z) 
W = INP(W) 
C = INP(C) . 
X,X = RORF(Xp, CLK, GND, GND, OE) 
EQUATIONS: 
Xp = /C*Z*W 

+ C*/Z*W; 

These can be joined together into a single ADF: 

NETWORK: 
A = INP(A) 
B = INP(B) 
Z = INP(Z) 
W = INP(W) 
X,X = ROAF (Xp, CLK, GND, GND, OE) 
EQUATIONS: 
C = /(A* /B); 
Xp = /C*Z*W 

+ C*/Z*W; 

Notice how C is now an intermediate variable rather than an actual signal. This is obviously a 
simple example, yet similar techniques can be applied to more complex cases. As much more 
logic can be placed into larger EPLDs, the job of splitting functions across multiple devices is 
reduced. 

Availability 
The PAL2ADF utility is available at no cost to Intel EPLD customers. Contact your local Intel 
sales office. 
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JED2HEX CONVERSION UTILITY 

Description 
JED2HEX is a utility to convert JEDEC files created by iPLS (.JED) into lntellec HEX files which 
can then be read by Intel's iPPS software. This allows programming of EPLDs via Intel's iUP200AI 
201A using a GUP I base and the appropriate adaptor (e.g. LOGIC-12). The following diagram 
represents a typical development cycle. 

~~iP_L_s~_,.-~~-·J_ED~~••I JE02HEX 
.HEX ~ -·L:J 

t 
.TTF 

INSTALLATION: To install the utility and its device specific files, place the master disk in drive 
A: and invoke the JINSTALL.BAT batch file with the destination path for the utility and device 
files. Example: 

A: JINSTALL C: MYPATH 

When using JED2HEX, attach the package description letter when entering the device type. 
That is, enter 5C121D for a 5C121 ceramic DIP when prompted for the device type. Entering 
5C121 will result in: 

***ERROR: Device File Missing 

To determine the packages supported in your JED2HEX software, examine all the .ttf extension 
files; it is the .ttf files which the device type command attempts to match. 

When using iPPS, a file format of 8080 or 8086 must be specified when copying the JED2HEX 
generated HEX file to the buffer or directly into a device. If 8080 or 8086 is not specified, the 
default file format type of 80386 will be chosen and a "GENERAL ERROR - ILLEGAL FILE 
TYPE SPECIFIED" will result. An example of the proper COPY format: 

PPS> COPY a: filename.HEX TO PROM 86 

Availability 
The JED2HEX Conversion Utility is available at no cost to Intel EPLD Customers. Contact your 
local Intel sales office. 
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OVERVIEW 

Welcome to the fascinating world of ERASABLE PRO­
GRAMMABLE LOGIC DEVICES (EPLDs) and Intel's 
Programmable Logic Development System (iPLDS). This 
application note has been written for the newcomer to 
Intel's devices and design tools. It has been designed as a 
step-by-step guide through the tools but should also prove 
useful as a reference document for the experienced logic 
designer. 

By the end of this application note you will have 
designed/solved multiple logic problems and be in a posi­
tion to implement solutions to many of the digital design 
challenges you face today. It is anticipated that this appli­
cation note will be used in conjunction with Intel's iPLS 
software. To increase the usefulness of this application 
note, Intel will supply a PCB card for you to experiment 
on and a sample diskette (see Appendix E for details). 

This application note is divided into the following three 
sections: 

1. An introduction to Erasable Programmable Logic 
Devices (EPLD) 

2. An introduction to Intel's Programmable Logic De­
velopment System (iPLDS) 

3. Implementation of EPLD and iPLDS using detailed 
examples to implement a logic design. 

INTRODUCTION 

Programmable logic in the form of PALs have been availa­
ble for some time. They have become more complex as 
Large Scale Integration (LSI) techniques have been ap­
plied to this technology. 

The benefits of Large Scale Integration circuits are many 
fold. These circuits offer lower manufacturing costs, 
since the use of customized LSI circuits reduces required 
printed circuit board space, thereby significantly reducing 
board costs. These circuits also consume lower power so 
less expensive power supplies are required and cooling 
fans are also eliminated. LSI circuits also have higher reli­
ability than equivalent systems comprised of many low 
density standard components. 

As end users of semiconductors moved into higher and 
higher levels of integration, chip designers found it more 
and more difficult to define larger and larger blocks of 
logic. These difficulties led to the emergence o~ th~ 
user-defined Application Specific Integrated Cucu1t 
(ASIC). 

The options available for application specific logic are ex­
plained below and shown in Figure l. 

I n cuJTOM n 
PROGRAM· GATE STANDARD FULL 

MABLE ARRAY CELL CUSTOM 
LOGIC 

2442 

Figure 1. Logic Options 

Full Custom: These circuits can be tailored to give the 
best functional performance with the highest level of inte­
gration, the smallest silicon area, the lowest power use, 
and be produced for the least cost at high production 
volumes. 

Standard Cell Library: This approach represents an in· 
tegrated circuit which is composed of predesigned and 
precharacterized cells chosen from a computer data base 
library of cells. 

Gate Arrays: These are integrated circuits that contain a 
regular, usually square, matrix of predefined logic gates. 

User Programmable Logic: The concept of user pro­
grammable logic is to provide the designer with the bene­
fits of custom LSI chips from standard products. 

A recent innovation in the programmable logic field has 
been Intel's introduction of an ERASABLE Program­
mable Logic Device. Using the same technology used in 
the manufacture of EPROMs, Intel now offers increased 
flexibility to the logic designer. 

Intel has addressed the limitations of gate arrays and fuse 
programming logic with its EPLD products and develop­
ment system support tools. The benefits to the system de­
signer are: 

• Greatly reduced lead times 

• Low design costs 

• Ease of design changes 

• Low power dissipation from CHMOS technology 

• Multiple programming facility 

• Maximum flexibility in each chip and the ability to 
erase and reprogram 

• High density products that maximize function, integra­
tion, and quality 

• A self-contained, low-cost sophisticated development 
system based upon the industry standard IBM PC XT 
or AT. 
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Table 1. lntels EPLDs 

EPLD Gates Pins 
Dedicated 

1/0 
l~ts 

5C031 300 20 10 8 
5C060 600 24 4 16 
5C090 900 40 12 24 
5C121 1200 40 13 24 
5C180 1800 68 12 48 

EPLDs are now a cost-effective solution to the problem of 
large scale logic integration. EPLDs are the simplest form 
of high density application-specific logic to implement. 
At present, the following logic devices are available from 
Intel as shown in Table I. 

Intel's EPLDs use the "Sum Of Products" architecture 
with programmable AND and fixed OR gates to drive a 
combinatorial or registered output. Each of the devices 
listed in Tuble I has different attributes and resources tar­
geted at specific applications. 

In general each device contains multiple sets of program­
mable MACROCELLS as shown in Figure 2. 

Everything is programmable (and erasable if you need to 
make modifications). Product terms may be generated 
from any combination of input terms-any terms not used 
are considered a "don't-care" in the array. The output 
register is also programmable-you can choose D-type, 
Toggle, SR, or even JK FLIP-FLOPs; you can even 
choose no output register if you only require combinato­
rial outputs. The clock and output enables are also 
programmable. 

"' ::& 
a: 
w 
I-

I-
0 

AND ARRAY 

:::> c 
0 
a: ... 

OR 
ARRAY 

--------------------- ---

INPUT TERMS 
(INCLUDING FEEDBACK) 

Figure 2. 

Intel EPLD devices are available in many configurations 
to fit most applications. A complete listing of data sheet 
availability is covered in Appendix E. 

DESIGN TECHNIQUES USING INTEL'S 
EPLDS 

Designing with EPLDs is similar to designing with stan­
dard TTL logic circuits. The focus moves from "how can 
I configure this design yvith standard parts" to "what else 
could I replace using this EPLD". Remember, if you ever 
use all of an EPLDs resources you just move up the de­
vice chain to the next bigger component-all of the work 
you did is DIRECTLY PORTABLE to a larger device. 

Any network, either combinatorial or registered, has an 
equivalent two level form. Any logic circuit consisting of 
AND, OR, NOR, NAND, XOR Logic can easily be con­
verted into the corresponding truth table. Any Boolean 
expression, no matter how complex, may be written in 
Sum-Of-Products form. This Sum-Of-Products expres­
sion that has been derived from the truth table can be re­
duced until it has as few product terms as possible. This 
procedure can be repeated for any complex network. 

Let us consider a very simple network as shown in Figure 
3. This logic circuit consists of an AND gate, an OR gate 
and a NOT gate. The inputs are A, B, C, and the output 
is Y. 

For this simple network, the truth table is shown in 
Table 2: 

A Boolean expression can easily be written from the truth 
table in a Sum-Of-Products form. This expression con­
tains the relationship between the inputs and the output. 

CLOCK OUTPUT 
ENABLE 

O/P OUTPUT 
REG PIN 

FEEDBACK 

2443 

Macrocell Arch 
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A 

B 

Figure 3. Simple Network 
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Note that the output Y is true in five of these eight states 
(0,2,4,6, and 7) so expressing Y in the form 
"Sum-Of-Products" by writing the ones in terms of A, B, 
and C yields: 

Y = /A•IB•/C + /A•B•/C + A•/B•/C 
+ A•B•/C + A•B•C 

He11ce, given any network, that network can be converted 
into its truth table. Next, a Sum-Of-Products expression 
that has the same truth table can be derived. If so desired, 
this Sum-Of-Products expression can be reduced using 
DeMorgan's theorem to simplify the circuit (you will see 
later that this will not be required). 

DEVELOPMENT SUPPORT 
Development tools are critical to the use of new technolo­
gies because tools allow you to control and use a new 
technology. Good tools help you, the designer, to work in 
familiar methods, then translate the design to the device. 

Good tools broaden the applications by making it easy to 
use new technology in designs. They are not a barrier to 
using the technology, but encourage its use and 
applications. 

Advanced and innovative technologies need similar ad­
vancements and innovations in the corresponding tools. 

Table 2. 

STATE INPUT OUTPUT 
A B c y 

0 0 0 0 1 
1 0 0 1 0 
2 0 1 0 1 
3 0 1 1 0 
4 1 0 0 1 
5 1 0 1 0 
6 1 1 0 1 
7 1 1 1 1 

iPLDS, Intel's Programmable Logic Development Sys­
tem, provides a full spectrum of ways to design and use a 
variety of design tools with fast, ea.sy-to-use entry 
software. 

The iPLDS contains all the software, hardware, documen­
tation and devices needed to program EPLDs. iPLDS are 
the most advanced PLD design tools available. It provides 
better utilization of device resources (more gates per 
chip) than any other development software. These versa­
tile tools are for users with different skill levels and appli­
cations. iPLDS tools handle the details of converting your 
design to working silicon on the personal computer. 

The iPLDS contains the three fundamental modules 

• Logic Builder (LB) 

• Logic Optimizimg Compiler (LOC) 

• Logic Programmer Software (LPS) 

To implement the logic design we will use the iPLDS 
modules in the order listed above. 

The modules are essentially independant modules that use 
special data files to pass information as shown in Figure 
4. These data files are the ADF, RPI', LEF, and JED files. 

The Advanced Design File (*.ADF) is generated from 
the Logic Builder and contains the Inputs/outputs and all 
the primitive equations. 

The Logic Equation File (*.LEF) contains the primitive 
equations that have been minimized by the Logic Opti­
mizing Compiler. 

The Utilization Report File (*.RPI') contains information 
on the macrocell and pin assignments. 

The JEDEC File (*.JED) is the file generated by the 
Logic Optimizing Compiler used to program the device 
using the Logic Programmer. 

Before implementing the logic design using the iPLDS, 
let us briefly discuss the iPLDS family of parts to be fa­
miliar with the iPLDS modules. 
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Logic Builder (LB) 

The Logic Builder module guides you through the entire 
process of design entry by prompting for necessary infor­
mation and showing a screen display (one primitive at a 
time) with input signals on the left side and output signals 
on the right side. The Logic Builder is used to generate an 
Advanced Design File (or ADF) by inputting the data in 
netlists or Boolean equations. 

After all required data are entered, the Logic Builder 
module indicates whether the circuit is complete and 
properly connected. If any changes need to be made, the 
module enables you to edit the circuit design either by 
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Figure 4. Block Diagram of iPLDS Modules 

systematically scanning through the primitives in the Ad­
vanced Design File (ADF) or by directly finding a primi­
tive by the name of a node connected to it. 

Any circuit may be edited. The Logic Builder reads in the 
ADF and prompts you for changes. The Logic Builder 
also allows two or more partially complete ADF files to 
be MELDED together to form a more complex function. 
This concept is not discussed in this application note but 
will be a topic of a future application note. 

Logic Optimizing Compiler {LOC) 

The Logic Optimizing Compiler provides an easy-to-use 
interface to the Logic User System software. Regardless 
of the type of design entry method used, the LOC first 
translates an Advanced Design File (ADF) into internal 
logic equations; then it performs a Boolean reduction on 
the translated design, and finally produces a JED EC Stan­
dard File, which is then used to program an Intel EPLD. 
In addition, you have the option of requesting an analysis 
of the Logic Equation File (LEF) as output by the 
Minimizer module. 

The LOC performs the following functions: 

• The TRANSLA1DR translates the ADF into an inter­
mediate Logic Equation File (LEF). (Most errors are 
detected and corrected). 

• The EXPANDER expands the Boolean equations into 
Sum-Of-Products form, removes redundant factors 
from product terms, and produces another LEF. 

• The MINIMIZER performs a sophisticated Boolean re­
duction on the translated design to maximize utilization 
of the EPLD. 

• The LEF Analyzer converts the LEF output by the 
MINIMIZER into a human readable file to allow you to 
see your design. (*.LEF) 

• The DEMANDER organizes the file output by the 
MINIMIZER. 
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• The FITTER matches your design requirements with 
the known resources of the Intel device. 

• The ASSEMBLER converts the fitted requests into 
JEDEC file. 

Logic Programmer Software {LPS) 

The Logic Programmer Software provides a user inter­
face to the JED EC Standard File output of the Logic Opti­
mizing Compiler and to the Logic Programmer Interface. 
You can use the Logic Programmer Software to view 
JEDEC files and to program your designs into EPLDs. 

The Logic Programmer Software is used 

• to program your designs into EPLDs 

• to verify the validity of data in the device 

• to read data from the device 

• to display JEDEC data graphically 

• to edit JEDEC data 

HARDWARE REQUIREMENTS 

The iPLDS requires an IBM PC XT, PC AT, or other 
compatible computer. A color monitor is preferred. The 
computer must have at least one 360K double-sided 
double-density disk drive, a second 360K floppy disk or 
hard disk, and at least 512K bytes of RAM memory. 

The iPLDS consists of the Logic Programmer Interface 
card, and the programming unit needed to program and 
verify EPLDs. The Intel iUP 201 with a GUPI adapter 
may be used as an alternate system to program the EPLD 
devices. 

SOFTWARE REQUIREMENTS 

The personal computer should be capable of running DOS 
V3.0 or a higher version. The Intel Programmable Logic 
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Software (iPLS) that contains the software controlling the 
logic programmer interface and assisting in the design of 
Intel applications is shipped on floppy diskettes. 

PROBLEM DEFINITION 

We are going to use iPLDS to implement a medium com­
plexity logic function. As a vehicle to show the usage of 
the tools and design techniques we will design a circuit 
that will roll and spin a pair of dice. The design has been 
split into multiple stages for illustration purposes. 

This example has been chosen since it incorporates many 
of a typical logic design tradeoffs and also solves many of 
the typical problems a hardware logic designer will 
encounter. 

Appendix A contains some basic definitions that may be 
useful when reading through the design and its 
implementation. 

DESIGN SAMPLE 

Problem Set-up 

The circuit is designed to set both of the dice spinning 
when you push a switch and display a random set of num­
bers when you release the switch. The dice will spin at a 
rate that is visually pleasing and roll at the highest possi­
ble rate to ensure randomness. 

You will implement the design in the following steps: 

A. One dice that will roll out a number. 

B. Add a switch that will control the roll/not roll action. 

C. Add a second dice to roll a number. 

D. Add a spinning option to both dice. 

E. Retro-fit a power save feature to extend battery life. 

Hence, at the end of the five design steps you will have a 
pair of dice spinning and showing a pair of numbers be­
tween l and 6 in a very random manner. At the end of the 
five design steps, you will have added a very realistic and 
practical feature to your design and that is extending the 
battery life by a power saving option. It is important to 
note that the five steps mentioned above are sequential 
steps in that step C can be achieved only after steps A and 
B etc. Let us describe the sample circuit for the dice roll­
ing example. It is a very simple circuit allowing you to 
concentrate upon the design process. It illustrates the pos­
sible design stages and considerations in detail. 

PART A 

Four Outputs-IA, IB, IC, ID are required to drive the 
LEDs arranged in a DICE pattern as shown in Figure 5. 

18 • 

10 • 

1C e 
• 1A 

e 1C 

• 10 

• 18 

Figure 5. Dice Configuration 

2452 

Operating sequence-Rolling dice from l to 6 and the 
block diagram of the circuit, both shown in Figure 6. 

The total number of states that are possible is 16 since the 
four LED pairs generate a permutation of (2* *4) = 16. 
The LEDs should be lit up such that any number between 
l and 6 inclusive is shown. Hence, out of the 16 possible 
states, only .six states are valid. This leaves ten invalid 
states. 

If the LEDs come up in a valid state upon power up, then a 
number between I and 6 will be displayed. 

However, if the LEDs come up in an invalid state upon 
power up, then you have to design the circuit such that any 
one of the ten invalid states will fall into a valid state. 

If the LEDs fall into any one of the ten invalid states, then 
you have designed the circuit to move into a state where 
IA, lB, lC, ID have zero logic values respectively on the 
next clock edge. Every time a zero logic value appears in 
the invalid states, then at the next clock edge, LED lA 
gets lit up generating a valid state. Since l is a valid state, 
the numbers between l and 6 inclusive will be displayed 
at all subsequent clock edges. 

Listed below are the steps involved in designing the logic 
circuit. 

STEP l. Generate the state diagram to clearly show the 
operating sequence including the status of the outputs for 
each state and the influence of the inputs on the next state 
transitions as shown in Figure 7. We have arbitrarily cho­
sen that the states should count 1,2,3,4,5,6, and repeat. 
You could have implemented the design using any se­
quence but we chose the most obvious. Note how most of 
the invalid states move you to state 0 which then puts us 
into a valid state which then repeats forever. 

STEP 2. Generate a truth table with entries for all availa­
ble states and combinations of inputs, and use the next 
states resulting from these as shown in Table 3. The 
bracketed numbers, (3) etc., show the number being 
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Figure 6. Rolling Sequence 

displayed on the dice and the 0, I values of ID, IC, 18, 
and IA indicate which LEDs should be OFF/ON to dis­
play the required dice pattern. 

STEP 3. Convert the truth table directly into 
Sum-Of-Products equations as shown below: 

DICEIA has four entries; 3 from the valid states and one 
to control the invalid states 

DICE1A = (/1A*1B*f1C*/1D + /1A*1B*1C*/1D 
+ /1A*1B*1C*1D + /1A*/1B*/1C*/1D) 

DICEIB has five entries from valid states 

DICE1B = (1A*/1B*/1C*/1D + /1A*1B*f1C*/1D 
+ 1A*1B*/1C*/1D + /1A*1B*1C*/1D 
+ 1A*1B*1C*/1D) 

DICEIC has three entries from valid states 

DICE1C = (1A*1B*/1C*/1D + /1A*1B*1C*/1D 
+ 1A*1B*1C*/1D) 

2451 

--------INVALID---------------VALID--------

2453 

Figure 7. 
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Table 3. Ti'uth Table for OICE1 

Input State Output State 

1A 18 1C 10 1A 18 1C 10 1A 18 1C 10 

Valid state Invalid state 

CHANGE TO THE NEXT VALID STATE 

1 0 0 0(1) 0 1 0 0(2) 
0 1 0 0(2) 1 1 0 0(3) 
1 1 0 0(3) 0 1 1 0(4) 
0 1 1 0(4) 1 1 1 0(5) 
1 1 1 0(5) 0 1 1 1(6) 
0 1 1 1(6) 1 0 0 0(1) 

CONTROL THE INVALID STATES 

0 0 1 0 
1 0 1 0 
0 0 0 1 
1 0 0 1 
0 1 0 1 
1 1 0 1 
0 0 1 1 
1 0 1 1 
1 1 1 1 
0 0 0 0 

DICEID has one valid entry 

DICE10 " (f1A*1B*1C*1D) 

Note that no attempt has been made to minimize these 
equations - the iPLS software that you will use later con­
tains reducing algorithms and other techniques to opti­
mize the design. This allows you to focus upon the 
problem and not on tasks such as Karnaugh map reduction 
which a computer can often do better anyway. 

Having designed part A of the circuit, you can now move 
on to tool usage to implement the design. Refer to the 
Intel Programmable Logic Software Manual if you have 
not installed the iPLS software. 

In order to invoke iPLS type the following command 

C:\IPLS>IPLS <Enter> 

The iPLS menu will appear as shown in Screen 1. 

The number to the left of each function allows you to se­
lect a function with a function key. Two kinds of function 
keys are available: toggle keys and field keys.< F3 > and 
< F4 > are toggle keys. All other keys are field keys. 
Functions beyond <FlO> are executed by pressing the 
<Shift> key together with the function key. Press 
< F3 > to invoke the Logic Builder and observe the Logic 
Builder menu as shown in Screen 2. 

0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
1 0 0 0(1) 

The first prompt asks for the file name. If the file already 
exists, its header information and primary inputs and out­
puts are displayed. If you enter a new file name, the Logic 
Builder module prompts for all the functions remaining 
on the screen. 

Enter: DICE1 <Enter> 
Create New Netlist<YIN> :Y 

In this sample session, user entries are all in uppercase 
letters. Note: IPLS is case sensitive. 

When initially invoked; the Logic Builder module dis­
plays its configuration menu. The Logic Builder configu­
ration menu shows "5C121" as the default Intel part and, 
on the right side of the menu, displays those primitives 
that are legal for use with the 5C 121. As soon as you enter 
another part (e.g. 5C060) the list of primitives changes to 
display the primitives applicable to that specific part. 

Press < F6 > and enter 5C060 when prompted for user 
. entry. 
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Screen 2 shows the Logic Builder Configuration Menu for 
the 5C060. 

• The left side of the screen shows a menu of functions, 
each preceded by a function key number. 
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Intel Programmable Logic Softvare 

iPLS Version 3.0, Copyright <Cl L,65, Intel Corporation 
Copyright <Cl L,65, Altera Corporation 

Select a function: 

Logic '~uilder Config Menu: 
FL , 
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F6 
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Intel Programmable Logic System 
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Table 4. 

Prom__e! User En!IY_ 
f6 EPLD SC060 
f7 Designer Your Name 
f& Company Your Company 
f'l Date Present Date 
FJ.O Comment Our first design 
!Fl. Part Number 0.1 
!f2 Revision 1.0 
!f3 Inputs CLOCKil1 
!f4 Outputs DICE1Ai110,DICE1Bil'l,DICE1Cil&,DICE1Dil7 

• The right side of the screen shows the list of available 
primitives (these are discussed in detail later). 

• The two lines at the bottom of the screen are designated 
for comments (first line) and prompts (second line). 

• The center of the screen is used to show a representa­
tion of the primitive; name and pictorial representation 
are in the middle, input signals are to the left, and out­
put signals are to the right of the primitive. 

• The direction of the arrow located on the left side of the 
screen below the list of functions determines the start­
ing point and direction of design entry. If the arrow 
points to the left, entry is from output pins to input 
pins. If the arrow points to the right, entry is from input 
pins to output pins. 

NOOE 

We have assigned pin numbers to pin names by 
using the "@" symbol within the name of the 
logic variable. Specific pin numbers need not 
be assigned if not desired. In that case, the 
Logic Builder will assign its pin numbers for 
you. 

Type in the information as given in Tuble 4 in the Logic 
Builder Config Menu. The information is also shown in 
Screen 3. After entering all of this required information, 
iPLDS will automatically prompt you through defining 
the circuit, starting with a primitive to drive the last out­
put specified. 

Once in the Logic Builder main menu, you are guided 
with.prompts to enter information as follows: 

Enter the name of the primitive to connect to the first 
node. The name may be entered by typing the name of the 
primitive, which highlights the appropriate primitive on 
the right side of the menu, then pressing <Enter>. 

Subsequently; a representation of the primitive is dis­
played in the center of the screen surrounded by input and 
output signals. You are prompted for names of nodes to 
connect to each of the signals. The Design Primitives li­
brary contains approximately 80 basic functional blocks 
needed for designing circuits in programmable logic 
products. 
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Design Primitives are divided into the following groups: 

• Input Primitives (INP,LINP) 

• Logic Primitives 
(AND,GND,CLKB,NOf, VCC,OR,NAND,NOR,XOR) 

• Equation Primitives (EQN) 

• IIO Primitives (JOJF, NOJF, NORF, RORF, etc) 

Refer to Appendix A for an explanation of the Primi­
tives used in this example. 

The logic is based on input clock transitions. At the rising 
edge of the clock we want the LEDs to generate a particu­
lar state depending on the input state. You want the output 
of the LEDs to follow the input, which is basically a 
D-TYPE FLIP-FLOP. You also require the feedback to 
generate the next state, which means that you should use a 
D-TYPE FLIP-FLOP with FEEDBACK or RORF as 
shown in Screen 4. 

NOTE 

,.he Logic Builder module starts with the la!j.t 
output entered. 

When you are prompted to select a primitive to drive 
DICE ID enter: 

Select a primitive to drive DICE1D~7: 
RORF <Enter> 

Now you are prompted for the remaining connections: 

For FBK: 1D <Enter> 

For OE, P, C: Press <Enter> C VCC, GND are 
the defaults l · 

For.D: IN1D <Enter> 

For CLK: CLOCK <Enter> 

SelPct a primitive to drive CLOCK: INP 
<Enter> 
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In: CLOCK <Enter> 

Select a primitive to drive IN1D: EQN 
<Enter> 

To save the configuration and return to iPLS menu you 
must press < F6> (Save-Exit). 

After you are prompted for the equation, type it in as de­
rived in the Problem Set-up section. Please note that "/" 
indicates a logical "NOf", "*" indicates a logical 
"AND", and " + " indicates a logical "OR". The equa­
tion is terminated by a ";" as shown in Screen 5. 

