D> Frirreas

ADSP-2101

EZ-LAB Manual

You may contact the Digital Signal Processing Division in the following
ways.

* By contacting your local Analog Devices Sales Representative
* For Marketing information, call (617) 461-3881 in Norwood,
Massachusetts, USA
» For Applications Engineering information, call (617) 461-3672 in
Norwood, Massachusetts, USA
» The Norwood office Fax number is (617) 461-3010
» The Norwood office may also be reached by
Telex: 924491
TWX: 710/394-6577
Cables: ANALOG NORWOODMASS
» The DSP Division runs a Bulletin Board Service that can be reached at
300, 1200 or 2400 baud, no parity, 8 bits data, 1 stop bit by dialing:
(617) 461-4258
» By writing to:
Analog Devices
DSP Division
One Technology Way
P.O. Box 9106
Norwood, MA 02062-9106
USA

ADSP-2101 EZ-LAB™ Manual

© 1990 Analog Devices, Inc.
ALL RIGHTS RESERVED

Information furnished by Analog Devices is believed to be accurate and reliable.
However, no responsibility is assumed by Analog Devices for its use; nor for any
infringement of patents or other rights of third parties which may result from its use. No
license is granted by implication or otherwise under the patent rights of Analog Devices.

PRINTED IN US.A. FIRST EDITION

Literature

ADSP-2100 FAMILY MANUALS

ADSP-2100 User’s Manual/Architecture
ADSP-2101 User’s Manual/Architecture
ADSP-2111 User’s Manual/Architecture
Complete descriptions of architecture and system interface.

ADSP-2100 Cross-Software Manual
ADSP-2101 Cross-Software Manual
Complete programmer’s references, including optional C compiler.

ADSP-2100 Emulator Manual
ADSP-2101 Emulator Manual
ADSP-2101 EZ-ICE™ Manual
User’s manuals for in-circuit Emulators.

ADSP-2100A Evaluation Board Manual
A guide to the Evaluation Board including schematics for prototyping.

ADSP-2101 EZ-LAB™ Manual
A guide to the EZ-LAB demonstration board and programs.

APPLICATIONS INFORMATION

Digital Signal Processing Applications Using the ADSP-2100 Family.
(Formerly the ADSP-2100 Family Applications Handbook, Volumes 1, 2 and 3.)
Topics include arithmetic, filters, FFTs, linear predictive coding, modem
algorithms, graphics, pulse-code modulation, multirate filters, DTMF,
multiprocessing, host interface and sonar.

SPECIFICATIONS INFORMATION

ADSP-2100A/ADSP-2100 Data Sheet
ADSP-2101 Data Sheet

ADSP-2111 Data Sheet (preliminary)
ADSP-2105 Data Sheet (preliminary)

WARRANTY

The ADSP-2101 EZ-LAB™ is warranted against defects in workmanship
and materials under normal use and service for 90 days from the date of
shipment by Analog Devices. This warranty does not extend to any units
which have been subjected to misuse, neglect, accident, or improper
installation or application, or which have been repaired or altered by
others. Analog Devices’ sole liability and the Purchaser’s sole remedy
under this warranty is limited to repairing or replacing defective products.
The repair or replacement of defective products does not extend the
warranty period. Analog Devices, Inc., shall not be liable for consequential
damages under any circumstances.

CHAPTER1 OVERVIEW

—_

A
2

PO AUCHION .. ettt et e et et e e e seeeeeseeesessesseseenesnsenseseesnssnsesnsans 1-1
Demonstration BOArd FEAIUINEScecveeeeeeeeieeeeeeeseesrereereesesessseseessessesssessessassnens 11

CHAPTER2 SETTING UP

2.1

22

221
222
223
224
225
226
227
228
23

24

25

25.1
252
253
254
255
256

INTPOAUCTION ...t s s s 2-1
Configuring EZ-LAB JUMPEIS........c..ooiiiiini s 2-1
TFS1/IRQ1 ConNECHON (JP1) ..ot esaess s ees s 2-4
DR1/FI CONNECHON (JP2).......cvrverrrererericrreieeeeiesieresrsseetes et es e ss s seseseesens 2-4
Boot EPROM Enable (JP3) ..., 2-4
RFS1/IRQ0 Connection (JP4) ..ot e 2-5
CODEC ENable (UP5)covveruriririrreieiensinsssssiss s sesssss s sssssessssse s sasssssons 2-6
CODEC/DX COnNECHON (UPB)cvurververeerrerrereeieieiesveteniessesessessssessaesessesenees 26
CODEC/FSX Connection (JP7)cccvviicniiinciicniniiseesisisiienns 2-6
IRQ2 CONNECHON (UPB)c.ovveeierriiereerseeise s sses s 26
BOAId SWICNEScooveieeririee ettt et b e 2-7
INGICALON LEDS ..ottt ssssssssssssssssnsssssssassesssssnsns 2-7
CoNNECLOTS ANA JACKSvveverveeeireciiiniisissssssssss s sssstessss st ssssse e s s sens s 2-8
User Interface Connector (J1)ccveruerrerecniinniisisseesiessisss s ssessseseenes 2-8
SPORT CONNECLOT (U2) ...cvvvuvririerieeierereeeeeise s sstsiesses et sasssessesessessnsesssees 29
DAC Output CoNNECOT (U3)........ucvvreeereirireerisiessies e ssssesss s saenens 2-10
Power Supply CONNECIOT (J4)couurvreirnrireeiene et sssaesanes 2-10
ANAIOG INPUL (PHT) .ot b e 2-10
Analog OULPUL (PH2)coeeeeeererrrie et 2-10

CHAPTER3 OPERATION

3.1
3.2
3.3
34
3441
342

INETOUCTION c..ve vttt sttt sttt s st ssas e e assse st saebe e seressbesenens 31
FOUP ChanN@l DACoov ettt ese e sessaes e s sereness s s snenesesens 3-3
AUGIO CITCUIRPY ..ottt ettt sttt 35
BOOt EPROM ..ottt ettt sttt ss s st sas s sn s 37
Changing Boot Pages In SORWArE...............c.veeeeeeeeeereiinse e 3-7
EZ-LAB FIMWATE ..ottt ettt sttt rsssi s s s s sne e 3-13

iii

v

Contents

APPENDIXA CALIBRATION

AT IIOQUCHONooovvvvevevessvessse e ssssnessnssssnssennees A-1
A.2 Input Amplifier Calibrationc.cceeoveerrriisrseinecs e A-1
A.3 Output Amplifier Calibrationccevueemmrernemsriessninrne s iesesssessssssseenssnsees A-2
APPENDIX B

Schematics

FIGURES

Figure 2.1 EZ-LAB Board Layoutccocuveuviniecececriinincccncnse s 2-2
Figure 22 EZ-LAB JUMPETSovrrmereremrenererseeseemsiscs s esses s s ssessesssssennens 2-3
Figure 2.3 ADSP-2101 Program Memory Map........cccvveveenerneunmnireneneineniineensenninees 2-5
Figure 2.4 User Interface CONNEBCIOr J1uveeruverueeenennincneinit s seeiens e 28
Figure 2.5 SPORT CONNECIOr U2oveeniiiireeeeeeeee et 2-9
Figure 3.1 Data Memory Map.........cccccvemuveuccneeencnencnennees ettt et 34
Figure 3.2 DAC Transfer EXampleccoouveereenineenencrrii et 34
Figure 3.3 CODEC Programming EXampleccceuevereerreinmniinniressesesesniessssenens 3-6
Figure 3.4 Boot EPROM Page Changing Exampleccccoccevencniccnicininnnn, 3-13
INDEX

Overview

11 INTRODUCTION

The ADSP-2101 EZ-LAB™ demonstration board is a low cost evaluation
and demonstration system for the ADSP-2101 microcomputer. It allows
you to develop and debug ADSP-2101 software for digital signal
processing applications.

The demonstration board is capable of standalone operation. All you have
to provide is +5VDC, +12VDC, and -12VDC power supplies.

Your development system should include a PC to make use of the ADSP-
2101 Cross-Software development tools. These tools include several
software modules: system builder, assembler, linker, and PROM splitter.
The cross-software tools are used to create executable ADSP-2101
programs.

This manual assumes that you are already familiar with the architecture of
the ADSP-2101 (described in the ADSP-2101 User’s Manual) and its
software development tools (described in the ADSP-2101 Cross-Software
Manual).

1.2 DEMONSTRATION BOARD FEATURES
The following is a summary of EZ-LAB's features:

e ADSP-2101 12.5 MHz microcomputer

e Plug-in 12.288 MHz crystal which can be replaced with a crystal of a
different frequency

¢ 64K by 8-bit boot EPROM (27512) pre-programmed with application
demonstrations (see the release note shipped with the board for
specific listings)

¢ No external memory board required to run existing programs

Overview

Processor controlled CODEC (TP3054) connected to SPORTO (Serial
Port 0) with input AD741 opamp using a microphone or other high
impedance device connection (Analog Input PH1); output amplifier
with similar connector for a speaker (Analog Output PH2)

SPORT!1 configured as interrupts and hardware flags; may be
reconfigured as a serial port via onboard jumper connections

Both SPORTSs available at I/O connector (J2)

Four channel, double buffered, data memory addressable digital-to-
analog converter (DAC) (Analog Devices AD7225KN)

Three switches for user control: Interrupt IRQ2, Flag In, and Reset

FLAG OUT LED, useful for signaling the beginning or end of program
sequences

POWER LED, indicating presence of +5V

Board is expandable to full program and data memory capability, with
all pins (except SPORT) on the ADSP-2101 available at the User
Interface expansion connector (J1); SPORT pins available at J2.

Setting Up

21 INTRODUCTION

This chapter describes the installation procedures necessary to set up the
ADSP-2101 EZ-LAB™. The first step is to unpack the demonstration board
and associated documentation. The EZ-LAB is packed to prevent damage
during transit. If you find any damage, file a claim with the shipping
agent and notify Analog Devices.

The demonstration board is shipped fully assembled. You should receive
the following items:

EZ-LAB demonstration board

This manual (includes schematics, TP5054 CODEC data sheet and
AD7225 DAC data sheet)

Software release note

ADSP-2101 DSP Microcomputer data sheet

2.2 CONFIGURING EZ-LAB JUMPERS

There are eight jumper sets on the demonstration board that configure EZ-
LAB operations; these are in two blocks of jumpers. Figure 2.1, on the
following page, shows the layout of the EZ-LAB board indicating jumpers,
switches, potentiometers, and connectors. The jumpers are marked (JP1
through JP8); each is a two-position jumper (pin 1 to pin 2, or pin 2 to pin
3) with pin 3 being the one closest to the three red switches. Figure 2.2, on
page 2-3, provides a reference for jumper use while Sections 2.2.1 through
2.2.8 provide a detailed description of their use.

You can configure SPORT1 on the ADSP-2101 as either a serial port
(through the SPORT connector, J2) or for onboard flag and interrupt use.
To configure it as a serial port, all required jumpers (JP1, JP2, and JP4)
must be properly set.

2 Setting Up

J1 USER INTERFACE

DACO
AC1
AC2
AC3

AGND

ANALOG DEVICES, INC.
ADDS2101 EZLAB REV

&

c 0o SER. NO.
U4 [
. 00000 [wes o
OUTPUT AMP (-
J2 SPOR J3 DAC OUTPUT 85
VOLUME S
U2 u3 < 2=
U1 AD5869 2 « Z3
(0 AD7225KN) =
74F32 +5ref PH2
DAC q
us U6
74AHCT14 © 74HCT244 © ETC5054 ©
q q cobec ¢
GAIN
U7 ipe
o =] 8 Isz
27512 o PH1
olaislm o
JP5 JP7 o5
EPROM C 12.288 2 @
B MHz = I Z2Z
0] D741
us [¢}— cRysTAL|™ A <
IN AMP
T A 0
~EEEE OFFSET Nt Ut
o (alale 3
©|njsisjala] 74F74
q q
SW1 SW2 SW3
IRQ2 FLAG RESET

Figure 2.1 EZ-LAB Board Layout

2-2

321 321
o a e(JP8 N o %i1JP8
Enables external) Connects ADSP-2101 TFS1
Jr1| IEV @j‘;}z [RQ1/ interrupt from P =|'P! o TFSI pin on SPORT
IRQ1 e o5 luPs User Interface * e 3l ps connector (J2).
" connector (J1). o5 o Pa
37 T
% ¢ alJP8 in e ol pg
8 o e|JP1 Connect ADSP-2101 ,'u o u}jpq Enables FLAG (IN) push-
JP2 DR1/F1 sficslpz DRI to DR1on SPORT Jp2 button. (Always usea
> % olJP3 connector (J2). o olyps er in one of these
w5 wlups % o Bl JP4 positions.)
321 321 ,
- v o 1|JP8 ‘ o n oiypg Disable onboard boot
Boot > % olypy Enables boot EFROM, 55 %1py EPROM. (Always usea
JP3| EPROM | frs-3 Jp2 U8 5% alJpp jumper in one of these
Enable | [ST%H] s b |Jps Positions.)
19.2_8iJP4 B0 2JP4
321 321
D fi G]JP8 fi g a1JP8
Enables external Connect ADSP-2101 RFS1
JPa| RESL/ | {28 81UP1 1RQO/ interrupt from {&.8.2310P1 o RFSI pin on SPORT
IRQO 3 5 0}JP2 UserInterface 2.2 91JP2 connector (]2).
o 8 2iJP3 connector (J1). n e aiJp3
(s i uPs P4
e 321 e 321 CODEC enabled, connects
Siss CODEC disabled, 3 ADSP-2101 SCLKO t
CODEC | =i G5k inputs tied GEEE]s] CODEC clock in ut_f
JP5 noQ alD . P t O u P
Enable sheaal® high T & (Always use a jumper in
S 3 one of the positions.)
e« 321 s 321
Qo s Provides serial @1 3 o1 No connection. Use for
JP6 C%?(EC/ sJE®| S data from CODEC JETE]8 |5 external (J2) access of
Sie_o u}~ DXpinto ADSP- Sla_e e}~ SPORTO.
~ 2101 DRO pin. ~
c 321 govidesreﬁreive . 321 Use s
oo 5 © me synchroniza- Rir o n No connection. Use for
JP7| CQREC/| Thsaig ton from ADSP2101 sl external 02) acces of
Sle e in to S .
3 FSX p?n. 20
321 321
0 JP8 ¥ %] =] JP8
e o1 a-u; P Enables external IRQ2/
JP8 _—IRQZ 5~7alup2 Enables IRQ2 e interrupt from User
T rs pushbutton switch. S e Interface connector (J1).
% ¢ altJpP4 o o u{JP4

Figure 2.2 EZ-LAB Jumpers

2-3

2

Setting Up

221 TFS1/RQ1 CONNECTION (JP1)

This jumper selects the connection for the TFS1/IRQ1 pin on the ADSP-
2101 pin F10. If you jumper pins 1 to 2, you connect the TFS1/IRQ1 pin to
IRQ1 on the User Interface expansion connector (J1 pin 9). If you connect
pins 2 to 3, you connect TFS1/IRQT to TFS1 on the SPORT connector (J2
pin 11); this is one of the jumpers required to use SPORTI1 as a serial port.
If you make no connection, neither T(Z]RTET from the User Interface
expansion connector nor SPORT1 is available for use.

2.2.2 DR1/Fl Connection (JP2)

This jumper selects the connection for the DR1/FI pin on the ADSP-2101
pin E10. If you jumper pins 1 to 2, you connect the DR1/FI pin to DR1 on
the SPORT connector (J2 pin 9); this is one of the jumpers required to use
SPORT!1 as a serial port. If you connect pins 2 to 3, you connect DR1/FI to
the FI (FLAG IN) pushbutton switch through its debounce circuitry.
Failure to connect a jumper to JP2 disables both features and leaves DR1/
FI floating.

223 Boot EPROM Enable (JP3)

MMAP, pin E2 on the EZ-LAB ADSP-2101, is permanently tied to GND
(MMAP=0). See Figure 2.3 for the resulting program memory map.

In this configuration, the ADSP-2101 always boots its 2K by 24-bit word
internal program memory (0x0000 - 0x07FF) from EPROM. This occurs at
reset where page 0, the first page of 8K by 8-bit EPROM memory is
transferred. Booting may also be forced in software when the System
Control Register’s (data memory location 0x3FFF) Boot Force Bit
(BFORCE) is set to 1, at which point the Boot Page Select (BPAGE) bits in
the same register select the page (0 - 7). ‘

If JP3 is jumpered in the pin 1 to 2 position, the EZ-LAB 27512 EPROM
(U8) is enabled for booting. When the jumper is between pins 2 and 3, the
EPROM is disabled. Normally the EPROM should be enabled; you should
only disable the onboard EPROM in order to boot from another EPROM
available through the expansion connector (J1). The Boot Memory Select
(BMS) control pin from the ADSP-2101 connects to pin 15 on that
connector.

Failure to use a jumper at JP3 leaves the Output Enable (OE) pin (22) on
the EPROM floating; whenever an EPROM is present, the jumper must be
used.

Setting Up

INTERNAL 0000
RAM
LOADED
FROM
EXTERNAL
BOOT

MEMORY O07FF

0800

EXTERNAL
MEMORY

3FFF

MMAP=0

Figure 2.3 ADSP-2101 Program Memory Map

224 RFS1/IRQO Connection (JP4)

This jumper selects the connection for the RFS1/ IRQO pin on the ADSP-
2101 pin E11. If you jumper pins 1 to 2, you connect the RFS1/IRQO pin to
IRQO on the User Interface expansion connector, J1 pin 7. If you connect
pms 2to0 3, you connect RFS1/IRQ0 to RFS1 on the SPORTSs connector,]2
pin 10; this is one of the jumpers required to use SPORT1 as a serial port.

If you make no connection, neither IRQO from the User Interface connector
nor SPORT1 is available for use. :

2

2-5

2

Setting Up

225 CODEC Enable (JP5)

You can disable the TP5054 CODEC by jumpering pins 1 to 2 on JP5; this
configuration ties MCLKR (pin 8), MCLKX (pin 9), and BCLKX (pin 10) on
the CODEC high via a resistor to +5VDC. You should only do this to

ignore the analog features of the board and access SPORTO externally
instead.

Jumpering pins 2 to 3 on JP5 enables the CODEC by connecting ADSP-
2101 SCLKO to MCLKR, MCLKX, and BCLKX on the CODEC. This jumper
position allows SCLKO to provide the clock signal required for CODEC
operation.

Connect one of the two jumper positions. If there is no connection, pins 8
through 10 on the CODEC will float.

2.26 CODEC/DX Connection (JP6)

Jumpering pins 1 to 2 on JP6 connects the DX pin (11) on the CODEC to
DRO pin G11 on the ADSP-2101; this provides serial data from CODEC to
ADSP-2101. Jumpering pins 2 to 3 on JP6 does not make any connection.

You should only do this to ignore the analog features of the EZ-LAB board

and instead access SPORTO from off board.

227 CODEC/FSX Connection (JP7)

Jumpering pins 1 to 2 on JP7 connects RFS0, pin H11 on the ADSP-2101, to
the FSX pin (12) on the CODEC; this provides receive frame
synchronization from ADSP-2101 to CODEC. Jumpering pins 2 to 3 on]P7
does not make any connection. You should only do this to ignore the
analog features of the EZ-LAB board and instead access SPORTO from off
board.

228 [RQ2 Connection (JP8)

This jumper selects the connection for the IRQ2 pin on the ADSP-2101 pin
F2.If you jumper pins 1 to 2, you connect IRQ2 to the IRQ2 pushbutton
switch via its debounce circuitry. If you connect pins 2 to 3, you connect
the IRQ2 pin to IRQ2 on the User Interface expansion connector, J1 pin 1.
If you make no connection, IRQ2 is not available for use from either the
switch or the User Interface expansion connector.

Setting Up 2

23 BOARD SWITCHES

There are three pushbutton switches on the board, IRQ2 (SW1), FLAG
(SW2), and RESET (SW3). The first two require the proper positioning of
jumpers to connect to the ADSP-2101.

By jumpering JP2 pins 2 to 3, you connect the FLAG button via its
debounce circuitry to the DR1/FI (Flag In) pin E10 on the ADSP-2101. Flag
In is wired as an active low; pressing the button forces the FI pin to
ground. This allows you to manually trigger the flag, providing an
“event” while executing software. When JP2 pins 1 to 2 are jumpered, the
switch is disabled and the DR1 pin (9) on the J2 SPORT connector
provides this input.

Jumpering JP8 pins 1 to 2 connects the IRQ2 pushbutton switch, via its
debounce circuitry, to the IRQ2 pin F2 on the ADSP-2101. This allows you
to manually cause this interrupt when executing a program. When JP8
pins 2 to 3 are jumpered, the switch is disabled and the IRQ2 signal can be
supplied from the User Interface expansion connector (J1 pin 1).

The RESET switch is connected across C1, the capacitor in the RC circuit
providing the power-on reset to the ADSP-2101. There are no restrictions
on when the switch can be used, so do not press the switch unless you
want a complete ADSP-2101 reset. Another independent reset is available
from the HOST RESET line on the User Interface expansion connector (J1
pin 11).

24 INDICATOR LEDS

There are two LEDs on the EZ-LAB board. One, the POWER +5V
indicator, is located next to the power supply connector, J4. When this
indicator is on, the +5VDC used by the ADSP-2101 and digital circuitry is
present.

The second LED is the FLAG OUT indicator. This LED is connected via a
driver to the DT1/FO (Flag Out) pin F11 on the ADSP-2101. It lights when
the ADSP-2101 asserts the Flag Out signal; this feature is useful for
signaling the beginning or end of a program sequence. When you
configure the board to use SPORT1, FLAG OUT also lights when the serial
data transfer line DT1, the same pin, is asserted.

2 Setting Up

25 CONNECTORS AND JACKS

In addition to the jumpers described above, there are a number of other
connectors and plugs for external interface. There are four connectors on
the board (J1 - J4). In addition, there are two 1/8" phono jacks (PH1 and
PH?2) for analog input and output. This section defines their purposes.

25.1 User Interface Connector (J1)

The User Interface expansion connector allows you to expand the
capabilities of the EZ-LAB board; the pinout for this 60-pin connector is on
sheet 4 of the schematics. All address (A0 - 13), data (DO - 23), and control
(interrupt, memory select, bus, clock, and reset) lines necessary for
interface with the EZ-LAB ADSP-2101 are brought out on this connector
(see Figure 2.4). It can be used to interface with additional peripheral
circuitry, memory components, and/or development equipment.

_— 1 =12 GND
BR 3la ol Do
56 Sla w8 D1
[:07) 71y o}l D2
Rat 91, 10 D3
HOST RE 11, o}12 D4
PMS 131y oll4 Ds
BVS 15 2= 16 D6
W 17[, .8 s
o 19|, o120 GND
GND_21[, .l22 D8
ADO 23, ul24 D9
AD1 25 a 26 D10
AD2 27|, o128 D11
AD3 291, o430 D12
GND__ 31 a ul32 D13
33, 4]34
DS I Die
ADo — 37,]38 _GND
AD7 391, wf40 D16
AD8 411, ufd2 D17
- GND_ 43|, .44 D18
AD9 451, w46 D19
AD10 471, o]48 D20
AD11 401, o]50 D21
AD12 511, »152 D22
AD13 531, 24 D23
GND_55[, o156 GND
oS 57 58
GND_59[. .60 GND cLkout

= USERINTERFACEJ1 =

Figure 2.4 User Interface Connector J1

2-8

(

Setting Up 2

252 SPORT Connector (J2)

The SPORT connector allows you access to both serial ports on the ADSP-
2101.

The signals required for SPORTO are all brought out to this connector. If
you don’t use the CODEC and amplifier sections, you can use and
monitor this serial port. Two of the SPORTO signals, TFS0 and DTO, are
also connected directly to the CODEC; these signals originate at the
ADSP-2101 and do not inhibit SPORTO use. Three other signals (SCLKO,
DRO, and RFS0) interface with the CODEC via the positioning of JP5
through JP7; you can position the jumpers to isolate these signals and
disable the CODEC.

Not all of the SPORT1 signals are brought out directly to the SPORT
connector; TFS1, DR1, and RFS1 must be connected from the ADSP-2101
to the SPORT connector via jumpers. When using SPORT1, you lose the
use of the Flag In capability as well as access to IRQO and IR%El from the
User Interface expansion connector. JP1 (TFS1), JP2 (DR1), and JP4 (RFS1)
should be set according to the instructions in Section 2.2 to make SPORT1
functional.

J2

GND__13(

SCLK1 2l o ©
TFS1 1 a ©
RFS1 10lo @
DR1 S

DT1 8

—'1+o

SCLKO 6
TFSO] ©
RFSO 4
DRO 3

DTo 2

FoEs

SPORT Connector =

Figure 2.5 SPORT Connector J2

2-9

2

2-10

Setting Up

25.3 DAC Output Connector (J3)

J3 provides the 0 to 5VDC outputs from the four channel DAC on the EZ-
LAB board. This small five-position screw connector, is located next to J2,
the SPORT connector. The fifth pin (AGND) provides a common return
for the four outputs. The operation of the DAC is explained in greater
detail in the next chapter.

25.4 Power Supply Connector (J4)

You must supply the power sources to the board, a +5VDC supply
capable of supplying 0.2A of current, and a +12VDC and -12VDC power
supply (common supply return). Power supplies must be OFF when the
connections are made to the board.

The +5VDC supply provides power to the ADSP-2101, EPROM, LEDs,
and associated digital circuitry. The POWER LED next to the power
supply connector, J4, is lighted whenever the +5VDC is ON.

The +12VDC and -12VDC provide power to the input and output
amplifiers, and the four channel DAC. The supplies are also used to
generate CODEC +5VDC (+5A) and -5VDC (-5A), and the +5V reference
voltage (+5ref) for the DAC.

A small five-position screw connector, J4, is located next to the switches.
The board is labeled between connector J4 and edge to show you which
pins to wire. The two closest to the POWER LED are connected to the
+5VDC and that supply return (GND) respectively; the other three
positions are used by +12VDC, common power supply return (AGND),
and -12VDC. .

25.5 Analog Input (PH1)

The PH1 jack, ANALOG INPUT, accepts a high impedance input such as
a microphone. The signal it supplies is amplified through the analog input
amplifier and processed through a CODEC controlled by the EZ-LAB
board’s ADSP-2101. You can find the calibration procedures for the analog
input section of the EZ-LAB board in Appendix A.

256 Analog Output (PH2)

The CODEC also amplifies the signal it receives and sends it to the 1.5W
output amplifier. The amplifier provides enough gain to drive a small
speaker through the PH2 jack, ANALOG OUTPUT. You can find the

calibration procedures for the analog output section of the EZ-LAB board

in Appendix A.

\

e

Operation

31 INTRODUCTION

The purpose of this section is to explain, beyond the setup stage, the
operation of the EZ-LAB™ board. This includes detailed descriptions of
the features detailed briefly in previous chapters.

You should be aware that the flexibility of the EZ-LAB board allows

- exclusively alternate configurations; these are largely determined by
jumper positioning, as defined in the previous chapter. The following are
your choices.

* You can use the analog capabilities, input and output amplifiers
and CODEC, through the SPORTO interface from the ADSP-2101.
The alternative is to have the use of SPORTO0 through the SPORT
connector, J2. You make the choice by the way you position JP5
through JP7.

% %! SPORTO configured
S ?]tz ?PORT connector

CODEC enabled.

4l Sdr

* You can use the FLAG switch to influence ADSP-2101 processes
and the FLAG OUT LED to indicate program actions; along with
that you can trigger IRQ0 and IRQT through the User Interface
expansion connector J1. The alternative is to use SPORT1 through
the SPORT connector, J2. You make the choice by the way you
position JP1, JP2, and JP4.

Enables FLAG (IN)
pushbutton and
external IRQ0/ and
IRQ1/ interrupts
from User Interface
connector (J1).

Enable SPORT1
on SPORT
connector (J2).

3 Operation

* You can enable the onboard boot EPROM or use an external
EPROM through the User Interface expansion connector, J1. A
boot EPROM is required because of the program memory map
configuration (MMAP=0). JP3 enables or disables the onboard

EPROM.
321 321
2 u uiJP8 o o oiJpg Disable onboard boot
s o oigpp U8 & o olJP2 a]umper in one of
JP3 | p3 these positions.)

D o viJpP4 JP4

* You can select whether the IRQ2 switch is active, manually
triggering the IRQ2 signal to the ADSP-2101. The alternative is to
cause the interrupt from the User Interface expansion connector,
J1. JP8 positioning determines IRQ2 signal origin.

321 321
s % w1JP8 JP8 Enables external
G O 0:1JP1 Enables IRO2 B 2 aiJP1 [RQ2/ interrupt from
84 aigpp LCnablesIRQ D 8 aiJP2 Interf
e pushbutton switch. User Interface
JP3 o o niJP3 connector (J1).
o o nlJP4 & oo aiJP4

There are the four functional blocks on the board, as defined in the EZ-
LAB Block Diagram, sheet 1 of the EZ-LAB schematics in Appendix B:
Connectors, Misc-Parts, Analog, and Digital. The Connector and Misc-
Parts blocks, sheets 4 and 5, are covered in Sections 2.2 through 2.5 of this
manual.

The schematic for the Analog Part block is shown on sheet 3, EZ-LAB
Analog I/O Section. The Analog I/0O Section consists of the DAC and audio
subsections. These are detailed, both in terms of components and
programming considerations, in Sections 3.2 and 3.3 respectively.

Some functional portions of the Digital block are discussed in Chapter 2.
Most board-specific configuration issues concerning the ADSP-2101 are
mentioned in Section 2.2; addition information is given in the DAC and
audio discussions. Other matters related to general operation of the
ADSP-2101 are left to the ADSP-2101 User’s Manual. The boot EPROM and
its operation is covered in Section 3.4.

Operation

3.2 FOUR CHANNEL DAC

EZ-LAB contains a AD7225 four channel DAC. You access the DAC
control lines through the ADSP-2101 address lines and the DMS pin K7.
The ADSP-2101 writes data to the DAC data lines (D16 - 23). The D23 line
is inverted to allow the ADSP-2101 program data to use the full range of
the AD7225.

