
The Art
of

Demo Making



Key Ingredients
● Code

– Provides the demo's content
● Design

– Makes the content look good



Design
● Elements of Design

– Basic building blocks
● Principles of Design

– Combinations of elements
● Composition

– Overall objective



Elements of Design
● Shape

– Direction
– Size

● Space
– Color
– Texture



Shape
● An area defined by a border

– In design, 3D models act as 
2D shapes

=



Direction
● The angle at which a 

shape's dominant lines flow
– Different directions have a 

different “feel”



Direction Effects
● Horizontal

– Stable, calm
● Slanted

– Dynamic, chaotic
● Vertical

– Alert, formal



Size
● A shape's relative scale

– Larger objects have more 
visual “weight”



Space
● The area either within a 

shape or surrounding it
– Positive space is filled by 

shape
– Negative space surrounds a 

shape



Color
● The hue, saturation, and 

lightness of an area
– Humans perceive colors in 

HSL, not RGB
– RGB is an irrelevant 

technical detail



Hue



Saturation



Lightness



Lightness
● Lightness affects the visual 

weight of a shape
– Dark = Heavy
– Bright = Light



Complements
● Colors with the same 

saturation and lightness but 
180° separation on the 
color wheel



Harmonics
● Colors with the same 

saturation and lightness but 
120° separation on the 
color wheel.



Texture
● A pattern applied to an area 

to create the impression of 
a specific tactile feel
– Slightly different from 3D 

texture, which gives the 
impression of a specific 
material



Principles of Design
● Graduation
● Balance
● Contrast
● Repetition
● Dominance
● Unity



Graduation
● The smooth variation of an 

element through space
– Causes the eye to move 

along a shape



Balance
● The feeling of visual 

equality in a scene
– Created with position and 

visual weight



Contrast
● The juxtaposition of 

opposing elements



Repetition
● Multiple appearances of the 

same element



Dominance
● The emphasis of one object 

over others



Unity
● A common connection 

between elements in a 
scene



Composition
● Rule of thirds

– Drives scene layout
● Ten-second rule

– Guides scene timing



Rule of Thirds
● Align elements in a scene 

with an imaginary three-part 
grid



Bad Example



Bad Example



Better Example



Better Example



Even Better Example



Even Better Example



Comparison

Before After



Ten-Second Rule
● Center of attention should 

change every 10 seconds
– More often = hectic
– Less often = boring
– Effects can run for longer
– Use visual design concepts 

to control center of attention



Rotating Duck Example



Rule of Thirds



Emphasis / Shape



Harmonic Colors



Balance / Gradient



Ten Second Rule



Comparison

Before After



Warning
● Rules are tools

– Use them when they make 
sense

● Good effects are necessary
– Design simply makes them 

more attractive



Code
● One objective

– Write good-looking effects 
quickly and efficiently



Code
● Two key challenges

– Arise when building complex 
effects

● Two general solutions
– Determine the amount of up-

front work required



Demo Objects
● The smallest units of data 

that have independent 
loading or generating code



Examples
● Textures
● 3D models
● 2D overlays
● Camera paths
● Music
● Hard-coded effects



Two Key Challenges
● Loading demo objects

– Where?
– What parameters?

● Connecting demo objects
– Objects need each other at 

render-time



Example
Who loads the model? Who loads the texture?

What joins them at render time?



Related Problems
● Memory management
● Scene composition
● Demo scripting
● Object editing
● Artist accessibility



Two Solutions
● Ad-hoc loading and 

creation code
● Demo object manager



Ad-Hoc Loading
● Each scene typically has its 

own code
● Scene code loads objects 

using library functions
● Object connections happen 

within the scene code's 
render function



Case Study
● Pilgrimage 2004 Invitation

– 3D museum environment
– Effects on walls
– Two internal effects:

● Butterfly
● Cube



Program Flow
● Main loop

– BSP render function
● Wall effect render on an as-

needed basis using visibility 
culling

● Internal effect render
● Main environment render



Advantages
● No overhead

– Code is 100% visual-related
● Editing still possible

– Demo uses custom camera 
editing system

● Flexible
– Entire 4K intro imported as 

wall effect



Disadvantages
● Rigid design

– Optimized for the particular 
demo, but not useful for 
other projects

● Lots of code
– Each wall effect needs its 

own source module



Object Manager
● Centralized manager with 

links to all data types
● Emphasizes reusable demo 

objects
● Demo description file drives 

loading and rendering 
process



Case Study
● Pilgrimage 2005 Invitation

– 3D flyby through two 
environments

– Effects on walls
– Various internal effects

● Clouds
● Arrow
● Birds 
● etc...



Program Flow
● Object manager parses 

XML file for object ID's
● GUI subsystem requests 

“Main” object
● “Main” object's loading code 

requests additional objects 
recursively



Advantages
● Demo description in one file
● Allows the GUI to present a 

unified list of objects.
● Reduces memory 

management headaches
● Completely re-usable base 

system



Disadvantages
● Source Overhead

– More non-visual  
management code

● Initial Investment
– Eight months development 

time



Object Types
● ioVisual – 2D items
● ioModel – 3D items
● ioTexture – Bitmap data
● ioPath – Animation splines



Bridge Objects
● ioVisualViewport

– Renders 3D content to a 2D 
area

● ioTextureTarget
– Renders a 2D scene to a 

texture



Final Advice
1)Focus on effects
2)Use design principles
3)Structure your engine to do 

1 and 2 as simply as 
possible