Note that you are saving the Advanced Design File (ADF) 
that is generated by the Logic Builder. 

You can print the ADF file that has been created at the end 
of this session if you so desire. You can use < FlO> 
when in the iPLS main menu to print the ADF file for a 
listing. You can verify your file with the DICE! .ADF file 
given in Appendix D. If you desire a listing, while you are 
in the iPLS main menu, type the following: 

IN1D = C1A * 18*1C * /1Dl; <Enter> 

The following prompts and design entries, as shown in 
Table 5, are needed to complete the design entries for 
DICElC, DICElB, and DICElA respectively. 

<F10> <Enter> 

PRINT DICE1 • ADF <Enter> 
The Logic Builder will stop prompting for primitives once 
you have entered the complete design. 

Press < F8 > to show the design so far as shown in 
Screen 6. 

Submitting the ADF to the LOC 

This ADF file is now compiled using the Logic Optimiz­
ing Compiler. To enter the ADF created with the Logic 
Builder module into the Logic Optimizing Compiler 
(LOC), press < F4 > to access the LOC menu. 

Press < F2 > to exit. 

The Logic Builder main menu is cleared, replaced by the 
Logic Builder exit menu. 

Tables. 

PROMPT USER ENTRY 
Select a primitive to drive 1C: RORF <Enter> 

Out: I>ICEJ.C <Enter> 
Oe: VCC<Enter> 
P: GNI> <Enter> 
(: GNI> <Enter> 
!): IN1C <Enter> 
Select a primitive to drive IN1C: £:QN <Enter> 

INJ.C: (1A*1B*/1C*/1I>l+(/1A*1B*1C*/1I>l+(1A*1B*1C*/1J)); 

<Enter> 

Select a primitive to drive 18: RORF <Enter> 
out: I>ICEJ.B <Enter> 
Oe: VCC <Enter> 
p: 6NI> <Enter> 
c: GNI> <Enter> 
!): IN1B <Enter> 

Select a primitive to drive IN1B: EQN <Enter> 

IN18: (1A*/1B*/1C*/1I>l+(/1A*1B*/1C*/1I>l+<1A*1B*/1C*/1I>l 

+(/1A*1B*1C*/1I>l+<1A*1B*1C*/1I>l;<Enter> 
Select a primitive to drive J.A: RORF <Enter> 
Out: I>ICEJ.A <Enter> 
Oe: - VCC <Enter> 
P: GNI> <Enter> 
c: GNI> <Enter> 
!): !NJ.A <Enter> 
Select a primitive to drive IN1A: EQN <Enter> 
!NJ.A: (/1A*1B*/1C*/1I>l+(/1A*1B*1C*/1I>l+(/1A*1B*1C*1I>l 

+(/1A*l1B*/1C*/1J)l;<Enter> 
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Logic Builder Main Menu: 
Flo 
Fa 
F3 
Flf 
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Screen 5. 

Once the LOC menu is displayed, you are prompted 
through the LOC menu functions as follows: 

The Input Format prompts you to specify your form of 
input: If input is in the form of a pinlist as output by 
DASH-2, enter P, if input is an Advanced Design File, 
enter an ADF or press <Enter> (ADF is the default). If 
output is a component list from PCAD, enter C. 

INPUT FORMAT: A <Enter> 

FILE NAME: DICE1 <Enter> 

. MINIMIZATION: <Enter to select default> 

INVERSION CONTROL: <Enter to select 
default> 

LEF ANALYSIS: <Enter to select default> 

After you have answered atl the prompts, you are asked if 
you wish to run under the above conditions as shown in 
Screen 7. 

DO YOU lllISH TO RUN UNDER THE ABOVE CONDI­
TIONS CY /Nlf 

Enter: Y 
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Finally you are prompted with: 

WOULD YOU LIKE TO IMPLEMENT ANOTHER DE­
SIGN CY/Nlf 

Enter: N 

Note that the LOC generates a synopsis of its progress as 
shown in Screen 8. You are returned to the iPLS menu. 

At the end of the LOC a JEDEC Standard File has been 
created which we will use in the Logic Programmer, 
DICE I.JED. . 

Also at the end of the LOC a report file is create9, 
DICEl.RPf, which gives the pin configuration menu of 
the device. The DICE! .RPI' file is given in Appendix D. 

Programming the EPLD 

Finally, you submit your design to the Logic Programmer. 
In order for you to use the Logic Programmer, you must 
have the prognunming card plugged in. Please refer to the 
Intel Programmable Logic Software User Manual for in­
stallation instructions. 

Alternatively you can use Intel's GUPI (Generic Universal 
Programmer Interface) to program your device. 
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The iUP-GUPI and assorted GUPI LQGIC adaptors pro­
vide an alternative programming solution for Intel's 
H-series and EPLD devices, when purchased with the 
iPLS. This complete set of software Is available without 
the Logic Programmer pod and the IBM interface card. 

While you are still in the iPLS menu, press < F5 > . ·This 
function allows you to access the Logic Programmer Soft­
ware. The Logic Programmer will now come up as shown 
in Screen 9. 
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Intel Programmable Logic Software 

ADF Minimization LEF-Analysis 
di.ce1 

***INFO-LOC-Begin execution 
***INFO-LOC-ADF converted to LEF 
***INFO-LOC-s.o.p. LEF produced 
***INFO-LOC-LEF reduced 
***INFO-LOC-LEF analyzed 
***INFO-LOC-Resource demand determined 
***INFO-LOC-Design fitting complete 
***INFO-LOC-JEDEC file output 

LOC cycle successfully completed 

Would you like to implement another design CY/NJ? 

' Screen 8. 

Use the cursor keys to select "Program Device" option. 

When you are prompted 

Enter JEDEC file name 

Enter: DICE1. JED <Enter> 

When you are prompted for: 

Select Device For Programming 

Enter: SCObO <Enter> 

When you are prompted for: 

Do you wish to enable verify protection? [YIN 1? 

Enter: N 

When you are prompted for: 

Do you wish to enable turbo-bit? [YI N]? 

Enter: N 

Once you have answered all the prompts, the device is 
programmed and ready to be used in an actual circuit, as 
shown in Screen 10. 

Exit from the Logic Programmer after saving the JEDEC 
file by using the "EXIT" option. 
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This completes part A of the design, which was to roll a 
single dice. The programmed device can be tested as de­
scribed in Appendix C. 

PARTB 

Now that you have a good understanding of the manner in 
which a .circuit is designed and also a good understanding 
of how the programming tools are used to program the 
device, you can proceed to the next step in the five stages 
of the dice design. According to the truth table generated 
in part A, the dice will roll a number between I and 6 
inclusive as long as you supply a power source. When you 
disconnect the power source, all the LEDs will tum off. 
This will not be much help since you can only see the dice 
roll, but not actually see a number displayed. 

Let us include an additional feature into the rolling dice. 
Let us include a switch to control the rolling and display 
of the dice. 

You could choose to gate the clock of the dice or add the 
necessary inputs to the product terms to effect this design. 
If you were to stop after this step, then gating the clock 
would be a simpler choice, however, you will require the 
dice to roll during part D of the design; so we will choose 
to add product terms at this stage. This also results in a 
better engineering solution since gated clocks often cause 
problems in large systems, and it has been shown that 
synchronous systems are more reliable. 
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Device: LOGIC PROGRAMMER 

Program Device 
file name [.JEDJ: DICE1.JED 

Directory of .JED files for: C:\IPLS 

Screen9. 

Designer: Your Name 
Company: Your Company 
Part •: 
Revision: 0. 0 
EPLD: SCObO 

Comment: PART A: DICE ROLLING 
LB Version 3.0, Baseline 17x, 9/2b/85 

the socket 

Screen 10. 
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Since you already have a proven design of a rolling dice 
from part A, we shall use the Logic Builder and edit that 
design. You may wish to save the original design at this 
stage. You can do this by using the <FlO> key in the 
Main Menu. Press < FI 0 > and issue the• following com­
mand before re-entering the iPLS menu: 

COPYDICE1·* DICE1A·* 

The truth table is shown in Table 6. 

Now you can use the iPLDS to design and program the 
device. 

Go through the same steps to program the device as in 
Part A of the design example. Use the Logic builder, the 
Logic Optimizing Compiler, and the Logic Programmer 
respectively. The Logic Optimizing Compiler and the 
Logic Programmer steps are identical to the correspond­
ing steps explained in part A of the design example. How­
ever, the Logic Builder will be used to. edit the existing 
file, DICE I, to include the switch feature as follows: 

Invoke the Logic Builder Menu from the iPLS main menu 
by pressing the < F3 > key. Once you obtain the Logic 
Builder Configuration Menu, type in DICE! as your input 
file name. 

Use (Shift)(F3) to get the Inputs option and then add 
switch at pin #2 to it. 

Inputs: CLOCK, SWITCHQl2 <Enter> 

Now press < F2 > to exit to the Logic Builder Main 
Menu and answer the prompts as given in Table 7. 

All that is left to do now is to edit the four equations, 
INIA, INIB, INIC, INID to add the SWITCH option to 
it. Edit the four equations as follows: 

Edit Function 

When you press the "Edit" function key, < F6 > , while 
in the main menu, the edit menu is displayed on the left 
side of the screen as shown in Screen 11. If you wish to 
edit an EQN Primitive displayed on the screen, press 
< F6 > . Then the equation is moved to the prompt line 
where it can be edited. 

Hence, the Boolean expressions for this case would con­
sider the situations of when the switch was ON as well as 
OFF. The Boolean equations would contain the expres­
sion for the switch as follows. 
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DICE1A ((1A*/1 B*/1C*/1D) + (1AU1 B*/1C*/1D) 
+(1A*1B*1C*/1D) 
+ (/1 A*/1 B*i1C*/1 D))*/SWITCH 
+ ((/1A*1B*/1C*/1D) + (/1A*1B*1C*/1D) 
+(/1A*1B*1C*1D) 
+ (11 A*/1 B*/1 C*/1 D))*SWITCH 

DICE1 B ((/1A*1 B*/1 C*/10) + (1A* 1B*i1C*l1D) 
+ (/1A*1B*1C*l1D) +(1A*1 B*1C*/1 D) 
+(11A*1B*1C*1D))*ISWITCH 
+((1A*l1B*l1C*/1D) 
+ (/1A* 1B*l1C*/1D) + (1A*1B*l1C*/1 D) 
+(/1A*1B*1C*/1D) 
+(1A*1B*1C*l1D))*SWITCH 

DICE1C ((/1A*1B*1C*/1D) 
+(1A*1B*1C*l1D) 
+(/1A*1B*1C*1D))*ISWITCH 
+ ((1A*1 B*/1 C*/1 D) + (/1A*1B* 1C*l1 D) 
+(1A*1B*1C*/1D))*SWITCH 

DICE1D (/1A*1B*1C*1D)*/SWITCH 
+(1A*1B*1C*/1D)*SWITCH 

The equation primitive must be displayed on the screen in 
order to edit that equation. In order to display the equa­
tion on the screen, use the "Find" command, < F5 >, to 
find it. 

The "Find" command prompts for a node name: then 
searches the design for that node and displays it. If the 
direction arrow points to the left, the primitive on the out­
put side of the node is shown. If the direction arrow points 
to the right, the first primitive on the input side is shown. 

After you have modified all four equations to include the 
SWITCH feature, return to the iPLDS main menu using 
the < F5 > key and save the design using the < F6 > key. 
You can verify your ADF file with the ADF file for part B 
given in Appendix D. 

The file is ready to be compiled using the LOC, and the 
device is ready to be programmed using the LP. 

The steps required to use the LOC and the LP are identi­
cal to the steps in part A. 

Now the device that has been programmed is ready to be 
tested. At this stage in the design, you have completed 
part B of the design which is to add a switch to give the 
roll/no-roll option. 

The programmed device can be tested as described in 
Appendix C. 

Let us summarize before moving on to the next part of the 
design. 
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Table 6. li"uth Table for DICE1 

Input State Output State 

SWITCH 1A 18 1C 1D 1A 18 1C 1D 1A 18 1C 1D 

Valid state Invalid state 

REMAIN IN THE SAME STATE 

0 1 0 0 0 1 0 0 0(1) 
0 0 1 0 0 0 0 0(2) 
0 1 0 0 1 0 0(3) 
0 0 0 0 0(4) 
0 1 0 1 0(5) 
0 0 1 0 1(6) 

CONTROL THE INVALID STATES 
0 0 0 0 0 0 0 0 
0 1 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 
0 0 1 0 1 0 0 0 0 
0 1 1 0 1 0 0 0 0 
0 0 0 0 0 0 0 
0 1 1 1 1 0 0 0 0 
0 0 0 0 0 0 0 0(1) 

CHANGE TO THE NEXT VALID STATE* 

1 0 0 0(1) 0 0 0(2) 
0 0 0(2) 1 0 0(3) 
1 0 0(3) 0 0(4) 
0 0(4) 1 1 0(5) 
1 0(5) 0 1 1 1(6) 
0 1(6) 0 0 0(1) 

CONTROL THE INVALID STATES 

0 0 0 0 0 0 0 
1 0 1 0 0 0 0 0 

1 0 0 0 0 0 0 0 
1 1 0 0 0 0 0 0 
1 0 0 0 0 0 0 

1 1 0 0 0 0 0 
0 0 0 0 0 0 

1 0 0 0 0 0 
1 1 1 1 1 0 0 0 0 
1 0 0 0 0 1 0 0 0(1) 

Note: This part of the truth table is identical to Table 3. 

We have briefly discussed the EPLD and the IPLDS fam- Builder, Logic Optimizing Compiler, and the Logic 
ily of parts. We have also defined the design problem. We Programmer. 
have implemented the design using the state equations and 
the truth table, edited an existing design to add features, Our logic in implementing the dice example is to use the 
and actually programmed a device using the Logic LED pairs in outputs IA, IB, IC, and ID respectively as 
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Table 7. 

Prom~s User En!.!l., 

Select a primitive for switchil2 to drive: INP <Enter> 
Out: SWITCH<Enter> 
Select a primitive for switch to drive: EQN<Enter> 

shown in Figure 8. These LEDs are lit up to generate 
numbers between 1 and 6 · inclusive. We are using a 
D-TYPE FLIP-FLOP to implement the truth table. The 
clock is a free running clock. A push button switch is also 
supplied to give the roll/no-roll option. Whenever the 
switch is ON, the LEDs roll, and when the switch is OFF, 
the LEDs display a number between I and 6, as long as 
the clock is supplied to the device. 

After seeing the dice roll and display a number, you can 
either quit or move onto parts C, D and E of the design 
process. The following three parts describe a versatile use 
of the EPLD concept. 

PARTC 

We are using an EPLD 5C060 which is a 24 pin, 600 gate 
device. It has four dedicated input pins and 16 
input/output pins. Up to this point you have used only one 
input pin which is the switch and only four input/output 
pins for the four LEDs IA, IB, IC, ID. 

/ 

Part C of the design is to include a second dice with the 
first dice. This is a step towards real-world application 
since dice are usually rolled in pairs. At the end of this 
section, you will have a pair of dice rolling and displaying 
a pair of numbers. All the conditions and truth tables and 
Boolean expressions that were designed for part B, hold 
good for DICE!. The equations for DICE2 would change 
slightly as explained below. 

You have designed a 6 state counter and can define a carry 
out (fortunately you can use state 6 and do not require 
extra logic). You can use the carry out as an enable input 
to form two cascaded counters. 

The carry out of 1 D is used as an enable input to DICE2. 
Hence, ID performs the same function as the push button 
switch performed in dice I. Therefore, whenever ID is 
enabled or logic high, DICE2 is enabled and rolls a num­
ber. DICE2 displays the number when ID is disabled or 
logic is low. This configuration is shown in Figure 9. 

Intel Programmable Logic System 

Logic Builder Main Menu 
F1 Help 
F2 Exit 
f3 Nelol 
F4 Open 
F 5 f'i.nd 
F6 Edit 
f7 conng 
F!! No1" List 
F9 Redraw 

--> 

1a 
1b [i] in1d 
1c 
1d 

inld=C1a•1b•1c•/1dl; 
inld=C/1a•1b•1c•1dl•/switch+(/1a•1b•1c•1dl•switch\ 

Screen 11. 
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Table 8. 

PROMPTS 
Find: 
CNow use the <cursor left> key to obtain the EQN Primitive.) 
Edit: 

IN1D= C/1A*1B*1C*lDl*/SWITCH+C1A*1B*1C*/1Dl*SWITCH;<Enter> 

Find: 
C Now use the <cursor left>.key to obtain the EQN Primitive.) 
Edit: 

IN1C = CC/1A*1B*1C*/1Dl+C1A*1B*1C*/1Dl+C/1A*1B•1C*1Dll*/SWITCH 
+CC1A*1B*/1C*/1Dl+C/1A*1B*1C*/1Dl+C1A*1B*1C•/1Dll*SWITCH; 
<Enter> 

Find: 
CNow use the <cursor left> key to obtain the EQN Primitive.) 
Edit: 

IN1B = CC/1A*1B*/1C*/1Dl+C1A•1B*/1C*/1Dl+C/1A*1B•1C•1Dl+C1A•1B*1C*/1Dl 
+C/1A*1B*1C*1D>l•/SWITCH 
+CC1A*/1B*/1C•/1Dl+C/1A*1B*/1C*/1Dl+C1A*1B*/1C*/1Dl+ 
C/1A•1B•1C•/1Dl+C1A*1B*1C•/1Dl>*SWITCH;<Enter> 

find: 
CNow use the <cursor left> key to obtain the EQN Primitive.) 
Edit: 
IN1A=CC1A*/1B*/1C•/1Dl+C1A*1B•l1C*/1Dl+C1A*1B*1C*/1Dl+ 
C/1A*/1B*/1C*/1Dll*/SWITCH+CC/1A•1B*/1C•/1Dl+C/1A*1B*1C*/1Dl 
+C/1A*1B*1C*1Dl+C/1A*/1B*/1C•/1Dll*SWITCH;<Enter> 

The two conditions obtained are as follows: 

When power is ON and lD is enabled, DICE2 will roll. 

When power is ON and lD is disabled, DICE2 will dis­
play. 

For DICE!, the logic conditions remain the same as in 
part A. Just as you used the switch to enable and disable 

(SWITCH) 
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CLOCK 

USER ENTRY 

IN1D <Enter> 

IN1C <Enter> 

IN1B <Enter> 

IN1A <Enter> 
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1B 

1C 

10 

1B 
CARRYOUT 

1C 2A 
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2 

2C 
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Figure 8. Figure 9. 
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DICEl, you will use the switch as well as the output of 
LED lD to enable and disable DICE2; because the num­
ber on DICE2 is a function of both the switch and the 
present state of LED lD, as explained above. 

Now write down the truth table since the state diagrams 
can easily be inferred from the truth table. Please note 
that the truth table is identical to the one for DICEl ex­
•cept for the switch input. For DICE2, you will have the 
combination of the switch and the lD, as shown in 
Table9. 

The Boolean expressions for part C will consider the situ­
ation when the switch is ON as well as OFF and also lD 

·enabled or disabled respectively. The Boolean equations 
will contain the expression for the switch and LED ID, as 
shown below. 

DICE2A = ((2A*'2B•i2C*'20)+(2A•2B•/2C•/20) 
+ (2A•2B•2C*'2D) + (/2A•/2B•/2C•/2D)) 
•(/SWITCH•/1 D) 
+ ((/2A•2B•/2C•/20) + (/2A•2B•2C•/20) 
+(/2A•2B•2C•2D) + (/2A•/2B•/2C•/20)) 
•(SWITCH•1D) 

DICE2B = ((/2A•2B•/2C•/2D) + (2A•2B•/2C•/20) 
+ (/2A•2B•2C•/2D) + (2A•2B•2C•/20) 
+(/2A•2B•2C•2D))•(/SWITCH•/1D) 
+ ((2A*'2B•/2C•/2D) 
+ (/2A•2B•/2C•/2D) + (2A•2B•/2C•/2D) 
+ (/2A•2B•2C•/2D) 
+(2A•2B•2C•/2D))*(SWITCH•1D) 

DICE2C = ((/2A•2B•2C•/20) + (2A•2B•2C•/20) 
+ (/2A•2B•2C•2D))•(/SWITCH•/1 D) 
+ ((2A•2B•/2C•/2D) 
+ (/2A•2B•2C•/2D) + (2A•2B•2C•/20)) 
•(SWITCH•1D) 

DICE2D = (/2A•2B•2C•2D)•(/SWITCH•/10) 
+ (2A•2B•2C•/2D)•(SWITCH*1 D) 

Now you can use the iPLDS to program and test the de­
vice as explained in appendix C. At this stage in design, 
you have completed part C of the design which is to add a 
. second DICE to the first one giving the the roll/no-roll 
option. 

·1n part C of the design process, you have used one dedi­
cated input which is the switch, and a total of eight output 
pins for the two pairs of LEDs, IA, lB, IC, lD and 2A, 
2B, 2C, 2D respectively. You have also used the RORF 
primitive, since the design logic was the same for DICE2 
as it was for DICE!. This leaves 3 dedicated inputs and 8 
1/0 pins on the 5C060 device. 

You can stop the design now or go onto part D which gives 
the next option, which is adding the spin. 
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PARTD 

This is the fourth step in our design process and adds the 
spin option to the two dice that are rolling when the switch 
is pushed and display a number when the switch is re­
leased. The logic used to implement the spin concept is as 
follows: 

When the power is ON and the switch is OFF, DICE! and 
DICE2 display a random number according to the logic 
defined in parts B and C respectively. 

But, when power is ON and the switch is ON, the two dice 
spin by lighting the LEDs B, C, and D. That is, DICEl 
will light LEDs lB, IC, lD while DICE2 will light LEDs 
2B, 2C, and 2D. This pattern on the LEDs will generate 
the spinning pattern. The logic is shown in the truth table 
in Tuble 10. The schematic is shown in Figure 10. 

As you can see from the truth table, when the present state 
is any of the three valid states, then the two dice will spin. 
The dice will also spin if the present state is an invalid 
state, because all the invalid states go to "O 0 0 O" in the 
next state. But from the truth table in Tub le IO, you see 
that this particular state is a valid state lighting LED C. 

The spin frequency should be chosen to be visually ap­
pealing and should be high enough to ensure randomness 
of the dice. If we use the "carry out" state ofDICE2, then 
the spin pattern will only change once for every combina­
tion of the two dice. This will ensure randomness. The 
"carry out" of DICE2 is signal 2d; we do not need extra 
terms to derive it. 

Thus we have achieved our objective of adding the spin­
ning option to the two dice. 

The Boolean equations tltat are obtained from the above 
truth table are as follows: 

SPIN1B = (SWITCH•2d•/S1D•/S1C•/S1B•S1A) 

SPIN1C = (SWITCH•2d•/S1D•/S1C•/S1B•/S1A) 

SPIN1D = (SWITCH•2d•/S1D•S1C•/S1B•/S1A) 

SPIN2B = (SWITCH•2d•/S2D•/S2C•/S2B•S2A) 

SPIN2C = (SWITCH•2d•/S2D•/S2C•/S2B•/S2A) 

SPIN2D = (SWITCH•2d•/S2D•S2C•/S2B•/S2A) 

Please note in the above equations that A, B, C, and D 
refer to both DICE! and DICE2. FOr DICE! the above set 
of equations would be IA, lB, IC, and lD. For DICE2 
the above set of equations would be 2A, 2B, 2C, and 2D 
respectively. SD is the feedback obtained from IN D of 
both DICE! and DICE2 respectively. If the switch is not 
ON, the dice will not spin and a random pair of numbers 
will be displayed by the two dice; but, ifthe switch is ON, 
then the two dice will spin according to the truth table and 
Boolean expression given in Tuble 10. 
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Table 9; "D'uth Table for DICE2 

Input State Output State 

(SWITCH*10) 2A 28 1C 20 2A 28 2C 20 2A 28 2C 20 

Valid state Invalid state 

REMAIN IN THE SAME STATE 

0 1 0 0 0 1 0 0 0(1) 
0 0 1 0 0 0 1 0 0(2) 
0 1 1 0 0 1 1 0 0(3) 
0 0 1 1 0 0 1 1 0(4) 
0 1 1 1 0 1 1 1 0(5) 
0 0 1 1 1 0 1 1 1(6) 

CONTROL THE INVALID STATES 
0 0 0 1 0 0 0 0 0 
0 1 0 1 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 
0 1 0 0 1 0 0 0 0 
0 0 1 0 1 0 0 0 0 
0 1 1 0 1 0 0 0 0 
0 0 0 1 1 0 0 0 0 
0 1 1 1 1 0 0 0 0 
0 0 0 0 0 1 0 0 0(1) 

CHANGE TO THE NEXT VALID STATE* 

1 1 0 0 0(1) 0 1 0 0(2) 
1 0 1 0 0(2) 1 1 0 0(3) 
1 1 1 0 0(3) 0 1 1 0(4) 
1 0 1 1 0(4) 1 1 . 1 0(5) 
1 1 1 1 0(5) 0 1 1 1(6) 
1 0 1 1 1(6) 1 0 0 0(1) 

CONTROL THE INVALID STATES 

1 0 0 1 0 0 0 0 0 
1 1 0 1 0 0 0 0 0 

1 0 0 0 1 0 0 0 0 
1 1 0 0 1 0 0 0 0 

1 0 1 0 1 0 0 0 0 

1 1 1 0 1 () 0 0 0 

1 0 0 1 1 0 0 0 0 

1 1 0 1 1 0 0 0 0 

1 1 1 1 1 0 0 0 0 

1 0 0 0 0 1 0 0 0(1) 

Note the extreme similarity between this truth table and the one given in Table 3. 
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· Table 10. Truth Table to Spin Two Dice spinning when the switch is on and displaying a number 

lnputS~te. Output State 

SWITCH A B c D A B c D 

CHANGE TO THE NEXT VALID STATE 

1 0 0 0 0 0 0 1 0 
1 0 0 0 1 0 1 0 0 
1 0 0 1 (} 0 0 0 1 
1 0 1 0 0 -0 0 0 0 

ROLLING INTO A VALID STATE 

1 1 0 0 0 0 0 0 0 
1 1 1 0 0 0 0 0 0 
1 1 0 1 0 0 0 0 0 
1 0 1 1 0 0 0 0 0 
1 1 1 1 0 0 0 0 0 
1 1 0 0 1 o. 0 0 0 
1 0 1 0 1 0 0 0 0 
1 1 1 0 1 0 0 0 0 
1 0 0 1 1 0 0 0 0 
1 1 0 1 1 0 0 0 0 
1 0 1 1 1 0 0 0 0 
1 1 1 1 1 0 0 0 0 

We have chosen the following two primitives for part D: 

Registered Output Registered Feedback (RORF) 

No output JK Feedback (NOJF) 

For the dice spinning option you will use the RORF and 
for the dice not spinning option you will use the NOJF;· 
while using the Logic Builder. 