The DAC is doubled buffered. When the ADSP-2101 asserts DMS and WR,
and sets A13 low, the DAC loads data into the register specified by the
two lowest address lines (A0 - 1). When the ADSP-2101 asserts DMS and
WR, and sets A12 low, the DAC transfers all data in the input latch
registers to the DAC internal circuitry. These are converted to the values
at the analog outputs at the J3 connector.

The analog outputs range from 0V (to AGND) to approximately +4.9805
VDC (255/256 x 5ref); this provides a bit resolution of 19.53 mV (1/256 x
5ref). The source for the reference voltage provided to the DAC is an
ADS586; the DAC uses the +12VDC supply for power and to source the
reference voltage.

Because of partial address decoding on the board, the DAC
implementation uses all data memory from 0x0000 through Ox2FFF; it
does not affect data memory addresses 0x3000 through 0x3FFF, which
includes the ADSP-2101 internal RAM (0x3800 through 0x3BFF) and
internal memory-mapped control registers (0x3FEF through Ox3FFF).
Because of DAC setup timing requirements, two wait states are required
when writing to the DAC; the ADSP-2101 Data Memory Wait State
Control Register (at address 0x3FFE) must have its DWAIT?2 field set to
two (DWAIT2=2). See Figure 3.1, on the next page, for the complete data
memory map.

The program segment, Figure 3.2, (also on the next page) shows the
process of writing data to all four channels and updating the DAC output.
You select the register (reg) for each channel; the upper 8 of 16 bits (D23 -
D16) are transferred from that ADSP-2101 register to DAC buffer. Since
only control lines are used to transfer data from all buffers
simultaneously, you can write the contents of any ADSP-2101 register to
location 0x2000.

3-3

‘Operation

UNAVAILABLE
USED BY DAC DECODE

DAC WRITE
(DWAIT2=2)

DAC READ
(DWAIT2=2)

AVAILABLE
DWAIT3

AVAILABLE
DWAIT4

INTERNAL RAM
1K

MEMORY MAPPED
REGISTERS
AND RESERVED

0000

OFFF
1000

1FFF
2000

2FFF
3000

33FF
3400

37FF
3800

3BFF
3Co00

3FFF

Figure 3.1 Data Memory Map

DM(0x1000) = reg;
DM(0x1001) = reg;
DM(0x1002) = reg:;
DM(0x1003) = reg;
DM(0x2000) = any reg:;

Figure 3.2 DAC Transfer Example

{load DAC
{load DAC
{load DAC
{load DAC
{transfer

register
register
register
register
data}

"/

0}
1}
2}
3}

5 ™

Operation 3

3.3 AUDIO CIRCUITRY

The audio circuitry consists of three ICs plus supporting components, two
I/0 connectors (PH1 and PH2), and ADSP-2101 control and interface
through SPORTO. The three ICs are the input operational amplifier, an
AD741 (U9) with a maximum gain of 201, a TP5054 serial CODEC (U7),
and an LM388 1.5W audio power amplifier (U4).

The PH1 jack, ANALOG INPUT, accepts a microphone or other high
impedance input. R11 controls the offset and R10 controls the gain. The
calibration procedures for both this and the output amplifier are in
Appendix A; you should calibrate the amplifiers before using them.

The input amplifier’s output is processed and amplified again by a factor

of two in the CODEC; the board’s ADSP-2101 controls and receives serial
data from the CODEC via SPORT0. The CODEC sends the amplified

signal to the output power amplifier. The gain of the output amplifier can
be controlled by adjusting the volume control, R3. As part of the amplifier
calibration procedure in Appendix A, the volume control is set for its '
maximum below the distortion point. The output amplifier provides
enough gain to the PH2 jack, ANALOG OUTPUT, to drive a small

speaker. .

The following program, codec_demo, Figure 3.3 (on the following page),
demonstrates many of the DAC and audio features. The routine begins by
toggling the FLAG OUT LED. The program then proceeds to the setup
subroutine where SPORTO is configured and enabled, providing a 2.048
MHz clock to the CODEC through SCLKO and an interrupt rate of 8 kHz.
After adjusting the interrupts (which includes prohibiting interrupt
nesting) and enabling the SPORTO receiver, it goes into the wait loop.

Upon receiving a SPORTO0 Receive Interrupt, the sample routine is
activated. Microphone data is read by the ADSP-2101 from the CODEC,
via the SPORTO0 RXO0 register, and placed into AX0. The data is sent back to
the CODEC via the SPORTO0 TXO register; from there it goes to the output
amplifier and then to a speaker.

The data in AXO0 is also sent out through channel 0 of the DAC to J3, where
you can display the unfiltered sample on an oscilloscope.

3-5

3 Operation

{
{

}

ADSP-2101 Evaluation Board demonstration of codec filter }

{

}

.MODULE/RAM/BOOT=0/ABS=0 codec_demo;

.PORT wr
.PORT 1lo
{

ite_dacO0;
ad_dac;

{Defined at DM 0x1000 in '.ACH file}
{Defined at DM 0x2000 in .ACH file}

Interrupt Vectors }

JUMP start; NOP; NOP; NOP; {Reset Vector}

RTI; NOP; NOP; NOP; {IRQ2/ Int}

RTI; NOP; NOP; NOP; - {SPORTO0 Transmit Int}
JUMP sample; NOP; NOP; NOP; {SPORT0O Receive Int}
RTI; NOP; NOP; NOP; {IRQO/ Int}

RTI; NOP; NOP; NOP; {IRQ1l/ Int}

RTI; NOP; MOP; NOP; {Timer Interrupt}

Code Start

}

start: AX0=0x0038;
DM (0x3FFF)=AX0; {FI/FO selected, pmwait=0}
NOP;
TOGGLE FLAG_OUT;
CALL setup;
ICNTL=B#01111; {disable IRQ nesting, all IRQs edge sensitive}
IMASK=B#001001; {enable SPORTQ receiver}
{ Wait Loop }
wait: IDLE; {endless loop waiting for interrupts(samples) }
JUMP wait;
{ Non-Filtered Output }
sample: AX0=RXO0; {read input sample from microphone}
TX0=AX0;
DM(write_dac0)=AX0; {display unfiltered sample on oscilloscope}
DM(load_dac)=AX0;
RTI;
{———Setup Subroutine for Initializing Serial Ports)
setup: AX0=0x00; {Wait states all 0}
DM (0x3FFE) =AX0;
AX0=0x6B27; {Int SCLK, RFS req, TFS req, Int RFS}
DM (0x3FF6) =AXO0; {Int TFS, MU law, SLEN 8}
AX0=2; {SCLKDIV is 2 generates a 2.048 MHz}
DM (0x3FF5)=AX0; {with a 12.888 MHz crystal}
AX0=255; {RFSDIV for 8 KHz Interrupt Rate}
DM (0x3FF4)=AX0;
AX0=0x1038; {Enable SPORTO0}
DM (0x3FFF) =AX0; ‘ P
RTS; &%
.ENDMOD;)

3-6

Figure 3.3 CODEC Programming Example

o

Operation 3

3.4 BOOT EPROM

The EZ-LAB ADSP-2101 can boot any page of the boot EPROM, US8, into
its internal program memory RAM. The internal program memory stores
2K words of 24-bit width. Booting is enabled because the ADSP-2101
MMAP pin is tied low (MMAP=0); in this configuration internal program
memory is at addresses 0x0000 through 0x07FF. Figure 2.3, on page 2-5,
shows the program memory map for the ADSP-2101 on the EZ-LAB
board.

The boot EPROM supplied with the EZ-LAB is a 64K x 8-bit wide 27512.
Each page occupies a separate 8K x 8 bit memory space (on 8K
boundaries); thus, a boot EPROM of this size holds eight pages of code
and data. Boot memory uses a completely separate memory addressing
space consisting of the 14 address lines and 2 upper data lines for full
decoding, plus the boot memory select (BMS) line for control.

EZ-LAB always boots on reset from page 0, the first page of 8K by 8-bit
EPROM,; this can occur at power-on or from either reset source, the RESET
switch on the board or pin 11 on the User Interface expansion connector

J1.
3.41 Changing Boot Pages In Software

Software forced rebooting from any available page occurs when the Boot
Force bit (BFORCE) in the System Control Register (data memory location
0x3FFF) is set to 1. At that point, the contents of the Boot Page Select
(BPAGE) bits in that same register select the page number (0 - 7).

The following four step process makes ADSP-2101 multiple page system
reboots easy to implement in your programs.

Step 1
Give each code module a boot page identification number. The code in
this module statement resides in boot page 0.

.MODULE/BOOT=0/ABS=0 Ez_FIRs;

Step 2
Use the INCLUDE directive to include the file nowboot.h, which you must
generate.

.INCLUDE <nowboot.h>; {software reboot aid}

3-7

3

3-8

Operation

This file, shown below, declares System Control Register constants for all
eight pages.

{ nowboot .h
Use these constants to write to DM(Ox3FFF) and force a reboot
of the page indicated.

. CONST Now_Boot_Page 0=0x0218;
.CONST Now_Boot_Page 1=0x0258;
. CONST Now_Boot_Page 2=0x0298;
.CONST Now_Boot_Page 3=0x02D8;
.CONST Now_Boot_Page 4=0x0318;
.CONST Now_Boot_Page 5=0x0358;
. CONST Now_Boot_Page 6=0x0398;
.CONST Now_Boot_Page_7=0x03D8;

Step 3

Create the wait_int, boot_next_page code template, below and paste it into
your program. Pressing the FLAG switch causes a FLAGIN interrupt
which forces a reboot.

{******************t***}
wait_int:

IF NOT flag_in JUMP boot next page;

JUMP wait_int; {<— infinite loop of interrupts }
boot_next_page:

IF NOT flag_in JUMP boot_next page;

AXO=Now Boot_Page_1; { reboot to this page number }

DM (0x3FFF) =AX0; {<— reboot occurs here }
(**}

Step 4 :
Edit the above code template to reboot at the desired page number. The

following line modification causes a reboot from page 2 instead of page 1.

AXO=Now_Boot_Page_2; { reboot to this page number }

The following program, Ez_FIRs (Figure 3.4) is an example of a simple
implementation of this reboot procedure.

{ezfirs.dsp
Switch Between Four Different Bandpass FIR Filters
ADSP-2101 EZ-LAB demonstration

}

Operation 3

input signal from microphone
output to speaker for audio, dac for observation

Move through state machine by pushing IRQ2 button:

state 0:
state_1:
state 2:
state 3:
state 4:
state 5:
state 6:
state 7:
state 8:
state 9:

voice input,
voice input,
voice input,
voice input,
voice input,
noise input,
noise input,
noise input,
noise input,
noise input,

pass through unfiltered

bandpass filter 1 (low freq)
bandpass filter 2 (higher freq)
bandpass filter 3 (even higher freq)
bandpass filter 4 (highest freq)
pass through unfiltered

bandpass filter 1 (low freq)
bandpass filter 2 (higher freq)
bandpass filter 3 (even higher freq)
bandpass filter 4 (highest freq)

<next push of IRQ2 brings you back to state 0>

{ Step 1, the next line boots to page 0.}
.MODULE/BOOT=0/ABS=0 Ez_FIRs;
{ Step 2, include the nowboot.h file. }

. INCLUDE <nowboot.h>;

.EXTERNAL CntlReg_inits;

.PORT write dacO;

.PORT load dac;

.CONST taps=256;

.VAR/CIRC data(taps]:

.VAR which fir;

.VAR voice or_noise;
.VAR saveld;

.VAR rndnum;
.VAR/PM/CIRC firl coefs[taps]:
.VAR/PM/CIRC fir2_ coefs(taps];
.VAR/PM/CIRC fir3_coefs([taps]:
.VAR/PM/CIRC fir4 coefs(taps];

JINIT firl coefs: <firl.dat>;
JINIT fir2 coefs: <fir2.dat>;
-INIT fir3 coefs: <fir3.dat>;
.INIT fir4_coefs: <fird.dat>;

(listing continues on next page)

{ software reboot aid }

3-9

3 Operation

{—————————Vector Addresses }
JUMP start; RTI; RTI;RTI; {Reset Vector}
JUMP newfir; RTI; RTI;RTI; {IRQ2}
RTI; RTI; RTI;RTI; {SPORTO TX}
JUMP sample; RTI; RTI;RTI; {SPORT0 RX}
RTI; RTI; RTI;RTI; {IRQO}
RTI; RTI; RTI;RTI; {IRQ1}
RTI; RTI; RTI;RTI; {Timer}
start: CALL CntlReg_inits; { set up SPORTs, Timer, etc. }
I0O="data; MO=1; LO=taps;
I2="rndnum; M2=0; L2=0;
I4="firl coefs; M4=1; L4=taps;
I5="fir2 coefs; L5=taps;
I6="fir3 coefs; Lé=taps;
I7="fir4 coefs; L7=taps;
SI=0;
DM(which_fir)=SI; { start with no filtering of input signal }
DM(voice_or_noise)=SI; { start with voice input, not noise input }
SI=H#1234;
DM(seed_lsw)=SI; { arbitrary seed for random noise generator }
DM(seed msw)=SI;
CNTR=taps;
{DO zero UNTIL CE;}
zero: DM(I0,M0)=0; { clear out the filter delay line buffer }

IF NOT CE JUMP zero;
ICNTL=B#00111; { disable IRQ nesting, all IRQs edge-sensitive }
IMASK=B#101000; { enable IRQ2 and SPORTO_RX interrupts }
{ Step 3, use the following template. }
{**}
wait_int:
IF NOT flag_in JUMP boot_next_page;
JUMP wait_int; {<— infinite loop of interrupts }
boot_next_page: '
IF NOT flag_in JUMP boot_next_page;
{ Step 4, put the next page number on the line below. }
AXO=Now_Boot_Page_1; { reboot to this page number }
DM (0x3FFF) =AXO0; {<— reboot occurs here }

{**}

3-10

No

sample:

Operation 3

AR=DM (voice_or noise);
AR=PASS AR;
IF EQU JUMP voice input;

noise_input:

CALL getrnd; { generate a 16-bit random number in SRl }
JUMP process_sample;

voice input:

SI=RX0 { get new sample from SPORTO (microphone) }
SR=ASHIFT SI BY 2 (HI); { shift 14 LSBs into MSBs }

process_sample:

DM(IO0,M0)=SR1; { store sample in data buffer (delay line) }
AX1=DM(which_fir); { decide which filter to do }
AYl="jump table;
AR=AX1+AY1;
DM(saveld)=I4; { restore I4 later in filter routines }
I4=AR;
JUMP (I4):

jump_table:
JUMP nofilt; { which fir = 0 }
JUMP firl; { which fir =1 }
JUMP fir2; { which fir = 2 }
JUMP fir3; { which fir = 3 }
JUMP fir4; { which_fir = 4 }

output: TXO0=MR1; { filtered output to SPORT (to spkr) }
DM(write_dacO)=MR1 { latch sample for dac }
DM(load dac)=MR1; { display sample on oscilloscope with dac }
RTI;

nofilt: I4=DM (saveld);
SR=ASHIFT SR1 BY -1 (HI): { save the audience’s ears from damage }
MR1=SR1;
JUMP output;

firl: I4=DM (saveld);

CNTR=taps-1;
MR=0, MXO0=DM(IO,MO), MYO=PM(I4,6M4);
{DO firlloop UNTIL CE}

(listing continues on next page)

3-11

3 Operation

firlloop: MR=MR+MX0*MYO (SS), MXO0=DM(IO,MO), MYO=PM(I4,M4);
IF NOT CE JUMP firlloop;
MR=MR+MXO0*MYO (RND) ;
IF MV SAT MR;
JUMP output;

fir2: I4=DM(saveld);
CNTR=taps-1;
MR=0, MXO0=DM(IO,MO), MYO=PM(I5,6 M4);
{DO fir2loop UNTIL CE}
fir2loop: MR=MR+MXO0*MYO (SS), MXO0=DM(IO,MO), MYO=PM(I5,6 M4);
IF NOT CE JUMP fir2loop;
MR=MR+MXO*MYO (RND) ;
IF MV SAT MR;
JUMP output;

fir3: I4=DM(saveld);
CNTR=taps-1;
MR=0, MXO=DM(IO,MO), MYO=PM(I6,M4);
{DO fir3loop UNTIL CE}
fir3loop: MR=MR+MX0*MYO(SS), MX0=DM(IO,MO), MYO=PM(I6,M4);
IF NOT CE JUMP fir3loop;
MR=MR+MXO0*MYO (RND) ;
IF MV SAT MR;
JUMP output;

fird: I4=DM (saveld);
CNTR=taps-1;
MR=0, MXO0=DM(IO,MO), MYO=PM(I7,M4);
{DO fir4loop UNTIL CE}
fird4loop: MR=MR+MXO0*MYO(SS), MX0=DM(IO,MO), MYO=PM(I7,6M4);
IF NOT CE JUMP firdloop; '
MR=MR+MX0*MYO (RND) ;
IF MV SAT MR;
JUMP output;

newfir: AYO=DM(which fir); { push into next state of state machine }

AR=AYO+1;
DM(which_fir)=AR;

AYO0=5; { if in state4, go to state0, not stateS }

AR=AR-AYO;
IF NE RTI;
AR=PASS 0;

3-12

o
S/
\“‘3&&‘://,

Operation 3

DM(which fir)=AR;
AR=DM (voice or noise);

AR=NOT AR; { at same time, also toggle voice/nocise input }
DM(voice or_ noise)=AR;
RTI;
getrnd:
SR1=DM(seed msw);
SRO=DM (seed_lsw);
MY1=25; { Upper half of a }
MY0=26125; { Lower half of a }
DM(I2,M2)=SR1l, MR=SRO*MY1 (UU); { athi) X x(lo) }
MR=MR+SR1*MYO0 (UU) ; { a(hi) X x(lo) + A(lo) X x(hi) }
SI=MR1;
MR1=MRO;
MR2=SI;
MRO=0xFFFE; { c=32767, left-shifted by 1 }
MR=MR+SRO*MYO0 (UU) ; { (above) + a(lo) X x(lo) + c }
SR+ASHIFT MR2 BY 15 (HI);
SR=SR OR LSHIFT MR1 BY -1 (HI); { right-shift by -1 }
SR=SR OR LSHIFT MRO BY -1 (LO);
DM(seed msw)=SR1;
DM(seed_lsw)=SRO;
RTS; { random 16-bit value in SR1 }
.ENDMOD;

Figure 3.4 Boot EPROM Page Changing Example

3.4.2 EZ-LAB Firmware

EZ-LAB includes a 27512 boot EPROM, U8, preprogrammed with several
demonstration programs. The ADSP-2101 on the board is capable of
booting from any of the EPROM's eight pages of firmware. The release
note that accompanies your EZ-LAB board contains information on the
current revision of firmware contained in this EPROM.

To program replacement memory devices (either 27512 or devices with
the same pinout) use the ADSP-2101 Cross-Software tools to develop your
program. You can also use a smaller EPROM, such as a 27256, which only
has four pages of storage. The ADSP-2101 Cross-Software tools include a
PROM splitter that formats the code for transfer to the boot EPROM via an
EPROM programmer.

3-13

3 Operation

3-14

Calibration

A1 INTRODUCTION

The EZ-LAB™ board is equipped with a microphone input amplifier and

an analog output amplifier. This section details the calibration procedures
that you should use to adjust the gains (input and output amplifiers) and

offset (input amplifier).

For either amplifier calibration you will require the following equipment
and tools: '

* Signal generator capable of generating 100 mV peak-to-peak (P-P) at 1
kHz;

¢ Oscilloscope with probe;

* Cable with 1/8" phono plug and appropriate connector to the signal
~ generator;

* Cable with 1/8" phono plug and appropriate connector to the
oscilloscope;

¢ Small screwdriver to adjust the potentiometers on the EZ-LAB board.

A2 INPUT AMPLIFIER CALIBRATION

The EZ-LAB analog input amplifier consists of an AD741 operational
amplifier (U9) with a maximum gain of 201. It drives another amplifier in
the CODEC. There are two potentiometer controls for the AD741 that
require adjustment, R10 (gain) and R11 (offset).

The input amplifier should always be calibrated before the output
amplifier, since the input amplifier gain affects the output amplifier
adjustment. The procedure calls for the following steps.

A

Calibration

Step 1
Turn on the EZ-LAB power.

Step 2
Short the ANALOG INPUT phono jack on the EZ-LAB board to AGND.

Step 3
Turn the input amplifier gain potentiometer, R10, 25 times clockwise for
maximum gain.

Step 4
Adjust R11, the offset potentiometer, until the output of the input
amplifier (U9 pin 6) is 0OVDC (referenced from AGND).

Step 5
Set the signal generator for 100 mV P-P at U9 pin 3, the amplifier input.

Step 6 _ : N
Adjust R10, the gain potentiometer, for an amplifier output at U9 pin 6 of =~
2.5V peak. o

The input amplifier is now trimmed and ready for use. You may have to
adjust the gain further to match the level of any other device connected to
the input jack. Proceed to the adjustment of the output amplifier in the
next section.

A3 OUTPUT AMPLIFIER CALIBRATION

The EZ-LAB analog output amplifier is an LM388 (U4), a 1.5W audio
power amplifier. The input to this amplifier comes from the CODEC
VFRO pin (U7 pin 3). The output amplifier volume is adjusted through R3.

The procedure for adjusting the output amplifier calls for the following
steps.

Step 1
Adjust the input amplifier if it has not been calibrated. The calibration
procedure is given in the previous section.

Step 2
Connect the signal generator to PH1, the ANALOG INPUT phono jack on
the EZ-LAB board. '

Calibration

Step 3

Set the signal generator frequency to produce a 1 kHz sine wave. Adjust
the signal generator’'s amplitude such that the signal at pin 3 of U9 is 100
mV P-P. Use AGND as the return for the oscilloscope.

Step 4
Connect the oscilloscope to PH2, the ANALOG OUTPUT phono jack on
the EZ-LAB board.

Step 5

Use the codec_demo program in boot EPROM shown in Figure 3.3, which
can be found on page 3-6. While running the demonstration, adjust R3
until the signal is at its maximum value without distortion or clipping.
You may need to adjust the volume further to provide a comfortable level
for an application being run.

~ A Calibration

B.1

Schematics

INTRODUCTION
This section schematics for the EZ-LAB™ board, consisting of five sheets:
Sheet1 Block Diagram
Sheet2 ADSP-2101 Support Logic
Sheet3 AnalogI/O Section
Sheet4 Connectors ’
Sheet5 Power Connector and Miscellaneous Logic

Schematics B

[5 T q 2 I 1
D D
DIGITAL PART
R/ J
RQU TRQ
RQI TRG
CST RES OCT_FESET
e T T_RESET/
15 Br
R/
- S DMS/ —
DMS SOT 7 DMS/
CLKOUT mgim ;,‘;gu‘T CLKOUT
1RQ2/ = A 1RO2/
y
AD[0..13] DL b < AD[0..13)
D(0..23) . D(0..23)
SCLK1 23 £ RE ',(1 SCLK1
o Rest TES TF Reet c
TFS1 oT 5T TES1
DT] R PR DT1
DR1 DR1
) DRO
TESD DRO
5T0 TFSO
DTO
RFS0 @ PFs0
|| SCLKO . SCLKO
DACLD/ ’~
DACWR/
Pl
ANALOG PART
s P10 B
UACWR/ -
BACLDY MISC-PARTS
SCLKO
RFS0
DTO
TFSO
DRO
I DAC(0..7) I REIEA / -
ADTO..13) ARLO. 3] o I
3 |
=5A T
+5ref rarel !
412V 15
-12v
A A
ANALOG DEVICES
Title
EZ-LAB BLOCK DIAGRAM
Size [Document Number REV
B A
Date: November 24, 1989 [Sheet 1 of S
T 1 T 6 5 I 4 I I 1

Figure B.1 EZ-LAB BI

ock Diagram

Schematics B

8 | 7 T 6 I] I 4 [2 [1
NC
9
PlrLaG_In = o
B JH |L
No FLAG/DR1 611 3?
0.
<cigour_F— crkour GGGG UsSB
510 . NNNN
DR1/F1 MMAP
<pTi} o Y boDD T
3 TES1/IRGL RESET
REFS1/IRQO —_—
<3CLK1 SCLK1 1RQ2 .
B 1 bT1) 14ACT32 |
[BRO > DRO B pE¥— {pa7 >
DTQ} 3 pTO ar pEl <E&]
FLAG_OUT USE TESQ TFS0 c11 DO IPI
74F14 RFSO DO =
SCLKO _} 0 scrko D Y —
JP1 Kild 05— D2 Q_D3
IRQ1 & s ute 03 7
=
L8 ADSP/101 b5] 4.7uF
TFS1 K s b8 =
c INT/SER <ED—J'7—q PMS D8 c
R DY
Je4 ST H AD olo 1 i
Al o1l
IRQO & H A2 Di2 P Ulla swi
A3 L13 T
RES1 A 4 a3 o1a 4 T
INT/SER Py a—— a6 ple A £
5 . B
2— A7 n17 5
<pHs/ A8 ois B 5
|| 5 A9 DIy Ef] L
: Al0 D20 G T
745 All < D21 -
, 1 m
& Le { a12 X L D22 1
Al3 T K VVV p23 L
2 1 DDD P
L N DDD JE8
. d 1
AD12
L K o] vee g2
5 9 ke T P11 3
X1 0414 IRQ2_SEL
R 74ACT32 . - R
ulB ‘ i ——JR027
2 c3
AD13 - = o a1)
L T
74ACT32 Ll0..22]
us
ALY 10 10 a1 1y1 (8
ADT 9 7 1%
ALZ) 5 182 12 &
L] ADT 5 13 1y P H
ADT - T 1a4 1Y4
<R/} ADS Tt 21 2v1
AD? 2 2 22 2v2
<MS7} e 4 3 2a3 2v3
i 2 2a1 2v4
A ye UsD .]
A
ADTT D23 26
A 74HCT244
A 2 =
D 74F14
A ARLO. 13 / D23 A
b3 AD10..131 L
BOOT EN N 9]
2 5 ANALOG DEVICES LSP
b
BOOT DIS Title
BOOT_EN E2-LAB ADSPZ101 / SUPPORT LOGIC
Size [Document Number REV
B A
Date: April 13, 1950 [Sheet 2 _of 5
8 | 7 I © I 2 [3 [3 I 2z I 1

Figure B.2 EZ-LAB ADSP-2101 Support Logic

A,

Schematics

§ I 7 1 3 5 T 4 I 3 I 2
-5a vin
c17 c18
5a 0.1uF 0.1uF
R16 1 acwp 4
R1S 10K
b 1o 1—/\/\/_1-‘1— Gsx v
K
10 VFXI- B g
PH1 c19 R13 16 u7
‘H c16Il AGND VEX1+
S | 1.0uF 1K i 3 VFRO
[: 1:0uF ETC5054
R14
ANALOG_INPUT R12 Lok CODEC
B AGND 100K K G
AGND N
D
AGND c14 A JP6
luF T 2
AGND R10 GAIN
c R9 C13 200K AND
I}
I
Ao 1K 47pF DATA CONVERSION SECTION .)
-12v
vy
-4A
Tlew rhret \——fﬁ[gf
c12
PH2 Ve cs
- \/{g_ Ui l
220ut R6
R8 c11 oK 0.1uF |,
10K v . B
ANALOG_OUTPUT 0.05uF 2y Asno 2
AGND
AGND AGND. pac 1 J3 v
R7 1 VOUTA DB7
l I DAC 2 3 D bel <
2.7 c1o = c9 sl vours DssS C
R4 4 DB4 &
0.1uF 10ut o 4 vouTe be4 <
B AGND B 0es C
hoto ca DAC_OUT! VoUTD DB1 ¢
_ - 2 DBO
»——} " VKEFA b1
—L i pypass Vs 3 ane VREFB Al A
—2 GaIN VoUT 2 10uf s < VREFC . AG
. ce 2 Gno va GND RS et VREFD AD7225 | . pacug/
c7 o i oo GND $ 510 N Wi pil DACHR/ mrmRr)
10u GND A — DACLD/
0.1uF —;‘— GAIN BTSTRAP 3 R3 1.0uF R2 G v G toac p&—PACLD/ rErr
~INPUT +INPUT 10K g s N
S D
1 LM388D1P VOLUME 10K
AGND AGND AGND 6 3
AGND
AGND
A
OUTPUT AMPLIFIER SECTION
ANALUG DEVICES DSp
Title
EZ-LAB ANALOG 1/0 SECTION
Size [Document Number REV
B A
Date: November 24, 1989 [Sheet of 5
8 1 1 I 6 5 1 4 [3 T I

Figure B.3 EZ-LAB Analog I/O Section

Schematics B

F) I 7 I © | S T 4 I 3 I 2 1 1
Jl
1RQ2/ GND
<Ipp2/ } BR 12 50
_BE/_I- BG 3 4 T
G 5 6
1 TRQJ 2 8
[RQQ } TROL K k]
S IROL — HOST RESET/ 10 7
D RES }— TS 1112 5 D
[PMS BV 1314 z
1516 -
W 1718
RD e ND
ADG 2122
ADU 5
ADT 2324 10
2D 2526
FVE] 2728
2930 3
s
n (BDT0..131 DRl z 3536 it i
= 3738 P T
7 3940 ST7
41 42 5
ADO 4344 5
AT 4546 5
ADI1 T
Al
i e
DMS / P——crrour ¢
. (DM b GND c
USER_INTERFACE
[CLKOUT
> —
- <PI = Llo 31 /
J2
13 05
o)
[SCLKI 1240
il o
= 11
5 TES1 5% o 5
RESL 19 1o
o
<DRI 51T
]
DT> 5
=
1 o
(sCLko O
L TFS0 7310 H
-0
RESO <
1§ °
<DROF— e 10
o
DIg >— 0
1? °
o
SPORT CONN
A A
ANALOG DEVICES LSP
Title
EZ-LAB
Size ocument Numbetr REV
B A
Date: Movember -4, 1289 [Steet 4 of 5
8 | 7 I 6 S I 4 I 3 L 2 3

Figure B.4 EZ-LAB Connectors

_—

chematics B

g I 7 T 3 | s I 3 I T 1
D u3 D
—t NC N —E—
+VIN NC ——
—3+ n¢ vour —E——{i5rer
GND TRIM v
AD586
Ao vee
[]
H J4 —L €20 _L c2s _chs _L c27 _L c28 lc29 J_ €30 l_cal lcaz _L €33 _L' c3s _L* c36 D4 H
5 vouTs Iy T orwe Toawe Towe T owe T owe e T oer T oee [owe o T towr T owr X e
DIGITAL GND 2 % POWER LED
ANALOG GND P [1
+12 VOLTS ip c21l c22 c23 _I+ c24
-12 VOLTS S B) SEE NOTES
0.1uf 15uF 0.1uF)
POWER 15uF Gizv] AGND
{12v]
c c
R18
XN
R D2 USF
IN751
R17 AcHp l 74F14
- { -
R D3
INTS1 SPARE GATES
AGND
B B
NOTES: 1 €26 THRU C33 ARE BYPASS CAPS FOR MISC. LOGIC
THEY SHOULD BE PLACED AS CLOSE THE POWER PINS H1 H2 H3 H4 HS
OF THE MISC. LOGIC AS POSSIBLE
2 €20 THRU C25 ARE SUPPLY FILTER CAPS
AND SHOULD BE PLACED AS CLOSE TO THE |
B D A L s HOLE125 HOLE125 HOLE125 HOLEL2S HOLE125 |
H 3 C34 THRU C36 ARE BYPASS CAPS FOR THE ADSP-2101 H |
THEY ARE TO BE USED IN CONUCTION WITH THE .luF
CAPS FOR THE ADSP-2101 AND SHOULD BE PLACED |
AS CLOSE TO THE POWER AND GROUND PINS OF THE M1 M2 M3 |
ADSP~2101 SOCKET ‘
MOIRE MOIRE MOIRE ‘
A A
[ANALOG DEVICES DSP
Title
EZ-LAB POWER CONNECTOR / MISC. LOGIC
Size [Document Number REV
B A
Date: November 20, 1989 [Sheet 5 _of S
8 I] I [I S I 3 1 I 1

Figure B.5 EZ-LAB Power Connector and Miscellaneous Logic

A

AD741 Opampceveeererererinnsnnsesnsessnansens 1-2
ADSP-2101 Cross-Software 1-1,3-13
ANALOG INPUTcccoveeerirerereeneenenenees 3-5
ANALOG OUTPUTcovevvveerreecerenenns 3-5
Analog featurescccecoveverernennnnns 2-6,3-1
Analog I/O ..t 3-2
Analog input ..., 2-8
Analog Outputs «...ccveveeeeeeneireceresnsane 3-3
Application demonstrations 1-1
B

Bit reSOlUtioncoveieveeveeneeeneenreenensrensensennns 3-3
Boot EPROMccceveceveeene. 3-2,3-13, A-3
Boot fOrce bitccccevevurereneernenseeneseenninnene 2-4
Boot memory selectcocoveverriniriennnen 2-4
Boot page select bit......cccovccreirenicrennee. 24
BoOting ...cvvevetieeeeeese e 2-4,3-13
C

Calibrationc.eveeeevvecreeeerecrrceereresenenes 3-5
CODEC (TP3054)coevueevevennn 1-2,2-9,2-10
CONNECLOTS .ccvvrrreceenrearrcreseneressereeseesessesaannes 2-1
Cross-Softwareccceceeeevevreeeerenns 1-1,3-13
Crystal ... 1-1
D

DAC (AD7225KN)oovrurrnenreerenee 1-2,2-10
Data memory crrreesennerenseenens 3-3
Data memory wait state

CONtrol TeGIStercuevereerereircreeiereeeiae 3-3
Debounce circuitryc......... 2-4,2-6,2-7
Development equipment........................ 2-8
DRO .ttt sevesesve st e evese s 2-6,2-9
DRT oeeeteeteveeeeenseeseeessessesaessesens 2-7,2-9
DT oo sreeseeseesessessssssssonsessssans 2-7

Index

E-H

EPROM (27512) ...coovverrrnnnnsnrsnnsenns 1-1,2-10
External EPROM.........cccoeuiuninicnissnenniens 3-2
FLAG IN switch ...oeveiiiecrnnnns 2-4,3-1,3-8
FLAG OUToetrrriernrrnenesseseissseniniens 2-7
FLAG OUT LEDoerveerernrenrennns 1-2,3-1
Flag INaoeveveeeeeeeenieeeennene 1-2,2-7,29
FLAGIN interruptcccooeueveeniecninnennnns 3-8
Functional blocks........cccceiveierinrnneenn. 3-2
Gain e 2-10, 3-5, A-1
Gain potentiometercccocoeveererecrnnes A-2
Hardware flagsccccooeveeinemnneriicnnce. 1-2
High impedance input 2-10,3-5
HOST RESET ..ottt 2-7
I

INCLUDE directive......cccocoevvvvurirerevrnnnens 3-7
Input amplifierccooeeeveceinnnnenicnnnnn. 2-10
Input operational amplifier 3-5
Installation procedure.........cccocovvneennee. 2-1
Internal program memory 2-4,3-7
Internal RAM ..., 3-3
Interrupt rate ..o vevererneeneiennieeee, 3-5
INterTUPtS ..o 1-2
IRQ2 et 1-2,2-7
IRQ2 switch ...t 2-6,3-2
L-M

LEDS ..ottt sssasiasenes 2-10
Microphonecocoeemrinininnninnnas 2-10, 3-5
MMAP ...t 2-4,3-2,3-7
MODULE directiveco..coosemsuseesarsnnnns 3-7

0-P

(@7 1< U 3-5,A-1
Offset potentiometerccouveueeuerunnene A-2
Onboard EPROMcvemrvervenircnrnnennns 24
Output amplifier volume A-2
Output power amplifier 2-10,3-5
Partial address decodingc.ceceenvene 3-3
Peripheral circuitryccocvevieriviinnnnnne 2-8
Phono JackSuvvvireiresceninanenene 2-8
Potentiometers........cccecevcvrvvervecveennnne 2-1, A-1
Power suppliesccocinceiiiirnnennns 1-1
POWET-0ON ..oovvnrerrerireereeeecvecrenesiene 2-7,3-7
Program memory mapccccceceveeenenens 3-2
PROM SPHtterccvmierciriniccsccinncns 3-13
R

RC ircuit coueveeneevneveirereecerirencrcrcinencnesnes 2-7
Receive frame synchronization 2-6
Reference voltagecooeoevveuenrrnivennnnee. 3-3
Release notecceeeeeerveennenenne 1-1, 2-1, 3-13
Replacement memory devices............. 3-13
RESET ..ottt nacnens 1-2,2-7
RESET SWitch ..o 3-7
RFSO oottt 2-6,2-9
RFST ..o 29
S

SCLKO et 2-6,2-9
Serial dataccoouvureinceniiniiniinerciciinnnes 2-6
Software eventcccocveveeircrncirensinns 2-7
Software forced rebooting...........cc......... 3-7
Speaker ..., 2-10,3-5
SPORT CONNECLOT ...overveererrreeverinnns 2-4,2-5
SPORTO ...coovereercecrencennne 1-2,2-6,3-1,3-5
SPORTT ... 1-2,2-1, 24, 2-5,2-7, 3-1
Standalone operationccccccevueuneen. 1-1
SWitChes ..o 2-1
System control register 2-4,3-7,3-8
W

TEST oottt sasnens 2-9
User interface connectorcce.evveveee 2-5
Volume controlcvvneveeunirernnnnn. 3-5
Wait statesccooovvvereienieennenecenernae, 3-3

P L i i b e

pongl7.1lst Thu Oct 14 18:25:22 1993 27

1509 ; retlw p00000 ;
1510 ; retlw p00000 ;
1511 0099 chand equ $-chbase

1512 03f9 34e6 retlw p01100 ; .**_,
1513 03fa 34e9 retlw pl0010 ; *..*

1514 03fb 34e5 retlw pl0100 ; *.*,

1515 03fc 34e2 retlw p01000 ; .*..

1516 03fd 34f5 retlw pl0101 ; *.*.*
1517 03fe 34e9 retlw pl0010 ; *..*

1518 03ff 34f6 retlw p01101 ; .**.*
1519 ; list

1520

1521 end

Contents

CHAPTER 1 OVERVIEW

1.1 INTRODUCTION ..ottt st sssssssssssssssssesssssasesssssssasesssssess 1-1
1.1.1 ADSP-2101 Cross-Software System & Manualc.cocceevveerennce 1-2
112 Development FIOWc.cviennenriere et 1-4
1.2 EXPRESSION HANDLING IN CROSS-SOFTWARE TOOLS 1-6
1.3 CONSTANTS ...ttt sss s ssssnsssssssn s ssones T 1-6
1.4 NUMERIC BASES ...t sisssesissssssss s sessssssss s ssensenes 1-7
15 CHARACTER SET ...ttt ss s s ssss s ssssssssssans 1-7
1.6 IDENTIFIERS (SYMBOLS).......ccivtveririnensiensesse s ssssssssssssssessssssssones 1-8
17 MANUAL NOTATION CONVENTIONSooecmrrrerrerrrreesrsensssisseeneenene 1-8

CHAPTER 2 SYSTEM BUILDER

2.1 INTRODUCTION ...ttt ettt eaes et sass et st sssessasans 2-1
2.2 RUNNING THE SYSTEM BUILDERcoooeeeeeeeeeeeeeeeeeevee st sraeens 2-3
2.3 LANGUAGE CONVENTIONSooveiveeeeeeeireieereesereiseinessssesessssssesnens 2-3
24 SYSTEM SPECIFICATION SOURCE FILE EXAMPLEocevvmnneee. 2-4
241 ADSP-2101 System Specification Fileocccveeemvreeuurrereeenennnncs 2-4
25 SYSTEM BUILDER DIRECTIVES ...t evenss e ssenens 2-6
2.5.1 SYSTEM DITECHVE ...cvvverece ettt setssassse st s e eeene 2-6
252 LENDSYS DIrECHIVEoovvieeerieteeee et s eeaes 2-6
253 ADSP2101 DIFECHVE ..ottt st se e s eestses e esese e nenas 2-6
254 LCONST DIFBCHVE ...t ee s e ceeee e see st eeses e seaeneens 2-6
255 PORT DIFQCLIVE ...ttt et eesenenee 2-7
256 MMAP DITBCHIVE ...t ee e et s eeaen 2-7

257 SEG DITBCHVE ..ottt eee e e e eer e eereresses e e e eneseanns 2-8

Contents

CHAPTER 3 ASSEMBLER

3.1

32

33
3.3.1
33141
33.1.2
3.3.13
33.14
33.15
33.1.6
33.1.7
3318
34
34.1
342
3421
3422
343
35
3.5.1
36
36.1
36.2
363
3.6.3.1
364
365
3.6.6
36.7
368
3.6.8.1
368.2
368.3
36.8.4
369
3.6.10
3.6.11
36.12
3.7
KR

INTRODUCTION ..ottt svssesessasssssssssssses e sessssassnenas 3-1
ASSEMBLER MODULES ...t seessnsessssenessae e s 3-3
RUNNING THE ASSEMBLERoooeirereccreeecei et 3-3
ASSEMDIEr SWIHCHES ...ttt 3-3

—CP SWILCH ...ttt s 3-4

=P SWILCH .ot s 3-4
—dvariable[=value] SWItChcccoeuerrermerrmrcererriniriiserins 3-6

=11 2 TR 3-6

=M [NUMDEI] SWItCHcvvveric e, 3-6

=i [NUMDEI] SWItCceunreteireictecce s 3-7

=S SWILCN ...ttt bbb s e 3-7

0 SWIICN ettt ettt 3-7
LANGUAGE CONVENTIONS ...ttt 3-7
Binary CONSIANES..........cccrveevreerreeciereisee e 3-7
SYMDOIS ...ttt 3-8
IIBNEITIBIS .cvevieereereiee ettt sbeebee b ebesreens 3-8

Reserved Symbols (Keywords)ccccvceunirmcininsnicnininnes 3-8
COMMENLS ...ttt st st b e s sr b st ae s 3-10
PROGRAM STRUCTURE ...ttt st saes e e se s 3-10
Source Code File RESHICONSccvovuverevirieeireserieere e 3-10
ASSEMBLER DIRECTIVES ...ttt st s 3-10
MODULE DIirCHVE.......coeverieeeereirrrtereree e seseses st ersesaeseseans 3-11
ENDMOD Dir€CHIVEceevevreer ettt enenenes 3-12
VAR DITEOIVE ..ottt st sttt ensrea 3-13
More On Circular BUFEISc.veveeeeeeeeeeeee e, 3-15

ANIT DIFECHIVE .ottt ettt sras 3-17
LCONST DIr€CHIVE ..ottt 3-19
LPORT DIrBCLIVE ..ottt sttt 3-19
ANCLUDE DIFCHIVE ...ttt eese st e 3-19
MACTOS ...ttt st st s s s 3-20
MaCro DEfinitionc.cveiviieeeieencese e 3-21

MACRO DIrQCHVE ...vevveeeeeeeeeeeee et ee st 3-21
.ENDMACRO Dir€CtiVeoveerreireririirisreeeeerereise s 3-22

Macro EXamplec.ccoccuveriiivreieiceeeeee e, 3-23

LOCAL DITECHVE ... ettt ee et e s 3-23
EXTERNAL DIrCHVE ..ottt ee s 3-24
GLOBAL DIr8CHIVE ..ottt st e 3-24
ENTRY DIrQCHVE ..ottt e 3-25
PROGRAM EXAMPLE ..ottt tseee et ere e een oo 3-25
LIST FILE FORMAT ..ottt sttt ene e erevse e se e esanas 3-29

CHAPTER 4 LINKER

4.1 INTRODUCTIONourrieerteeririrressesrissssssssasessenssessssssessssssssssssssesssnsaes 4-1
4.2 RUNNING THE LINKER ..ot sieeesiscnsesesssssassssssssesssssssscass 4-3
421 LiNKEr SWILCHESuvveveeecree et ssssssesss st senenans 4-4
42141 —a archname & —e target SWItChescccocvveenninencrninnins 4-4
421.2 —c Switch & ADIRTH Variable..........ccevernirmennseenernranecnnnnnes 4-5
4213 —ArYIUN SWItCHoocuvieeecerreeierce s e ssess s ssasaessennis 4-5
4214 =0 & =X SWILCHESvvereererrrrreessie e ssesenssnsenssssses 4-6
4215 =i file_all SWItChcccuevreerrreiererecrreereeeseseer e 4-6
4216 -lib directories Switch & ADIL Variable..........cccccevrrerererucnnees 4-6
421.7 =000 SWILCN ...ttt s ssene s senaens 4-7
4218 =P SWILCH <.t enbe e 4-7
4219 —PMSEACK SWILCH ...t 4-7
42.1.10 =5 StaCK_SiZ€ SWItCh.....c.coovveeerererecereece e 4-7
4.3 LINKER OPERATION........cootriiirinirerinsseniaresssssesessssssssessssssesssssesesnesnes 4-8
431 Memory AlIOCALIONccouevereririrreereeiene et serensesere s 4-8
4.3.1.1 Boot Memory AlIOCAHONc.cvvvrenreencnireiccerinecnens 4-10
432 SymBOI RESOIULIONouveereeerceiericrsetserivenise et eeesseenies 4-10 -
4.4 MAP LISTING FILEoeeerereereeeeesssssest s sssse s ssesenseesnsssssens 4-11

CHAPTER 5 SIMULATOR FUNCTIONS

5.1 INTRODUCTION ...ttt ssss st 5-1
5.2 GETTING STARTED ...ttt es s ssses s saseens 5-2
521 Help Files & ADIDOC Variablecc.couevrververeierrrreerieen, 5-2
522 SIMUIALOT FlESocvuvvrveeririeseteere ettt e 5-3
523 INVOKING The SIMUIALOTccvverevciiircciriee e 5-3
524 Simulator Command OVEIVIEWccceveumrrvnivernsrsessieessessennns 5-5
525 Simulator Notation CONVeNtionsccceerereermniiinensresssennsenenens 5-6
525.1 Specifying Addresses & Address Ranges...........cccvevrerrinnnn. 5-7
5252 Simulator EXpressionscccccveenirnrneineinsissiessnsensnnnens 5-8
53 INTERFACE MANAGEMENT FUNCTIONS........oovviereerre e 5-9
5.31 Opening WINAOWScovemrrrreeerriieniesieees et ssss s nens 5-10
532 Changing Window Contents From Hex to Decimal........................ 5-11
533 CloSING WINAOWScoovuriiririrreieieiirnreeee s sesnsssesaens 5-11
534 Moving From Window To WIndowc.cc..ccovveiiececveieieee, 5-11
5341 To Cycle Through All WINQOWSccocueverveneerierereeenennes 5-12
5342 To Activate A Window By Numbercccooueeivrerrnereenenens 5-12
5343 To Activate The Command WIndOW..........cc..cceeevreveeveerenenns 5-12
535 SiZING WINAOWSovveiricrreiictsne s sr e ssre s sssesessenene 5-12
536 MOVING WINAOWSorvirrre et csss s sass s sseee 5-13

Contents

537
5.3.7.1
53.7.2
53.73
538
539
54
5.4.1
542
543
544
545

5.5.1
552
55.2.1
553
554
555
556
557
56
5.6.1
56.2
56.3
5.6.4
565
9.6.5.1
5652
5.6.6
56.7
5.6.8
569
57
5.7.1
572
5.7.3
574
5741
5742
5743
5744

Rearranging Window Contentscoceveevemmerenncnircinecrninns 5-13
Deleting Window Fields..........ccoeeremeinecnereneesenenicsiinns 5-13
Undeleting Window Fields...........cccoocveeevenencnnnnniiniinennnn, 5-13
Moving WIndow Fieldsccocceevnerrencmnnneicsenciicncnes 5-14

Command Ling AlISEScccveeeererremerreennersenseensieeesseneeenenes 5-14

© USING HEIP v 5-15
SET-UP FUNCTIONS.........ooeerteeirrenrereieieecenese s sssesensec e 5-16

Loading A Programcceeeeeeeeneesersessensesssesensesessesessessenns 5-16

Opening & Closing An VO POILcceevvemeirneireneiiee s 5-17

Opening A SPORTccuvvrrieieirie ettt 5-18

Simulating External INterruptsc.cccvvvverereereercnenieerscercrneenes 5-20

Other Defaults (Defaults WINAOW)cccveevevevcmncerenmcnceccreeneens 5-20

INSPECTING & ALTERING REGISTERS.........cocovenireirncerncrnirninnens 5-21

Inspecting A RGISIEN ..ot 5-22

Altering A ReGISIENc.ccvevveeirerercerer ettt 5-22

- “Undefined” RegiSterscccuvvevernnenceneneceinnnese e 5-23

Registers Window ... 5-283

SPORT Register Windowcccoceeeuvmerneenemneenseeserenecnnenns 5-24

Status Register WINAOW...........ccouveeeerrmrrcnininces e 5-24

Control Registers WiNAOWccccveuvereeemernecnenesenneeneeeeneenes 5-26

StaCk WINAOWcruniriicerecier st 5-26

INSPECTING & ALTERING MEMORYc.ccoovmrrrrirrrireinerisesnres s 5-28

Inspecting A Memory Location...........cccceeeeeeencenicrensisennne 5-28

TIACKING ..cvuvvveeceeererrieetse s esses ettt ssss st ses e s st e 5-29

Locating Symbols & ValUEsccccovvevveirmrnrnrneseseeesee e 5-30

Plotting The Contents Of MEMOTYccocveuieerneninirerernsinienns 5-31

Altering A Memory LOCAHON.ccvvuevrerirenreeiessesese i 5-31
Altering INSIrUCHONScvecvvereric e 5-32
“Undefined” Memory Locationsccccececveenencnenninsnnnnes 5-33

Program Memory (Code) WIndowcc.ceveerererevenncvercnirinnne, 5-33

~ Program Memory As Datacccvevvernineeineieieeseeeees e, 5-34

Data MemMOry :.....c.cccvevmerevernennas e 5-35

BOOt MEMOTY ... e 5-36

CONTROL & DEBUGGING FUNCTIONSoooovrerreeirerie e 5-38

Resetting The Processor: CRand REcccovvevvecriieccnnnnn 5-38

Single-Step EXECULION............ccriveererrrees e, 5-38

RUNNING & HAItINGcovvvvieeieirecce st 5-39

BrEAKSoovvvrer ettt s 5-40
Setting Breakpoints & Break Ranges.............ccoouevevvervevnnnn 5-40
Viewing Breaksccecuviiieernineencineneniesseieesssesseans 5-40
Break Expressions & Changescccocoveiveerirennncnnna, 5-42
Deleting Breaksccvveerrveeneneninensieeeese s 5-43

Contents

575 Watchpoints & Watch EXPressionscoocuiininmnisisensinnnns 5-44
5751 Setting WatChpOiNtsccocvnerininsiininiisss s 5-44
5752 Setting Watch EXpressionsc.ciniiesissniscsnsnnenn: 5-44
5753 Listing Watchpoints and Watch Expressions ..., 5-45
5754 Deleting Watchpoints and Watch Expressionsc....... 5-45
5.7.6 The ? Command and Expressions Windowcceveeinnennenes 5-45
577 Execution History (Trace Window)...........ccceevevvinnminisenisnininennes 5-46
578 Execution Profiling (Profile Window)c.coeceeveinnisesnninicnnenns 5-47
5.78.1 Turning ON Profilingc.cccocvevenienennincneninisiisisiinenns 5-48
5782 Setting A Profile Rangec.ccooevirevemnereensinensincnsienene, 5-48
5783 Deleting Profile RANGescccconmvervcncneisincnsnncncnneninennes 5-49
5784 Resetting Profiling Dataccocoveurivecrncenmnsinecsieeciins 5-50
579 Setting Time BaSESceverreureieieieieereesetsessssesssnasssessssseses 5-50
5.7.9.1 Short Term Count (STC)ccoverrrrrinererereeerereseeseesessensenne 5-50
5792 : Long Term Count (LTC)covvereeircernrirerieereneresesseeseesesaseene 5-51
58 EXITING & SAVING A SIMULATOR SESSIONcocorevmeerncrrerrcinennns 5-52
5.8.1 Saving SiImulation Statecc.ceverrrrernreren e 5-52
5.8.1.1 What IS SQVed.........cooveeeeeirieesssies et essssss s 5-53
58.1.2 What IS NOt Saved ..o 5-53
582 QuItting The SIMUIALOTcoveeirrieces e 5-53
59 MISCELLANEQUS FEATUREScocosvrerverenrseinntssrssisesssssssssessenaens 5-54
5.9.1 Executing Operating System Commandscccoeuvevveriverrivenenns 5-54
59.2 Executing ADSP-2101 Instructions Directlyc.ccoverrerrerrreennne 5-54
5.10 SUMMARY OF COMMANDS & CONTEXTScconmrvrernrrrerrsrnsennennnens 5-54

CHAPTER 6 SIMULATOR CONFIGURATIONS

6.1 INTRODUCTIONoitttremiriircrriceeisineess e ssessesssssssisssssssssessssesssssensessens 6-1
6.2 CONFIGURING SCREENS & WINDOWScooooomrrriecreerrereieenene 6-2
6.2.1 Opening WINAOWSc.ccorvverinriernnisreseesssessesssssssssssssssssssssesss s sons 6-2
6.2.2 Selecting, Deleting & Rearranging Fields In A Window 6-4
6.2.3 Saving A Rearranged SCreencouvvmrneveneimmnesssssssnssesssnsnes 6-7
6.3 COMMAND ALIASEScooovereeiirreninsississss s sssses s sasssessssasens 6-8
6.3.1 Managing Aliased COMMANGScccueruerrriecninnrense e sessseseenees 6-9
6.4 THE STARTUP FILE ..ottt ssses e ssessaesaans 6-10

Contents

CHAPTER 7 C COMPILER

7.1 ADSP-210X C LANGUAGE SYSTEMcovvvrniierrerseissessseesesisinenenne 7-1
7141 README Filgcvvevrieeeirisenssssssessenssisssssssssssssnsensssssssssssesennes 7-3
712 C & The ANSI Standard.............cceremrerereersesmeesnsssisensensessesseesneene. 7-3
713 Upper and Lower Case USage............ccveureremreeerereemeenennerennecnnenne. 7-3
7.2 COMPILING ..ottt esses e assssessesssassas s s e 7-3
721 Filename USageccovuveuiememriiiecrcinicrenenenseieseese e, 7-4
722 Invoking The C COMPIIENcovureeneuremerecrenieeerseseiseeeneenenenne 7-4
7221 =@ SWILCH ..ot 7-6
7222 =ADS = # SWIC ... s 7-6
7223 —DHH...] SWHCN ..o 7-6
7224 ~Dvariable [=value] SWItChccoeceevevererneveinccncines 7-7
7225 =8 SWILCH .ottt 7-7
7226 =GPM SWILCH ..o s 7-7
7227 =l = Path SWItCH ...t e 7-7
7228 =LPM & =L1OM SWItChESc..verereieiererieie s 7-7
7229 =M SWIHCH <ottt 7-7
72210 —pMSEACK SWILChcvevveicireeeeerr e, 7-8
72211 =0 & =1 SWIChEScceeverrrrreeeerecere e 7-8
723 Preprocessor COMMANGSccvreruermreiermennesssnsesiessesseseenes .78
72.3.1 #pragma DireCtivecccvveverurrrerneeernnirinereseietse e enese s 7-9
7232 #include DIreCtiVec.ocveeeeveneercrrere e, 7-9
724 Linker REQUIFEMENESc.ocveriveerieererseseissinsiesssssssensssssessssssasens 7-10
725 Run Time HEaderoocvveveuieeerverereire et 7-1
73 RUN TIME MODEL.........covviiirneiiirecneinistsse e ssssss s ssssesssnns 7-11
731 Stack Implementation ... 7-11
732 Register Use LiMitScooeevreereeinrnesnssiereeseresressseesveseeenae 7-12
7.3.3 INEEITUDES ..ottt 7-14
734 Data TYPES ... 7-14
7.35 MEMOrY USAQE.......ccverrirereeerieeeieissiesresi s sssssssessesessen s 7-16
736 Storage Classes & MOGIfiers............cccevvererrnreerrcvenneineresiessnienns 7-16
7.3.7 Function Calling & EXit.........cccccovurrmrrcernesenenreeirnseesee e, 7-17
74 ASSEMBLY LANGUAGE INTERFACE SUMMARYcccoovuirverrrinnen 7-18
7441 Checklist Of Prerequisitescc..cerrrrrimerrsrierisireeesssess e 7-18
742 Assembly Language Interface Exampleccc.ccceevvevceiereriennnee. 7-19
75 LANGUAGE EXTENSIONSoovmririneiieiieeesseeereies s, 7-20
76 PROGRAMMING HINTS ...vrvirrirnitiresiessesssssiss e 7-20
761 Location Of Variables ..., 7-20
76.1.1 Globals in PM vs. Globals in DM............ccoceveenrivevininnnnnane. 7-21
76.2 Location Of StACKc.cccveermrevrereieniesese e, 7-22

7.7 ERROR MESSAGEScovoveirerminiiesiiseiiesrsrisssssssssssesnin, 7-22

Contents

7.7.1 Corrected Syntax EITOrscccoeerververenmcenneiinnsisissisessssseseninns 7-24
772 USEI EITOIS ...t sersisenssssessese s sssssasssssssssssesens 7-25
7.7.3 COMPIIET EITOTScooveererect et imsssessssessessnsens 7-25
774 EXit COUBS ..o ssssssse s s e se s ssssssssssssssasssens 7-25

CHAPTER 8 PROM SPLITTER

8.1 INTRODUCTION ...ttt iseesesssise s ssssssssssssssssesssens 8-1
8.2 RUNNING THE PROM SPLITTERccooummiininsicisecsinnins 8-1
8.3 PROM SPLITTER OUTPUTccovrrriiicmisnssss i ssnsssssmsssss e 8-3

CHAPTER 9 INSTRUCTION SET REFERENCE

9.1 OVERVIEW ..ottt eseasaseess et e sssssesesesssssenssastsassensone 9-1
9.2 CYCLE TIME NOTES ..o ettt st setss s enesesns e sessne 9-2
9.2.1 ADSP-2101 Extra Cycle CONditions..........c.couevvrernsirnnssersersensivnienens 9-2
9.3 INSTRUCTION SYNTAX NOTATION ...t v ens 9-3
9.3.1 Punctuation & Multifunction INStructionscccceceveveieeeeeecercninenes 9-4
9.3.2 Syntax Notation EXample..........cceueererninrnnsesinsisissseseesaneessennns 9-4
9.3.3 StatuS NOTALIONoevveeeerce sttt e seons 9-5
934 Instruction Word NOtationceeeeevnireereeseciee e 9-5
ALU Add / ADd With Carmyeceeeeireiiensenrsessscse s s ssss s sassssssssens 9-7
Subtract X-Y / Subtract X-Y With BOITOWc.eveveveeeiieereesesescsenenenes 9-8
Subtract Y-X / Subtract Y-X with BOIOWcveeueeereeresseeeseeese e 9-9
AND, OR, EXCIUSIVE OR ...t eeseees et neees s e senens 9-10
PSS / CIBATvveeeetieeeeeeeee ettt ettt e st ee e st es bt een e sen e senes 9-11
NBGAIE e 9-12
N T ettt er et ee v eee e 9-13
ADSOIULE VAIUG ...ttt r e s e seea 9-14
INCTEMENE ..ot e eb e e er e saesesaenenen 9-15
DECIEMENL ...t ettt s s e e s s s e 9-16
DIVIBE ottt ettt et s e et ee e 9-17
MAC MURIDIY ettt 9-19
Multiply / ACCUMUIALE ..ot es s 9-21
MUltiply / SUDEFACEocveeeee e 9-23
ClBAr et 9-25
TrANSTEI MR ... ettt et s aeesbeaens 9-26
Conditional MR SAtUTGHIONcveeeeeeeeeeeeieeeees e s sraeese s sesesans 9-27