When you add the spinning option to the pair of rolling 
dice, you obtain the following boolean equations. (These 
Boolean equations satisfy the requirements of the two dice 

ROLL 
LOGIC 

CARRY 
OUT 

ENABLE SPIN 
LOGIC 

when the switch is ofl). 

SPIN1A = (/SWITCH*1A) 

SPIN1B = (/SWITCH*1B) 
+ (SWITCH*2d*/S1D*/S1C*/S1B*S1A) 

SPIN1C = (/SWITCH*1C) 
+ (SWITCH*2d*/S1D*/S1C*/S1B*/S1A) 
+ (SWITCH*/2d*S1C) 

SPIN1D = (/SWITCH*1D) 
+ (SWITClh2d*/S1 D*S1 C*/S1 B*/S1A) 

SPIN2A = (/SWITCH*2A) 

SPIN2B = (/SWITCH*2B) 
+ (SWITCH*2d*/S2D*/S2C*/S2B*S2A) 

SPIN2C = (/SWITCH*2C) 
+ (SWITCH*2d*/S2D*/S2C*/S2B*/S2A) 

SPIN2D = (/SWITCH*2D) 
+ (SWITCH*2d*/S2D*S2C*/S2B*/S2A) 

At the end of the design step, you have completed all the 
design steps. You can now program the device using 
iPLDS. 

The correct ADF file is included in Appendix D for your 
reference. You can refer to it to verify the ADF file you 
have created. 

The programmed device can be tested on: 

• A PCB with slow clock 

For information on this board and on testing your design, 
please refer to Appendix C. 

It works! 

RE:.~~ERS t---~- DISPLAY 

2448 

Figure 10. 
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*LATE NEWS FLASH* 

The PCBs have been made and we have units in the field. 
Now Marketing wants the design updated! Field trials of 
the dice showed that the battery needed to last longer. A 
simple mod to the design, chop the drive to the LEDs, 
extends the battery life. 

This is very simple using the EPLDs. Reprogram the 
EPLD and test it. Imagine how difficult it would have 
been without using EPLDs. 

PART E: MORE POWER SAVINGS 

This step of the design process is to modify the existing 
circuit to add the power save feature which will extend the 
battery life. This can easily be done by chopping the drive 
to the LEDs. Chopping the drive to the LEDs can be done 
as follows: 

When you designed the circuit and implemented it using 
the iPLS, you have set the output enable (Oe) to VCC 
supply. This means that the LEDs are enabled 100% of 
the time. You can "chop" the drive to the LEDs with a 
conveniant high (above 50Hz) signal that will not be visi­
ble to the human eye. 

To reduce current consumption by the LEDs, modify 
the NETWORK: Section of the ADF as follows: 

1) Change the node name for the RORF Output Enables 
(Oe) from VCC to OE. 

2) Insert an OENB (Output Enable Buffer) primitive to 
allow the logic array to drive the output enables. 

3) Include an INP primitive to connect the output en­
able to an input pin. 

These changes can appear as follows: 

spinla, sla = RORF (in la, clock 1, GND, GND, OE) 

OE = OENB (OEN) 

OEN = INP (OEN) 

Remember to include ,OEN in your INPUTS: declara­
tion. The OEN input on the programmed part can now 
be connected to an appropriate clock signal to obtain 
the desired power savings. 

CONCLUSION 

You should now have a comprehensive knowledge of 
Intel's EPLD and iPLDS family of devices. 

With this knowledge you will be able to implement de­
signs using the iPLDS tools. 

Good Luck! 
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BASIC DEFINITIONS 

Logic Design - A systematic procedure for realizing 
specified tenninal characterisitics of digital networks, at 
either the device or system level. 

CLOCKED FLIP-FLOP - Output detennined by the 
leading or trailing edge of clock pulse. 

T FLIP-FLOP - Output changes value with every input 
clock pulse. 

T FLIP·FLOP 

D FLIP-FLOP - Output determined by the input signal 
when clock pulse present. 

x===:r:1 -__ : 
D FLIP.FLOP 

S-R FLIP-FLOP - Output states synchronized with the 
clock pulse and controlled by the input signals, S and R. 

S-R FLIP·FLOP 

J-K FLIP-FLOP - Output states synchronized with the 
clock pulse and controlled by the input signals, J and K. 

~=======~l~~i'""~1-~~~-A l ------A ...__,.9 .......... 
R 

J-K FLIP-FLOP 

COMBINATORIAL CIRCUIT - Output determined by 
current value of input signal. 

REGISTERED CIRCUIT - Output detennined by se­
quence of input signals. 

Intel Schematic Primitive - One of the basic functional 
blocks needed to design circuits for Intel programmable 
logic products. 

Truth Table - A list of all the input-output possibilities of 
a logic circuit. 

Boolean Logic - Describes logic that obeys the theorems 
of Boolean algebra. The Boolean portion of a design is 
that portion which can be implemented in the AND-OR 
matrix. 
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State Diagram - A diagram that shows the succession of 
output states through which the circuit passes as its input 
signals vary. 

INP-Input 

PIN·NAME c=:::::>-- 1 

INP 

Input Primitive 

GND-Ground 

GND 

Ground Signal Name 
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VCC-Signal 

Vee 

T 
Signal Name 

EQN - Equation 

0 = ARBITRARY BOOLEAN EXPRESSION; 

EQN 

Equation Name 

Registered Output Registered Feedback (RORF) 

F 

No Output Registered Feedback (NORF) 

NORI' 
F---~ 

AP-279 
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No Output JK Feedback (NOJF) 

NOJF 
F------' 

JK Output JK Feedback (JOJF) 

F------

Security Bit - A feature that prevents the device from 
being interrogated or being accidentally programmed. 

Turbo-bit - A control bit that allows you to choose the 
speed and .power characteristics of the device. If the in­
puts are static for approximately 50 ns and the Turbo-bit 
is not programmed, the device will enter power down 
mode. When the input changes, the device will take an 
extra 3-5 ns to wake-up and react to the change. Program­
ming the Turbo-bit inhibits the power down. 

Macrocell - A basic building block of Intel's program­
mable logic devices·. A macrocell consists of two sections: 
combinatorial logic and output logic. The combinatorial 
logic allows a wide variety of logic functions. The output 
logic has two data paths: one leads to the other macrocells 
or feeds back to the macrocell itself: the other is confi­
gured as a pin configuration acting as input, output, or 
bi-directional 1/0 port on the chip. 

Node - A wire connecting two or more primitives in a 
schematic. 

Pin - A node that is connected to an input or 110 primi­
tive on one end and a pin of the chip on the other end. 

Product tern (P-Term) - Two or more factors in a boolean 
expression combined with the AND operator consitutes a 
logic product term. 
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JEDEC Standard File - An. industry-wiqe standard for 
the transfer of information between a data preparation 
system and a logic device programmer. 

EPLD PROGRAMMING TECHNIQUES 

You can enter your design in the following ways 

1. BOOLEAN EQUATION - entering the design in 
BOOLEAN equations or expressions. 

2. NETLIST CAPTURE - selecting components and 
specifying interconnections until all elements are 
specified. 

3. SCHEMATIC CAPTURE - using a mouse and 
menu driven environment. 

4. STATE MACHINE - specifying states and condi­
tional branches and also inputs/outputs to the state 
machines. 
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COMPONENTS USED IN DESIGN 

In order to implement the EPLD program, you should use 
the following: 

• An 5C060 EPLD 

• A pair of seven discrete LEDs (Dice I, Dice 2) 

• A timer to generate a clock signal (NE555) 

• A voltage regulator to generate a fixed voltage of 5 
volts (7805) 

4-54 

• A push button switch to control the spinning 
mechanism 

• A 9-Volt DC battery source to generate the power 
supply 

• Capacitors Cl =0.1 MF, C2=0.0l MF 

• Resistors RI = 390K, R2 = lOOK 

• A PCB as explained in Appendix C 



:'\" 

.. 

:~.: 

APPENDIXC: 
PCB DESCRJPTION '~, > 
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4 

555 

U2 

VOLTAGE 
REGULATOR 

-----1 
8 

3 

v .. 

i-----------
: 1 

! 
!13 
~ 

..I 
5C060 

22 I 
21 I 
20 
19 

7 
8 
g 

10 11 
12 I 

DICE2 
i--;-----;--IE"1>"1-:1~-----;-Te-014----1 

LED11' • LED12 ! 
' LED9 ' • LED10 I 

LEDS _j 

• LED3 

' ·--------------------------
S cl U3 l L ~-""T":"1=-2- : 

T 

TIMER ---- ----E"i>i"o 
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Figure C·1 

You can test each part of your design using the PCB with a 
slow clock on it. 

The PCB is a board that is very specific to the dice exam­
ple. The PCB is portable, approximately 2" x 3". All 
the components. except for the EPLD are easily available 
commercially. A complete list of all the components that 
are required for the PCB is given in Appendix B. The 
circuit can easily be connected and tested using the ~ircuit 

diagram given below. After the four steps of the design 
are completed, the PCB can be used to throw a pair of 
dice in any home games such as Monopoly etc. 

After the EPLD is programmed using the Logic Program­
mer, it can be inserted into the PCB. For design steps B, 
C, and D the push button switch can be used to generate 
the roll/no-roll or the spin/no spin option. 
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Figure C-2 
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ADF FOR PART A: SINGLE DICE ROLLING 

Lakshmi Jayanthi 
DSO Applications 
February 19, 1986 

58060 

Part A: DICE ROLLING 

LB Version 3.0, Baseline 17x, 9/26/85 
PART: 5C060 

INPUTS: clt•c:kl 

OUTPUTS: dicela@10,dicelb@9,dicelc:@8,diceld@7 

NETWORI<: 

dicela,la 
diceib,lb 
dicelc,lc 
diceld,id 

RORF linla,clockl,GND,GND,VCCl 
RORF linlb,clockl,GND,GND,VCCl 
RORF linlc,clockl,GND,GND,VCCJ 
RORF linld,clock1,GND,GND,VCCI 

clock1 = INP lclockll 

EQUATIONS: 

inla =l/la*lb*/1c*/1dl 
+( /la*lb*lc•·/ldl 
+l/1a*lb·M-1c*ldl 
+l/1a•/1b*/1c*/ldl; 

inlb =lla*/1b*/lc*/1dl 
+C/la*lb*/lc*/ldl 
+lla*lb*/lc::*/ldl 
+C/la*lb*lc*/ldl 
+(1a*lb*1C*/1d); 

inlc =lla*lb*/lc*/ldl 
+l/1a*lb*1c*/1dl 
+( la*lb•·lc::*/ldl; 

inld =lla*lb*lc*/ldl; 

END$ 
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RPT FOR PART A: SINGLE DICE ROLLING 

Logic Optimizing Compiler Utilization Report 

***** Design implemented successfully 

Lakshmi Jayanthi 
DSO Applications 
February 19, 1986 

5C060 

Part A1 DICE ROLLING 

LB Version 3.0, Baseline 17x, 9/26/85 

5C060 

clockl -I 1 241- Vee 
GND -I 2 231- GND 
GND -I 3 221- GND 
GND -I 4 21 I- GND 
GND -I 5 201- GND 
GND -I 6 191- GND 

diceld -I 7 181- GND 
dicelc -I 8 171- GND 
dicelb -I 9 161- GND 
dicela -I 10 151- GND 

GND -111 141- GND 
GND -112 131- GND 

**INPUTS** 

Name Pin Resource MCell ti 

clockl INP 

**OUTPUTS** 

Name Pin Resource MCell ti 

diceld 7 RORF 13 

dicelc 8 RORF 14 

dicelb 9 RORF 15 

dicela 10 RORF 16 

PT er ms 

PT er ms 

1/ 8 

2/ 8 

2/ 8 

2/ 8 

Feeds: 
MCel l~ OE 'clear Clock 

CLKl 

Feeds: 
MCells OE Clear Clock 

13 
14 
15 
16 

13 
14 
15 
16 

13 
14 
15 
16 

13 
14 
15 
16 



**UNUSED RESOURCES*"· 

Name Pin Resource 

2 
3 
4 
5 
6 

11 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 

**PAR r UTILIZATION** 

22% Pins 
25% MacroCells 
5% Pterms 

MCel 1 

9 
10 
11 
12 

8 
7 
6 
5 
4 
3 
2 
1 

AP-;279 

PT er ms 

8 
8 
8 
8 

8 
8 
8 
8 
8 
8 
8 
8 

NOfE: Since part A is a simple design, the part utilization is very low. 
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AIJF FOR PART B: SINGLE DICE ROLL/NOT ROLL 

Lakshmi Jayanthi 
DSO Applications 
February 19, 1986 

5C060 

PART B: DICE ROLL AND NOT ROLL 

LB Version 3.0, Baseline 17x, 9/26/85 
PART: 5C060 

I~PUTS: clock1,switch@2 

OUTPUTS: d ice1a@10 ,d ice1b;i)9, d ice1c0>8, d ice1d;i)7 

NETWORK: 

dice1a,1a 
dice lb, lb 
dice1c,1c 
dice1d,1d 

RORF <in1a,clock1,GND,GND,VCCl 
RORF (in1b,clock1,GND,GND,VCCl 
RORF (in1c,clock1,GND,GND,VCCl 
RORF < i nld 1 c lc•ck 1, GND, GND, VCC l 

clock1 INP (clc•ck1) 

switch INP\switchl 

EQUATIONS: 

in1a =C/1a*/1b*/1c*/1d*/switchl 
+(la*/1b*/1c*/1d•/switchl 
+(1a*1b*/1c•/1d*/switchl 
+(1a*1b*1c*/1d*/switchl 
+(/1a*/1b*/1c*/1d*switch} 
+(/1a*1b*/1c*/1d*switchl 
+(/1a*1b*1C*/1d*switchl 
+(/1a•1b*1c*1d*switchl; 

in1b =(/1a•1b*/1c*/1d•1sw1"tc:111 
+(1a•1b*/1c*/1d*/switchl 
+l/1a*1b•1c*/1d•/switchl 
+(la*lb•lc*/ld*/switchl 
+(/1a•1b*1c•1d*/switchl 
+(la*/lb•/lc•/ld•switch) 
+(/1a*1b•/1c•/1d•switch) 
+(1a•1b•/1c•/1d•switchl 
+(/1a•1b•lc•/1d•switchl 
+(1a•lb•lc•/1d•switchl; 

in!c •(/1a•1b*1c•/1d•/switchl 
+(1a•lb•1c•/1d•/switchl 
+(/1a•1b•1c•ld*/switchl 
+(1a•1b•/1c•/1d•switchl 
+(/1a•1b•1c•/1d•switchl 
+(1a•1b•1c•/1d•switchl; 

in1d =(/1a*1b•1c•1d*/switchl 
+(1a•1b•lc•/1d•switchl; 

ENO$ 
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RPT FOR PART B: SINGLE DICE ROLL/NOT ROLL 

Logic Optimizing Compiler Utilization Report 

***** Design implemented sLtccessfully 

Lakshmi Jayanthi 
DSO Applications 
FebrLtary 19, 1986 

5C060 

PART B: DICE ROLL AND NOT ROLL 

LB Version 3.0, Baseline 17x, 9/26/85 

5L060 

clockl -: 1 24 - Vee 
switch -: 2 23 - GNO 

GND -: 3 22 - GND 
GND -: 4 21 - GND 
GND - 5 20 - GND 
GND - 6 19 - GND 

diceld - 7 18 - GND 
dicelc - 8 17 - GND 
dicelb -: 9 16 ·- GND 
dicela -: 10 15:- GND 

GND - : 11 141- GND 
Gi'ID - : 12 131- GND 

**INPUTS** 

Name Pin Resource MCell # 

clockl INP 

2 INP' 

Name Pin Resource MCell # 

diceld 7 RIJRF 13 

dic:elc 8 RDRF 14 

PTerms 

PTer·ms 

2/ 8 

31 8 
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Feeds: 
MCells DE Clear Clock 

13 
14 
15 
1.6 

Feeds: 
MCells OE Clear Clock 

13 
14 
15 
16 

1 :::i 
1 '+ 
15 
16 



dice1b 9 RORF 

dicela 10 RORF 

**UNUSED RESOURCES** 

Name Pin Resource 

3 
4 
5 
6 

11 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 

**PART UTILIZATION** 

27% Pins 
25% MacroCells 
10% Pterms 

15 

16 

MCell 

9 
10 
11 
12 

8 
7 
6 
5 
4 
3 
2 

AP.279 

3/ 8 

5/ 8 

PT er ms 

8 
8 
8 
8 

8 
8 
8 
8 
8 
8 
's 
8 

13 
14 
15 
16 

13 
14 
15 
16 

NOTE: Part B of the design gets more complicated, hence the part utilization of the pins, 

macrocells and the Pterms is higher. 
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AUF FOR PART C: TWO DI CE ROLLING 

Lakshmi Jayanthi 
DSO Applications 
February 19, 1986 

5C060 

PART C: TWO DICE ROLL AND NOT ROLL 

B Version 3.0, Baseline 17x, 9/26/85 
PART: 5C060 

INPUTS: clock1,clock2,switch@2 

OUTPUTS: dice1a@10,dice1b@9,dice1c@8,dice1d@7,dice2a@19,dice2b@20,dice2c@21,dicE 
2d;i)22 

NETWOR~'.: 

dice1a,1a 
dicelb, lb 
dice1c,1c 
dic:eld,ld 

RORF (inla,clockl,GND,GND,VCCI 
RORF Cin1b,c:loc:k1 1 GND,GND,VCCI 
RORF Cin1c,clock1,GND,GND,VCCI 
RORF Cin1d,clock1 1 GND,GND,VCCI 

dice2a,2a 
dice2b,2b 
dice2c,2c 
dic:e2d,2d 

RORF (in2a,c:loc:k2,GND,GND,VCCI 
RORF (in2b,c:loc:k2,GND,GND,VCCI 
RORF (in2c,clock2,GND,GND,VCCI 
RORF (in2d,cloc:k2,GND,GND,VCCI 

clc•ckl 
c: lc•ck2 

switch 

INP (clc•c:kl I 
INP Cc lc•ck2 I 

INF' <switch) 

EDUATIONS: 

inla =(/1a*/1b*/1c•/1d*/switch) 
+C1a*/1b*/1c*/1d*/switc:hl 
+(1a*1b*/1c*/1d*/switc:hl 
+C1a*1b*1c*/1d*/switc:hl 
+(/1a•/1b*/1c*/1d•sw1tch) 
+(/la*1b*/1c*/1d*switch) 
+(/1a*1b*lc*/1d*switc:hl 
+(/1a*1b•lc*ld*switchl; 

1nlb =1 1a•lb•/1c•/1d*/sw1tch) 
• (la+ lb• lc•ild•/sw1tch) 
+11la•lb•lc*/ld•/switch) 
•1la•lb•lc:•1ld•/sw1tc:hl 
+1 la•lb•lc:*ld•/switc:hl 
~c1a•1lb•/lc*/ld*switch) 

+1 la•lb•'lc•/ld•switch) 
+1la•lb•1!c•/ld•sw1tchl 
+1 la•lb•lc: .. /ld•switc:hl 
+ 1 1a•lb .. 1c•/ ld•sw1 tch); 

:nl~ =~ la•lb•lc•11d*/switchl 
~~la•lO•lc*/ld*/switch) 

+1/la•lb•lc•ld•/switc:hl 
+(1a .. 10 .. 1lc•/ld .. sw1tch) 
+>. la .. lb•lc•/ld•switch) 
~,la•lb*lc*/ld*switch); 

<ila•lo•lc .. ld•/switc:hl 
+1la•lb•lc:•/ld•switchl; 
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i~~a =1.2a•/2b•12c•/2d•/11d•switchll 
•i2a•/2b•/2c•/2d•/11d•switchll 
•12a•2b•/2c•/2d•/lld*switchll 
•12a•2b•2c•/2d•/11d•switchll 
•l/2a•/2b•/2c•/2d•l1d•switchll 
+(/2a•2b•/2c•/2d•lld•switchll 
+1i2a•2b•2c•/2d•l1d•switchll 
+1;2a•2b•2c•2d•l1d*switchll; 

in2o =C/2a•2b•/2c•/2d•/11d•switchll 
+(2a•2b•/2c•/2d•/lld•switchll 
+(/2a•2b•2c•/2d•/lld*?Witchll 
+(2a•2b•2c•/2d•/11d•switchll 
•1/2a•2b•2c•2d•/lld•switchll 
•'2a•/2b•/2c•/2d•lld•switchll 
+(/2a•2b•/2c•/2d•lld•switchll 
+ ( 2a•2b•/2c•/,2d•( ld•swi tch I I 
+l/2a•2b•2c•/2d•lld•switchll 
+12a•2b•2c•/2d•l1d*switchl); 

in2c =!/2a•2b•2c•/2d•/11d•switchll 
+12a•2b•2c•/2d•/~ld•switchll 
+'/2a•2b•2c•2d•/(ld•switchll 
+12a•2b•/2c•/2d•lld•switchll 
+l/2a•2b•2c•/2d•lld•switchll 
+12a•2o•2c•/2d•Cld•switch)l; 

•n2d =•/2a•2b•2c•2d•/lld•switchll 
+'2a•2b•2c•/2d•lld•switchll; 
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PART C: TWO DICE ROLL AND NOT ROLL 

B Version 3.0, Baseline 17x, 9/26/85 

5C060 

clc•ekl -: 1 241- Vee 
switch -: 2 231- GND 

GND -: 3 221- dice2d 
GND -: 4 21 l - dice2e 
GND -I 5 201- dice2b 
GND -I 6 191- dice2a 

diceld - 7 181- GND 
dicelc -I 8 171- GND 
dicelb -I 9 161- GND 
dieela -: 10 15:- GND 

GND - l 11 141 ·- GND 
GND -: 12 131- elc•ck2 

**INPUTS** 

Name Pin Resource MCell # 

clc•ckl INP 

switch 2 INP 

clock2 13 INP 

**OUTPUTS** 

Name Pin Resource MCel l # 

diceld 7 RORF 13 

PTerms 

2/ 8 

4-67 

Feeds: 
MCells OE Clear Clock 

1 
2 
3 
4 

13 
14 
15 
16 

Feeds: 

CL~::1 

CLl<2 

MCells OE Clear Clock 

1 
2 
:3 

·. 4 
13 
14 
15 
16 
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dicelc 8 RORF 14 3/ 8 13 
14 
15 
16 

dice lb 9 RORF 15 3/ 8 13 :..;:,:;·· 

14 
15 
16 

dice la 10 RORF 16 5/ 8 13 
14 
~5 
16 

dice2a 19 RORF 4 7/ 8 1 "' 
2 
3 
4 

dice2b 20 RORF 3 4/ 8 1 -
e 
3 
4 . H 

dice2c 21 RORF 4/ 8 1 
,; ·2 

3 
4 

dice2d 22 RtJRF 3/ 8 1 
2 
3 
4 

**UNUSED RESOURCES** 
J 

Name Pin Resource MCell PT er ms 

3 9 8 
4 10 8 
5 11 8 
6 12 8 

11 
14 ..: 

15 8 8 
16 7 8 
17 6 8 

18 5 8 
23 

**PART UTILIZATION** 

50% Pins 
50% MacroCells 
24% Pterms 

NOl'E: in part C of the design you have added the second dice. Hence you can see that fifty 
percent of the device has been used. 
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PART D: TWO DICE SPINNING 
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PART: 5C060 

INPUTS: clock1,clock2,switch@2 

AP.279 

OUTPUTS: spin1a@10,spin1b@9 1 spin1c@8 1 spin1d@7,spin2a@l9,spin2b@20,spin2c@21,spir 
2d@22 

NETWORK: 

la NOJF lin1a,clock1 1 in11a,GND,GND> 
lb NOJF linlb,clockl,inilb,GND,GND> 
le NOJF lin1c,clock1,in1lc,GND,GND> 
id NOJF linld,clockl,inlld,GND,GNDI 

2a NOJF lin2a,clock2,in22a,GND,GND> 
2b NOJF lin2b,clockE,in22b,GND,GNDI 
2c NOJF lin2c,clock2,in22c,GND,GND> 
2d NOJF I in2d ,clc•ck2, in22d ,GND,GND) 

in1 la 
inllb 
in11c 
i.nl id 

in22a 
in22b 
in22c 
in22d 

NOT< inlal 
NOT< inlb I 
NOT< inlc> 
NOTlinld) 

NOT<in2a> 
NOT< in2b > 
NOT< in2c) 
N0Tlin2d) 

spinla,sla 
spinlb,slb 
spin1c,s1c 
spinld,sld 

= RORF 
RORF 
RORF 
RORF 

lins1a,clock1,GND,GND,VCC) 
linslb,clockl,GND,GNb,VCCI 
Cinslc,clockl,GND,GND,VCC> 
linsld,clockl,GND,GND,VCC) 

spin2a,s2a 
spin2b,s2b 
spin2c,s2c 
spin2d,s2d 

RORF 
RORF 
RORF 
RORF 

lins2a,clock2,GND,GND,VCC> 
<ins2b,c:lock2,GND,GND,VCC> 
lins2c,clock2,GND,GND,VCC> 
<ins2d,clock2,GND,GND,VCC> 

clock! 
clock2 

switch 

INP lcloc:kl) 
INP (c:lc•ck21 

INP <switch) 