Contents

SHIFTER Anthmetic Shiftccoeeveeerrrenrinrseirnrisessesseseise e eisesnsesseese s 9-28
LOGICAl Shifteeevreierecrirerieseiiessesseiee s sss st ses 9-30
NOrmalizeocoeeeeverrercerreceserccreesenens SOOI 9-32
Derive EXPONENLcoceveiiercereieeree et sesa st ses s sesse s 9-34
Block EXpONeNnt AQJUSE.......c.ccovurrurreemrencrernnneisiseeseressesssensesssessssssnsesenns 9-36
Arithmetic Shift Immediate..............ceeereeeerrerererecrrereerese e, 9-38
Logical Shift Immediatecoeveeerrereeerececerereereere e 9-40
MOVE REQISIEr MOVE........ceeecereett ettt st sb e 9-41
Load Register Immediateccveuvemmecrneneinencnecnereer e, 9-43
Data Memory Read (Direct AQAress)ocvuvuverernerreneersersersensensnns 9-45
Data Memory Read (Indirect ADAress)ceeeveeveuneurinieenceneencnennes 9-46
Program Memory Read (Indirect ADAress)cccoveeureerceurirerrineurienns 9-47
Data Memory Write (Direct AdAress)ccceuevreeeereerereenercennierseneennens 9-48
Data Memory Write (Indirect ADAress)coeververnesrsmeeneerieennns 9-49
Program Memory Write (Indirect AQdress)cccooceeuvecrncerinernineuninnn. 9-51
PROGRAM FLOW
JUMP ettt ettt anees 9-52
CALL ettt ettt e 9-53
JUMP or CALL on FIag In Pin.........coeveeeieeceeeeceece e 9-54
Modify FIag QUL Pincovevereieeece st 9-55
Return from SUBIOUINEc.cccuiuiverireiecssre e 9-56
Return from INTEITUPLcoovvirrrererrerrcens s e 9-57
DOUNLL ettt s 9-58
DLE s 9-60
MISC StACK CONTON ..ottt 9-61
MOGE CONEIOL ...ttt 9-63
Modify Address Register..........coevrmrrnriinreerieiieireisieesssesssess e, 9-65
NP et 9-66
MULTIFUNCTION
ALU/MAC / SHIFT operation with Memory Readccccc.ccovvvernn.e. 9-67
ALU/MAC / SHIFT operation with Data Register Move 9-71
ALU/ MAC / SHIFT operation with Memory Write.............ccccovvvecvnnnnn 9-74
Data & Program Memory Readcccoeeeuveuviemirnrereeeseeeseereeenn. 9-78
ALU / MAC operation with Data & Program Memory Read 9-79

Contents

APPENDIX A INSTRUCTION CODING

A1 OPCODES ...t st sass st ssssssssssesssssenass A-1
A2 ABBREVIATION CODINGcocovvirimiirnisnississinsinssesssssasssssnes A-6

APPENDIX B FILE FORMATS

B.1 DATA FILES (.DAT) ..ot ssrsssssssssessesssse s ssansessssessessssssssees B-1
B.1.1 Assembler Buffer Initialization FileScccovvvivevivvreeresrenrineenens B-1
B.1.1.1 INteger DAtc.cveeerrrie e e B-1
B.1.1.2 Non-Integer Datacc.oevveeerineencncieiciiesiseeeseesesseseeaes B-2
B.1.1.3 COMMENLS ..ottt ses st s s e ssasasassesesnes B-2
B.1.2 Simulator Data FilesSccoeeevieeieveeer s B-2
B.1.2.1 PO PO DALA ...t ressressse e seseae e B-2
B.1.2.2 SPORT DAL ...ttt sresss s sene s B-3
B.1.23 Simulated Memory Dataccvveeerireinernnesineiesennnne B-3
B.2 MEMORY IMAGE FILE (.EXE)cooverrrrireresecsrensiesnssesss s sesssns s B-3
B.3 DEBUG SYMBOL TABLE FILE (.SYM)ccovrrererrrresernerereveneeeennns B-5
B.4 PROM IMAGE FILES (.BNU, .BNM, BNL)cccoevvrrrrmrrrrrereerseireierennne B-7
B.4.1 INtEI FOMMALeviviececeece ettt e e ese s e seers e sesens B-7
B.4.2 MOtOrola FOrMAL ...t s B-10

APPENDIX C HOST-SPECIFIC REQUIREMENTS

C1 SYSTEM REQUIREMENTSccoomieiirmerrieceiinennissersssssssssessssnssnssenns C-1
C2 IBM PC AND COMPATIBLES..........cccoeeeureirreniniriseniaenssessieesssesssssinanes C-1
C3 SUN-3 WORKSTATIONcoomirririiieererinessise st seseeissessssesissesssnnns Cc-2

APPENDIX D ANSI STANDARD C

D.1 ANS| DRAFT STANDARD EXCEPTIONS ..o, D-1
D.1.1 Features Not Supported & Restrictionsc..cocvvveeervereereenrnnn. D-1
D1.2 New Features and EXIENSIONScocovviieineiermemereeeesresene e D-1
D2 DIFFERENCES BETWEEN HOST VERSIONS ..o veeeere s D-2

X111

X170

Contents

APPENDIX E LINKER OPERATION

E.1
E2
E3
E.31
E3.2
E4
E4.1
Ed42

INTRODUCTION........ovureminrrsessensessessessssssessasasssasesssesssssssssssssssss s esnes E-1
RE-BOOTING UNDER PROGRAM CONTROLoccovmivvrricrrcrcinnn. E-1
SHARED DATA STRUCTURESccocveucremenmrenernicnsseseecisenecieens E-1
Data Buffers in Program Memoryccoeueureeneeeerensmrennirenninnens E-2
Data Buffers in Data MeMOTYccoovevcveenenecineeineniieccencenenen E-4
SHARED SUBROUTINEScocoeerrerrrrerirerseiisenseessiseseesersesses s saessenes E-5
Repeating The BOOT QUAIfiercoereueeeennenserieneiresersieeenenn, E-5
Libraries & —p SWItCh..........ccoveveeeiecrereee e E-5

APPENDIX F ERROR MESSAGES

F.A
F.2
F.3
F.4
F.4.1
F4.2
F.4.3
F.4.4
F.4.5
F.4.6
F5
F.5.1
F5.2
F5.3
F.5.4
F.5.5
F.5.6
F5.7
F58
F5.9
F.5.10
F.5.11

INDEX

INTRODUCTIONovueitirireiriieniressesss st ses e ssesssssssessssnnens F-1
SYSTEM BUILDER ERRORS.cocorrrrieirieiientesseee e seens F-1
ASSEMBLER ERRORSccovmiririeeeisseies it essssenass e F-4
LINKER ERRORS ...ttt ssssssssssssssssssesssse s sssssensens F-10
Operating System EFTOrsccoocveeureemnerneeneneneneneeensirecsensenns F-11
Informational MeSSages............ccoeevnveeneneneneincnieees e, F-13
Memory Allocation EFTOrSoeeeveeeveeeininecenereeese e F-13
Symbol Reference Erorscoeevenenrieinnrneriecsesesesie e F-15
OhET EITOTScvveeevee sttt st F-16
SORWArE EITOrScouvveer ettt saane F-17
SIMULATOR ERRORS ..ottt F-18
GENEIAl EITOISvoevceeeee ettt F-18
DEfaUlts EfTOrS ..ot F-18
EXPression EITOrSccooverineierieiesnseiesiesses e F-19
Break Ermors......ccvveeerescecrecsctcteete et F-19
WaLCh EITOrSovveeee ettt e F-20
CommMaNG EITOrSocevvieiiireirniesiesiei e ssesessessessenens F-20

Plot Memory EfTOrSceuiieeeeniiniccneesee e F-21

POrt & SPORT EITOS ..ottt F-21
Instruction & Program Load EITorscccceevvvvevieciccien, F-23
EXECULION EITOTS ..ottt F-24
Command Syntax EfTOrsc.ceeveveereeeineeneececeeeee e F-25
.. X-1

FIGURES
1.1

2.1
22

3.1
32
33
34
3.5
36
3.7
38

4.1
42

5.1
5.2
5.3
54
5.5
56
5.7
58
59
5.10
5.1
5.12
513
5.14
5.15
5.16
5.17
5.18
5.19
5.20
5.21
5.22

Contents

ADSP-2101 System Development FIOWcccooueininnnnnenninssieinnnns 1-5
System BUIlder /0 ...t e =2
Sample System Specification File ..o 2-4
ASSEMDIET VOocvreeeeeirrrete s ssssssssssss s sans 3-2
Assembler Program FIOWccccecnmncnincnsininiissciscssssssaennens 3-5
CiIrcular BUFFEEScuucveeeieierissesisnisissssessssssssesse s ssenssessessssssssssssennes 3-16
MaCTO EXAMPIEvuereeiiee et es s s sssassnesssens 3-23
Main Routing EXample..........cc.ovvvveerrenneninisecsesiceneesesensee e 3-27
Interrupt Routing EXample ..., 3-28
Include File, Constant Initializationcocveeremrereernerccircnerenesinenenne 3-28
List File EXAMPIEc.ovverrirreerriresreceeeree e sisesss st sssse e esssas e 3-29
LINKEE VO ..ottt ssssrsstsssa s s ssse s ss s s e s seans 4-2
Map LIStNG File ..ot 4-12
Initial Display & Window Commands Menucccceeeevneeciecenceccnnnc. 5-2
Files Used By The SimUIALOTccouevveevrernnenniernesnins e ssasennsens 5-4
Parts of @ Typical WINAOWccoceeveenrinrineireiirerieesessieseseneeeseesenne 5-10
/O StAtUS WINAOWccoorveiieerierireies st sseessessis s esss s sasssenssens 5-19
SPORT Status WINAOWc.cc.cevvuirrirmirireiseinissisiesss s ssesiees 5-19
Defaults WINAOWccocvumeucrrerrriineine st ssssess s sssssessseinens 5-21
RegiSter WINAOW ..ot sssaseseessens 5-24
SPORT Register WINAOWccc.cocurivmrveerenniaeeresieseesssscssssssssrssesnenees 5-25
Status Register WINAOWccccocrrrerersinninneisesrestes e sessssesssssnnans 5-25
Control Registers WINGOWcccerumeumrmerierineisrsesssiseesessssssssscssnns 5-26
SHACK WINAOW ..ottt e 5-26
Program Memory (Code) Windowcccceueerervrenenneniersnenessessnenens 5-34
Program Memory Data Windowccvevrmenminneneininscssrecseisseeinn, 5-35
Data Memory WIndowccciurieiriereeieeeee e e asessenanns 5-36
Boot Memory Code WINdOwc.cceeueveeencvrnereeeeeiesiseecieseenses s 5-37
Boot Memory Data Windowcc..ocuivmerierinnrice e, 5-37
Breakpoints WINAOWc..cvuiviieiiiecieceee et 5-41
Break Expressions WINAOWccocvvrevrueecurieeceererece e 5-43
EXPressions WINAOWccouovumrenereninrieiniesessce e sessees 5-46
TraCe WINAOW ..ottt s s e ssess e 5-47
Profile WINAOWc.ceiriiecerecene st 5-49
Short Term, Long Term and Cumulative Profiling Time Bases 5-52

X0

X01

Contents

6.1
6.2
6.3
6.4
6.5

7.1
7.2
73
74

8.1
E.1
E.3

TABLES

2.1
22

3.1
3.2
3.3
34

4.1

5.1
5.2
5.3
54
55
5.6
5.7

741
7.2
7.3
74
7.5

Main Menu For Configuring Windowscoeveveniieininnicininns 6-2
Window Selection Submenu (with Register Window selected) 6-3
Default Register Window Layoutcccnenninniiiniinsmncinninninscecnine, 6-4
Example Register Window with some registers deleted........................... 6-5
Example Register Window with registers rearranged.............coccccecuuce. 6-6
Final Register Window Arrangementccocieiininecnnenennniinennnns 6-7
C COMPIIET O ..ot ses st siseees e ssssss s 7-2
Stack Implementation in ADSP-2101 Memory Spacec..ccccerevunne. 7-12
Global variable location: data memory vs. program memory 7-21
Stack location: effect of data memory vs. program memory 7-22
PROM SPHE /Oooeeeeeieeeeererreereiseiseisescesenee e eisesenses s 8-2
STATIC Data Buffers in Boot Memory ... E-3
Sharing STATIC Data Between Multiple Boot Pagesc.c.ccceccceniuenncs E-4
Library Routines & Multiple Boot Pages..........c.ccecveniivinncinininins E-6
ADSP-2101 System Configurations............ccoeuverreinnmrerincnernineireenssesnns 2-1
System Builder KEYWOIdScccvvuirennrierneenresesseresieesssssessessssessesenans 2-3
ASSEMDIEr SWILCHES ... 3-3
Preprocessor Switch COMDINGLIONSccovvvvrveeverreemneereerneeseieeeesessenaes 3-4
Assembler-Reserved Symbols/KeYWOrdscc.cuvvveeveneeieininseensennens 3-9
Arguments/Parameters Legally Passed to Macros.........ccoeeeveveivivinnes 3-22
LiNKEr SWItCHEScvvci et et 4-4
SIMUIBLOT FIlBS ...vvvvvveeetrerrtier sttt st 5-3
Windows Showing REGISIENS ... s 5-22
Register Location By WINAOWc.cccoeuieirneneneeieeere e 5-27
Window Navigation CONtrolISccoeeeeeveieerneee v 5-55
Command Window CoOmmMandscc.ceuureererrermersensssessenssesnisensesnenn, 5-55
Window-Specific Control Key Sequencescccoevvervevreeneininninns 5-58
Window to Control Key Sequence Cross Reference................ s 5-59
COMPIlEr SWILCNESovrrieeir e 7-5
Reserved/System ReQISIErSccceeeerriricrrninenineree s 7-13
Restricted/Data ReGISIErScccverrerrerreerereeretsniree e 7-13
ADSP-2101 C Compiler Arithmetic TYPeScovevvrvevreermeerrerirnrensrrneinn. 7-14
C Language Types on ADSP-2100 familyccc.covvrvreverrnrirniernerannnane, 7-15

Overview

1.1 INTRODUCTION

The ADSP-2101 Development System is a complete set of software and
hardware development tools. The Development System includes the
Cross-Software system to aid the software design and a real-time
hardware Emulator to facilitate the debug cycle.

The Cross-Software system includes six separate programs: System
Builder, Assembler, Linker, Simulator, PROM Splitter and C Compiler.
These programs are described in the following section.

Release 2.0 and later of the Cross-Software system runs on the IBM-PC
under PC-DOS and on the Sun-3 workstation under Unix (Bsd 4.2). For
information on host-specific system requirements, refer to Appendix C.
For information on support for other machine types and operating
systems, contact Analog Devices, Digital Signal Processing, Marketing
Division. (See the contact information on the copyright page.)

This manual is a complete programmer’s reference. For information on the
architecture and system interface of the ADSP-2101, refer to the
ADSP-2101 User’s Manual.

Each release of the Cross-Software is shipped with a Release Note. This
note describes the current version and provides information on any updates
to the software. If you return the registration card enclosed with your
Cross-Software, you will receive a Release Note for each subsequent update
of the software.

1-2

Overview

1.1.1 ADSP-2101 Cross-Software System & Manual

This manual describes the Cross-Software system in the following
chapters:

¢ System Builder, Chapter 2

The System Builder is a software tool to describe the target system. The
System Specification source file is created, which specifies the amount of
RAM and ROM available, the allocation of program and data memory and
any memory mapped I/O ports for the target hardware environment.
High-level constructs are used to simplify this task.

¢ Assembler, Chapter 3

The Assembler assembles source code. It supports the high-level syntax of
the instruction set and provides flexible macro processing. A C language
preprocessor handles C directives in source code. Source code may be
partioned into a defined set of files (modules) and assembled in one pass
using the “include file” capability. A full range of diagnostics is also
provided.

¢ Linker, Chapter 4

The Linker links separately assembled modules. It searches directories for
library routines to link in. It maps the linked code and data output to the
target system hardware, as specified by the System Builder output, and
can produce multiple boot memory page image files.

¢ Simulator Functions, Chapter 5

The Simulator performs instruction-level simulation. The user interface is
both interactive and symbolic, and supports symbolic disassembly. The
Simulator fully simulates the hardware configuration described by the
System Builder. It flags illegal operations and provides several displays of
the internal operations of the ADSP-2101 microcomputer.

¢ Custom Simulator Configurations, Chapter 6

The ADSP-2101 Simulator supports a user-configurable interface of
windows and commands. This chapter describes how to customize the
interface for your preferences and how to store and recall screens and
customized commands.

Overview

e C Compiler, Chapter 7

The C Compiler supports the proposed ANSI Standard version of the
popular C programming language. The Compiler produces ADSP-2101
source code and can directly invoke the Assembler.

* PROM Splitter, Chapter 8

The PROM Splitter reads the Linker-output executable file and generates
PROM burner compatible files in a variety of industry standard formats.
Boot memory requirements are supported by the PROM Splitter.

¢ Instruction Set Reference, Chapter 9
Chapter 9 provides a reference section for each ADSP-2101 instruction

group. Running headers in this chapter allow you to look up any
instruction.

These chapters are supplemented by several appendices:
* Appendix A is a complete reference to ADSP-2101 opcodes.

* Appendix B describes the file format for input and output files used by
the Cross-Software system.

¢ Appendix C lists the hardware and software requirements for the
computer systems that can host the Cross-Software system and any
differences between the operation of the Cross-Software on each
system.

* Appendix D lists the differences between ADSP-2101 C and the ANSI
draft standard. '

* Appendix E details how the Linker handles data and code used on
multiple boot pages.

* Appendix F lists and defines all error messages generated by the
Cross-Software modules.

1-3

Overview

1.1.2 Development Flow
Figure 1.1 shows a flow chart of the ADSP-2101 development cycle.

The development process begins with the task of defining the target
system hardware environment. To define the hardware environment, you
use the System Builder. The System Specification file includes the target
hardware information. The System Builder reads this file and creates an
Architecture Description file which passes information about the target
hardware to the Linker, Simulator, and Emulator.

You begin code generation by creating assembly source code modules. An
assembly module is a unit of source code such as a calling program,
subroutine, data buffer declaration section or any combination. Each
assembly code module is assembled separately by the Assembler. Several
modules are then linked together to form an executable program.

The Linker needs the target hardware information located in the
Architecture Description file to determine placement of code and data
fragments. In the assembly modules you have the option to specify each
code/data fragment as completely relocatable, relocatable within a
defined memory segment, or placed at an absolute address. Absolute code
or data modules are placed at the specified base address, provided the
specified memory area has the correct attributes. Relocatable objects are
placed in memory by the Linker.

Using the Architecture Description file and the Assembler output files, the
Linker determines the placement of relocatable code and data segments
(including circular buffers), and places all segments in memory locations
with the correct attributes (CODE or DATA, RAM or ROM). The Linker
generates an executable image file, which may be loaded into the
Simulator and Emulator for debugging.

The Simulator provides windows that display different aspects of the
hardware environment. To replicate the target hardware environment, the
Simulator configures its memory according to the System Builder output,
and simulates I/O ports according to user-entered Simulator commands.
This simulation provides capabilities to debug the system and analyze
performance before committing to a hardware prototype.

After debugging with the Simulator, the Emulator is used in the prototype
target system to debug hardware, timing, and real-time software
problems. It provides overlay memory to replace target system off-chip
memory, including boot memory, if desired.

Overview

The PROM Splitter translates the executable memory image file (Linker
output) into a file that is compatible with a PROM burner. Once you burn
the ADSP-2101 code into PROM and plug an ADSP-2101 into the target
board, your prototype is ready to run.

(START

)

l

Define Target
Hardware
(System Builder)

-wwmemewmwmm

l ‘ (Optionally)

v

SIMULATE

L

Assemble C Language
le 2 Modules
Assemble
Module 1 .
LINK
I Repeat As Necessary
EMULATE
PROM SPLIT
Repeat As Necessary
Burn PROMS
Prototype Tést

v

(End

)

(Figure 1.1 ADSP-2101 System Development Flow

1-5

1-6

Overview

1.2 EXPRESSION HANDLING IN CROSS-SOFTWARE TOOLS

The ADSP-2101 Cross-Software tools support general expression
evaluation in locations where constants are valid. You may in most cases
use an expression instead of a constant wherever a constant is expected.

Expressions are composed of numerical constants, symbolic constants,
and expression operators. The operators are a subset of the arithmetic and
logical operators of the C programming language (for integer values only).
In order of precedence, the operators are:

() left, right parenthesis

~- ones complement, unary minus
*/ % multiply, divide, modulus

+ - addition, subtraction

<< >> bitwise shifts

& bitwise AND

l bitwise OR

A bitwise XOR

Examples:

(taps +16) / 3 mask & 0x55

The ADSP-2101 Simulator recognizes an additional set of expression
elements and operators. These are detailed in the “Simulator Expressions”
section of Chapter 5. '

The most important difference between Assembler expressions and
Simulator expressions is that memory contents (such as data variables)
and processor register contents may be used as operands in the Simulator
only. The Assembler cannot evaluate memory and register values at
assembly-time; the Simulator, however, has access to the instantaneous
values of simulated memory and registers.

1.3 CONSTANTS

Constants include numeric (or literal) constants and identifiers defined as
symbolic constants. Symbolic constants can be used anywhere to replace
numeric constants. The identifier must be declared a constant with the
.CONST directive; see the discussion under “Assembler Directives” in
Chapter 3.

N

Overview

1.4 NUMERIC BASES ,
The numeric bases which may be used in the ADSP-2101 Simulator and in

source code are hexadecimal, octal, and decimal. They are specified as
follows:

For hexadecimal prefix a Ox (zero and x) or H#:

0x12FA H#12FA

For octal prefix a 0 (zero):

0777

For decimal (the default) there is no prefix to denote the base. Sign
(+ or —) may be specified:

1024 +1024 -55

Binary numbers are accepted only by the Assembler in a source code file,
and may not be used with any of the other Cross-Software tools. Binary
numbers are specified with the prefix B#:

B#0111010001011111

1.5 CHARACTER SET
The ADSP-2101 Cross-Software character set includes the following:

* Uppercase letters, “A” through “Z"”
* Lowercase letters, “a” through “z”
* Digits, “0” through “9”

* The ASCII graphics characters; the printing characters other than
letters and digits (punctuation, etc.).

* The ASCII non-graphics: space, tab, carriage return, line feed and form
feed. (The “newline” character or characters are interpreted correctly as
per the conventions of the environment in which they occur.)

1-7

1-8

Overview

1.6 IDENTIFIERS (SYMBOLS)

Symbols are either a user-defined identifier or system-reserved keyword.
The keywords are listed in Chapter 3, Assembler, in Table 3.3.

Identifiers consist of a character from the set:

Uppercase letters, “A” through “Z”
e Lowercase letters, “a” through “z”
e The underscore character “_"

followed by a sequence of characters from the set:

Uppercase letters, “A” through “Z”
Lowercase letters, “a” through “z”
Digits, “0” through “9”

The underscore character “_"

An identifier may have a maximum of 32 characters.

The Cross-Software tools can be either case-insensitive, with uppercase
and lowercase letters treated as the same character, or case-sensitive, with
differentiation between the two forms.

1.7 MANUAL NOTATION CONVENTIONS

This section provides you with a list of notation conventions.

¢ With the increasing use of the C Compiler (a case-sensitive
programming environment) the traditionally case-insensitive
Assembler and System Builder tools now support case-sensitivity as an
option. The actual commands used to invoke each tool, BLD21,
ASM21, LD21, etc., may be entered in upper or lower case on the PC
but must be lowercase on the Sun.

¢ In this manual keywords (reserved symbols) are always shown in
UPPERCASE, although they may be entered in either upper or lower
case. Any form of the keyword is reserved.

* Alowercase word highlighted in italics, such as jumplabel, indicates an
identifier used as an address label, data variable, etc. or a filename.

Overview

Square brackets, [], enclose optional specifications or data buffer

length (literal usage); when specifying buffer length, the brackets must
be used in source code.

An Aellipsis, ... , indicates that the preceding item may be repeated.

Carriage return is represented by “Return” or <cr>. (Simulator chapter
only)

~ denotes the control, or CNTL, key, as in a key entry sequence: X
(Simulator chapter only)

1 Overview

1-10

System Builder

2.1 INTRODUCTION

The System Builder module of the Cross-Software system is a software
tool for describing your hardware environment. Each ADSP-2101 system
can have a unique hardware configuration, and may not require the full
complement of possible memory. The System Builder output specifies
your hardware configuration, including memory and 1/O ports, in a form
used by the rest of the Cross-Software system.

A target system may include:

Maximum Available

_Data Memory Up to 15K words
(16-bit data, ROM or RAM) (1K on-chip, up to14K off-chip, 1K reserved)
Program Memory Up to 16K words, mixed code & data
(24-bit code or data, ROM or RAM) (2K on-chip, up to 14K off-chip)
(243%020%:";‘;‘?&3 Up to 64K bytes, configured as 16K words
padded to 32-bit word V’lidthf (1 to 8 pages, each containing 2K words)
Memory-mapped Any number, up to memory limits
I/0 Ports (Simulator limited by host file system limits)

Table 2.1 ADSP-2101 System Configurations
*see Chapter 8, PROM Splitter, for details.

2 System Builder

2-2

You specify your hardware configuration in a System Specification source
(.SYS) file using System Builder directives. The System Builder processes
the .SYS file and generates the Architecture Description file (ACH). The
Architecture Description file is used by the Linker to place relocatable
segments in memory, by the Simulator to simulate memory
configurations, and by the Emulator to set up target system memory
mapping. The System Builder outputs error messages, if any, or a
summary of the architecture created to the screen. You should use the
operating system facilities of your computer to capture this output into a
file if you need to refer to it for debugging or documentation purposes.

System
Specification File
(.SYS)

SYSTEM BUILDER

Architecture Error Messages

Description or
File (.:CH) Architecture
Summary

NSNS NNNNNNNNN

(Use Operating System / Pipes To
Capture Screen Output)

Figure 2.1 System Builder I/0

System Builder 2

2.2 RUNNING THE SYSTEM BUILDER
To invoke the System Builder, type:

BLD21 filenamel.ext] [-switch]

where filename.ext is the system specification source file. The filename
extension is optional and defaults to .SYS.

There is one switch for invoking the System Builder. The —c switch makes
the System Builder case-sensitive. This is provided primarily for
compatibility with the C Compiler, which is always case-sensitive.

If the —c switch is not used, the System Builder output is in all uppercase.
You must use this switch in order to preserve the case of characters as
they are entered. This is necessary if the Assembler is to be run with its
case-sensitive switch, as is required when assembling C-compiled code. If
you refer (in assembly code) to a memory segment declared in the System
Builder which is in lowercase, and the Assembler is run in case-sensitive
mode, the segment name will not be recognized unless its case is
preserved by the System Builder.

2.3 LANGUAGE CONVENTIONS

In a System Specification file, symbolic names are assigned to the system
configuration itself, I/O ports, and memory segments. The memory
segment names may be used in the Assembler; memory segment names
and memory characteristics are used by the Linker.

All symbolic names must be unique. A symbolic name is a string of letters,
digits, and underscores with a letter as the first character. Symbol names
can be of any length. Only 32 characters are significant.

System Builder keywords cannot be used as symbolic names. Table 2.2
lists the System Builder keywords.

ABS CODE ENDSYS PORT SYSTEM
ADSP2100 CONST MMAPO RAM

ADSP2101 DATA MMAPI1 ROM

BOOT DM PM SEG

Table 2.2 System Builder Keywords

2-3

2 System Builder

Assembler keywords, listed in Table 3.3, may not be used as symbolic
names either. The System Builder accepts such symbol definitions without
flagging an error, however, the Linker does not.

Numeric constants and general expressions are accepted by the System |
Builder. See Chapter 1 for a description of allowed constants and the
definition of expressions. For a description of the notation used in this
manual, refer to the section “Manual Notation Conventions” in Chapter 1.

24 SYSTEM SPECIFICATION SOURCE FILE EXAMPLE

Figure 2.2 is an example of a system specification source (.SYS) file for an
ADSP-2101 system.

Comment fields are enclosed within braces, { }, and can be inserted
anywhere in the file. Nested comments are not allowed.

24.1 ADSP-2101 System Specification File

The System Specification Source file for the ADSP-2101 specifies the
amount of data, program, and boot memory included in your
development system.

The first directive in the file is the .SYSTEM directive. This directive
assigns a name fir_system to the hardware description and signals the start
of the file. '

The .ADSP2101 statement identifies the processor type, here naming the
ADSP-2101 microcomputer. This statement is required. The presence of

.SYSTEM fir_ system; {system name}
.ADSP2101; {ADSP-2101 system}
.MMAPO ; {boot loading enable}
.SEG/ROM/BOOT=0 boot_mem[2048]; {boot page one}
.SEG/PM/RAM/ABS=0/CODE/DATA int_pm[2048]; {on-chip program mem}
.SEG/PM/RAM/ABS=2048/CODE/DATA ext_pm[14336]; {external program mem)
.SEG/DM/RAM/ABS=0/DATA ext_dm([14336]; {external data mem}
.SEG/DM/RAM/ABS=14336/DATA int_dm[1024]; {on-chip data mem}
.ENDSYS:;

Figure 2.2 Sample System Specification File

7

System Builder

the MMAP directive or the declaration of boot memory also serves to
signal the Cross-Software that the system in question is an ADSP-2101
architecture. If none of these indicators are present, the System Builder
assumes an ADSP-2100 processor.

The .MMAPO directive specifies the simulated state of the MMAP pin on
the ADSP-2101 in this example system. Defining MMAP as 0 indicates that
boot memory is to be loaded into the chip’s internal program memory
space, beginning at address 0.

The .SEG directive declares the system’s physical memory segments and
their characteristics. In this example, the segments declared comprise the
full on-chip and off-chip program and data memory configuration of the
ADSP-2101. Many applications, however, do not require this much
memory space.

Boot_mem identifies a 2K-word space for one page of external boot
memory.

Int_pm declares the 2K-word on-chip program memory space beginning at
address 0. In the ADSP-2101 this memory can always hold both code and
data and should be explicitly declared as such as in this example. Ext_pm
declares a 14K-word space for external program code and data storage
beginning at address 2048, after the on-chip memory.

Ext_dm declares a 14K-word space for external data storage beginning at
address 0. Int_dm declares the 1K-word internal data memory space
beginning at address 14336. This corresponds exactly to the on-chip data
memory of the ADSP-2101 which is available for general system use. The
1K of on-chip memory above this is reserved for processor use and should
not be declared.

The memory segments can be declared in any order.

The last statement in a system specification file is the .ENDSYS directive.

The System Builder stops processing when it encounters the .ENDSYS
directive.