EQUATIONS: 

inia =l/la*/lb*/lc*/id*/switch) 
+lla*/1b*/1c*/1d*/switch) 
+(la*lb*/lc*/ld*/switchl 
+11a*lb*lc*/1d*/switch) 
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+l/1a•/1b•/1c•/1d•switchl 
+(/la•lb•/lc•/ld•switchl 
+l/la•lb•lc•/ld•switchl 
+(/la•lb•lc•ld•switchl; 

inlb =l/la•lb•/lc•/ld•/switchl 
+lla•lb•/lc•/ld•/switchl 
+l/la•lb•lc•/ld•/switchl 
+lla•lb•lc•/ld•/switchl 
+l/la•lb•lc•ld•lswitchl 
+lla•/1b•/lc•/1d•switchl 
+l/la•lb•/lc•/ld•switchl 
+Cla•lb•/lc•/ld•switchl 
+l/la•lb•lc•/ld•switchl 
+(1a•lb•lc•/ld•switchl; 

inlc =l/la•lb•lc•/ld•/switchl 
+lla•lb•lc•/ld•/switchl 
+l/la•lb•lc•ld•/switchl 
+lla•lb•/lc•/ld•switch) 
+l/1a•1b•lc•/ld•switchl 
+lla•lb•lc•/ld•switchl; 

inld =l/1a•1b•1c•ld•/switchl 
+(1a•1b•lc•/1d•switchl; 

in2a =l/2a•/2b•/2c•/2d•/lld•switchll 
+12a•/2b•/2c•/2d•/lld•sw1tchl' 
+(2a•2b•/2c•/2d•/lld•switchll 
+(2a•2b•2c•/2d•/lld•9witchll 
+(/2a•/2b•/2c•/2d•l1d•switchll 
+C/2a•2b•/2c•/2d•Cld•switchll 
+l/2a•2b•2c•/2d•lld•switchll 
+l/2a•2b•2c•2d•l1d•switchll; 

in2b =l/2a•2b•/2c•/2d•/11d•switchll 
+12a•2b•/2c•/2d•/lld•switchll 
+l/2a•2b•2c•/2d•/lld•switchll 
+(2a•2b•2c•/2d•/11d•switchll 
+l/2a•2b•2c•2d•/11d•switchll 
+(2a•/2b•/2c•/2d•lld•switchll 
+l/2a•2b•/2c•/2d•lld•switchll 
+12a•2b•/2c•/2d•lld•switchll 
+(/2a•2b•2c•/2d•lld•switchll 
+12a•2b•2c•/2d•lld•switchlJ; 

in2c =l/2a•2b•2c•/2d•/lld•switchll 
+C2a•2b•2c•/2d•/Cld•switchll 
+C/2a•2b•2c•2d•/11d•switchll 
+12a•2b•/2c•/2d•l1d•switchll 
+l/2a•2b•2c•/2d•l1d•switchll 
+12a•2b•2c•/2d•lld•switchll; 

1n2d =l/2a•2b•2c•2d•/11d•switchll 
+C2a•2b•2c•/2d•l1d•switchll; 

l/switch•lal; insla 
ins lb 

inslc 

insld 

l/switch•lbl 
+IC2d•switchl•s1d•/slc•/s1b•/slal; 
C/switch•lcl 
+112d•switchl•/s1a•/s1b•/slc•/s1dl; 
(/switch•ldl 
+Cl2d•switchl•/sla•/s1b•slc•/s1dl; 

ins2a 
ins2b 

ins2c: 

ins2d 

END$ 

(/switchi<·2al; 
l/switch•2bl 
+112d•switchl•s2d•/s2c•/s2b•/s2al; 
l/switch•2c::I 
+112d•switchl•/s2a•/s2b•/s2c•/s2dl; 
l/switch•2dl 
+112d•switchl•/s2a•/s2b•s2c•/s2dl; 
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5C060 

PART: 
5C060 

INPUTS: 

clock!, clock2, switch@2 

OUTPUTS: 

spin1a@10, spinlb@9, spin1c@8, spinld@7, spin2a@19, spin8b@20, 
spin2c@21, spin2d@22 

NETWORK: 

clock! 
clc•ck2 

switch 

spin1a, 
spin1b, 
spinlc, 
spinld, 

spin2a, 
spin2b, 
spin2c, 
spin2d, 

Y. *** 

INP<clc•ckl > 
INP<clock2l 

INP<switchl 

s1a RORF<insla, 
s1b RORF < i ns1b, 
sic RORF(ins1c, 
sld RORF < ins 1 d , 

s2a R.DRF ( i ns2a, 
s2b RORF < i ns2b , 
s2c RORF < i ns2c , 
s2d RDRF<ins2d 1 

clock!, GND, 
clock!, GND, 
clock!·, GND, 
clockl, GND, 

clc•ck2, GND, 
clock2, GND, 
clc•ck2, GND, 
clock2, GND, 

Resource, NOJF, was minimized 

2d = NORF < •• SGOO?D, clc•ck2, GND, GND> 

Y. **-M· Resciurce, NOJF, was minimized 

2c = NOTF< •• SG006D, clock2, GND, GNDl 

Y. *** Resciurce, NOJF, was minimized 

2b ·- NORF< •• SG005D, clc•ck2, GND, GND> 

Y. *** Resource, NOJF, was minimized 

2a = NORF < •• SG004D, clock2, GND, GNDl 

Y. *** Resciurce, NOJF, was minimized 

ld = NORF ( •• SG003D , clock!, GND, GND> 

Y. *** Resciurc:e, NOJF, was minimized 

le = NORF< •• SG002D, clockl, GND, GND> 

GNO, VCC) 
GND, VCc> 
GND, ·VCCl 
GND, VCC> 

GND, VCCl 
GND, VCC> 
GND, VCCl 
GND, VCC) 

to NORF *** Y. 

tc• NOTF '*'** Y. 

to NORF *** Y. 

to NORF *** Y. 

tc1 NORF *'*'* % 

to NORF ·•** Y. 
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X *** Resource, NOJF, was minimized to NORF *** X 

lb = NORF< •• SG001D 1 clock1, GND, GND> 

X *** ResoLtrce, NOJF, was minimized tc• NORF **·* X 

la= NORF( •• SGOOOD, clock!, GND, GND> 

EQUATIONS: 

ins2d = switch' * 2d 
+ 2d *switch* s2a' * s2b' * s2c * s2d'; 

ins2c = switch' * 2c 
+ 2d *switch* s2a' * s2b' * s2c' * s2d'; 

ins2b = switch' * 2b 
+ 2d *switch* s2d * s2c' * s2b' * s2a'; 

ins2a = switch' * 2a 

ins1d .. switch' * 1d 
+ 2d *switch* s1a' * s1b' * s1c * s1d'; 

ins1c = switch'* 1c 
+ 2d *switch* s1a' * s1b' * s1c' * s1d'; 

ins1b = switch'* 1b 
+ 2d *switch* s1d * s1c' * s1b' * s1a'; 

insia = switch' * la; 

•• SGOOOD la' * lb' * le' * ld' 
+ la * le' * ld' * switch' 
+ la' * lb * ld' * switch 
+ la * lb * Id' * switch' 
+ la' * lb * le * switch; 

.. SGOOlD lb* id' 
+ lb * la' * le * switch' 
+ la * le' * id' • switch; 

•• SG002D ic *lb* id' 
+ le * ia' * lb *switch' 
+ la * lb * ld' * switch; 

•• SG003D id* la' *lb* ic *switch' 
+ ld' * la * lb * le * switch; 

•• SG004D 2a' * 2b' * 2c' * 2d' 
+ 2a * 2c' * 2d' * id' 

•• SG005D 

+ 2a * 2c' * 2d' * switch' 
+ 2a * 2b * 2d' * id' 
+ 2a * 2b * 2d' * switch' 
+ 2a' * 2b * 2d' * ld * switch 
+ 2a' * 2b * 2c * ld * switch; 

2b * 2d' 
+ 2b * 2a' * 2c * ld' 
+ 2b * 2a' * 2c * switch' 
+ 2a * 2c' * 2d' * ld * switch; 
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•• SG006D 2c * 2b' 
+ 2c * 2a * 2d 
+ 2c * 2d * ld * switch 
+ 2c' * 2a * 2b * 2d' * .1d * switch; 

•• 500070 = 2d * 2a' * 2b * 2c *switch' 
+ 2d'* 2a' * 2b * 2c * 1d' 
+ 2d' * 2a * 2b * 2c * 1d * switch; 

NarE: PLease note how the IPLS software has simplified the equations for you. You need not 
worry about minimization. The complicated Boolean expressions have been minimized to a 
great extent. 
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5C060 

PAl-<T D: TWO DICE SPINNING 

8 Version 3.0, Baseline 17>:, 9/26/85 

5C060 

c:lockl -: 1 24:- Vee 
&witch ':""I 2 231- GND 

RESERVED -: 3 22:- spin2d 
RESERVED -: 4 21:- spin2c 
RESERVED -: 5 ·20: - spin2b 
RESERVED -: 6 19:- spin2a 

spinld -: 7 1a:- RESERVED 
!!Ip i nlc: -: 8 17:- RESERVED 
spinlb -: 9 16:- RESERVED 
spinla -I 10 151- RESERVED 

GND -: 11 141- GND 
GND -I 12 131- c:loc:k2 

**INPUTS** 

Name Pin Resource MCel l # 

c:loc:kl INP 

switch e INP 

c:loc:k2 13 INP 

·, ·•:. 

PT er ms 

.4.74 

,. ~ ! . l 

Feeds: 
MCel ls OE Clear· Cli:•c:k 

CLK1 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
H:! 
13 
14 
15 
16 

CU'.2 
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**OUTPUTS** 

Feeds: 
Name Pin Resource MCel 1 # PTerms MCells OE Clear Cleock 

sp i n1d 7 RORF 13 2/ 8 13 
14 
15 

spinlc 8 RORF 14 2/ 8 13 
14 
15 

spinlb 9 ROF~F 15 2/ 8 13 
14 
15 

spinla 10 RORF 16 1/ 8 13 
14 
15 

spin2a 19 RORF 4 1/ 8 1 
2 
3 

spin2b 20 RORF 3 2/ 8 1 
2 
3 

spin2c 21 RORF 2 2/ 8 1 
2 
3 

spin2d 22 RORF 2/ 8 1 
2 
3 

**BURIED REGISTERS** 

Feeds: 
Name Pin Resciurce MCel 1 # F'Terms MCells OE Clear Clc•ck 

18 NORF 5 31 8 
5 
6 
7 
8 

17 NORF 6 4/ 8 2 .,. 
"' 
6 
'7 
8 

16 NORF 7 4/ 8 3 
5 
6 
7 
8 
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15 NORF 

NORF 

4 NORF 

5 NORF 

6 NClRF 

**UNUSED RESOURCES** 

Name Pin Resource 

11 
14 
23 

**PART UTILIZATION** 

86X 
1001. 
35% 

Pins 
MacroCells 
Pterms 

AP-279 

8 7/ 8 

9 

10 3/ 8 

3/ 8 

12 5/ 8 

MCel 1 PTerms 

4 
5 
6 
'7 
8 

5 
6 
7 
8 
9 

1 (I 
11 
12 
1 :3 

9 
10 
11 
1 i:'. 
14 

9 
10 
11 
12 
15 

9 
10 
11 
12 
16 

NOfE: Part D of the design example utilizes the device in a very optimum manner. You have 
utilized all the macrocells and also 86 % of the pins but only 35 % of the product terms. 

You have not used three of the input pins. 

Consider this: 

Make these three pins a mode select on this dice example - if all of these three additional 
inputs are high then the dice will function as described (this condition must be added to each 
product term). You now have seven other modes in which to operate this DICE. Anyone want 
to "load" the odds for "boxcars" or "snake-eyes"? You have 65 % more product terms to use 
so you can be very creative. What else could you add to this EPLD? 
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ADDITIONAL PUBLICATIONS 

The following publications available from Intel contain additional information on Intel's EPLD family of parts and also on 
the iPLDS system. 

• 5C0311032 data sheet, order number 290110-001 

• 5 C(){]()/()1)0 data sheet, order number 290104-002 

• 5C(){]() errata sheet, order number 2906030-001 

• 5Cl21 data sheet, order number 290098-002 

• iPWS data sheet, order number 280168-002 

• Intel Programmable Logic Software User Manual, order number 166612 

The PCB card and diskette with pre-entered design files may be obtained through Intel's Literature Distribution 
for a nominal fee. To order, request: 

iPLDS DICE DEMO BOARD 

Please write to: 

Intel Literature Distribution 
SC6-714 
3065 Bowers Avenue 
Santa Clara, CA 95051, 

or call toll-free (800) 548-4725 for additional information. 
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INTRODUCTION 

The iPLS II (Intel Programmable Logic Software) Log­
ic Optimizing Compiler includes a Macro Expander 
that supports the use of macros in EPLD designs. This 
application note shows how to use the TTL and Gate­
Array macros available from Intel with ADFs created 
by a text editor. Included are descriptions of macro file 
support, guidelines for using macros, and three design 
examples. 

OVERVIEW 

iPLS II allows designers to include macro calls in de­
sign files to implement common circuit functions. Mac­
ro calls are subsequently expanded by the LOC (Logic 
Optimizing Compiler) into ADF network and/or equa­
tion entries required to perform the desired functions. 
Use of macros allows designs to proceed at a high level, 
which simplifies and shortens the design process. Mac­
ros can be connected together or used in conjunction 
with standard iPLS II EPLD primitives. Designing 
with macros is analogous in many ways to using sub­
routines in software. 

Macros can be used in ADFs (Advanced Design Files) 
created by a text editor, or by several schematic capture 
software products. This application note covers use of 
macros in ADFs created by a text editor. Macro sup­
port at this level includes the following: 

• A TTL macro library (TTL.LIB) for designing with 
common TTL circuit equivalents 

• A gate-array macro library (INTEL.LIB) for de­
signing with common gate-array primitives. 

• A Macro Expander in the LOC that expands macro 
calls in ADFs with the contents of the correspond­
ing macros from libraries. 

Figure 1 shows text editor/ ADF macro support for 
iPLS II. Note that the ADF can be created by any 
standard ASCII text editor (text editor supplied by 
user). Creation of user-defined macros is covered in ap­
plication note, AP-312 "Creating Macros for EPLD 
Designs'', order number 292040. Use of macros with 
schematic capture software is covered in the documen­
tation for the respective software package. 

This note discusses use of macros under the following 
headings: 

• Macro Libraries, briefly describes the two libraries 
available from Intel. 

• Using Macros, describes macro files, how to call 
macros, the process of macro expansion, calling 
multiple macro calls, and some basic guidelines to 
follow and pitfalls to avoid. 

• Three examples showing use of TTL macros, gate 
array macros, and mixing macros and EPLD primi­
tives. 

MACRO LIBRARIES 

Intel offers two macro libraries: a TTL Library and a 
Gate Array Library. 

TTL Macro Library 

A TTL macro library (TTL.LIB) is available from Intel 
to support design entry using familiar 74-series logic 

IPLS Il LOC 

TEXT 
EDITOR ADF 

MACRO ESPRESSO 
FITTER JEDEC EXPANDER MINIMIZER 

MACRO 
• • LIBRARIES 
: TTL 
: GATE ARRAY 
! ......... .:..•,.._ __ USER 

292039-1 

Figure 1. Text Edltor/ADF Macro Support for IPLS II 

• on 
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devices. The library contains macros that implement 
the most widely used 74-series device functions as well 
as macros for some members of other logic families. 
Each device in the library is supported by a .DOC file. 
The .DOC file describes the macro syntax and lists any 
notable differences between the macro implementation 
and the TIL part. 

Gate Array Macro Library 

A Gate Array macro library (INTEL.LIB) is available 
from Intel to support design entry using familiar gate 
array design primitives. These macros implement al­
most all of the gate array macrocell functions in the 
Intel Gate Array Macrocell Library. The macros are 
supported by the "Intel Gate . Array Library 
User Handbook" document file (filename 
GA_USRBK.LST). 

USING MACROS 

The iPLS II Macro Expander is automatically invoked 
by the LOC when an ADP is submitted to the compil­
er. When invoked, the Macro Expander identifies mac­
ro calls in ADFs, searches macro libraries for a corre­
sponding macro, and expands the call with ADP net­
work and equation entries from the macro file. The 
expanded file is then compiled normally. 

Macro Flies 

Figure 2 shows the macro file for a 74138 TIL device, 
a commonly used one-of-eight decoder. Note that the 
first line contains the name and 1/0 signals for the .. 
device. Signals are listed in the order in which they 
appear on the actual TIL device, including VCC and 
GND (i.e., A = pin 1, B = pin 2, ... , VCC = pin 16). 
The sequence of signals in this line determines how the 
macro is "called" from an ADP. 

Some of the macros in the TTL library have an "X" 
suffix appended to the filename, for example 74138X. 
This suffix indicates that the macro is device-specific 
(not supported on all EPLDs) or that there is some 
difference from the TIL device. This information is 
described in the .DOC file for each macro. 

The second line of the macro file contains ddaults for 
each input and place holders (blanks) for each output. 
The default for an input sets the input to an intelligent 
level (i.e., enables are enabled, clears, preset, loads are 
disabled, etc.). 

Macro files can contain a Network section, an Equation 
section, or both. A Network section is not needed when 
the macro functions can all be implemented in Boolean 
equations. When used, the Network section contains 
EPLD design primitives. An Equations section is not 
needed when the macro functions can all be implement­
ed in the Network sectio11. Macro files end with the 
keyword "ENDEF'. 

Macro Calls 

All macro calls appear in the Network section of an 
ADP. Macro calls use the same part/function name 
and signal sequence used on the first line of the macro 
file. The signal names in the macro and the macro call 
do not need to match, but the order of signals in the 
call is crucial to proper implementation of the macro 
function. For example, the macro call for the 74138 
device could be any one of the following examples: 

74138(A,B,C,G2A,G2B,Gl,Y7,GND,Y6,Y5, 
Y4,Y3,Y2,Yl,YO,VCC) 

74138(Dl,D2,D3,ENl,EN2,EN3,07,GND,06, 
05,04,03,02,0l,OO,VCC) 

74T38(A,8,C,nG2A,nG28,GT,nY7,GND,nYS.nY5,nY4,nY3,nY2,nYT,nYO,VCC) 
DEFAULT:(GND,GND.GND,GND,GND,VCC,.GND,,,,,,,,VCC) 

NETWORK: 

EQUATIONS: 

nYO • l(IA * 18 * IC* lnG2A * lnG28 *GT); 
nYT - !(A* 18 * IC* !nG2A. !nG28 *GT); 
nY2 • !(IA* 8 * IC* lnG2A * lnG28 *GT); 
nY3 - !(A. 8. IC. lnG2A. lnG28. GT); 
nY4 - !(IA. 18. c. lnG2A. lnG28. GT); 
nY5 • !(A. 18. c. lnG2A * lnG28. GT); 
nYS • !(IA* 8 * C * lnG2A * lnG28 *GT); 
nY7 - l(A. 8 * c. lnG2A * lnG28. GT); 

ENDEF 
s 

Figure 2. Sample TTL Macro Fiie (74138.DEV) 
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74138(A,B,C,ENA,ENB,ENC,Y7,GND,Y6,Y5, 
Y4,Y3,Y2,Yl,YO,VCC) 

In each case, the part name corresponds to the macro 
part name. The names of the signals differ, but the or­
der of signals match the macro. During processing, the 
Macro expander assigns node connections between the 
macro call and the macro tile based on the positions of 
signals, not the names of the signals. For example, note 
the following macro call to macro tile signal assign­
ments: 

ADF MACRO CALL 74138 (A, B, C, ENI, EN2, EN3, YCS, ... 

ttt t t ·t t 
MACRO FILE SYNTAX 74138 (A, B, C, nG2A, nG2B, GI, nY7, ... 

292039-3 

TIL macro signals originating outside the target EPLD 
require a prior INPlIT macro call in. the Network sec­
tion. All signals used as outputs require a prior OUT­
PlIT macro call in the Network section. Figure 3 shows 
a sample ADF that uses the 74138 macro. Each input is 
listed in the INPUTS: declaration and has an INPlIT 
macro call. Outputs are listed in the OUTPUTS: decla­
ration and have OlITPlIT macro calls. (EPLD INP 
and CONF primitive statements may also be used in 
place of INPlIT and OlITPUT macro calls, if desired.) 

YOUR NAME 
YOUR COMPANY 
DATE 
I 
A 
5C060 
One-of-Eight Decoder 

OPTIONS: TURBO-OFF 
PART: 5C060 
INPUTS: A,B,C,G2A,G2B,G1 
OUTPUTS: Y7,Y6,Y5,Y4,Y3,Y2,Yl,YO 

NETWORK: 

INPUT(A,A) 
INPUT(B,B) 
INPUT(C,C) 
INPUT(G2A,G2A) 
INPUT(G2B,G2B) 
INPUT(G1 ,GI) 
OUTPUT(Y7,Y7) 
OUTPUT(Y6,Y6) 
OUTPUT(Y5,Y5) 
OUTPUT(Y4,Y4) 
OUTPUT(Y3,Y3) 
OUTPUT(Y2,Y2) 
OUTPUT(YI, YI) 

Gate arrays support a much richer selection of input 
and output types than EPLDs. Gate array signals origi­
nating outside the target gate array device require the 
appropriate gate array input or output macro calls. 
When using gate array macros with EPLDs, the 1/0 
macros are implemented in terms of EPLD primitives. 
Note that when designs targeted for gate arrays are 
partitioned for multiple EPLDs, many internal gate ar­
ray signals are transformed into EPLD input and out­
put signals. These signals must be supported by INPlIT 
and OlITPlIT macro calls. 

Macro Expansion 
When the Macro Expander is invoked (by the LOC), it 
expands macro calls with the ADF network. and/or 
equations entries from macro libraries (the ITL library 
in the case of the 74138). The Macro Expander 
searches libraries in' the following order: 

• user libraries (filename.LIB) 

• TIL macro library (TIL.LIB) 

• gate-array library (INTEL.LIB) 

First, the Macro Expander searches in the current di­
rectory for MACRO.LIB, then along the "IPLS" envi­
ronment variable for the user libraries specified there. 
Next, it searches for TIL.LIB in the IPLSII directory. 
Finally, it searches for INTEL.LIB in the IPLSII direc­
tory. The first occurrence of a macro is used. 

OUTPUT(YO,YO) VCC) 
74138(A,B,C,G2A,G2B,G1,Y7,GND,Y6,Y5,Y4,Y3,Y2,Yl,YO, 

ENDS 292039-4 

Figure 3. ADF Fiie Calllng the 74138 Macro 
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The Macro Expander uses the. ADP Network and 
Equation entries from the macro libraries and assigns 
the appropriate primitives for INPUT and OUTPUT 
calls. INP primitives are assigned to replace the IN­
PUT macro calls. The OUTPUT calls are assigned 
primitives with output pins and output enables are sup­
plied where needed. 

Combination of primitives is automatically performed 
when needed. For example, when a feedback primitive 
such as a NORF feeds an output primitive such as a 
RONF, the Macro Expander combines the two primi­
tives into a RORF. Combination of primitives con­
serves resources and results in the shortest possible de­
lay. path through the device. 

During macro expansion, unused nodes are eliminated. 
For example, the VCC and GND nodes that corre­
spond to TTL power and ground pins are eliminated. If 
an input node is not connected to a node in the ADP, 

NETWORK: 

% INPUT(A,A) % 
%"% A•INP(A) 
% INPUT(B,B) % 
%"% B•INP(B) 
% INPUT(C,C) % 
%•% C•INP(C) 
% INPUT(G2A,G2A) % 
%•% G2A•INP(G2A) 
% INPUT(G2B,G2B) % 
%"% G2B•INP(G2B) 
% INPUT(G1,G1) % 
%•% G1•1NP(G1) 
% OUTPUT(Y7,Y7) % 
%•% Y7•CONF(Y7,VCC) 

the default value for that node is assigned from the 
DEFAULT: section of the macro file. Note, however, 
that the default value for each input in the macro file 
may be the value that disables the input or, for data 
inputs, is usually a logic 0. To be certain of the level 
used, specify a "VCC" or "GND" in the macro call for 
unused inputs. 

The INPUT and OUTPUT calls and the original mac­
ro call are "commented out" by surrounding them with 
percent (%) signs. The %'% string is placed at the 
start of lines where primitives are created by the Macro 
Expander. The fully expanded file is written to the disk 
using the original filename and a .SDF extension. Fig­
ure 4 shows the Network and Equation sections for the 
74138 SDF. 

One final note with regard to compiling ADFs that use 
macros. Warning messages are typically encountered 

% OUTPUT(Y8,Y8) % 
%•% Y8•CONF(Y8,VCC) 
% OUTPUT(Y5,Y5) % 
%"% Y5•CONF(Y5,VCC) 
% OUTPUT(Y4,Y4) % 
%•% Y4•CONF(Y4,VCC) 
% OUTPUT(Y3,Y3) % 
%•% Y3•CONF(Y3,VCC) 
% OUTPUT(Y2,Y2) % 
%•% Y2•CONF(Y2,VCC) 
% OUTPUT(Y1,Y1) % 
%•% Y1•CONF(Y1 ,VCC)· 
% OUTPUT(YO,YO) % 
%"% YO•CONF(YO,VCC) 
% 74138(A,B,C,G2A,G2B,G1,Y7,GND,Y6,Y5,Y4,Y3,Y2,v1,vo.vcc) % 

EQUATIONS: 

%•% YO•!(!A*IB*IC*IG2A*IG2B*G1); 
%•% Y1•1(A*IB*IC*IG2A*IG2B*G1); 
%"% Y2•1(1A*B*IC*IG2A*IG2B*G1); 
%•% Y3•1(A*B*IC*IG2A*!G2B*G1); 
%•% Y4•1(1A*!B*C*IG2A*IG2B*G1); 
%"% Y5= I (A* IB*C.* IG2A* !G2B*G1); 
%•% Y6•1(1A*B*C*IG2A*IG2B*G1); 
%"% Y7•1(A*B*C*IG2A*IG2B*G1); 

Figure 4. Network and Equations for 74138.SDF 
4-83 
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while compiling files that use macros. The most com­
mon message is "***WARN-XLT-Node Missing Des­
tination". This message is displayed as unused nodes 
from a macro are deleted. For example, if a macro us­
ing a NOCF primitive is combined with a CONF and 
the original feedback is not needed, the warning is dis­
played as the feedback is deleted. 

Multiple Macro Calls 

The Macro Expander allows use of more than one mac­
ro in ADFs. Each macro must have its own call, even 
when the same macro is used more than once. 

For example, to implement two 74138s, each case or 
"instance" must have its own call: 

74138(A,B,C,G2A,G2B,Gl,Y7,GND,Y6,Y5, 
Y4,Y3,Y2,Yl,YO,VCC) 

74138(A,B,C,G3A,G3B,Gl,YF,GND,YE,YD, 
YC,YB,YA,Y9,Y8,VCC) 

In this example, many of the inputs are routed to both 
devices. The Macro Expander automatically generates 
internal nodes for each instance of the macro. Each 
node is assigned a unique number based on the position 
of the macro in the Network section (i.e., .. 0140, 
.. 0141, etc. for nodes connecting to the 14th primitive 
in the Network section). 