2-5

2

2-6

System Builder

2.5 SYSTEM BUILDER DIRECTIVES
This section describes each System Builder directive and its syntax.

25.1 .SYSTEM Directive

The .SYSTEM directive must be the first statement in the System
Specification source file. The identifier name given as its argument is the
name of the system displayed in the Simulator.

The .SYSTEM directive has the form:
SYSTEM system_name,

25.2 .ENDSYS Directive

The .ENDSYS directive must be the last statement in the file. The System
Builder processing terminates at the .ENDSYS directive statement.

The .ENDSYS directive has the form:
.ENDSYS;
253 .ADSP2101 Directive

This directive identifies the processor. Its use is mandatory to clearly
differentiate between ADSP-2100-based and ADSP-2101-based systems. If
the directive is not present, the Cross-Software system assumes that the
processor is an ADSP-2100.

25.4 .CONST Directive

The .CONST directive defines System Builder constants. Once you declare
a constant, you may use it in place of its numeric value. This symbolic
constant is recognized only by the System Builder, however the definition
is not carried over to the Assembler or Simulator.

The .CONST directive has the form:
.CONST constant_name = constant or expression, ... ;

A single .CONST directive may declare one or several constants,
separated by commas,

System Builder 2

If you wished to define the value 15 for the term taps, for example, the
directive would be as follows:

.CONST taps = 15;

The above example system does not declare any constants.

255 .PORT Directive

The .PORT directive declares a memory-mapped parallel I/O port. Ports
can be placed in either data or program memory, and must be declared in
one or the other. The directive takes the absolute physical address of the

I/0 port as a modifier, and the symbolic name of the port as an argument.

The .PORT directive has the form:
.PORT/qualifier ... port_name;
There are two required qualifiers:

PM or DM (in which memory space)
ABS=address (absolute address (constant))

The port address is specified by a constant; port_name is an identifier.

For example,

.PORT/DM/ABS=0x0400 ad_sample;

declares a port identified as ad_sample located at absolute data memory
address 1024 (decimal). Assembler references to this same symbolic name
are correctly interpreted by the Linker, using the .ACH file information.

This ADSP-2101 example system does not have any 1/0O ports declared.

256 .MMAP Directive

The MMAP directive specifies the state of the MMAP pin on the ADSP-
2101. It has the form .MMAPO0 (MMAP pin held LO) or MMAP1 (MMAP
pin held HI).

2

2-8

System Builder

If MMAPO is used, boot loading takes place and on-chip program
memory begins at address zero. If MMAP1 is used, no boot loading takes
place and on-chip program memory is mapped at the top of the program
memory space.

When this directive is omitted, the default is to . MMAPO.

See the ADSP-2101 User’s Manual for further information.
25.7 .SEG Directive

The .SEG directive names a specific section of physical memory in the
target system, and describes its attributes. In effect, the default memory
map from the perspective of the System Builder is no memory at all. Until
you declare and define a memory segment it does not exist.

The .SEG directive has the form:
SEG/qualifier ... seg_name[length];
The following qualifiers‘ are mandatory:

PM or DM or BOOT=0, 1,2, 3,4, 5,6,7 (in which memory space)
RAM or ROM (memory type)

While the following are optional:

ABS=address (absolute start address (constant))
DATA or CODE or DATA/CODE (what is stored in segment)

Seg_name is an identifier; length, which must be a constant or expression
enclosed in brackets, is the number of words in the segment.

The .SEG directive declares three types of memory segments: program
memory (PM), data memory (DM) and boot memory (BOOT). Qualifiers
may specify the absolute start address of the segment, the physical
memory type (RAM or ROM) and what is stored (DATA and/or CODE).

PM memory segments can be either CODE only, DATA only, or both
CODE and DATA (defaults to CODE). For a PM segment that contains
code and data, both modifiers must be used in the directive statement. The
processor requires that any data access to PM must be made to sections

System Builder

with the DATA attribute. If a system requires that executable code be read
or written by the processor, these sections should be declared with both
CODE and DATA attributes.

DM memory segments must be DATA only. Therefore, the /DATA
modifier can be omitted. An error is generated if a DM segment is
assigned the CODE attribute.

BOOT memory segments may be either ROM- or RAM-type; in most
systems, however, the boot memory chips are PROM and all BOOT
segments are specified as ROM-type. Boot memory always defaults to
both CODE and DATA; the CODE and DATA attributes are unnecessary.
The BOOT modifier always specifies the page number, for example,
BOOT=0. A system may have up to 8 boot pages, with page numbers from
0 to 7. Each page can hold up to 2K words of code and data. The System
Builder knows how long a page can be and the possible boundaries for
each page; it ignores the ABS modifier for boot pages. An individual
declaration must be made for each boot page required.

Memory segments are assigned symbolic names. In the Assembler you
may locate individual code modules and data objects (buffers and
variables) in segments by name. The Assembler accepts the segment
references; the Linker resolves them using the .ACH file.

The length of the segment is specified by the bracketed expression, as in
somedata[1024]. The unit is always words, either 16-bit data or 24-bit
instructions. This means that data memory segment size in bytes is 2x the
word count, program memory size in bytes is-3x the word count and boot
memory size is 4x the word count. The latter reflects the padding of boot
memory with an extraneous byte per instruction in order to place the
beginning of every instruction on an even byte boundary.

The example

.SEG/BOOT=0/ROM boot _mem([2048];

declares the boot segment, boot_mem, which is physical memory type
ROM, residing in boot page zero (corresponding automatically to absolute

address 0). The length of the segment is 2048 words corresponding to one
page of boot memory.

2-9

2

2-10

System Builder

The example

.CONST onchip pm = 2048;

.SEG/PM/RAM/ABS=0/CODE/DATA int_pm[onchip_pm];

declares a program memory segment called int_pm, which is memory
type RAM at absolute location 0. This segment may hold both code and
data. The length of the segment is 2048 words. This corresponds to the
ADSP-2101 on-chip program memory space.

!
‘& /

e

Assembler

3.1 INTRODUCTION

The ADSP-2101 Assembler translates source code modules into object
code modules. You create a source code file (DSP) using the ADSP-2101
assembly language and define variables, data buffers, and symbolic
constants using assembler directives. Separately assembled modules are
linked together to form an executable program.

Figure 3.1, on the next page, shows the Assembler input and output files.
The ADSP-2101 Assembler reads the source code file (DSP) and generates
four output files with the same root name: an object file (.OB]J), a code file
(.CDE), an initialization file (.INT), and a list file ((LST). The object file,
code file and initialization files are passed to the Linker. The object file
contains information on memory allocation and symbol declarations. The
code file contains instruction opcodes with unresolved symbols marked.
The initialization file contains initialization information for data buffers.
The list file, which is optional, is for documentation.

Using assembly directives in the source code file, you can include other
source code files and inform the Linker of initialization data files in the
assembly process. The Assembler reads these files and processes them
together with the original source file. There are two preprocessors of the
Assembler, an ANSI-standard C language module and a standard
preprocessor. The Assembler also supports a macro capability.

Check the system requirements in Appendix C, especially if you are
running an IBM PC version of the Assembler.

3 Assembler

3-2

Source Code File Include File(s)
(.DSP)

ASSEMBLER

v

Listing File
(.LST)

v

Init File
(INT)

v

Object File
(.OBJ)

Figure 3.1 Assembler I/0

Assembler

3.2 ASSEMBLER MODULES

The Assembler consists of three modules:

C language preprocessor actual filename: ASMPP
standard preprocessor actual filename: ASM21
core assembler actual filename: ASM2

Different combinations of the modules can be run using the Assembler
switches detailed below. Invocation of the Assembler with no switches
runs the standard preprocessor and core assembler only.

3.3 RUNNING THE ASSEMBLER

To invoke the Assembler from the host system, enter:
ASM21 filenamel.ext] [-switch ...]

Filenamel.ext] is the source code file. The filename extension is optional
and defaults to .DSP. Other data and source code files are included in the
assembly process using the directives .INIT and .INCLUDE (described
later in this chapter).

3.3.1 Assembler Switches

The switches themselves are not case-sensitive, and multiple switches
must be separated by spaces. The Assembler switches are listed below in
Table 3.1; some require arguments as shown. To see this list on your
display, invoke the Assembler with no filename or switches: ASM21.

Switch Result

-cp Runs C language preprocessor

-p Runs standard preprocessor without core
assembler

—dvariable[=value] Define variable for C preprocessor

-1 Creates .LST file

-m [number] Macros expanded in .LST file, to depth of
[number]

-i [number] INCLUDE files expanded in .LST file, to depth
of [number]

-s No semantics checking

~C Makes the Assembler case-sensitive

Table 3.1 Assembler Switches

3-3

Assembler

3.3.1.1 —cp Switch

Using the —cp switch runs the ANSI-standard C language preprocessor.
This module of the Assembler allows the use of convenient C language
directives in assembly code, if desired. The C preprocessor should only be
used if C preprocessor directives or conditional constructs are present in
the input assembly language file. These types of code are handled by the
C preprocessor in the same fashion as a C compiler preprocessor. An
intermediate file, filename.CPP, is deleted if the standard preprocessor runs
without error. If an error does occur, the standard preprocessor halts
execution prematurely and preserves the .CPP file.

3.3.1.2 -p Switch

The Assembler’s standard preprocessor handles INCLUDE files, macro
expansion, and the replacement of symbolic constants with their values,
and produces a temporary .APP file which is used by the core assembler.
Using the —p switch runs the preprocessor, prevents the core assembler
from running, and preserves the .APP file. The .LST, INT .OBJ, and .CDE
files are not created.

Note that the preprocessor module actually runs whether or not the -p
switch is used, the switch merely determines if the core assembler is
subsequently run, deleting the .APP file.

If you experience a problem using macros, you can turn on the —p switch
and examine the .APP file to see if the macro invocations (calls) were
correctly replaced with the macros’ executable code. The .APP file is an
ASCII file, although it contains some additional directives and control
information.

Switch combination Module(s) run File(s) preserved
ASM21 preprocessor INT, .OB]J, .CDE,
core assembler .LST (if -1 switch used)
ASM21 —cp C preprocessor INT, .OB]J, .CDE,
preprocessor .LST (if -1 switch used)
core assembler
ASM21 -p preprocessor APP
ASM21 —cp -p C preprocessor APP
preprocessor

Table 3.2 Preprocessor Switch Combinations

(Assembler 3

Figure 3.2 shows the flow of program control for the Assembler modules.

“ASM21 —cp”
“ASM21 —p —cp”

C Preprocessor

(Deleted by
Standard
Preprocessor)

“ASM21”

“ASM21 —p”

Standard Preprocessor

(Deleted if Core
Assembler Runs) ’

Core Assembler

.CDE File

.OBJ File

INT File

.LST File

(Figure 3.2 Assembler Program Flow

3-5

3-6

Assembler

3.3.1.3 —dvariable[=value] Switch

If a variable has been used in a C preprocessor directive in the input
assembly language file it must be defined for the C preprocessor (which
handles such directives for the Assembler). The variable can be any
character string, and can be optionally set to a desired value which may be
a character string or numerical value. Defining and/or giving a value to
the variable allows the C preprocessor to evaluate a conditional statement
dependent upon it.

A common use of this is to have a section of debug code written in the
input file and to make its inclusion conditional. For example, place the
debug code inside a conditional directive so that the code is assembled
only if the variable mydebug is defined. The input file contains the
following:

#ifdef mydebug
debug assembly code
#endif

The Assembler must now be invoked as follows to assemble the debug
code:

ASM21 filename —cp —dmydebug

3.3.1.4 - Switch

The Assembler produces a listing file (.LST) if the -1 switch is used. This
file is described in the section “List File Format” later in this chapter.

3.3.1.5 -m[number] Switch

The listing file (.LST) does not normally display macros in expanded
format; the -m switch expands the macros called in the file. Specifying a
number determines the depth of nested macros to be expanded. For
example, if number is chosen to be 3, macros invoked within other macros
to a depth of 3 will be expanded. Choosing number is optional, and the
default is to infinity (all nested macros expanded to infinite depth).

Examples:
-m3

-m

Assembler

3.3.1.6 -i[number] Switch

Using the —i switch causes the contents of files named with the INCLUDE
directive to be shown in the .LST file. Specifying number determines the
depth of nested INCLUDE files to be shown. Giving a number is optional,
and the default is to infinity (similar to -m switch). If the —i switch is not
used, these directives remain in the form .INCLUDE filename.

3.3.1.7 -s Switch

The Assembler generates warning messages when multifunction
instructions are not in the correct order. When you turn on the -s switch,
the system does not check for the semantics (order) of a multifunction
instruction. (In this mode, warning messages are not displayed on the
screen.) For a description of multifunction instructions, refer to Chapter 9,
Instruction Set Reference.

3.3.1.8 -c Switch

The default operation of the Assembler is to treat upper and lowercase
letters as identical, as in previous releases. With this switch, the Assembler
is made case-sensitive (similar to the C language environment); upper and
lowercase versions of the same letter are treated as different characters.
The —c switch supports the ADSP-2101 C Compiler.

34 LANGUAGE CONVENTIONS

This section describes the language conventions specific to the Assembler.
See Chapter 1 for a complete discussion of general conventions including
notation used in this manual, usable character set, symbols, identifiers,
constants and expressions.

3.4.1 Binary Constants

Binary numbers are accepted only by the Assembler, and may not be used
with any of the other Cross-Software tools. Binary numbers are specified
with the prefix B#:

B#0111010001011111

Decimal, octal, and hexadecimal numbers are specified in source code in
the normal fashion (as shown in Chapter 1).

3-7

3-8

Assembler

342 Symbols

Symbols are used in a source code program to represent various items.
Symbols include identifiers and keywords.

3.4.2.1 Identifiers

Identifiers identify and name an assembly module, assembly values, data
buffers and variables, I/O ports, macros, address locations and
subroutines.

An identifier is a user-defined character string. The string may be of any
length, but only the first 32 characters are significant. See Chapter 1 for a
specification of the exact form of identifiers. As the default operation of
the Assembler is case-insensitive, identifiers may be either upper or lower
case (unless the — switch is used).

The “pointer to” (*) and “length of” (%) operators are used with
identifiers which label data buffers. Abuffer_name is evaluated by the
Assembler as the base address of the buffer, and %buffer_name is evaluated
as the number of words in the buffer. '

3.4.2.2 Reserved Symbols (Keywords)

Symbol names in the source code file must be unique. Assembler-reserved

- symbols may not be used as identifiers. Because the Assembler is not case

sensitive, both upper and lower case keywords are reserved. Table 3.3 lists
the assembler keywords. Some of those listed correspond to ADSP-2101
features which are not visible to users. Avoid them because their use may
cause errors.

ABS

AC

AF
ALT_REG
AND
AR
AR_SAT
ASHIFT
ASTAT
AUX
AV
AV_LATCH
AXO0
AX1
AY0
AY1
BIT_REV
BM

BY

C
CACHE
CALL
CE

CIRC
CLR
CLEAR
CNTR
CONST
DIS
DIVS
DIVQ

DM

DO
EMODE
ENA

ENDMACRO

ENDMOD
ENTRY

EQ

EXP
EXPAD]
EXTERNAL
FOREVER
FLAG_IN
FLAG_OUT
GE
GLOBAL
GT

10

11

2

I3

14

I5

16

17

ICTRL
IDLE

IF

IFC

IMASK

Assembler 3

INCLUDE MRO
INIT MRI1
JUMP MR2
LO MSTAT
L1 MV

L2 MXO0
L3 MX1
L4 MYO0
L5 MY1
L6 NAME
L7 NE

LE NEG
LOCAL NEWPAGE
LOOP NOP
LSHIFT NORM
LT NOT
MO OR

M1 PASS
M2 PC

M3 PM

M4 POP
M5 PORT
Mé POS
M7 PRI
MACRO PUSH
MF RAM
M_MODE REGBANK
GO_MODE RESET
MODIFY RND
MODULE ROM
MR RTI

Table 3.3 Assembler-Reserved Symbols/Keywords

RTS
RX0
RX1
SAT

SB

SEG
SEGMENT
SET
SHIFT
SI

SR

SRO

SR1

SS
SSTAT
STATIC
STS

SU
TEST
TIMER
TOGGLE
TOPOFPCSTACK
TRAP
TRUE
TX1
TX0
UNTIL
Us

[9]9)
VAR
XOR

3-9

3

3-10

Assembler

343 Comments

You may insert comments anywhere in a source code file, enclosed by
braces, { }. The Assembler treats all comments as “white space” and
ignores them.

3.5 PROGRAM STRUCTURE

The basic unit of an ADSP-2101 program is the module. Modules are
defined as:

.MODULEI/ qualifiers] module_name;

statement; (may be any of e [label:] instruction
e directive
® macro invocation)

.ENDMOD;

Each element of the module must end with a semicolon. Statements can be
either an instruction, assembler directive, or macro call. Giving an
instruction a label is optional. The MODULE and .ENDMOD directives
are defined in the section “Assembler Directives.”

Chapter 9, Instruction Set Reference, defines the ADSP-2101 instructions.
The “Macros” section in this chapter describes macro definition and
invocation.

3.5.1 Source Code File Restrictions
Individual lines must be no more than 200 characters in length.

3.6 ASSEMBLER DIRECTIVES

Assembler directives are instructions that control the assembly process.

They do not produce opcodes. In the source file, an assembler directive

statement starts with a period and ends with a semicolon. An assembler
directive may take modifiers and arguments, as specified in each of the

following sections.

Assembler

3.6.1 .MODULE Directive

The MODULE directive defines the start of an assembly module and is
the first statement. The default memory type is assumed to be RAM if not
specified. The ABS modifier, if present, specifies the start address of the
code segment.

The MODULE directive has the form:
.MODULE]/ qualifier ...] module_name;
Qualifiers consist of any of the following:

RAM or ROM

ABS = absolute start address
BOOT=0,1,2,3,4,5,6,0or7

SEG = memory segment name defined in System Builder

The module qualifiers determine the location of the module in memory.
Memory type can be specified as RAM or ROM, followed by the start
address and/or a physical segment in memory defined in the System
Builder. (The start address is a constant.)

There may be up to 8 boot pages of 2K length each. The BOOT qualifier
can be specified as boot page 0 through 7, and multiple pages may be
listed for one module (i.e. . MODULE /BOOT=0/BOOT=2). You must use
this qualifier in order to have your bootable code located in the boot
PROMs by the Linker and PROM Splitter. The Linker generates memory
image files for an ADSP-2101 system, and only creates such a file for boot
memory if this qualifier is used.

The memory type qualifier does not refer to the boot memory itself; it
classifies the type of memory from which the code is executed. Boot
memory merely stores the code until it is booted into the chip. Any
module which is declared as bootable (with the BOOT qualifier) should in
most cases be declared in RAM-type memory, because it is executed from
the chip’s internal 2K of program memory, which is RAM.

The BOOT qualifier also applies to all .VAR data buffer declarations
within a module- remember that boot memory (and program memory in
general) can contain both code and data.

3-11

3-12

Assembler

The Assembler does not deal with boot memory as a separate memory
space. The BOOT qualifiers for modules are passed on to the Linker to be
acted upon. The crucial concept of a system with boot memory is the
distinction between what is accomplished when running the Linker
(locating objects in memory space), and what happens during run-time
(program execution).

When you choose specifications and qualifiers for code modules and data
buffers, these attributes apply to the run-time characteristics of the
structures. Booted code is run from the ADSP-2101’s internal program
memory, when both the code and processor deal only with run-time
program and data memory. When configuring the memory map of your
system, you should think only in terms of program and data memory.

The example that follows defines the module main_routine, which is
located at execution-time in RAM at address 0 (on-chip). The code is
stored on boot page 0.

.MODULE/RAM/ABS=0/BO0T=0 main_routine;

The next example defines the module filter_routine, located in a memory
segment named fir (as defined in a System Builder output .SYS file), which
is specified as ROM.

.MODULE/ROM/SEG=fir filter routine;

If you use the SEG qualifier and specify an address (ABS =) that is not the
correct address for that segment, you receive an error message when the
Linker is run.

3.6.2 .ENDMOD Directive

This directive has the form:

.ENDMOD;

The .ENDMOD directive is the last statement in a source code file. The

assembly process terminates when the Assembler reads the ENDMOD
directive.

Assembler

363 .VAR Directive

The .VAR directive declares data buffers. You must declare all buffers
with the directive prior to any use of or reference to them. The default
declaration ,with no qualifiers or length specified, is a relocatable buffer of
length one (a variable) in data memory RAM.

The .VAR directive has the form:
VAR[/qualifier ...] buffer_name[length], ... ;

One .VAR directive can have an unlimited number of declarations, each
separated by commas, up to the maximum number of characters that can
be processed. Specification of length is optional, with default to one (a
single word variable).

Qualifiers consist of any of the following:

PM or DM

RAM or ROM

CIRC

ABS = absolute address

SEG = memory segment name defined in System Builder
STATIC

The following is an example variable declaration:
.VAR/DM/RAM/ABS=0x10F seed;

This statement declares a one word variable called seed in data memory
RAM, at hexadecimal address 10F.

The following is an example buffer declaration:
.VAR/PM/RAM/SEG=pmdata coefficients[10];

Here a buffer is declared in program memory RAM, in a segment called
pmdata which has been declared in the System Builder. The buffer name is

coefficients and it has a length of 10. Note that the length, which may be a
constant or expression, must be placed inside brackets: coefficients[10].

3-13

3-14

Assembler

In this manual’s notation brackets are typically used to indicate a
specification which is optional. .VAR, .INIT, and .INCLUDE are the only
instances of Assembler syntax where brackets or angle brackets are
required.

Data buffers are placed in either program memory (PM) or data memory
(DM), with default to DM. The memory type qualifier specifies the type of
memory: RAM or ROM. This modifier defaults to RAM for both DM and
PM.

The buffer type defaults to linear unless you explicitly specify the circular
attribute with the /CIRC qualifier. :

The example that follows declares a circular buffer whose length is the
value of the constant taps.

.VAR/DM/CIRC data_buffer[taps];

The /ABS qualifier specifies the start address of the data buffer. If you o
omit this qualifier, the buffer defaults to a relocatable buffer.

The /SEG qualifier specifies a segment in memory. If you specify a
segment in memory and an address and the locations conflict, the Linker
displays an error message.

The /STATIC qualifier is given to a data buffer whose contents must be
preserved during software-controlled rebooting. This qualifier instructs
the Linker to prevent the buffer from being overwritten by a newly-
booted page. STATIC buffers are placed in memory by the Linker such
that they are protected from being overwritten in multiple boot page
systems. For additional information on the /STATIC qualifier and
multiple boot page systems, refer to Appendix E.

If the buffer is to be initialized with data, the declaration and initialization
must occur in the same module.

The .VAR directive takes an unlimited number of user-defined data

variables or buffers as arguments, each separated by a comma. When you
declare variables or buffers together, the Linker places them in contiguous
memory segments. The length of a circular buffer is the sum of the lengths

of all buffers declared in the same .VAR statement with the /CIRC
qualifier. |

Assembler 3

3.6.3.1 More On Circular Buffers

Circular buffers (of any length) can only be placed at certain memory
boundaries, depending on the length of the buffer. Unless you explicitly
place buffers in memory, the Linker does it for you. Refer to Chapter 4,
Linker, and the ADSP-2101 User’s Manual, under “Data Structures,” for
additional information.

The following is an example of one circular buffer of length five (three bits
required to represent), which would be located by the Linker at an
address that is a multiple of eight (has three LSBs equal to zero):

.VAR/CIRC aal[5];
This example declares one circular buffer:
.VAR/CIRC aal5], bb[5], ccl5];

Because three buffers are defined in a single .VAR declaration, this
directive allocates one fifteen word circular buffer in memory. Since
tifteen requires four bits to represent, the buffer is located at a base
address which is a multiple of sixteen. The address of aa is the base
address. The address of bb is the base plus five and the address of cc is the
base plus ten. The three buffers named (aa, bb, cc) can all be individually
referenced as simple buffers, but there is only one circular buffer. This is
shown graphically in part A of Figure 3.3, on the following page.

The following example uses three separate directive statements to declare
three separate circular buffers:

.VAR/CIRC aal[5];
.VAR/CIRC bb[5];
.VAR/CIRC cc[5];

Each of these buffers requires only three bits to represent and each is
located at a different address which is a multiple of eight. Because you
declare them separately, they are not necessarily contiguous. Part B of
Figure 3.3 shows this.

3-15

3 Assembler

buffer address buffer addresses
(least significant byte) (least significant byte)
xxxx0000 xxxxx000
xxxx0001 xxxxx001
xxxx0010 xxxxx010
xxxx0011 xxxxx011
xxxx0100 xxxxx100
xxxx0101 bb
xxxx0110
xxxx0111
xxxx1000 - xxxxx000
xxxx1001 xxxxx001
xxxxx010
xxxx1010 c€C xxxxx011
xxxx1011
*xxx1100 xxxxx100
xxxx1101
xxxx1110
xxxxx000
xxxxx001
xxxxx010
xxxxx011
xxxxx100
Figure 3.3A Circular Buffers Figure 3.3B Circular Buffers

The following example creates the structure for a sine/cosine lookup
table:

.VAR/CIRC sin[256], cos[768];

This example declares one circular buffer with a length of 1024, placed at
an address boundary which is a multiple of 1024 (has ten LSBs equal to
zero). In a program, you can initialize index registers (I registers) and
buffer length registers (L registers) with this statement:

I0 = ~cos; {” 1is the "address pointer" operator}
L0 = 1024;
I1 = ~sin;
Ll = 1024;

3-16

Assembler

The address pointer operator ” instructs the Assembler to determine the
address of the memory label it is used with. In the above example the
DAG index registers 10 and I1 are loaded with the addresses equated to
cos and sin.

3.6.4 .INIT Directive

The .INIT directive initializes a declared variable or all or part of a data
buffer (in either DM or PM). The buffer is initialized with the value(s)
listed or those contained in an external file.
The .INIT directive takes the following form:
INIT buffer_name: constant or expression, ...,

Mother_buffer[offset] or %other_buffer[offset], ...,

<filename>;

Any combination of the three forms of initialization values shown above
may be used, separated by commas.

An offset from the base address within a buffer may be specified as the
destination location (or source address, as above):

NIT buffer_nameloffset]: ... ; offset= constant or expression

The initialization data is either listed in the .INIT directive statement or
contained in a data file read by the Linker. Appendix B defines the
external data file format. You should initialize all variables and buffers in
the same module in which they are first declared.

3-17

3

3-18

Assembler

INIT recognizes the “pointer to” (*) and “length of” (%) operators.
Examples:

.INIT seed: Ox3FFF; Initialize variable seed with a
constant hex value.

.INIT seed values: 1,2,3,5,7; Initialize the five-word buffer
seed_values with the listed

values.

.INIT lookup_table: “sin; Set variable lookup_table to
point to the base address of
buffer sin.

.INIT cos: <cosines.dat>; Initialize the buffer cos with the

contents of the external file
cosines.dat, which is read by the
Linker. (The use of angle
brackets here is mandatory.)

LINIT coefficients[5]: 2; Initialize the sixth element of
the buffer coefficients with the
value 2.

.INIT bufl: 9,5,1,<sample.dat>; Initialize bufl with three
constants and the contents of
the file sample.dat.

Initializing from external files is helpful for setting buffer contents with
data produced by high-level programs, such as filter coefficient or FFT
twiddle factor generation routines. If you use external files, you do not
need to initialize data at assembly time. The Assembler establishes a
pointer to the external data files, and the data is incorporated when the
Linker is run. Consequently, when changes are made in external data files,
re-linking updates the program. There is no need to re-assemble.

The .INIT directive causes the Linker to initialize buffers with the
specified data in the ((EXE) memory image file. This file can be used to
load the initialized buffers in three cases: (1) for any external program or
data memory which is ROM-type and is burned (by means of the PROM
Splitter output files), (2) for any internal program memory buffers which
are booted from boot PROMs, and (3) for debugging with the Simulator
and Emulator. '

Assembler

3.6.5 .CONST Directive

The .CONST directive declares symbolic constants. You can use symbolic
constants wherever you use numeric values.

The .CONST directive has the form:
.CONST constant_name = constant or expression, ... ;

One .CONST directive can have an unlimited number of assignment
statements, each separated by commas, up to the maximum number of
characters that can be processed.

Example:
.CONST taps=15, taps_less_one=14;
This defines two constants, equal to the numeric values shown.

3.6.6 .PORT Directive
The .PORT directive declares a memory-mapped I/O port in data or
program memory. The argument for this directive is a symbolic port

name. The name must be the name of a port declared in the Architecture
Description file.

The .PORT directive has the form:
.PORT port_name;

When you reference ports, use the GLOBAL attribute in the module where
you first declare the port and the EXTERNAL attribute in other modules.
The Linker reads all information about this port from the Architecture
Description file (ACH) and resolves all references to it.

The following example identifies the port ad_sample which has been
previously declared as a specific memory location in the System Builder:

.PORT ad_sample;

3.6.7 .INCLUDE Directive

The .INCLUDE directive is used to include another source file in the file
being assembled. The Assembler reads the include file when it encounters
the INCLUDE statement. The Assembler processes the included file as if

3-19

3-20

Assembler

it were part of the original source file. When the Assembler comes to the
end-of-file of the included file, it returns to the original source file and
continues reading and processing.

The .INCLUDE directive has the form:
INCLUDE <filename>;

Source files specified by the INCLUDE directive can have .INCLUDE
statements within them (nesting of include files is limited only by
memory).

The .INCLUDE directive supports modular programming. For example,
in many cases it is useful to develop a library of subroutines or macros
which are shared between different programs. Rather than rewriting these
routines for each program, you can incorporate a macro library into the
source code file using the INCLUDE directive.

Example:
. INCLUDE <macro_lib>;
Here the use of angle brackets is required.

Another way to place additional source files into the file being assembled
is to use the #include C preprocessor directive. #Include may be used in
source code rather than .INCLUDE; however, the Assembler’s C
preprocessor must be invoked in order to handle the directive.

3.6.8 Macros

This section defines macros and the MACRO directive. Macro capability
simplifies source code development by allowing frequently used
instruction sequences to be inserted at the point of reference. Using the
argument passing feature, a macro can be a general-purpose subroutine
that is shared by different programs. The macro reduces duplication of
programming effort.