For traceability, you can define your own instance 
names for nodes of different macros by including the 
instance name in a comment immediately following the 
macro call. For example, to call two 74161 macros, one 
as Shift Register A and the other as Shift Register B, 
enter the calls as follows: 

7416l(CLR,CK,A,B,C,D,ENP,,LD,ENT,QD, 
QC,QB,QA,RDl,) % SFA % 

7416l(CLR,CK,E,F,G,H,ENP,,LD,ENT,QH, 
QG,QF,QE,RC2,) % SFB % 

The Macro Expander uses the first three ASCII charac­
ters after the first percent sign (% ), except for white 
space, to create instance numbers. For example, inter­
nal nodes for the first three signals of each macro call 
will be: 

, .SFANl, •• SFAN2, •• SFAN3, 

•• SFBNl, •• SFBN2, •• SFBN3 

where SFA/SFB are the user-defined instance names 
and NI, N2, N3 are the node numbers associated with 
each instance. For cases where no internal nodes num-

bers are generated, the Macro Expander simply ignores 
the instance name. 

Outputs from one macro call can be used as inputs for 
other calls, as follows: 

74138(A,B,C,G2A,G2B,Gl,Y7,GND,Y6,Y5, 
Y4,Y3,Y2,Yl,YO,VCC) 

74138(A,B,C,Y7,G3B,Gl,YF,GND,YE,YD,YC, 
YB,YA,Y9,Y8,VCC) 

Here the Y7 output from the first decoder feeds an 
enable input of the second decoder. 

Different macros are connected in the same manner. 
For example, the following macro calls connect the out­
puts from a 74138 decoder to the inputs of74175 latch­
es: 

74138(A;B,C,G2A,G2B,Gl,Y7,GND,Y6,Y5, 
Y4,Y3,Y2,Yl,YO,VCC) 

74175(CLR,OQ,nOQ,YO,Yl,nlQ,1Q,GND,CLK, 
2Q, n2Q,Y2,Y3,n3Q,3Q,VCC) 

74175(CLR,4Q,n4Q,Y4,Y5,n5Q,5Q,GND,CLK, 
SQ, n6Q,Y6,Y7,n7Q,7Q,VCC) 

Each decoder output is routed to a 74175 input. The 
74175 macro produces both true and complement 
latched outputs. 

Guidelines/Pitfalls 

The following paragraphs discuss some general guide­
lines for using macros: 
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• Because the Macro Expander supports only one lev­
el of hierarchy, there is a tendency for p-terms to 
multiply quickly when several macros are connected 
together. In many cases, the total number ofp-terms 
exceeds the capacity of the target EPLD. One meth­
od of avoiding problems with excessive p-terms is to 
route the outputs from a macro function through 
EPLD macrocells and use the feedbacks from the 
macrocells as inputs to the subsequent macro func­
tions. This partitioning of functions trades off device 
resources for a lower p-term count. 

• Implementation of some TTL macros requires prim­
itives that are not supported on all devices. The 
.DOC file for a device notes any device dependency. 
In many cases, a modification to the basic TTL 
functions results in device independence. For exam­
ple, a NOCF, which is not supported on all EPLDs, 
can be changed to a COIF, which is supported on 
all devices. 
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• Some macros use primitives that specify an output 
pin (COIF, CONF, RORF, etc.). These primitives 
must be supported with a signal name in the OUT­
PUTS: declaration and by an OUTPUT call in the 
Network Section of the ADP. Failure to provide 
this support causes the following error message dur­
ing compilation: 

***ERR-XLT-undeclared output name 

If you encounter this error, check the macro file for 
output primitives that require ADP support. 

Macro Usage Summary 

ADP macro calls must observe the following guide­
lines: 

• Macros are called from the Network Section of an 
ADP. 

• The name in the call must match the name in the 
macro file (e.g., 74138 = 74138). 

• All input and output pins on the target device must 
have both: (1) a corresponding signal name in the 
INPUTS: or OUTPUTS: declaration, and (2) a cor­
responding INPUT or OUTPUT macro call in the 
Network section. It is recommended that the same 
node name be used on both sides of each INPUT 
and OUTPUT macro call. This is required when 
macros containing CONFs are used. (EPLD INP 
and CONF primitives may also be used). 

• All INPUT and OUTPUT calls in the Network sec­
tion must precede any other macro call. 

• Node connections within an ADP are made based 
on the names of the nodes. 

• Connections between the macro call and macro file8 
are based on the position of signal names in the call. 
Therefore, the sequence of inputs and outputs in a 
macro call must match the sequence of inputs and 
outputs in the corresponding macro file. 

EXAMPLE 1: TTL MACROS 

This section provides an example design using TTL 
macros. 

Circuit 

The design is a two-stage decoder using a 74138 macro 
and two 74139 macros. Figure 5 shows the schematic 

for the circuit. Each 74139 macro represents one half of 
a TTL 74139 device. Note that two of the outputs from 
the 74138 are routed back to enable the two 74139 de­
coders. 
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Figure 5. Schematic Diagram 
for Two-Stage Decoder 

Figure 6 shows the ADP file containing the macro calls 
that implement the circuit. The two internal feedback 
signals (YCS and YCE) do not show up in the IN­
PUTS: or OUTPUTS: declarations and are not repre­
sented by INPUT or OUTPUT calls in the Network 
section. The sequence of signals in the INPUTS: and 
OUTPUTS: declarations of the ADP is not important. 

In the NETWORK: section, however, order is impor­
tant. INPUT and OUTPUT calls must be listed before 
any other macro calls. This is a requirement of the 
Macro Expander. The sequence of signals within the 
ADP macro call is critical, as the Macro Expander au­
tomatically assigns macro call signals to macro file sig­
nals based on position. 

Internal connections between macros are established by 
assigning the same name to the respective signals. For 
example, YCS in the 74138 macro call in Figure 7 rep­
resents the nY6 output from the 74138, while YCS in 
the 74139 macro call represents the lG input to one 
74139 decoder. Use of the same name establishes the 
connection. In the same manner, use of the signal name 
YCE connects the nY7 output from the 74138 to the 
lG input of the second 74139. 



DANIEL E. SMITH 
INTEL CORPORATION· 
2/27/87 
1 
A 
5CD90 
TWO-STAGE DECODER 

OPTIONS: TURBO•OFF 
PART: 5C090 
INPUTS: A,B,C,D,E,EN1,EN2,EN3 

AP-311 

OUTPUTS: YO,Y1,Y2,Y3,Y4,Y5,CSO,CS1,CS2,CS3,CEO,CE1,CE2,CE3 

NETWORK: 

INPUT (A,A) 
INPUT (B,B) 
INPUT (C,C) 
INPUT (D,D) 
INPUT (E,E) 
INPUT (EN1 ,EN1) 
INPUT (EN2,EN2) 
INPUT (EN3,EN3) 
OUTPUT (YO,YO) 
OUTPUT (Y1, Y1) 
OUTPUT (Y2,Y2) 
OUTPUT (Y3,Y3) 
OUTPUT (Y4,Y4) 
OUTPUT (Y5,Y5) 
OUTPUT (CSO,CSO) 
OUTPUT (CS1 ,CS1) 
OUTPUT (CS2,CS2) 
OUTPUT (CS3,CS3) 
OUTPUT (CEO,CEO) 
OUTPUT (CE1 ,CE1) 
OUTPUT (CE2,CE2) 
OUTPUT (CE3,CE3) 
74138(A,B,C,EN1,EN2,EN3,YCS,GND,YCE,Y5,Y4,Y3,Y2,Y1,YO,VCC) 
74139(YCS,D,E,CSO,CS1,CS2,CS3,GND,VCC) 
7.4139(YCE ,D,E ,CEO,CE1 ,CE2 ,CE3 ,GND, VCC) 

ENDS 

Figure 6. ADF Fiie for Two-Stage Decoder Using TTL Macros 
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Sample Session 3. Invoke the LOC from the Main Menu by pressing 
<F4>. 

This session assumes familiarity with the iPLS II Logic 
Optimizing Compiler (LOC). For detailed information 
on the LOC, refer to Chapter 4 of the iPLS II User's 
Guide, order number: 450196. Proceed as follows to 
implement the ITL macro design shown here: 

1. Use a standard ASCII text editor to create the ADF 
shown in Figure 7 under the name DECODE.APP. 

2. Invoke the iPLS II Menu by entering: 

IPLS <Enter> 
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4. Answer the LOC promts as follows: 

Input Format? 
File Name? 
Minimization? 
Inversion Control? 
LEF Analysis? 
Error Message File 

<Enter> 
DECODE <Enter> 
y 

N 
y 

<Enter> 
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The LOC then asks: 

Do you wish to run under the above 
conditions [Y/N]? 
Enter: Y 
The LOC expands the macros and compiles 
the expanded file to produce a JEDEC pro­
gramming file (DECODE.JED), a utilization re­
port file (DECODE. RPT), a minimized equa­
tion file (DECODE. LEF), and an error mes­
sage file (DECODE.ERR). For tracability, a 
file called DECODE.SOP is created to show 
the expanded form of the ADF output by the 
Macro Expander. 

5. The LOC terminates execution with the following 
message: 

LOC cycle successfully completed 

You can examine the LEF file to see the minimized 
form of the design. The LEF shows the EPLD primi­
tives used to implement the design. Macro calls are not 
shown. If you wish, you can also use LPS (Logic Pro­
grammer Software) to program a part. 

EXAMPLE 2: GATE-ARRAY MACRO 

This section shows an example design using gate-array 
macros. 

Circuit 

The design is a two-bit adder. Figure 7 shows the sche­
matic for the target circuit. Figure 8 lists the gate array 
macro file for a single-bit full adder. Figure 9 shows the 
ADF for the target design that includes two instances 
of the single-bit adder macro call. Each instance in­
cludes a user-defined instance name in the comment 
after the call (BTO and BTl). These instance names will 
be used to identify internal nodes, if the ADRF macro 
contains internal nodes. Note that inputs call the PTIN 
(TTL Receiver) macro while outputs call the PCOWP2 
(2 mA CMOS Push Pull Driver) macro. During macro 
expansion, an EPLD INP primitive is substituted for 
the gate array PTIN macro and an EPLD CONF prim­
itive is substituted for the PCOWP2 macro. This illus­
trates one of the differences between TTL and gate ar­
ray macros. 

Once again, the connections between the two macros is 
dependent on the position of signals in the call. 
CARRY! from the first instance of the ADRF macro 
connects to CARRY! in the second instance of the 
macro. This corresponds to the CYOUT (Carry Out) 
from the adder for the first bit feeding the CO (or Carry 
In) input of the adder for the second bit. Note that the 
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CO input of the adder for the first bit is not connected 
to any node in the macro call; in this case, the default 
value from the macro file (GND) is used to disable the 
input (No Carry). 

CO ADRF 

A1-----tAO SUMt----SUM1 

81----80 CYOUT 

CARRY1 

co ADRF 

A2-----tAO SUMt---- SUM2 

02----00 CYOUTt---- CARRY 

292039-8 

Figure 7. Schematic for Two-Bit Adder 

Sample Session 

To implement this ADF in an actual session, follow the 
steps described for Example I, substituting the name 
ADDER2 for DECODE. iPLS II produces a JEDEC 
programming file (ADDER2.JED), a utilization report 
file (ADDER2.RPT), a minimized equation file 
(ADDER2.LEF), and an error message file 
(ADDER2.ERR). For traceability, a file called 
ADDER2.SDF is created to show the expanded form 
of the ADF output by the Macro Expander. 

ADRF(AO,BO,CO,SOUT,CYOUT) 
DEFAULT:(GND,GND,GND, ,) 

%FULL ADDER% 

NETWORK: 

EQUATIONS: 

SOUT - AO' • BO" • co 
+ AO" • BO • co· 
+ AO * BO' * CO' 
+ AO * BO • CO; 

CYOUT • AO * BO 
+ BO * CO 
+ AO • CO; 

ENDEF 
292039-9 

Figure 8. Macro File for Full-Bit Adder 
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ROGER AUBLE 
INTEL CORPORATION 
2/27/87 
1 
A 
5C060 
2-BIT FULL ADDER 

OPTIONS: TURBO•OFF 
PART: 5C060 
INPUTS: A1,B1,A2,B2 

OUTPUTS: SLJ.11,SUM2,CARRY 

NETWORK: 

PTIN (A1 ,Al) 
PTIN (B1 ,Bl) 
PTIN (A2,A2) 
PTIN (B2,B2) 

PCOWP2 (SUM1,SUM1) 
PCOWP2 (SUM2,SUM2) 

PCOWP2 (CARRY,CARRY) 

ADRF(A1 ,B1, ,SUMI ,CARRY1) 
ADRF(A2,B2,CARRY1,SUM2,CARRY) 

EQUATIONS: 

ENDS 

% BTO % 
% BTl % 

292039-10 

Figure 9. ADF For Two-Bit Adder Using Gate-Array Macros 

EXAMPLE 3: MIXING MACROS AND 
EPLD PRIMITIVES 

This final example uses TTL macros together with 
standard EPLD primitives. 

Circuit 

The example circuit here is the 74138 macro used in 
example 1 with two of the outputs routed through addi­
tional combinatorial logic and RONF (Registered Out­
put - No Feedback) primitives. Figure 10 shows the 
circuit. CS2 and CS3 are qualified by two additional 
inputs (RD* and WR*) to set or clear two latches. This 
is a configuration commonly used in microcomputer 
systems, where control signals are set and reset based 
on the address and command signals but not on a data 
value. A read to the port decoded by CS2 sets output 
LCS2 (Latched CS2) high. A write to that same port 
clears LCS2 low. 

Figure 11 shows the ADF that implements the example 
circuit. This is the same ADF used in Figure 6, with 
the addition of several primitives and equations. The 
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data inputs to both latches are tied to VCC. When RD• 
and the chip enable are both low, the respective clock 
signal goes low. As RD* or chip enable go high, the 
rising edge of the clock signal triggers the register, driv­
ing the output high. 

Note that many Intel EPLDs do not support multiple 
product terms for register clocks. Therefore, the clock 
buffer primitive is driven by a macrocell configured as a 
COIF (Combinatorial Output-Input Feedback). Con­
trol signals (Clear and Preset) for many EPLDs also 
support only one product term. In this case, however, 
the NOR gate driving the clear input to the RONFs 
can be minimized to a single p-term. Thus a low on 
WR• and chip enable clears the respective latch to logic 
0. (The intermediate macrocell for the Read function 
can be omitted for EPLDs that support two p-terms on 
register clocks.) 

The connections between the TTL macros and the 
EPLD primitive are made by assigning the appropriate 
names to the input and output nodes. The CS2 and CS3 
signals from the first example are no longer outputs, 
but are simply inputs to equations that feed the LCS2 
and LCS3 RONF primitives. 
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A YO 
B Y1 
c Y2 

74138 Y3 
Y4 

EN1 YS 
EN2 
EN3 

YCS 
YCE 
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E 74139 CE1 
CE2 
CE3 

cso 
74139 CS1 

Vee 
RO-

SET2e 

Vee 

SET3e 

COIF 

Vee 

LCS2 
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Figure 10. Schematic of Decoder Circuit with Latched Outputs 
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INPUTS: A,B,C,D,E,EN1,EN2,EN3,RD*,WR* 

AP·311 

OUTPUTS: SET2c,SET3c,YO,Y1,Y2,Y3,Y4,Y5,CSO,CS1,LCS2,LCS3,CEO,CE1,CE2,CE3 

NETWORK: 

INPUT (A,A) 
INPUT (B,B) 
INPUT (C,C) 
INPUT (0,D) 
INPUT (E,E) 
INPUT (EN1 ,EN1) 
INPUT (EN2,EN2) 
INPUT (EN3,EN3) 
OUTPUT (YO,YO) 
OUTPUT (Y1,Y1) 
OUTPUT (Y2,Y2) 
OUTPUT (Y3,Y3) 
OUTPUT (Y4,Y4) 
OUTPUT CY5,Y5) 
OUTPUT (CSO,CSO) 
OUTPUT (CS1,CS1) 
OUTPUT CCEO,CEO) 
OUTPUT (CE1,CE1) 
OUTPUT (CE2,CE2) 
OUTPUT (CE3,CE3) 
74138(A,B,C,EN1,EN2,EN3,YCS,GND,YCE,Y5,Y4,Y3,Y2,Y1,YO,VCC) 
74139(YCS,D,E,CSO,CS1,CS2,CS3,GND,VCC) 
74139(YCE,D,E,CEO,CE1,CE2,CE3,GND,VCC) 
RD • INP(RO*) 
WR • INP(WR*) 
LCS2 • RONF ( VCC, SET2, CLR2., GND, VCC) 
LCS3 • RONF(VCC,SET3,CLR3,GND,VCC) 
SET2 • CLKB(SET2c) 
SET3 • CLKB(SET3c) 
SET2c,SET2c - COIF(ST2,VCC) 
SET3c,SET3c - COIF(ST3,VCC) 

EQUATIONS: 

ST2 • RO + CS2; 
CLR2 • /(WR+ CS2); 
ST3 • RO + CS3; 
CLR3 •/(WR+ CS3); 

ENOS 

Figure 11. ADF Fiie tor Decoder with Latched Outputs 

292039-12 

Sample Session 
To implement this ADF in an actual session, follow the 
steps described for Example l, substituting the name 
LDECODE for DECODE. iPLS II produces a JEDEC 
programming file (LDECODE.JED), a utilization re-

port file (LDECODE.RPT), a minimized equation file 
(LDECODE.LEF), and an error message file 
(LDECODE.ERR). For traceability, a file called 
LDECODE.SDF is created to show the expanded form 
of the ADF output by the Macro Expander. 
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INTRODUCTION 

The iPLS II (Intel Programmable Logic Software II) 
Logic Optimizing Compiler includes a Macro Expan­
der that supports the use of macros in EPLD designs. 
These macros can include TTL and Gate Airay macros 
available from Intel, or proprietary macros developed 
by a user. This application note shows how to create 
user-defined macros and how to build macro libraries 
with Intel's Macro Librarian, an optional software 
package for use with iPLS II. A design example also 
shows creation of a user-defined macro and its use in an 
ADP (Advanced Design File). Detailed information on 
using the TTL and Gate Airay Macros in iPLS II 
ADFs are described in a companion application note, 
AP-311 "Using Macros in ·EPLD Designs", Order 
Number: 292039. This application note concentrates on 
creating macros; it assumes that you have read and un­
derstood the discussion on using macros in AP-311. 

OVERVIEW 

iPLS II allows designers to include macro calls in de­
sign tiles to implement common circuit functions. Mac­
ros calls are subsequently expanded by the LOC (Logic 
Optimizing Compiler) into the ADP network and/or 
equation entries required to perform the desired func­
tions. Macros can be connected together or used in con­
junction with standard iPLS II EPLD primitives. 

SCHEMATIC h CAPTURE 

1 
SYMBOL 
LIBRARY 

-
TEXT ...... ADf H EDITOR 

~ 

MACRO 
LIBRARIAN ... ,.. 

TEXT MACRO 
EDITOR I-+ FILES t-+ MLIB I-+ 

~ 

By following the macro tile format described in this 
note, users can also create their own proprietary mac­
ros with an ASCII text editor. These macro tiles can 
then be stored in user-defined libraries by using Intel's 
Macro Librarian software. User-defined macros can be 
called from ADFs created by a text editor or by sche­
matic capture software that supports user-defined sym­
bols and that outputs in ADP format. User-defined 
macros can optimize development of EPLD designs by 
modularizing the design process and by allowing the 
design process to proceed at a higher level than with 
EPLD primitives alone. iPLS II suppon for user-de­
fined macros (see in Figure 1) includes the following: 

• MLIB, the optional iPLS II Macro Librarian for 
creating macro libraries from individual user-de­
tined macro tiles. 

• a Macro Expander in the LOC that expands macro 
calls in ADFs with the contents of the correspond­
ing macros from libraries. 

This application note describes how to create macro 
tiles, store them in libraries with MLIB, and shows how 
to call them from ADFs created by a text editor. For 
information on creating user-defined macro symbols 
with schematic capture packages, refer to the appropri­
ate manual for the schematic capture package you are 
using. SCHEMA II-PLD available from Intel supports 
user-defined symbols and outputs in ADP format. 

., 

'· 

IPLS lI LOC 

-
MACRO ESPRESSO 

FITTER I-+ JEDEC 
EXPANDER MINIMIZER FILE 

-
J 

. MACRO 
LIBRARIES 

!.-TTL.LIB 
-i... INTEL.LIB 

USER - DEFINED(• .LIB) 

292040-1 

Figure 1. Macro Support for IPLS II 
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(SCHEMA II-PLD is based on SCHEMA II from 
Omation, Inc. The Intel EPLD Design Manager, also 
available from Intel, allows existing SCHEMA II users 
to design with EPLDs and macros.) 

MACRO FILES 
This section describes iPLS II macro files. User-defined 
macro files must follow the guidelines presented here to 
be successfully processed by the Macro Librarian 
(MLIB) and expanded by the iPLS II LOC Macro Ex­
pander. 

Macro filenames follow DOS conventions. It is recom­
mended that macro filenames end with the extension 
.DEV, which is the default for MLIB. Only one macro 
can be contained in a macro file. Macro files are com­
prised of three sections: 

• Header 

• Network Section 

• Equation Section 

All macro .files must end with the literal "ENDEF". 
Figure 2 shows a sample macro file for a proprietary 
part (16207), a "black box" containing random logic. 

18207(A,B,C,D,E,F ,U, V ,W,X, Y ,Z) 
DEFAULT:(GND,GND,GND,VCC,VCC,VCC,,,,,,) 

EQUATIONS: 

ENOEF 

U • /(A • Bl; 
V • /(/E •A• B); 
W • /(D • C •A• /E); 
X • /(ID • El; 
Y • /(F • D *A); 
Z • F • /E; 

292040-2 

Figure 2. Sample Macro File for 
"Black Box" (16207.DEV) 

Header 
Headers for macro files contain two lines. The first line 
includes the name of the macro function and a list of 
inputs and outputs for the macro. The second line con­
tains defaults for the device. 

The name of the macro can be a device number (16207, 
83546, etc.), function name (ADDRCNT, CMDLO, 
etc.), or any name up to eight characters long. No 
spaces or comments precede the name. 

Inputs and Outputs follow immediately after the macro 
name and are enclosed in parentheses. I/O ·signal 
names may be up to eight characters long, but may not 
contain pin numbers. For user-defined macros, signals 
may be listed in any order desired. For example, any of 
the following entries are legal: 

16207 (A,B,C,D,E,F,U,V,W,X,Y,Z) 

16207 (B,D,A,R,Z,U,W,C,F,X,E, Y) 

16207 (Z,Y,X,W,V,U,F,E,D,C,B,A) 

Note that this first line of the header forms the tem­
plate used to call the Macro from the ADF. The Macro 
Expander connects ADF nodes in the macro call to 
1/0 signals in the macro file on the basis of position, 
not on the basis of node name. 

The second line in the header specifies defaults for in­
puts (VCC or GND) in cases where those signals are 
left unconnected. The DEFAULT: line must be includ­
ed in the macro definition file, even when no defaults 
are used in the ADF. The keyword DEFAULT: is the 
first entry in this line. The default values for all signals 
follow immediately and are enclosed in parentheses. In­
put defaults may be VCC or GND. The position of the 
default value corresponds to the signal listed in the pre­
vious line. 

Defaults for outputs are blank, but a comma (,) must be 
present (place holder) for each output signal except the 
last. For example, the 16207 black box contains six in­
puts (A through F) and six outputs (U through Z). The 
first two lines for this macro might be: 

16207 (A,B,C,D,E,F,U,V,W,X,Y,Z) 
DEFAULT: (GND,GND,GND,VCC,VCC,VCC,,,,,,) 
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Defaults for inputs A through Care GND; defaults for 
inputs D through F are VCC. Defaults for the outputs 
are not specified, but the comma denotes the positions 
for those signals. 

Defaults should be chosen with care. Clears, Presets, 
Loads, etc. should be disabled in most cases. Enables 
should be enabled. Input defaults can also be left blank 
as long as those inputs are connected to nodes in the 
ADF that calls the macro, but it is recommended that 
they be specified in the macro file. 

Network Section 

The NETWORK: section lists the EPLD primitives 
used to implement the desired functions. The Network 
Section follows ADF syntax rules. As far as possible, 
the macros should be implemented in equations to elim­
inate concern about feedbacks and output enables. In 
the case of a circuit that requires macrocell registers, 
the feeback-only form of the primitive should be used 
so that the Macro Expander can make the correct pin 
connections. The following example shows this: 

OUTl = NORF (INd,CLK,GND,GND) 
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During processing, the Macro Expander connects the 
feedback to an output (if necessary) and supplies the 
required output enable node name. The Macro Expan­
der also eliminates unneeded Network and Equations 
entries if they are not used by an ADP. 

If no network entries are required (i.e., a macro imple­
mented entirely in equations), the entire Network sec­
tion may be omitted, including the keyword NET­
WORK:. In many cases, equations alone can imple­
ment the desired functions. 

Equations Section 

The EQUATIONS: section lists the Boolean equations 
for the desired functions and follows ADP syntax rules, 
with one exception; intermediate equations are not per­
mitted in macro files. If no equation entries are re­
quired (i.e.; a macro implemented entirely in the Net­
work Section), the entire Equation section may be omit­
ted, including the keyword EQUATIONS:. 

Comments and White Space 
Comments can be placed anywhere in a macro file ex­
cept before the name and signals on the first line. Com­
ments must be enclosed in percent signs, as follows: 

% THIS IS A SAMPLE COMMENT % 

White space can appear on any line except the first .two 
lines. 

TEXT 
EDITOR 

-
TEXT I-+ MACRO 

EDITOR FILES 

t-+ 

I-+ 

MACRO LIBRARIAN 

The Macro Librarian (MLIB) is an optional software 
package that combines individual macro files into mac­
ro libraries. These libraries are in turn used by the LOC 
Macro Expander. MLIB can be invoked from the com­
mand line, from command files, or' from a combination 
of both. Figure 3 shows a block diagram of the Macro 
Librarian. · 

Syntax for MLIB command lines is as follows: 

MLIB [ -options I [ @cmdfile I [ filel file2 ••• I 
<Enter> 

-v 

-I lib 

directory. Displays directory information for 
the library being created. 

verbose. Print status during processing. When 
not specified, status messages are suppressed. 

list. Lists the contents of existing macro li­
brary to console. This option may not ~e used 
while building a library. 