3.6.8.1 Macro Definition

A macro is called by name and allows argument passing. Macro
definitions have the form:

MACRO macro_name(arguments);

statement; (may be any of e [label:] instruction
¢ LOCAL (local directive)
e directive (all others)
* macro invocation)

.ENDMACRO;
Macro statements can be any legal ADSP-2101 Assembler statement.

An alternative to using the MACRO directive to create an assembly code
macro is the #define C language directive. If #define is used for macro
definition, the Assembler’s C preprocessor must be run in order to process
the directive.

3.6.8.2 .MACRO Directive

The MACRO directive is the start of a section of code which is to be
defined as a macro, and includes the macro’s name and arguments. It has
the form:

MACRO macro_name(argument, ...);

Arguments, which are optional, take the form: %n n=0,1,2,...,9
For example:

.MACRO memory transf (%0,%1,%2,%3,%4);

Within the source code of the macro, the arguments are marked by the
place holder %n, where n is a number assigned between 0 and 9. When the
macro is called, the %n placeholders are replaced with the actual values
passed. The number of arguments declared and the number of parameters
passed when the macro is called must match. Note that the percentage
sign is used in this context to identify the place holders, not as a “length
of” operator.

3-21

3-22

Assembler

When the macro is called, the parameters passed to the place holders may
be anything shown in Table 3.4, below.

Legal Parameter Comments

constant or expression

identifier May include reserved words except
MACRO, ENDMACRO, CONST and
INCLUDE.

Midentifier “%n” is not allowed within macro

%oidentifier “%%n” is not allowed within macro

Table 3.4 Arguments/Parameters Legally Passed to Macros

The “pointer to” and “length of” operators (* and %) cannot be used with
argument place holders within the macro. However, a parameter passed
when the macro is called may use these operators. For example, you could
invoke the macro read_data(%0) and point to a buffer address with the
parameter passed:

read_data (“input) ;

To avoid duplicate label errors when a macro is referenced multiple times
within a module, a label in the macro code must be declared a local label
with the .LOCAL directive; see below.

Macro nesting is limited only by memory at assemble time.

3.6.8.3 .ENDMACRO Directive
The .ENDMACRO directive has the form:

.ENDMACRO;

The .ENDMACRO directive terminates a macro definition portion of code.

Assembler

3.6.8.4 Macro Example

A macro example is shown in Figure 3.4. In this example, the macro
memory_transf is a general purpose memory transfer routine which can
transfer data buffers from one memory area (program or data) to the
other. This example passes five arguments (%0, %1, %2, %3, %4). PM and
DM references can be passed.

{MACRO declaration}

.MACRO memory_transf (%0, %1,%2,%3,%4); {pass five arguments}
.LOCAL transf;
I14=%0; {set I4 to source start address}
I5=%1; {set I5 to destination start address}
M4=1; {set pointer update to single increment}
CNTR=%2; {set length of buffer}
DO transf UNTIL CE; {transfer data}
SI=%3(I4,M4); {transfer from type %3 memory}
transf: %4(I5,M4)=SI; {transfer to type %4 memory}
.ENDMACRO;

{MACRO invocation)
memory_ transf (“coeff table, "buffer, buff_ length, PM, DM);

Figure 3.4 Macro Example

3.69 .LOCAL Directive
The .LOCAL directive has the form:

.LOCAL local_label, ... ;

The .LOCAL directive is used only within a macro definition section of
code. (See Figure 3.4.) The .LOCAL directive tells the Assembler to create
a unique label for local_label at each invocation of the macro. This avoids
duplicate label errors in cases where macros are called multiple times
within a module.

The Assembler appends a number to each local label; this can be seen in
the Simulator, or in the .LST file if macros are expanded.

Example:

.LOCAL transft;

3-23

3

3-24

Assembler

3.6.10 .EXTERNAL Directive

The .EXTERNAL directive assigns the EXTERNAL attribute to identifiers.
This attribute is typically given to variables, buffers, ports, and program
memory labels declared in other assembly modules. Those symbols in
other modules can only be referenced if they are assigned the EXTERNAL
attribute in the referencing module and the GLOBAL or ENTRY attribute
in the module where they are actually declared.

This directive has the form:

.EXTERNAL external_symbol, ... ;

Example:

.EXTERNAL fir start; {entry label in different module}

3.6.11 .GLOBAL Directive

The .GLOBAL directive assigns the GLOBAL attribute to variables,
buffers, and ports. Only such identifiers declared (with .VAR or .PORT) as
global may be referenced in other modules.

The .GLOBAL directive has the form:

.GLOBAL internal_symbol, ... ;

A variable, buffer, or port that is declared within a module can be
referenced only by that module unless you explicitly specify it as global.
For program labels which you intend to reference in other modules, you
should use the ENTRY directive rather than the GLOBAL directive.
Example:

.GLOBAL seed;

Other modules are able to refer to global identifiers by declaring those
symbols as EXTERNAL.

Assembler 3

3.6.12 .ENTRY Directive

The .ENTRY directive assigns the ENTRY attribute to program labels. This
makes the label visible to other modules for use in subroutine calls or
inter-module jumps.

The .ENTRY directive has the form:
ENTRY program_label, ... ;
Example:

.ENTRY fir_ start; {make label visible outside module}

3.7 PROGRAM EXAMPLE

Figures 3.5 through 3.7 illustrate a sample source code program, an
interrupt service subroutine, and an include file for the ADSP-2101. In this
example the module main_routine is the main program and fir_routine is
the subroutine. These modules are linked together to form a complete
program.

There are six possible interrupt sources for the processor plus the restart
vector at address 0. Each has four locations associated with it. As
described in the ADSP-2101 User’s Manual, the first 28 addresses in
program memory contain the restart and interrupt vectors (0x0000 —
0x001B). The 29th PM address (0x001C) holds the first program
instruction. Since main_routine is declared at absolute address zero, the
first 28 instructions are placed in the interrupt vector locations. Because
this example uses only the restart (0x0000) vector and SPORTO Receive
(0x000C) interrupt, the remaining instructions are simply returns (RTI).

The .VAR directive defines two circular buffers in on-chip memory: one in
data memory RAM used to hold a delay line of samples and one in
program memory RAM used to store coefficients for the filter. Data_buffer
and coefficient are declared as GLOBAL buffers in main_routine, while
fir_routine declares them as EXTERNAL. The address label, fir_start , is
declared as ENTRY in fir_routine and can be referenced by main_routine,
which declares it as EXTERNAL.

This sample program, which is also described in the ADSP-2101 User’s
Manual, implements a FIR filter routine and has several features worth
noting. After declaring the include file and memory buffers and

3-25

3 Assembler

performing initialization, main_routine jumps to location restarter. Here
the data and coefficient buffers are cleared and the data memory-mapped
control registers of the ADSP-2101 are set up. The functions selected
include SPORTO timing specification, u-law companding, and 8-bit data
words. SPORTO interrupt is then enabled and the processor loops on the
IDLE instruction until the interrupt from SPORTO is received. The filter is
thus interrupt-driven. When the interrupt occurs, program control shifts
to the subroutine by jumping to location fir_start.

All further activity takes place in the interrupt service routine, Figure 3.6.
After the return from interrupt, execution resumes at the WAIT loop.

{ADSP-2101 FIR Filter program

Serial port 0 used for I/0

Internally generated serial clock

12.288 MHz clock rate gives 8000 Hz sampling rate}

.MODULE/RAM/ABS=0/BOOT=0 main_routine; {program loaded from BOOT EPROM, MMAP=0}
.INCLUDE <const.h>;
.VAR/DM/RAM/ABS=0x3800/CIRC data_buffer([taps]:; {data values}

.VAR/PM/RAM/CIRC coefficient[taps];

.GLOBAL data_buffer, coefficient;

.EXTERNAL fir_start;

.INIT coefficient: <coeff.dat>; {initialize coeffs from external file}
{code starts here}
{load interrupt vector addresses)

JUMP restarter; nop; nop; nop; {restart interrupt}
RTI; nop; nop; nop; {sampling interrupt IRQ2}
RTI; nop; nop; nop; {SPORTO transmit int}
JUMP fir start; nop; nop; nop; {SPORT0 receive int}
RTI; nop; nop; nop; {SPORT1 transmit int}
RTI; nop; nop; nop; {SPORT1 receive int}
RTI; nop; nop; nop; {TIMER interrupt}
{initializations}
restarter: L0 = %data_buffer; {setup circular buffer length}
L4 = %coefficient; {setup circular buffer length}
MO = 1; {modify=1 for increment
M4 = 1; through buffers})
I0 = ~data_buffer; {point to data start}
I4 = ~coefficient; {point to coeff start}

3-26

-

clear_buffer:

WAIT:

.ENDMOD ;

CNTR = %data_buffer;

Assembler 3

{setup loop counter}

DO clear_ buffer UNTIL CE;

DM(I0,M0)=0;
11 = Ox3FEF;

DM(I1,M0)=0x0000;
DM(I1,M0)=0x0000;
DM(I1,M0)=0x0000;
DM(I1,M0)=0x0000;
DM(I1,M0)=0x0000;
DM(I1,M0)=191;

DM(I1,M0)=0x0003;
DM(I1,M0)=0x69B7;

DM(I1,M0)=0x0000;
DM(I1,M0)=0x0000;
DM(I1,M0)=0x0000;
DM(I1,M0)=0x0000;
DM (I1,M0)=0x0000;
DM(I1,M0)=0x0000;
DM (I1,M0)=0x0000;
DM(I1,M0)=0x7000;

DM(I1,M0)=0x1000;

ICNTL = 0x00;
IMASK = 0x0018;
IDLE;

JUMP WAIT;

Figure 3.5 Main Routine Example

{clear data buffer}

{point to last DM control register for
initialization}

{SPORT1 AUTOBUFF disabled}
{SPORT1 timing not used}

{SPORT1 timing not used}

{SPORT1 CNTL disabled}

{SPORT0 AUTOBUFF disabled}
{divide by 192 for 8KHz}
{generate 1.536MHz serial clk}
{multichannel disabled}

{int. gen serial clock}

{receive frame sync required}
{receive width 0}

{transmit frame sync required}
{transmit width 0}

{int transmit frame sync enabled}
{int receive frame sync enabled}
{u-law companding}

{8 bit words}

{transmit multichannels}

{receive multichannels}

{timer not used, cleared}
{external DM wait states}
{0x3400 - O0x37FF 7 waits}

{all else 0 waits}

{SPORT0 enabled}

{boot page 0, 0 PM waits}

{0 boot waits}

{enable SPORTO interrupt only}

{wait for interrupt}

3-27

3 Assembler

.MODULE/RAM/BOOT=0 fir routine; {relocatable interrupt service routine module}
.INCLUDE <const.h>; {include constant declarations}
.ENTRY fir_ start; {make label visible outside module}
.EXTERNAL data_buffer, coefficient; {make global buffers visible to module}
{code}
FIR_START: CNTR = taps-1; {N-1 passes within DO loop}
SI = RXO0; {read from SPORTO}
DM(IO,M0) = SI; {transfer data to buffer}

MR=0, MY0=PM(I4,M4), MX0=DM(IO,MO);
{set up multiplier for loop}

DO CONVOLUTION UNTIL CE; {CE = counter expired)
CONVOLUTION: MR=MR+MX0*MY0 (SS), MY0=PM(I4,M4), MXO0=DM(IO,MO0);
{MAC these, fetch next}
MR=MR+MX0*MYO0 (RND) ; {Nth pass with rounding}
IF MV SAT MR; {saturate if overflowed}
TX0 = MR1; {write to sport 0 transmit}
RTI; {return from interrupt}

.ENDMOD;

Figure 3.6 Interrupt Routine Example

.CONST taps = 15;

Figure 3.7 Include File, Constant Initialization

3-28

Assembler 3

3.8 LIST FILE FORMAT

The List file (.LST) allows you to interpret the result of the assembly
process. A fragment of a sample list file for the ADSP-2101 is shown in
Figure 3.8.

The following information is found in the list file:

addr The first column specifies offset from module
base address in program memory.

inst The second column contains the hexadecimal
representation of the instruction loaded at that
address (opcode). An appended “u” indicates
that the opcode contains an undefined field.

source line The source file line number read by the
Assembler is listed in the third column.

instruction/directive This field contains the source code, either
Assembler directive or assembly language
instruction.
Analog Devices Inc. ADSP-210X Assembler Version 2.00
C:\2101_System\fir2101l.app Mon Oct 9 11:04:39 1989 Page 1
addr inst source line
1 .MODULE/RAM/BOOT=0 FIR_ROUTINE; {relocatable interrupt
2 service routine module}
3 .include “const.h”; {include constant declarations}
4 .ENTRY FIR START; {make label visible outside
5 module}
6 .EXTERNAL DATA BUFFER, COEFFICIENT; {make global buffers visible
7 to module}
8 {code}
9
0000 3CO0E5 10 FIR_START: CNTR = 14; {N-1 passes within DO loop}
0001 0D0O388 11 SI = RXO0; {read from SPORTO}
0002 680080 12 DM(IO,M0) = SI: {transfer data to buffer}
0003 E89800 13 MR=0, MYO=PM(I4,M4), MX0=DM(I0,M0);
14 {set up multiplier for loop}

Figure 3.8 List File Example

3-29

3 Assembler

N~

3-30

Linker

4.1 INTRODUCTION

The ADSP-2101 Linker generates a complete executable program by
linking together program modules which were assembled separately. It
can search libraries, which are simply subdirectories, for subroutines to
link. The output of the Linker is used by the Emulator, Simulator and
PROM Splitter. Figure 4.1, on the following page, shows the files read and
created by the Linker.

As shown in the previous chapter, the Assembler processes each source
code module separately, producing an Object file ((OB]), a Code file
(.CDE) and an Initialization file (INT), which contains information on the
assembled code, source level declarations and initialization information.
Initialization data files (DAT) are created separately. Changes in
initialization data only require relinking.

The Assembler output files (one set for each module to be linked),
together with initialization data files and the Architecture Description file
are used by the Linker. The Linker expects to find an Architecture
Description file with the default name 210x. ACH unless you alter this
name with a switch; the files to be linked must be specified in the
invocation command or located in libraries to be searched.

The Linker creates one complete executable code file by resolving external
references and assigning addresses to relocatable code and data spaces.

The Linker can generate three files. The Memory Image file (EXE) is
always created, and contains the actual program memory, data memory,
and boot memory images after the linkage. This file is used by the
Simulator and Emulator, and is also passed to the PROM Splitter to
prepare a data file for a PROM burner. It has the default name 210x.EXE
which can also be changed with a switch.

The optional map listing file (MAP) assists you in interpreting the result
of the linkage. This file is discussed in more detail later in this chapter.

4 Linker

The optional debug symbol table file (SYM) lists all symbols encountered

by the Linker, their absolute values and their scope of reference. This file
is used by the Simulator and Emulator.

Init File(s)
(.INT)

Code File(s)
(.CDE)

Object Fiie(s)
(.0OBJ)

Buffer Init File(s)
(.DAT)

Architecture
Description
File (.ACH)

Map Listing File
(.MAP)

PM/DM/BM
Memory Image
File (.EXE)

\/

Debug Symbol
Table
File (.SYM)

Figure 4.1 Linker /0

Linker

The Linker can link together an unlimited number of modules and
initialization data files. The initialization data files (DAT) are not
explicitly named in the invocation line because they are specified (with the
INIT directive) in the source code files. The data files are incorporated by
the Linker. When changes are made in the data files, simply relink the
modules to incorporate the new data file.

4.2 RUNNING THE LINKER

To invoke the Linker from the host system, the command form is:
LD21 filel [file2 ...] [-switch ...]

or

LD21 i file_all [-switch ...]

The —i switch causes the Linker to read the file file_all for a list of files to
link. The file containing the list of files to link must be a simple text file
with one pathname/file per line.

In the first form, you explicitly name all the files to be linked (separated by
spaces). In both forms, the filename(s) must identify the Assembler output
files (.CDE, .OB]J and .INT) without any extension. Modules to link are
searched for in the current directory or in the pathname specified in the
command line.

4-3

Linker

4.2.1 Linker Switches

The switch component of the invocation command can have any of the
Linker switches (separated by spaces). The Linker switches are listed
below in Table 4.1; some require arguments as shown. To see this list on
your display, invoke the Linker with no files or switches: LD21.

Switch Result

—a archname Use archname.ACH Architecture Description
file instead of default 210x. ACH

- Linker creates “top of RAM” symbol to locate
the stack; this symbol is used by programs
generated with the ADSP-2101 C Compiler
(See Chapter 7)

—dryrun Linker does not generate an .EXE file; quick
test to check for link errors

—e target Output files named target. EXE, instead of
default 210x.EXE

- Linker generates a debugger symbol table,
SYM file

i file_all Links all files listed in text file file_all

-lib directory; ... Directories listed are added to those found in
ADIL environment setting for locating
libraries; multiple directories are separated by
commas in Unix systems or by semicolons in
PC-DOS systems

-old Not used (ADSP-2100 feature)

-p Library subroutines are assigned to the boot
pages that call them

—-pmstack Used with —c switch; moves “top of RAM”
symbol to program memory

—s stack_size Used with —c switch; specify a maximum size
for stack

-X Linker generates a .MAP file

Table 4.1 Linker Switches

4.2.1.1 -aarchname & —e target Switches

These switches control the names of the files read and written by the
Linker. The —a switch sets a new name for the Architecture Description file
(read by the Linker), which defaults to 210x. ACH. The —e switch sets the
name of the output files which otherwise default to 210x.EXE, 210x.S5YM,
and 210x.MAP.

Linker

4.2.1.2 -c Switch & ADIRTH Variable

This switch and environment variable are provided to support the linking
of code modules generated by the ADSP-2101 C Compiler. You must
invoke the Linker with the —c switch to link modules generated by the C
Compiler. Using the switch causes two things to happen. First, the Linker
creates the artificial symbol

____top_of ram (fourleading underscores)

which is assigned the value of the highest available address in data
memory (or program memory, see the discussion of the -pmstack switch
below). Second, the Linker searches for and links in the C run time header,
which is an assembly language file (filename run_hdr) provided with the
Cross-Software System. The ~ top_of ram symbol is used by the
run time header to locate and initialize the stack. See Chapter 7, C
Compiler, for more information about the stack.

The environment variable ADIRTH must be equated to a pathname
identifying the directory which contains the run time header. This path is
searched by the Linker; the run time header must be located and linked
because it is used when running compiled C code. The pathname is a
function of your operating system, and is determined by where you store
the run_hdr file.

To define the ADIRTH environment variable, execute a statement similar
to the following examples, using the actual pathname for your system.
The final slash must be present; do not include extra spaces.

IBM-PC Example:
SET ADIRTH=\root\subdir\subdir\

Unix (Sun) Example:
setenv ADIRTH “/root /subdir /INCLUDE /”

4.2.1.3 —dryrun Switch

This switch causes the Linker not to produce the .EXE output file. It is

provided so that you can check for the presence of any Linker error
messages.

4-5

4-6

Linker

4.2.1.4 -g&-x Switches

These switches control the output of optional files. The —g switch causes
the Linker to output the debug symbol table file, .SYM, which is not
normally produced. The —x switch causes the Linker to produce the load
map file, .MAP, also not normally produced. If the main filename has not
changed since a previous linking operation, the previous .SYM and .MAP
files are overwritten.

4.2.1.5 -ifile_all Switch

This switch is used when the argument file contains a list of files to link.
The Linker reads filenames from the text file, listing them one to a line,
and locates the files to be linked.

4.2.1.6 -lib directories Switch & ADIL Variable

There are two paths the Linker searches for libraries of subroutines to link:
one path specified by the ADIL environment variable and any listed in the
directory; ... argument of the -lib switch.

The search pattern to find the subroutine files to link can be set using the
ADIL environment variable. ADIL must be set to a pathname in your
operating system leading to the subdirectory where the libraries are
located. The Linker first searches the path specified by ADIL.

To define the ADIL environment variable, execute a statement similar to
the following examples, using the actual pathnames for your system.
Semi-colons separate individual search paths. The final slash must be
present. Do not include extra spaces.

IBM-PC Example:
SET ADIL=\root\subdir\subdir\;\root \nextsubdir \nextsubdir\;

Unix (Sun) Example:
setenv ADIL “/root/subdir /INCLUDE/;/root/ nextsub/INCLUDE/;”

The maximum number of directories that can be specified with ADIL is
twenty. If ADIL has not been defined in the system environment and there
is no -lib directories switch, the search terminates. |

The second search path comes from the -lib switch itself. Here you specify
a set of directories to search in the command line invoking the Linker.
These are searched after ADIL has been searched. A convenient tool to use

Linker

in conjunction with the -lib switch is the DOS symbol for the current
directory (the period). When invoked in the following fashion,

LD21 filel file2 ... -lib.
the Linker searches the entire current directory for subroutines to link.

4.2.1.7 -old Switch

This switch is an ADSP-2100 feature and should not be used with an
ADSP-2101 system.

4.2.1.8 - p Switch

The —p switch is used when linking a program with library subroutines
which are called on more than one page of boot memory. In such multiple
boot page systems, a copy of a subroutine must be located on each page
that calls it. This switch causes the Linker to place copies of subroutines on
the boot pages where they are called.

The necessary set of subroutines is linked and incorporated into the boot
memory portion of the .EXE file. When a page of code is booted under
software control (during program execution), it then includes all the
subroutines it uses. If the —p switch is not used, the Linker links the
library routines but does not attach their memory images to specific boot

pages.

Refer to Appendix E for further information on implementing multiple
boot systems.

4.21.9 -pmstack Switch

This switch causes the top of RAM symbol and stack created by the run
time header to be located in program memory. Without this switch, the
stack is located in data memory by default. If your C program was
compiled with the -pmstack switch for the C Compiler, it must also be
linked with the -pmstack switch for the Linker.

4.2.1.10 -s stack_size Switch

Normally the stack (for compiled C code) has no limit on its size; it is
allowed to grow larger (toward lower addresses) whenever new values
are pushed onto it. By using the —s switch and specifying a number for
stack_size, however, you can place a limit on how large the stack is allowed
to grow. Stack_size must be an integer, and is evaluated by the Linker in
units of words.

4

4-8

Linker

When this switch is used, the Linker creates the artificial symbol

_top_of_ram (fourleading underscores)

which is given the following address value:

____top_of ram= ___ top_of_ ram - stack_size
This symbol is used by the run time header to define and maintain the
stack.

4.3 LINKER OPERATION

The Linker combines separately assembled source code modules and
initialization data files into one executable program, using the hardware
environment model specified in the Architecture Description file. The two
main tasks are the allocation of memory and the resolution of symbols.

4.3.1 Memory Allocation

The Linker reads information from each code module and data buffer
regarding the characteristics of the memory in which it is to be stored.
Each module may list its memory attributes as RAM or ROM, and may
specify an absolute start address (ABS= address), segment name (SEG=
name) or boot page number (BOOT= page#). Data buffers are declared
with the .VAR directive and may list their qualifiers as PM, DM, RAM,
ROM, or CIRC and may also specify ABS or SEG. The Linker also receives
information defining the target hardware system and available memory
from the Architecture Description file (ACH) produced by the System
Builder.

The Linker assimilates this information and places the modules and
buffers in memory by means of the memory image file (EXE). A module
or buffer must be placed in a portion of memory with the correct
attributes. If no start address is chosen for an object, it is relocatable. The
Linker decides upon a location for all such objects, with a bias toward
placement in internal memory if possible.

There are three possible means of specifying a code module or data
buffer’s location in memory: (1) giving an absolute start address (ABS),
with or without a segment name, (2) naming a System Builder-defined
segment (SEG) in which to place the structure, or (3) listing neither. The
first specification defines a non-relocatable object; the second is an object

Linker

which is relocatable within the named segment only; the third is an object
which is completely relocatable.

The Linker places objects in memory in the following sequence.

1. Place all data buffers and modules with the ABS=address modifier
(non-relocatable).

2. Place data buffers with the CIRC and SEG=name modifiers
(relocatable within named segment).

3. Place all non-circular data buffers and modules with the SEG=name
modifier (relocatable within named segment).

4. Place data buffers with the CIRC modifier (completely relocatable).

5. Place all remaining non-circular data buffers and modules
(completely relocatable).,

While non-circular, or linear, data buffers have no special placement
constraints, circular buffers are handled differently. The Linker places
circular buffers at 2" modular boundaries (2, 4, 8, 16, etc.) corresponding to
the buffer length. If a circular buffer has a length of 16, for example, it is
placed at a base address which is a multiple of 16. If a circular buffer has a
length of 13, it is similarly placed at the start of a 16-location block. See the
discussion of circular buffers in Chapter 3, Assembler, for further
information.

Circular buffer placement by the ADSP-2101 Linker is identical to that
performed by the ADSP-2100 Linker except for the case where buffer
length is equal to 2. The 2101 Linker places two separate 2"-word circular
buffers one right after the other in contiguous 2"-word blocks. The 2100
Linker places two such buffers in memory with an unused 2"-word block
between them. :

For example, the ADSP-2101 places two 1024-word circular buffers in
contiguous blocks (address LSBs 0-1023 and 1024-2047). The ADSP-2100
places the two buffers with an unused 1024-word block between them
(address LSBs 0-1023 and 2048-3071).

4-9

4-10

Linker

4.3.1.1 Boot Memory Allocation

A distinctive feature of memory allocation in an ADSP-2101 system is the
use of boot memory. Any code module declared with the BOOT qualifier
is placed in the boot memory space by the Linker. One or more boot page
numbers are chosen for each bootable module. Each boot page can store a
total of 2K words of code and data.

Boot memory should be thought of as a place to store your program until
it is run. The crucial concept of a system with boot memory is the
difference between what is accomplished when running the Linker
(locating objects in memory space), and what happens during run-time
(program execution).

When you choose specifications and qualifiers for code modules and data
buffers, these attributes apply to the run-time characteristics of the
structures. Booted code is run from the 2101’s internal program memory,
when both the code and processor deal only with run-time program and
data memory. Thus when configuring the memory map of your system,
you too should think only in terms of program and data memory.

The Assembler does not deal with boot memory as a separate memory
space. It is the Linker which handles the logical interfacing of boot storage
to run-time program memory. For systems with multiple boot pages, the
Linker can handle placement of library subroutines and data buffers
shared between pages. This is specified by means of the Linker's —p switch
and the Assembler's STATIC buffer qualifier. See Appendix E.

4.3.2 Symbol Resolution

Any symbol (address label or data buffer) declared within a module can
be used only by that module unless the .ENTRY or .GLOBAL directives
are used. These directives expand the scope of reference of the symbols
beyond the local module. For each symbol declared as . EXTERNAL, the

'Linker searches all other modules for occurrences of these symbols in an

.ENTRY or .GLOBAL declaration. If this search fails, or if the search
produces multiple matches, the Linker issues an error message. Once the
allocation of memory segments is complete and all external references are
resolved, the Linker assigns values to all symbols.

In resolving the symbols, the Linker creates a Debug Symbol Table (.SYM)
file, which contains a list of all symbols encountered. The file gives
information on which symbols can be referenced by each module. This file
is used by the Simulator and Emulator to provide symbolic debugging.
Appendix B describes this file in detail.

Linker 4

4.4 MAP LISTING FILE

The Map Listing file is generated to help you interpret the Linker result.
'The file provides information on:

¢ Symbols

A cross-reference listing of all symbols encountered, arranged by module.
For each module a list is shown of the symbols referenced in that module,
with the following information for each symbol: its absolute address, its
length, the type of symbol (module, variable, or label) , and the type of
memory (PM, DM, or BM).

* Memory segments

A map of physical memory segments declared for the system with the
absolute address, length, and attributes of each. The information here
reflects the content of the Architecture Description file.

* Boot memory & Run-time program memory

An address map of modules and data structures on each boot page, and
the corresponding map of booted code in internal program memory
(“bootable run-time program memory”). Information on PROM byte
addresses and boot PROM sizes required is also provided.

* Fixed vs. Dynamic memory

Maps of fixed program memory, dynamic data memory, and fixed data
memory. These maps include address, length, and attribute specifications.

¢ Error messages

Linker error messages (see Appendix F).
* Libraries

A list of libraries searched and used.

A sample Map Listing file is shown in Fig. 4.2, on the next page.

4-11

ADSP-210x Linker,

4 Linker

version 2.00, copyright Analog Devices,

Inc.

final (final.exe) mapped according to FIR_SYSTEM (sysb210l.ach)

xref for module:

MAIN ROUTINE boot memory page(s)

0,

xref for module:

MAIN ROUTINE pm 0:0000 [003B] module (global)
DATA BUFFER dm 0:3800 [000F] variable (global)
COEFFICIENT pm 0:0040 [O00OF]) variable (global)
RESTARTER pm 0:001C label

CLEAR_BUFFER pm 0:0024 label

WAIT pm 0:0039 label

FIR_START 0:004F [0000] extern (FIR_ROUTINE)

FIR_ROUTINE

boot memory page(s) 0,

FIR_ROUTINE pm 0:004F [000A] module (global)
FIR_START pm 0:004F label

CONVOLUTION pm 0:0054 label

COEFFICIENT 0:0040 [OOOF] extern (MAIN_ROUTINE)
DATA BUFFER 0:3800 [00O0F] extern (MAIN_ROUTINE)

210x memory per FIR_SYSTEM (sysb210l.ach):

internal 2101 pm ram mapped to

0000 - 0800 (auto booted at reset)

boot memory and bootable

210X1lnk: final,

internal 2101 dm ram mapped to 3800 - 3BFF

0000 - O7FF [2048.] external bm rom code BOOT_ MEM
0000 - O7FF [2048.] internal pm ram data/code INT PM
0800 - 3FFF [14336.] external pm ram data/code EXT_PM
3800 - 3BFF [1024.] internal dm ram data INT_DM

0000 - 37FF [14336.]) external dm ram data EXT_DM

run time

boot page 0 (auto boot)
bm:0000-003A (x8rom:0000-00EB)

bm:0040-004E
bm:004F-0058

pm:0000-003A [59.]
(x8rom:0100-013B) pm:0040-004E [15.]
(x8rom:013C~-0163) pm:004F-0058

program memory map:

ram module
MAIN ROUTINE
ram circ variable COEFFICIENT of
MAIN ROUTINE
ram module
FIR_ROUTINE

MAIN ROUTINE of

[10.] FIR_ROUTINE of

8k of boot memory rom space required for this bootable run time map.

Most convenient boot memory rom size is 8k bytes

fixed program memory map:

fixed program memory rom: 0.
fixed program memory ram: 0.

dynamic data memory map:

boot page 0
3800 - 380E [15.]

fixed data memory map:

fixed data memory rom: 0.
fixed data memory ram: 0

210x memory use:
program memory rom: 0.;
data memory rom: O0.;

4-12

data memory ram:

ram circ variable

(64k bits).

DATA BUFFER of MAIN ROUTINE

program memory ram: 0.;

0.
Figure 4.2 Map Listing File

N

,/(

Simulator Functions

5.1 INTRODUCTION

The ADSP-2101 Simulator is an interactive window-oriented software tool
for instruction level simulation and debugging of your program. The
Simulator configures itself according to your target system architecture as
defined in the Architecture Description file (ACH). This allows it to flag
illegal operations such as reading from non-existent memory. Using the
symbol table created by the Linker, the Simulator is able to provide a fully
symbolic environment for simulation and debugging.

Briefly, the Simulator provides the following functions:

Instruction level simulation of booting and execution

Simulation of ports and SPORTs using host data files

Simulation of internal and external interrupts

Complete assembly and disassembly of the ADSP-2101 instruction set

Multiple break conditions including break at address, break on

condition, break on expression and break on address ranges

* Full view of all processor registers and the ability to directly change
any register’s contents interactively

* Profiling usage of portions of code during execution

e 6 o o o

Upon first booting the Simulator, you see the command window display
as shown on the next page. From this window you open, configure and
use all other features of the Simulator. Typing "W (control-w) displays a
menu of window commands including, for example, OPEN, which in turn
displays a submenu of windows to be opened.

You can customize the contents and layout of many windows, the
arrangement of multiple windows on the screen and the command strings
used to invoke various Simulator functions. All customized settings can be
stored in an external file and invoked automatically upon startup. For
details, consult the next chapter, Custom Simulator Configurations.

5

Cursor
\'.

Simulator Functions

— Window Commands Menu (open with control-W)

VVVYVYV

0 COMMAND

Command Window (Always Open)

/

“W Window commands ~“X# Go to window# ~“Z Go to next window |

\ Informational Display

Figure 5.1 Initial Display & Window Commands Menu

5.2 GETTING STARTED

To get started with the Simulator, you need to prepare your linked
program, install all Simulator program files and invoke the Simulator with
the proper command line arguments.

5.2.1 Help Files & ADIDOC Variable

In order for the Simulator help files to be accessible, the following
condition must be met:

* The path (subdirectories, etc.) to the help files (DOC) must be
identified by the environment variable ADIDOC.

See the section “Using Help” later in this chapter for instructions on how
to set ADIDOC. Complete installation instructions can be found in the

- Release Note included with each shipment of the Cross-Software system.

5-2

Simulator Functions

5.2.2 Simulator Files

The Simulator uses a variety of files, illustrated in Figure 5.2, on the
following page and listed in Table 5.1 below.

File Description Extension or name

Required User Files

Linked executable ADSP-2101 program .EXE

Architecture Description file .ACH

Optional User Files

Symbol Table file SYM

Data files for I/O ports and SPORTs - .DAT (optional extension)

Required Simulator Files |

Simulator program SIM2101.EXE

Help files .DOC (required for Help

only)

Optional Simulator Startup Files

Initial window configuration DD.WIN

Startup scripts STARTUP

Example startup EXAMPLE

Simulator-Created Files

Temporary cache storage BOOT.CAC
BOOTE.CAC

Table 5.1 Simulator Files

5.2.3 Invoking The Simulator

The Simulator invocation command is:
sim2101 [-a archname] [-w window] [-s scripts]

If you have not given your Architecture Description file a unique name,
filename 210x.ACH is assumed and need not be specified. If you have
renamed the file, however, you must list this name as archname with the
optional —a switch. The extension .ACH is assumed for this filename and
need not be included. This Architecture Description file must have been
used to link your program; the Simulator configures itself according to
this target architecture. The Architecture Description is also displayed in
the defaults window, as shown in that section of this chapter.

5 Simulator Functions

Simulator
Configuration Files

Architecture) (Optional)

Description

File (.ACH) STARTUP Script

File
PM/DM Memory DD.WIN Display File
Image File
(.EXE)
Debug Symbol
Table Simulator State File
File (.SYM)

VO Port & SPORT
Data Files (.DAT)

SIMULATOR

Command Input
&

‘ l \ Information Display

.WIN Files (Display
[Slmulator State File j E Configurations)
VO Port & SPORT
Data Files (.DAT)

Figure 5.2 Files Used By The Simulator

Simulator Functions

The optional -w switch identifies a .WIN file containing a stored windows
configuration which is loaded as the initial display when the Simulator is
first booted (see “Saving A Rearranged Screen” in Chapter 6 for
instructions on how to create this file). If this switch is omitted, the
Simulator looks for a file named DD.WIN; this is the default for the
startup screen. The Simulator automatically writes the file DD.WIN when
exiting; it always contains the last screen/window display configuration.
If this default display file is not found at startup, the screen looks like
Figure 5.1.

The optional -s switch identifies a file containing Simulator commands to
be executed automatically upon startup. If this switch is omitted, the
Simulator looks for a file named STARTUP; this is the default name for the
script file.

The script, or batch, file is a text file containing Simulator commands.
Typically it would contain command aliases you have defined. It could
also contain commands for loading a program into the Simulator,
configuring I/O ports and the like. This file can be created with any
editor. A sample startup file named EXAMPLE is provided with the
Cross-Software package; the file contains an extensive set of aliased
commands, and is intended for use only after the basic Simulator concepts
have been mastered. See Chapter 6 for further information.

The Simulator creates two temporary files to store the contents of any boot
memory of the system being simulated. These files are named BOOT.CAC
and BOOTE.CAC. The files are normally purged upon quitting the
Simulator; if, however, the Simulator program aborts prematurely for any
reason, these files remain on your hard disk. They are of no use and can be
deleted.

524 Simulator Command Overview
The Simulator generally provides multiple methods for achieving a given
result. For example, there are two different methods for setting

breakpoints in program memory. Consequently, it makes sense to think of
the Simulator’s functions rather than command structure.

The functional capabilities of the Simulator are described in detail in the
rest of this chapter. They have been grouped into these broad classes:

* Interface management functions

These functions include the opening and closing of windows, changing
the size and position of windows, and changing the appearance of a

5-5

5

5-6

Simulator Functions

window (removing or adding items to the window and rearranging the
items displayed within the window’s space). Additional functions
described under this heading include navigating from window to
window. Saving specific window configurations is possible and is
described in the next chapter. Aliasing commands is another aspect of
interface management.

¢ Set-up functions

These include loading the program to be simulated, opening I/O ports
and associating data files with I/O ports and SPORTs for the purposes of
simulating input and output data streams. Also included is the
configuring of simulated interrupts.

* Register inspection & change functions

These functions allow you to view the contents of all the registers in the
processor and, in most cases, to change their contents directly if desired.
Several windows are dedicated to register displays.

* Memory inspection & change functions

These functions include simple display of the various memory spaces (as
either data or code), saving the contents of memory to files for later
analysis and plotting the contents of data memory.

e Simulator control & debugging functions

Control functions include starting and stopping the execution of your
program and resetting the simulated processor. Debugging functions
include setting breakpoints, break conditions and watchpoints. The
Simulator supports a wide variety of break expressions for debugging
purposes.

5.2.5 Simulator Notation Conventions

The Simulator understands a slightly different set of notation conventions
than the Assembler, System Builder, etc. Most importantly, memory
addresses and contents are specified differently. Remember also that the
Simulator is a generally case-insensitive environment; uppercase and
lowercase are used in the manual to highlight important terms for the
reader but need not be entered this way. The exception to this convention
is address labels (see below).

Simulator Functions

5.2.5.1 Specifying Addresses & Address Ranges

Addresses must be one of the following:

A symbol. Using the symbol table, the Simulator determines the actual
address specified by the symbolic reference. See also the discussion of
boot memory labels versus program memory labels below. Address
labels are case-sensitive in the Simulator.

The memory specifiers PM[addr], DM[addr], or BOOT[addr], where
the address is a symbol, constant, or expression. PM denotes program
memory, treated as code or data, DM denotes data memory, and
BOOT denotes boot memory. There is no difference in addressing
between program memory code and program memory data.

This form of address specification can be confusing; DM[addr] can be
interpreted as either the address itself or the contents of that address.
The guideline to follow is that DM[addr] is seen as an address when
used to specify an address in a Simulator command, but DM[addr]
implies the data contained at that address when evaluated in an
expression (see “Simulator Expressions,” below).

A constant. The address space context is determined implicitly. For

example, using a constant when prompted for an address while the

program memory window is the active window is understood as an
address in program memory.

An address range may be specified, using the address possibilities above,
as either

start, end

where both terms are addresses as above, separated by a comma, or

start | length

where the first term is an address and the second term is a constant
specifying how many memory locations are included in the range. The
terms must be separated by the slash mark as shown.

<

5-8

Simulator Functions

An example of the first form is
pm[0x10])], pm[0x18]

while an example of the second form is
pm[OxlO]’/ 0x8

In ADSP-2101 programs with boot pages, labels are shown in boot
memory displays in their standard form, such as

RESTARTER

but once booted into on-chip program memory (via a simulated reset or
software boot) all such labels receive a prefix denoting their boot page of
origin, as in

BOOTO_RESTARTER

Both labels resolve to the same 14-bit address. See the discussion in the
section “Locating Symbols & Values,” later in this chapter.

5.2.5.2 Simulator Expressions

General expressions may be used in place of constants in Simulator
commands. Expression handling for the other ADSP-2101 Cross Software
Tools is detailed in Chapter 1. For the System Builder and Assembler, the
arithmetic and logical operators available for use in expressions are a
subset of the C language operators. In the Simulator, however, the
complete set of C operators is usable. For the Simulator, the following
operators are added to those listed in Chapter 1 :

! logical NOT

< > <= >= relational operators
== l= is equal, is not equal
&& logical AND

I logical OR

Simulator Functions

In order of precedence, the complete set of operators available for use in
the Simulator now becomes:

() left, right parenthesis

P~ - logical NOT, ones complement, unary minus
. % multiply, divide, modulus

+ - addition, subtraction

<< >> bitwise shifts

< > <= >= relational operators
== I= is equal, is not equal

& bitwise AND
| bitwise OR

N bitwise XOR

&& logical AND

I logical OR

Another feature of Simulator expressions is that memory contents, such as
data variables, and register contents may be used as operands. See the
section “Registers Window” and Figure 5.7 for the available registers.
Remember, though, that this is possible in the Simulator only. (The
Assembler cannot evaluate memory and register values at assembly-time.)

Examples:

AX0 && AX1 DMilcoeff] == 0x0035 (DMltaps + 16], AR) - 3

5.3 INTERFACE MANAGEMENT FUNCTIONS

The Simulator, as of Release 2.0 and after, supports a user-configurable
interface. Detailed examples of how to configure the interface and how to
store and recall these configurations are given in the following chapter.

'This section gives a terse description of the basic functions.

(Note: ~ denotes the control, or CNTL, key.)

Figure 5.3, on the next page, shows the parts of a typical window.

5-9

5 Simulator Functions

This corner is “anchored”
when resizing the window.

' window number :
t d Window name Indicates Hexadecimal or Decimal

e

— 1 REG (REG_PRI, HEX)

ax0 uuuu ar uuuu io0 uuuu m0 uuuu 10 uuuu astat 00
axl uuuu af uuuu il uuuu ml uuuu 11 uuuu mstat 00
ay0 uuuu i2 uuuu m2 uuuu 12 uuuu sstat 55
ayl wuuuu i3 uuuu m3 uuuu 13 uuuu

mx0 uuuu mr0 uuuu i4 uuuu mé4 uuuu 14 uuuu ireq 000
mxl uuuu mrl uuuu i5 uuuu mS uuuu 15 uuuu imask 00
my0 uuuu mr2 uu i6 uuuu mé uuuu 16 uuuu icntl uu
myl uuuu mf uuuu i7 uuuu m7 uuuu 17 uuuu

This corner is moved ,

si uuuu sr0 uuuu pc 0000 cntr uuuu EEVEREENPI R
se uu srl uuuu window.
- sb uu
cycle 00000000 irg2 00000000 dm_addr 0000 pm_addr 0000

Figure 5.3 Parts of a Typical Window

5.3.1 Opening Windows

You can open any window from any context with the following sequence:

1. Key "W to display the main menu (as shown in Figure 5.1).

2. Select OPEN, the default selection, by pressing Return.

3. A submenu of window selections appears; choose the window you
wish to open. You may move the cursor down the list and then press
Return or you may type the letter corresponding to the desired

window, e.g. “d” for the register window. Pressing the ESC key exits
the submenu without making a selection. -

5-10

Simulator Functions

4. The default version of the window opens in the upper left corner of the
screen and becomes the active window. Open windows are numbered;
the newly opened window is given the next available number.

53.2 Changing Window Contents From Hex to Decimal

You may also change the numeric base of the contents of many windows
from decimal to hexadecimal and back. All windows that can be changed
in this way show the DEC or HEX notation in the title of the window.
When the window is active, *E toggles back and forth between these two
choices.

The exception to this capability is that program memory (PM) addresses
are always displayed in hexadecimal; data memory (DM) and program
memory data (PMD) addresses can be toggled between DEC and HEX
display.

53.3 Closing Windows

You cannot close the command window; it must remain open while the
Simulator is running. Also, you can only close the active window. To close
the active window, take these steps:

1. Key "W to display the main menu (as shown in Figure 5.1).

2. Select CLOSE from the menu by typing the letter “c” or by moving the
cursor down with the arrow key and pressing Return when CLOSE is
selected. Pressing the ESC key exits the menu without closing a
window.

3. The active window disappears from the display.

5.3.4 Moving From Window To Window

Regardless of the number of windows open (or visible) there is a single
cursor. The window containing the cursor is the active window. On IBM
PCs with color displays the border of the active window is a different
color than inactive windows.

At startup the command window is the active window. To move through
a group of open windows you may use any of the following procedures.
The active window always lies on top of other windows in the event that
windows overlap.

5-11

5 Simulator Functions

5.3.4.1 To Cycle Through All Windows

Keying ~Z activates the next window in the numbered sequence. Thus,
AZ moves you from the command window (always window zero) to
window one, then window two, then window three and so on back to
zero.

5.3.4.2 To Activate A Window By Number

Keying "X, following by the window number and Return, directly
activates the specified window. For example the sequence

AX3 (Return)

activates window number three. A maximum of ten windows may be
open at any time; they are numbered from 0 to 9.

5.3.4.3 To Activate The Command Window

Keying X (Return) activates the command window directly. This is
identical to keying ~X0 (Return).

53.5 Sizing Windows

The upper left corner of each window is anchored. The window is resized
by moving the lower right corner of the window relative to the anchored
corner.

A window must be active to be resized. To resize the active window,
follow these steps:

1. Key "W to display the main menu (as shown in Figure 5.1).

2. Select SIZE from the menu by typing the letter “s” or by moving the
cursor down with the arrow key and pressing Return when SIZE is
selected. Pressing the ESC key exits the menu without making a
selection.

3. Reposition the lower right corner using the arrow keys. The window
border moves one character or line space at a time as you press the
arrow key. Press Return when the window reaches the desired size.
Alternatively, you may quickly size the window a chosen number (#)
of spaces by typing: #arrow key (Return is not necessary). For
example, the following entry resizes a window by 4 line spaces
upward: 4T .

5-12

(

Simulator Functions

5.3.6 Moving Windows

A window must be active to be moved. To move the active window, take
these steps:

1. Key "W to display the main menu.

2. Select MOVE from the menu by typing the letter “m” or by moving the
cursor down with the arrow key and pressing Return when MOVE is
selected. Pressing the ESC key exits the menu without making a
selection.

3. The window’s contents temporarily disappear, indicating that you
may move the window.

4. Move the window using the arrow keys. The window moves one
character or line space at a time as you press the arrow key. Press
Return when the window reaches the desired location. The window’s
contents redisplay after Return. Alternatively, you may quickly move
the window a chosen number (#) of spaces by typing: #arrow key
(Return is not necessary). For example, the following entry moves a
window to the left by 3 characters : 3« .

5.3.7 Rearranging Window Contents

You may rearrange the contents of active windows that have individual
fields, like the register window. You may also delete individual fields
from the window, and restore them later. See Table 5.2 for a list of
windows which display processor registers in this way. Chapter 6 gives a
detailed example of these procedures.

5.3.7.1 Deleting Window Fields

The procedure for deleting a field in an active window is:
1. Select the field by moving the cursor onto it.

2. Key "D.

3. The field disappears from the display.

5.3.7.2 Undeleting Window Fields

The procedure for restoring a deleted field from an active window is:

1. Move the cursor to a blank location in the window; this is where the
undeleted field will appear.

5-13

5

5-14

Simulator Functions

2. Key "U. A menu of deleted fields for that window appears.

3. Select the desired field by moving the cursor down the list then press
Return.

4. The deleted field reappears in the window at the current location of
the cursor.

5.3.7.3 Moving Window Fields

The procedure for moving a field around in the active window is:
1. Select the field by moving the cursor onto it.
2. Key MY to toggle on this function.

3. Move the field, using the arrow keys, until it reaches the desired
location. .

4. To toggle off this function, key Y again or hit Return.

Saving specific window configurations is possible and is described in the
next chapter.

5.3.8 Command Line Aliases

Aliasing commands - substituting a more desirable mnemonic for the

Simulator’s native command set - is another powerful feature. The
aliasing must be done from the command window and follows the syntax

>3 mystring 'command'

where] is the Simulator aliasing command, mystring is the new alias being
defined and ‘command’ is any legal Simulator command enclosed in
single quotation marks.Up to ten arguments may be passed to aliased
commands using $1, $2 etc. For example the Simulator command to write
the value 40 into data memory location hexadecimal 2FF is

>e dm[0x2ff] 40

which can be aliased to resemble the SETDM command of earlier
Simulator releases (before Release 2.0) by entering this command

>j setdm 'e dm[$1] $2°'

Simulator Functions

Now the command
>setdm Ox2FF 40
is executed as

>e dm[0x2FF] 40

If a filename is part of the command to be aliased, the filename itself must
be enclosed in double quotes, as in:

>j loadpgm 'l "calc"'

It is also possible to list and save lists of aliased commands for use in a
startup batch file. Details are given in the following chapter, Custom
Simulator Configurations.

53.9 Using Help

The ADSP-2101 Simulator provides a basic help system with individual
topics; there are no nested topics. To use the help first open the help
window. You may wish to resize and relocate the help window for
optimal reading.

This window displays an initial text introducing the help system. If the
window is blank, this means that the Simulator cannot locate the help files
on your computer. A warning message is given, saying that you must set
an environment variable, ADIDOC, to identify the pathname of the
directory containing the .DOC files used by the help system. For example,
on an IBM PC with your Simulator in the subdirectory C:\DSPTOOLS
and the help files in a subdirectory of that named \DOC, you would
execute the following DOS command to set this variable.

> SET ADIDOC=C:\DSPTOOLS\DOC\ Remember, thisisa DOS command,
not a Simulator command

There are two navigational tools for reading help. First, within a given
help text, you may use the arrow and PgUp and PgDn keys (or their
equivalents on your keyboard) to scroll the contents of the current help
text up and down for reading.

Second, you may key "G (the go to command) in the help window to
specify another help text and topic. You are prompted for the name of a
topic. The list of topic names is given in the first help text that appears.

5-15

5

5-16

Simulator Functions

This initial help text is called “Help” and can be recalled by typing that
name (and Return) at the *G prompt. (The “Help” text is also returned to
if the AG command is given incorrectly.)

The list of help texts will change as new versions of the Simulator are
released, so no definitive list is given here. In general, however, there is a
help text corresponding to every command window command. For
example, the breakpoint command B is described in a help text named “B”
and so on. A list of the help topics other than Simulator commands is
shown below. All the help files are simple text files. You may print them
out to read if desired and even add your own help topics as you
customize the interface of your Simulator.

The non-command help files are:

HELP main help

BASES numeric bases

COMMANDS list of commands with brief definitions
EDITOR command line editor

ADDR address format

RANGE address range format

EXPR expression format

54 SET-UP FUNCTIONS

These include loading the program to be simulated, opening I/O ports
and associating data files with I/O ports and SPORTS for the purposes of
simulating input and output data streams. Also included is the
configuring of simulated interrupts and some housekeeping operations.

These actions are accomplished by issuing commands in the command
window. Multiple commands may be given on one line, separated by
semicolons, as in

> L 'filename' ; J symbol ‘'command' ; D address

541 Loading A Program

The L command, given in the command window, loads the linked ADSP-
2101 .EXE file and implicitly loads the corresponding .SYM file if it is
present in the same directory. The syntax is simply

> L 'filename'

Simulator Functions

where filename is the main filename of your .EXE file, enclosed in single
quotation marks. You need not append the .EXE extension; it is added by
the Simulator. If the symbol table file cannot be found, a message reports
this but the simulation can still be run. Without the .SYM file, however,
labels and variable names do not appear, only addresses.

As a further check on program correctness, it is possible to load the boot
PROM image file produced by the PROM Splitter. There should be no
difference in the contents of the boot code and boot data windows
whether loaded from the .EXE file or from the PROM Splitter output
.BNM file.

The syntax of the LR command (‘load ROM) is
> LR 'filename'

where filename is the name of the boot image file produced by the PROM
Splitter. It is not necessary to use the .BNM extension of this filename. You
must use the Motorola S record format for this purpose.

5.4.2 Opening & Closing An /O Port

Parallel I/O Ports in data or program memory which have been defined in
the System Builder (and . ACH file) must be explicitly opened in order to
simulate them. Opening means that you associate them with data files.
The data files serve as the source for simulated input and/or as the
destination for simulated output. The data files may later be analyzed,
graphed etc. to assess the processing of your algorithm.

Ports are opened from the command window. The command is
> O address [>'outfile.ext'] [<'infile.ext']

where address is a standard address specifier or symbolic port name, outfile
is the pathname of a file to write output data to and infile is the name of a
file to read simulated inputs from. Files may be specified in either order,
always in single quotes; you must give the full filenames including
extensions, if any. Giving both an input and an output file opens a
bidirectional port. Giving just an input or an output file opens an input-
only or output-only port.

Data files for 1/O port data follow the DAT format described in Appendix
B, File Formats, at the end of this manual.

5-17

5

5-18

Simulator Functions

Giving the O command with no file arguments closes the port at the
specified address.

The I/0 status window, an example of which is shown in Figure 5.4,
displays the opened ports and the files associated to provide simulated
data flow. When a port is opened, a “P” is displayed to the left of the
port’s address in either the data memory or program memory window.

5.4.3 Opening A SPORT

SPORTS (serial ports) must be explicitly opened in order to simulate them.
Opening means that you associate them with data files. The data files
serve as the source for simulated serial input and/or the destination for
simulated eutput. The data files may later be analyzed, graphed etc. to
assess the processing of your algorithm.

SPORTSs are opened from the command window with the command
>P 0 or 1l ([>'outfile.ext'] [<'infile.ext']

where the digit 0 or 1 identifies which of the processor’s two SPORTSs is
being opened, outfile is the pathname of a file to write simulated output to
and infile is the pathname of a file to read simulated input from. Files may
be specified in either order, each in single quotes; you must give the full
filenames including extensions, if any. Listing both an input and an
output file opens a SPORT for both sending and receiving. Listing just an
input or an output file creates a send-only or receive-only configuration.

The data files for SPORT simulation must contain only ones and zeros to
simulate the serial bit stream, and carriage returns (which are ignored).
This .DAT format for SPORT data files is completely described in
Appendix B, File Formats.

Giving the P command with no file arguments closes the numbered
SPORT. Also, if you open a SPORT and later give the chip reset command
(causing a re-boot of on-chip program memory), the SPORT is closed. The
best procedure to follow is to do the boot load first and then open any
SPORTSs needed.

The SPORT status window, shown in Figure 5.5, displays the open/closed
status of serial ports and the files associated with the simulated data flow.

SPORT operation in the Simulator has one limitation: externally-generated
serial control signals cannot be simulated. The serial clock (SCLK),

e e &)

Simulator Functions 5

—— 1 I/O STAT (HEX)
0 ad_port < adport.dat

1 dm([0002] > out.dat

0 COMMAND

> O ad_port < ‘ad_port.dat’

> 0 dm{2] > ‘out.dat’

“W Window commands ~X# Go to window# ~Z Go to next window |

Figure 5.4 1/O Status Window

——— 1 SPORT STAT (HEX)

0 < serin.dat > serout.dat

[

—— 0 COMMAND

>p 0 > 'serout.dat' <'serin.dat'
Reading from file serin.dat
>

“W Window commands ~X# Go to windowi ~Z Go to next window |

Figure 5.5 SPORT Status Window

5-19

5

Simulator Functions

transmit frame sync (TFS), and receive frame sync (RFS) signals must be
internally-generated in order for simulated serial data flow to occur
properly. Internal generation of SCLK is chosen by setting the ISCLK bit to
1 in the appropriate SPORT Control Register. Internal generation of TFS
and RFS is chosen by setting the ITFS and IRFS bits to 1.

5.4.4 Simulating External Interrupts

Depending on the configuration of SPORT1, the ADSP-2101 may have one
or three external interrupt pins. Internal interrupts, such as timer or
SPORT interrupts, are simulated directly by the operation of those
features. External interrupts can be simulated with a selected time interval
of occurrence. From the command window, give the command

> I 0,1,or 2 mincycles maxcycles

where choosing 0, 1, or 2 identifies processor interrupts IRQO, IRQT or
IRQ2, and mincycles and maxcycles are numbers of instruction cycles. The
selected interrupt is generated randomly within a time range at least
mincycles and no more than maxcycles from the last interrupt. For example,
the command

> 1 2 320 420

turns on IRQ2 and generates this interrupt at a random time, once every
320 to 420 instruction cycles.

To halt the interrupt, repeat the command with no cycle arguments or
with cycle arguments equal to zero.

5.45 Other Defaults (Defaults Window)

There are a number of miscellaneous defaults for the operation of the
Simulator. These can be changed in the defaults window. The defaults
window also displays the contents of the Architecture Description file. A
sample of this window is shown in Figure 5.6.

When the window is first opened, the cursor is positioned on the “0” by
profile enable. Typing a 1 enables profiling, as described in the section
“Execution Profiling”, later in this chapter. Enabling echo makes the
Simulator echo every valid instruction in the command window as it is
fetched while single-stepping through a program. Beep enable turns on
the bell or beep of your computer or terminal. It sounds for each error or
breakpoint. Screen update is the number of instruction cycles simulated

Simulator Functions 5

— 1 DEFAULTS (HEX)

profile enable
echo enable
beep enable
screen update
search paths

000 cycles | Current directory

//’/' is always searched.

c:\dsp2101\

— U O O O

Architecture File fir_ system.ach Contents

bm 0000 07ff 0000 O7ff ROM BOOT_MEM
pm 0000 07ff INT RAM INT_PM

Figure 5.6 Defaults Window

before the screen is updated during continuous execution (see the
discussion of the G command in “Control & Debugging Functions.”).

Search paths are shown for any file to be read and are in addition to
ADIDOC and the other environment variables. The dot (.) is the DOS
symbol for the current directory; this is always one of the default search
options.

The contents of the Architecture Description file are shown at the bottom

of this window; you may need to scroll the window to see the complete
architecture.

5.5 INSPECTING & ALTERING REGISTERS

You may view the contents of all registers in the processor and, in most
cases, change their contents directly. The windows listed in Table 5.2
below are dedicated to register displays. The following sections show the
default format of each window displaying registers and identify those
registers. For debugging convenience, the Simulator also displays stacks
and memory-mapped control registers in several windows, using the
mnemonics given in the ADSP-2101 User’s Manual.

5 Simulator Functions

Window Contents

Register Named registers

SPORT Named registers and memory-mapped control
registers, shown by mnemonic

Status registers Individual bits identified from the MSTAT,
SSTAT, IMASK and ICNTL

Control registers Memory-mapped registers only; those
controlling wait states, timer values, SPORT
enables and boot configuration

Stack Complete contents of count, loop, status and
PC stacks

Table 5.2 Windows Showing Registers

Table 5.3, at the end of this section, summarizes the Simulator window
location of each processor register.

5.5.1 Inspecting A Register

You may inspect the contents of a register in two ways. First, you may
display the window containing that register and simply read its value
from the screen. Second, regardless of whether or not the register’s
window is displayed or open, you may query the register’s value in the
command window with the question mark command (see the section
“The ? Command and Expressions Window”). For example, the command

> ? ax0
invokes a response such as

ax0 = 0x002c

5.5.2 Altering A Register

You may alter the contents of a register directly in two ways. (The
execution of your program, of course, also alters the contents of registers.)
First, you may display the window containing that register and make it
the active window. Move the cursor to the register field (the cursor
positioned over the name of register) and type the new value. When you
press Return, the new value replaces the old value.

When you directly type over a register in the window displaying the

register, you may notice that the command window echoes the command
equivalent of the direct change. This is the second method for changing a

5-22

Simulator Functions 5

register. From the command window you can change any register
(whether displayed or not) with the command

> R register expression

where register is the name of a processor register and expression is the
value to be loaded into the register.

Since changing the value in a register is such a frequent operation, an
alternative form of this command is also provided. This form consists of
the register name, and equal sign and the new value, as in

> ax0 = 0x002c

5.5.2.1 “Undefined” Registers

Uninitialized registers are denoted by “uuuu.” The Simulator flags
reading undefined registers as an error. You may wish to reset a register
back to an uninitialized state. The U command, given in the command
window, accomplishes this; you need only specify the register. For
example, to undefine the ALU result register, the command is

> u ar0

5.5.3 Registers Window

The register window is shown in Figure 5.7, on the following page. It
contains all the computational unit registers, the DAG registers and the
values of most status registers in the processor, as shown plus the
following information:

pc program counter

cycle execution cycle counter; reset only upon chip reset (or
manually)

irq2 external interrupt request counter

dm_addr data memory address

pm_addr program memory address

These values can be used in break, watch, or general expressions.