-o lib name of the target macro library. 
MACRO.LIB is the default when no name is 
specified. TTL.LIB and INTEL.LIB are re­
served for Intel libraries and may not be used. 

-s string include version stamp in ma9rO library. The 
version string can be up to 7 characters long. 
"Vl.00" is the default stamp. 

-
COMMAND 

FILE 

I 
MLIB I-+ MACRO 

LIBRARY 

1 ._,., 
LIBRARY 
LISTING 

292040-3 

Figure 3. Macro Librarian Block Diagram 
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-c string include copyright string in macro library. 
The copyright string can be up to 61 charac­
ters long and, if blanks are used, must be 
contained in quotation marks, for example, 
"texta textb". 

@cmdfile name of command file. The command file 
can include options and macro filenames. 
The @ symbol must precede the filename. 

file 1 . . . name of device files to be included in the 
macro library. Separate files by spaces. 

For example, the following command line: 

MLIB -v -s 2.00-o USER.LIB @USERLIST <Enter> 

creates a library called USER.LIB that includes all the 
individual macro files contained in the command file 
USERLIST. MLIB displays status messages as it pro­
cesses the macro files in USERLIST (-v). The library is 
created as version 2.00 (-s). 

Macro library filenames follows DOS conventions and 
should end with the extension .LIB to be recognized by 
the Macro Expander. INTEL.LIB and TTL.LIB are 
reserved and may not be used. 

USERLIST is the name of the command file and must 
be preceded by the @ symbol. The command file is 
simply an ASCII text file that can be modified to con­
tain any number of macros desired. MLIB processes 
the entire list of macros on each invocation. To add a 
new macro to an existing library, add the name of the 
macro to USERLIST, and create the new library by 
entering the command line shown above. Command file 
names follow DOS conventions. MLIB supplies a .DEV 
extension if no extension is specified. MLIB searches 
first in the current directory, then along the DEV envi­
ronment variable, and finally along the PA TH environ­
ment variable for the files. 

In order to connect inut and output primitives, the files 
INPUT.DEV and OUTPUT.DEV must be included in 
at least one of the libraries. These files are contained in 
the TTL and Intel Gate Array macro libraries 
(TTL.LIB and INTEL.LIB, respectively). 

Figure 4 shows a sample MLIB command file that in­
cludes options, the library name, and the names of sev­
en macro files to be included in the library in addition 
to the INPUT and OUTPUT macros. The format of 
the command file is free form. Note that comments can 
be included in the command file and must be contained 
within percent(%) signs. 

Note that the -1 option cannot be included in an MLIB 
command file; it can only appear on the command line. 
The -1 option lists the contents of existing libraries; it 
does not list library contents while building a library. 
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-o PROJA.LIB % macro library name% 
-v 
-s V1.50 % version number% 
-c "Copyr lght (C) Date, Your Company. Your Name" 

% copyright Information% 
-d % display directory% 

% Include the following macros% 

INPUT.DEV 
7487.DEV 
74151.DEV 

OUTPUT.DEV 7408.DEV 
74138.DEV 74139.DEV 

74157.DEV 74251.DEV 
292040-4 

Figure 4. Sample Command File for MLIB 

The command line to process the file shown in Figure 4 
is as follows: 

MLIB @SAMPLE <Enter> 

where SAMPLE is the name of the command file. 

To list the contents of PROJA.LIB after creation, in­
voke MLIB as follows: 

MLIB -1 PROJA.LIB 

This command line lists the macros in PROJA.LIB to 
the screen. The DOS file redirection capability can also 
be used to create a disk file listing the contents of macro 
libraries. For example: 

MLIB -I PROJA.LIB > PROJA.DOC 

SAMPLE SESSION: COMMAND 
DECODER USING MACROS 

Decoding logic is one common function implemented 
by programmable logic devices. The target circuit for 
this example is a device that decodes microprocessor 
command signals in selected address ranges. The target 
application and decoder requirements are as follows: 

• The target application is a 16-bit microcomputer 
system with I-Megabyte of memory and about two 
dozen I/0 ports. 

• The memory is divided into shared memory (lower 
512K bytes) and local memory (upper 512K bytes). 
Shared memory resides off the processor board and 
requires active low memory command signals. Local 
memory resides on-board and requires active high 
memory command signals. 

• I/0 ports are also split between on-board devices 
requiring active high signals and off-board devices 
requiring active low signals. 1/0 devices between 
the address range FOOO-FFFFH are on-board; de­
vices below that range (0000-EFFFH) are off-board. 
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• All interrupt requests are resolved by an on-board 
interrupt controller. Therefore, only an active high 
on-board interrupt acknowledge signal is needed. 

• On-board control signals are always high or low, 
never three-stated. Off-board control signals are 
three-stated when not being used to execute a bus 
cycle. An external bus arbiter accepts a request sig­
nal from the command decoder and, after gaining 

ADDRESS 
DECODE 

control of the bus, sends address enable and com­
mand enable signals back to the command decoder. 

Figure 5 shows a block diagram of the application, in­
cluding the target EPLD design. The three functional 
blocks to be included in the EPLD are highlighted (not 
shaded). 

REQUEST 

• 

Off-BOARD 
SYSTEM BUS 

ON-BOARD 
BUS 

292040-5 

Figure 5. Block Diagram of Target Circuit and Application 
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Creating the Macro 

Figure 6 shows a schematic diagram for the active low 
command decoder implemented with OR gates (low in­
puts enable the outputs; high inputs disable the out­
puts). Figure 7 shows the macro file that implements 
the circuit (CMDLO.DEV). This file was created with 
an ASCII text editor. Used as is, it provides the active 
low outputs for the design. With inputs RD, WR, and 
INT AIN inverted, it also provides the active high out­
puts for the design. This design uses CONF primitives 
to implement the three-state outputs in the macro. As 
an alternative, equations alone could have been used 
with the CONFs included in the ADF. 

MIO-----+-t 
CMDEN -----'IL._, 

INTAIN--------1-1 

AEN ---------' 

MRD 

MWT 

IOR 

IOW 

INTA 

292040-6 

Figure 6. Schematic Diagram of 
Command Decoder 

Building the Library 

Use your text editor to create an MLIB command file 
that includes CMDLO.DEV, INPUT.DEV, and OUT­
PUT.DEV. The following example shows a sample 
command file named MACLIST. · 

-v % show status % 
-c "1987, AP-312 Sample Macro Library" 
-o AP312.LIB 
-d % show the list % 

% include the following macros % 

CMDLO.DEV INPUT.DEV OUTPUT.DEV 

Invoke the Macro Librarian with the following com­
mand line: 

MLIB @MACLIST 

The Macro Librarian processes the three macro files 
and stores them in a user library named AP312.LIB. 
The library contains the copyright statement "1987, 
AP-312 Sample Macro Library". When processing is 
complete, MLIB returns control to DOS. 

Creating the ADF 

Figure 8 shows a schematic diagram for the target 
circuit. Figure 9 shows the ADF for the circuit (COM­
CODE.ADF), which invokes both instances of the 
CMDLO macro. and contains equations used to enable 
the decoders under the proper conditions. The ADF' 
signal named ONBEN (On-Board Enable) enables the 
active high decoder). The AEN (Address Enable) input 
to the on-board decoder is left unconnected. The de­
fault (always enabled) will be used. 

CMCLO(MIO,RC,WR,INTAIN,CMCEN,AEN,MRC,MWT,IOR,IOW,INTA) 
CEFAULT,(GNO,VCC,VCC,VCC,GNO,GNO,,,,,) 

NETWORK, 

MRC • CONF(MRCc,AEN) 
MWT • CONF(MWTc,AEN) 
IOR • CONF(IORc,AEN) 
IOW • CONF(IOWC,AEN) 
INTA • CONF(INTAIN,AEN) 

EQUATIONS' 

MRDc • /MIO + RC + CMCEN; 
MWTc • /MIO + WR + CMDEN; 
IORc • MIO + RD + CMDENo 
IOWc • MIO + WR + CMOEN; 

ENCEF 
292040-7 

Figure 7. Macro Fiie for Command Decoder (CMDLO.DEV) 
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INPUTS1 MIO, RD, WR, INTAIN, CMDEN, AEN1, A13, AF, AE, AD, AC 
OUTPUTS: MRD, MWT, IOR, IOW, INTA, MRDC, MWTC, IORC, IOWC, OFFBDEN 

NETWORK: 

INPUT(MIO,MIO) 
INPUT(RD,RD) 
I NPUT(WR, WR) 
INPUT(INTAIN, INTAIN) 
I NPUT(CMDEN,CMDEN) 
INPUT(AEN1 ,AEN1) 
INPUT(A13,A13) 
INPUT(AF,AF) 
INPUT(AE,AE) 
INPUT( AD, AD) 
INPUT(AC,AC) 

OUTPUT(MRD,MRD) 
OUTPUT(MWT ,MWT) 
OUTPUT( IOR, IOR) 
OUTPUT( IOW, IOW) 
OUTPUT(INTA,INTA) 
OUTPUT(MRDC,MRDC) 
OUTPUT(MWTC,MWTC) 
OUTPUT(IORC, IORC) 
OUTPUT(IOWC,IOWC) 

CMOLO(MIO,RD,WR,,CMDEN,AEN1,MRDC,MWTC,IORC,IOWC,) % OFB % 

CMDLO(MIO,NRD,NWR,NINT,ONBEN,VCC,MRD,MWT, IOR, IOW, INTA) % ONB % 

OFFBDEN 
OF BEN 
ONBEN 
NRD 
NWR 
NINT 
NMIO 
NUPPER 
NA13 

• CONF(OFBEN,VCC) 
• NOR(OF1,0F2,0F3,0F4) 
• NOR(ON1,0N2,0N3,0N4) 
• NOTCRD) 
• NOT(WR) 
• NOT( INTAIN) 
• NOTCMIO) 
• NOT(UPPER) 
• NOT(A13) 

EQUATIONS: 

UPPER• (AF• AE •AD• AC); 
ON1 •(MIO• A13 • NRD); 
ON2 •(MIO• A13 • NWR)i 
ON3 • (NMIO •UPPER• NRO); 
ON4 • (NMIO •UPPER• NWR); 
OF1 • (MIO• NA13 * NRO); 
OF2 • (MIO• NA13 • NWR); 
OF3 • (NMIO • NUPPER • NRD); 
OF4 • CNMIO • NUPPER • NWR); 

ENDS 

Figure 9. ADF for COMCODE.ADF 

292040-9 

OFFBEN (Off-Board Enable) requests permission to 
access the off-board bus from the external bus arbiter. 
The bus arbiter enables the off-board decoder via 
AENl (Address Enable 1) and CMDEN (Command 
Enable). CMDEN allows the appropriate signal to go 
high or low, and AENl causes the outputs to indepen­
dently enter or exit a high impedance state (three-state). 

Note the same name is used for both nodes of each 
INPUT and OUTPUT macro call. Use of the same 
name ensures proper connection when the Macro Ex­
pander eliminates redundant primitives (for example, a 
CONF feeding another CONF). 

4.99 
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Compiling the Design 

Proceed as follows to compile the ADP. 

l. Include AP312.LIB in the IPLS environment vari­
able. From the DOS command prompt, type: 

SET IPLS=C:\IPLSII\AP312.LIB; ... <Enter> 

For user-defined macro libraries that are regularly 
accessed, the IPLS variable can be set in an 
AUTOEXEC.BAT file. 

2. Invoke the iPLS II Menu by entering: 

IPLS <Enter> 

3. Invoke the LOC from the Main Menu by pressing 
<F4>. 

4. Answer the LOC prompts as follows: 

Input Format? 

File Name? 

Minimization? 

Inversion Control? 

LEF Analysis? 

Error Message File 

<Enter> 

COMCODE <Enter> 
y 

N 
y 

COMCODE.ERR <Enter> 

The LOC then asks: 

Do you wish to run under the above conditions 

[YIN]? 

Enter: Y 

The LOC expands the macros and compiles the 
expanded file to produce a JEDEC programming file 
(COMCODE.JED), a utilization report file 
(COMCODE.RPT), a minimized logic equation file 
(COMCODE.LEF) and an error message file (COM­
CODE.ERR). For traceability, a file called COM­
CODE.SDF is created to show the expanded form of 
the ADP output by the Macro Expander. 

5. The LOC terminates execution with the following 
message: 

LOC cycle successfully completed 

You can examine the LEF file to see the minimized 
form of the design. The LEF shows the EPLD primi­
tives used to implement the design. Macro calls are not 
shown in the LEF. If you wish, you can also use LPS 
(Logic Programmer Software) to program a part. 
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lnqoduction: 

The purpose of this paper is to describe a design methodology for 
Programmable Logic Devices(PLD's) and to survey current PLD 
optimization techniques. 

1. Perspective: Where do PLD's fit In? 

The use of Programmable Logic Devices(PLD's) represents a 
middle ground in logic design. The two common approaches to 
logic implementation in today's market are Board Design 
methods(building a solution from a selection of pre-fabricated 
standard parts - 'I'I'L/SSl/MSI) and Custom/Semi-Custom design 
methods(fabricating a custom logic chip to solve the problem at 
hand, arid .!IWl building a much simpler board). 

With the Board Design approach, PC B's carry the 
fruit of a designer's labor to the customer. Many little black boxes 
and other electrical circuit components make up the brunt of a 
PC B's load. Many times there are large islands of functionality to 
be connected together via encoding/decoding and timing circuits. 
The islands of functionality (i.e. microprocessor, micro controller, 
RAM, EPROM, transciever, etc.) all have different protocols, and 
all speak d!fterent languages at different speeds. 

Integrating the major devices al a board together involves much 
"glue" logic. The typical designer spends time and elf art looking 
through a 'I'I'L parts catalog to lind the best fit for a design based 
on functionality, performance and price. After a preliminary 
function-based board is laid ou~ modification passes are made 
based on the parts needed and their availability. Large designs 
increase the length and risk of this process. Even though most 
major CAD vendors are addressing the problem of board design, 
simulation, test and interface With the Custom/Semi-Custom 
arena, board design and manufacturing tools are rapidly becoming 
the primary practical obstacle to ellective production of end-user 
systems. PL D's reduce the complexity of the end-user board, 
hence reducing the length and risk ol the implementation and 
manufacturing process. 

With the Custom/Semi-Custom design approach, the designer is 
free to address functionality directly. The designer has much 
flexibility in the functionality, speed and integration facets of logic 
design. Certainly, the number of parts on an end-user PCB can 
be greatly reduced by integrating most of a board's function into a 
fe1.v custom devices. The problems associated with all the 
flexibility lie in the physical design, modeling, and tools areas. 
Specifically, in the physical design area, problems include 
process specific bottlenecks, NRE charges and long lead times. 

In the modeling area, extensive simulations must occur before 
and after the device is buil~ as each device is custom crafted. 
Finally, in the CAD tools area, a highly functional, but hard to use 
set ol tools guide and control the whole process. The tools are 
the best m terms al functionality, but the worst in terms of cost 
and ease o! use. 

The job ol ASIC vendors in the next ten years is to make the 
Custom/Semi-Custom problems disappear or become acceptable 
to the logic designer of the next generation. The tacts are clear. 
Without advanced tools which automate much of the logic 
designer's work, the Custom/Semi-Custom approach only works 
for large scale, large volume or special purpose devices. Silicon 
compilers and other Custom/Semi-Custom design methodologies 
are working hard to overcome the inherent problems ol this type 
of design. 

The use of PL D's in a design is a compromise between the 
flexibility of a Custom/Semi-Custom design, and the standard 
Board design methodolgy. 

The definition of PLD which I am using for the purposes of this 
paper is very aeneral. A Proarammable Lol!ic Device is any 
device, which can be programmed by the user, to realize a chunk 
of combinatorial or sequential logic. A subset ol the most 
popular, or newest types ol PLD's are: PAL's, PLE's(Monolithic 
Memories), EPLD's(lnte~ Altera), EEPLD's(Lattice), FPLA's, 
FPLS's(Signetics), LCA's(Xilinx), and ERASIC's(Exel). All 
except the last two are based on some lorm of two· 
level( AND/OR) registered array logic. I will mainly be concerned 
with two·level array logic devices. 

The good points of designing With PL D's are: 

1. The integration ol many small chunks ol 'I'I'L and SSl/MSI 
logic into a lew PLDs. Essential lor efficient use of resources. 

2. An easier overall development cycle than the Custom/Semi­
Custom route. Also easier than standard board 'I'I'L development 
cycle once the learning curve is passed. 

3. Much cheaper than the Custom/Semi-Custom design 
method for all but large volume designs. Usually cheaper than 
standard board 'I'I'L design method. 

4. The breadboard character and modifiability ol PLDs makes 
them an excellent R&D and learning vettlcle in the design 
environment 
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5. PLD CAD development tools are available to conven 
standard TTL logic representations into the complicated fixed 
architectures of an individual device. The CAD tools automate 
this_ process, _to a large degree, so that the user can use their own 
design techniques. 

The bad points of designing with PLDs' are: 

1. _For large designs, using PL D's is not as functional or robust 
as using Custom/Semi-Custom logic. 

2. The CAD tools available for PLD design are not as useful in 
automating the whole design process as those in the 
Custom/Semi-Custom arena. In fact, most of the tools are 
denved from those used in Custom/Semi-Custom design. 

3. The speed and function constraints of the fixed device 
architectures can be inhibiting. For example, not all types of 
designs fit well into two-level array logic. 

2. Tbe PLD Development Environment 

There are three pieces in a PLD development environment First 
is the input part The design specification needs to be entered in 
some fonn, .such as a schematic, a finite state machine, or a high 
level lariguage description. Second is the processing part This 
must include some kind of compilation of the input into object 
code(JEDEC code), and usually also includes optimization of the 
design. Third is the output part This includes the object 
code(JEDEC), test results/Vectors, and statistics. 

A PLD development environment has an underlying language for 
representing design specifications, which is usually more general 
than the intended devices. Often, the system provides mearis for 
accepting input in other forms .. which then translates into the 
underlying language. We shall use the standard term "Hardware 
Description Lariguage"(HDL) when refering to this l.mguage, as 
ttris is where these lariguages are headirig in terms of complexity 
and future directions.Eliamples of PLD HDLs' are ABEL by 
Data/10-Futurenet, CUPL by Assisted Technology, ADP by 
lntel(Altera), PALASM by Monolithic Memories, LOG/IC by 
Kontron, arid AMAZE by Signetics. 

There are four questions one can ask about a PLO development 
environment and it's HDL. The answers to these questions 
determine, for the user, which systems to use. The tour 
questions are: 

Que5tion 1: ls it easy to learn and easy to use(User-Friendly) ? 

Que5tion 2: Is it generic enough to support the current 
applications and new de~ices yet to come? (HDL expressiveness 
and functionality) 

Que5tion 3: Does the compiler use optimization techniques to 
produce JED EC code? (i.e. logic rrrininlization) 

Que5tion 4: Are there alternate logic entry tools, like schematic 
capture and Finte State Machine entry; are ttiere hooks for 
simulation and other design methodologies, like gate arrays? 

As an example, we answer the four questions tor the HDL of the 
Intel Programmable Logic Development System(iPLDS) (Altera). 
The HDL of iPLDS is called Advariced Design File(ADF). 

Que5tion 1: ls it easy to learn and easy to use ?(User-Friendly) 
A1uwer: The ADP language is made easier to learn for the 
novice user by two items: 

a. GraphiC41 lntedace Tools 
Logic Builder( LB): A graphical netlist entry and syntax 

checking aid to the user entering designs which have already 
been written down on paper in a schematic fashion. 

. Logic Programming(LP): A graphicalJEDEC file editor, 
which allows the user to modify the JEDE:C me. More 
importantly, the tool allows the user to investigate and learn the 
device architecture via a user-oriented graphical interface, and 
then to program the pan directly from this iriterface. 

b. Primit1t··e s: 
A large(N80) set of logic and 1/0 Macrocell primitives which 
capture all of the current standard ways to represent small chunks 
of memory and combinational logic .. This is useful for the novice 
and occasional user, who doesn't have the time, or want to learn 
the abstractions involved in more generic HDLs'. 

Que5tion 2: Is it generic enough to suppon the current 
applications and new devices yet to come ' (HDL expressiveness 
and functionality) 
A115wer· Yes, it is generic enough to support those current 
and future architectures based on.two-level registered logic, 
which are produced by Intel and Altera. The large number of 
primitives make the language unwieldly for support of new 
devices not falling into this realm. Finally, it suppons only Intel 
.md Altera deV1ce s. 

Que5tion J_- Does the compiler use optimization techniques to 
produce JEDEC code 7 (Le. logic minimization) 
Aruwer: Yes, logic minmlization, DeMorgan's inversion of 
outputs, and automatic fitting oi resources and pins to the given 
device are supported in an integrated fashion. 

Que5tion 4: Are there alternate logic entry tools. like schematic 
capture and Finte State Machme entry; are ttiere hooks tor 
simulation and other design methodologies, like gate arrays? 
An5wer: Alternate enny methods include schematic Capture, 
F'SM entry, and Graphical Netlist entry(LB). There are currently 
no tools tor functional simulatiOn, nor is ther anv wav of 
iriteriacing to other design tools. Both topics are being 
considered for the iuture. 

The third party HDLs', like ABEL, CUPL, and LOG/IC are, in 
general, harder to learn and use. They afford greater 
expressivness and generality in addressing design problems. 
Because of the need to work with most devices on the market, 
these HDL's resemble more closely therr high-power cousins in 
•.he Custom/Semi-Custom design arena. They have no automatic 
resource fitting arid pin-assignment, but do have a robust set of 
integrated tools involving l•mctional simulation, schematic capture 
and FSM enr.ry available. 

3. PLO Optimization Tools 

Here we introduce and describe the current mix of optimization 
tools ir1 the PLO development workshop. Tbe goal of CAD 
optimization tools for PLO design is to speed up the design cycle 
by reducing designer time, arid to cram larger designs into a fixed 
device. The optimization tools of a ~;pica! PLO development 



system usually reside in the HDL compiler. The tools can be 
viewed as compiler optimization tools. 

The four optimization tools ol concern to us are: 

1. Logic Minimization - A tool to reduce the complexity of 
the logic equations implementing a design. 

2. Finite State Machine(FSM) Compiler - A tool which 
takes an FSM description and tJanslates or compiles ic into an 
HDL. 

3. DeMorgan's Inversion· A tool which can reduce the 
amount ogf logic needed by inverting the sense of some of the 
output signals of the device. 

4. Fitting and Pin Assignment - A tool which automatically 
fits the resources and pins which the user chooses not to. 

We discuss each topic seperately, and illustrate, by the use of the 
Dice Example, (Figuresl-3) most of these features. 

Logic Minimization: 

Logic minimization is currently the best optimization tool available 
for PLDs'. Logic minimization for current PLD development 
systems is strictly a two·level logic tooL and totally replaces, for 
combinational logic purposes, the Karnaugh Map and Quine· 
McCluskey Algorithm methodology for finding the minimum size 
set of equations. Por two-level logic(AND/OR), most compilers 
use a single or multiple output heuristic minimizer. University 
research and industrial experience show that the NP-complete 
problem of two-level logic minimization has been effectjvely 
solved for the size of problems currently being considered in 
practice. Currently, the most effective minirruzers are Espresso, 
McBoole, arid Presto·ll. Espresso has been shown, in 
aggregate, to be within one-percent of the minimum ar1swer on 
104 test cases. On current PLD size problems, the test cases 
indicate that Espresso will find the minimum solut!On almost 
always [1, 2, 3, 4]. 

The user of minimization tools usu.lily has a concern about the 
process. The minimization tools have the side·eftect of 
producing a reduced equation set that doesn't ah•1a~1s reflect the . 
designer's thought process relative to ttie un-m1rnm1zed equation 
set This results in confusion in trying to understand ttie design 
from the reduced equation set For the same reason, editing a 
JEDEC file to change a few bits of a design is error-prone and to 
be avoided. To independently verify t.he mearnng of the design 
and the resulting minimized boolear1 equations, functional test 
vectors should be created and run t.hrough a functional simulator. 
This will catch design errors arid give a truth-tat•le verification of 
the design. Por some HDLs', there are tools available that will 
automatically generate test vectors. Actually, due to the fixed 
architectures of PLDs', automatic test generation 1s much more 
feasible in the PLD arena thar1 m the Cuscom/Semi·Custom area. 
Of course, a designer can choose to not have tt1e equations 
minimized if t11ey already flt into ttie target deVIce before 
rninirruzation, but in complicated designs, this is rarely the c.;se, as 
tt1e Dice Exarnple at the end of this paper sho\•!s. 

Future PLD tools will depend more arid more on logic 
rninimizatiorL Just as,, high-le11el language prograrnmer looks 

less and less at the object code produced b}' a compiler, the logic 
designer will. not be concerned witti the minfrnized code output 
of the PLD logic compiler. 

FSM Compiler: 

An FSM compiler is included in the lisc of PLD optimization toois 
because it allo1.1,•s for a compact representation of a sequential 
cimut. This leads to ways to introduce systematic optimization 
techrnques li.ke logic minimization and automatic state assignment 
at a transparent level for the user. Designing at the level of states 
arid transitions results in a more compact HDL description for the 
same logic function, \Lith fewer mistakes being made. PSM 
description also allows the user to change memory element types 
.;nd state assignments man error-free manner. FSM's are also 
well understood, theoretically, arid are a ripe area for future tool 
development Most logic texts present many hand tabular 
methods for optimizing FSM designs. These hand methods car1 
be automated and extended to produce new tools for PSM·based 
design. 

DeMorgan's Inversion: 

DeMorgan's inversion, in AND/OR type PLD architectures, with 
mversion control in the l/O macrocells .. refers to logically mvertmg 
an output signal phase in such a way tt1at tt1e number of p-terms 
realizing tt1e complement function is less than t.he origmal .. 
function. This cari save the user from an un-solvable p·term f!ttmg 
problem due to too many p-terms when usmg one sense of an 
equation. For devices v,;ith single output macrocells .. like PALs .. 
and EPLDs, thecomplement of the smgle output equatIOn 1s 
computed and then minimized. The sense of the equation witt1 
t.he least nurnber of p-temis is tt1en the one that is implemented 
in the device under programming. 