5-23

ALU registers

5

Simulator Functions

DAG registers Status registers

\

Y— 1 REG (REG_PRI, HEX) \\
ax0 uuuu ar uuuu i0 uuuu m0 uuuu 10 uuuu astat 00
axl uuuu af uuuu il uuuu ml uuuu 11 uuuu mstat 00
ay0 uuuu i2 uuuu m2 uuuu 12 uuuu sstat 55
ayl uuuu i3 uuuu m3 uuuu 13 uuuu
mx0 uuuu mr0 uuuu i4 uuuu m4 uuuu 14 uuuu ireq 000
mxl uuuu mrl uuuu i5 uuuu m5 uuuu 15 uuuu imask 00
my0 uuuu mr2 uu i6 uuuu mé uuuu 16 uuuu ientl uu
myl uuuu mf uuuu i7 uuuu m7 uuuu 17 uuuu
si uuuu pc 0000 cntr uuuu pPxX uu
se uuuu
sb
cycle 00000000 irg2 00000000 dm_addr 0000 pm_addr 0000

Shifter registers MAC registers

5-24

Figure 5.7 Register Window

5.5.4 SPORT Register Window

The SPORT register window is shown in Figure 5.8. It contains the SPORT
data and control registers. The SPORT status window (discussed under
“Set-up” earlier in this chapter) shows the open/closed status of SPORTS
and the simulated serial data files.

5.5.5 Status Register Window

Figure 5.9 shows the status registers window. Note that this window
shows certain selected bits in the MSTAT, SSTAT, IMASK and ICNTL
registers while the register window itself (Figure 5.7) shows each complete
status register as a single value.

The bits displayed are status/ control bits for the primary program flow
operations. Most of these can be toggled directly in the window in order
to quickly enable or disable the associated function. Some of the listed bits
are read-only status bits; these should not be changed by the user.

Simulator Functions 5

— 1 SPORT (HEX)
slen0 0 dtype0 0 isclk0 0 mce0 0
irfs0 1 rfsro 0 rfsw0 0 invtfs0 0
itfs0 0 tfsr0 0 tfswl 0 invtfsl 0
sclkdiv0 wuuuu rfsdiv0 uuuu
rbufl 0 rireg0 u rmreg0 u .
tbuf(0 tireg0 u tmreg0 u mcfd 0
slenl 0 dytpel 0 isclkl 0
irfsl 0 rfsrl 0 rfswl 0 invrfs0 0
itfsl 0 tfsrl 0 tfswl 0 invrfsl 0
sclkdivl wuuuu rfsdivl uuuu
rbufl 0 riregl u rmregl u
tbufl 0 tiregl u tmregl u
mcrel uuuu mctel uuuu
mcre0 uuuu mcte0 uuuu
rx0 uuuu tx0 uuuu
rxl uuuu tx1l uuuu
Figure 5.8
SPORT Register Window
[— 1 STATUS (HEX)

pc_empty 0
pc_overflow 0
count_empty 1
count_overflow 0
status_empty 1
status_ovr 0
loop_empty 0
loop_overflow 0
data_bank_sel 0
bit_reverse 0
alu_overflow 0
ar_sat 0
int0_sens 0
intl_sens 0
int2_sens 0
int3_sens 0
int0_enable 0
intl_enable 0
int2_enable 0
int3_enable 0 .
int ;esting mode 0 F'gure 3.9 . .

= = Status Register Window

5 Simulator Functions

5.5.6 Control Registers Window

Figure 5.10 shows the control registers window. This window shows the
contents of the individual fields of the first five 16-bit memory-mapped
processor control registers (from DM[0x3FFF] to DM[0x3FFB] inclusive).

1 CONT REG (HEX)
bf 0 spel 0 dwait0 7 dwait3 7 tscale uu
bpage 0 spel 0 dwaitl 7 dwait4 7 tperiod uuuu
bwait 3 scnfl 1 dwait2 7 pwait 7 tcount uuuu

Figure 5.10 Control Registers Window

5.5.7 Stack Window SN
The stack window, shown in Figure 5.11, shows the four stacks in the
program sequencer: CNTR stack, LOOP stack, STATUS stack, and PC
stack. The top line of each stack display is the top of the stack. The four
LSBs of the loop stack are the termination code; the 14 MSBs are the return

address.
— 1 STACK (HEX)
cntr loop status pc stack
uuuu 0024e uuuuuu 0024 uuuu
uuuu uuuuu uuuuuu uuuu uuuu
uuuu uuuuu uuuuuu uuuu uuuu
uuuu uuuuu uuuuuu uuuu uuuu
uuuuuu uuuu uuuu
uuuuuu uuuu uuuu
uuuuuu uuuu uuuu
uuuu uuuu

Figure 5.11 Stack Window

@

5-26

Simulator Functions

For this register .. Look in this window
AXO0 Register

AX1 Register

AY0 Register

AY1 Register

AR Register

AF Register

MX0 Register

MX1 Register

MY0 Register

MY1 Register

MRO Register

MR1 Register

MR2 Register

MF Register

SI Register

SE Register

SRO Register

SR1 Register

SB Register

PC . Register

PX Register

10-7 Register

Mo0-7 Register

L0-7 Register

ASTAT Register, Flag
MSTAT Register, Bits 0-3 in Status
SSTAT Register, Status
IMASK Register, Status
ICNTL Register,

IREG Register

CNTR Register
CNTR_NO_PUSH (same contents as CNTR)
RX0 SPORT

TX0 SPORT

RX1 SPORT

TX1 SPORT
Memory-mapped

Control Registers Control Registers, SPORT

Table 5.3 Register Location By Window

5

5-28

Simulator Functions

5.6 INSPECTING & ALTERING MEMORY

This section describes the methods for viewing and altering specific
locations in any of the ADSP-2101’s memory spaces. These functions
include simple display of the various memory spaces (as either data or

code), entering new values and saving the contents of memory to files for

later analysis.

These actions are accomplished by issuing commands in the command
window. Multiple commands may be given on one line, separated by
semicolons, as in

> L 'filename' ; J symbol 'command' ; D address

5.6.1 Inspecting A Memory Location

There are two methods for inspecting a location in memory. First, you
may open the appropriate memory window and make desired location
visible in the window. Second, you may directly query any location or

range from the command window.

For the first method, once you have opened the desired memory window,
you can change the range of memory addresses and contents displayed in
several ways as listed below.

Paging / memory window is active window

The arrow and PgUp and PgDn keys (PC keyboard) and their
equivalents on other computers cause the memory window to scroll.

Go To Address / memory window is active window

Keying "G interactively prompts you (in the memory window itself) to
enter an address. The address must be entered without the pm[], dm|[
], or boot|] notation. When you press Return the first line of the
window displays this address.

Go To Address / command window is active window

If you use the G method from within an active memory window, you
may note the command window echoing a command. This command
(K), issued in the command window, alters what is displayed in an

open window without making the window active. The form of this
command is

> K windownum address

Simulator Functions

where windownum is the number of the window and address is the
memory location to be displayed. Again, the address given must be the
constant or symbol only. In other words, you must enter

> K 1 25 correct
rather than
> K 1 PM[25] incorrect

The result of this command is like the G method above; the specified
address is brought into view in the window.

The second method displays the memory contents directly in the
command window; the memory window does not have to be open or
visible. The command has the form

> D address or range [> 'filename'’]

where address or range identify a location or range of locations in memory.
The default action is to display this location (or range) in the command
window. If the optional file redirection is given, the contents of memory
are written to the file instead of the screen. This can be used for saving the
state of arrays in data memory or other memory ranges. The format of this
file is described in Appendix B, File Formats.

5.6.2 Tracking

Tracking enables you to view the code and data accessed when a program
is run with the single step (S) or go (G) commands. When tracking is
enabled in the program memory window, the window will automatically
scroll through the code being executed to follow the processor’s program
counter. If tracking is turned on in the data memory window, any data
memory locations accessed are scrolled into view in that window.
Tracking is enabled/disabled by giving the command

> T window#

where window# is the number of the program memory, data memory, or
program memory data windows.

Tracking can also be toggled in the active window with the control key
sequence "T.

5-29

5

5-30

Simulator Functions

5.6.3 Locating Symbols & Values

The cross-reference command, X, given in the command window, locates
symbols. The general form of the command is

> X symbol

where symbol is any symbol you believe is defined in your program. For
example, to find the label RESTARTER, the command (and its response)
would be

> x RESTARTER
RESTARTER = boot [0x001c]

Remember that labels are case-sensitive in the Simulator. If you enter
restarter when the actual label is RESTARTER it cannot be found.

The find command, F, finds numeric values in a given memory range. The
numeric value may also be an opcode. In addition, for ease of use, the F
command accepts source versions of commands and assembles them. The
syntax of the F (“find”) command is .

> F address expression

where address is any valid address or address range specifier and
expression is any valid expression including instructions and simple
numeric values. Because this command is actually searching for an exact
numeric match, it does not do partial matching. For example, to locate the
instruction

jump RESTARTER;

you cannot give the F command as

> f pm[0]/100 Jjump Incomplete specification of expression!

The F command is not a word processing command. To obtain the correct
answer, you must give the complete instruction (the semicolon is optional)

including the specific label in a case-sensitive form, as in:

> £ pm[{0]/100 jump RESTARTER

Simulator Functions

When the expression is found, the location is displayed:
pm[0019] 00035f Jjump RESTARTER

The best way to locate a symbol, then, is to use the X command. It is case-
sensitive and can discriminate between data, program and boot memory
when it searches for a symbol. The best way to find a data value or specific
opcode is to use the F command (which does not discriminate between
program and boot memory).

5.6.4 Plotting The Contents Of Memory

An additional and useful way to inspect memory is with the PL or plot
command. This allows you to plot up to 640 points on the screen. The
syntax of PL is

> PL range decimation

where range is an address range and decimation is an integer value (or
expression) indicating which memory locations to select for graphing.
Each graphed point corresponds to a single 16-bit data value. For data that
is interleaved for example, you would select every other word with

> PL dm[0x100]}/0xff 2

The screen clears and the graph is displayed. Pressing Return returns you
to the previous display.

Since no more than 640 points total can be graphed, the length of the
range divided by the decimation factor must not exceed 640.

5.6.5 Altering A Memory Location

You may alter the contents of memory directly in two ways, although
there are some differences between program and data memory. First, you
may display the window containing that memory and make it the active
window. Position the cursor on the address to be changed and type the

new contents. When you press Return, the new value replaces the old
contents.

If you are entering a new value for data memory that value is a number. If
you are entering a new value in the program memory (code) window that
value is an instruction. But, if you are entering a new value in the program
memory data window, that value is a number, including an opcode.

5-31

o

5-32

Simulator Functions

When you directly type over a data memory location, you may notice that
the command window echoes the command equivalent of the direct
change. This is the second method. From the command window you can
change the numeric contents of any address in memory (whether
displayed or not) with the command

> E address expression

where address is the address or address range to be altered and expression
is the value to be written into the specified portion of memory. For
example, to write a zero into the range of data memory from address 200
to address 300, the command is

> E dm([200]/100 O

Likewise, to write the opcode for NOP (which is all zeroes) into program
memory location two, the command is

> E pm[2] O

You may also enter the contents of a file into a memory range with a
variation of the E command. Its syntax is

> E start_address <'filename'

where start_address is any address in memory and filename is the name of a
file to be read from. This file must be in the data file format (DAT)
described in Appendix B. The range of memory written is determined by
the size of the file; the file is read until end of file is reached. If the file is
too large, unpredictable results may occur.

5.6.5.1 Altering Instructions

The command equivalent for directly typing an instruction is the A
(assemble) command whose syntax is

> A address instruction

where address specifies a location in program memory and instruction is a
valid ADSP-2101 instruction (not opcode). The terminal semicolon in the
instruction is optional; the Simulator correctly assembles the instruction
regardless of whether or not the semicolon is entered. (See also the
discussion of the V command under “Miscellaneous Features” at the end
of this chapter.)

Simulator Functions

For example, to alter program memory at location two to the NOP
instruction (as shown numerically above) you would type

> A pm([2] nop

Any change is immediately displayed in the pertinent memory window, if
open.

5.6.5.2 “Undefined” Memory Locations

Uninitialized memory locations are denoted by the word “undefined.”
The Simulator flags operations such as reading undefined memory as
errors. You may wish to reset portions of memory back to an uninitialized
state. The U command, given in the command wihdow, accomplishes this.
You must specify the address (individual address or address range). For
example, to undefine the first sixteen data memory addresses, the
command is

> U dm[0x0] / 16

56.6 Program Memory (Code) Window

The program memory window shows program memory as code with fully
symbolic disassembly. The default arrangement of this window cannot be
altered and appears (after loading a program) as in Figure 5.12, on the
next page. To the left of each address is a two-letter code which indicates
the following:

I/X internal/external memory
A/O RAM/ROM

When an I/O port is opened in program memory , a “P” is displayed with
the I/X, A/O code at the port’s address.

Address labels are shown in the disassembled code. Labels which
originate in boot memory code have the boot page number appended to

them. An example of this is the BOOT0_RESTARTER symbol shown in
Figure 5.12, on the next page.

The contents of the processor’s internal program memory will change
when a new page of boot code is loaded.

5-33

5 Simulator Functions

internal/External, RAM/ROM Disassembled code with symbolic operands
 HEX ////
1 PM (TOFF, HEX) //
IA > pm[0000] jump BOOTO_RESTARTER
IA pm[0001] nop
Ia pm{0002] nop
IA pmi{0003] nop
IA pm[0004] rti
IA pm[0005] nop
IA pm([0006] nop
IA pm([0007] nop
IA pra[0008] rti
IAa pm[0009] nop

Program memory addresses

— 0 COMMAND

> 1 'final’

loading final.exe...

loading final.sym...

> cr

Boot cycles = 1156 Boot page = 0

W Window commands ~“X# Go to window# AZ Go to next window |

Figure 5.12 Program Memory (Code) Window

5.6.7 Program Memory As Data

The program memory data window shows program memory as numeric
data. This consists of either opcodes for code segments in program
memory or actual numeric values for data segments in program memory.
The only way to view opcodes is to open this window. The default
configuration of this window, which cannot be changed, is shown in
Figure 5.13. To the left of each address is a two-letter code which indicates
the following:

I/X internal/external memory
A/O RAM/ROM

Simulator Functibns 5

—— 1 PMD (TOFF, HEX)

Program memory
Internal/External IA > pm([0000] 180lcf | _— addresses

RAM/ROM IA pm[ooon/wb/’
IA pm[0002] 00000

' IA pm[0003] 000000

1A pm[0004] 0a001f

IA pm[0005] 000000

IoA pm([0006] 000000
IA pm([0007] 000000 {

IA pm[0008] 0a001f
Ia pm[0009] 000000 Numeric contents,

opcodes or data

Figure 5.13 Program Memory Data Window

5.6.8 Data Memory

The data memory window shows the numeric contents of data memory
and any symbols defined for data structures. The default configuration of
this window, which cannot be changed, is shown in Figure 5.14, on the
next page. To the left of each address is a two or three-character code
which indicates the following:

I/X internal/external memory
A/O RAM/ROM
0,1,2,3,or4 wait state zones 0-4 of external DM

When an I/O port is opened in data memory , a “P” is displayed with the
I/X, A/O code at the port’s address.

External data memory is divided into five address zones for purposes of
wait state programming. Where external memory is displayed in the data
memory window, the zone number is shown. The numbers represent the
zones for DWAITO through DWAIT4; these wait states are selected in the
Data Memory Wait State Control Register, located at DM[0x3FFE]. Refer
to the ADSP-2101 User’s Manual, under “Data Memory Interface,” for
further information.

5-35

5 Simulator Functions

Internal/External
RAM/ROM
% 1 DM (TOFF, HEX) Data butfer names

IA > dm[3800] wuuu: DATA_BUFFER
1A dm([3801] wuuuu
IA dm([3802] uuuu
IA dm[3803] wuuuu
Ia dm([3804] uuuu
IA dm[3805] wuuuu
IA dm[3806] uuuu
IA dm({3807] uuuu
IA dm[3808] wuuuu
IA 49m[3809] ‘uuuu

.

Data memory addresses Data contents

0 COMMAND

VvV Vv

K 1 DATA_BUFFER

v

“W Window commands ~X# Go to window# ~Z Go to next window |

Figure 5.14 Data Memory Window

5.6.9 Boot Memory

Like program memory, boot memory may be viewed in two ways, each
through its own window. Boot memory code (Figure 5.15) shows
disassembled source code by address in boot memory while boot memory
data (Figure 5.16) shows opcodes and numeric data values. In both cases
the address shown is a (24-bit) word address. The entire 16K length of
boot memory is contained in the windows, from page 0 up to page 7. The
Simulator does not support byte addressing in boot memory directly, nor
does it show the extra bytes added to pad each instruction or data word

for PROM alignment purposes. Byte addresses are determined only by the
PROM Splitter.

5-36

a_——,

Boot page nhumber

Simulator Functions

1 BOOT CODE (HEX)
0 boot [0000] jump BOOTO_RESTARTER
0 boot [0001] nop
0 boot [0002] nop
0 boot [0003] nop
0 boot [0004] rti
0 boot [0005] nop
0 boot [0006] nop
0 boot[0007] nop
0 boot [0008] rti
0 boot[0009] nop

Boot memory
addresses

Disassembled code
with symbolic operands

Figure 5.15 Boot Memory Code Window

™ 1 BOOT DATA

0" boot [0002]
0 boot([0003]
0 boot [0004]

0 boot [0000] 18 I
0 boot 000000

0 boot[0005]
0 boot[0006]
0 boot[0007]
0 boot [0008]
0 boot [0009]

(HEX) —

. — Boot page number
000000
000000
0a001f
SacacRsacacy Boot memory
000000 addresses
000000
0a001f \\\‘
000000 \

Numeric contents,

opcodes or data

Figure 5.16 Boot Memory Data Window

5-37

5 Simulator Functions

5.7 CONTROL & DEBUGGING FUNCTIONS

Control functions include starting and stopping the execution of your
program and resetting the simulated processor. Debugging functions
include setting breakpoints, break conditions and watchpoints. Any
expression can be quickly evaluated in the expressions window. The trace
window provides a history of external bus activity. Profiling (via the
profile window) is a tool for analyzing the time spent executing various
parts of your program.

Remember that multiple commands may be given on one line, separated
by semicolons, as in

> L 'filename' ; J symbol 'command' ; D address

5.7.1 Resetting The Processor: CR and RE

There are two command window commands for resetting the processor:
CR and RE.

CR, which stands for chip reset, simulates a hardware reset of the
processor. It is the same as pulling the RESET line low in a hardware
system. All clocks, registers and stacks become reset or undefined. The
state of on-chip memory is undefined. (While in some cases you may see
values in on-chip memory “surviving” a reset, this is not guaranteed to be
the case.) Finally, boot page zero is booted into the processor if MMAP
equals 0 in the Architecture Description file, and the PC is set to the restart
vector at address 0. Execution does not actually begin in the Simulator,
although it would in hardware.

RE, which stands for reset, performs a subset of the functions of CR. It
omits the boot loading sequence, but otherwise resets the processor. On-
chip memory remains intact.

5.7.2 Single-Step Execution

The S command, given in the command window, steps the processor
through one or more instructions. Execution always begins at the current.
program counter value.

5-38

Simulator Functions

For example, the command

> S 10

executes the next ten instructions, while
> S

executes only the next instruction. Execution can always be interrupted by
pressing any key. If echoing is enabled (in the defaults window), the next
instruction is shown in the command window as you step through your
program.

5.7.3 Running & Halting

The G command with no arguments, as in
> G

starts the simulated processor running from the current PC value for an
unlimited number of instructions. The Simulator halts only for the
following events:

You press any key to interrupt execution
A simulation error occurs

* Abreakpoint is reached or a break change or expression becomes true.

The G command can also be given an address (constant, expression, or
label) to stop at; execution continues until that address is reached as in

> G fir halt

The command RUNFAST is a slightly different version of the G command.
RUNFAST also causes the Simulator to run, but will not stop when a key
is pressed—- only on a break reached or an error. Care must be taken when
using this command, though, since the Simulator does not stop if a break
is not reached.

5 Simulator Functions

5.7.4 Breaks

Breaks halt execution. Breaks include breakpoints, break expressions,
break changes, and break ranges. A breakpoint is a location in program
memory where execution halts. In the program memory (code) window
breakpoint locations are marked with a B in the first column. Break
expressions, changes, and ranges are defined in the following sections.

5.7.4.1 Setting Breakpoints & Break Ranges

There are two ways to set breakpoints. From the command window, you
may identify the program memory location in the command

> B address
where address is any valid program memory address expression, such as
> B pm[0x001A]

which sets a breakpoint at location hexadecimal 001A. A running
simulation halts when this instruction is fetched, but before it is executed.

From the program memory (code) window, you can set a breakpoint at
the instruction marked by the cursor by keying ~B. The command
window echoes this action with the command as above.

Break ranges cause execution to stop when a selected range of program
memory is accessed by the processor. An instruction fetch from any
address within the range will cause the break to occur. A break range is
set with the following command:

> BR range

5.7.4.2 Viewing Breaks

Instructions selected as breakpoints are marked with the B indicator in the
first column of the program memory window. There are two ways to
recall the complete list of breakpoints, beyond what can be viewed
directly in the program memory window.

You may view a list of current breakpoints, break expressions, break
changes, and break ranges in the command window by giving the B

5-40

Simulator Configurations

6.1 INTRODUCTION

The previous chapter describes the functions of the Simulator. This
chapter describes how to customize the “look and feel” of the
Simulator for your everyday needs.

With the release of version 2.0X (and after) the Simulator provides
a customizable user interface. You can change and store the
following items:

The location of individual fields within windows
The location and organization of windows on the screen
The names used to invoke commands and the required order of
arguments
* Any sequence of commands (including aliased commands)

The best way to tailor the Simulator to your requirements is to
begin using it and build up custom screens and commands as you
go. At some point, perhaps as soon as a few hours after you begin,
you can organize all the custom screens and commands into a
clean set of external files. Thereafter, you can invoke the Simulator
with the appropriate startup file identified and the Simulator
appears automatically in your desired configuration.

The Simulator uses two types of external configuration files:
displays and scripts. Display files (file extension .WIN) store the
look and layout of a particular set of windows, one to a file. Each
display can be stored and then recalled, in the desired
configuration, with a simple command. Scripts (default filename is
STARTUP) are text files of command window inputs typically
storing command aliases you create.

6 Simulator Configurations

ks o

As shipped to you, the Simulator package includes a sample
STARTUP file (named EXAMPLE) and a number of sample
display windows (.WIN files). Rename EXAMPLE to STARTUP to
automatically invoke it or name it explicitly (with the —s switch)
when you start the Simulator. ‘

6.2 CONFIGURING SCREENS & WINDOWS

The tools for configuring an individual window are briefly
described in the previous chapter. This section spells them out in
greater detail with an example.

(Note: ~ denotes the control, or CNTL, key.)

6.2.1 Opening Windows

Windows are opened by keying AW to display the menu shown in
, Figure 6.1 and selecting OPEN by typing the letter “O” or pressing
Cursor Return (since OPEN is the default selection on this menu).

Move

CS: ize —— Window Commands Menu (open with control-W)
ose

Hide

Command Window (Always Open)

/

0 COMMAND
>
>
>
>
>
“W Window commands ~X# Go to windowi “Z Go to next window |
\ Informational Display
Figure 6.1 Main Menu For Configuring Windows

62 -

Simulator Configurations 6

Doing this displays the window selection submenu shown in
Figure 6.2. Select the desired window; our example uses the
register window. You select the register window by moving the
cursor down with the arrow keys and pressing Return or by
keying the menu letter (“D”).

Cursor

\

T

program memory

data memory
program memory data
stack

cross reference
flag

break points Window choices
break expression
expression

sport register
sport status
status register
I/0 status
control register
help

trace

profile

defaults

NEXT PAGE

HOWOYOZEEXRUGUHIOEMMBIOOW P

“W Window commands ~X# Go to window# ~Z Go to next window

Figure 6.2 Window Selection Submenu (with Register Window selected)

6-3

6 Simulator Configurations

Figure 6.3 shows the default register window layout. This is the
starting point for rearranging the fields of this window.

REG (REG_PRI, HEX)
ax0 wuuuu ar uuuu i0 uuuu m0 uuuu 10 uuuu astat 00
axl uuuu af uuuu i1l uuuu ml uuuu 11 uuuu mstat 00
ay0 uuuu i2 uuuu m2 uuuu 12 uuuu sstat 55
ayl uuuu i3 uuuu m3 uuuu 13 uuuu
mx0 uuuu mr0 uuuu i4 uuuu m4 uuuu 14 uuuu ireq 000
mxl uuuu mrl wuuuu - iS5 uuuu m5 uuuu 15 uuuu imask 00
my0 uuuu mr2 uu i6 uuuu mé uuuu 16 uuuu icntl uu
myl uuuu mf uuuu i7 uuuu m7 uuuu 17 uuuu
si uuuu sr0 uuuu jole 0000 cntr wuuuu PxX uu
se uu srl uuuu
sb uu
cycle 00000000 irg2 00000000 dm_addr 0000 pm_addr 0000

Figure 6.3 Default Register Window Layout

6.22 Selecting, Deleting & Rearranging Fields In A Window
Note that only the windows displaying individual fields, like the
register window, can be rearranged. The internal layout of
memory windows and informational windows (like the
breakpoints window) cannot be altered.

In the program example used in this manual there are some
registers in the processor which are never used. For example, only
the Sl register in the Shifter is used (as a temporary holding
register for signal data) and none of the ALU registers are used.
Likewise, only some of the DAG registers are used. For the
purposes of illustration we are going to delete unused registers
from our display and rearrange the remaining registers for
compactness. :

P

Simulator Configurations

The first step is to make the register window the active window, if
it is not already. Key ~Z until it becomes the active window or key
AX and the number of the register window followed by Return.
The cursor appears in the active window.

Move the cursor with the arrow keys until it is over the SE field,
one of the fields to be deleted. Key ~D to delete this field and it
disappears from the display. Now move the cursor and delete the
SB, SRO, and SR1 registers in the same way. You can go on to
delete all of the ALU registers and the unneeded DAG registers: 12,
13 and I5-7, M1-3 and M5-7, and L1-3 and L5-7. After these
deletions, the register window looks like Figure 6.4.

—= 1 REG (REG_PRI,HEX)

i0 uuuu m0 uuuu 10 uuuu
il uuuu

mx0 uuuu mr0 uuuu i4 uuuu m4 uuuu 14 uuuu
mxl uuuu mrl uuuu

my0 uuuu mr2 uu

myl uuuu mf uuuu

si uuuu pc 0000 cntr uuuu

cycle 00000000 irg2 00000000 dm_addr 0000

astat
mstat
sstat

ireq
imask
icntl

pPxX uu

00
00
55

000
00
55

pm_addr 0000

Figure 6.4 Example Register Window with some registers deleted

6-5

irq2 00000000

6 Simulator Configurations

If you accidentally delete a register, it can easily be restored
(“undeleted”). Move the cursor to a blank spot in the window and
key AU. A menu drops down that lists all the deleted registers.
Move the cursor along the menu and press Return to restore any
register. Press ESC to abort the operation. Note that the contents of
the deleted registers are also displayed. If a deleted register hasa
value other than undefined, the value is visible in this menu.

Now we can rearrange our pruned-down set of registers for a
more compact display. Move the cursor to the MX0 register field.
To move any field you select it for moving with AY, move it using
the arrow keys, and deselect it with another *Y or Return. Move
the MXO field up to the top line of the window this way.

Repeating this procedure we could rearrange all the fields of this
register window example until the entire window looked like
Figure 6.5.

— 1 REG (REG_PRI, HEX)
mx0 uuuu mr0 uuuu i0 uuuu mo0 uuuu 10 uuuu astat 00
mxl uuuu mrl uuuu i1 uuuu mstat 00
my0 uuuu mr2 uu i4 uuuu m4 uuuu 14 uuuu sstat 55
myl uuuu mf uuuu
si uuuu ireq 000 imask 00 icntl uu px uu
cycle 00000000 pc 0000 cntr uuuu pm_addr 0000

dm_addr 0000

6-6

Figure 6.5 Example Register Window with registers rearranged

Simulator Configurations 6

Now you can resize the window outline, bringing up the bottom
edge to make that space on the screen available for other windows.
Key ~W to display the main menu and select SIZE from it. As you
press the Up arrow, the lower edge of the window moves up on
the screen. Press Return to end the sizing operation. The final
version of this window might look like Figure 6.6.

mx0
mx1
my0
myl

si

REG

uuuu
uuuu
uuuu
uuuu

uuuu

(REG_PRI, HEX)

mr0
mrl
mr2
mf

cycle 00000000
irg2 00000000

uuuu
uuuu
uu

uuuu

i0 uuuu
il uuuu
i4 uuuu

ireq 000

pc 0000

m0

mé

imask

cntr

uuuu

uuuu

00

uuuu

10 uuuu

14 uuuu

icntl uu

pm_addr
dm_addr

astat
mstat
sstat

pPx uu

0000
0000

00
00
55

Figure 6.6 Final Register Window Arrangement

6.2.3

Saving A Rearranged Screen

If you change the display without saving your custom register
window, all the work of creating it is lost. To save a new screen
configuration with a desired set of windows opened, resized, and
internally reconfigured, you must store the screen in a file. The
Simulator token Y stands for the display and the greater than and
less than symbols are directional pipes. The display files are given
the default file extension .WIN. To save the current display (such

as our example in Figure 6.6) enter this command in the command
window:

> y >'myscreen'

This stores the current display configuration in the file
MYSCREEN.WIN in the default directory.

6-7

6

6-8

Simulator Configurations

You may recall this or any other display configuration with the
command

> y <'filename'
where filename is the main filename of a screen/windows file.

Note that the WIN file stores the complete display, not just the
contents of one window. You must create the complete
constellation of windows you want and then store the entire
display. Loading the Simulator display from a .WIN file
overwrites the complete screen, not just part of it.

When you quit the Simulator, the last screen configuration is saved
to the file DD.WIN, which becomes the default display the next
time you startup. If this display is the only one you want, there is
no need to use the -w window switch or the Y command. If several
different custom screens are desired, then you should save each
one and use the —w switch to load the startup screen and the Y
command to recall others.

6.3 COMMAND ALIASES

A command alias is a character string (plus any required
arguments) which replaces one of the Simulator’s native
command<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>