Fitting and Pin Assignment: 

The fitting and pin assignment problem refers to compiling a 
design file, and havmg the compiler automat1cally choose those 
device resources and pins that the user did not assign m the 
design file. In the past, de<nce architectures have been simple 
er1ough and small enough so that fitting and pm assignment ··.vere 
not a problem for the user. Novi, with mcreasmg size. complex1w. 
and non-horn0Hne1tv of the device .;rchitecture, a heunstlc CAD 
tool, u.1h1ch is like an ·automatic place ancl route tool, 1s a necessiW. 
If a device arclutecture 1s homogeneous "lith respect to structure 
and resources. fitting is not a problem. as there ts no contentrnn 
for resources or placement of those reso•zces. Fitting is a 
problem 1.vhen there are multiple clocks an•j tvp.e; of clocks .. 
multiple device sect10ns(li1'e qua(!raJitSi. var:;mg numbers ot p· 
terms per quadrant, pro1juct term shanng and steenng. mput pms, 
I/0 macrocells of varying t:,Jpes 1 or burie1j register~ .. Tht- greater 
t.he number and SIZe of the fe.;tures, the greater the fmmg 
problem. Without a tool to help, the designer must 1jo tht fmmg 
b:; hand, leading to erri:irs a.nd r1ot fini:1mg .jfl 3.l101.11.1ble !1t 

Some of the large scale devices that exh1t11t th"=se problem:. are 
lntel's1Aitera'515 1:::'121!EP1210) ,;nd 5C'.180iEP1800i The immg 
a.n1j a1itoff1at1c pin ,j5:1gnment tools oi iPLDS relieve the user 
from having to 1jea! 1J..-1th this problem 

4-103 



3. Future PLD Optimization Tools 

This section describes new directions for PLD development 
systems optimization tools. Optimization tools must be near 
transparent to the user to get universal acceptance. Of the four 
optimization tools mentioned above, all but the FSM compiler tool 
satisfy that criterion. 

There are basically two types of optimization tools which will 
appear in the PLD arena. The first type are tools which are 
ported from, or interfaced to the Custom/Semi-Custom 
environment The current logic description and synthesis tools of 
silicon compilers and Custom/Semi-Custom CAD tools tit into 
this classification. The second type are new tools \llhich will 
address the architecture-specific optimization issues. The tools in 
this group will use methods based on logic optimization and 
expert-system techniques. These two methodologies will be 
applied to taking abstact specifications and realizing them 
automatically into multiple devices, or in taking multiple abstract 
specifications and realizing them in one device. 

Ponation of Custom/Semi-Custom Tools: 

Available ideas ready for porting to the PLO environment down 
the HDL path include implementing a subset of VHDL(VHS!C 
Hardware Description Language)[S], and having the compiler 
produce an EDIF(Electronic Design Interchange Format) [6] 
intermediate format In this way, interfacing with other toolboxes 
of any type will be easier. New device support will also be easier, 
given the generic nature of VHDL. Using VHDL would also 
standardize an HDL, and allow designers to learn one HDL 
which will last tor a long time. Also, PLD tools which interface 
with the Custom/Semi-Custom toolset involving board design, 
testing and manufacturing is needed now, and is being addressed 
by the major CAD vendors. Standardization, like VHDL and 
EDIF will, eventually, lower the cost of these interfaces. 

The new logic minimization algorithms, like Espresso, and new. 
state assignment tools, like KlSS[7] arid STASH [B]can be used m 
the PLD environment .The algorithms and methods of tools 
involving placement and routing can be applied to the fitting/pin 
assignment problem. On the logic synthesis side, new tool~ . _ 
which combine expert-systems with multi-level logic optlimzanon 
can be applied to PLD devices which allow multi-level logic to be 
easily implemented. 

The key poin~ irregardless of the actual tools from the 
Custom/Semi-Custom arena which are productized is that the 
user have an essentially transparent view of any new optimization 
tools. 

Once a PLO is manufactured, the functionality cannot be 
changed. This fact leads to the belief that tools can be created 
which map logic, which is too big or too slow, into multiple 
de\~Ces by doing automatic logic partitioning. The converse 
problem of fitting multiple churiks of communicating logic into one 
device mav also be addressed. Tools to fit multiple state 
machines into one de\~ce, or to partition a schematic or FSM into 
two or more devices is a first step. For example, the Dice 
Exarnple(F'lgures 1-3) has three small state machines, which are 
mtegrated into one device and design file. Expert-systems can 
capture the rules for partitioning, and the database of all allowable 
devices, while opumization techniques can make the expert· 
systems work .'15 •Mell as, or bener than a logic designer. 

Conclusion: 

We have surveyed the reasons for, and components of PLO 
development system5, with emphasis on the Hardware 
Description Languages, and optimization methods in such 
systems. The conclusions of the survey are that the HOL 's are 
the essential cornerstone of any PLD system, and will control the 
future directions of any new PLO development tools. The second 
conclusion is that two-level logic minirmzation, FSM compiler, 
and automatic fitting tools are the most important in the PLD 
optimization area. Also, recent breakthroughs and public 
availability of heuristic minimizers point to increased use of such 
tools. Finally, future directions, and an expanding market indicate 
a wide range of new tools will appear. The key emphasis will be 
on making them transparent to the user, who, when all is said and 
done, knows how to design logic best! 
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Dice Example Description 

Problem: Design a circuit lhat will roll lwo dice. Push a swilch. 
stan 1ht dice rolling. W'htn lhe sw~h is released, a (pseudo). 
random set al numbers will be displaped. 

The example is wntt.n using lht FSM compile~ mad~le of iPlDS. 
This example is a modification of an existing Application Natt[AP-
279] design, which is wntt.n in ADF language. 

The Dice Example pseuda-randamlp roHs lwo dice. The Diet 
Example is composed of lhree FSMs'. The first lwo are essential!, 
up-counters. which count from one 10 six, using lht notation groups 
of one or lwo LED's, for each of four DUIPUls. ta represent lhe six 
faces of a die. A piCIUre which indicates 1ht LED groupings b, 
listing lht output signal name nm ta lhe LED controlled 11, ii'. is 
giv.n in Diagram 1. The groupings for both die art idHticaf and 
.hence, listed next ta each olher. ' · 

The lhird machine generlffs a short pseudo-random bit sequnct bp 
implementing a Linear Feedback Shift Rtgister(LFSR) • wkh lhret 
registers. The pseudo-random bit sequences from lhe LFSR art 
used ta add probabilistic transitions to lht up-counter model of 
each die. The implementation of lht LFSR is b' straight 
memorization of lhe sequence, b' means of lhe state variables of an 
up-counter. 

1b,2b 

1d,2d 

le, 2c 

·Dice LED Encoding 

• • ••• • 1a,2a • 

Die 1 Signals: la, lb, le, ld 
Die 2 Signals: 2a, 2b, 2c, 2d 

le, 2c 

1d,2d 

1b,2b 

The Dice Exatnple shows the usefulness of logic minimization. 
Figure 2 shows lhe FSM language{Stat. Machine File) 
representation of lht Diet Example under the iPLDS srstem. 
Figure 3 shows lht ADF code which resuMd, as an inttrmediatt 
step, in lht compilation process. 

The target dtuice. lhe 5C06D. has 111/D macrooels. but each' 
macrocell has anl' .nough room for 8 1Htrms. There are 11 
equations !hat result frolll lhe Diet Example design. Faur for each 
die. ta control the LED's. and lhree from lht state variables of lhe 
Linear Feedback Shill Register. 

W't present a before and after minimization table. showing tht tfltcl 
of lhe minimization and lht automatic DeMorgan's Inversion step. 

Equation Inputs 

Sv3.d 3 
Su2.d 3 
Su1.d 3 
2d.d 6 
2o.d 8 
2b.d 6 
2a.d 6 
1d.d 6 
1c.d 6 
1b.d 6 
1a.d 6 

1Htrms 1Htrms 
before after 
min min 

3 2 
3 2 
3 2 
3 3 
I 4 • 4 
18 6 
3 3 
9 4 
5 4 
18 7 

A necessarr condition ta fit into lht 5Cl60 i5 Iha! Ill of lht numbers 
in lhe last column be no mare than 8. as there are no ..Ore than 8 
p-terms connec~d ta anp macrocell. This particular problem took 2 
min~s of CPU time on an BMhz PC/AT. Reducing these equations 
bp hand, tutn for lhis simple example. would bt difficult. Tht nttd 
for the automatic minimizer is clear in lhis example. W'khaut it. a 
designer would ekher have ta reduce lht eqations resulting from 1ht 
FSM language b' hand. or not use an FSM language at ill( and do 
the whole design using hand-crafted methods. 

Figure 1. 
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Dice Example 
FSM Language(SMF) Description 

Al111 C111111ala 
lnlll 
Jul, 21. 1988 
Piii No.: l.uVegu 
VII'. 3.0 
ICOSG 
Ran a pair of die 
lB Version 4.01, Base tin• 27 .1 4/9/86 
PARr:5C088 

X Na pins assigned: 
Autamllic Pin Assignment and Fiiiing X 

INPUTS: clk1. clk2, Go 
OUTPUTS: ta. 1b. 1c, 1d, 2a. 2b. 2c. 2d 

NETWORK: 

" 

clk1 = INP(cll1 J 
c1k2 = IHP1clk2J 
Ga = INP(GaJ 

Three i.rnt LFSR. implemeni.d b, storing sequence 
in mi. variables. which act as ftipping coins. 

" 
MACHINE: LFSR 
CLOCK: clk2 

STATES: [Coin! Coin2 Coin3] 
so [801) 
St (10 Q 
S2 (111] 
S3 [811) 
S4 (101) 
S5 (811] 
SS (001] 

" s- equations ve: 

" 

Coin2 := Coin1 
Coin3 := Coin2 
Coin! := /(Coin2 xor Coin3J 

SI: 
S1 

S1: 
S2 

S2: 
S3 

S3: 
S4 

S4:. 
S5 

S5: 
SI 

SS: 
so 

MACHINE: OieJ\DH_1 
CLOCK: clk1 

" S- variables ve used as olllpUls to die. 
Each St<ft encodes ""' set of LED's to light 
to rtafiH !hat die Hlut. 

" STATES: [1a lb le Id] 
Resel (8 O O OJ 
One (1088] 
Two ( 0 1 0 OJ 
Thrte (1100J 
Four [0110] 
Five [1110] 
Six [0111] 

" Coin2 is a pseuckttandom coin. which controls the 
UJH:ounter 1ransidons. so that lie dice roll is 
pseudo-random. 

" Reset: 
II Go Then One 

One: 
II Go11Coin2 Then Two 

Two: 
II Go•Coin2 Then Thr.e 

Three: 
II Go•Coin2 Then Four 

Four: 
If Go•Coin2 Then Fivt 

Five: 
If Go•Coin2 Then Six 

Six: 
If Go•Coin2 Then One 

MACHINE: Die_J\aH_2 

" Duplicate of DieJ\Dft_1 machine, except for 
a dilerent die, using a diflerenl pseudo-random coin. 

" CLOCK: clk2 
STATES: 
Reset0ie2 
On•Die2 
Two0ie2 
Thrte0ie2 
Four0ie2 
Five0ie2 
Six0ie2 

Ruet0ie2: 

[2a 2b 2c 2d] 
[0 0 0 OJ 
[1 0 0 OJ 
[0 1 0 OJ 
[I 1 0 OJ 
[ 0 1 1 OJ 
[ 1 1 1 OJ 
[ 0 1 1 1] 

If Go•Coin3 Then One0ie2 
OneDie2: 

If Go•Coin3 Then Two0ie2 
Two0ie2: 

If Ga•Cain3 Then ThreeDie2 
ThreeDie2: 

If Go•Coin3 Then Four0ie2 
Four0ie2: 

If Go•Coin3 Then Five0ie2 
FiveDie2: 

If 6a•Cain3 Then Six0ie2 
Six0ie2: 

If Go•Cain3 Then OneDie2 

ENDS 

Figure 2. 



Dice Example 
Hardware Description Language(ADF) 

Alan Coppala 
Int.I 
.... ,, 21. 1986 
Part No.: wVtgu 
Vtr. 3.0 
5CD60 
Roll a p•r of dit 
LB Vtrsion 4.01, Butlint 27 .1 4/9/86 
SMV Vtrsion 1.01 BETA2 Buolint 26.1 4/3/86 
PART: 5C060 

INPUTS: 
clk1. clk2, Go 

OUTPUTS: 
h, 1b, 1c, 1d, 2a, 2b, 2c, 2d 

NETWORK: 

" 

clk1 = INP(clk1 l 
clk2 = INP(clk2) 
Go = INP(Go) 

ThrH ttrm LFSR, impl•mtnltd b1 storing stqutnce 
in stal4! uariablts, which act u ftipping coins. 

" 
" 1/0' s for Slat• Machine "LFSR" 

" Coin1 = NORF1Coin1 .d, clk2. GNO. GNDJ 
Coin2 = NORF(Coin2.d. clk2, GNO, GND) 
Coin3 = NORF(Coin3.d. clk2, GNO. GNO) 

" I/O's for Statt Machin• "Oit_RolU" 

" 1a, h = RORF(h.d. clk1, GNO, GNO, VCC) 
1b, 1b = RORF(1b.d, clk1, GNO, GNO, VCC) 
1c, 1c = RORF11c.d, clk1, GND. GNO, VCC) 
1d, 1d = RORF(1d.d, clk1, GND, GND. VCC) 

" I/O's for Stal4! Machine "Die_RolU" 

" 2a, 2a = RDRF12a.d, clk2, GND. GND, VCC) 
2b, 2b = RDRF(2b.d. clk2, GNO, GND. VCCJ 
2c, 2c = RORF(2c.d, clk2, GND, GND, VCC) 
2d, 2d = RDRF(2d.d, clk2, GND, GND. VCCJ 

EQUATIONS: 

" BoolHn Equations for State Machine "LFSR" 

" " Currtnt S~te Equations for "LFSR" 

" SO = Coin1'•Coin2'•Coin3'; 
S1 = Coin1•Coin2'•Coin3'; 
S2 = Coin1•Coin2•Coin3'; 
S3 = Coin1'•Coin2•Coin3; 
S4 = Coin1•Coin2'•Coin3; 
S5 = Coin1 "•Coin2•Coin3'· 
S6 = Coin1'•Coin2'•Coin3; 

" SV Dtfining Equations for Stat• Machine "LFSR" 

" Coin1 .d = S1.n + S2.n + S4.n; 
Coin2.d = S2.n + S3.n + S5.n; 
Coin3.d = S3.n + S4.n + S6.n; 

" Nell! State Equations for Stal4! Machine "LFSR" 

" S1.n =SO; 
S2.n = S1; 
S3.n = S2; 
S4.n = S3; 

S5.n = S4; 
S6.n = S5; 

" BoolHn Equations for State Machine "Dit...RolU • 

" " Currtnt Stat• Equations for "Dit_RolU • 

" Reset= 1a'•1b'•1c'•1d'; 
Ont= 1a•1b'•1c'•1d'; 
Two= 1a'•1b•1c'•1d'; 
Three= 1a•1b•1c'•1d'; 
Four = 1 a'•1 b•1c•1 d'· 
Fiut = 1a•1b•1c•1d';' 
Six = 1 a'•1 b•1 c•1 d; 

" SV Defining Equations for State Machine "Die_RolU • 

" la.d = One.n + Three .n + Fiue.n; 
1b.d' = One.n + Reset.n; 
1c.d = Four.n + Fiuo.n + Sil<.n; 
1d.d = Six.n; 

" Next Stat• Equations for State Machin• "Die_RolU" 

" Ont .n = Six • Go • Coin2 + Ont • (Go • Coin2)' 
+Reset• Go; 

Restt.n = Reset• (Gol'; 
Three.n = Throe • (Go • Coin21' + Two • Go • Coin2; 
Four.n =Four• (Go• Coin2)' + Thrtt •Go• Coin2; 
Fiue.n = Fiuo • (Go • Coin21' + Four • Go • Coin2; 
Six.n = Six • (Go • Coin21' + Five • Go • Coin2; 

" Booloan Equations for State Machin• "Oie_Roll_2" 

" " Current State Equations for "Dit_Roll_2" 

" Reset0ie2 = 2a'•2b'•2c'•2d'· 
Ono0ie2 = 2a•2b'•2c'•2d'; ' 
Two0ie2 = 2a'•2b•2c'•2d'; 
ThreeDie2 = 2a•2b•2c'•2d'; 
Four0ie2 = 2a'•2b•2c•2d'; 
Fiue0ie2 = 2a•2b•2c•2d'; 
Six0ie2 = 2a'•2b•2c•2d; 

" SV Defining Equations for State Machine "Die_Roll_2" 

" 2a.d = One0ie2.n + ThreeDie2.n + FiueDie2.n; 
2b.d' = OntDie2.n + Reset0io2.n; 
2c.d = Four0ie2.n + Fiue0ie2.n + Six0ie2.n; 
2d.d = Six0it2 .n; 

" ~•XI State Equations for State Machin• "Die_Roll_2" 

OneDie2.n = SixDie2 • Go • Coin3 
+ OnoDio2 • (Go • Coin3)' 
+ Rosot0io2 • Go • Coin3; 

ResttDie2.n = Reset0ie2 • (Go • Coin31'; 
ThrteDie2.n = ThreeDie2 •(Go• Coin31' 

+ TwoDie2 • Go • Coin3; 
Four0it2.n = Four0ie2 •(Go• Coin31' 

+ ThroeDio2 I Go • Coin3; 
Fiue0io2.n = FiueDie2 • (Go • Coin31' 

+ FourDie2 • Go • CoinJ· 
Six0ie2.n = Six0ie2 •(Go• Coin:ir 

+ FiueDie2 • Go • Coin3; 

ENDS 

Figure 3. 
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APPENDIX 

SECOND SOURCE CROSS REFERENCE 

What Intel Part to Quote Altera Part # What Intel Part to Quote Altera Part # 

D5C031-50 EP310DC CJ5C090-50 EP900JC-3· 
D5C031-35 EP310DC-2 P5C090-60 EP900PC 
TD5C031-50 EP310D1 P5C090-50 EP900PC-3 

N5C090-60 EP900LC 
D5C032-35 EP320DC N5C090-50 EP900LC-3 
D5C032-35 EP320DC-2 TD5C090-60 EP900DI 
D5C032-25 EP320DC-1 TCJ5C090-60 EP900JI 
P5C032-35 EP320PC 
P5C032-35 EP320PC-2 D5C121-90 EP1210DC 

D5C121-65 EP1210DC-2 
D5C060-55 EP600DC CJ5C121-90 EP1210JC 
D5C060-35 EP600DC-2 CJ5C121-65 EP1210JC-2 
D5C060-45 EP600DC-3 P5C121-90 EP1210PC 
CJ5C060-55 EP600JC P5C121-65 EP1210PC~2 

CJ5C060-45 EP600JC-3 N5C121-90 EP1210LC 
P5C060-55 EP600PC N5C121-65 EP1210LC-2 
P5C060-45 EP600PC-3 TD5C121-90 EP1210DI 
N5C060-55 . EP600LC TCJ5C121-90 EP1210JI 
N5C060-45 EP600LC-3 
TD5C060-55 EP600DI CJ5C180-90 EP1800JC 
TCJ5C060-55 EP600JI CJ5C180-15 EP1800JC-3 
MD5C060-55 Spec EP600DM N5C180-90 .EP1800LC 
MD5C060-55 EP600DMB N5C180-75 EP1800LC-3 

TCJ5C180-90 EP1800JI 
D5C090-60 EP900DC In Development EP1800GC 
D5C090-45 EP900DC-2 In Development EP1800GCM 
D5C090-50 EP900DC-3 In Development EP1800JM 
CJ5C090-60 EP900JC In Development EP1800JMB 
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inter SECTION 5 

PLA TO EPLD REPLACEMENT 5C031/5C032 As a 20·Pln PAL Replacement 

Already in wide use throughout the electronics in­
dustry are numerous different Programmable Logic 
Devices. Many of these are PALs from MMI. Cur­
rently, two of our EPLD products, the 5C060 and 
5C031 can functionally replace most 24-pin and 20-
pin PALs, respectively. A third product, the 5AC312, 
with its architecturally advanced features, can re­
place most designs using more complex PALs such 
as the 20RA10, 22Y10, and 32V10. 

The 5C031 

The 5C031 is a direct, drop-in replacement for most 
20-pin PALs, although some PALs have an incom­
patible architecture. 

The 5C060 

The 5C060 is NOT a drop-in replacement for any 24-
pin PAL, though it can functionally replace most. The 
reason for this is that pin 1 is used as the main clock 
on registered PALs and as an input on non-regis­
tered. Also, pin 13 is used as an OE line on some 
PALs, and as an input on others. The 5C060, howev­
er, uses pin 1 as the left-half synchronous clock in­
put and pin 13 as the right-half synchronous clock 
input. 

While that may not be a problem in some PAL de­
signs, those designs that require clocking or inputs 
on pins 1 or 13 will necessitate hardware modifica­
tions. In the case of the registered PALs, the con­
nection to pin 1 must be rerouted to pin 13 and the 
OE connected to one of the available inputs (if 
used). In this manner, the 5C060 can functionally 
replace the PAL. 

The 5AC312 

The 5AC312 is a direct, drop-in replacement for the 
20RA 10 as well as many of the other simple 24-pin 
logic devices. The 5AC312 can also serve as a drop­
in replacement for most designs using the 22V10 or 
32V10 devices. 
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100% Functionally 
Compatible Compatible 

10H8, -2 
12H6, -2 
14H4, -2 
16H2, -2 
10L8, -2 
12L6, -2 16R6A 
16L8, A-2, A-4 16R4A 
16R4, A-2, A-4 16LBA 
14L4, -2 16RP6A 
16L2, -2 16RP4A 
16R8, A-2, A-4 16PBA 
16R6, A-2, A-4 16RBA 
16P8, -2 16RPBA 
16RP8, -2 
16RP6, -2 
16RP4, -2 

These are These are 
25 ns-45 ns PALs. 15 ns PALs. 

5C060 As a 24-Pln PAL Replacement 

Modified Functionally 
Replacement Compatible 

12L10 20LBA 
14L8 20RBA 
16L6 20R6A 
18L4 20R4A 
20L2 
20L10 
20L8 
20RB 
20R6 
20R4 
20RA10 

With hardware These are 
modifications 15 ns PALs. 

5AC312 As a 24-Pln PAL Replacement 

100% 
100% 

Compatible 
Compatible 
(Quallfled) 

20L8 22V10 
20RB 32V10 
20R6 Dependent on the 
20R4 number of product 
20RA10 terms used. 



ORDERING INFORMATION 

Intel EPLDs are identified as follows: 

5 c 
'-.,.J 

x x 

I Device 

Technology 

C -CHMOS 

AC - Advanced CHMOS 

Package Type 

A - Hermetic, Pin Grid Array 

D - Hermetic, Type D (Cerdip) Dip 

N - Plastic, Leaded Chip Carrier 

CJ - Ceramic, J Leaded Chip Carrier 

P - Plastic Dip and Plastic Flatpack 

R - Hermetic, Leadless Chip Carrier 

X - Unpackaged Device 

x s s 
\...._ __ . __ _,) 

Speed 

A - Indicates automotive operating temperature range ( -40°C to + 125°C) 

J - Indicates a JAN qualified device, but is for internal identification purposes only. All JAN devices must 
be ordered by M38510 part number. (Example: M38510/42001 BOB), and will be marked in accord­
ance with MIL-M-38510 specifications. 

L - Indicates extended operating temperature range (-40°C to + 85°C) express product with 160 
± 8 hrs. dynamic burn-in. 

M - Indicates military operating temperature range ( - 55°C to + 125°C) 

Q - Indicates commercial temperature range (0°C to 70°C) express product with 160 ±8 hrs. dynamic 
burn-in. 

T - Indicates extended temperature range (-40°C to + 85°C) express product without burn-in. 

- No letter indicates commercial temperature range (0°C to 70°C) without burn-in. 

·Examples: 

QD5C060-45 Commercial with burn-in, ceramic Dip, 060 (600 gate) device, 45 nanosecond. 

•on military temperature devices, B suffix indicates MIL-STD-883C level B processing. 
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Device Feature Comparison 

5C031 5C032 5C060 5C090 5C121 5C180 5CBIC 5AC312 

INPUTS 
Dedicated 10 10 4 12 12 12 8 10 
Maximum 18 18 20 36 36 60 16 22 
Input Latches y y y 

1/0 
Number 8 8 16 24 24 48 32 12 
Tri-State y y y y y y y y 

Programmable y y y y y y y y 
Polarity 

MACROCELLS 8 8 16 24 28 48 8 12 

REGISTERS 
Number 8 8 16 24 28 48 8 12 
Types D D D/T/ D/T/ D D/T/ D/T/ D/T/ 

RS/JK RS/JK RS/JK RS/JK RS/JK 
Buried Reg. S 4 
Preload y y y y y y y y 
By-Pass y y y y y y y y 

Reset y y y y 'Y y y y 
Preset ·y y y 

PRODUCT TERMS 
Number 74 72 160 240 236 480 112 200 
Sharing y 
Variable Prod. y 

Term Distribution 

LOCAUGLOBAL BUSSES y y 

CLOCKS 2 2 2 4 2 
Asynchronous y y y y y 

Clocking 
Programmable y 

Clock Edges 

SECURITY BIT y y y y y y y y 
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ELPD CUSTOMER SUPPORT 

Hotline 

The Intel EPLD Technical Hotline is manned by ap­
plication personnel from 8:00 a.m. to 5:00 p.m. 
(PST) every business day. Contact your local field 
sales office for the hotline number. 

BBS 

Intel has a Bulletin Board System for registered iPLS 
and iPLS II customers to electronically transfer infor­
mation. Any registered person with a modem can log 
onto the system. The current number is (916) 985-
2308. If your communication software supports file 
transfers, you can receive utilities, software updates, 
and the latest information on EPLDs via the Bulletin 
Board. 

5-5 

EPLD Customer Design 
Support Center 

Intel has a Customer Design Support Center to help 
customers who are implementing EPLD designs. 
Service includes answering questions, device selec­
tion assistance, and design partitioning as well as 
limited prototyping, and product/design evaluation 
and implementation. For more information on the 
Design Support Center, contact your local Intel field 
sales office. 

EPLD Evaluation Unit 

A modular unit for evaluation of EPLD devices is 
available from Intel. The unit has a variety of 
switches and LEDs, and a numeric display for con­
trol and status. Several Intel applications can be ver­
ified on the unit as well as small customer designs. 
For more information, contact your local Intel field 
sales office. 



COMPATIBLE COMPUTERS FOR iPLDS II 

A partial list of computers that have been verified to be software compatible with the Intel Programmable L9gic 
Development System (iPLDS II) is given be.low: 

AT&T 6300 and 6300+ 
Compaq family of PCs (88, 86, 286, 386) · 
IBMAT 
IBMXT 
IBM XT-286 
HP Vectra 
Sperry IT 
Tandy 3000 HD 
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~e0~~:~u!i~;ne~oup ;Arrow Electronics, Inc. ~:~~~11t:j: 155 Northwoods Parkway i~bi~~~~~~~i. tArrow Electronics, Inc. Santa Clara 95051 Suite A 
521 Weddell Drive ~~Xf~~~-j~~:~= Norcross 30071 Columbia 21046 NEW HAMPSHIRE 
sunmaie 94089 ~:~!~~-::=~~~~ Tel: (301) 720-5020 
Tel: (~745-6600 TWX: 710-828-9702 tArrow Electronics, Inc. 
FAX: 743-4770 ~/g~ J"1~~':;r Avenue 

3 Perimeter Road 

~~i~~'P':!l=sEast tPloneer Electronies Manchester 03103 
Arrow Electronics, Inc. lrvine92715 9100 Gaither Road 

~:ix~~== 2961 Dow Avenue ~~4lJ~b-8i111-:s:, Norcross 30092 ~r~:6~~~= Tustin 92680 Tel: (404) 447-7500 

~~~1111~~~ FAX: 714-851-8366 TWX: 810-766-0432 TWX: 710-828-0545 Hamllton/A11:net Electronics 
444 E. Industrial Drive 

Wyle Systems Pioneer Electronies MASSACHUSETTS Manchester 03103 
;Avnet Electronies 7382 Lampson Avenue 3100 F. Northwoods Place 

~A'X=t= 50 McCormiek Avenue Garden Grove 92641 Norcross 30071 tArrow Electronics, Inc. 
Costa Mesa 92626 ~:~~77~~-=~~:J~~~ ~~~m~~n 1 Arrow Drive 

~~~\~-~~::O~~ WQburn 01801 NEW JERSEY 

COLORADO ILl,.INOIS ~~~~b~3~1l1°o =w Electronics, Inc. 
Hemilton/Avnet El~tronics Lincoln Drive East 
1175 Bordeaux Onve Arrow Electronics, Inc. ~Arrow Electronics, Inc. tHamilton/Avnet Electronics Marlton 08053 

~~r1r~1e1~~ 1390 S. Potomac Street ScO:uEm=~~ 7~treet 1 OD Centennial Drive 

~~~=-g=--= Suite136 Pea~01960 
FAX: 40~-745-6679 Aurora80012 Tel' (31~ 397-3440 Tel: (61 b 532"'3701 

Tel: (303) 696-1111 FAX: 31 -397-3550 TWX: 71 -393-0382 tArrow Electronics, Inc. 
tHamllton/Avnet Electronics 6 Century Crive 

~~~5Ji~r~~;.venue iHamilton/Avnet Electronics tHamilton/Avnet Electronics Kierulff Electronics, Inc. ~~'.'l~~l'i"!:~ 765 E. Orchard Road 1130 Thorndale Avenue 13 Fortune Dr. 
Tel: (6~ 571-7500 Suite708 Bensenville 60106 Billerica 01821 FAX: 201-538-4962 
FAX: 61 -277-6136 Englewood 80111 ~:J~~~~~i= ~:X(:6~~~~~~~ tHamilton/Avnet Electronics 
tHamilton/Avnet Electronics ~~~b!:S!o°1'a71 FAX: 617-663-1754 1 Keystone Ave., Bldg. 36 
9850 Desoto Ave. Kierulff Electronics, Inc. Che~lll08003 
Chatsworth 91311 tWyte Distribution Group 1140 W. Thorndale PiOneer Northeast Electronics ~:71~~~1~ ~~~~;,_~~~~~· 6500 

451 E. 124th Avenue Itasca 60143 44 Hartwell Avenue 
Thornton 80241 ~~Ix~~;~-~=~ Lexi~n 02173 FAX: 609-751-8624 

~~~~~b~9o915lo Tel: ( 1~ 861-9200 

l~~3~1t:~::k~1;~~~Jcs FAX: 61 -863-1547 tHamilton(Avnet Electronics 

~~ si~':ftsh~~~~1e 10 lndustnal 
Sacramento 95834 CONNECTICUT MICHIGAN Fairfield 07006 

~:~~~~,_=~~~~ Itasca 60143 ~A'X~~~1/-~j~:= tArrow Electronics, tnc. Tel: (312) 773-2300 Arrow Electronics, Inc. 
12 Beaumont Road 755 Phoenix Drive 

~Hton/Avnet Electronics Wallin~ord 06492 f Pioneer Electronics Ann Arbor 48108 
G Street ~J~ 11b~4615s!li~1 1551 Carmen Drive ~~~~\~=~~:~~ Ontario91311 Elk Grove Villa~60007 

~~~j\t=~~ Ham~ton/Avnet Electronics ~x(~~~~~3li-1~ ;Hamilton/Avnet Electronics 
Commerce Industrial Park 2487 Schoolcraft Road 

t~S16i~~~;~~i~~:~~l~~-s Commerce Drive INDIANA Livonia 48150 lMTI Systems Sales 
Oanbu~ 06810 ~J~J~~~~~~~5 ?Kulick Rd. 

Culver Ci~230 1~9s°Di=~A~~.1iscu,te H 
Fairfield 07006 

Tel: (21~ -2458 ~A'X~:13;j::=: FAX: 313-522-2624 Tel: (201) 227-5552 
FAX: 21 558-2248 ~":~~~~~~:~1 

FAX: 201-575-6336 
tPioneer Northeast Electronics ~~i~A;:;e~nT.onics 

tHamilton Electro Sales 112 Main Street TWX: 810-341-3119 
3170 Pullman Street Norwalk 06851 Space AS 
Costa Mesa 92626 Tel: (203) 853-1515 Grand Rapids 49508 

~~f111~-::t:rng TWX: 710-468-3373 ~~J~b~2~~=~ 
FAX: 616-243-0028 

tMicrocomputer System Technical Distributor Centers CG-10/20117 
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... lllXICO --Inc. 11030CocNUS.E. 
--87123 

~:'lcf=: 
Harnllton/Avnet Elaclronlce 
2624Ba"°'DrlwlS.E. 

~87108 
1500 
1386 

Nl!WYORK 

DOMESTIC DISTRIBUTORS 

NORTH CAROLINA (Cont'd.) --9801 A-southem Pine Btvd. 
Charlotte 28217 

=~-= 
OHIO 

AtrO# Electronics, Inc. 
7820 McEwen Road 
~45459 

~:>J~\~= 

~== Clevelllnd44105 

~~:~~~ 
FAX: 218-687-3906 

OKLAHOMA 

Am:Nt EllctronD, Inc. 
~=~411c:.ElltAve., Ste. 210 

~~~\~~gg 
OREGOOI 

PENNIYLYANIA 

AmN1 ElectroNcs, Inc. 
860 Seco Road 
Monroevllle151"8 

~~~~\~~m 
Hamillon(Avnal Electronics 

r>a~~.,llldg.E 
Tai: (41 281-4150 
FAX:41 ·281""882 

PENNSYLYUIA (Cont'd.) 

le"\";;--=.a 
-19044 

~~~~ 
FAX: 215-674-3107 ...... 

WAll9fQTON 

tAOnocBecVonaCarp. 
=~Way 

~~~2:1::= 
AmMElectronlca,tnc. 
14320N.E.211t81reet 
BalloYue98007 

1:X~~ 

~~~=i~ 
-98005 
~~~~ 

wtSCONllN 

~~~al::.1~.100 
Brookfleld53005 

~:Xf~\t~:ITT= 

CANADA 
ALBERTA 

, Zontronlcs 
=~~7N.E.,Ste.100 

~:'icfL~ 
BRITISH COLUllllHA 

-·--80-1313 Border Street 
Wlnn~R3H OX4 
Tel: 694-1957 
FAX: 55 

ONTARIO --Inc. ic:2-"'' 
MlulsmLST1M4 

~:'icJ~\U2: 

§:~m 
~..1 .. ~1: 
l~Road 
Unlt17 
N:;nK2E7K1 

~Ai'\\~ 
IAIKATCHIWAN -173-1222 Alberta Avenue 
Snkatoon 87~ 1R4 

~~~~;2207 
OUHl!C 

tAnow Electronica Inc. 
4050 Jean T.ton Qunt 
Montreal H4P 1 W1 

~~~\~~~ 
AmMElectronicllnc. 
909 Chantlt Blvd. 
a...ce1N288 

~:x~~\~== 
Hlmllton/Avnet Electronlel 

~~"='fPI 
~~~\~~ 
Zontronlcs 

~7:~~tiN4 
~:ic~~\t~~= 
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FINLAND 

'""" Ruoallentie2 
00390 Hels6nki 39 

~~~44 
FRANC!! 

'""" 1, rue Edllton·BP 303 
78054 St QuentlMft-Vvelnes Cedex 

~'~f:1000 

'""" llllll18UbleBBC 
4,0ualdesEtroils 

~8':1:'4088 
· TUC: 305153 

EUROPEAN SALES OFFICES 
WEIT Gl!RllANY , .... 
SeldlWasae 27 
8000 Muenchen 2 

~~1~3890 

'""" HohenzOllem Struse 5 
3000 Hannover 1 
~~~4081 

, ... 
Abraham Uncoln Strasse 18-18 
ll200-
m~~lle~~8050 
, ... 
-81 
7012 Fellbach 

¥~)15800112 
TLJC1'254828 

llRAl!L ,...,. 
Attidlm Industrial Park 
P.O. Box 43202 
Te1Avlv81430 

~,'~1i~r80 
ITALY 

NETHERLANDS 

-·· -Hvamvelen 4.p .O. Box 92 
2013= 
~!~8018420 

IPAIN 

, ... 
i:foz::=n no. 2&-1 laq 

~!~4004 

IW!:Dl!N 

, .... 
\'r.'sr"~ 
m~~~o100 

IWITZlllLAND 

UNITl!D KIHGIDOll ,...,. 
~.,.:.•1.-,. SN3 1 RJ 

i~:(O~~eooo 

EUROPEAN DISTRIBUTORS/REPRESENTATIVES 
AUSTRIA Wl!IT GERMANY rTALY (Cont'd.) UNITED KINGDOM 

Bachar E1ec1ronic1 GmbH E1eclronlc2000Vertrlebs-AG to:.:+::f~· Accent Etactronic Com~ Ltd. 
~lguse28 =ru0errlng12 JublleeHou11,Jubllee 

uencllen82 20092 Cinl1811o Balsamo Letchworth Hertl S08 1 
~(~8356480 it'M~~oo10 MHono ~~=·86 +~=0012 
ll!LGllll ITT Mulllkomponent GmbH ~~c.n ... Bahnhofttrlsse 44 .............. 
lnolco-8.A. 7141tmi"T, -Rood 
Av. dee Croix.de Guerre 94 Toi'(~ 79 

21RW 1120 Bruxelles nx, 
i~~':J..~~8 01 60 T 482211 

08 T 15 

DI-

=Eatote -·· ITT-Mulll-A/S Otford ROid 
Naverland 29 Nordisk Elektronltl: AJS -280DG= -ieGmbH P.O. Box 122 Kent TN14 seu 
Tel'~ 45 ~•11149 ==4 m~"50144 nx, uandlen71 

Tll,(089)780420 i~'7:S8210 - TUC: 5213189 --RapklHOUH 
OY RntronlC AB Proelectron Vertrllbs GmbH PORTUGAL Denmark St. 
Melkonkatu 24A Max Planck Sb'asse 1-3 ~~R 00210 Helllnkl21 8072Dnlielch Dilnlm 
Ta"!O) 892 80 22 m~~Vs~ 30 43 43 

Av. M. Bombarda, 133--1 D m,1~~tM4 22 86 TUC: 124224 1000 Usboa 
Tel: {1) 54 5313 

l'llANCI! IAELAND TUC: 14182 ==-~-
..... -Sl 

ATDElectronlcaS.A. ~~R g:<'O:,'Y Piazl Ck.ldacl de Viena no. IS ~=t50244 ~~(~1~112811 28040Madrld 

~!~~4000 YUCIOlll.AVIA 
..... L 

m-sesa H.R.M-Cctp. 
=oM:'ridAngal no. 21-3 2005 de la Cruz Blvd., Ste. 223 

Santa Clara, CA 95050 

~~~~~0957 U.S.A. 

~!~=-' 
~ IRDl!N 

~':!'::.-c.~ ITALY Nordisk Elektronlk A.B. 

~~:<~,~~8240 ~;:s.A. 
~1 
17127 Solna 

20090 AINQO m~=9770 Miano 

-BP2 
Tll:(02)824701 
TLX: 311351 SWITZERLAND 

lndustrade A.G. 
HertiltrUH31 
8304Walllsellen 

~~~~7~30 50 40 

CG-10/I0/17 
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INTERNATIONAL SALES OFFICES 

AUSTRALIA 

lntet Australia Pty: L,td:, 

r.~~Level6 
Crows Nest, NSW. 2065 

t~!~~-2744 
FAlt (2) 923-2632 

BRAZIL 

Intel SemlcondutoM do Brasil LTDA 
Av. Paullsta, 1159-CJS 404/405 
01311 ·Sao Paulo· S.P. 
Tel: 55-11-287-5899 
TU: 1153146 
FAX: 55-11-212-7631 

CHINA 

Intel PRC Corporation 
15/F, OflJce 1, cmc Bldg. 
Jlan Guo Men Wal Street 
Beljl~, PRC 
Tet ( 500-4850 
TLX: 2947 INTEL CN 
... , (1) 500-2953 

HONGKONG 

Intel Semteonductor Ltd." 
1701·3 Conni~ Cent{e 

}~·=~ 
TWX:= ISLHK HX 
FAX,(5)29<·569 

JAPAN 

Intel Japan K.K. 
H Tottodal T~sato-machl 
t~~~t;2~~11 rakl·ken 300-26 

TLX: 3656-160 
FAX: 029747-8450 

~~·~~,:!g~~. 
1-8889 Fuchu-cho 

~~04~~o;'J:, 183 
FAX: 0423-80-0315 

Intel Japan K.K. • 
Mltsui-Selmel Musashi·kosugi Bldg. 
915 Shlnmaruko, Nllklhara-li:u 
Kawuaki-shl, Kanagawa 211 
Tel: o.M-733-7011 
FAX: 044·.733-7010 

JAPAN (Cont'd) 

~~r~-~tsugi Bldg. 
1-2-1 Asahi-machi 

~!:~:~~~-~7~awa 243 
FAX: 0482-29-3781 

Intel Japan K.K .• 
Ryokuchi-Ekl Bffig. 
2-4-1 Terauchl 
T:T:onaka-shl, Ouka 560 

~AX~:rn:l 

100 

~~=·K.K. 
1-16-30 Melekl Minami 
Nakemura-ku, Nagoya-lhi 
Aichi 450 
Tel: 052-561-5181 
FAX: 052-561-5317 

KOREA 

Intel Technology Asia Ltd. 

~~Y~~~ou~ungpo4n1 
Seoul 150 

~~~~~~reLKO 
FAX: (2) 784-8096 

SINGAPORE 

~~l~~~=~~Ltd. 
Goldhlll Square 

~~~=~8~~30 
TLX: 39921 INTEL 
FAX: 250-9256 

TAIWAN 

Intel Technology (Fer Eut) Ltd. 
Taiwan Brenetl 
t~~.NFf.o~· Tun Hu• N. Road 
Tel: 886-2-718-"80 
TLX: 13159 INTELTWN 
FAX: 888-2-717-2455 

INTERNATIONAL 
DISTRIBUTORS/REPRESENTATIVES 

ARGENTINA 

OAFSYS S.FtL 
Checabuco, 90-4 PISO 
1089-Buenos Aires 
Tel: 54-1-334-1-871 

54·1·34-n26 
TLX: 25472 

Rey<:ol!I Electronlcl S.A.L 
Arcol 3631 
1429-Buenos Ail'ff 
Tel' 54 (1) 701 .... 62/96 
~t:; ~1(~ 11-1722 

AUSTRALIA 

Total Etectronicl 
P.M.8. 250 
9 Harker Street 
Burwood, Vlctorl•3125 
Tel: 61-3-288-4044 
TLX: M31261 

Total Electronics 
P.O. Box 139 

~:m2~~~ 
TLX: 28297 

BJllAZIL 

Elebra Mlcroelectronlel 
A. Geraldo Flauslno Gomes; 78 9•-04575 - Sao Pauto - S.P. 
Tel: 55-11-534-9522 
TL)(; 1154591 or 1154593BA 
FAX: 55·11-534-9837 

CltlLI! 

DIN Instruments 
Sueci• 2323 
cuma 6055, Correo 22 

~~-225-6139 
TLX: 440422 AUDY CZ' 

CHINA 

Novel Precision Machinery Co., Ltd. 

~~ r>~1~;.rr~r:~· 
N.T., Kowloon 
~~ ... , .. ,:-.... _ -­
TWX' 
FAX: 

~leld Application Locetlon 

CHINA (Cont'd) 

INDIA 

Mlcronlc Devices 
Arun Complex 
No. 65 O.V.G. Road 

Mlcronlc DIYlcn 
No. 516'$111 F1oo< 
SweltQI; CNmbers 

1 
BGIN 

t:b;~ir11Aoed 
Tel: 91-52·39·63 
TLX: 9531 171447 MDEV IN 

JAPAN 

Atlhl Electrollles Co. Ltd. 
KMM Bldg. 2·14-1 Auno 
Kokurlkltl.-ku 

~:'~~;·:,.~2 
FAX: 093-651-7881 

C. ltoh Techno-Sclence Co., Ltd. 
C. ltoh ~· 2-5-1 Klt1-Aoyema 
~~~~~7~107 
FAX: 03-497-4969 

JAPAN (Cont'd) 

~=~::n,~:~}ay• 
t.':'M~~~~yo, 
FAX: 03-487-8088 

~~~r=~~ 
~:~2::.~:1•hl 460 
FAX: 052-204-2901 

Ayoyo Electro Corp. 
Konwa B!dg. 
1-12-22 Ttuklji 

¥:,-:.~~sJf1104 
FAX: 03·546-5044 

KOREA 

J-Tek Corporation 
8th Floor, Government Penelon Bldg. 
24-3YOldo-~ 
~ngpo-.u 

Tel: 82-2-782-8039 
TLX: 25299 KOOIGIT 
FAX: 82-2-784·1391 

Samsung Semiconductor & 
Tetecommunlcatlona Co .. Ltd. 
:::J·,~· Tafpyung·ro, Chung-ku 

Tel: 82-2-751-3987 
TLX: 27970 KOASST 
FAX: 82·2-7sa.o987 

MEXICO 

Olcopel •••. 
Tochtll 368 Fracc. Ind. San Antorao 

~r;r~~xlco, O.F. 
Tel: 52-5-561·3211 
TLX: 1773790 DICOME 

NEW ZEALAND 

Northrup lnstrumente & Systems Ltd. 

i~8."to~ ~::~ r:'=arket 
Auckland 1 
Tel: 64-9-501·219, 501-801 
TLX: 21570 THERMAL 

~b~h~~ ~:Je"mente & Systemt Ltd. 

f:t;.p_tr.J::e 
TLX: NZ3380 
FAX: 84-4-857278 

SINQAPOftl 

Francotone Eltctronlcl pte Ltd. 
17 Harvey Road #04-01 
Slng~133e 
~~~~:sie1e 
FAX: 2895327 

IOUTHAFRtCA 

Eleclronlc Building Elemtntl, Pty. Ltd. 
P.O. Box 4809 
Pine Square, 18th Street 
HazelwOoCI, Pretoria 0001 
Tel: 27-12-469921 
TLX: 3-227788 SA 

TAIWAN 

Vl!NEZUILA 

P. Benavides S.A. 
Avilenet a Rio 
Resldencla Ktmarata 
Localet4 AL 7 
La Clnctelarla, Caracas 
Tel: 58-2-571-0396 
TLX: 28450 
FAX: 58-2-572-3321 

C0-10120/87 
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ALABAMA 

Intel Corp. 
5015 Bradford Drive, #2 
Huntsville 35805 
Te/0(205)-10 

ARIZONA 

tntelCo<p. 
11225 N. 28th Dr., #0214 
-~85029 
Telo (802) 889-4980 

Intel Corp. 
500 E. Fry Blvd., Suite M·15 
Sierra Vista 85635 
Tel: (602) 459-5010 

ARKANSAS 

Intel Corp. 
P.O. Box 206 
Ulm 72170 
Tel: (501) 241-3264 

CALIFORNIA 

Intel Corp. 
21515 Vanowen St. 
Suite 116 

¥:.7iar~C":~~ 
Intel Corp. = ~1 rper1a1 Highway 

~e1~:.is 
Intel Corp. 

~:"~=~s:~· 
Tel: (916) 351-6143 

=~fthstreet 
Suite 110 
Santa Ana 92705 

~t~1b.':5~l4~ 
Intel Corp. 
2700 San Tomas Expressway 
Santa Clara 95051 
Tel: (408) 970-1740 

Intel Corp. 
4350 Executive Drive 
Sulte105 

~~(~4:~~ 
COLORADO 

Inter Corp. 
~"m"Cherry 
Oenver80222 

~~~":s';: 

CALIFORNIA 

2700 San Tomas Expresaway 
Santa Clara 95051 
Tel: (408) 970..1700 

CALIFORNIA 

2700 San Tomas Expressway 
Santa Clara 95051 
Tel: (408) 986-8086 

DOMESTIC SERVICE OFFICES 
CONNECTICUT MICHIGAN 

Intel Corp. 
26 Mill Plain Road 

Intel Corp. 
7071 Orchard Lake Road 

Danbu.\! 08811 Suite 100 

~~11b:.~\~ West Bloomfield 48033 
Tel: (313) 851..s905 

FLORtDA MISSOURI 

~r:o ~\e: 62, Suite 104 
Intel Corp. 
4203 Earth City Expressway 

Ft. Lauderdale 33309 Suite 143 

~~b?l,,1._-= ~:1'(a~~7~J1s 

k'!l;1~stmonte Drive 
NEW JERSEY 

Sulte105 lntetCorp. 

~:m'S\"~~'l'a3211• 385 Sylvan Avenue 
E~lewood Cliffs 07832 

GEORGIA MJ~~~b.S:,~~ 
Intel Corp. W!':l~il:aza111 3280 POinte Parkway 
Suite 200 Raritan Center 
Norcross 30092 Edison 08817 
Tel: (404) 441-1171 Tel: (201) 225-3000 

ILLINOIS NORTH CAROLINA 

Intel Corp. Intel Corp. 
300 N. Martingale Rd. 2306 w. Meadowview Road 
Suite 300 Suite206 

~r1~~2'f 3fo~g;i: Greensboro 27 407 
Tel: (919) 294-1541 

INOIANA Intel Corp. 
2700 Wycliff Rd., Suite 102 

Intel Corp. ~=1~8~9~~7-8022 8777 Purdue Rd., #125 

~r::~(3~ri'~~:~~ OHIO 

KANSAS ~~~gi-ainard Bldg. 
Intel Corp. Sulte305 
8400 W. 110th Street =a~8t1n~outevard Suite 170 
Overt.and Pal1t 86210 ~~J~b~~9:a Tel: (913) 3'5-2727 

KENTUCKY Intel Corp. 
6500 Poe 

Intel Corp. ~r~:~J~5350 3525 Tatescreek Road, #51 

~=~i= 24:~~45 OREO ON 

MARYLAND Intel Corp. 
15254 N.W. Greenbrier Parkway, Bldg. B 

Intel Corp. Beaverton 01886 
5tfl Floor ~J~~ii~411 7833 Walker Drive 
Greenbelt 20770 
Tel: (301)441-1020 =~·Elam Young Parkway 
MASSACHUSETTS Hiiisboro 97123 

~=;oc;'°/Corp. Center 
3 Carlisle Road 

Tel: (503) 681-8080 

Westford 01886 
Tel: (617)892-1060 

CUSTOMER TRAINING CENTERS 
ILUNOIS 

~ha~m~n'6~3#300 
Telo (312) 3f0-s100 

MASSACHUSEns 

3 Carllsle Road 
Westford 01886 
Tel: (617) 692-1000 

SYSTEMS ENGINEERING OFFICES 
tLLINOIS 

~!~imMt!~nsg~~3#300 
Tel: (312) 3~0-8031 

MASSACHUSEns 

3 Carlisle Road 
Westford 01886 
Tel: (617) 692-3222 

PENNSYLVANIA 

lntelCo<p. .. 
201 Penn Center Boulevard 
Suite301W , 

~:S:;t'ih~~ 
TEXAS 

lntelCo<p. 
313 E. Anderson Lane 
Sulte314 
Austin 78752 

~~J~US:4~~ 
lntelCorp. 
12300 Ford Road 
Suite380 
Dallas 75234 

~~J~~2~ 
Intel Corp. 
8815 ~r St., Suite 225 
El Paso 79904 
Tel: (915) 751-0186 

VIRGINIA 

Intel Corp. 
1603 Santa Rosa Rd., #109 
Richmond 23288 
Tel: (804) 282-6688 

WASHtNGTON 

\"1~ 1~~-Avenue N.E. 
Sulte510 
Bellevoe 98004 
Tel: 1-800-<4EIS-3548 
TWX: 910-443-3002 

WISCONSIN 

lntelCo<p. 
3SO S. Executive Or. 
Sulte102 
Broolcfleld 53005 
Tel: (414) 784-8087 

CANADA 
Intel Corp. 
190 Attwell Drive, Suite 500 
Rexdale, Ontario 
Canada M9W 6H8 
Tel: (416) 675-2105 

~~~~nBlvd. 
Pointe Claire, Quebec 
Canada H9R 3K3 
Tel: (514) 894-9130 

Intel Corp. 
2650 Queensview Drive, #250 
Ottawa, Ontario, 
Canada K2B 8H6 
Tel: (613) 829-9714 

MARYLAND 

7833 Walkw Dr., 4th Floor 
Greenbelt 20770 
Tel: (301) 220-3380 

NEW YORK 

300 Motor Parkway 

~:~~18~3~~ 

CG-10/20117 






